1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "insn-config.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
43 #include "tree-pass.h"
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
68 #define IFCVT_MULTIPLE_DUMPS 1
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks
;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 static int num_updated_if_blocks
;
79 /* # of changes made. */
80 static int num_true_changes
;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p
;
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block
);
87 static bool cheap_bb_rtx_cost_p (const_basic_block
, int);
88 static rtx
first_active_insn (basic_block
);
89 static rtx
last_active_insn (basic_block
, int);
90 static basic_block
block_fallthru (basic_block
);
91 static int cond_exec_process_insns (ce_if_block_t
*, rtx
, rtx
, rtx
, rtx
, int);
92 static rtx
cond_exec_get_condition (rtx
);
93 static rtx
noce_get_condition (rtx
, rtx
*, bool);
94 static int noce_operand_ok (const_rtx
);
95 static void merge_if_block (ce_if_block_t
*);
96 static int find_cond_trap (basic_block
, edge
, edge
);
97 static basic_block
find_if_header (basic_block
, int);
98 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
99 static int noce_find_if_block (basic_block
, edge
, edge
, int);
100 static int cond_exec_find_if_block (ce_if_block_t
*);
101 static int find_if_case_1 (basic_block
, edge
, edge
);
102 static int find_if_case_2 (basic_block
, edge
, edge
);
103 static int find_memory (rtx
*, void *);
104 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
106 static void noce_emit_move_insn (rtx
, rtx
);
107 static rtx
block_has_only_trap (basic_block
);
109 /* Count the number of non-jump active insns in BB. */
112 count_bb_insns (const_basic_block bb
)
115 rtx insn
= BB_HEAD (bb
);
119 if (CALL_P (insn
) || NONJUMP_INSN_P (insn
))
122 if (insn
== BB_END (bb
))
124 insn
= NEXT_INSN (insn
);
130 /* Determine whether the total insn_rtx_cost on non-jump insns in
131 basic block BB is less than MAX_COST. This function returns
132 false if the cost of any instruction could not be estimated. */
135 cheap_bb_rtx_cost_p (const_basic_block bb
, int max_cost
)
138 rtx insn
= BB_HEAD (bb
);
139 bool speed
= optimize_bb_for_speed_p (bb
);
143 if (NONJUMP_INSN_P (insn
))
145 int cost
= insn_rtx_cost (PATTERN (insn
), speed
);
149 /* If this instruction is the load or set of a "stack" register,
150 such as a floating point register on x87, then the cost of
151 speculatively executing this insn may need to include
152 the additional cost of popping its result off of the
153 register stack. Unfortunately, correctly recognizing and
154 accounting for this additional overhead is tricky, so for
155 now we simply prohibit such speculative execution. */
158 rtx set
= single_set (insn
);
159 if (set
&& STACK_REG_P (SET_DEST (set
)))
165 if (count
>= max_cost
)
168 else if (CALL_P (insn
))
171 if (insn
== BB_END (bb
))
173 insn
= NEXT_INSN (insn
);
179 /* Return the first non-jump active insn in the basic block. */
182 first_active_insn (basic_block bb
)
184 rtx insn
= BB_HEAD (bb
);
188 if (insn
== BB_END (bb
))
190 insn
= NEXT_INSN (insn
);
193 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
195 if (insn
== BB_END (bb
))
197 insn
= NEXT_INSN (insn
);
206 /* Return the last non-jump active (non-jump) insn in the basic block. */
209 last_active_insn (basic_block bb
, int skip_use_p
)
211 rtx insn
= BB_END (bb
);
212 rtx head
= BB_HEAD (bb
);
216 || DEBUG_INSN_P (insn
)
218 && NONJUMP_INSN_P (insn
)
219 && GET_CODE (PATTERN (insn
)) == USE
))
223 insn
= PREV_INSN (insn
);
232 /* Return the basic block reached by falling though the basic block BB. */
235 block_fallthru (basic_block bb
)
240 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
241 if (e
->flags
& EDGE_FALLTHRU
)
244 return (e
) ? e
->dest
: NULL_BLOCK
;
247 /* Go through a bunch of insns, converting them to conditional
248 execution format if possible. Return TRUE if all of the non-note
249 insns were processed. */
252 cond_exec_process_insns (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
,
253 /* if block information */rtx start
,
254 /* first insn to look at */rtx end
,
255 /* last insn to look at */rtx test
,
256 /* conditional execution test */rtx prob_val
,
257 /* probability of branch taken. */int mod_ok
)
259 int must_be_last
= FALSE
;
267 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
269 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
272 gcc_assert(NONJUMP_INSN_P (insn
) || CALL_P (insn
));
274 /* Remove USE insns that get in the way. */
275 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
