2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
5 and Sebastian Pop <sebastian.pop@amd.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This pass performs loop distribution: for example, the loop
40 This pass uses an RDG, Reduced Dependence Graph built on top of the
41 data dependence relations. The RDG is then topologically sorted to
42 obtain a map of information producers/consumers based on which it
43 generates the new loops. */
47 #include "coretypes.h"
50 #include "basic-block.h"
51 #include "diagnostic.h"
52 #include "tree-flow.h"
53 #include "tree-dump.h"
58 #include "tree-chrec.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "tree-vectorizer.h"
66 /* If bit I is not set, it means that this node represents an
67 operation that has already been performed, and that should not be
68 performed again. This is the subgraph of remaining important
69 computations that is passed to the DFS algorithm for avoiding to
70 include several times the same stores in different loops. */
71 static bitmap remaining_stmts
;
73 /* A node of the RDG is marked in this bitmap when it has as a
74 predecessor a node that writes to memory. */
75 static bitmap upstream_mem_writes
;
77 /* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
81 update_phis_for_loop_copy (struct loop
*orig_loop
, struct loop
*new_loop
)
84 gimple_stmt_iterator si_new
, si_orig
;
85 edge orig_loop_latch
= loop_latch_edge (orig_loop
);
86 edge orig_entry_e
= loop_preheader_edge (orig_loop
);
87 edge new_loop_entry_e
= loop_preheader_edge (new_loop
);
89 /* Scan the phis in the headers of the old and new loops
90 (they are organized in exactly the same order). */
91 for (si_new
= gsi_start_phis (new_loop
->header
),
92 si_orig
= gsi_start_phis (orig_loop
->header
);
93 !gsi_end_p (si_new
) && !gsi_end_p (si_orig
);
94 gsi_next (&si_new
), gsi_next (&si_orig
))
97 source_location locus
;
98 gimple phi_new
= gsi_stmt (si_new
);
99 gimple phi_orig
= gsi_stmt (si_orig
);
101 /* Add the first phi argument for the phi in NEW_LOOP (the one
102 associated with the entry of NEW_LOOP) */
103 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, orig_entry_e
);
104 locus
= gimple_phi_arg_location_from_edge (phi_orig
, orig_entry_e
);
105 add_phi_arg (phi_new
, def
, new_loop_entry_e
, locus
);
107 /* Add the second phi argument for the phi in NEW_LOOP (the one
108 associated with the latch of NEW_LOOP) */
109 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, orig_loop_latch
);
110 locus
= gimple_phi_arg_location_from_edge (phi_orig
, orig_loop_latch
);
112 if (TREE_CODE (def
) == SSA_NAME
)
114 new_ssa_name
= get_current_def (def
);
117 /* This only happens if there are no definitions inside the
118 loop. Use the the invariant in the new loop as is. */
122 /* Could be an integer. */
125 add_phi_arg (phi_new
, new_ssa_name
, loop_latch_edge (new_loop
), locus
);
129 /* Return a copy of LOOP placed before LOOP. */
132 copy_loop_before (struct loop
*loop
)
135 edge preheader
= loop_preheader_edge (loop
);
137 if (!single_exit (loop
))
140 initialize_original_copy_tables ();
141 res
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, preheader
);
142 free_original_copy_tables ();
147 update_phis_for_loop_copy (loop
, res
);
148 rename_variables_in_loop (res
);
153 /* Creates an empty basic block after LOOP. */
156 create_bb_after_loop (struct loop
*loop
)
158 edge exit
= single_exit (loop
);
166 /* Generate code for PARTITION from the code in LOOP. The loop is
167 copied when COPY_P is true. All the statements not flagged in the
168 PARTITION bitmap are removed from the loop or from its copy. The
169 statements are indexed in sequence inside a basic block, and the
170 basic blocks of a loop are taken in dom order. Returns true when
171 the code gen succeeded. */
174 generate_loops_for_partition (struct loop
*loop
, bitmap partition
