* config/darwin-c.c: Remove c-tree.h include.
[official-gcc.git] / gcc / tree-ssa-dce.c
blob59ccc408e9cfa13fecc39e260f8c4019282a24f5
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
51 #include "tree.h"
52 #include "diagnostic.h"
53 #include "tree-pretty-print.h"
54 #include "gimple-pretty-print.h"
55 #include "basic-block.h"
56 #include "tree-flow.h"
57 #include "gimple.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "flags.h"
62 #include "cfgloop.h"
63 #include "tree-scalar-evolution.h"
65 static struct stmt_stats
67 int total;
68 int total_phis;
69 int removed;
70 int removed_phis;
71 } stats;
73 #define STMT_NECESSARY GF_PLF_1
75 static VEC(gimple,heap) *worklist;
77 /* Vector indicating an SSA name has already been processed and marked
78 as necessary. */
79 static sbitmap processed;
81 /* Vector indicating that last_stmt if a basic block has already been
82 marked as necessary. */
83 static sbitmap last_stmt_necessary;
85 /* Vector indicating that BB contains statements that are live. */
86 static sbitmap bb_contains_live_stmts;
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
94 on the Ith edge. */
95 static bitmap *control_dependence_map;
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents;
101 /* TRUE if this pass alters the CFG (by removing control statements).
102 FALSE otherwise.
104 If this pass alters the CFG, then it will arrange for the dominators
105 to be recomputed. */
106 static bool cfg_altered;
108 /* Execute code that follows the macro for each edge (given number
109 EDGE_NUMBER within the CODE) for which the block with index N is
110 control dependent. */
111 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
112 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
113 (EDGE_NUMBER), (BI))
116 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
117 static inline void
118 set_control_dependence_map_bit (basic_block bb, int edge_index)
120 if (bb == ENTRY_BLOCK_PTR)
121 return;
122 gcc_assert (bb != EXIT_BLOCK_PTR);
123 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
126 /* Clear all control dependences for block BB. */
127 static inline void
128 clear_control_dependence_bitmap (basic_block bb)
130 bitmap_clear (control_dependence_map[bb->index]);
134 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
135 This function is necessary because some blocks have negative numbers. */
137 static inline basic_block
138 find_pdom (basic_block block)
140 gcc_assert (block != ENTRY_BLOCK_PTR);
142 if (block == EXIT_BLOCK_PTR)
143 return EXIT_BLOCK_PTR;
144 else
146 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
147 if (! bb)
148 return EXIT_BLOCK_PTR;
149 return bb;
154 /* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
157 static void
158 find_control_dependence (struct edge_list *el, int edge_index)
160 basic_block current_block;
161 basic_block ending_block;
163 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
165 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
166 ending_block = single_succ (ENTRY_BLOCK_PTR);
167 else
168 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
170 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
171 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
172 current_block = find_pdom (current_block))
174 edge e = INDEX_EDGE (el, edge_index);
176 /* For abnormal edges, we don't make current_block control
177 dependent because instructions that throw are always necessary
178 anyway. */
179 if (e->flags & EDGE_ABNORMAL)
180 continue;
182 set_control_dependence_map_bit (current_block, edge_index);
187 /* Record all blocks' control dependences on all edges in the edge
188 list EL, ala Morgan, Section 3.6. */
190 static void
191 find_all_control_dependences (struct edge_list *el)
193 int i;
195 for (i = 0; i < NUM_EDGES (el); ++i)
196 find_control_dependence (el, i);
199 /* If STMT is not already marked necessary, mark it, and add it to the
200 worklist if ADD_TO_WORKLIST is true. */
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
204 gcc_assert (stmt);
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
209 if (dump_file && (dump_flags & TDF_DETAILS))
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
224 /* Mark the statement defining operand OP as necessary. */
226 static inline void
227 mark_operand_necessary (tree op)
229 gimple stmt;
230 int ver;
232 gcc_assert (op);
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
242 SET_BIT (processed, ver);
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
250 if (dump_file && (dump_flags & TDF_DETAILS))
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
274 tree lhs = NULL_TREE;
276 /* With non-call exceptions, we have to assume that all statements could
277 throw. If a statement may throw, it is inherently necessary. */
278 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
280 mark_stmt_necessary (stmt, true);
281 return;
284 /* Statements that are implicitly live. Most function calls, asm
285 and return statements are required. Labels and GIMPLE_BIND nodes
286 are kept because they are control flow, and we have no way of
287 knowing whether they can be removed. DCE can eliminate all the
288 other statements in a block, and CFG can then remove the block
289 and labels. */
290 switch (gimple_code (stmt))
292 case GIMPLE_PREDICT:
293 case GIMPLE_LABEL:
294 mark_stmt_necessary (stmt, false);
295 return;
297 case GIMPLE_ASM:
298 case GIMPLE_RESX:
299 case GIMPLE_RETURN:
300 mark_stmt_necessary (stmt, true);
301 return;
303 case GIMPLE_CALL:
304 /* Most, but not all function calls are required. Function calls that
305 produce no result and have no side effects (i.e. const pure
306 functions) are unnecessary. */
307 if (gimple_has_side_effects (stmt))
309 mark_stmt_necessary (stmt, true);
310 return;
312 if (!gimple_call_lhs (stmt))
313 return;
314 lhs = gimple_call_lhs (stmt);
315 /* Fall through */
317 case GIMPLE_ASSIGN:
318 if (!lhs)
319 lhs = gimple_assign_lhs (stmt);
320 break;
322 case GIMPLE_DEBUG:
323 /* Debug temps without a value are not useful. ??? If we could
324 easily locate the debug temp bind stmt for a use thereof,
325 would could refrain from marking all debug temps here, and
326 mark them only if they're used. */
327 if (gimple_debug_bind_has_value_p (stmt)
328 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
329 mark_stmt_necessary (stmt, false);
330 return;
332 case GIMPLE_GOTO:
333 gcc_assert (!simple_goto_p (stmt));
334 mark_stmt_necessary (stmt, true);
335 return;
337 case GIMPLE_COND:
338 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
339 /* Fall through. */
341 case GIMPLE_SWITCH:
342 if (! aggressive)
343 mark_stmt_necessary (stmt, true);
344 break;
346 default:
347 break;
350 /* If the statement has volatile operands, it needs to be preserved.
