2002-02-06 Aldy Hernandez <aldyh@redhat.com>
[official-gcc.git] / gcc / ada / 7staprop.adb
blob82bffbc2b4c58e7a3f02b90ca3979cc868da66a8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision: 1.1 $
10 -- --
11 -- Copyright (C) 1991-2001, Florida State University --
12 -- --
13 -- GNARL is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNARL; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- As a special exception, if other files instantiate generics from this --
25 -- unit, or you link this unit with other files to produce an executable, --
26 -- this unit does not by itself cause the resulting executable to be --
27 -- covered by the GNU General Public License. This exception does not --
28 -- however invalidate any other reasons why the executable file might be --
29 -- covered by the GNU Public License. --
30 -- --
31 -- GNARL was developed by the GNARL team at Florida State University. It is --
32 -- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
33 -- State University (http://www.gnat.com). --
34 -- --
35 ------------------------------------------------------------------------------
37 -- This is a POSIX-like version of this package
39 -- This package contains all the GNULL primitives that interface directly
40 -- with the underlying OS.
42 -- Note: this file can only be used for POSIX compliant systems that
43 -- implement SCHED_FIFO and Ceiling Locking correctly.
45 -- For configurations where SCHED_FIFO and priority ceiling are not a
46 -- requirement, this file can also be used (e.g AiX threads)
48 pragma Polling (Off);
49 -- Turn off polling, we do not want ATC polling to take place during
50 -- tasking operations. It causes infinite loops and other problems.
52 with System.Tasking.Debug;
53 -- used for Known_Tasks
55 with System.Task_Info;
56 -- used for Task_Info_Type
58 with Interfaces.C;
59 -- used for int
60 -- size_t
62 with System.Interrupt_Management;
63 -- used for Keep_Unmasked
64 -- Abort_Task_Interrupt
65 -- Interrupt_ID
67 with System.Interrupt_Management.Operations;
68 -- used for Set_Interrupt_Mask
69 -- All_Tasks_Mask
70 pragma Elaborate_All (System.Interrupt_Management.Operations);
72 with System.Parameters;
73 -- used for Size_Type
75 with System.Tasking;
76 -- used for Ada_Task_Control_Block
77 -- Task_ID
79 with System.Soft_Links;
80 -- used for Defer/Undefer_Abort
82 -- Note that we do not use System.Tasking.Initialization directly since
83 -- this is a higher level package that we shouldn't depend on. For example
84 -- when using the restricted run time, it is replaced by
85 -- System.Tasking.Restricted.Initialization
87 with System.OS_Primitives;
88 -- used for Delay_Modes
90 with Unchecked_Conversion;
91 with Unchecked_Deallocation;
93 package body System.Task_Primitives.Operations is
95 use System.Tasking.Debug;
96 use System.Tasking;
97 use Interfaces.C;
98 use System.OS_Interface;
99 use System.Parameters;
100 use System.OS_Primitives;
102 package SSL renames System.Soft_Links;
104 ------------------
105 -- Local Data --
106 ------------------
108 -- The followings are logically constants, but need to be initialized
109 -- at run time.
111 All_Tasks_L : aliased System.Task_Primitives.RTS_Lock;
112 -- See comments on locking rules in System.Tasking (spec).
114 Environment_Task_ID : Task_ID;
115 -- A variable to hold Task_ID for the environment task.
117 Locking_Policy : Character;
118 pragma Import (C, Locking_Policy, "__gl_locking_policy");
119 -- Value of the pragma Locking_Policy:
120 -- 'C' for Ceiling_Locking
121 -- 'I' for Inherit_Locking
122 -- ' ' for none.
124 Unblocked_Signal_Mask : aliased sigset_t;
125 -- The set of signals that should unblocked in all tasks
127 -- The followings are internal configuration constants needed.
129 Next_Serial_Number : Task_Serial_Number := 100;
130 -- We start at 100, to reserve some special values for
131 -- using in error checking.
133 Time_Slice_Val : Integer;
134 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
136 Dispatching_Policy : Character;
137 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
139 FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F';
140 -- Indicates whether FIFO_Within_Priorities is set.
