2011-04-29 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / gimple.c
blob0d28c1b2738fc156db8b48f107c1b88e3cb6dc7b
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
36 #include "alias.h"
37 #include "demangle.h"
38 #include "langhooks.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
46 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
48 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
50 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
53 /* Global type comparison cache. This is by TYPE_UID for space efficiency
54 and thus cannot use and does not need GC. */
55 static htab_t gtc_visited;
56 static struct obstack gtc_ob;
58 /* All the tuples have their operand vector (if present) at the very bottom
59 of the structure. Therefore, the offset required to find the
60 operands vector the size of the structure minus the size of the 1
61 element tree array at the end (see gimple_ops). */
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
63 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
64 EXPORTED_CONST size_t gimple_ops_offset_[] = {
65 #include "gsstruct.def"
67 #undef DEFGSSTRUCT
69 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
70 static const size_t gsstruct_code_size[] = {
71 #include "gsstruct.def"
73 #undef DEFGSSTRUCT
75 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
76 const char *const gimple_code_name[] = {
77 #include "gimple.def"
79 #undef DEFGSCODE
81 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
82 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
83 #include "gimple.def"
85 #undef DEFGSCODE
87 #ifdef GATHER_STATISTICS
88 /* Gimple stats. */
90 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
91 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
93 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
94 static const char * const gimple_alloc_kind_names[] = {
95 "assignments",
96 "phi nodes",
97 "conditionals",
98 "sequences",
99 "everything else"
102 #endif /* GATHER_STATISTICS */
104 /* A cache of gimple_seq objects. Sequences are created and destroyed
105 fairly often during gimplification. */
106 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
108 /* Private API manipulation functions shared only with some
109 other files. */
110 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
111 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
113 /* Gimple tuple constructors.
114 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
115 be passed a NULL to start with an empty sequence. */
117 /* Set the code for statement G to CODE. */
119 static inline void
120 gimple_set_code (gimple g, enum gimple_code code)
122 g->gsbase.code = code;
125 /* Return the number of bytes needed to hold a GIMPLE statement with
126 code CODE. */
128 static inline size_t
129 gimple_size (enum gimple_code code)
131 return gsstruct_code_size[gss_for_code (code)];
134 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
135 operands. */
137 gimple
138 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
140 size_t size;
141 gimple stmt;
143 size = gimple_size (code);
144 if (num_ops > 0)
145 size += sizeof (tree) * (num_ops - 1);
147 #ifdef GATHER_STATISTICS
149 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
150 gimple_alloc_counts[(int) kind]++;
151 gimple_alloc_sizes[(int) kind] += size;
153 #endif
155 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
156 gimple_set_code (stmt, code);
157 gimple_set_num_ops (stmt, num_ops);
159 /* Do not call gimple_set_modified here as it has other side
160 effects and this tuple is still not completely built. */
161 stmt->gsbase.modified = 1;
163 return stmt;
166 /* Set SUBCODE to be the code of the expression computed by statement G. */
168 static inline void
169 gimple_set_subcode (gimple g, unsigned subcode)
171 /* We only have 16 bits for the RHS code. Assert that we are not
172 overflowing it. */
173 gcc_assert (subcode < (1 << 16));
174 g->gsbase.subcode = subcode;
179 /* Build a tuple with operands. CODE is the statement to build (which
180 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
181 for the new tuple. NUM_OPS is the number of operands to allocate. */
183 #define gimple_build_with_ops(c, s, n) \
184 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
186 static gimple
187 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
188 unsigned num_ops MEM_STAT_DECL)
190 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
191 gimple_set_subcode (s, subcode);
193 return s;
197 /* Build a GIMPLE_RETURN statement returning RETVAL. */
199 gimple
200 gimple_build_return (tree retval)
202 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
203 if (retval)
204 gimple_return_set_retval (s, retval);
205 return s;
208 /* Reset alias information on call S. */
210 void
211 gimple_call_reset_alias_info (gimple s)
213 if (gimple_call_flags (s) & ECF_CONST)
214 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
215 else
216 pt_solution_reset (gimple_call_use_set (s));
217 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
218 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
219 else
220 pt_solution_reset (gimple_call_clobber_set (s));
223 /* Helper for gimple_build_call, gimple_build_call_vec and
224 gimple_build_call_from_tree. Build the basic components of a
225 GIMPLE_CALL statement to function FN with NARGS arguments. */
227 static inline gimple
228 gimple_build_call_1 (tree fn, unsigned nargs)
230 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
231 if (TREE_CODE (fn) == FUNCTION_DECL)
232 fn = build_fold_addr_expr (fn);
233 gimple_set_op (s, 1, fn);
234 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
235 gimple_call_reset_alias_info (s);
236 return s;
240 /* Build a GIMPLE_CALL statement to function FN with the arguments
241 specified in vector ARGS. */
243 gimple
244 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
246 unsigned i;
247 unsigned nargs = VEC_length (tree, args);
248 gimple call = gimple_build_call_1 (fn, nargs);
250 for (i = 0; i < nargs; i++)
251 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
253 return call;
257 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
258 arguments. The ... are the arguments. */
260 gimple
261 gimple_build_call (tree fn, unsigned nargs, ...)
263 va_list ap;
264 gimple call;
265 unsigned i;
267 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
269 call = gimple_build_call_1 (fn, nargs);
271 va_start (ap, nargs);
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, va_arg (ap, tree));
274 va_end (ap);
276 return call;
280 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
281 Build the basic components of a GIMPLE_CALL statement to internal
282 function FN with NARGS arguments. */
284 static inline gimple
285 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
288 s->gsbase.subcode |= GF_CALL_INTERNAL;
289 gimple_call_set_internal_fn (s, fn);
290 gimple_call_reset_alias_info (s);
291 return s;
295 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
296 the number of arguments. The ... are the arguments. */
298 gimple
299 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
301 va_list ap;
302 gimple call;
303 unsigned i;
305 call = gimple_build_call_internal_1 (fn, nargs);
306 va_start (ap, nargs);
307 for (i = 0; i < nargs; i++)
308 gimple_call_set_arg (call, i, va_arg (ap, tree));
309 va_end (ap);
311 return call;
315 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
316 specified in vector ARGS. */
318 gimple
319 gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
321 unsigned i, nargs;
322 gimple call;
324 nargs = VEC_length (tree, args);
325 call = gimple_build_call_internal_1 (fn, nargs);
326 for (i = 0; i < nargs; i++)
327 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
329 return call;
333 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
334 assumed to be in GIMPLE form already. Minimal checking is done of
335 this fact. */
337 gimple
338 gimple_build_call_from_tree (tree t)
340 unsigned i, nargs;
341 gimple call;
342 tree fndecl = get_callee_fndecl (t);
344 gcc_assert (TREE_CODE (t) == CALL_EXPR);
346 nargs = call_expr_nargs (t);
347 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
349 for (i = 0; i < nargs; i++)
350 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
352 gimple_set_block (call, TREE_BLOCK (t));
354 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
355 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
356 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
357 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
358 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
359 if (fndecl
360 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
361 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
362 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
363 else
364 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
365 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
366 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
367 gimple_set_no_warning (call, TREE_NO_WARNING (t));
369 return call;
373 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
374 *OP1_P, *OP2_P and *OP3_P respectively. */
376 void
377 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
378 tree *op2_p, tree *op3_p)
380 enum gimple_rhs_class grhs_class;
382 *subcode_p = TREE_CODE (expr);
383 grhs_class = get_gimple_rhs_class (*subcode_p);
385 if (grhs_class == GIMPLE_TERNARY_RHS)
387 *op1_p = TREE_OPERAND (expr, 0);
388 *op2_p = TREE_OPERAND (expr, 1);
389 *op3_p = TREE_OPERAND (expr, 2);
391 else if (grhs_class == GIMPLE_BINARY_RHS)
393 *op1_p = TREE_OPERAND (expr, 0);
394 *op2_p = TREE_OPERAND (expr, 1);
395 *op3_p = NULL_TREE;
397 else if (grhs_class == GIMPLE_UNARY_RHS)
399 *op1_p = TREE_OPERAND (expr, 0);
400 *op2_p = NULL_TREE;
401 *op3_p = NULL_TREE;
403 else if (grhs_class == GIMPLE_SINGLE_RHS)
405 *op1_p = expr;
406 *op2_p = NULL_TREE;
407 *op3_p = NULL_TREE;
409 else
410 gcc_unreachable ();
414 /* Build a GIMPLE_ASSIGN statement.
416 LHS of the assignment.
417 RHS of the assignment which can be unary or binary. */
419 gimple
420 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
422 enum tree_code subcode;
423 tree op1, op2, op3;
425 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
426 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
427 PASS_MEM_STAT);
431 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
432 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
433 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
435 gimple
436 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
437 tree op2, tree op3 MEM_STAT_DECL)
439 unsigned num_ops;
440 gimple p;
442 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
443 code). */
444 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
446 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
447 PASS_MEM_STAT);
448 gimple_assign_set_lhs (p, lhs);
449 gimple_assign_set_rhs1 (p, op1);
450 if (op2)
452 gcc_assert (num_ops > 2);
453 gimple_assign_set_rhs2 (p, op2);
456 if (op3)
458 gcc_assert (num_ops > 3);
459 gimple_assign_set_rhs3 (p, op3);
462 return p;
466 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
468 DST/SRC are the destination and source respectively. You can pass
469 ungimplified trees in DST or SRC, in which case they will be
470 converted to a gimple operand if necessary.
472 This function returns the newly created GIMPLE_ASSIGN tuple. */
474 gimple
475 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
477 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
478 gimplify_and_add (t, seq_p);
479 ggc_free (t);
480 return gimple_seq_last_stmt (*seq_p);
484 /* Build a GIMPLE_COND statement.
486 PRED is the condition used to compare LHS and the RHS.
487 T_LABEL is the label to jump to if the condition is true.
488 F_LABEL is the label to jump to otherwise. */
490 gimple
491 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 tree t_label, tree f_label)
494 gimple p;
496 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
498 gimple_cond_set_lhs (p, lhs);
499 gimple_cond_set_rhs (p, rhs);
500 gimple_cond_set_true_label (p, t_label);
501 gimple_cond_set_false_label (p, f_label);
502 return p;
506 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
508 void
509 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
510 tree *lhs_p, tree *rhs_p)
512 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
513 || TREE_CODE (cond) == TRUTH_NOT_EXPR
514 || is_gimple_min_invariant (cond)
515 || SSA_VAR_P (cond));
517 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
519 /* Canonicalize conditionals of the form 'if (!VAL)'. */
520 if (*code_p == TRUTH_NOT_EXPR)
522 *code_p = EQ_EXPR;
523 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
524 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
526 /* Canonicalize conditionals of the form 'if (VAL)' */
527 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
529 *code_p = NE_EXPR;
530 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
531 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
536 /* Build a GIMPLE_COND statement from the conditional expression tree
537 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
539 gimple
540 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
542 enum tree_code code;
543 tree lhs, rhs;
545 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
546 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
549 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
550 boolean expression tree COND. */
552 void
553 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
555 enum tree_code code;
556 tree lhs, rhs;
558 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
559 gimple_cond_set_condition (stmt, code, lhs, rhs);
562 /* Build a GIMPLE_LABEL statement for LABEL. */
564 gimple
565 gimple_build_label (tree label)
567 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
568 gimple_label_set_label (p, label);
569 return p;
572 /* Build a GIMPLE_GOTO statement to label DEST. */
574 gimple
575 gimple_build_goto (tree dest)
577 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
578 gimple_goto_set_dest (p, dest);
579 return p;
583 /* Build a GIMPLE_NOP statement. */
585 gimple
586 gimple_build_nop (void)
588 return gimple_alloc (GIMPLE_NOP, 0);
592 /* Build a GIMPLE_BIND statement.
593 VARS are the variables in BODY.
594 BLOCK is the containing block. */
596 gimple
597 gimple_build_bind (tree vars, gimple_seq body, tree block)
599 gimple p = gimple_alloc (GIMPLE_BIND, 0);
600 gimple_bind_set_vars (p, vars);
601 if (body)
602 gimple_bind_set_body (p, body);
603 if (block)
604 gimple_bind_set_block (p, block);
605 return p;
608 /* Helper function to set the simple fields of a asm stmt.
610 STRING is a pointer to a string that is the asm blocks assembly code.
611 NINPUT is the number of register inputs.
612 NOUTPUT is the number of register outputs.
613 NCLOBBERS is the number of clobbered registers.
616 static inline gimple
617 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
618 unsigned nclobbers, unsigned nlabels)
620 gimple p;
621 int size = strlen (string);
623 /* ASMs with labels cannot have outputs. This should have been
624 enforced by the front end. */
625 gcc_assert (nlabels == 0 || noutputs == 0);
627 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
628 ninputs + noutputs + nclobbers + nlabels);
630 p->gimple_asm.ni = ninputs;
631 p->gimple_asm.no = noutputs;
632 p->gimple_asm.nc = nclobbers;
633 p->gimple_asm.nl = nlabels;
634 p->gimple_asm.string = ggc_alloc_string (string, size);
636 #ifdef GATHER_STATISTICS
637 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
638 #endif
640 return p;
643 /* Build a GIMPLE_ASM statement.
645 STRING is the assembly code.
646 NINPUT is the number of register inputs.
647 NOUTPUT is the number of register outputs.
648 NCLOBBERS is the number of clobbered registers.
649 INPUTS is a vector of the input register parameters.
650 OUTPUTS is a vector of the output register parameters.
651 CLOBBERS is a vector of the clobbered register parameters.
652 LABELS is a vector of destination labels. */
654 gimple
655 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
656 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
657 VEC(tree,gc)* labels)
659 gimple p;
660 unsigned i;
662 p = gimple_build_asm_1 (string,
663 VEC_length (tree, inputs),
664 VEC_length (tree, outputs),
665 VEC_length (tree, clobbers),
666 VEC_length (tree, labels));
668 for (i = 0; i < VEC_length (tree, inputs); i++)
669 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
671 for (i = 0; i < VEC_length (tree, outputs); i++)
672 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
674 for (i = 0; i < VEC_length (tree, clobbers); i++)
675 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
677 for (i = 0; i < VEC_length (tree, labels); i++)
678 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
680 return p;
683 /* Build a GIMPLE_CATCH statement.
685 TYPES are the catch types.
686 HANDLER is the exception handler. */
688 gimple
689 gimple_build_catch (tree types, gimple_seq handler)
691 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
692 gimple_catch_set_types (p, types);
693 if (handler)
694 gimple_catch_set_handler (p, handler);
696 return p;
699 /* Build a GIMPLE_EH_FILTER statement.
701 TYPES are the filter's types.
702 FAILURE is the filter's failure action. */
704 gimple
705 gimple_build_eh_filter (tree types, gimple_seq failure)
707 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
708 gimple_eh_filter_set_types (p, types);
709 if (failure)
710 gimple_eh_filter_set_failure (p, failure);
712 return p;
715 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
717 gimple
718 gimple_build_eh_must_not_throw (tree decl)
720 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
722 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
723 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
724 gimple_eh_must_not_throw_set_fndecl (p, decl);
726 return p;
729 /* Build a GIMPLE_TRY statement.
731 EVAL is the expression to evaluate.
732 CLEANUP is the cleanup expression.
733 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
734 whether this is a try/catch or a try/finally respectively. */
736 gimple
737 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
738 enum gimple_try_flags kind)
740 gimple p;
742 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
743 p = gimple_alloc (GIMPLE_TRY, 0);
744 gimple_set_subcode (p, kind);
745 if (eval)
746 gimple_try_set_eval (p, eval);
747 if (cleanup)
748 gimple_try_set_cleanup (p, cleanup);
750 return p;
753 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
755 CLEANUP is the cleanup expression. */
757 gimple
758 gimple_build_wce (gimple_seq cleanup)
760 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
761 if (cleanup)
762 gimple_wce_set_cleanup (p, cleanup);
764 return p;
768 /* Build a GIMPLE_RESX statement. */
770 gimple
771 gimple_build_resx (int region)
773 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
774 p->gimple_eh_ctrl.region = region;
775 return p;
779 /* The helper for constructing a gimple switch statement.
780 INDEX is the switch's index.
781 NLABELS is the number of labels in the switch excluding the default.
782 DEFAULT_LABEL is the default label for the switch statement. */
784 gimple
785 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
787 /* nlabels + 1 default label + 1 index. */
788 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
789 1 + (default_label != NULL) + nlabels);
790 gimple_switch_set_index (p, index);
791 if (default_label)
792 gimple_switch_set_default_label (p, default_label);
793 return p;
797 /* Build a GIMPLE_SWITCH statement.