351 Same for statements that can alter control flow in unpredictable
352 ways. */
353 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
355 mark_stmt_necessary (stmt, true);
356 return;
359 if (is_hidden_global_store (stmt))
361 mark_stmt_necessary (stmt, true);
362 return;
365 return;
369 /* Make corresponding control dependent edges necessary. We only
370 have to do this once for each basic block, so we clear the bitmap
371 after we're done.
373 When IGNORE_SELF it true, ignore BB from the list of control dependences. */
374 static void
375 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el, bool ignore_self)
377 bitmap_iterator bi;
378 unsigned edge_number;
379 bool skipped = false;
381 gcc_assert (bb != EXIT_BLOCK_PTR);
383 if (bb == ENTRY_BLOCK_PTR)
384 return;
386 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
388 gimple stmt;
389 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
391 if (ignore_self && cd_bb == bb)
393 skipped = true;
394 continue;
397 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
398 continue;
399 SET_BIT (last_stmt_necessary, cd_bb->index);
400 SET_BIT (bb_contains_live_stmts, cd_bb->index);
402 stmt = last_stmt (cd_bb);
403 if (stmt && is_ctrl_stmt (stmt))
404 mark_stmt_necessary (stmt, true);
406 if (!skipped)
407 SET_BIT (visited_control_parents, bb->index);
411 /* Find obviously necessary statements. These are things like most function
412 calls, and stores to file level variables.
414 If EL is NULL, control statements are conservatively marked as
415 necessary. Otherwise it contains the list of edges used by control
416 dependence analysis. */
418 static void
419 find_obviously_necessary_stmts (struct edge_list *el)
421 basic_block bb;
422 gimple_stmt_iterator gsi;
423 edge e;
424 gimple phi, stmt;
426 FOR_EACH_BB (bb)
428 /* PHI nodes are never inherently necessary. */
429 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
431 phi = gsi_stmt (gsi);
432 gimple_set_plf (phi, STMT_NECESSARY, false);
435 /* Check all statements in the block. */
436 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
438 stmt = gsi_stmt (gsi);
439 gimple_set_plf (stmt, STMT_NECESSARY, false);
440 mark_stmt_if_obviously_necessary (stmt, el != NULL);
444 /* Pure and const functions are finite and thus have no infinite loops in
445 them. */
446 if ((TREE_READONLY (current_function_decl)
447 || DECL_PURE_P (current_function_decl))
448 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
449 return;
451 /* Prevent the empty possibly infinite loops from being removed. */
452 if (el)
454 loop_iterator li;
455 struct loop *loop;
456 scev_initialize ();
457 if (mark_irreducible_loops ())
458 FOR_EACH_BB (bb)
460 edge_iterator ei;
461 FOR_EACH_EDGE (e, ei, bb->succs)
462 if ((e->flags & EDGE_DFS_BACK)
463 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
465 if (dump_file)
466 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
467 e->src->index, e->dest->index);
468 mark_control_dependent_edges_necessary (e->dest, el, false);
472 FOR_EACH_LOOP (li, loop, 0)
473 if (!finite_loop_p (loop))
475 if (dump_file)
476 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
477 mark_control_dependent_edges_necessary (loop->latch, el, false);
479 scev_finalize ();
484 /* Return true if REF is based on an aliased base, otherwise false. */
486 static bool
487 ref_may_be_aliased (tree ref)
489 while (handled_component_p (ref))
490 ref = TREE_OPERAND (ref, 0);
491 return !(DECL_P (ref)
492 && !may_be_aliased (ref));
495 static bitmap visited = NULL;
496 static unsigned int longest_chain = 0;
497 static unsigned int total_chain = 0;
498 static unsigned int nr_walks = 0;
499 static bool chain_ovfl = false;
501 /* Worker for the walker that marks reaching definitions of REF,
502 which is based on a non-aliased decl, necessary. It returns
503 true whenever the defining statement of the current VDEF is
504 a kill for REF, as no dominating may-defs are necessary for REF
505 anymore. DATA points to the basic-block that contains the
506 stmt that refers to REF. */
508 static bool
509 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
511 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
513 /* All stmts we visit are necessary. */
514 mark_operand_necessary (vdef);
516 /* If the stmt lhs kills ref, then we can stop walking. */
517 if (gimple_has_lhs (def_stmt)
518 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
520 tree base, lhs = gimple_get_lhs (def_stmt);
521 HOST_WIDE_INT size, offset, max_size;
522 ao_ref_base (ref);
523 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
524 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
525 so base == refd->base does not always hold. */
526 if (base == ref->base)
528 /* For a must-alias check we need to be able to constrain
529 the accesses properly. */
530 if (size != -1 && size == max_size
531 && ref->max_size != -1)
533 if (offset <= ref->offset
534 && offset + size >= ref->offset + ref->max_size)
535 return true;
537 /* Or they need to be exactly the same. */
538 else if (ref->ref
539 /* Make sure there is no induction variable involved
540 in the references (gcc.c-torture/execute/pr42142.c).