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
146 procedure Abort_Handler
147 (Sig : Signal);
149 function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);
151 function To_Address is new Unchecked_Conversion (Task_ID, System.Address);
153 --------------------
154 -- Local Packages --
155 --------------------
157 package Specific is
159 procedure Initialize (Environment_Task : Task_ID);
160 pragma Inline (Initialize);
161 -- Initialize various data needed by this package.
163 procedure Set (Self_Id : Task_ID);
164 pragma Inline (Set);
165 -- Set the self id for the current task.
167 function Self return Task_ID;
168 pragma Inline (Self);
169 -- Return a pointer to the Ada Task Control Block of the calling task.
171 end Specific;
173 package body Specific is separate;
174 -- The body of this package is target specific.
176 -------------------
177 -- Abort_Handler --
178 -------------------
180 -- Target-dependent binding of inter-thread Abort signal to
181 -- the raising of the Abort_Signal exception.
183 -- The technical issues and alternatives here are essentially
184 -- the same as for raising exceptions in response to other
185 -- signals (e.g. Storage_Error). See code and comments in
186 -- the package body System.Interrupt_Management.
188 -- Some implementations may not allow an exception to be propagated
189 -- out of a handler, and others might leave the signal or
190 -- interrupt that invoked this handler masked after the exceptional
191 -- return to the application code.
193 -- GNAT exceptions are originally implemented using setjmp()/longjmp().
194 -- On most UNIX systems, this will allow transfer out of a signal handler,
195 -- which is usually the only mechanism available for implementing
196 -- asynchronous handlers of this kind. However, some
197 -- systems do not restore the signal mask on longjmp(), leaving the
198 -- abort signal masked.
200 -- Alternative solutions include:
202 -- 1. Change the PC saved in the system-dependent Context
203 -- parameter to point to code that raises the exception.
204 -- Normal return from this handler will then raise
205 -- the exception after the mask and other system state has
206 -- been restored (see example below).
208 -- 2. Use siglongjmp()/sigsetjmp() to implement exceptions.
210 -- 3. Unmask the signal in the Abortion_Signal exception handler
211 -- (in the RTS).
213 -- The following procedure would be needed if we can't lonjmp out of
214 -- a signal handler (See below)
216 -- procedure Raise_Abort_Signal is
217 -- begin
218 -- raise Standard'Abort_Signal;
219 -- end if;
221 procedure Abort_Handler
222 (Sig : Signal) is
224 T : Task_ID := Self;
225 Result : Interfaces.C.int;
226 Old_Set : aliased sigset_t;
228 begin
229 -- Assuming it is safe to longjmp out of a signal handler, the
230 -- following code can be used:
232 if T.Deferral_Level = 0
233 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
234 not T.Aborting
235 then
236 T.Aborting := True;
238 -- Make sure signals used for RTS internal purpose are unmasked
240 Result := pthread_sigmask (SIG_UNBLOCK,
241 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
242 pragma Assert (Result = 0);
244 raise Standard'Abort_Signal;
245 end if;
247 -- Otherwise, something like this is required:
248 -- if not Abort_Is_Deferred.all then
249 -- -- Overwrite the return PC address with the address of the
250 -- -- special raise routine, and "return" to that routine's
251 -- -- starting address.
252 -- Context.PC := Raise_Abort_Signal'Address;
253 -- return;
254 -- end if;
256 end Abort_Handler;
258 -------------------
259 -- Stack_Guard --
260 -------------------
262 procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is
264 Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
265 Guard_Page_Address : Address;
267 Res : Interfaces.C.int;
269 begin
270 if Stack_Base_Available then
271 -- Compute the guard page address
273 Guard_Page_Address :=
274 Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
276 if On then
277 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
278 else
279 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
280 end if;
282 pragma Assert (Res = 0);
283 end if;
284 end Stack_Guard;
286 --------------------
287 -- Get_Thread_Id --
288 --------------------
290 function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is
291 begin
292 return T.Common.LL.Thread;
293 end Get_Thread_Id;
295 ----------
296 -- Self --
297 ----------
299 function Self return Task_ID renames Specific.Self;
301 ---------------------
302 -- Initialize_Lock --
303 ---------------------
305 -- Note: mutexes and cond_variables needed per-task basis are
306 -- initialized in Initialize_TCB and the Storage_Error is
307 -- handled. Other mutexes (such as All_Tasks_Lock, Memory_Lock...)
308 -- used in RTS is initialized before any status change of RTS.