799 INDEX is the switch's index.
800 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
801 ... are the labels excluding the default. */
803 gimple
804 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
806 va_list al;
807 unsigned i, offset;
808 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
810 /* Store the rest of the labels. */
811 va_start (al, default_label);
812 offset = (default_label != NULL);
813 for (i = 0; i < nlabels; i++)
814 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
815 va_end (al);
817 return p;
821 /* Build a GIMPLE_SWITCH statement.
823 INDEX is the switch's index.
824 DEFAULT_LABEL is the default label
825 ARGS is a vector of labels excluding the default. */
827 gimple
828 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
830 unsigned i, offset, nlabels = VEC_length (tree, args);
831 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
833 /* Copy the labels from the vector to the switch statement. */
834 offset = (default_label != NULL);
835 for (i = 0; i < nlabels; i++)
836 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
838 return p;
841 /* Build a GIMPLE_EH_DISPATCH statement. */
843 gimple
844 gimple_build_eh_dispatch (int region)
846 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
847 p->gimple_eh_ctrl.region = region;
848 return p;
851 /* Build a new GIMPLE_DEBUG_BIND statement.
853 VAR is bound to VALUE; block and location are taken from STMT. */
855 gimple
856 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
858 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
859 (unsigned)GIMPLE_DEBUG_BIND, 2
860 PASS_MEM_STAT);
862 gimple_debug_bind_set_var (p, var);
863 gimple_debug_bind_set_value (p, value);
864 if (stmt)
866 gimple_set_block (p, gimple_block (stmt));
867 gimple_set_location (p, gimple_location (stmt));
870 return p;
874 /* Build a GIMPLE_OMP_CRITICAL statement.
876 BODY is the sequence of statements for which only one thread can execute.
877 NAME is optional identifier for this critical block. */
879 gimple
880 gimple_build_omp_critical (gimple_seq body, tree name)
882 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
883 gimple_omp_critical_set_name (p, name);
884 if (body)
885 gimple_omp_set_body (p, body);
887 return p;
890 /* Build a GIMPLE_OMP_FOR statement.
892 BODY is sequence of statements inside the for loop.
893 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
894 lastprivate, reductions, ordered, schedule, and nowait.
895 COLLAPSE is the collapse count.
896 PRE_BODY is the sequence of statements that are loop invariant. */
898 gimple
899 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
900 gimple_seq pre_body)
902 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
903 if (body)
904 gimple_omp_set_body (p, body);
905 gimple_omp_for_set_clauses (p, clauses);
906 p->gimple_omp_for.collapse = collapse;
907 p->gimple_omp_for.iter
908 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
909 if (pre_body)
910 gimple_omp_for_set_pre_body (p, pre_body);
912 return p;
916 /* Build a GIMPLE_OMP_PARALLEL statement.
918 BODY is sequence of statements which are executed in parallel.
919 CLAUSES, are the OMP parallel construct's clauses.
920 CHILD_FN is the function created for the parallel threads to execute.
921 DATA_ARG are the shared data argument(s). */
923 gimple
924 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
925 tree data_arg)
927 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
928 if (body)
929 gimple_omp_set_body (p, body);
930 gimple_omp_parallel_set_clauses (p, clauses);
931 gimple_omp_parallel_set_child_fn (p, child_fn);
932 gimple_omp_parallel_set_data_arg (p, data_arg);
934 return p;
938 /* Build a GIMPLE_OMP_TASK statement.
940 BODY is sequence of statements which are executed by the explicit task.
941 CLAUSES, are the OMP parallel construct's clauses.
942 CHILD_FN is the function created for the parallel threads to execute.
943 DATA_ARG are the shared data argument(s).
944 COPY_FN is the optional function for firstprivate initialization.
945 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
947 gimple
948 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
949 tree data_arg, tree copy_fn, tree arg_size,
950 tree arg_align)
952 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
953 if (body)
954 gimple_omp_set_body (p, body);
955 gimple_omp_task_set_clauses (p, clauses);
956 gimple_omp_task_set_child_fn (p, child_fn);
957 gimple_omp_task_set_data_arg (p, data_arg);
958 gimple_omp_task_set_copy_fn (p, copy_fn);
959 gimple_omp_task_set_arg_size (p, arg_size);
960 gimple_omp_task_set_arg_align (p, arg_align);
962 return p;
966 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
968 BODY is the sequence of statements in the section. */
970 gimple
971 gimple_build_omp_section (gimple_seq body)
973 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
974 if (body)
975 gimple_omp_set_body (p, body);
977 return p;
981 /* Build a GIMPLE_OMP_MASTER statement.
983 BODY is the sequence of statements to be executed by just the master. */
985 gimple
986 gimple_build_omp_master (gimple_seq body)
988 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
992 return p;
996 /* Build a GIMPLE_OMP_CONTINUE statement.
998 CONTROL_DEF is the definition of the control variable.
999 CONTROL_USE is the use of the control variable. */
1001 gimple
1002 gimple_build_omp_continue (tree control_def, tree control_use)
1004 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1005 gimple_omp_continue_set_control_def (p, control_def);
1006 gimple_omp_continue_set_control_use (p, control_use);
1007 return p;
1010 /* Build a GIMPLE_OMP_ORDERED statement.
1012 BODY is the sequence of statements inside a loop that will executed in
1013 sequence. */
1015 gimple
1016 gimple_build_omp_ordered (gimple_seq body)
1018 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1019 if (body)
1020 gimple_omp_set_body (p, body);
1022 return p;
1026 /* Build a GIMPLE_OMP_RETURN statement.
1027 WAIT_P is true if this is a non-waiting return. */
1029 gimple
1030 gimple_build_omp_return (bool wait_p)
1032 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1033 if (wait_p)
1034 gimple_omp_return_set_nowait (p);
1036 return p;
1040 /* Build a GIMPLE_OMP_SECTIONS statement.
1042 BODY is a sequence of section statements.
1043 CLAUSES are any of the OMP sections contsruct's clauses: private,
1044 firstprivate, lastprivate, reduction, and nowait. */
1046 gimple
1047 gimple_build_omp_sections (gimple_seq body, tree clauses)
1049 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1050 if (body)
1051 gimple_omp_set_body (p, body);
1052 gimple_omp_sections_set_clauses (p, clauses);
1054 return p;
1058 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1060 gimple
1061 gimple_build_omp_sections_switch (void)
1063 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1067 /* Build a GIMPLE_OMP_SINGLE statement.
1069 BODY is the sequence of statements that will be executed once.
1070 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1071 copyprivate, nowait. */
1073 gimple
1074 gimple_build_omp_single (gimple_seq body, tree clauses)
1076 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1077 if (body)
1078 gimple_omp_set_body (p, body);
1079 gimple_omp_single_set_clauses (p, clauses);
1081 return p;
1085 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1087 gimple
1088 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1090 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1091 gimple_omp_atomic_load_set_lhs (p, lhs);
1092 gimple_omp_atomic_load_set_rhs (p, rhs);
1093 return p;
1096 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1098 VAL is the value we are storing. */
1100 gimple
1101 gimple_build_omp_atomic_store (tree val)
1103 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1104 gimple_omp_atomic_store_set_val (p, val);
1105 return p;
1108 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1109 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1111 gimple
1112 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1114 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1115 /* Ensure all the predictors fit into the lower bits of the subcode. */
1116 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1117 gimple_predict_set_predictor (p, predictor);
1118 gimple_predict_set_outcome (p, outcome);
1119 return p;
1122 #if defined ENABLE_GIMPLE_CHECKING
1123 /* Complain of a gimple type mismatch and die. */
1125 void
1126 gimple_check_failed (const_gimple gs, const char *file, int line,
1127 const char *function, enum gimple_code code,
1128 enum tree_code subcode)
1130 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1131 gimple_code_name[code],
1132 tree_code_name[subcode],
1133 gimple_code_name[gimple_code (gs)],
1134 gs->gsbase.subcode > 0
1135 ? tree_code_name[gs->gsbase.subcode]
1136 : "",
1137 function, trim_filename (file), line);
1139 #endif /* ENABLE_GIMPLE_CHECKING */
1142 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1143 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1144 instead. */
1146 gimple_seq
1147 gimple_seq_alloc (void)
1149 gimple_seq seq = gimple_seq_cache;
1150 if (seq)
1152 gimple_seq_cache = gimple_seq_cache->next_free;
1153 gcc_assert (gimple_seq_cache != seq);
1154 memset (seq, 0, sizeof (*seq));
1156 else
1158 seq = ggc_alloc_cleared_gimple_seq_d ();
1159 #ifdef GATHER_STATISTICS
1160 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1161 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1162 #endif
1165 return seq;
1168 /* Return SEQ to the free pool of GIMPLE sequences. */
1170 void
1171 gimple_seq_free (gimple_seq seq)
1173 if (seq == NULL)
1174 return;
1176 gcc_assert (gimple_seq_first (seq) == NULL);
1177 gcc_assert (gimple_seq_last (seq) == NULL);
1179 /* If this triggers, it's a sign that the same list is being freed
1180 twice. */
1181 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1183 /* Add SEQ to the pool of free sequences. */
1184 seq->next_free = gimple_seq_cache;
1185 gimple_seq_cache = seq;
1189 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1190 *SEQ_P is NULL, a new sequence is allocated. */
1192 void
1193 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1195 gimple_stmt_iterator si;
1197 if (gs == NULL)
1198 return;
1200 if (*seq_p == NULL)
1201 *seq_p = gimple_seq_alloc ();
1203 si = gsi_last (*seq_p);
1204 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1208 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1209 NULL, a new sequence is allocated. */
1211 void
1212 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1214 gimple_stmt_iterator si;
1216 if (src == NULL)
1217 return;
1219 if (*dst_p == NULL)
1220 *dst_p = gimple_seq_alloc ();
1222 si = gsi_last (*dst_p);
1223 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1227 /* Helper function of empty_body_p. Return true if STMT is an empty
1228 statement. */
1230 static bool
1231 empty_stmt_p (gimple stmt)
1233 if (gimple_code (stmt) == GIMPLE_NOP)
1234 return true;
1235 if (gimple_code (stmt) == GIMPLE_BIND)
1236 return empty_body_p (gimple_bind_body (stmt));
1237 return false;
1241 /* Return true if BODY contains nothing but empty statements. */
1243 bool
1244 empty_body_p (gimple_seq body)
1246 gimple_stmt_iterator i;
1248 if (gimple_seq_empty_p (body))
1249 return true;
1250 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1251 if (!empty_stmt_p (gsi_stmt (i))
1252 && !is_gimple_debug (gsi_stmt (i)))
1253 return false;
1255 return true;
1259 /* Perform a deep copy of sequence SRC and return the result. */
1261 gimple_seq
1262 gimple_seq_copy (gimple_seq src)
1264 gimple_stmt_iterator gsi;
1265 gimple_seq new_seq = gimple_seq_alloc ();
1266 gimple stmt;
1268 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1270 stmt = gimple_copy (gsi_stmt (gsi));
1271 gimple_seq_add_stmt (&new_seq, stmt);
1274 return new_seq;
1278 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1279 on each one. WI is as in walk_gimple_stmt.
1281 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1282 value is stored in WI->CALLBACK_RESULT and the statement that
1283 produced the value is returned.
1285 Otherwise, all the statements are walked and NULL returned. */
1287 gimple
1288 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1289 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1291 gimple_stmt_iterator gsi;
1293 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1295 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1296 if (ret)
1298 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1299 to hold it. */
1300 gcc_assert (wi);
1301 wi->callback_result = ret;
1302 return gsi_stmt (gsi);
1306 if (wi)
1307 wi->callback_result = NULL_TREE;
1309 return NULL;
1313 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1315 static tree
1316 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1317 struct walk_stmt_info *wi)
1319 tree ret, op;
1320 unsigned noutputs;
1321 const char **oconstraints;
1322 unsigned i, n;
1323 const char *constraint;
1324 bool allows_mem, allows_reg, is_inout;
1326 noutputs = gimple_asm_noutputs (stmt);
1327 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1329 if (wi)
1330 wi->is_lhs = true;
1332 for (i = 0; i < noutputs; i++)
1334 op = gimple_asm_output_op (stmt, i);
1335 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1336 oconstraints[i] = constraint;
1337 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1338 &is_inout);
1339 if (wi)
1340 wi->val_only = (allows_reg || !allows_mem);
1341 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1342 if (ret)
1343 return ret;
1346 n = gimple_asm_ninputs (stmt);
1347 for (i = 0; i < n; i++)
1349 op = gimple_asm_input_op (stmt, i);
1350 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1351 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1352 oconstraints, &allows_mem, &allows_reg);
1353 if (wi)
1355 wi->val_only = (allows_reg || !allows_mem);
1356 /* Although input "m" is not really a LHS, we need a lvalue. */
1357 wi->is_lhs = !wi->val_only;
1359 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1360 if (ret)
1361 return ret;
1364 if (wi)
1366 wi->is_lhs = false;
1367 wi->val_only = true;
1370 n = gimple_asm_nlabels (stmt);
1371 for (i = 0; i < n; i++)
1373 op = gimple_asm_label_op (stmt, i);
1374 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1375 if (ret)
1376 return ret;
1379 return NULL_TREE;
1383 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1384 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1386 CALLBACK_OP is called on each operand of STMT via walk_tree.
1387 Additional parameters to walk_tree must be stored in WI. For each operand
1388 OP, walk_tree is called as:
1390 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1392 If CALLBACK_OP returns non-NULL for an operand, the remaining
1393 operands are not scanned.
1395 The return value is that returned by the last call to walk_tree, or
1396 NULL_TREE if no CALLBACK_OP is specified. */
1398 tree
1399 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1400 struct walk_stmt_info *wi)
1402 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1403 unsigned i;
1404 tree ret = NULL_TREE;
1406 switch (gimple_code (stmt))
1408 case GIMPLE_ASSIGN:
1409 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1410 is a register variable, we may use a COMPONENT_REF on the RHS. */
1411 if (wi)
1413 tree lhs = gimple_assign_lhs (stmt);
1414 wi->val_only
1415 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1416 || !gimple_assign_single_p (stmt);
1419 for (i = 1; i < gimple_num_ops (stmt); i++)
1421 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1422 pset);
1423 if (ret)
1424 return ret;
1427 /* Walk the LHS. If the RHS is appropriate for a memory, we
1428 may use a COMPONENT_REF on the LHS. */
1429 if (wi)
1431 /* If the RHS has more than 1 operand, it is not appropriate
1432 for the memory. */
1433 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1434 || !gimple_assign_single_p (stmt);
1435 wi->is_lhs = true;
1438 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1439 if (ret)
1440 return ret;
1442 if (wi)
1444 wi->val_only = true;
1445 wi->is_lhs = false;
1447 break;
1449 case GIMPLE_CALL:
1450 if (wi)
1452 wi->is_lhs = false;
1453 wi->val_only = true;
1456 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1460 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1461 if (ret)
1462 return ret;
1464 for (i = 0; i < gimple_call_num_args (stmt); i++)
1466 if (wi)
1467 wi->val_only
1468 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
1469 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1470 pset);
1471 if (ret)
1472 return ret;
1475 if (gimple_call_lhs (stmt))
1477 if (wi)
1479 wi->is_lhs = true;
1480 wi->val_only
1481 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
1484 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1485 if (ret)
1486 return ret;
1489 if (wi)
1491 wi->is_lhs = false;
1492 wi->val_only = true;
1494 break;
1496 case GIMPLE_CATCH:
1497 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1498 pset);
1499 if (ret)
1500 return ret;
1501 break;
1503 case GIMPLE_EH_FILTER:
1504 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1505 pset);
1506 if (ret)
1507 return ret;
1508 break;
1510 case GIMPLE_ASM:
1511 ret = walk_gimple_asm (stmt, callback_op, wi);
1512 if (ret)
1513 return ret;
1514 break;
1516 case GIMPLE_OMP_CONTINUE:
1517 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1522 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1523 callback_op, wi, pset);
1524 if (ret)
1525 return ret;
1526 break;
1528 case GIMPLE_OMP_CRITICAL:
1529 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1530 pset);
1531 if (ret)
1532 return ret;
1533 break;
1535 case GIMPLE_OMP_FOR:
1536 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1537 pset);
1538 if (ret)
1539 return ret;
1540 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1542 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1547 wi, pset);
1548 if (ret)
1549 return ret;
1550 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1551 wi, pset);
1552 if (ret)
1553 return ret;
1554 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1555 wi, pset);
1557 if (ret)
1558 return ret;
1559 break;
1561 case GIMPLE_OMP_PARALLEL:
1562 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1563 wi, pset);
1564 if (ret)
1565 return ret;
1566 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1567 wi, pset);
1568 if (ret)
1569 return ret;
1570 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1571 wi, pset);
1572 if (ret)
1573 return ret;
1574 break;
1576 case GIMPLE_OMP_TASK:
1577 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1578 wi, pset);
1579 if (ret)
1580 return ret;
1581 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1582 wi, pset);
1583 if (ret)
1584 return ret;
1585 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1586 wi, pset);
1587 if (ret)
1588 return ret;
1589 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1590 wi, pset);
1591 if (ret)
1592 return ret;
1593 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1594 wi, pset);
1595 if (ret)
1596 return ret;
1597 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1598 wi, pset);
1599 if (ret)
1600 return ret;
1601 break;
1603 case GIMPLE_OMP_SECTIONS:
1604 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1609 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1610 wi, pset);
1611 if (ret)
1612 return ret;
1614 break;
1616 case GIMPLE_OMP_SINGLE:
1617 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1618 pset);
1619 if (ret)
1620 return ret;
1621 break;
1623 case GIMPLE_OMP_ATOMIC_LOAD:
1624 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1629 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1630 pset);
1631 if (ret)
1632 return ret;
1633 break;
1635 case GIMPLE_OMP_ATOMIC_STORE:
1636 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1637 wi, pset);
1638 if (ret)
1639 return ret;
1640 break;
1642 /* Tuples that do not have operands. */
1643 case GIMPLE_NOP:
1644 case GIMPLE_RESX:
1645 case GIMPLE_OMP_RETURN:
1646 case GIMPLE_PREDICT:
1647 break;
1649 default:
1651 enum gimple_statement_structure_enum gss;
1652 gss = gimple_statement_structure (stmt);
1653 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1654 for (i = 0; i < gimple_num_ops (stmt); i++)
1656 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1657 if (ret)
1658 return ret;
1661 break;
1664 return NULL_TREE;
1668 /* Walk the current statement in GSI (optionally using traversal state
1669 stored in WI). If WI is NULL, no state is kept during traversal.