541 The simplest way is to check if the kill dominates
542 the use. */
543 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
544 gimple_bb (def_stmt))
545 && operand_equal_p (ref->ref, lhs, 0))
546 return true;
550 /* Otherwise keep walking. */
551 return false;
554 static void
555 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
557 unsigned int chain;
558 ao_ref refd;
559 gcc_assert (!chain_ovfl);
560 ao_ref_init (&refd, ref);
561 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
562 mark_aliased_reaching_defs_necessary_1,
563 gimple_bb (stmt), NULL);
564 if (chain > longest_chain)
565 longest_chain = chain;
566 total_chain += chain;
567 nr_walks++;
570 /* Worker for the walker that marks reaching definitions of REF, which
571 is not based on a non-aliased decl. For simplicity we need to end
572 up marking all may-defs necessary that are not based on a non-aliased
573 decl. The only job of this walker is to skip may-defs based on
574 a non-aliased decl. */
576 static bool
577 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
578 tree vdef, void *data ATTRIBUTE_UNUSED)
580 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
582 /* We have to skip already visited (and thus necessary) statements
583 to make the chaining work after we dropped back to simple mode. */
584 if (chain_ovfl
585 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
587 gcc_assert (gimple_nop_p (def_stmt)
588 || gimple_plf (def_stmt, STMT_NECESSARY));
589 return false;
592 /* We want to skip stores to non-aliased variables. */
593 if (!chain_ovfl
594 && gimple_assign_single_p (def_stmt))
596 tree lhs = gimple_assign_lhs (def_stmt);
597 if (!ref_may_be_aliased (lhs))
598 return false;
601 mark_operand_necessary (vdef);
603 return false;
606 static void
607 mark_all_reaching_defs_necessary (gimple stmt)
609 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
610 mark_all_reaching_defs_necessary_1, NULL, &visited);
613 /* Return true for PHI nodes with one or identical arguments
614 can be removed. */
615 static bool
616 degenerate_phi_p (gimple phi)
618 unsigned int i;
619 tree op = gimple_phi_arg_def (phi, 0);
620 for (i = 1; i < gimple_phi_num_args (phi); i++)
621 if (gimple_phi_arg_def (phi, i) != op)
622 return false;
623 return true;
626 /* Propagate necessity using the operands of necessary statements.
627 Process the uses on each statement in the worklist, and add all
628 feeding statements which contribute to the calculation of this
629 value to the worklist.
631 In conservative mode, EL is NULL. */
633 static void
634 propagate_necessity (struct edge_list *el)
636 gimple stmt;
637 bool aggressive = (el ? true : false);
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 fprintf (dump_file, "\nProcessing worklist:\n");
642 while (VEC_length (gimple, worklist) > 0)
644 /* Take STMT from worklist. */
645 stmt = VEC_pop (gimple, worklist);
647 if (dump_file && (dump_flags & TDF_DETAILS))
649 fprintf (dump_file, "processing: ");
650 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
651 fprintf (dump_file, "\n");
654 if (aggressive)
656 /* Mark the last statements of the basic blocks that the block
657 containing STMT is control dependent on, but only if we haven't
658 already done so. */
659 basic_block bb = gimple_bb (stmt);
660 if (bb != ENTRY_BLOCK_PTR
661 && ! TEST_BIT (visited_control_parents, bb->index))
662 mark_control_dependent_edges_necessary (bb, el, false);
665 if (gimple_code (stmt) == GIMPLE_PHI
666 /* We do not process virtual PHI nodes nor do we track their
667 necessity. */
668 && is_gimple_reg (gimple_phi_result (stmt)))
670 /* PHI nodes are somewhat special in that each PHI alternative has
671 data and control dependencies. All the statements feeding the
672 PHI node's arguments are always necessary. In aggressive mode,
673 we also consider the control dependent edges leading to the
674 predecessor block associated with each PHI alternative as
675 necessary. */
676 size_t k;
678 for (k = 0; k < gimple_phi_num_args (stmt); k++)
680 tree arg = PHI_ARG_DEF (stmt, k);
681 if (TREE_CODE (arg) == SSA_NAME)
682 mark_operand_necessary (arg);
685 /* For PHI operands it matters from where the control flow arrives
686 to the BB. Consider the following example:
688 a=exp1;
689 b=exp2;
690 if (test)
692 else
694 c=PHI(a,b)
696 We need to mark control dependence of the empty basic blocks, since they
697 contains computation of PHI operands.