309 -- Therefore rasing Storage_Error in the following routines
310 -- should be able to be handled safely.
312 procedure Initialize_Lock
313 (Prio : System.Any_Priority;
314 L : access Lock)
316 Attributes : aliased pthread_mutexattr_t;
317 Result : Interfaces.C.int;
319 begin
320 Result := pthread_mutexattr_init (Attributes'Access);
321 pragma Assert (Result = 0 or else Result = ENOMEM);
323 if Result = ENOMEM then
324 raise Storage_Error;
325 end if;
327 if Locking_Policy = 'C' then
328 Result := pthread_mutexattr_setprotocol
329 (Attributes'Access, PTHREAD_PRIO_PROTECT);
330 pragma Assert (Result = 0);
332 Result := pthread_mutexattr_setprioceiling
333 (Attributes'Access, Interfaces.C.int (Prio));
334 pragma Assert (Result = 0);
336 elsif Locking_Policy = 'I' then
337 Result := pthread_mutexattr_setprotocol
338 (Attributes'Access, PTHREAD_PRIO_INHERIT);
339 pragma Assert (Result = 0);
340 end if;
342 Result := pthread_mutex_init (L, Attributes'Access);
343 pragma Assert (Result = 0 or else Result = ENOMEM);
345 if Result = ENOMEM then
346 raise Storage_Error;
347 end if;
349 Result := pthread_mutexattr_destroy (Attributes'Access);
350 pragma Assert (Result = 0);
351 end Initialize_Lock;
353 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
354 Attributes : aliased pthread_mutexattr_t;
355 Result : Interfaces.C.int;
357 begin
358 Result := pthread_mutexattr_init (Attributes'Access);
359 pragma Assert (Result = 0 or else Result = ENOMEM);
361 if Result = ENOMEM then
362 raise Storage_Error;
363 end if;
365 if Locking_Policy = 'C' then
366 Result := pthread_mutexattr_setprotocol
367 (Attributes'Access, PTHREAD_PRIO_PROTECT);
368 pragma Assert (Result = 0);
370 Result := pthread_mutexattr_setprioceiling
371 (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
372 pragma Assert (Result = 0);
374 elsif Locking_Policy = 'I' then
375 Result := pthread_mutexattr_setprotocol
376 (Attributes'Access, PTHREAD_PRIO_INHERIT);
377 pragma Assert (Result = 0);
378 end if;
380 Result := pthread_mutex_init (L, Attributes'Access);
381 pragma Assert (Result = 0 or else Result = ENOMEM);
383 if Result = ENOMEM then
384 Result := pthread_mutexattr_destroy (Attributes'Access);
385 raise Storage_Error;
386 end if;
388 Result := pthread_mutexattr_destroy (Attributes'Access);
389 pragma Assert (Result = 0);
390 end Initialize_Lock;
392 -------------------
393 -- Finalize_Lock --
394 -------------------
396 procedure Finalize_Lock (L : access Lock) is
397 Result : Interfaces.C.int;
399 begin
400 Result := pthread_mutex_destroy (L);
401 pragma Assert (Result = 0);
402 end Finalize_Lock;
404 procedure Finalize_Lock (L : access RTS_Lock) is
405 Result : Interfaces.C.int;
407 begin
408 Result := pthread_mutex_destroy (L);
409 pragma Assert (Result = 0);
410 end Finalize_Lock;
412 ----------------
413 -- Write_Lock --
414 ----------------
416 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
417 Result : Interfaces.C.int;
419 begin
420 Result := pthread_mutex_lock (L);
422 -- Assume that the cause of EINVAL is a priority ceiling violation
424 Ceiling_Violation := (Result = EINVAL);
425 pragma Assert (Result = 0 or else Result = EINVAL);
426 end Write_Lock;
428 procedure Write_Lock (L : access RTS_Lock) is
429 Result : Interfaces.C.int;
431 begin
432 Result := pthread_mutex_lock (L);
433 pragma Assert (Result = 0);
434 end Write_Lock;
436 procedure Write_Lock (T : Task_ID) is
437 Result : Interfaces.C.int;
439 begin
440 Result := pthread_mutex_lock (T.Common.LL.L'Access);
441 pragma Assert (Result = 0);
442 end Write_Lock;
444 ---------------
445 -- Read_Lock --
446 ---------------
448 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
449 begin
450 Write_Lock (L, Ceiling_Violation);
451 end Read_Lock;
453 ------------
454 -- Unlock --
455 ------------
457 procedure Unlock (L : access Lock) is
458 Result : Interfaces.C.int;
460 begin
461 Result := pthread_mutex_unlock (L);
462 pragma Assert (Result = 0);
463 end Unlock;
465 procedure Unlock (L : access RTS_Lock) is
466 Result : Interfaces.C.int;
468 begin
469 Result := pthread_mutex_unlock (L);
470 pragma Assert (Result = 0);
471 end Unlock;
473 procedure Unlock (T : Task_ID) is
474 Result : Interfaces.C.int;
476 begin
477 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
478 pragma Assert (Result = 0);
479 end Unlock;
481 -------------
482 -- Sleep --
483 -------------
485 procedure Sleep (Self_ID : Task_ID;
486 Reason : System.Tasking.Task_States) is
487 Result : Interfaces.C.int;
489 begin
490 pragma Assert (Self_ID = Self);
491 Result := pthread_cond_wait (Self_ID.Common.LL.CV'Access,
492 Self_ID.Common.LL.L'Access);
494 -- EINTR is not considered a failure.