, bool copy_p
)
177 gimple_stmt_iterator bsi
;
182 loop
= copy_loop_before (loop
);
183 create_preheader (loop
, CP_SIMPLE_PREHEADERS
);
184 create_bb_after_loop (loop
);
190 /* Remove stmts not in the PARTITION bitmap. The order in which we
191 visit the phi nodes and the statements is exactly as in
193 bbs
= get_loop_body_in_dom_order (loop
);
195 for (x
= 0, i
= 0; i
< loop
->num_nodes
; i
++)
197 basic_block bb
= bbs
[i
];
199 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
);)
200 if (!bitmap_bit_p (partition
, x
++))
201 remove_phi_node (&bsi
, true);
205 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
);)
206 if (gimple_code (gsi_stmt (bsi
)) != GIMPLE_LABEL
207 && !bitmap_bit_p (partition
, x
++))
208 gsi_remove (&bsi
, false);
212 mark_virtual_ops_in_bb (bb
);
219 /* Build the size argument for a memset call. */
222 build_size_arg_loc (location_t loc
, tree nb_iter
, tree op
,
223 gimple_seq
*stmt_list
)
226 tree x
= size_binop_loc (loc
, MULT_EXPR
,
227 fold_convert_loc (loc
, sizetype
, nb_iter
),
228 TYPE_SIZE_UNIT (TREE_TYPE (op
)));
229 x
= force_gimple_operand (x
, &stmts
, true, NULL
);
230 gimple_seq_add_seq (stmt_list
, stmts
);
235 /* Generate a call to memset. Return true when the operation succeeded. */
238 generate_memset_zero (gimple stmt
, tree op0
, tree nb_iter
,
239 gimple_stmt_iterator bsi
)
241 tree addr_base
, nb_bytes
;
243 gimple_seq stmt_list
= NULL
, stmts
;
246 gimple_stmt_iterator i
;
247 struct data_reference
*dr
= XCNEW (struct data_reference
);
248 location_t loc
= gimple_location (stmt
);
252 if (!dr_analyze_innermost (dr
))
255 /* Test for a positive stride, iterating over every element. */
256 if (integer_zerop (size_binop (MINUS_EXPR
,
257 fold_convert (sizetype
, DR_STEP (dr
)),
258 TYPE_SIZE_UNIT (TREE_TYPE (op0
)))))
260 addr_base
= fold_convert_loc (loc
, sizetype
,
261 size_binop_loc (loc
, PLUS_EXPR
,
264 addr_base
= fold_build2_loc (loc
, POINTER_PLUS_EXPR
,
265 TREE_TYPE (DR_BASE_ADDRESS (dr
)),
266 DR_BASE_ADDRESS (dr
), addr_base
);
268 nb_bytes
= build_size_arg_loc (loc
, nb_iter
, op0
, &stmt_list
);
271 /* Test for a negative stride, iterating over every element. */
272 else if (integer_zerop (size_binop (PLUS_EXPR
,
273 TYPE_SIZE_UNIT (TREE_TYPE (op0
)),
274 fold_convert (sizetype
, DR_STEP (dr
)))))
276 nb_bytes
= build_size_arg_loc (loc
, nb_iter
, op0
, &stmt_list
);
278 addr_base
= size_binop_loc (loc
, PLUS_EXPR
, DR_OFFSET (dr
), DR_INIT (dr
));
279 addr_base
= fold_convert_loc (loc
, sizetype
, addr_base
);
280 addr_base
= size_binop_loc (loc
, MINUS_EXPR
, addr_base
,
281 fold_convert_loc (loc
, sizetype
, nb_bytes
));
282 addr_base
= size_binop_loc (loc
, PLUS_EXPR
, addr_base
,
283 TYPE_SIZE_UNIT (TREE_TYPE (op0
)));
284 addr_base
= fold_build2_loc (loc
, POINTER_PLUS_EXPR
,
285 TREE_TYPE (DR_BASE_ADDRESS (dr
)),
286 DR_BASE_ADDRESS (dr
), addr_base
);
291 mem
= force_gimple_operand (addr_base
, &stmts
, true, NULL
);
292 gimple_seq_add_seq (&stmt_list
, stmts
);
294 fn
= build_fold_addr_expr (implicit_built_in_decls
[BUILT_IN_MEMSET
]);
295 fn_call
= gimple_build_call (fn
, 3, mem
, integer_zero_node
, nb_bytes
);
296 gimple_seq_add_stmt (&stmt_list
, fn_call
);
298 for (i
= gsi_start (stmt_list
); !gsi_end_p (i
); gsi_next (&i
))
300 gimple s
= gsi_stmt (i
);
301 update_stmt_if_modified (s
);
304 gsi_insert_seq_after (&bsi
, stmt_list
, GSI_CONTINUE_LINKING
);
307 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
308 fprintf (dump_file
, "generated memset zero\n");
315 /* Propagate phis in BB b to their uses and remove them. */
318 prop_phis (basic_block b
)
320 gimple_stmt_iterator psi
;
321 gimple_seq phis
= phi_nodes (b
);
323 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
325 gimple phi
= gsi_stmt (psi
);
326 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
328 gcc_assert (gimple_phi_num_args (phi