699 Doing so is too restrictive in the case the predecestor block is in
700 the loop. Consider:
702 if (b)
704 int i;
705 for (i = 0; i<1000; ++i)
707 j = 0;
709 return j;
711 There is PHI for J in the BB containing return statement.
712 In this case the control dependence of predecestor block (that is
713 within the empty loop) also contains the block determining number
714 of iterations of the block that would prevent removing of empty
715 loop in this case.
717 This scenario can be avoided by splitting critical edges.
718 To save the critical edge splitting pass we identify how the control
719 dependence would look like if the edge was split.
721 Consider the modified CFG created from current CFG by splitting
722 edge B->C. In the postdominance tree of modified CFG, C' is
723 always child of C. There are two cases how chlids of C' can look
724 like:
726 1) C' is leaf
728 In this case the only basic block C' is control dependent on is B.
730 2) C' has single child that is B
732 In this case control dependence of C' is same as control
733 dependence of B in original CFG except for block B itself.
734 (since C' postdominate B in modified CFG)
736 Now how to decide what case happens? There are two basic options:
738 a) C postdominate B. Then C immediately postdominate B and
739 case 2 happens iff there is no other way from B to C except
740 the edge B->C.
742 There is other way from B to C iff there is succesor of B that
743 is not postdominated by B. Testing this condition is somewhat
744 expensive, because we need to iterate all succesors of B.
745 We are safe to assume that this does not happen: we will mark B
746 as needed when processing the other path from B to C that is
747 conrol dependent on B and marking control dependencies of B
748 itself is harmless because they will be processed anyway after
749 processing control statement in B.
751 b) C does not postdominate B. Always case 1 happens since there is
752 path from C to exit that does not go through B and thus also C'. */
754 if (aggressive && !degenerate_phi_p (stmt))
756 for (k = 0; k < gimple_phi_num_args (stmt); k++)
758 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
760 if (gimple_bb (stmt)
761 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
763 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
765 gimple stmt2;
766 SET_BIT (last_stmt_necessary, arg_bb->index);
767 SET_BIT (bb_contains_live_stmts, arg_bb->index);
769 stmt2 = last_stmt (arg_bb);
770 if (stmt2 && is_ctrl_stmt (stmt2))
771 mark_stmt_necessary (stmt2, true);
774 else if (arg_bb != ENTRY_BLOCK_PTR
775 && ! TEST_BIT (visited_control_parents, arg_bb->index))
776 mark_control_dependent_edges_necessary (arg_bb, el, true);
780 else
782 /* Propagate through the operands. Examine all the USE, VUSE and
783 VDEF operands in this statement. Mark all the statements
784 which feed this statement's uses as necessary. */
785 ssa_op_iter iter;
786 tree use;
788 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
789 mark_operand_necessary (use);
791 use = gimple_vuse (stmt);
792 if (!use)
793 continue;
795 /* If we dropped to simple mode make all immediately
796 reachable definitions necessary. */
797 if (chain_ovfl)
799 mark_all_reaching_defs_necessary (stmt);
800 continue;
803 /* For statements that may load from memory (have a VUSE) we
804 have to mark all reaching (may-)definitions as necessary.