1670 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1671 that it has handled all the operands of the statement, its return
1672 value is returned. Otherwise, the return value from CALLBACK_STMT
1673 is discarded and its operands are scanned.
1675 If CALLBACK_STMT is NULL or it didn't handle the operands,
1676 CALLBACK_OP is called on each operand of the statement via
1677 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1678 operand, the remaining operands are not scanned. In this case, the
1679 return value from CALLBACK_OP is returned.
1681 In any other case, NULL_TREE is returned. */
1683 tree
1684 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1685 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1687 gimple ret;
1688 tree tree_ret;
1689 gimple stmt = gsi_stmt (*gsi);
1691 if (wi)
1692 wi->gsi = *gsi;
1694 if (wi && wi->want_locations && gimple_has_location (stmt))
1695 input_location = gimple_location (stmt);
1697 ret = NULL;
1699 /* Invoke the statement callback. Return if the callback handled
1700 all of STMT operands by itself. */
1701 if (callback_stmt)
1703 bool handled_ops = false;
1704 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1705 if (handled_ops)
1706 return tree_ret;
1708 /* If CALLBACK_STMT did not handle operands, it should not have
1709 a value to return. */
1710 gcc_assert (tree_ret == NULL);
1712 /* Re-read stmt in case the callback changed it. */
1713 stmt = gsi_stmt (*gsi);
1716 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1717 if (callback_op)
1719 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1720 if (tree_ret)
1721 return tree_ret;
1724 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1725 switch (gimple_code (stmt))
1727 case GIMPLE_BIND:
1728 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1729 callback_op, wi);
1730 if (ret)
1731 return wi->callback_result;
1732 break;
1734 case GIMPLE_CATCH:
1735 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1736 callback_op, wi);
1737 if (ret)
1738 return wi->callback_result;
1739 break;
1741 case GIMPLE_EH_FILTER:
1742 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1743 callback_op, wi);
1744 if (ret)
1745 return wi->callback_result;
1746 break;
1748 case GIMPLE_TRY:
1749 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1750 wi);
1751 if (ret)
1752 return wi->callback_result;
1754 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1755 callback_op, wi);
1756 if (ret)
1757 return wi->callback_result;
1758 break;
1760 case GIMPLE_OMP_FOR:
1761 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1762 callback_op, wi);
1763 if (ret)
1764 return wi->callback_result;
1766 /* FALL THROUGH. */
1767 case GIMPLE_OMP_CRITICAL:
1768 case GIMPLE_OMP_MASTER:
1769 case GIMPLE_OMP_ORDERED:
1770 case GIMPLE_OMP_SECTION:
1771 case GIMPLE_OMP_PARALLEL:
1772 case GIMPLE_OMP_TASK:
1773 case GIMPLE_OMP_SECTIONS:
1774 case GIMPLE_OMP_SINGLE:
1775 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1776 wi);
1777 if (ret)
1778 return wi->callback_result;
1779 break;
1781 case GIMPLE_WITH_CLEANUP_EXPR:
1782 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1783 callback_op, wi);
1784 if (ret)
1785 return wi->callback_result;
1786 break;
1788 default:
1789 gcc_assert (!gimple_has_substatements (stmt));
1790 break;
1793 return NULL;
1797 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1799 void
1800 gimple_set_body (tree fndecl, gimple_seq seq)
1802 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1803 if (fn == NULL)
1805 /* If FNDECL still does not have a function structure associated
1806 with it, then it does not make sense for it to receive a
1807 GIMPLE body. */
1808 gcc_assert (seq == NULL);
1810 else
1811 fn->gimple_body = seq;
1815 /* Return the body of GIMPLE statements for function FN. After the
1816 CFG pass, the function body doesn't exist anymore because it has
1817 been split up into basic blocks. In this case, it returns
1818 NULL. */
1820 gimple_seq
1821 gimple_body (tree fndecl)
1823 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1824 return fn ? fn->gimple_body : NULL;
1827 /* Return true when FNDECL has Gimple body either in unlowered
1828 or CFG form. */
1829 bool
1830 gimple_has_body_p (tree fndecl)
1832 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1833 return (gimple_body (fndecl) || (fn && fn->cfg));
1836 /* Return true if calls C1 and C2 are known to go to the same function. */
1838 bool
1839 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1841 if (gimple_call_internal_p (c1))
1842 return (gimple_call_internal_p (c2)
1843 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1844 else
1845 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1846 || (gimple_call_fndecl (c1)
1847 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1850 /* Detect flags from a GIMPLE_CALL. This is just like
1851 call_expr_flags, but for gimple tuples. */
1854 gimple_call_flags (const_gimple stmt)
1856 int flags;
1857 tree decl = gimple_call_fndecl (stmt);
1859 if (decl)
1860 flags = flags_from_decl_or_type (decl);
1861 else if (gimple_call_internal_p (stmt))
1862 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1863 else
1864 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1866 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1867 flags |= ECF_NOTHROW;
1869 return flags;
1872 /* Return the "fn spec" string for call STMT. */
1874 static tree
1875 gimple_call_fnspec (const_gimple stmt)
1877 tree type, attr;
1879 type = gimple_call_fntype (stmt);
1880 if (!type)
1881 return NULL_TREE;
1883 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1884 if (!attr)
1885 return NULL_TREE;
1887 return TREE_VALUE (TREE_VALUE (attr));
1890 /* Detects argument flags for argument number ARG on call STMT. */
1893 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1895 tree attr = gimple_call_fnspec (stmt);
1897 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1898 return 0;
1900 switch (TREE_STRING_POINTER (attr)[1 + arg])
1902 case 'x':
1903 case 'X':
1904 return EAF_UNUSED;
1906 case 'R':
1907 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1909 case 'r':
1910 return EAF_NOCLOBBER | EAF_NOESCAPE;
1912 case 'W':
1913 return EAF_DIRECT | EAF_NOESCAPE;
1915 case 'w':
1916 return EAF_NOESCAPE;
1918 case '.':
1919 default:
1920 return 0;
1924 /* Detects return flags for the call STMT. */
1927 gimple_call_return_flags (const_gimple stmt)
1929 tree attr;
1931 if (gimple_call_flags (stmt) & ECF_MALLOC)
1932 return ERF_NOALIAS;
1934 attr = gimple_call_fnspec (stmt);
1935 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1936 return 0;
1938 switch (TREE_STRING_POINTER (attr)[0])
1940 case '1':
1941 case '2':
1942 case '3':
1943 case '4':
1944 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1946 case 'm':
1947 return ERF_NOALIAS;
1949 case '.':
1950 default:
1951 return 0;
1956 /* Return true if GS is a copy assignment. */
1958 bool
1959 gimple_assign_copy_p (gimple gs)
1961 return (gimple_assign_single_p (gs)
1962 && is_gimple_val (gimple_op (gs, 1)));
1966 /* Return true if GS is a SSA_NAME copy assignment. */
1968 bool
1969 gimple_assign_ssa_name_copy_p (gimple gs)
1971 return (gimple_assign_single_p (gs)
1972 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1973 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1977 /* Return true if GS is an assignment with a unary RHS, but the
1978 operator has no effect on the assigned value. The logic is adapted
1979 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1980 instances in which STRIP_NOPS was previously applied to the RHS of
1981 an assignment.
1983 NOTE: In the use cases that led to the creation of this function
1984 and of gimple_assign_single_p, it is typical to test for either
1985 condition and to proceed in the same manner. In each case, the
1986 assigned value is represented by the single RHS operand of the
1987 assignment. I suspect there may be cases where gimple_assign_copy_p,
1988 gimple_assign_single_p, or equivalent logic is used where a similar
1989 treatment of unary NOPs is appropriate. */
1991 bool
1992 gimple_assign_unary_nop_p (gimple gs)
1994 return (is_gimple_assign (gs)
1995 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1996 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1997 && gimple_assign_rhs1 (gs) != error_mark_node
1998 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1999 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2002 /* Set BB to be the basic block holding G. */
2004 void
2005 gimple_set_bb (gimple stmt, basic_block bb)
2007 stmt->gsbase.bb = bb;
2009 /* If the statement is a label, add the label to block-to-labels map
2010 so that we can speed up edge creation for GIMPLE_GOTOs. */
2011 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2013 tree t;
2014 int uid;
2016 t = gimple_label_label (stmt);
2017 uid = LABEL_DECL_UID (t);
2018 if (uid == -1)
2020 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2021 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2022 if (old_len <= (unsigned) uid)
2024 unsigned new_len = 3 * uid / 2 + 1;
2026 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2027 new_len);
2031 VEC_replace (basic_block, label_to_block_map, uid, bb);
2036 /* Modify the RHS of the assignment pointed-to by GSI using the
2037 operands in the expression tree EXPR.
2039 NOTE: The statement pointed-to by GSI may be reallocated if it
2040 did not have enough operand slots.
2042 This function is useful to convert an existing tree expression into
2043 the flat representation used for the RHS of a GIMPLE assignment.
2044 It will reallocate memory as needed to expand or shrink the number
2045 of operand slots needed to represent EXPR.
2047 NOTE: If you find yourself building a tree and then calling this
2048 function, you are most certainly doing it the slow way. It is much
2049 better to build a new assignment or to use the function
2050 gimple_assign_set_rhs_with_ops, which does not require an
2051 expression tree to be built. */
2053 void
2054 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2056 enum tree_code subcode;
2057 tree op1, op2, op3;
2059 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2060 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
2064 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2065 operands OP1, OP2 and OP3.
2067 NOTE: The statement pointed-to by GSI may be reallocated if it
2068 did not have enough operand slots. */
2070 void
2071 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2072 tree op1, tree op2, tree op3)
2074 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2075 gimple stmt = gsi_stmt (*gsi);
2077 /* If the new CODE needs more operands, allocate a new statement. */
2078 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2080 tree lhs = gimple_assign_lhs (stmt);
2081 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2082 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2083 gsi_replace (gsi, new_stmt, true);
2084 stmt = new_stmt;
2086 /* The LHS needs to be reset as this also changes the SSA name
2087 on the LHS. */
2088 gimple_assign_set_lhs (stmt, lhs);
2091 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2092 gimple_set_subcode (stmt, code);
2093 gimple_assign_set_rhs1 (stmt, op1);
2094 if (new_rhs_ops > 1)
2095 gimple_assign_set_rhs2 (stmt, op2);
2096 if (new_rhs_ops > 2)
2097 gimple_assign_set_rhs3 (stmt, op3);
2101 /* Return the LHS of a statement that performs an assignment,
2102 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2103 for a call to a function that returns no value, or for a
2104 statement other than an assignment or a call. */
2106 tree
2107 gimple_get_lhs (const_gimple stmt)
2109 enum gimple_code code = gimple_code (stmt);
2111 if (code == GIMPLE_ASSIGN)
2112 return gimple_assign_lhs (stmt);
2113 else if (code == GIMPLE_CALL)
2114 return gimple_call_lhs (stmt);
2115 else
2116 return NULL_TREE;
2120 /* Set the LHS of a statement that performs an assignment,
2121 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2123 void
2124 gimple_set_lhs (gimple stmt, tree lhs)
2126 enum gimple_code code = gimple_code (stmt);
2128 if (code == GIMPLE_ASSIGN)
2129 gimple_assign_set_lhs (stmt, lhs);
2130 else if (code == GIMPLE_CALL)
2131 gimple_call_set_lhs (stmt, lhs);
2132 else
2133 gcc_unreachable();
2136 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2137 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2138 expression with a different value.
2140 This will update any annotations (say debug bind stmts) referring
2141 to the original LHS, so that they use the RHS instead. This is
2142 done even if NLHS and LHS are the same, for it is understood that
2143 the RHS will be modified afterwards, and NLHS will not be assigned
2144 an equivalent value.
2146 Adjusting any non-annotation uses of the LHS, if needed, is a
2147 responsibility of the caller.