) == 1);
330 if (!is_gimple_reg (def
))
332 imm_use_iterator iter
;
336 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
337 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
338 SET_USE (use_p
, use
);
341 replace_uses_by (def
, use
);
343 remove_phi_node (&psi
, true);
347 /* Tries to generate a builtin function for the instructions of LOOP
348 pointed to by the bits set in PARTITION. Returns true when the
349 operation succeeded. */
352 generate_builtin (struct loop
*loop
, bitmap partition
, bool copy_p
)
359 gimple_stmt_iterator bsi
;
360 tree nb_iter
= number_of_exit_cond_executions (loop
);
362 if (!nb_iter
|| nb_iter
== chrec_dont_know
)
365 bbs
= get_loop_body_in_dom_order (loop
);
367 for (i
= 0; i
< loop
->num_nodes
; i
++)
369 basic_block bb
= bbs
[i
];
371 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
374 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
376 gimple stmt
= gsi_stmt (bsi
);
378 if (bitmap_bit_p (partition
, x
++)
379 && is_gimple_assign (stmt
)
380 && !is_gimple_reg (gimple_assign_lhs (stmt
)))
382 /* Don't generate the builtins when there are more than
388 if (bb
== loop
->latch
)
389 nb_iter
= number_of_latch_executions (loop
);
397 op0
= gimple_assign_lhs (write
);
398 op1
= gimple_assign_rhs1 (write
);
400 if (!(TREE_CODE (op0
) == ARRAY_REF
401 || TREE_CODE (op0
) == INDIRECT_REF
))
404 /* The new statements will be placed before LOOP. */
405 bsi
= gsi_last_bb (loop_preheader_edge (loop
)->src
);
407 if (gimple_assign_rhs_code (write
) == INTEGER_CST
408 && (integer_zerop (op1
) || real_zerop (op1
)))
409 res
= generate_memset_zero (write
, op0
, nb_iter
, bsi
);
411 /* If this is the last partition for which we generate code, we have
412 to destroy the loop. */
415 unsigned nbbs
= loop
->num_nodes
;
416 basic_block src
= loop_preheader_edge (loop
)->src
;
417 basic_block dest
= single_exit (loop
)->dest
;
419 make_edge (src
, dest
, EDGE_FALLTHRU
);
420 cancel_loop_tree (loop
);
422 for (i
= 0; i
< nbbs
; i
++)
423 delete_basic_block (bbs
[i
]);
425 set_immediate_dominator (CDI_DOMINATORS
, dest
,
426 recompute_dominator (CDI_DOMINATORS
, dest
));
434 /* Generates code for PARTITION. For simple loops, this function can
435 generate a built-in. */
438 generate_code_for_partition (struct loop
*loop
, bitmap partition
, bool copy_p
)
440 if (generate_builtin (loop
, partition
, copy_p
))
443 return generate_loops_for_partition (loop
, partition
, copy_p
);
447 /* Returns true if the node V of RDG cannot be recomputed. */
450 rdg_cannot_recompute_vertex_p (struct graph
*rdg
, int v
)
452 if (RDG_MEM_WRITE_STMT (rdg
, v
))
458 /* Returns true when the vertex V has already been generated in the
459 current partition (V is in PROCESSED), or when V belongs to another
460 partition and cannot be recomputed (V is not in REMAINING_STMTS). */
463 already_processed_vertex_p (bitmap processed
, int v
)
465 return (bitmap_bit_p (processed
, v
)
466 || !bitmap_bit_p (remaining_stmts
, v
));
469 /* Returns NULL when there is no anti-dependence among the successors
470 of vertex V, otherwise returns the edge with the anti-dep. */
472 static struct graph_edge
*
473 has_anti_dependence (struct vertex
*v
)
475 struct graph_edge
*e
;
478 for (e
= v
->succ
; e
; e
= e
->succ_next
)
479 if (RDGE_TYPE (e
) == anti_dd
)
485 /* Returns true when V has an anti-dependence edge among its successors. */
488 predecessor_has_mem_write (struct graph
*rdg
, struct vertex
*v
)
490 struct graph_edge
*e
;
493 for (e
= v
->pred
; e
; e
= e
->pred_next
)
494 if (bitmap_bit_p (upstream_mem_writes
, e
->src
)
495 /* Don't consider flow channels: a write to memory followed
496 by a read from memory. These channels allow the split of
497 the RDG in different partitions. */
498 && !RDG_MEM_WRITE_STMT (rdg
, e
->src
))
504 /* Initializes the upstream_mem_writes bitmap following the