805 We partition this task into two cases:
806 1) explicit loads based on decls that are not aliased
807 2) implicit loads (like calls) and explicit loads not
808 based on decls that are not aliased (like indirect
809 references or loads from globals)
810 For 1) we mark all reaching may-defs as necessary, stopping
811 at dominating kills. For 2) we want to mark all dominating
812 references necessary, but non-aliased ones which we handle
813 in 1). By keeping a global visited bitmap for references
814 we walk for 2) we avoid quadratic behavior for those. */
816 if (is_gimple_call (stmt))
818 tree callee = gimple_call_fndecl (stmt);
819 unsigned i;
821 /* Calls to functions that are merely acting as barriers
822 or that only store to memory do not make any previous
823 stores necessary. */
824 if (callee != NULL_TREE
825 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
826 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
827 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
828 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
829 continue;
831 /* Calls implicitly load from memory, their arguments
832 in addition may explicitly perform memory loads. */
833 mark_all_reaching_defs_necessary (stmt);
834 for (i = 0; i < gimple_call_num_args (stmt); ++i)
836 tree arg = gimple_call_arg (stmt, i);
837 if (TREE_CODE (arg) == SSA_NAME
838 || is_gimple_min_invariant (arg))
839 continue;
840 if (!ref_may_be_aliased (arg))
841 mark_aliased_reaching_defs_necessary (stmt, arg);
844 else if (gimple_assign_single_p (stmt))
846 tree rhs;
847 bool rhs_aliased = false;
848 /* If this is a load mark things necessary. */
849 rhs = gimple_assign_rhs1 (stmt);
850 if (TREE_CODE (rhs) != SSA_NAME
851 && !is_gimple_min_invariant (rhs))
853 if (!ref_may_be_aliased (rhs))
854 mark_aliased_reaching_defs_necessary (stmt, rhs);
855 else
856 rhs_aliased = true;
858 if (rhs_aliased)
859 mark_all_reaching_defs_necessary (stmt);
861 else if (gimple_code (stmt) == GIMPLE_RETURN)
863 tree rhs = gimple_return_retval (stmt);
864 /* A return statement may perform a load. */
865 if (TREE_CODE (rhs) != SSA_NAME
866 && !is_gimple_min_invariant (rhs))
868 if (!ref_may_be_aliased (rhs))
869 mark_aliased_reaching_defs_necessary (stmt, rhs);
870 else
871 mark_all_reaching_defs_necessary (stmt);
874 else if (gimple_code (stmt) == GIMPLE_ASM)
876 unsigned i;
877 mark_all_reaching_defs_necessary (stmt);
878 /* Inputs may perform loads. */
879 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
881 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
882 if (TREE_CODE (op) != SSA_NAME
883 && !is_gimple_min_invariant (op)
884 && !ref_may_be_aliased (op))
885 mark_aliased_reaching_defs_necessary (stmt, op);
888 else
889 gcc_unreachable ();
891 /* If we over-used our alias oracle budget drop to simple
892 mode. The cost metric allows quadratic behavior
893 (number of uses times number of may-defs queries) up to
894 a constant maximal number of queries and after that falls back to
895 super-linear complexity. */
896 if (/* Constant but quadratic for small functions. */
897 total_chain > 128 * 128
898 /* Linear in the number of may-defs. */
899 && total_chain > 32 * longest_chain
900 /* Linear in the number of uses. */
901 && total_chain > nr_walks * 32)
903 chain_ovfl = true;
904 if (visited)
905 bitmap_clear (visited);
911 /* Replace all uses of result of PHI by underlying variable and mark it
912 for renaming. */
914 void
915 mark_virtual_phi_result_for_renaming (gimple phi)
917 bool used = false;
918 imm_use_iterator iter;
919 use_operand_p use_p;
920 gimple stmt;
921 tree result_ssa, result_var;
923 if (dump_file && (dump_flags & TDF_DETAILS))
925 fprintf (dump_file, "Marking result for renaming : ");
926 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
927 fprintf (dump_file, "\n");
930 result_ssa = gimple_phi_result (phi);
931 result_var = SSA_NAME_VAR (result_ssa);
932 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
934 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
935 SET_USE (use_p, result_var);
936 update_stmt (stmt);
937 used = true;
939 if (used)
940 mark_sym_for_renaming (result_var);
943 /* Remove dead PHI nodes from block BB. */
945 static bool
946 remove_dead_phis (basic_block bb)
948 bool something_changed = false;
949 gimple_seq phis;
950 gimple phi;
951 gimple_stmt_iterator gsi;
952 phis = phi_nodes (bb);
954 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
956 stats.total_phis++;
957 phi = gsi_stmt (gsi);
959 /* We do not track necessity of virtual PHI nodes. Instead do
960 very simple dead PHI removal here. */
961 if (!is_gimple_reg (gimple_phi_result (phi)))
963 /* Virtual PHI nodes with one or identical arguments
964 can be removed. */
965 if (degenerate_phi_p (phi))
967 tree vdef = gimple_phi_result (phi);
968 tree vuse = gimple_phi_arg_def (phi, 0);
970 use_operand_p use_p;
971 imm_use_iterator iter;
972 gimple use_stmt;
973 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
974 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
975 SET_USE (use_p, vuse);
976 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
977 && TREE_CODE (vuse) == SSA_NAME)
978 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
980 else
981 gimple_set_plf (phi, STMT_NECESSARY, true);
984 if (!gimple_plf (phi, STMT_NECESSARY))
986 something_changed = true;
987 if (dump_file && (dump_flags & TDF_DETAILS))
989 fprintf (dump_file, "Deleting : ");
990 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
991 fprintf (dump_file, "\n");
994 remove_phi_node (&gsi, true);
995 stats.removed_phis++;
996 continue;
999 gsi_next (&gsi);
1001 return something_changed;
1004 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1006 static edge
1007 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1009 gimple_stmt_iterator gsi;
1010 edge e2 = NULL;
1011 edge_iterator ei;
1013 if (dump_file && (dump_flags & TDF_DETAILS))
1014 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1015 e->dest->index, post_dom_bb->index);
1017 e2 = redirect_edge_and_branch (e, post_dom_bb);
1018 cfg_altered = true;
1020 /* If edge was already around, no updating is neccesary. */
1021 if (e2 != e)
1022 return e2;
1024 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1026 /* We are sure that for every live PHI we are seeing control dependent BB.