496 pragma Assert (Result = 0 or else Result = EINTR);
497 end Sleep;
499 -----------------
500 -- Timed_Sleep --
501 -----------------
503 -- This is for use within the run-time system, so abort is
504 -- assumed to be already deferred, and the caller should be
505 -- holding its own ATCB lock.
507 procedure Timed_Sleep
508 (Self_ID : Task_ID;
509 Time : Duration;
510 Mode : ST.Delay_Modes;
511 Reason : Task_States;
512 Timedout : out Boolean;
513 Yielded : out Boolean)
515 Check_Time : constant Duration := Monotonic_Clock;
516 Rel_Time : Duration;
517 Abs_Time : Duration;
518 Request : aliased timespec;
519 Result : Interfaces.C.int;
521 begin
522 Timedout := True;
523 Yielded := False;
525 if Mode = Relative then
526 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
528 if Relative_Timed_Wait then
529 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
530 end if;
532 else
533 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
535 if Relative_Timed_Wait then
536 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
537 end if;
538 end if;
540 if Abs_Time > Check_Time then
541 if Relative_Timed_Wait then
542 Request := To_Timespec (Rel_Time);
543 else
544 Request := To_Timespec (Abs_Time);
545 end if;
547 loop
548 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
549 or else Self_ID.Pending_Priority_Change;
551 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
552 Self_ID.Common.LL.L'Access, Request'Access);
554 exit when Abs_Time <= Monotonic_Clock;
556 if Result = 0 or Result = EINTR then
558 -- Somebody may have called Wakeup for us
560 Timedout := False;
561 exit;
562 end if;
564 pragma Assert (Result = ETIMEDOUT);
565 end loop;
566 end if;
567 end Timed_Sleep;
569 -----------------
570 -- Timed_Delay --
571 -----------------
573 -- This is for use in implementing delay statements, so
574 -- we assume the caller is abort-deferred but is holding
575 -- no locks.