2149 The effect of this call should be pretty much the same as that of
2150 inserting a copy of STMT before STMT, and then removing the
2151 original stmt, at which time gsi_remove() would have update
2152 annotations, but using this function saves all the inserting,
2153 copying and removing. */
2155 void
2156 gimple_replace_lhs (gimple stmt, tree nlhs)
2158 if (MAY_HAVE_DEBUG_STMTS)
2160 tree lhs = gimple_get_lhs (stmt);
2162 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2164 insert_debug_temp_for_var_def (NULL, lhs);
2167 gimple_set_lhs (stmt, nlhs);
2170 /* Return a deep copy of statement STMT. All the operands from STMT
2171 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2172 and VUSE operand arrays are set to empty in the new copy. */
2174 gimple
2175 gimple_copy (gimple stmt)
2177 enum gimple_code code = gimple_code (stmt);
2178 unsigned num_ops = gimple_num_ops (stmt);
2179 gimple copy = gimple_alloc (code, num_ops);
2180 unsigned i;
2182 /* Shallow copy all the fields from STMT. */
2183 memcpy (copy, stmt, gimple_size (code));
2185 /* If STMT has sub-statements, deep-copy them as well. */
2186 if (gimple_has_substatements (stmt))
2188 gimple_seq new_seq;
2189 tree t;
2191 switch (gimple_code (stmt))
2193 case GIMPLE_BIND:
2194 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2195 gimple_bind_set_body (copy, new_seq);
2196 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2197 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2198 break;
2200 case GIMPLE_CATCH:
2201 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2202 gimple_catch_set_handler (copy, new_seq);
2203 t = unshare_expr (gimple_catch_types (stmt));
2204 gimple_catch_set_types (copy, t);
2205 break;
2207 case GIMPLE_EH_FILTER:
2208 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2209 gimple_eh_filter_set_failure (copy, new_seq);
2210 t = unshare_expr (gimple_eh_filter_types (stmt));
2211 gimple_eh_filter_set_types (copy, t);
2212 break;
2214 case GIMPLE_TRY:
2215 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2216 gimple_try_set_eval (copy, new_seq);
2217 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2218 gimple_try_set_cleanup (copy, new_seq);
2219 break;
2221 case GIMPLE_OMP_FOR:
2222 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2223 gimple_omp_for_set_pre_body (copy, new_seq);
2224 t = unshare_expr (gimple_omp_for_clauses (stmt));
2225 gimple_omp_for_set_clauses (copy, t);
2226 copy->gimple_omp_for.iter
2227 = ggc_alloc_vec_gimple_omp_for_iter
2228 (gimple_omp_for_collapse (stmt));
2229 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2231 gimple_omp_for_set_cond (copy, i,
2232 gimple_omp_for_cond (stmt, i));
2233 gimple_omp_for_set_index (copy, i,
2234 gimple_omp_for_index (stmt, i));
2235 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2236 gimple_omp_for_set_initial (copy, i, t);
2237 t = unshare_expr (gimple_omp_for_final (stmt, i));
2238 gimple_omp_for_set_final (copy, i, t);
2239 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2240 gimple_omp_for_set_incr (copy, i, t);
2242 goto copy_omp_body;
2244 case GIMPLE_OMP_PARALLEL:
2245 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2246 gimple_omp_parallel_set_clauses (copy, t);
2247 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2248 gimple_omp_parallel_set_child_fn (copy, t);
2249 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2250 gimple_omp_parallel_set_data_arg (copy, t);
2251 goto copy_omp_body;
2253 case GIMPLE_OMP_TASK:
2254 t = unshare_expr (gimple_omp_task_clauses (stmt));
2255 gimple_omp_task_set_clauses (copy, t);
2256 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2257 gimple_omp_task_set_child_fn (copy, t);
2258 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2259 gimple_omp_task_set_data_arg (copy, t);
2260 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2261 gimple_omp_task_set_copy_fn (copy, t);
2262 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2263 gimple_omp_task_set_arg_size (copy, t);
2264 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2265 gimple_omp_task_set_arg_align (copy, t);
2266 goto copy_omp_body;
2268 case GIMPLE_OMP_CRITICAL:
2269 t = unshare_expr (gimple_omp_critical_name (stmt));
2270 gimple_omp_critical_set_name (copy, t);
2271 goto copy_omp_body;
2273 case GIMPLE_OMP_SECTIONS:
2274 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2275 gimple_omp_sections_set_clauses (copy, t);
2276 t = unshare_expr (gimple_omp_sections_control (stmt));
2277 gimple_omp_sections_set_control (copy, t);
2278 /* FALLTHRU */
2280 case GIMPLE_OMP_SINGLE:
2281 case GIMPLE_OMP_SECTION:
2282 case GIMPLE_OMP_MASTER:
2283 case GIMPLE_OMP_ORDERED:
2284 copy_omp_body:
2285 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2286 gimple_omp_set_body (copy, new_seq);
2287 break;
2289 case GIMPLE_WITH_CLEANUP_EXPR:
2290 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2291 gimple_wce_set_cleanup (copy, new_seq);
2292 break;
2294 default:
2295 gcc_unreachable ();
2299 /* Make copy of operands. */
2300 if (num_ops > 0)
2302 for (i = 0; i < num_ops; i++)
2303 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2305 /* Clear out SSA operand vectors on COPY. */
2306 if (gimple_has_ops (stmt))
2308 gimple_set_def_ops (copy, NULL);
2309 gimple_set_use_ops (copy, NULL);
2312 if (gimple_has_mem_ops (stmt))
2314 gimple_set_vdef (copy, gimple_vdef (stmt));
2315 gimple_set_vuse (copy, gimple_vuse (stmt));
2318 /* SSA operands need to be updated. */
2319 gimple_set_modified (copy, true);
2322 return copy;
2326 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2327 a MODIFIED field. */
2329 void
2330 gimple_set_modified (gimple s, bool modifiedp)
2332 if (gimple_has_ops (s))
2333 s->gsbase.modified = (unsigned) modifiedp;
2337 /* Return true if statement S has side-effects. We consider a
2338 statement to have side effects if:
2340 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2341 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2343 bool
2344 gimple_has_side_effects (const_gimple s)
2346 unsigned i;
2348 if (is_gimple_debug (s))
2349 return false;
2351 /* We don't have to scan the arguments to check for
2352 volatile arguments, though, at present, we still
2353 do a scan to check for TREE_SIDE_EFFECTS. */
2354 if (gimple_has_volatile_ops (s))
2355 return true;
2357 if (is_gimple_call (s))
2359 unsigned nargs = gimple_call_num_args (s);
2360 tree fn;
2362 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2363 return true;
2364 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2365 /* An infinite loop is considered a side effect. */
2366 return true;
2368 if (gimple_call_lhs (s)
2369 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2371 gcc_assert (gimple_has_volatile_ops (s));
2372 return true;
2375 fn = gimple_call_fn (s);
2376 if (fn && TREE_SIDE_EFFECTS (fn))
2377 return true;
2379 for (i = 0; i < nargs; i++)
2380 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2382 gcc_assert (gimple_has_volatile_ops (s));
2383 return true;
2386 return false;
2388 else
2390 for (i = 0; i < gimple_num_ops (s); i++)
2391 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2393 gcc_assert (gimple_has_volatile_ops (s));
2394 return true;
2398 return false;
2401 /* Return true if the RHS of statement S has side effects.
2402 We may use it to determine if it is admissable to replace
2403 an assignment or call with a copy of a previously-computed
2404 value. In such cases, side-effects due to the LHS are
2405 preserved. */
2407 bool
2408 gimple_rhs_has_side_effects (const_gimple s)
2410 unsigned i;
2412 if (is_gimple_call (s))
2414 unsigned nargs = gimple_call_num_args (s);
2415 tree fn;
2417 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2418 return true;
2420 /* We cannot use gimple_has_volatile_ops here,
2421 because we must ignore a volatile LHS. */
2422 fn = gimple_call_fn (s);
2423 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
2425 gcc_assert (gimple_has_volatile_ops (s));
2426 return true;
2429 for (i = 0; i < nargs; i++)
2430 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2431 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2432 return true;
2434 return false;
2436 else if (is_gimple_assign (s))
2438 /* Skip the first operand, the LHS. */
2439 for (i = 1; i < gimple_num_ops (s); i++)
2440 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2441 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2443 gcc_assert (gimple_has_volatile_ops (s));
2444 return true;
2447 else if (is_gimple_debug (s))
2448 return false;
2449 else
2451 /* For statements without an LHS, examine all arguments. */
2452 for (i = 0; i < gimple_num_ops (s); i++)
2453 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2454 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2456 gcc_assert (gimple_has_volatile_ops (s));
2457 return true;
2461 return false;
2464 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2465 Return true if S can trap. When INCLUDE_MEM is true, check whether
2466 the memory operations could trap. When INCLUDE_STORES is true and
2467 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2469 bool
2470 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2472 tree t, div = NULL_TREE;
2473 enum tree_code op;
2475 if (include_mem)
2477 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2479 for (i = start; i < gimple_num_ops (s); i++)
2480 if (tree_could_trap_p (gimple_op (s, i)))
2481 return true;
2484 switch (gimple_code (s))
2486 case GIMPLE_ASM:
2487 return gimple_asm_volatile_p (s);
2489 case GIMPLE_CALL:
2490 t = gimple_call_fndecl (s);
2491 /* Assume that calls to weak functions may trap. */
2492 if (!t || !DECL_P (t) || DECL_WEAK (t))
2493 return true;
2494 return false;
2496 case GIMPLE_ASSIGN:
2497 t = gimple_expr_type (s);
2498 op = gimple_assign_rhs_code (s);
2499 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2500 div = gimple_assign_rhs2 (s);
2501 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2502 (INTEGRAL_TYPE_P (t)
2503 && TYPE_OVERFLOW_TRAPS (t)),
2504 div));
2506 default:
2507 break;
2510 return false;
2513 /* Return true if statement S can trap. */
2515 bool
2516 gimple_could_trap_p (gimple s)
2518 return gimple_could_trap_p_1 (s, true, true);
2521 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2523 bool
2524 gimple_assign_rhs_could_trap_p (gimple s)
2526 gcc_assert (is_gimple_assign (s));
2527 return gimple_could_trap_p_1 (s, true, false);
2531 /* Print debugging information for gimple stmts generated. */
2533 void
2534 dump_gimple_statistics (void)
2536 #ifdef GATHER_STATISTICS
2537 int i, total_tuples = 0, total_bytes = 0;
2539 fprintf (stderr, "\nGIMPLE statements\n");
2540 fprintf (stderr, "Kind Stmts Bytes\n");
2541 fprintf (stderr, "---------------------------------------\n");
2542 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2544 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2545 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2546 total_tuples += gimple_alloc_counts[i];
2547 total_bytes += gimple_alloc_sizes[i];
2549 fprintf (stderr, "---------------------------------------\n");
2550 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2551 fprintf (stderr, "---------------------------------------\n");
2552 #else
2553 fprintf (stderr, "No gimple statistics\n");
2554 #endif
2558 /* Return the number of operands needed on the RHS of a GIMPLE
2559 assignment for an expression with tree code CODE. */
2561 unsigned
2562 get_gimple_rhs_num_ops (enum tree_code code)
2564 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2566 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2567 return 1;
2568 else if (rhs_class == GIMPLE_BINARY_RHS)
2569 return 2;
2570 else if (rhs_class == GIMPLE_TERNARY_RHS)
2571 return 3;
2572 else
2573 gcc_unreachable ();
2576 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2577 (unsigned char) \
2578 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2579 : ((TYPE) == tcc_binary \
2580 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2581 : ((TYPE) == tcc_constant \
2582 || (TYPE) == tcc_declaration \
2583 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2584 : ((SYM) == TRUTH_AND_EXPR \
2585 || (SYM) == TRUTH_OR_EXPR \
2586 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2587 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2588 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2589 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2590 || (SYM) == DOT_PROD_EXPR \
2591 || (SYM) == REALIGN_LOAD_EXPR \
2592 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2593 : ((SYM) == COND_EXPR \
2594 || (SYM) == CONSTRUCTOR \
2595 || (SYM) == OBJ_TYPE_REF \
2596 || (SYM) == ASSERT_EXPR \
2597 || (SYM) == ADDR_EXPR \
2598 || (SYM) == WITH_SIZE_EXPR \
2599 || (SYM) == SSA_NAME \
2600 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
2601 : GIMPLE_INVALID_RHS),
2602 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2604 const unsigned char gimple_rhs_class_table[] = {
2605 #include "all-tree.def"
2608 #undef DEFTREECODE
2609 #undef END_OF_BASE_TREE_CODES
2611 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2613 /* Validation of GIMPLE expressions. */
2615 /* Returns true iff T is a valid RHS for an assignment to a renamed
2616 user -- or front-end generated artificial -- variable. */
2618 bool
2619 is_gimple_reg_rhs (tree t)
2621 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2624 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2625 LHS, or for a call argument. */
2627 bool
2628 is_gimple_mem_rhs (tree t)
2630 /* If we're dealing with a renamable type, either source or dest must be
2631 a renamed variable. */
2632 if (is_gimple_reg_type (TREE_TYPE (t)))
2633 return is_gimple_val (t);
2634 else
2635 return is_gimple_val (t) || is_gimple_lvalue (t);
2638 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2640 bool
2641 is_gimple_lvalue (tree t)
2643 return (is_gimple_addressable (t)
2644 || TREE_CODE (t) == WITH_SIZE_EXPR
2645 /* These are complex lvalues, but don't have addresses, so they
2646 go here. */
2647 || TREE_CODE (t) == BIT_FIELD_REF);
2650 /* Return true if T is a GIMPLE condition. */
2652 bool
2653 is_gimple_condexpr (tree t)
2655 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2656 && !tree_could_throw_p (t)
2657 && is_gimple_val (TREE_OPERAND (t, 0))
2658 && is_gimple_val (TREE_OPERAND (t, 1))));
2661 /* Return true if T is something whose address can be taken. */
2663 bool
2664 is_gimple_addressable (tree t)
2666 return (is_gimple_id (t) || handled_component_p (t)
2667 || TREE_CODE (t) == MEM_REF);
2670 /* Return true if T is a valid gimple constant. */
2672 bool
2673 is_gimple_constant (const_tree t)
2675 switch (TREE_CODE (t))
2677 case INTEGER_CST:
2678 case REAL_CST:
2679 case FIXED_CST:
2680 case STRING_CST:
2681 case COMPLEX_CST:
2682 case VECTOR_CST:
2683 return true;
2685 /* Vector constant constructors are gimple invariant. */
2686 case CONSTRUCTOR:
2687 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2688 return TREE_CONSTANT (t);
2689 else
2690 return false;
2692 default:
2693 return false;
2697 /* Return true if T is a gimple address. */
2699 bool
2700 is_gimple_address (const_tree t)
2702 tree op;
2704 if (TREE_CODE (t) != ADDR_EXPR)
2705 return false;
2707 op = TREE_OPERAND (t, 0);
2708 while (handled_component_p (op))
2710 if ((TREE_CODE (op) == ARRAY_REF
2711 || TREE_CODE (op) == ARRAY_RANGE_REF)
2712 && !is_gimple_val (TREE_OPERAND (op, 1)))
2713 return false;
2715 op = TREE_OPERAND (op, 0);
2718 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2719 return true;
2721 switch (TREE_CODE (op))
2723 case PARM_DECL:
2724 case RESULT_DECL:
2725 case LABEL_DECL:
2726 case FUNCTION_DECL:
2727 case VAR_DECL:
2728 case CONST_DECL:
2729 return true;
2731 default:
2732 return false;
2736 /* Strip out all handled components that produce invariant
2737 offsets. */
2739 static const_tree
2740 strip_invariant_refs (const_tree op)
2742 while (handled_component_p (op))
2744 switch (TREE_CODE (op))
2746 case ARRAY_REF:
2747 case ARRAY_RANGE_REF:
2748 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2749 || TREE_OPERAND (op, 2) != NULL_TREE
2750 || TREE_OPERAND (op, 3) != NULL_TREE)
2751 return NULL;
2752 break;
2754 case COMPONENT_REF:
2755 if (TREE_OPERAND (op, 2) != NULL_TREE)
2756 return NULL;
2757 break;
2759 default:;
2761 op = TREE_OPERAND (op, 0);
2764 return op;
2767 /* Return true if T is a gimple invariant address. */
2769 bool
2770 is_gimple_invariant_address (const_tree t)
2772 const_tree op;
2774 if (TREE_CODE (t) != ADDR_EXPR)
2775 return false;
2777 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2778 if (!op)
2779 return false;
2781 if (TREE_CODE (op) == MEM_REF)
2783 const_tree op0 = TREE_OPERAND (op, 0);
2784 return (TREE_CODE (op0) == ADDR_EXPR
2785 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2786 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2789 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2792 /* Return true if T is a gimple invariant address at IPA level
2793 (so addresses of variables on stack are not allowed). */
2795 bool
2796 is_gimple_ip_invariant_address (const_tree t)
2798 const_tree op;
2800 if (TREE_CODE (t) != ADDR_EXPR)
2801 return false;
2803 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2805 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2808 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2809 form of function invariant. */
2811 bool
2812 is_gimple_min_invariant (const_tree t)
2814 if (TREE_CODE (t) == ADDR_EXPR)
2815 return is_gimple_invariant_address (t);
2817 return is_gimple_constant (t);
2820 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2821 form of gimple minimal invariant. */
2823 bool
2824 is_gimple_ip_invariant (const_tree t)
2826 if (TREE_CODE (t) == ADDR_EXPR)
2827 return is_gimple_ip_invariant_address (t);
2829 return is_gimple_constant (t);
2832 /* Return true if T looks like a valid GIMPLE statement. */
2834 bool
2835 is_gimple_stmt (tree t)
2837 const enum tree_code code = TREE_CODE (t);
2839 switch (code)
2841 case NOP_EXPR:
2842 /* The only valid NOP_EXPR is the empty statement. */
2843 return IS_EMPTY_STMT (t);
2845 case BIND_EXPR:
2846 case COND_EXPR:
2847 /* These are only valid if they're void. */
2848 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2850 case SWITCH_EXPR:
2851 case GOTO_EXPR:
2852 case RETURN_EXPR:
2853 case LABEL_EXPR:
2854 case CASE_LABEL_EXPR:
2855 case TRY_CATCH_EXPR:
2856 case TRY_FINALLY_EXPR:
2857 case EH_FILTER_EXPR:
2858 case CATCH_EXPR:
2859 case ASM_EXPR:
2860 case STATEMENT_LIST:
2861 case OMP_PARALLEL:
2862 case OMP_FOR:
2863 case OMP_SECTIONS:
2864 case OMP_SECTION:
2865 case OMP_SINGLE:
2866 case OMP_MASTER:
2867 case OMP_ORDERED:
2868 case OMP_CRITICAL:
2869 case OMP_TASK:
2870 /* These are always void. */
2871 return true;
2873 case CALL_EXPR:
2874 case MODIFY_EXPR:
2875 case PREDICT_EXPR:
2876 /* These are valid regardless of their type. */
2877 return true;
2879 default:
2880 return false;
2884 /* Return true if T is a variable. */
2886 bool
2887 is_gimple_variable (tree t)
2889 return (TREE_CODE (t) == VAR_DECL
2890 || TREE_CODE (t) == PARM_DECL
2891 || TREE_CODE (t) == RESULT_DECL
2892 || TREE_CODE (t) == SSA_NAME);
2895 /* Return true if T is a GIMPLE identifier (something with an address). */
2897 bool
2898 is_gimple_id (tree t)
2900 return (is_gimple_variable (t)
2901 || TREE_CODE (t) == FUNCTION_DECL
2902 || TREE_CODE (t) == LABEL_DECL
2903 || TREE_CODE (t) == CONST_DECL
2904 /* Allow string constants, since they are addressable. */
2905 || TREE_CODE (t) == STRING_CST);
2908 /* Return true if TYPE is a suitable type for a scalar register variable. */
2910 bool
2911 is_gimple_reg_type (tree type)
2913 return !AGGREGATE_TYPE_P (type);
2916 /* Return true if T is a non-aggregate register variable. */
2918 bool
2919 is_gimple_reg (tree t)
2921 if (TREE_CODE (t) == SSA_NAME)
2922 t = SSA_NAME_VAR (t);
2924 if (!is_gimple_variable (t))
2925 return false;
2927 if (!is_gimple_reg_type (TREE_TYPE (t)))
2928 return false;
2930 /* A volatile decl is not acceptable because we can't reuse it as
2931 needed. We need to copy it into a temp first. */
2932 if (TREE_THIS_VOLATILE (t))
2933 return false;
2935 /* We define "registers" as things that can be renamed as needed,
2936 which with our infrastructure does not apply to memory. */
2937 if (needs_to_live_in_memory (t))
2938 return false;
2940 /* Hard register variables are an interesting case. For those that
2941 are call-clobbered, we don't know where all the calls are, since
2942 we don't (want to) take into account which operations will turn
2943 into libcalls at the rtl level. For those that are call-saved,
2944 we don't currently model the fact that calls may in fact change
2945 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2946 level, and so miss variable changes that might imply. All around,
2947 it seems safest to not do too much optimization with these at the
2948 tree level at all. We'll have to rely on the rtl optimizers to
2949 clean this up, as there we've got all the appropriate bits exposed. */
2950 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2951 return false;
2953 /* Complex and vector values must have been put into SSA-like form.