505 information from RDG. */
508 mark_nodes_having_upstream_mem_writes (struct graph
*rdg
)
511 bitmap seen
= BITMAP_ALLOC (NULL
);
513 for (v
= rdg
->n_vertices
- 1; v
>= 0; v
--)
514 if (!bitmap_bit_p (seen
, v
))
517 VEC (int, heap
) *nodes
= VEC_alloc (int, heap
, 3);
519 graphds_dfs (rdg
, &v
, 1, &nodes
, false, NULL
);
521 for (i
= 0; VEC_iterate (int, nodes
, i
, x
); i
++)
523 if (bitmap_bit_p (seen
, x
))
526 bitmap_set_bit (seen
, x
);
528 if (RDG_MEM_WRITE_STMT (rdg
, x
)
529 || predecessor_has_mem_write (rdg
, &(rdg
->vertices
[x
]))
530 /* In anti dependences the read should occur before
531 the write, this is why both the read and the write
532 should be placed in the same partition. */
533 || has_anti_dependence (&(rdg
->vertices
[x
])))
535 bitmap_set_bit (upstream_mem_writes
, x
);
539 VEC_free (int, heap
, nodes
);
543 /* Returns true when vertex u has a memory write node as a predecessor
547 has_upstream_mem_writes (int u
)
549 return bitmap_bit_p (upstream_mem_writes
, u
);
552 static void rdg_flag_vertex_and_dependent (struct graph
*, int, bitmap
, bitmap
,
555 /* Flag all the uses of U. */
558 rdg_flag_all_uses (struct graph
*rdg
, int u
, bitmap partition
, bitmap loops
,
559 bitmap processed
, bool *part_has_writes
)
561 struct graph_edge
*e
;
563 for (e
= rdg
->vertices
[u
].succ
; e
; e
= e
->succ_next
)
564 if (!bitmap_bit_p (processed
, e
->dest
))
566 rdg_flag_vertex_and_dependent (rdg
, e
->dest
, partition
, loops
,
567 processed
, part_has_writes
);
568 rdg_flag_all_uses (rdg
, e
->dest
, partition
, loops
, processed
,
573 /* Flag the uses of U stopping following the information from
574 upstream_mem_writes. */
577 rdg_flag_uses (struct graph
*rdg
, int u
, bitmap partition
, bitmap loops
,
578 bitmap processed
, bool *part_has_writes
)
581 struct vertex
*x
= &(rdg
->vertices
[u
]);
582 gimple stmt
= RDGV_STMT (x
);
583 struct graph_edge
*anti_dep
= has_anti_dependence (x
);
585 /* Keep in the same partition the destination of an antidependence,
586 because this is a store to the exact same location. Putting this
587 in another partition is bad for cache locality. */
590 int v
= anti_dep
->dest
;
592 if (!already_processed_vertex_p (processed
, v
))
593 rdg_flag_vertex_and_dependent (rdg
, v
, partition
, loops
,
594 processed
, part_has_writes
);
597 if (gimple_code (stmt
) != GIMPLE_PHI
)
599 if ((use_p
= gimple_vuse_op (stmt
)) != NULL_USE_OPERAND_P
)
601 tree use
= USE_FROM_PTR (use_p
);
603 if (TREE_CODE (use
) == SSA_NAME
)
605 gimple def_stmt
= SSA_NAME_DEF_STMT (use
);
606 int v
= rdg_vertex_for_stmt (rdg
, def_stmt
);
609 && !already_processed_vertex_p (processed
, v
))
610 rdg_flag_vertex_and_dependent (rdg
, v
, partition
, loops
,
611 processed
, part_has_writes
);
616 if (is_gimple_assign (stmt
) && has_upstream_mem_writes (u
))
618 tree op0
= gimple_assign_lhs (stmt
);
620 /* Scalar channels don't have enough space for transmitting data
621 between tasks, unless we add more storage by privatizing. */
622 if (is_gimple_reg (op0
))
625 imm_use_iterator iter
;
627 FOR_EACH_IMM_USE_FAST (use_p
, iter
, op0
)
629 int v
= rdg_vertex_for_stmt (rdg
, USE_STMT (use_p
));
631 if (!already_processed_vertex_p (processed
, v
))
632 rdg_flag_vertex_and_dependent (rdg
, v
, partition
, loops
,
633 processed
, part_has_writes
);
639 /* Flag V from RDG as part of PARTITION, and also flag its loop number
643 rdg_flag_vertex (struct graph
*rdg
, int v
, bitmap partition
, bitmap loops
,
644 bool *part_has_writes
)
648 if (bitmap_bit_p (partition
, v
))
651 loop
= loop_containing_stmt (RDG_STMT (rdg
, v
));
652 bitmap_set_bit (loops
, loop
->num
);
653 bitmap_set_bit (partition
, v
);
655 if (rdg_cannot_recompute_vertex_p (rdg
, v
))
657 *part_has_writes
= true;
658 bitmap_clear_bit (remaining_stmts
, v
);
662 /* Flag in the bitmap PARTITION the vertex V and all its predecessors.