1027 This means that we can pick any edge to duplicate PHI args from. */
1028 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1029 if (e2 != e)
1030 break;
1031 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1033 gimple phi = gsi_stmt (gsi);
1034 tree op;
1035 source_location locus;
1037 /* PHIs for virtuals have no control dependency relation on them.
1038 We are lost here and must force renaming of the symbol. */
1039 if (!is_gimple_reg (gimple_phi_result (phi)))
1041 mark_virtual_phi_result_for_renaming (phi);
1042 remove_phi_node (&gsi, true);
1043 continue;
1046 /* Dead PHI do not imply control dependency. */
1047 if (!gimple_plf (phi, STMT_NECESSARY))
1049 gsi_next (&gsi);
1050 continue;
1053 op = gimple_phi_arg_def (phi, e2->dest_idx);
1054 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1055 add_phi_arg (phi, op, e, locus);
1056 /* The resulting PHI if not dead can only be degenerate. */
1057 gcc_assert (degenerate_phi_p (phi));
1058 gsi_next (&gsi);
1061 return e;
1064 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1065 containing I so that we don't have to look it up. */
1067 static void
1068 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1070 gimple stmt = gsi_stmt (*i);
1072 if (dump_file && (dump_flags & TDF_DETAILS))
1074 fprintf (dump_file, "Deleting : ");
1075 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1076 fprintf (dump_file, "\n");
1079 stats.removed++;
1081 /* If we have determined that a conditional branch statement contributes
1082 nothing to the program, then we not only remove it, but we also change
1083 the flow graph so that the current block will simply fall-thru to its
1084 immediate post-dominator. The blocks we are circumventing will be
1085 removed by cleanup_tree_cfg if this change in the flow graph makes them
1086 unreachable. */
1087 if (is_ctrl_stmt (stmt))
1089 basic_block post_dom_bb;
1090 edge e, e2;
1091 edge_iterator ei;
1093 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1095 e = find_edge (bb, post_dom_bb);
1097 /* If edge is already there, try to use it. This avoids need to update
1098 PHI nodes. Also watch for cases where post dominator does not exists
1099 or is exit block. These can happen for infinite loops as we create
1100 fake edges in the dominator tree. */
1101 if (e)
1103 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1104 e = EDGE_SUCC (bb, 0);
1105 else
1106 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1107 gcc_assert (e);
1108 e->probability = REG_BR_PROB_BASE;
1109 e->count = bb->count;
1111 /* The edge is no longer associated with a conditional, so it does
1112 not have TRUE/FALSE flags. */
1113 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1115 /* The lone outgoing edge from BB will be a fallthru edge. */
1116 e->flags |= EDGE_FALLTHRU;
1118 /* Remove the remaining outgoing edges. */
1119 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1120 if (e != e2)
1122 cfg_altered = true;
1123 remove_edge (e2);
1125 else
1126 ei_next (&ei);
1129 unlink_stmt_vdef (stmt);
1130 gsi_remove (i, true);
1131 release_defs (stmt);
1134 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1135 contributes nothing to the program, and can be deleted. */
1137 static bool
1138 eliminate_unnecessary_stmts (void)
1140 bool something_changed = false;
1141 basic_block bb;
1142 gimple_stmt_iterator gsi, psi;
1143 gimple stmt;
1144 tree call;
1145 VEC (basic_block, heap) *h;
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1150 clear_special_calls ();
1152 /* Walking basic blocks and statements in reverse order avoids
1153 releasing SSA names before any other DEFs that refer to them are
1154 released. This helps avoid loss of debug information, as we get
1155 a chance to propagate all RHSs of removed SSAs into debug uses,
1156 rather than only the latest ones. E.g., consider:
1158 x_3 = y_1 + z_2;
1159 a_5 = x_3 - b_4;
1160 # DEBUG a => a_5
1162 If we were to release x_3 before a_5, when we reached a_5 and
1163 tried to substitute it into the debug stmt, we'd see x_3 there,
1164 but x_3's DEF, type, etc would have already been disconnected.