577 procedure Timed_Delay
578 (Self_ID : Task_ID;
579 Time : Duration;
580 Mode : ST.Delay_Modes)
582 Check_Time : constant Duration := Monotonic_Clock;
583 Abs_Time : Duration;
584 Rel_Time : Duration;
585 Request : aliased timespec;
586 Result : Interfaces.C.int;
588 begin
589 -- Only the little window between deferring abort and
590 -- locking Self_ID is the reason we need to
591 -- check for pending abort and priority change below! :(
593 SSL.Abort_Defer.all;
594 Write_Lock (Self_ID);
596 if Mode = Relative then
597 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
599 if Relative_Timed_Wait then
600 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
601 end if;
603 else
604 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
606 if Relative_Timed_Wait then
607 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
608 end if;
609 end if;
611 if Abs_Time > Check_Time then
612 if Relative_Timed_Wait then
613 Request := To_Timespec (Rel_Time);
614 else
615 Request := To_Timespec (Abs_Time);
616 end if;
618 Self_ID.Common.State := Delay_Sleep;
620 loop
621 if Self_ID.Pending_Priority_Change then
622 Self_ID.Pending_Priority_Change := False;
623 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
624 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
625 end if;
627 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
629 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
630 Self_ID.Common.LL.L'Access, Request'Access);
631 exit when Abs_Time <= Monotonic_Clock;
633 pragma Assert (Result = 0
634 or else Result = ETIMEDOUT
635 or else Result = EINTR);
636 end loop;
638 Self_ID.Common.State := Runnable;
639 end if;
641 Unlock (Self_ID);
642 Result := sched_yield;
643 SSL.Abort_Undefer.all;
644 end Timed_Delay;
646 ---------------------
647 -- Monotonic_Clock --
648 ---------------------
650 function Monotonic_Clock return Duration is
651 TS : aliased timespec;
652 Result : Interfaces.C.int;
654 begin
655 Result := clock_gettime
656 (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
657 pragma Assert (Result = 0);
658 return To_Duration (TS);
659 end Monotonic_Clock;
661 -------------------
662 -- RT_Resolution --
663 -------------------
665 function RT_Resolution return Duration is
666 begin
667 return 10#1.0#E-6;
668 end RT_Resolution;
670 ------------
671 -- Wakeup --
672 ------------
674 procedure Wakeup (T : Task_ID; Reason : System.Tasking.Task_States) is
675 Result : Interfaces.C.int;
677 begin
678 Result := pthread_cond_signal (T.Common.LL.CV'Access);
679 pragma Assert (Result = 0);
680 end Wakeup;
682 -----------
683 -- Yield --
684 -----------
686 procedure Yield (Do_Yield : Boolean := True) is
687 Result : Interfaces.C.int;
689 begin
690 if Do_Yield then
691 Result := sched_yield;
692 end if;
693 end Yield;
695 ------------------
696 -- Set_Priority --
697 ------------------
699 procedure Set_Priority
700 (T : Task_ID;
701 Prio : System.Any_Priority;
702 Loss_Of_Inheritance : Boolean := False)
704 Result : Interfaces.C.int;
705 Param : aliased struct_sched_param;
707 begin
708 T.Common.Current_Priority := Prio;
709 Param.sched_priority := Interfaces.C.int (Prio);
711 if Time_Slice_Supported and then Time_Slice_Val > 0 then
712 Result := pthread_setschedparam
713 (T.Common.LL.Thread, SCHED_RR, Param'Access);
715 elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then
716 Result := pthread_setschedparam
717 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
719 else
720 Result := pthread_setschedparam
721 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
722 end if;
724 pragma Assert (Result = 0);
725 end Set_Priority;
727 ------------------
728 -- Get_Priority --
729 ------------------
731 function Get_Priority (T : Task_ID) return System.Any_Priority is
732 begin
733 return T.Common.Current_Priority;
734 end Get_Priority;
736 ----------------
737 -- Enter_Task --
738 ----------------
740 procedure Enter_Task (Self_ID : Task_ID) is
741 begin
742 Self_ID.Common.LL.Thread := pthread_self;
743 Self_ID.Common.LL.LWP := lwp_self;
745 Specific.Set (Self_ID);
747 Lock_All_Tasks_List;
749 for I in Known_Tasks'Range loop
750 if Known_Tasks (I) = null then
751 Known_Tasks (I) := Self_ID;
752 Self_ID.Known_Tasks_Index := I;
753 exit;
754 end if;
755 end loop;
757 Unlock_All_Tasks_List;
758 end Enter_Task;
760 --------------
761 -- New_ATCB --
762 --------------
764 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
765 begin
766 return new Ada_Task_Control_Block (Entry_Num);
767 end New_ATCB;
769 ----------------------
770 -- Initialize_TCB --
771 ----------------------
773 procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
774 Mutex_Attr : aliased pthread_mutexattr_t;
775 Result : Interfaces.C.int;
776 Cond_Attr : aliased pthread_condattr_t;
778 begin
779 -- Give the task a unique serial number.