663 Also flag their loop number in LOOPS. */
666 rdg_flag_vertex_and_dependent (struct graph
*rdg
, int v
, bitmap partition
,
667 bitmap loops
, bitmap processed
,
668 bool *part_has_writes
)
671 VEC (int, heap
) *nodes
= VEC_alloc (int, heap
, 3);
674 bitmap_set_bit (processed
, v
);
675 rdg_flag_uses (rdg
, v
, partition
, loops
, processed
, part_has_writes
);
676 graphds_dfs (rdg
, &v
, 1, &nodes
, false, remaining_stmts
);
677 rdg_flag_vertex (rdg
, v
, partition
, loops
, part_has_writes
);
679 for (i
= 0; VEC_iterate (int, nodes
, i
, x
); i
++)
680 if (!already_processed_vertex_p (processed
, x
))
681 rdg_flag_vertex_and_dependent (rdg
, x
, partition
, loops
, processed
,
684 VEC_free (int, heap
, nodes
);
687 /* Initialize CONDS with all the condition statements from the basic
691 collect_condition_stmts (struct loop
*loop
, VEC (gimple
, heap
) **conds
)
695 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
697 for (i
= 0; VEC_iterate (edge
, exits
, i
, e
); i
++)
699 gimple cond
= last_stmt (e
->src
);
702 VEC_safe_push (gimple
, heap
, *conds
, cond
);
705 VEC_free (edge
, heap
, exits
);
708 /* Add to PARTITION all the exit condition statements for LOOPS
709 together with all their dependent statements determined from
713 rdg_flag_loop_exits (struct graph
*rdg
, bitmap loops
, bitmap partition
,
714 bitmap processed
, bool *part_has_writes
)
718 VEC (gimple
, heap
) *conds
= VEC_alloc (gimple
, heap
, 3);
720 EXECUTE_IF_SET_IN_BITMAP (loops
, 0, i
, bi
)
721 collect_condition_stmts (get_loop (i
), &conds
);
723 while (!VEC_empty (gimple
, conds
))
725 gimple cond
= VEC_pop (gimple
, conds
);
726 int v
= rdg_vertex_for_stmt (rdg
, cond
);
727 bitmap new_loops
= BITMAP_ALLOC (NULL
);
729 if (!already_processed_vertex_p (processed
, v
))
730 rdg_flag_vertex_and_dependent (rdg
, v
, partition
, new_loops
, processed
,
733 EXECUTE_IF_SET_IN_BITMAP (new_loops
, 0, i
, bi
)
734 if (!bitmap_bit_p (loops
, i
))
736 bitmap_set_bit (loops
, i
);
737 collect_condition_stmts (get_loop (i
), &conds
);
740 BITMAP_FREE (new_loops
);
744 /* Flag all the nodes of RDG containing memory accesses that could
745 potentially belong to arrays already accessed in the current
749 rdg_flag_similar_memory_accesses (struct graph
*rdg
, bitmap partition
,
750 bitmap loops
, bitmap processed
,
751 VEC (int, heap
) **other_stores
)
757 struct graph_edge
*e
;
759 EXECUTE_IF_SET_IN_BITMAP (partition
, 0, i
, ii
)
760 if (RDG_MEM_WRITE_STMT (rdg
, i
)
761 || RDG_MEM_READS_STMT (rdg
, i
))
763 for (j
= 0; j
< rdg
->n_vertices
; j
++)
764 if (!bitmap_bit_p (processed
, j
)
765 && (RDG_MEM_WRITE_STMT (rdg
, j
)
766 || RDG_MEM_READS_STMT (rdg
, j
))
767 && rdg_has_similar_memory_accesses (rdg
, i
, j
))
769 /* Flag first the node J itself, and all the nodes that
770 are needed to compute J. */
771 rdg_flag_vertex_and_dependent (rdg
, j
, partition
, loops
,
774 /* When J is a read, we want to coalesce in the same
775 PARTITION all the nodes that are using J: this is
776 needed for better cache locality. */
777 rdg_flag_all_uses (rdg
, j
, partition
, loops
, processed
, &foo
);
779 /* Remove from OTHER_STORES the vertex that we flagged. */
780 if (RDG_MEM_WRITE_STMT (rdg
, j
))
781 for (k
= 0; VEC_iterate (int, *other_stores
, k
, kk
); k
++)
784 VEC_unordered_remove (int, *other_stores
, k
);
789 /* If the node I has two uses, then keep these together in the
791 for (n
= 0, e
= rdg
->vertices
[i
].succ
; e
; e
= e
->succ_next
, n
++);
794 rdg_flag_all_uses (rdg
, i
, partition
, loops
, processed
, &foo
);