2954 That is, no assignments to the individual components. */
2955 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2956 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2957 return DECL_GIMPLE_REG_P (t);
2959 return true;
2963 /* Return true if T is a GIMPLE variable whose address is not needed. */
2965 bool
2966 is_gimple_non_addressable (tree t)
2968 if (TREE_CODE (t) == SSA_NAME)
2969 t = SSA_NAME_VAR (t);
2971 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2974 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2976 bool
2977 is_gimple_val (tree t)
2979 /* Make loads from volatiles and memory vars explicit. */
2980 if (is_gimple_variable (t)
2981 && is_gimple_reg_type (TREE_TYPE (t))
2982 && !is_gimple_reg (t))
2983 return false;
2985 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2988 /* Similarly, but accept hard registers as inputs to asm statements. */
2990 bool
2991 is_gimple_asm_val (tree t)
2993 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2994 return true;
2996 return is_gimple_val (t);
2999 /* Return true if T is a GIMPLE minimal lvalue. */
3001 bool
3002 is_gimple_min_lval (tree t)
3004 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3005 return false;
3006 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
3009 /* Return true if T is a valid function operand of a CALL_EXPR. */
3011 bool
3012 is_gimple_call_addr (tree t)
3014 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3017 /* Return true if T is a valid address operand of a MEM_REF. */
3019 bool
3020 is_gimple_mem_ref_addr (tree t)
3022 return (is_gimple_reg (t)
3023 || TREE_CODE (t) == INTEGER_CST
3024 || (TREE_CODE (t) == ADDR_EXPR
3025 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3026 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3029 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3030 Otherwise, return NULL_TREE. */
3032 tree
3033 get_call_expr_in (tree t)
3035 if (TREE_CODE (t) == MODIFY_EXPR)
3036 t = TREE_OPERAND (t, 1);
3037 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3038 t = TREE_OPERAND (t, 0);
3039 if (TREE_CODE (t) == CALL_EXPR)
3040 return t;
3041 return NULL_TREE;
3045 /* Given a memory reference expression T, return its base address.
3046 The base address of a memory reference expression is the main
3047 object being referenced. For instance, the base address for
3048 'array[i].fld[j]' is 'array'. You can think of this as stripping
3049 away the offset part from a memory address.
3051 This function calls handled_component_p to strip away all the inner
3052 parts of the memory reference until it reaches the base object. */
3054 tree
3055 get_base_address (tree t)
3057 while (handled_component_p (t))
3058 t = TREE_OPERAND (t, 0);
3060 if ((TREE_CODE (t) == MEM_REF
3061 || TREE_CODE (t) == TARGET_MEM_REF)
3062 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3063 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3065 if (TREE_CODE (t) == SSA_NAME
3066 || DECL_P (t)
3067 || TREE_CODE (t) == STRING_CST
3068 || TREE_CODE (t) == CONSTRUCTOR
3069 || INDIRECT_REF_P (t)
3070 || TREE_CODE (t) == MEM_REF
3071 || TREE_CODE (t) == TARGET_MEM_REF)
3072 return t;
3073 else
3074 return NULL_TREE;
3077 void
3078 recalculate_side_effects (tree t)
3080 enum tree_code code = TREE_CODE (t);
3081 int len = TREE_OPERAND_LENGTH (t);
3082 int i;
3084 switch (TREE_CODE_CLASS (code))
3086 case tcc_expression:
3087 switch (code)
3089 case INIT_EXPR:
3090 case MODIFY_EXPR:
3091 case VA_ARG_EXPR:
3092 case PREDECREMENT_EXPR:
3093 case PREINCREMENT_EXPR:
3094 case POSTDECREMENT_EXPR:
3095 case POSTINCREMENT_EXPR:
3096 /* All of these have side-effects, no matter what their
3097 operands are. */
3098 return;
3100 default:
3101 break;
3103 /* Fall through. */
3105 case tcc_comparison: /* a comparison expression */
3106 case tcc_unary: /* a unary arithmetic expression */
3107 case tcc_binary: /* a binary arithmetic expression */
3108 case tcc_reference: /* a reference */
3109 case tcc_vl_exp: /* a function call */
3110 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3111 for (i = 0; i < len; ++i)
3113 tree op = TREE_OPERAND (t, i);
3114 if (op && TREE_SIDE_EFFECTS (op))
3115 TREE_SIDE_EFFECTS (t) = 1;
3117 break;
3119 case tcc_constant:
3120 /* No side-effects. */
3121 return;
3123 default:
3124 gcc_unreachable ();
3128 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3129 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3130 we failed to create one. */
3132 tree
3133 canonicalize_cond_expr_cond (tree t)
3135 /* Strip conversions around boolean operations. */
3136 if (CONVERT_EXPR_P (t)
3137 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3138 t = TREE_OPERAND (t, 0);
3140 /* For (bool)x use x != 0. */
3141 if (CONVERT_EXPR_P (t)
3142 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3144 tree top0 = TREE_OPERAND (t, 0);
3145 t = build2 (NE_EXPR, TREE_TYPE (t),
3146 top0, build_int_cst (TREE_TYPE (top0), 0));
3148 /* For !x use x == 0. */
3149 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3151 tree top0 = TREE_OPERAND (t, 0);
3152 t = build2 (EQ_EXPR, TREE_TYPE (t),
3153 top0, build_int_cst (TREE_TYPE (top0), 0));
3155 /* For cmp ? 1 : 0 use cmp. */
3156 else if (TREE_CODE (t) == COND_EXPR
3157 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3158 && integer_onep (TREE_OPERAND (t, 1))
3159 && integer_zerop (TREE_OPERAND (t, 2)))
3161 tree top0 = TREE_OPERAND (t, 0);
3162 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3163 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3166 if (is_gimple_condexpr (t))
3167 return t;
3169 return NULL_TREE;
3172 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3173 the positions marked by the set ARGS_TO_SKIP. */
3175 gimple
3176 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3178 int i;
3179 int nargs = gimple_call_num_args (stmt);
3180 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3181 gimple new_stmt;
3183 for (i = 0; i < nargs; i++)
3184 if (!bitmap_bit_p (args_to_skip, i))
3185 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3187 if (gimple_call_internal_p (stmt))
3188 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3189 vargs);
3190 else
3191 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
3192 VEC_free (tree, heap, vargs);
3193 if (gimple_call_lhs (stmt))
3194 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3196 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3197 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3199 gimple_set_block (new_stmt, gimple_block (stmt));
3200 if (gimple_has_location (stmt))
3201 gimple_set_location (new_stmt, gimple_location (stmt));
3202 gimple_call_copy_flags (new_stmt, stmt);
3203 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3205 gimple_set_modified (new_stmt, true);
3207 return new_stmt;
3211 static hashval_t gimple_type_hash_1 (const void *, enum gtc_mode);
3213 /* Structure used to maintain a cache of some type pairs compared by
3214 gimple_types_compatible_p when comparing aggregate types. There are
3215 three possible values for SAME_P:
3217 -2: The pair (T1, T2) has just been inserted in the table.
3218 0: T1 and T2 are different types.
3219 1: T1 and T2 are the same type.
3221 The two elements in the SAME_P array are indexed by the comparison
3222 mode gtc_mode. */
3224 struct type_pair_d
3226 unsigned int uid1;
3227 unsigned int uid2;
3228 signed char same_p[2];
3230 typedef struct type_pair_d *type_pair_t;
3232 DEF_VEC_P(type_pair_t);
3233 DEF_VEC_ALLOC_P(type_pair_t,heap);
3235 /* Return a hash value for the type pair pointed-to by P. */
3237 static hashval_t
3238 type_pair_hash (const void *p)
3240 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3241 hashval_t val1 = pair->uid1;
3242 hashval_t val2 = pair->uid2;
3243 return (iterative_hash_hashval_t (val2, val1)
3244 ^ iterative_hash_hashval_t (val1, val2));
3247 /* Compare two type pairs pointed-to by P1 and P2. */
3249 static int
3250 type_pair_eq (const void *p1, const void *p2)
3252 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3253 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3254 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3255 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3258 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3259 entry if none existed. */
3261 static type_pair_t
3262 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3264 struct type_pair_d pair;
3265 type_pair_t p;
3266 void **slot;
3268 if (*visited_p == NULL)
3270 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3271 gcc_obstack_init (ob_p);
3274 pair.uid1 = TYPE_UID (t1);
3275 pair.uid2 = TYPE_UID (t2);
3276 slot = htab_find_slot (*visited_p, &pair, INSERT);
3278 if (*slot)
3279 p = *((type_pair_t *) slot);
3280 else
3282 p = XOBNEW (ob_p, struct type_pair_d);
3283 p->uid1 = TYPE_UID (t1);
3284 p->uid2 = TYPE_UID (t2);
3285 p->same_p[0] = -2;
3286 p->same_p[1] = -2;
3287 *slot = (void *) p;
3290 return p;
3293 /* Per pointer state for the SCC finding. The on_sccstack flag
3294 is not strictly required, it is true when there is no hash value
3295 recorded for the type and false otherwise. But querying that
3296 is slower. */
3298 struct sccs
3300 unsigned int dfsnum;
3301 unsigned int low;
3302 bool on_sccstack;
3303 union {
3304 hashval_t hash;
3305 signed char same_p;
3306 } u;
3309 static unsigned int next_dfs_num;
3310 static unsigned int gtc_next_dfs_num;
3313 /* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3315 typedef struct GTY(()) gimple_type_leader_entry_s {
3316 tree type;
3317 tree leader;
3318 } gimple_type_leader_entry;
3320 #define GIMPLE_TYPE_LEADER_SIZE 16381
3321 static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3322 gimple_type_leader_entry *gimple_type_leader;
3324 /* Lookup an existing leader for T and return it or NULL_TREE, if
3325 there is none in the cache. */
3327 static tree
3328 gimple_lookup_type_leader (tree t)
3330 gimple_type_leader_entry *leader;
3332 if (!gimple_type_leader)
3333 return NULL_TREE;
3335 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3336 if (leader->type != t)
3337 return NULL_TREE;
3339 return leader->leader;
3342 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3343 true then if any type has no name return false, otherwise return
3344 true if both types have no names. */
3346 static bool
3347 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3349 tree name1 = TYPE_NAME (t1);
3350 tree name2 = TYPE_NAME (t2);
3352 /* Consider anonymous types all unique for completion. */
3353 if (for_completion_p
3354 && (!name1 || !name2))
3355 return false;
3357 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3359 name1 = DECL_NAME (name1);
3360 if (for_completion_p
3361 && !name1)
3362 return false;
3364 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3366 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3368 name2 = DECL_NAME (name2);
3369 if (for_completion_p
3370 && !name2)
3371 return false;
3373 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3375 /* Identifiers can be compared with pointer equality rather
3376 than a string comparison. */
3377 if (name1 == name2)
3378 return true;
3380 return false;
3383 /* Return true if the field decls F1 and F2 are at the same offset.
3385 This is intended to be used on GIMPLE types only. */
3387 bool
3388 gimple_compare_field_offset (tree f1, tree f2)
3390 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3392 tree offset1 = DECL_FIELD_OFFSET (f1);
3393 tree offset2 = DECL_FIELD_OFFSET (f2);
3394 return ((offset1 == offset2
3395 /* Once gimplification is done, self-referential offsets are
3396 instantiated as operand #2 of the COMPONENT_REF built for
3397 each access and reset. Therefore, they are not relevant
3398 anymore and fields are interchangeable provided that they
3399 represent the same access. */
3400 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3401 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3402 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3403 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3404 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3405 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3406 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3407 || operand_equal_p (offset1, offset2, 0))
3408 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3409 DECL_FIELD_BIT_OFFSET (f2)));
3412 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3413 should be, so handle differing ones specially by decomposing
3414 the offset into a byte and bit offset manually. */
3415 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3416 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3418 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3419 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3420 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3421 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3422 + bit_offset1 / BITS_PER_UNIT);
3423 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3424 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3425 + bit_offset2 / BITS_PER_UNIT);
3426 if (byte_offset1 != byte_offset2)
3427 return false;
3428 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3431 return false;
3434 /* If the type T1 and the type T2 are a complete and an incomplete
3435 variant of the same type return true. */
3437 static bool
3438 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3440 /* If one pointer points to an incomplete type variant of
3441 the other pointed-to type they are the same. */
3442 if (TREE_CODE (t1) == TREE_CODE (t2)
3443 && RECORD_OR_UNION_TYPE_P (t1)
3444 && (!COMPLETE_TYPE_P (t1)
3445 || !COMPLETE_TYPE_P (t2))
3446 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3447 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3448 TYPE_MAIN_VARIANT (t2), true))
3449 return true;
3450 return false;
3453 static bool
3454 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3455 VEC(type_pair_t, heap) **,
3456 struct pointer_map_t *, struct obstack *);
3458 /* DFS visit the edge from the callers type pair with state *STATE to
3459 the pair T1, T2 while operating in FOR_MERGING_P mode.
3460 Update the merging status if it is not part of the SCC containing the
3461 callers pair and return it.
3462 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3464 static bool
3465 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3466 struct sccs *state,
3467 VEC(type_pair_t, heap) **sccstack,
3468 struct pointer_map_t *sccstate,
3469 struct obstack *sccstate_obstack)
3471 struct sccs *cstate = NULL;
3472 type_pair_t p;
3473 void **slot;
3475 /* Check first for the obvious case of pointer identity. */
3476 if (t1 == t2)
3477 return true;
3479 /* Check that we have two types to compare. */
3480 if (t1 == NULL_TREE || t2 == NULL_TREE)
3481 return false;
3483 /* If the types have been previously registered and found equal
3484 they still are. */
3485 if (mode == GTC_MERGE)
3487 tree leader1 = gimple_lookup_type_leader (t1);
3488 tree leader2 = gimple_lookup_type_leader (t2);
3489 if (leader1 == t2
3490 || t1 == leader2
3491 || (leader1 && leader1 == leader2))
3492 return true;
3494 else if (mode == GTC_DIAG)
3496 if (TYPE_CANONICAL (t1)
3497 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3498 return true;
3501 /* Can't be the same type if the types don't have the same code. */
3502 if (TREE_CODE (t1) != TREE_CODE (t2))
3503 return false;
3505 /* Can't be the same type if they have different CV qualifiers. */
3506 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3507 return false;
3509 /* Void types are always the same. */
3510 if (TREE_CODE (t1) == VOID_TYPE)
3511 return true;
3513 /* Do some simple checks before doing three hashtable queries. */
3514 if (INTEGRAL_TYPE_P (t1)
3515 || SCALAR_FLOAT_TYPE_P (t1)
3516 || FIXED_POINT_TYPE_P (t1)
3517 || TREE_CODE (t1) == VECTOR_TYPE
3518 || TREE_CODE (t1) == COMPLEX_TYPE
3519 || TREE_CODE (t1) == OFFSET_TYPE)
3521 /* Can't be the same type if they have different alignment,
3522 sign, precision or mode. */
3523 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3524 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3525 || TYPE_MODE (t1) != TYPE_MODE (t2)
3526 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3527 return false;
3529 if (TREE_CODE (t1) == INTEGER_TYPE
3530 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3531 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3532 return false;
3534 /* That's all we need to check for float and fixed-point types. */
3535 if (SCALAR_FLOAT_TYPE_P (t1)
3536 || FIXED_POINT_TYPE_P (t1))
3537 return true;
3539 /* For integral types fall thru to more complex checks. */
3542 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3544 /* Can't be the same type if they have different alignment or mode. */
3545 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3546 || TYPE_MODE (t1) != TYPE_MODE (t2))
3547 return false;
3550 /* If the hash values of t1 and t2 are different the types can't
3551 possibly be the same. This helps keeping the type-pair hashtable
3552 small, only tracking comparisons for hash collisions. */
3553 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3554 return false;
3556 /* Allocate a new cache entry for this comparison. */
3557 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3558 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3560 /* We have already decided whether T1 and T2 are the
3561 same, return the cached result. */
3562 return p->same_p[mode] == 1;
3565 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3566 cstate = (struct sccs *)*slot;
3567 /* Not yet visited. DFS recurse. */
3568 if (!cstate)
3570 gimple_types_compatible_p_1 (t1, t2, mode, p,
3571 sccstack, sccstate, sccstate_obstack);
3572 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3573 state->low = MIN (state->low, cstate->low);
3575 /* If the type is still on the SCC stack adjust the parents low. */
3576 if (cstate->dfsnum < state->dfsnum
3577 && cstate->on_sccstack)
3578 state->low = MIN (cstate->dfsnum, state->low);
3580 /* Return the current lattice value. We start with an equality
3581 assumption so types part of a SCC will be optimistically
3582 treated equal unless proven otherwise. */
3583 return cstate->u.same_p;
3586 /* Worker for gimple_types_compatible.