781 Self_ID.Serial_Number := Next_Serial_Number;
782 Next_Serial_Number := Next_Serial_Number + 1;
783 pragma Assert (Next_Serial_Number /= 0);
785 Result := pthread_mutexattr_init (Mutex_Attr'Access);
786 pragma Assert (Result = 0 or else Result = ENOMEM);
788 if Result /= 0 then
789 Succeeded := False;
790 return;
791 end if;
793 Result := pthread_mutexattr_setprotocol
794 (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
795 pragma Assert (Result = 0);
797 Result := pthread_mutexattr_setprioceiling
798 (Mutex_Attr'Access, Interfaces.C.int (System.Any_Priority'Last));
799 pragma Assert (Result = 0);
801 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
802 Mutex_Attr'Access);
803 pragma Assert (Result = 0 or else Result = ENOMEM);
805 if Result /= 0 then
806 Succeeded := False;
807 return;
808 end if;
810 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
811 pragma Assert (Result = 0);
813 Result := pthread_condattr_init (Cond_Attr'Access);
814 pragma Assert (Result = 0 or else Result = ENOMEM);
816 if Result /= 0 then
817 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
818 pragma Assert (Result = 0);
819 Succeeded := False;
820 return;
821 end if;
823 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
824 Cond_Attr'Access);
825 pragma Assert (Result = 0 or else Result = ENOMEM);
827 if Result = 0 then
828 Succeeded := True;
829 else
830 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
831 pragma Assert (Result = 0);
832 Succeeded := False;
833 end if;
835 Result := pthread_condattr_destroy (Cond_Attr'Access);
836 pragma Assert (Result = 0);
837 end Initialize_TCB;
839 -----------------
840 -- Create_Task --
841 -----------------
843 procedure Create_Task
844 (T : Task_ID;
845 Wrapper : System.Address;
846 Stack_Size : System.Parameters.Size_Type;
847 Priority : System.Any_Priority;
848 Succeeded : out Boolean)
850 Attributes : aliased pthread_attr_t;
851 Adjusted_Stack_Size : Interfaces.C.size_t;
852 Result : Interfaces.C.int;
854 function Thread_Body_Access is new
855 Unchecked_Conversion (System.Address, Thread_Body);
857 use System.Task_Info;
859 begin
860 if Stack_Size = Unspecified_Size then
861 Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size);
863 elsif Stack_Size < Minimum_Stack_Size then
864 Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);
866 else
867 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
868 end if;
870 if Stack_Base_Available then
871 -- If Stack Checking is supported then allocate 2 additional pages:
873 -- In the worst case, stack is allocated at something like
874 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
875 -- to be sure the effective stack size is greater than what
876 -- has been asked.
878 Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
879 end if;
881 Result := pthread_attr_init (Attributes'Access);
882 pragma Assert (Result = 0 or else Result = ENOMEM);
884 if Result /= 0 then
885 Succeeded := False;
886 return;
887 end if;
889 Result := pthread_attr_setdetachstate
890 (Attributes'Access, PTHREAD_CREATE_DETACHED);
891 pragma Assert (Result = 0);
893 Result := pthread_attr_setstacksize
894 (Attributes'Access, Adjusted_Stack_Size);
895 pragma Assert (Result = 0);
897 if T.Common.Task_Info /= Default_Scope then
899 -- We are assuming that Scope_Type has the same values than the
900 -- corresponding C macros
902 Result := pthread_attr_setscope
903 (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
904 pragma Assert (Result = 0);
905 end if;
907 -- Since the initial signal mask of a thread is inherited from the
908 -- creator, and the Environment task has all its signals masked, we
909 -- do not need to manipulate caller's signal mask at this point.
910 -- All tasks in RTS will have All_Tasks_Mask initially.
912 Result := pthread_create
913 (T.Common.LL.Thread'Access,
914 Attributes'Access,
915 Thread_Body_Access (Wrapper),
916 To_Address (T));
917 pragma Assert (Result = 0 or else Result = EAGAIN);
919 Succeeded := Result = 0;
921 Result := pthread_attr_destroy (Attributes'Access);
922 pragma Assert (Result = 0);
924 Set_Priority (T, Priority);
925 end Create_Task;
927 ------------------
928 -- Finalize_TCB --
929 ------------------
931 procedure Finalize_TCB (T : Task_ID) is
932 Result : Interfaces.C.int;
933 Tmp : Task_ID := T;
935 procedure Free is new
936 Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID);
938 begin
939 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
940 pragma Assert (Result = 0);
942 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
943 pragma Assert (Result = 0);
945 if T.Known_Tasks_Index /= -1 then
946 Known_Tasks (T.Known_Tasks_Index) := null;
947 end if;
949 Free (Tmp);
950 end Finalize_TCB;
952 ---------------
953 -- Exit_Task --
954 ---------------
956 procedure Exit_Task is
957 begin
958 pthread_exit (System.Null_Address);
959 end Exit_Task;
961 ----------------
962 -- Abort_Task --
963 ----------------
965 procedure Abort_Task (T : Task_ID) is
966 Result : Interfaces.C.int;
968 begin
969 Result := pthread_kill (T.Common.LL.Thread,
970 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
971 pragma Assert (Result = 0);
972 end Abort_Task;
974 ----------------
975 -- Check_Exit --
976 ----------------
978 -- Dummy versions. The only currently working versions is for solaris
979 -- (native).