798 /* Returns a bitmap in which all the statements needed for computing
799 the strongly connected component C of the RDG are flagged, also
800 including the loop exit conditions. */
803 build_rdg_partition_for_component (struct graph
*rdg
, rdgc c
,
804 bool *part_has_writes
,
805 VEC (int, heap
) **other_stores
)
808 bitmap partition
= BITMAP_ALLOC (NULL
);
809 bitmap loops
= BITMAP_ALLOC (NULL
);
810 bitmap processed
= BITMAP_ALLOC (NULL
);
812 for (i
= 0; VEC_iterate (int, c
->vertices
, i
, v
); i
++)
813 if (!already_processed_vertex_p (processed
, v
))
814 rdg_flag_vertex_and_dependent (rdg
, v
, partition
, loops
, processed
,
817 /* Also iterate on the array of stores not in the starting vertices,
818 and determine those vertices that have some memory affinity with
819 the current nodes in the component: these are stores to the same
820 arrays, i.e. we're taking care of cache locality. */
821 rdg_flag_similar_memory_accesses (rdg
, partition
, loops
, processed
,
824 rdg_flag_loop_exits (rdg
, loops
, partition
, processed
, part_has_writes
);
826 BITMAP_FREE (processed
);
831 /* Free memory for COMPONENTS. */
834 free_rdg_components (VEC (rdgc
, heap
) *components
)
839 for (i
= 0; VEC_iterate (rdgc
, components
, i
, x
); i
++)
841 VEC_free (int, heap
, x
->vertices
);
846 /* Build the COMPONENTS vector with the strongly connected components
847 of RDG in which the STARTING_VERTICES occur. */
850 rdg_build_components (struct graph
*rdg
, VEC (int, heap
) *starting_vertices
,
851 VEC (rdgc
, heap
) **components
)
854 bitmap saved_components
= BITMAP_ALLOC (NULL
);
855 int n_components
= graphds_scc (rdg
, NULL
);
856 VEC (int, heap
) **all_components
= XNEWVEC (VEC (int, heap
) *, n_components
);
858 for (i
= 0; i
< n_components
; i
++)
859 all_components
[i
] = VEC_alloc (int, heap
, 3);
861 for (i
= 0; i
< rdg
->n_vertices
; i
++)
862 VEC_safe_push (int, heap
, all_components
[rdg
->vertices
[i
].component
], i
);
864 for (i
= 0; VEC_iterate (int, starting_vertices
, i
, v
); i
++)
866 int c
= rdg
->vertices
[v
].component
;
868 if (!bitmap_bit_p (saved_components
, c
))
870 rdgc x
= XCNEW (struct rdg_component
);
872 x
->vertices
= all_components
[c
];
874 VEC_safe_push (rdgc
, heap
, *components
, x
);
875 bitmap_set_bit (saved_components
, c
);
879 for (i
= 0; i
< n_components
; i
++)
880 if (!bitmap_bit_p (saved_components
, i
))
881 VEC_free (int, heap
, all_components
[i
]);
883 free (all_components
);
884 BITMAP_FREE (saved_components
);
887 /* Aggregate several components into a useful partition that is
888 registered in the PARTITIONS vector. Partitions will be
889 distributed in different loops. */
892 rdg_build_partitions (struct graph
*rdg
, VEC (rdgc
, heap
) *components
,
893 VEC (int, heap
) **other_stores
,
894 VEC (bitmap
, heap
) **partitions
, bitmap processed
)
898 bitmap partition
= BITMAP_ALLOC (NULL
);
900 for (i
= 0; VEC_iterate (rdgc
, components
, i
, x
); i
++)
903 bool part_has_writes
= false;
904 int v
= VEC_index (int, x
->vertices
, 0);
906 if (bitmap_bit_p (processed
, v
))
909 np
= build_rdg_partition_for_component (rdg
, x
, &part_has_writes
,
911 bitmap_ior_into (partition
, np
);
912 bitmap_ior_into (processed
, np
);
917 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
919 fprintf (dump_file
, "ldist useful partition:\n");
920 dump_bitmap (dump_file
, partition
);
923 VEC_safe_push (bitmap
, heap
, *partitions
, partition
);
924 partition
= BITMAP_ALLOC (NULL
);
928 /* Add the nodes from the RDG that were not marked as processed, and