1165 By going backwards, the debug stmt first changes to:
1167 # DEBUG a => x_3 - b_4
1169 and then to:
1171 # DEBUG a => y_1 + z_2 - b_4
1173 as desired. */
1174 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1175 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1177 while (VEC_length (basic_block, h))
1179 bb = VEC_pop (basic_block, h);
1181 /* Remove dead statements. */
1182 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1184 stmt = gsi_stmt (gsi);
1186 psi = gsi;
1187 gsi_prev (&psi);
1189 stats.total++;
1191 /* If GSI is not necessary then remove it. */
1192 if (!gimple_plf (stmt, STMT_NECESSARY))
1194 if (!is_gimple_debug (stmt))
1195 something_changed = true;
1196 remove_dead_stmt (&gsi, bb);
1198 else if (is_gimple_call (stmt))
1200 call = gimple_call_fndecl (stmt);
1201 if (call)
1203 tree name;
1205 /* When LHS of var = call (); is dead, simplify it into
1206 call (); saving one operand. */
1207 name = gimple_call_lhs (stmt);
1208 if (name && TREE_CODE (name) == SSA_NAME
1209 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1211 something_changed = true;
1212 if (dump_file && (dump_flags & TDF_DETAILS))
1214 fprintf (dump_file, "Deleting LHS of call: ");
1215 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1216 fprintf (dump_file, "\n");
1219 gimple_call_set_lhs (stmt, NULL_TREE);
1220 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1221 update_stmt (stmt);
1222 release_ssa_name (name);
1224 notice_special_calls (stmt);
1230 VEC_free (basic_block, heap, h);
1232 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1233 rendered some PHI nodes unreachable while they are still in use.
1234 Mark them for renaming. */
1235 if (cfg_altered)
1237 basic_block prev_bb;
1239 find_unreachable_blocks ();
1241 /* Delete all unreachable basic blocks in reverse dominator order. */
1242 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1244 prev_bb = bb->prev_bb;
1246 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1247 || !(bb->flags & BB_REACHABLE))
1249 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1250 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1252 bool found = false;
1253 imm_use_iterator iter;
1255 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1257 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1258 continue;
1259 if (gimple_code (stmt) == GIMPLE_PHI
1260 || gimple_plf (stmt, STMT_NECESSARY))
1262 found = true;
1263 BREAK_FROM_IMM_USE_STMT (iter);
1266 if (found)
1267 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1270 if (!(bb->flags & BB_REACHABLE))
1272 /* Speed up the removal of blocks that don't
1273 dominate others. Walking backwards, this should
1274 be the common case. ??? Do we need to recompute
1275 dominators because of cfg_altered? */
1276 if (!MAY_HAVE_DEBUG_STMTS
1277 || !first_dom_son (CDI_DOMINATORS, bb))
1278 delete_basic_block (bb);
1279 else
1281 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1283 while (VEC_length (basic_block, h))
1285 bb = VEC_pop (basic_block, h);
1286 prev_bb = bb->prev_bb;
1287 /* Rearrangements to the CFG may have failed
1288 to update the dominators tree, so that
1289 formerly-dominated blocks are now
1290 otherwise reachable. */
1291 if (!!(bb->flags & BB_REACHABLE))
1292 continue;
1293 delete_basic_block (bb);
1296 VEC_free (basic_block, heap, h);
1302 FOR_EACH_BB (bb)
1304 /* Remove dead PHI nodes. */
1305 something_changed |= remove_dead_phis (bb);
1308 return something_changed;
1312 /* Print out removed statement statistics. */
1314 static void
1315 print_stats (void)
1317 float percg;
1319 percg = ((float) stats.removed / (float) stats.total) * 100;
1320 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1321 stats.removed, stats.total, (int) percg);
1323 if (stats.total_phis == 0)
1324 percg = 0;
1325 else
1326 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1328 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1329 stats.removed_phis, stats.total_phis, (int) percg);
1332 /* Initialization for this pass. Set up the used data structures. */
1334 static void
1335 tree_dce_init (bool aggressive)
1337 memset ((void *) &stats, 0, sizeof (stats));
1339 if (aggressive)
1341 int i;
1343 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1344 for (i = 0; i < last_basic_block; ++i)
1345 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1347 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1348 sbitmap_zero (last_stmt_necessary);
1349 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1350 sbitmap_zero (bb_contains_live_stmts);
1353 processed = sbitmap_alloc (num_ssa_names + 1);
1354 sbitmap_zero (processed);
1356 worklist = VEC_alloc (gimple, heap, 64);
1357 cfg_altered = false;
1360 /* Cleanup after this pass. */
1362 static void
1363 tree_dce_done (bool aggressive)
1365 if (aggressive)
1367 int i;
1369 for (i = 0; i < last_basic_block; ++i)
1370 BITMAP_FREE (control_dependence_map[i]);
1371 free (control_dependence_map);
1373 sbitmap_free (visited_control_parents);
1374 sbitmap_free (last_stmt_necessary);
1375 sbitmap_free (bb_contains_live_stmts);
1376 bb_contains_live_stmts = NULL;
1379 sbitmap_free (processed);
1381 VEC_free (gimple, heap, worklist);
1384 /* Main routine to eliminate dead code.
1386 AGGRESSIVE controls the aggressiveness of the algorithm.
1387 In conservative mode, we ignore control dependence and simply declare
1388 all but the most trivially dead branches necessary. This mode is fast.