3587 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3589 static bool
3590 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3591 type_pair_t p,
3592 VEC(type_pair_t, heap) **sccstack,
3593 struct pointer_map_t *sccstate,
3594 struct obstack *sccstate_obstack)
3596 struct sccs *state;
3598 gcc_assert (p->same_p[mode] == -2);
3600 state = XOBNEW (sccstate_obstack, struct sccs);
3601 *pointer_map_insert (sccstate, p) = state;
3603 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3604 state->dfsnum = gtc_next_dfs_num++;
3605 state->low = state->dfsnum;
3606 state->on_sccstack = true;
3607 /* Start with an equality assumption. As we DFS recurse into child
3608 SCCs this assumption may get revisited. */
3609 state->u.same_p = 1;
3611 /* If their attributes are not the same they can't be the same type. */
3612 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3613 goto different_types;
3615 /* Do type-specific comparisons. */
3616 switch (TREE_CODE (t1))
3618 case VECTOR_TYPE:
3619 case COMPLEX_TYPE:
3620 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3621 state, sccstack, sccstate, sccstate_obstack))
3622 goto different_types;
3623 goto same_types;
3625 case ARRAY_TYPE:
3626 /* Array types are the same if the element types are the same and
3627 the number of elements are the same. */
3628 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3629 state, sccstack, sccstate, sccstate_obstack)
3630 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3631 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3632 goto different_types;
3633 else
3635 tree i1 = TYPE_DOMAIN (t1);
3636 tree i2 = TYPE_DOMAIN (t2);
3638 /* For an incomplete external array, the type domain can be
3639 NULL_TREE. Check this condition also. */
3640 if (i1 == NULL_TREE && i2 == NULL_TREE)
3641 goto same_types;
3642 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3643 goto different_types;
3644 /* If for a complete array type the possibly gimplified sizes
3645 are different the types are different. */
3646 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3647 || (TYPE_SIZE (i1)
3648 && TYPE_SIZE (i2)
3649 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3650 goto different_types;
3651 else
3653 tree min1 = TYPE_MIN_VALUE (i1);
3654 tree min2 = TYPE_MIN_VALUE (i2);
3655 tree max1 = TYPE_MAX_VALUE (i1);
3656 tree max2 = TYPE_MAX_VALUE (i2);
3658 /* The minimum/maximum values have to be the same. */
3659 if ((min1 == min2
3660 || (min1 && min2
3661 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3662 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3663 || operand_equal_p (min1, min2, 0))))
3664 && (max1 == max2
3665 || (max1 && max2
3666 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3667 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3668 || operand_equal_p (max1, max2, 0)))))
3669 goto same_types;
3670 else
3671 goto different_types;
3675 case METHOD_TYPE:
3676 /* Method types should belong to the same class. */
3677 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3678 mode, state, sccstack, sccstate, sccstate_obstack))
3679 goto different_types;
3681 /* Fallthru */
3683 case FUNCTION_TYPE:
3684 /* Function types are the same if the return type and arguments types
3685 are the same. */
3686 if ((mode != GTC_DIAG
3687 || !gimple_compatible_complete_and_incomplete_subtype_p
3688 (TREE_TYPE (t1), TREE_TYPE (t2)))
3689 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3690 state, sccstack, sccstate, sccstate_obstack))
3691 goto different_types;
3693 if (!comp_type_attributes (t1, t2))
3694 goto different_types;
3696 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3697 goto same_types;
3698 else
3700 tree parms1, parms2;
3702 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3703 parms1 && parms2;
3704 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3706 if ((mode == GTC_MERGE
3707 || !gimple_compatible_complete_and_incomplete_subtype_p
3708 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3709 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3710 state, sccstack, sccstate, sccstate_obstack))
3711 goto different_types;
3714 if (parms1 || parms2)
3715 goto different_types;
3717 goto same_types;
3720 case OFFSET_TYPE:
3722 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3723 state, sccstack, sccstate, sccstate_obstack)
3724 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3725 TYPE_OFFSET_BASETYPE (t2), mode,
3726 state, sccstack, sccstate, sccstate_obstack))
3727 goto different_types;
3729 goto same_types;
3732 case POINTER_TYPE:
3733 case REFERENCE_TYPE:
3735 /* If the two pointers have different ref-all attributes,
3736 they can't be the same type. */
3737 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3738 goto different_types;
3740 /* If one pointer points to an incomplete type variant of
3741 the other pointed-to type they are the same. */
3742 if (mode == GTC_DIAG
3743 && gimple_compatible_complete_and_incomplete_subtype_p
3744 (TREE_TYPE (t1), TREE_TYPE (t2)))
3745 goto same_types;
3747 /* Otherwise, pointer and reference types are the same if the
3748 pointed-to types are the same. */
3749 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3750 state, sccstack, sccstate, sccstate_obstack))
3751 goto same_types;
3753 goto different_types;
3756 case NULLPTR_TYPE:
3757 /* There is only one decltype(nullptr). */
3758 goto same_types;
3760 case INTEGER_TYPE:
3761 case BOOLEAN_TYPE:
3763 tree min1 = TYPE_MIN_VALUE (t1);
3764 tree max1 = TYPE_MAX_VALUE (t1);
3765 tree min2 = TYPE_MIN_VALUE (t2);
3766 tree max2 = TYPE_MAX_VALUE (t2);
3767 bool min_equal_p = false;
3768 bool max_equal_p = false;
3770 /* If either type has a minimum value, the other type must
3771 have the same. */
3772 if (min1 == NULL_TREE && min2 == NULL_TREE)
3773 min_equal_p = true;
3774 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3775 min_equal_p = true;
3777 /* Likewise, if either type has a maximum value, the other
3778 type must have the same. */
3779 if (max1 == NULL_TREE && max2 == NULL_TREE)
3780 max_equal_p = true;
3781 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3782 max_equal_p = true;
3784 if (!min_equal_p || !max_equal_p)
3785 goto different_types;
3787 goto same_types;
3790 case ENUMERAL_TYPE:
3792 /* FIXME lto, we cannot check bounds on enumeral types because
3793 different front ends will produce different values.
3794 In C, enumeral types are integers, while in C++ each element
3795 will have its own symbolic value. We should decide how enums
3796 are to be represented in GIMPLE and have each front end lower
3797 to that. */
3798 tree v1, v2;
3800 /* For enumeral types, all the values must be the same. */
3801 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3802 goto same_types;
3804 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3805 v1 && v2;
3806 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3808 tree c1 = TREE_VALUE (v1);
3809 tree c2 = TREE_VALUE (v2);
3811 if (TREE_CODE (c1) == CONST_DECL)
3812 c1 = DECL_INITIAL (c1);
3814 if (TREE_CODE (c2) == CONST_DECL)
3815 c2 = DECL_INITIAL (c2);
3817 if (tree_int_cst_equal (c1, c2) != 1)
3818 goto different_types;
3820 if (mode == GTC_MERGE && TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
3821 goto different_types;
3824 /* If one enumeration has more values than the other, they
3825 are not the same. */
3826 if (v1 || v2)
3827 goto different_types;
3829 goto same_types;
3832 case RECORD_TYPE:
3833 case UNION_TYPE:
3834 case QUAL_UNION_TYPE:
3836 tree f1, f2;
3838 /* The struct tags shall compare equal. */
3839 if (mode == GTC_MERGE
3840 && !compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3841 TYPE_MAIN_VARIANT (t2), false))
3842 goto different_types;
3844 /* For aggregate types, all the fields must be the same. */
3845 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3846 f1 && f2;
3847 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3849 /* The fields must have the same name, offset and type. */
3850 if ((mode == GTC_MERGE
3851 && DECL_NAME (f1) != DECL_NAME (f2))
3852 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3853 || !gimple_compare_field_offset (f1, f2)
3854 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3855 state, sccstack, sccstate, sccstate_obstack))
3856 goto different_types;
3859 /* If one aggregate has more fields than the other, they
3860 are not the same. */
3861 if (f1 || f2)
3862 goto different_types;
3864 goto same_types;
3867 default:
3868 gcc_unreachable ();
3871 /* Common exit path for types that are not compatible. */
3872 different_types:
3873 state->u.same_p = 0;
3874 goto pop;
3876 /* Common exit path for types that are compatible. */
3877 same_types:
3878 gcc_assert (state->u.same_p == 1);
3880 pop:
3881 if (state->low == state->dfsnum)
3883 type_pair_t x;
3885 /* Pop off the SCC and set its cache values to the final
3886 comparison result. */
3889 struct sccs *cstate;
3890 x = VEC_pop (type_pair_t, *sccstack);
3891 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3892 cstate->on_sccstack = false;
3893 x->same_p[mode] = state->u.same_p;
3895 while (x != p);
3898 return state->u.same_p;
3901 /* Return true iff T1 and T2 are structurally identical. When
3902 FOR_MERGING_P is true the an incomplete type and a complete type
3903 are considered different, otherwise they are considered compatible. */
3905 bool
3906 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3908 VEC(type_pair_t, heap) *sccstack = NULL;
3909 struct pointer_map_t *sccstate;
3910 struct obstack sccstate_obstack;
3911 type_pair_t p = NULL;
3912 bool res;
3914 /* Before starting to set up the SCC machinery handle simple cases. */
3916 /* Check first for the obvious case of pointer identity. */
3917 if (t1 == t2)
3918 return true;
3920 /* Check that we have two types to compare. */
3921 if (t1 == NULL_TREE || t2 == NULL_TREE)
3922 return false;
3924 /* If the types have been previously registered and found equal
3925 they still are. */
3926 if (mode == GTC_MERGE)
3928 tree leader1 = gimple_lookup_type_leader (t1);
3929 tree leader2 = gimple_lookup_type_leader (t2);
3930 if (leader1 == t2
3931 || t1 == leader2
3932 || (leader1 && leader1 == leader2))
3933 return true;
3935 else if (mode == GTC_DIAG)
3937 if (TYPE_CANONICAL (t1)
3938 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3939 return true;
3942 /* Can't be the same type if the types don't have the same code. */
3943 if (TREE_CODE (t1) != TREE_CODE (t2))
3944 return false;
3946 /* Can't be the same type if they have different CV qualifiers. */
3947 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3948 return false;
3950 /* Void types are always the same. */
3951 if (TREE_CODE (t1) == VOID_TYPE)
3952 return true;
3954 /* Do some simple checks before doing three hashtable queries. */
3955 if (INTEGRAL_TYPE_P (t1)
3956 || SCALAR_FLOAT_TYPE_P (t1)
3957 || FIXED_POINT_TYPE_P (t1)
3958 || TREE_CODE (t1) == VECTOR_TYPE
3959 || TREE_CODE (t1) == COMPLEX_TYPE
3960 || TREE_CODE (t1) == OFFSET_TYPE)
3962 /* Can't be the same type if they have different alignment,
3963 sign, precision or mode. */
3964 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3965 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3966 || TYPE_MODE (t1) != TYPE_MODE (t2)
3967 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3968 return false;
3970 if (TREE_CODE (t1) == INTEGER_TYPE
3971 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3972 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3973 return false;
3975 /* That's all we need to check for float and fixed-point types. */
3976 if (SCALAR_FLOAT_TYPE_P (t1)
3977 || FIXED_POINT_TYPE_P (t1))
3978 return true;
3980 /* For integral types fall thru to more complex checks. */
3983 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3985 /* Can't be the same type if they have different alignment or mode. */
3986 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3987 || TYPE_MODE (t1) != TYPE_MODE (t2))
3988 return false;
3991 /* If the hash values of t1 and t2 are different the types can't
3992 possibly be the same. This helps keeping the type-pair hashtable
3993 small, only tracking comparisons for hash collisions. */
3994 if (gimple_type_hash_1 (t1, mode) != gimple_type_hash_1 (t2, mode))
3995 return false;
3997 /* If we've visited this type pair before (in the case of aggregates
3998 with self-referential types), and we made a decision, return it. */
3999 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
4000 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
4002 /* We have already decided whether T1 and T2 are the
4003 same, return the cached result. */
4004 return p->same_p[mode] == 1;
4007 /* Now set up the SCC machinery for the comparison. */
4008 gtc_next_dfs_num = 1;
4009 sccstate = pointer_map_create ();
4010 gcc_obstack_init (&sccstate_obstack);
4011 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
4012 &sccstack, sccstate, &sccstate_obstack);
4013 VEC_free (type_pair_t, heap, sccstack);
4014 pointer_map_destroy (sccstate);
4015 obstack_free (&sccstate_obstack, NULL);
4017 return res;
4021 static hashval_t
4022 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
4023 struct pointer_map_t *, struct obstack *,
4024 enum gtc_mode);
4026 /* DFS visit the edge from the callers type with state *STATE to T.
4027 Update the callers type hash V with the hash for T if it is not part
4028 of the SCC containing the callers type and return it.
4029 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
4031 static hashval_t
4032 visit (tree t, struct sccs *state, hashval_t v,
4033 VEC (tree, heap) **sccstack,
4034 struct pointer_map_t *sccstate,
4035 struct obstack *sccstate_obstack, enum gtc_mode mode)
4037 struct sccs *cstate = NULL;
4038 struct tree_int_map m;
4039 void **slot;
4041 /* If there is a hash value recorded for this type then it can't
4042 possibly be part of our parent SCC. Simply mix in its hash. */
4043 m.base.from = t;
4044 if ((slot = htab_find_slot (mode == GTC_MERGE
4045 ? type_hash_cache : canonical_type_hash_cache,
4046 &m, NO_INSERT))
4047 && *slot)
4048 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
4050 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
4051 cstate = (struct sccs *)*slot;
4052 if (!cstate)
4054 hashval_t tem;
4055 /* Not yet visited. DFS recurse. */
4056 tem = iterative_hash_gimple_type (t, v,
4057 sccstack, sccstate, sccstate_obstack,
4058 mode);
4059 if (!cstate)
4060 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
4061 state->low = MIN (state->low, cstate->low);
4062 /* If the type is no longer on the SCC stack and thus is not part
4063 of the parents SCC mix in its hash value. Otherwise we will
4064 ignore the type for hashing purposes and return the unaltered
4065 hash value. */
4066 if (!cstate->on_sccstack)
4067 return tem;
4069 if (cstate->dfsnum < state->dfsnum
4070 && cstate->on_sccstack)
4071 state->low = MIN (cstate->dfsnum, state->low);
4073 /* We are part of our parents SCC, skip this type during hashing
4074 and return the unaltered hash value. */
4075 return v;
4078 /* Hash NAME with the previous hash value V and return it. */
4080 static hashval_t
4081 iterative_hash_name (tree name, hashval_t v)
4083 if (!name)
4084 return v;
4085 if (TREE_CODE (name) == TYPE_DECL)
4086 name = DECL_NAME (name);
4087 if (!name)
4088 return v;
4089 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
4090 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4093 /* Returning a hash value for gimple type TYPE combined with VAL.