929 that are used outside the current loop. These are scalar
930 computations that are not yet part of previous partitions. */
931 for (i
= 0; i
< rdg
->n_vertices
; i
++)
932 if (!bitmap_bit_p (processed
, i
)
933 && rdg_defs_used_in_other_loops_p (rdg
, i
))
934 VEC_safe_push (int, heap
, *other_stores
, i
);
936 /* If there are still statements left in the OTHER_STORES array,
937 create other components and partitions with these stores and
938 their dependences. */
939 if (VEC_length (int, *other_stores
) > 0)
941 VEC (rdgc
, heap
) *comps
= VEC_alloc (rdgc
, heap
, 3);
942 VEC (int, heap
) *foo
= VEC_alloc (int, heap
, 3);
944 rdg_build_components (rdg
, *other_stores
, &comps
);
945 rdg_build_partitions (rdg
, comps
, &foo
, partitions
, processed
);
947 VEC_free (int, heap
, foo
);
948 free_rdg_components (comps
);
951 /* If there is something left in the last partition, save it. */
952 if (bitmap_count_bits (partition
) > 0)
953 VEC_safe_push (bitmap
, heap
, *partitions
, partition
);
955 BITMAP_FREE (partition
);
958 /* Dump to FILE the PARTITIONS. */
961 dump_rdg_partitions (FILE *file
, VEC (bitmap
, heap
) *partitions
)
966 for (i
= 0; VEC_iterate (bitmap
, partitions
, i
, partition
); i
++)
967 debug_bitmap_file (file
, partition
);
970 /* Debug PARTITIONS. */
971 extern void debug_rdg_partitions (VEC (bitmap
, heap
) *);
974 debug_rdg_partitions (VEC (bitmap
, heap
) *partitions
)
976 dump_rdg_partitions (stderr
, partitions
);
979 /* Returns the number of read and write operations in the RDG. */
982 number_of_rw_in_rdg (struct graph
*rdg
)
986 for (i
= 0; i
< rdg
->n_vertices
; i
++)
988 if (RDG_MEM_WRITE_STMT (rdg
, i
))
991 if (RDG_MEM_READS_STMT (rdg
, i
))
998 /* Returns the number of read and write operations in a PARTITION of
1002 number_of_rw_in_partition (struct graph
*rdg
, bitmap partition
)
1008 EXECUTE_IF_SET_IN_BITMAP (partition
, 0, i
, ii
)
1010 if (RDG_MEM_WRITE_STMT (rdg
, i
))
1013 if (RDG_MEM_READS_STMT (rdg
, i
))
1020 /* Returns true when one of the PARTITIONS contains all the read or
1021 write operations of RDG. */
1024 partition_contains_all_rw (struct graph
*rdg
, VEC (bitmap
, heap
) *partitions
)
1028 int nrw
= number_of_rw_in_rdg (rdg
);
1030 for (i
= 0; VEC_iterate (bitmap
, partitions
, i
, partition
); i
++)
1031 if (nrw
== number_of_rw_in_partition (rdg
, partition
))
1037 /* Generate code from STARTING_VERTICES in RDG. Returns the number of
1038 distributed loops. */
1041 ldist_gen (struct loop
*loop
, struct graph
*rdg
,
1042 VEC (int, heap
) *starting_vertices
)
1045 VEC (rdgc
, heap
) *components
= VEC_alloc (rdgc
, heap
, 3);
1046 VEC (bitmap
, heap
) *partitions
= VEC_alloc (bitmap
, heap
, 3);
1047 VEC (int, heap
) *other_stores
= VEC_alloc (int, heap
, 3);
1048 bitmap partition
, processed
= BITMAP_ALLOC (NULL
);
1050 remaining_stmts
= BITMAP_ALLOC (NULL
);
1051 upstream_mem_writes
= BITMAP_ALLOC (NULL
);
1053 for (i
= 0; i
< rdg
->n_vertices
; i
++)
1055 bitmap_set_bit (remaining_stmts
, i
);
1057 /* Save in OTHER_STORES all the memory writes that are not in
1058 STARTING_VERTICES. */
1059 if (RDG_MEM_WRITE_STMT (rdg
, i
))
1065 for (j
= 0; VEC_iterate (int, starting_vertices
, j
, v
); j
++)
1073 VEC_safe_push (int, heap
, other_stores
, i
);
1077 mark_nodes_having_upstream_mem_writes (rdg
);
1078 rdg_build_components (rdg
, starting_vertices
, &components
);
1079 rdg_build_partitions (rdg
, components
, &other_stores
, &partitions
,
1081 BITMAP_FREE (processed
);
1082 nbp
= VEC_length (bitmap
, partitions
);
1085 || partition_contains_all_rw (rdg
, partitions
))