1389 In aggressive mode, control dependences are taken into account, which
1390 results in more dead code elimination, but at the cost of some time.
1392 FIXME: Aggressive mode before PRE doesn't work currently because
1393 the dominance info is not invalidated after DCE1. This is
1394 not an issue right now because we only run aggressive DCE
1395 as the last tree SSA pass, but keep this in mind when you
1396 start experimenting with pass ordering. */
1398 static unsigned int
1399 perform_tree_ssa_dce (bool aggressive)
1401 struct edge_list *el = NULL;
1402 bool something_changed = 0;
1404 /* Preheaders are needed for SCEV to work.
1405 Simple lateches and recorded exits improve chances that loop will
1406 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1407 if (aggressive)
1408 loop_optimizer_init (LOOPS_NORMAL
1409 | LOOPS_HAVE_RECORDED_EXITS);
1411 tree_dce_init (aggressive);
1413 if (aggressive)
1415 /* Compute control dependence. */
1416 timevar_push (TV_CONTROL_DEPENDENCES);
1417 calculate_dominance_info (CDI_POST_DOMINATORS);
1418 el = create_edge_list ();
1419 find_all_control_dependences (el);
1420 timevar_pop (TV_CONTROL_DEPENDENCES);
1422 visited_control_parents = sbitmap_alloc (last_basic_block);
1423 sbitmap_zero (visited_control_parents);
1425 mark_dfs_back_edges ();
1428 find_obviously_necessary_stmts (el);
1430 if (aggressive)
1431 loop_optimizer_finalize ();
1433 longest_chain = 0;
1434 total_chain = 0;
1435 nr_walks = 0;
1436 chain_ovfl = false;
1437 visited = BITMAP_ALLOC (NULL);
1438 propagate_necessity (el);
1439 BITMAP_FREE (visited);
1441 something_changed |= eliminate_unnecessary_stmts ();
1442 something_changed |= cfg_altered;
1444 /* We do not update postdominators, so free them unconditionally. */
1445 free_dominance_info (CDI_POST_DOMINATORS);
1447 /* If we removed paths in the CFG, then we need to update
1448 dominators as well. I haven't investigated the possibility
1449 of incrementally updating dominators. */
1450 if (cfg_altered)
1451 free_dominance_info (CDI_DOMINATORS);
1453 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1454 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1456 /* Debugging dumps. */
1457 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1458 print_stats ();
1460 tree_dce_done (aggressive);
1462 free_edge_list (el);
1464 if (something_changed)
1465 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1466 | TODO_remove_unused_locals);
1467 else
1468 return 0;
1471 /* Pass entry points. */
1472 static unsigned int
1473 tree_ssa_dce (void)
1475 return perform_tree_ssa_dce (/*aggressive=*/false);
1478 static unsigned int
1479 tree_ssa_dce_loop (void)
1481 unsigned int todo;
1482 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1483 if (todo)
1485 free_numbers_of_iterations_estimates ();
1486 scev_reset ();
1488 return todo;
1491 static unsigned int
1492 tree_ssa_cd_dce (void)
1494 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1497 static bool
1498 gate_dce (void)
1500 return flag_tree_dce != 0;
1503 struct gimple_opt_pass pass_dce =
1506 GIMPLE_PASS,
1507 "dce", /* name */
1508 gate_dce, /* gate */
1509 tree_ssa_dce, /* execute */
1510 NULL, /* sub */
1511 NULL, /* next */
1512 0, /* static_pass_number */
1513 TV_TREE_DCE, /* tv_id */
1514 PROP_cfg | PROP_ssa, /* properties_required */
1515 0, /* properties_provided */
1516 0, /* properties_destroyed */
1517 0, /* todo_flags_start */
1518 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1522 struct gimple_opt_pass pass_dce_loop =
1525 GIMPLE_PASS,
1526 "dceloop", /* name */
1527 gate_dce, /* gate */
1528 tree_ssa_dce_loop, /* execute */
1529 NULL, /* sub */
1530 NULL, /* next */
1531 0, /* static_pass_number */
1532 TV_TREE_DCE, /* tv_id */
1533 PROP_cfg | PROP_ssa, /* properties_required */
1534 0, /* properties_provided */
1535 0, /* properties_destroyed */
1536 0, /* todo_flags_start */
1537 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1541 struct gimple_opt_pass pass_cd_dce =
1544 GIMPLE_PASS,
1545 "cddce", /* name */
1546 gate_dce, /* gate */
1547 tree_ssa_cd_dce, /* execute */
1548 NULL, /* sub */
1549 NULL, /* next */
1550 0, /* static_pass_number */
1551 TV_TREE_CD_DCE, /* tv_id */
1552 PROP_cfg | PROP_ssa, /* properties_required */
1553 0, /* properties_provided */
1554 0, /* properties_destroyed */
1555 0, /* todo_flags_start */
1556 TODO_dump_func | TODO_verify_ssa
1557 | TODO_verify_flow /* todo_flags_finish */