981 function Check_Exit (Self_ID : ST.Task_ID) return Boolean is
982 begin
983 return True;
984 end Check_Exit;
986 --------------------
987 -- Check_No_Locks --
988 --------------------
990 function Check_No_Locks (Self_ID : ST.Task_ID) return Boolean is
991 begin
992 return True;
993 end Check_No_Locks;
995 ----------------------
996 -- Environment_Task --
997 ----------------------
999 function Environment_Task return Task_ID is
1000 begin
1001 return Environment_Task_ID;
1002 end Environment_Task;
1004 -------------------------
1005 -- Lock_All_Tasks_List --
1006 -------------------------
1008 procedure Lock_All_Tasks_List is
1009 begin
1010 Write_Lock (All_Tasks_L'Access);
1011 end Lock_All_Tasks_List;
1013 ---------------------------
1014 -- Unlock_All_Tasks_List --
1015 ---------------------------
1017 procedure Unlock_All_Tasks_List is
1018 begin
1019 Unlock (All_Tasks_L'Access);
1020 end Unlock_All_Tasks_List;
1022 ------------------
1023 -- Suspend_Task --
1024 ------------------
1026 function Suspend_Task
1027 (T : ST.Task_ID;
1028 Thread_Self : Thread_Id) return Boolean is
1029 begin
1030 return False;
1031 end Suspend_Task;
1033 -----------------
1034 -- Resume_Task --
1035 -----------------
1037 function Resume_Task
1038 (T : ST.Task_ID;
1039 Thread_Self : Thread_Id) return Boolean is
1040 begin
1041 return False;
1042 end Resume_Task;
1044 ----------------
1045 -- Initialize --
1046 ----------------
1048 procedure Initialize (Environment_Task : Task_ID) is
1049 act : aliased struct_sigaction;
1050 old_act : aliased struct_sigaction;
1051 Tmp_Set : aliased sigset_t;
1052 Result : Interfaces.C.int;
1054 begin
1055 Environment_Task_ID := Environment_Task;
1057 -- Initialize the lock used to synchronize chain of all ATCBs.
1059 Initialize_Lock (All_Tasks_L'Access, All_Tasks_Level);
1061 Specific.Initialize (Environment_Task);
1063 Enter_Task (Environment_Task);
1065 -- Install the abort-signal handler
1067 act.sa_flags := 0;
1068 act.sa_handler := Abort_Handler'Address;
1070 Result := sigemptyset (Tmp_Set'Access);
1071 pragma Assert (Result = 0);
1072 act.sa_mask := Tmp_Set;
1074 Result :=
1075 sigaction (
1076 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1077 act'Unchecked_Access,
1078 old_act'Unchecked_Access);
1080 pragma Assert (Result = 0);
1081 end Initialize;
1083 begin
1084 declare
1085 Result : Interfaces.C.int;
1087 begin
1088 -- Mask Environment task for all signals. The original mask of the
1089 -- Environment task will be recovered by Interrupt_Server task
1090 -- during the elaboration of s-interr.adb.
1092 System.Interrupt_Management.Operations.Set_Interrupt_Mask
1093 (System.Interrupt_Management.Operations.All_Tasks_Mask'Access);
1095 -- Prepare the set of signals that should unblocked in all tasks
1097 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1098 pragma Assert (Result = 0);
1100 for J in Interrupt_Management.Interrupt_ID loop
1101 if System.Interrupt_Management.Keep_Unmasked (J) then
1102 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1103 pragma Assert (Result = 0);
1104 end if;
1105 end loop;
1106 end;
1108 end System.Task_Primitives.Operations;