1088 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1089 dump_rdg_partitions (dump_file
, partitions
);
1091 for (i
= 0; VEC_iterate (bitmap
, partitions
, i
, partition
); i
++)
1092 if (!generate_code_for_partition (loop
, partition
, i
< nbp
- 1))
1095 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1096 update_ssa (TODO_update_ssa_only_virtuals
| TODO_update_ssa
);
1100 BITMAP_FREE (remaining_stmts
);
1101 BITMAP_FREE (upstream_mem_writes
);
1103 for (i
= 0; VEC_iterate (bitmap
, partitions
, i
, partition
); i
++)
1104 BITMAP_FREE (partition
);
1106 VEC_free (int, heap
, other_stores
);
1107 VEC_free (bitmap
, heap
, partitions
);
1108 free_rdg_components (components
);
1112 /* Distributes the code from LOOP in such a way that producer
1113 statements are placed before consumer statements. When STMTS is
1114 NULL, performs the maximal distribution, if STMTS is not NULL,
1115 tries to separate only these statements from the LOOP's body.
1116 Returns the number of distributed loops. */
1119 distribute_loop (struct loop
*loop
, VEC (gimple
, heap
) *stmts
)
1125 VEC (int, heap
) *vertices
;
1127 if (loop
->num_nodes
> 2)
1129 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1131 "FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
1137 rdg
= build_rdg (loop
);
1141 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1143 "FIXME: Loop %d not distributed: failed to build the RDG.\n",
1149 vertices
= VEC_alloc (int, heap
, 3);
1151 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1152 dump_rdg (dump_file
, rdg
);
1154 for (i
= 0; VEC_iterate (gimple
, stmts
, i
, s
); i
++)
1156 int v
= rdg_vertex_for_stmt (rdg
, s
);
1160 VEC_safe_push (int, heap
, vertices
, v
);
1162 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1164 "ldist asked to generate code for vertex %d\n", v
);
1168 res
= ldist_gen (loop
, rdg
, vertices
);
1169 VEC_free (int, heap
, vertices
);
1175 /* Distribute all loops in the current function. */
1178 tree_loop_distribution (void)
1182 int nb_generated_loops
= 0;
1184 FOR_EACH_LOOP (li
, loop
, 0)
1186 VEC (gimple
, heap
) *work_list
= VEC_alloc (gimple
, heap
, 3);
1188 /* With the following working list, we're asking distribute_loop
1189 to separate the stores of the loop: when dependences allow,
1190 it will end on having one store per loop. */
1191 stores_from_loop (loop
, &work_list
);
1193 /* A simple heuristic for cache locality is to not split stores
1194 to the same array. Without this call, an unrolled loop would
1195 be split into as many loops as unroll factor, each loop
1196 storing in the same array. */
1197 remove_similar_memory_refs (&work_list
);
1199 nb_generated_loops
= distribute_loop (loop
, work_list
);
1201 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1203 if (nb_generated_loops
> 1)
1204 fprintf (dump_file
, "Loop %d distributed: split to %d loops.\n",
1205 loop
->num
, nb_generated_loops
);
1207 fprintf (dump_file
, "Loop %d is the same.\n", loop
->num
);
1210 verify_loop_structure ();
1212 VEC_free (gimple
, heap
, work_list
);
1219 gate_tree_loop_distribution (void)
1221 return flag_tree_loop_distribution
!= 0;
1224 struct gimple_opt_pass pass_loop_distribution
=
1229 gate_tree_loop_distribution
, /* gate */
1230 tree_loop_distribution
, /* execute */
1233 0, /* static_pass_number */
1234 TV_TREE_LOOP_DISTRIBUTION
, /* tv_id */
1235 PROP_cfg
| PROP_ssa
, /* properties_required */
1236 0, /* properties_provided */
1237 0, /* properties_destroyed */
1238 0, /* todo_flags_start */
1239 TODO_dump_func
/* todo_flags_finish */