4094 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4096 To hash a type we end up hashing in types that are reachable.
4097 Through pointers we can end up with cycles which messes up the
4098 required property that we need to compute the same hash value
4099 for structurally equivalent types. To avoid this we have to
4100 hash all types in a cycle (the SCC) in a commutative way. The
4101 easiest way is to not mix in the hashes of the SCC members at
4102 all. To make this work we have to delay setting the hash
4103 values of the SCC until it is complete. */
4105 static hashval_t
4106 iterative_hash_gimple_type (tree type, hashval_t val,
4107 VEC(tree, heap) **sccstack,
4108 struct pointer_map_t *sccstate,
4109 struct obstack *sccstate_obstack,
4110 enum gtc_mode mode)
4112 hashval_t v;
4113 void **slot;
4114 struct sccs *state;
4116 /* Not visited during this DFS walk. */
4117 gcc_checking_assert (!pointer_map_contains (sccstate, type));
4118 state = XOBNEW (sccstate_obstack, struct sccs);
4119 *pointer_map_insert (sccstate, type) = state;
4121 VEC_safe_push (tree, heap, *sccstack, type);
4122 state->dfsnum = next_dfs_num++;
4123 state->low = state->dfsnum;
4124 state->on_sccstack = true;
4126 /* Combine a few common features of types so that types are grouped into
4127 smaller sets; when searching for existing matching types to merge,
4128 only existing types having the same features as the new type will be
4129 checked. */
4130 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4131 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4132 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4134 /* Do not hash the types size as this will cause differences in
4135 hash values for the complete vs. the incomplete type variant. */
4137 /* Incorporate common features of numerical types. */
4138 if (INTEGRAL_TYPE_P (type)
4139 || SCALAR_FLOAT_TYPE_P (type)
4140 || FIXED_POINT_TYPE_P (type))
4142 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4143 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4144 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4147 /* For pointer and reference types, fold in information about the type
4148 pointed to but do not recurse into possibly incomplete types to
4149 avoid hash differences for complete vs. incomplete types. */
4150 if (POINTER_TYPE_P (type))
4152 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4154 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4155 v = iterative_hash_name
4156 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4158 else
4159 v = visit (TREE_TYPE (type), state, v,
4160 sccstack, sccstate, sccstate_obstack, mode);
4163 /* For integer types hash the types min/max values and the string flag. */
4164 if (TREE_CODE (type) == INTEGER_TYPE)
4166 /* OMP lowering can introduce error_mark_node in place of
4167 random local decls in types. */
4168 if (TYPE_MIN_VALUE (type) != error_mark_node)
4169 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4170 if (TYPE_MAX_VALUE (type) != error_mark_node)
4171 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4172 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4175 /* For array types hash their domain and the string flag. */
4176 if (TREE_CODE (type) == ARRAY_TYPE
4177 && TYPE_DOMAIN (type))
4179 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4180 v = visit (TYPE_DOMAIN (type), state, v,
4181 sccstack, sccstate, sccstate_obstack, mode);
4184 /* Recurse for aggregates with a single element type. */
4185 if (TREE_CODE (type) == ARRAY_TYPE
4186 || TREE_CODE (type) == COMPLEX_TYPE
4187 || TREE_CODE (type) == VECTOR_TYPE)
4188 v = visit (TREE_TYPE (type), state, v,
4189 sccstack, sccstate, sccstate_obstack, mode);
4191 /* Incorporate function return and argument types. */
4192 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4194 unsigned na;
4195 tree p;
4197 /* For method types also incorporate their parent class. */
4198 if (TREE_CODE (type) == METHOD_TYPE)
4199 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4200 sccstack, sccstate, sccstate_obstack, mode);
4202 /* For result types allow mismatch in completeness. */
4203 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4205 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4206 v = iterative_hash_name
4207 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4209 else
4210 v = visit (TREE_TYPE (type), state, v,
4211 sccstack, sccstate, sccstate_obstack, mode);
4213 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4215 /* For argument types allow mismatch in completeness. */
4216 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4218 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4219 v = iterative_hash_name
4220 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4222 else
4223 v = visit (TREE_VALUE (p), state, v,
4224 sccstack, sccstate, sccstate_obstack, mode);
4225 na++;
4228 v = iterative_hash_hashval_t (na, v);
4231 if (TREE_CODE (type) == RECORD_TYPE
4232 || TREE_CODE (type) == UNION_TYPE
4233 || TREE_CODE (type) == QUAL_UNION_TYPE)
4235 unsigned nf;
4236 tree f;
4238 if (mode == GTC_MERGE)
4239 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4241 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4243 if (mode == GTC_MERGE)
4244 v = iterative_hash_name (DECL_NAME (f), v);
4245 v = visit (TREE_TYPE (f), state, v,
4246 sccstack, sccstate, sccstate_obstack, mode);
4247 nf++;
4250 v = iterative_hash_hashval_t (nf, v);
4253 /* Record hash for us. */
4254 state->u.hash = v;
4256 /* See if we found an SCC. */
4257 if (state->low == state->dfsnum)
4259 tree x;
4261 /* Pop off the SCC and set its hash values. */
4264 struct sccs *cstate;
4265 struct tree_int_map *m = ggc_alloc_cleared_tree_int_map ();
4266 x = VEC_pop (tree, *sccstack);
4267 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4268 cstate->on_sccstack = false;
4269 m->base.from = x;
4270 m->to = cstate->u.hash;
4271 slot = htab_find_slot (mode == GTC_MERGE
4272 ? type_hash_cache : canonical_type_hash_cache,
4273 m, INSERT);
4274 gcc_assert (!*slot);
4275 *slot = (void *) m;
4277 while (x != type);
4280 return iterative_hash_hashval_t (v, val);
4284 /* Returns a hash value for P (assumed to be a type). The hash value
4285 is computed using some distinguishing features of the type. Note
4286 that we cannot use pointer hashing here as we may be dealing with
4287 two distinct instances of the same type.
4289 This function should produce the same hash value for two compatible
4290 types according to gimple_types_compatible_p. */
4292 static hashval_t
4293 gimple_type_hash_1 (const void *p, enum gtc_mode mode)
4295 const_tree t = (const_tree) p;
4296 VEC(tree, heap) *sccstack = NULL;
4297 struct pointer_map_t *sccstate;
4298 struct obstack sccstate_obstack;
4299 hashval_t val;
4300 void **slot;
4301 struct tree_int_map m;
4303 if (mode == GTC_MERGE
4304 && type_hash_cache == NULL)
4305 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4306 tree_int_map_eq, NULL);
4307 else if (mode == GTC_DIAG
4308 && canonical_type_hash_cache == NULL)
4309 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4310 tree_int_map_eq, NULL);
4312 m.base.from = CONST_CAST_TREE (t);
4313 if ((slot = htab_find_slot (mode == GTC_MERGE
4314 ? type_hash_cache : canonical_type_hash_cache,
4315 &m, NO_INSERT))
4316 && *slot)
4317 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
4319 /* Perform a DFS walk and pre-hash all reachable types. */
4320 next_dfs_num = 1;
4321 sccstate = pointer_map_create ();
4322 gcc_obstack_init (&sccstate_obstack);
4323 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4324 &sccstack, sccstate, &sccstate_obstack,
4325 mode);
4326 VEC_free (tree, heap, sccstack);
4327 pointer_map_destroy (sccstate);
4328 obstack_free (&sccstate_obstack, NULL);
4330 return val;
4333 static hashval_t
4334 gimple_type_hash (const void *p)
4336 return gimple_type_hash_1 (p, GTC_MERGE);
4339 static hashval_t
4340 gimple_canonical_type_hash (const void *p)
4342 return gimple_type_hash_1 (p, GTC_DIAG);
4346 /* Returns nonzero if P1 and P2 are equal. */
4348 static int
4349 gimple_type_eq (const void *p1, const void *p2)
4351 const_tree t1 = (const_tree) p1;
4352 const_tree t2 = (const_tree) p2;
4353 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4354 CONST_CAST_TREE (t2), GTC_MERGE);
4358 /* Register type T in the global type table gimple_types.
4359 If another type T', compatible with T, already existed in
4360 gimple_types then return T', otherwise return T. This is used by
4361 LTO to merge identical types read from different TUs. */
4363 tree
4364 gimple_register_type (tree t)
4366 void **slot;
4367 gimple_type_leader_entry *leader;
4368 tree mv_leader = NULL_TREE;
4370 gcc_assert (TYPE_P (t));
4372 if (!gimple_type_leader)
4373 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4374 (GIMPLE_TYPE_LEADER_SIZE);
4375 /* If we registered this type before return the cached result. */
4376 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4377 if (leader->type == t)
4378 return leader->leader;
4380 /* Always register the main variant first. This is important so we
4381 pick up the non-typedef variants as canonical, otherwise we'll end
4382 up taking typedef ids for structure tags during comparison. */
4383 if (TYPE_MAIN_VARIANT (t) != t)
4384 mv_leader = gimple_register_type (TYPE_MAIN_VARIANT (t));
4386 if (gimple_types == NULL)
4387 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4389 slot = htab_find_slot (gimple_types, t, INSERT);
4390 if (*slot
4391 && *(tree *)slot != t)
4393 tree new_type = (tree) *((tree *) slot);
4395 /* Do not merge types with different addressability. */
4396 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4398 /* If t is not its main variant then make t unreachable from its
4399 main variant list. Otherwise we'd queue up a lot of duplicates
4400 there. */
4401 if (t != TYPE_MAIN_VARIANT (t))
4403 tree tem = TYPE_MAIN_VARIANT (t);
4404 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4405 tem = TYPE_NEXT_VARIANT (tem);
4406 if (tem)
4407 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4408 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4411 /* If we are a pointer then remove us from the pointer-to or
4412 reference-to chain. Otherwise we'd queue up a lot of duplicates
4413 there. */
4414 if (TREE_CODE (t) == POINTER_TYPE)
4416 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4417 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4418 else
4420 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4421 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4422 tem = TYPE_NEXT_PTR_TO (tem);
4423 if (tem)
4424 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4426 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4428 else if (TREE_CODE (t) == REFERENCE_TYPE)
4430 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4431 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4432 else
4434 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4435 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4436 tem = TYPE_NEXT_REF_TO (tem);
4437 if (tem)
4438 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4440 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4443 leader->type = t;
4444 leader->leader = new_type;
4445 t = new_type;
4447 else
4449 leader->type = t;
4450 leader->leader = t;
4451 /* We're the type leader. Make our TYPE_MAIN_VARIANT valid. */
4452 if (TYPE_MAIN_VARIANT (t) != t
4453 && TYPE_MAIN_VARIANT (t) != mv_leader)
4455 /* Remove us from our main variant list as we are not the variant
4456 leader and the variant leader will change. */
4457 tree tem = TYPE_MAIN_VARIANT (t);
4458 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4459 tem = TYPE_NEXT_VARIANT (tem);
4460 if (tem)
4461 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4462 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4463 /* Adjust our main variant. Linking us into its variant list
4464 will happen at fixup time. */
4465 TYPE_MAIN_VARIANT (t) = mv_leader;
4467 *slot = (void *) t;
4470 return t;
4474 /* Returns nonzero if P1 and P2 are equal. */
4476 static int
4477 gimple_canonical_type_eq (const void *p1, const void *p2)
4479 const_tree t1 = (const_tree) p1;
4480 const_tree t2 = (const_tree) p2;
4481 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4482 CONST_CAST_TREE (t2), GTC_DIAG);
4485 /* Register type T in the global type table gimple_types.
4486 If another type T', compatible with T, already existed in
4487 gimple_types then return T', otherwise return T. This is used by
4488 LTO to merge identical types read from different TUs. */
4490 tree
4491 gimple_register_canonical_type (tree t)
4493 void **slot;
4494 tree orig_t = t;
4496 gcc_assert (TYPE_P (t));
4498 if (TYPE_CANONICAL (t))
4499 return TYPE_CANONICAL (t);
4501 /* Always register the type itself first so that if it turns out
4502 to be the canonical type it will be the one we merge to as well. */
4503 t = gimple_register_type (t);
4505 /* Always register the main variant first. This is important so we
4506 pick up the non-typedef variants as canonical, otherwise we'll end
4507 up taking typedef ids for structure tags during comparison. */
4508 if (TYPE_MAIN_VARIANT (t) != t)
4509 gimple_register_canonical_type (TYPE_MAIN_VARIANT (t));
4511 if (gimple_canonical_types == NULL)
4512 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4513 gimple_canonical_type_eq, 0);
4515 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4516 if (*slot
4517 && *(tree *)slot != t)
4519 tree new_type = (tree) *((tree *) slot);
4521 TYPE_CANONICAL (t) = new_type;
4522 t = new_type;
4524 else
4526 TYPE_CANONICAL (t) = t;
4527 *slot = (void *) t;
4530 /* Also cache the canonical type in the non-leaders. */
4531 TYPE_CANONICAL (orig_t) = t;
4533 return t;
4537 /* Show statistics on references to the global type table gimple_types. */
4539 void
4540 print_gimple_types_stats (void)
4542 if (gimple_types)
4543 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4544 "%ld searches, %ld collisions (ratio: %f)\n",
4545 (long) htab_size (gimple_types),
4546 (long) htab_elements (gimple_types),
4547 (long) gimple_types->searches,
4548 (long) gimple_types->collisions,
4549 htab_collisions (gimple_types));
4550 else
4551 fprintf (stderr, "GIMPLE type table is empty\n");
4552 if (type_hash_cache)
4553 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4554 "%ld searches, %ld collisions (ratio: %f)\n",
4555 (long) htab_size (type_hash_cache),
4556 (long) htab_elements (type_hash_cache),
4557 (long) type_hash_cache->searches,
4558 (long) type_hash_cache->collisions,
4559 htab_collisions (type_hash_cache));
4560 else
4561 fprintf (stderr, "GIMPLE type hash table is empty\n");
4562 if (gimple_canonical_types)
4563 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4564 "%ld searches, %ld collisions (ratio: %f)\n",
4565 (long) htab_size (gimple_canonical_types),
4566 (long) htab_elements (gimple_canonical_types),
4567 (long) gimple_canonical_types->searches,
4568 (long) gimple_canonical_types->collisions,
4569 htab_collisions (gimple_canonical_types));
4570 else
4571 fprintf (stderr, "GIMPLE canonical type table is empty\n");
4572 if (canonical_type_hash_cache)
4573 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
4574 "%ld searches, %ld collisions (ratio: %f)\n",
4575 (long) htab_size (canonical_type_hash_cache),
4576 (long) htab_elements (canonical_type_hash_cache),
4577 (long) canonical_type_hash_cache->searches,
4578 (long) canonical_type_hash_cache->collisions,
4579 htab_collisions (canonical_type_hash_cache));
4580 else
4581 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
4582 if (gtc_visited)
4583 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4584 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4585 (long) htab_size (gtc_visited),
4586 (long) htab_elements (gtc_visited),
4587 (long) gtc_visited->searches,
4588 (long) gtc_visited->collisions,
4589 htab_collisions (gtc_visited));
4590 else
4591 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4594 /* Free the gimple type hashtables used for LTO type merging. */
4596 void
4597 free_gimple_type_tables (void)
4599 /* Last chance to print stats for the tables. */
4600 if (flag_lto_report)
4601 print_gimple_types_stats ();
4603 if (gimple_types)
4605 htab_delete (gimple_types);
4606 gimple_types = NULL;
4608 if (gimple_canonical_types)
4610 htab_delete (gimple_canonical_types);
4611 gimple_canonical_types = NULL;
4613 if (type_hash_cache)
4615 htab_delete (type_hash_cache);
4616 type_hash_cache = NULL;
4618 if (canonical_type_hash_cache)
4620 htab_delete (canonical_type_hash_cache);
4621 canonical_type_hash_cache = NULL;
4623 if (gtc_visited)
4625 htab_delete (gtc_visited);
4626 obstack_free (&gtc_ob, NULL);
4627 gtc_visited = NULL;
4629 gimple_type_leader = NULL;
4633 /* Return a type the same as TYPE except unsigned or
4634 signed according to UNSIGNEDP. */
4636 static tree
4637 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4639 tree type1;
4641 type1 = TYPE_MAIN_VARIANT (type);
4642 if (type1 == signed_char_type_node
4643 || type1 == char_type_node
4644 || type1 == unsigned_char_type_node)
4645 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4646 if (type1 == integer_type_node || type1 == unsigned_type_node)
4647 return unsignedp ? unsigned_type_node : integer_type_node;
4648 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4649 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4650 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4651 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4652 if (type1 == long_long_integer_type_node
4653 || type1 == long_long_unsigned_type_node)
4654 return unsignedp
4655 ? long_long_unsigned_type_node
4656 : long_long_integer_type_node;
4657 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4658 return unsignedp
4659 ? int128_unsigned_type_node
4660 : int128_integer_type_node;
4661 #if HOST_BITS_PER_WIDE_INT >= 64
4662 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4663 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4664 #endif
4665 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4666 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4667 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4668 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4669 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4670 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4671 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4672 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4674 #define GIMPLE_FIXED_TYPES(NAME) \
4675 if (type1 == short_ ## NAME ## _type_node \
4676 || type1 == unsigned_short_ ## NAME ## _type_node) \
4677 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4678 : short_ ## NAME ## _type_node; \
4679 if (type1 == NAME ## _type_node \
4680 || type1 == unsigned_ ## NAME ## _type_node) \
4681 return unsignedp ? unsigned_ ## NAME ## _type_node \
4682 : NAME ## _type_node; \
4683 if (type1 == long_ ## NAME ## _type_node \
4684 || type1 == unsigned_long_ ## NAME ## _type_node) \
4685 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4686 : long_ ## NAME ## _type_node; \
4687 if (type1 == long_long_ ## NAME ## _type_node \
4688 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4689 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4690 : long_long_ ## NAME ## _type_node;
4692 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4693 if (type1 == NAME ## _type_node \
4694 || type1 == u ## NAME ## _type_node) \
4695 return unsignedp ? u ## NAME ## _type_node \
4696 : NAME ## _type_node;
4698 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4699 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4700 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4701 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4702 : sat_ ## short_ ## NAME ## _type_node; \
4703 if (type1 == sat_ ## NAME ## _type_node \
4704 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4705 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4706 : sat_ ## NAME ## _type_node; \
4707 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4708 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4709 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4710 : sat_ ## long_ ## NAME ## _type_node; \
4711 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4712 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4713 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4714 : sat_ ## long_long_ ## NAME ## _type_node;
4716 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4717 if (type1 == sat_ ## NAME ## _type_node \
4718 || type1 == sat_ ## u ## NAME ## _type_node) \
4719 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4720 : sat_ ## NAME ## _type_node;
4722 GIMPLE_FIXED_TYPES (fract);
4723 GIMPLE_FIXED_TYPES_SAT (fract);
4724 GIMPLE_FIXED_TYPES (accum);
4725 GIMPLE_FIXED_TYPES_SAT (accum);
4727 GIMPLE_FIXED_MODE_TYPES (qq);
4728 GIMPLE_FIXED_MODE_TYPES (hq);
4729 GIMPLE_FIXED_MODE_TYPES (sq);
4730 GIMPLE_FIXED_MODE_TYPES (dq);
4731 GIMPLE_FIXED_MODE_TYPES (tq);
4732 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4733 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4734 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4735 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4736 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4737 GIMPLE_FIXED_MODE_TYPES (ha);
4738 GIMPLE_FIXED_MODE_TYPES (sa);
4739 GIMPLE_FIXED_MODE_TYPES (da);
4740 GIMPLE_FIXED_MODE_TYPES (ta);
4741 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4742 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4743 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4744 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4746 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4747 the precision; they have precision set to match their range, but
4748 may use a wider mode to match an ABI. If we change modes, we may
4749 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4750 the precision as well, so as to yield correct results for
4751 bit-field types. C++ does not have these separate bit-field
4752 types, and producing a signed or unsigned variant of an
4753 ENUMERAL_TYPE may cause other problems as well. */
4754 if (!INTEGRAL_TYPE_P (type)
4755 || TYPE_UNSIGNED (type) == unsignedp)
4756 return type;
4758 #define TYPE_OK(node) \
4759 (TYPE_MODE (type) == TYPE_MODE (node) \
4760 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4761 if (TYPE_OK (signed_char_type_node))
4762 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4763 if (TYPE_OK (integer_type_node))
4764 return unsignedp ? unsigned_type_node : integer_type_node;
4765 if (TYPE_OK (short_integer_type_node))
4766 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4767 if (TYPE_OK (long_integer_type_node))
4768 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4769 if (TYPE_OK (long_long_integer_type_node))
4770 return (unsignedp
4771 ? long_long_unsigned_type_node
4772 : long_long_integer_type_node);
4773 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4774 return (unsignedp
4775 ? int128_unsigned_type_node
4776 : int128_integer_type_node);
4778 #if HOST_BITS_PER_WIDE_INT >= 64
4779 if (TYPE_OK (intTI_type_node))
4780 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4781 #endif
4782 if (TYPE_OK (intDI_type_node))
4783 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4784 if (TYPE_OK (intSI_type_node))
4785 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4786 if (TYPE_OK (intHI_type_node))
4787 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4788 if (TYPE_OK (intQI_type_node))
4789 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4791 #undef GIMPLE_FIXED_TYPES
4792 #undef GIMPLE_FIXED_MODE_TYPES
4793 #undef GIMPLE_FIXED_TYPES_SAT
4794 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4795 #undef TYPE_OK
4797 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4801 /* Return an unsigned type the same as TYPE in other respects. */
4803 tree
4804 gimple_unsigned_type (tree type)
4806 return gimple_signed_or_unsigned_type (true, type);
4810 /* Return a signed type the same as TYPE in other respects. */
4812 tree
4813 gimple_signed_type (tree type)
4815 return gimple_signed_or_unsigned_type (false, type);
4819 /* Return the typed-based alias set for T, which may be an expression
4820 or a type. Return -1 if we don't do anything special. */
4822 alias_set_type
4823 gimple_get_alias_set (tree t)
4825 tree u;
4827 /* Permit type-punning when accessing a union, provided the access
4828 is directly through the union. For example, this code does not
4829 permit taking the address of a union member and then storing
4830 through it. Even the type-punning allowed here is a GCC
4831 extension, albeit a common and useful one; the C standard says
4832 that such accesses have implementation-defined behavior. */
4833 for (u = t;
4834 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4835 u = TREE_OPERAND (u, 0))
4836 if (TREE_CODE (u) == COMPONENT_REF
4837 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4838 return 0;
4840 /* That's all the expressions we handle specially. */
4841 if (!TYPE_P (t))
4842 return -1;
4844 /* For convenience, follow the C standard when dealing with
4845 character types. Any object may be accessed via an lvalue that
4846 has character type. */
4847 if (t == char_type_node
4848 || t == signed_char_type_node
4849 || t == unsigned_char_type_node)
4850 return 0;
4852 /* Allow aliasing between signed and unsigned variants of the same
4853 type. We treat the signed variant as canonical. */
4854 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4856 tree t1 = gimple_signed_type (t);
4858 /* t1 == t can happen for boolean nodes which are always unsigned. */
4859 if (t1 != t)
4860 return get_alias_set (t1);
4863 return -1;
4867 /* Data structure used to count the number of dereferences to PTR
4868 inside an expression. */
4869 struct count_ptr_d
4871 tree ptr;
4872 unsigned num_stores;
4873 unsigned num_loads;
4876 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4877 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4879 static tree
4880 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4882 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4883 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4885 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4886 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4887 the address of 'fld' as 'ptr + offsetof(fld)'. */
4888 if (TREE_CODE (*tp) == ADDR_EXPR)
4890 *walk_subtrees = 0;
4891 return NULL_TREE;
4894 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4896 if (wi_p->is_lhs)
4897 count_p->num_stores++;
4898 else
4899 count_p->num_loads++;
4902 return NULL_TREE;
4905 /* Count the number of direct and indirect uses for pointer PTR in
4906 statement STMT. The number of direct uses is stored in
4907 *NUM_USES_P. Indirect references are counted separately depending
4908 on whether they are store or load operations. The counts are
4909 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4911 void
4912 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4913 unsigned *num_loads_p, unsigned *num_stores_p)
4915 ssa_op_iter i;
4916 tree use;
4918 *num_uses_p = 0;
4919 *num_loads_p = 0;
4920 *num_stores_p = 0;
4922 /* Find out the total number of uses of PTR in STMT. */
4923 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4924 if (use == ptr)
4925 (*num_uses_p)++;
4927 /* Now count the number of indirect references to PTR. This is
4928 truly awful, but we don't have much choice. There are no parent
4929 pointers inside INDIRECT_REFs, so an expression like
4930 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4931 find all the indirect and direct uses of x_1 inside. The only
4932 shortcut we can take is the fact that GIMPLE only allows
4933 INDIRECT_REFs inside the expressions below. */
4934 if (is_gimple_assign (stmt)
4935 || gimple_code (stmt) == GIMPLE_RETURN
4936 || gimple_code (stmt) == GIMPLE_ASM
4937 || is_gimple_call (stmt))
4939 struct walk_stmt_info wi;
4940 struct count_ptr_d count;
4942 count.ptr = ptr;
4943 count.num_stores = 0;
4944 count.num_loads = 0;
4946 memset (&wi, 0, sizeof (wi));
4947 wi.info = &count;
4948 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4950 *num_stores_p = count.num_stores;
4951 *num_loads_p = count.num_loads;
4954 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4957 /* From a tree operand OP return the base of a load or store operation
4958 or NULL_TREE if OP is not a load or a store. */
4960 static tree
4961 get_base_loadstore (tree op)
4963 while (handled_component_p (op))
4964 op = TREE_OPERAND (op, 0);
4965 if (DECL_P (op)
4966 || INDIRECT_REF_P (op)
4967 || TREE_CODE (op) == MEM_REF
4968 || TREE_CODE (op) == TARGET_MEM_REF)
4969 return op;
4970 return NULL_TREE;
4973 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4974 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4975 passing the STMT, the base of the operand and DATA to it. The base
4976 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4977 or the argument of an address expression.
4978 Returns the results of these callbacks or'ed. */
4980 bool
4981 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4982 bool (*visit_load)(gimple, tree, void *),
4983 bool (*visit_store)(gimple, tree, void *),
4984 bool (*visit_addr)(gimple, tree, void *))
4986 bool ret = false;
4987 unsigned i;
4988 if (gimple_assign_single_p (stmt))
4990 tree lhs, rhs;
4991 if (visit_store)
4993 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4994 if (lhs)
4995 ret |= visit_store (stmt, lhs, data);
4997 rhs = gimple_assign_rhs1 (stmt);
4998 while (handled_component_p (rhs))
4999 rhs = TREE_OPERAND (rhs, 0);
5000 if (visit_addr)
5002 if (TREE_CODE (rhs) == ADDR_EXPR)
5003 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5004 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5005 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5006 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5007 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5008 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5009 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5010 0), data);
5011 lhs = gimple_assign_lhs (stmt);
5012 if (TREE_CODE (lhs) == TARGET_MEM_REF
5013 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5014 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5016 if (visit_load)
5018 rhs = get_base_loadstore (rhs);
5019 if (rhs)
5020 ret |= visit_load (stmt, rhs, data);
5023 else if (visit_addr
5024 && (is_gimple_assign (stmt)
5025 || gimple_code (stmt) == GIMPLE_COND))
5027 for (i = 0; i < gimple_num_ops (stmt); ++i)
5028 if (gimple_op (stmt, i)
5029 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5030 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5032 else if (is_gimple_call (stmt))
5034 if (visit_store)
5036 tree lhs = gimple_call_lhs (stmt);
5037 if (lhs)
5039 lhs = get_base_loadstore (lhs);
5040 if (lhs)
5041 ret |= visit_store (stmt, lhs, data);
5044 if (visit_load || visit_addr)
5045 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5047 tree rhs = gimple_call_arg (stmt, i);
5048 if (visit_addr
5049 && TREE_CODE (rhs) == ADDR_EXPR)
5050 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5051 else if (visit_load)
5053 rhs = get_base_loadstore (rhs);
5054 if (rhs)
5055 ret |= visit_load (stmt, rhs, data);
5058 if (visit_addr
5059 && gimple_call_chain (stmt)
5060 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5061 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5062 data);
5063 if (visit_addr
5064 && gimple_call_return_slot_opt_p (stmt)
5065 && gimple_call_lhs (stmt) != NULL_TREE
5066 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
5067 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5069 else if (gimple_code (stmt) == GIMPLE_ASM)
5071 unsigned noutputs;
5072 const char *constraint;
5073 const char **oconstraints;
5074 bool allows_mem, allows_reg, is_inout;
5075 noutputs = gimple_asm_noutputs (stmt);
5076 oconstraints = XALLOCAVEC (const char *, noutputs);
5077 if (visit_store || visit_addr)
5078 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5080 tree link = gimple_asm_output_op (stmt, i);
5081 tree op = get_base_loadstore (TREE_VALUE (link));
5082 if (op && visit_store)
5083 ret |= visit_store (stmt, op, data);
5084 if (visit_addr)
5086 constraint = TREE_STRING_POINTER
5087 (TREE_VALUE (TREE_PURPOSE (link)));
5088 oconstraints[i] = constraint;
5089 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5090 &allows_reg, &is_inout);
5091 if (op && !allows_reg && allows_mem)
5092 ret |= visit_addr (stmt, op, data);
5095 if (visit_load || visit_addr)
5096 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5098 tree link = gimple_asm_input_op (stmt, i);
5099 tree op = TREE_VALUE (link);
5100 if (visit_addr
5101 && TREE_CODE (op) == ADDR_EXPR)
5102 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5103 else if (visit_load || visit_addr)
5105 op = get_base_loadstore (op);
5106 if (op)
5108 if (visit_load)
5109 ret |= visit_load (stmt, op, data);
5110 if (visit_addr)
5112 constraint = TREE_STRING_POINTER
5113 (TREE_VALUE (TREE_PURPOSE (link)));
5114 parse_input_constraint (&constraint, 0, 0, noutputs,
5115 0, oconstraints,
5116 &allows_mem, &allows_reg);
5117 if (!allows_reg && allows_mem)
5118 ret |= visit_addr (stmt, op, data);
5124 else if (gimple_code (stmt) == GIMPLE_RETURN)
5126 tree op = gimple_return_retval (stmt);
5127 if (op)
5129 if (visit_addr
5130 && TREE_CODE (op) == ADDR_EXPR)
5131 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5132 else if (visit_load)
5134 op = get_base_loadstore (op);
5135 if (op)
5136 ret |= visit_load (stmt, op, data);
5140 else if (visit_addr
5141 && gimple_code (stmt) == GIMPLE_PHI)
5143 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5145 tree op = PHI_ARG_DEF (stmt, i);
5146 if (TREE_CODE (op) == ADDR_EXPR)
5147 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5151 return ret;
5154 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5155 should make a faster clone for this case. */
5157 bool
5158 walk_stmt_load_store_ops (gimple stmt, void *data,
5159 bool (*visit_load)(gimple, tree, void *),
5160 bool (*visit_store)(gimple, tree, void *))
5162 return walk_stmt_load_store_addr_ops (stmt, data,
5163 visit_load, visit_store, NULL);
5166 /* Helper for gimple_ior_addresses_taken_1. */
5168 static bool
5169 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5170 tree addr, void *data)
5172 bitmap addresses_taken = (bitmap)data;
5173 addr = get_base_address (addr);
5174 if (addr
5175 && DECL_P (addr))
5177 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5178 return true;
5180 return false;
5183 /* Set the bit for the uid of all decls that have their address taken
5184 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5185 were any in this stmt. */
5187 bool
5188 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5190 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5191 gimple_ior_addresses_taken_1);
5195 /* Return a printable name for symbol DECL. */
5197 const char *
5198 gimple_decl_printable_name (tree decl, int verbosity)
5200 if (!DECL_NAME (decl))
5201 return NULL;
5203 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5205 const char *str, *mangled_str;
5206 int dmgl_opts = DMGL_NO_OPTS;
5208 if (verbosity >= 2)
5210 dmgl_opts = DMGL_VERBOSE
5211 | DMGL_ANSI
5212 | DMGL_GNU_V3
5213 | DMGL_RET_POSTFIX;
5214 if (TREE_CODE (decl) == FUNCTION_DECL)
5215 dmgl_opts |= DMGL_PARAMS;
5218 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5219 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5220 return (str) ? str : mangled_str;
5223 return IDENTIFIER_POINTER (DECL_NAME (decl));
5226 /* Return true when STMT is builtins call to CODE. */
5228 bool
5229 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5231 tree fndecl;
5232 return (is_gimple_call (stmt)
5233 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5234 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5235 && DECL_FUNCTION_CODE (fndecl) == code);
5238 /* Return true if STMT clobbers memory. STMT is required to be a
5239 GIMPLE_ASM. */
5241 bool
5242 gimple_asm_clobbers_memory_p (const_gimple stmt)
5244 unsigned i;
5246 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5248 tree op = gimple_asm_clobber_op (stmt, i);
5249 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5250 return true;
5253 return false;
5255 #include "gt-gimple.h"