277 /* ??? Ug. Actually unlinking the thing is problematic,
278 given what we'd have to coordinate with our callers. */
279 SET_INSN_DELETED (insn
);
283 /* Last insn wasn't last? */
287 if (modified_in_p (test
, insn
))
294 /* Now build the conditional form of the instruction. */
295 pattern
= PATTERN (insn
);
296 xtest
= copy_rtx (test
);
298 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
300 if (GET_CODE (pattern
) == COND_EXEC
)
302 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
305 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
306 COND_EXEC_TEST (pattern
));
307 pattern
= COND_EXEC_CODE (pattern
);
310 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
312 /* If the machine needs to modify the insn being conditionally executed,
313 say for example to force a constant integer operand into a temp
314 register, do so here. */
315 #ifdef IFCVT_MODIFY_INSN
316 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
321 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
323 if (CALL_P (insn
) && prob_val
)
324 validate_change (insn
, ®_NOTES (insn
),
325 alloc_EXPR_LIST (REG_BR_PROB
, prob_val
,
326 REG_NOTES (insn
)), 1);
336 /* Return the condition for a jump. Do not do any special processing. */
339 cond_exec_get_condition (rtx jump
)
343 if (any_condjump_p (jump
))
344 test_if
= SET_SRC (pc_set (jump
));
347 cond
= XEXP (test_if
, 0);
349 /* If this branches to JUMP_LABEL when the condition is false,
350 reverse the condition. */
351 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
352 && XEXP (XEXP (test_if
, 2), 0) == JUMP_LABEL (jump
))
354 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
358 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
365 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
366 to conditional execution. Return TRUE if we were successful at
367 converting the block. */
370 cond_exec_process_if_block (ce_if_block_t
* ce_info
,
371 /* if block information */int do_multiple_p
)
373 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
374 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
375 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
376 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
377 rtx then_start
; /* first insn in THEN block */
378 rtx then_end
; /* last insn + 1 in THEN block */
379 rtx else_start
= NULL_RTX
; /* first insn in ELSE block or NULL */
380 rtx else_end
= NULL_RTX
; /* last insn + 1 in ELSE block */
381 int max
; /* max # of insns to convert. */
382 int then_mod_ok
; /* whether conditional mods are ok in THEN */
383 rtx true_expr
; /* test for else block insns */
384 rtx false_expr
; /* test for then block insns */
385 rtx true_prob_val
; /* probability of else block */
386 rtx false_prob_val
; /* probability of then block */
387 rtx then_last_head
= NULL_RTX
; /* Last match at the head of THEN */
388 rtx else_last_head
= NULL_RTX
; /* Last match at the head of ELSE */
389 rtx then_first_tail
= NULL_RTX
; /* First match at the tail of THEN */
390 rtx else_first_tail
= NULL_RTX
; /* First match at the tail of ELSE */
391 int then_n_insns
, else_n_insns
, n_insns
;
392 enum rtx_code false_code
;
394 /* If test is comprised of && or || elements, and we've failed at handling
395 all of them together, just use the last test if it is the special case of
396 && elements without an ELSE block. */
397 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
399 if (else_bb
|| ! ce_info
->and_and_p
)
402 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
403 ce_info
->num_multiple_test_blocks
= 0;
404 ce_info
->num_and_and_blocks
= 0;
405 ce_info
->num_or_or_blocks
= 0;
408 /* Find the conditional jump to the ELSE or JOIN part, and isolate
410 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
414 /* If the conditional jump is more than just a conditional jump,
415 then we can not do conditional execution conversion on this block. */
416 if (! onlyjump_p (BB_END (test_bb
)))
419 /* Collect the bounds of where we're to search, skipping any labels, jumps
420 and notes at the beginning and end of the block. Then count the total
421 number of insns and see if it is small enough to convert. */
422 then_start
= first_active_insn (then_bb
);
423 then_end
= last_active_insn (then_bb
, TRUE
);
424 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
425 n_insns
= then_n_insns
;
426 max
= MAX_CONDITIONAL_EXECUTE
;
433 else_start
= first_active_insn (else_bb
);
434 else_end
= last_active_insn (else_bb
, TRUE
);
435 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
436 n_insns
+= else_n_insns
;
438 /* Look for matching sequences at the head and tail of the two blocks,
439 and limit the range of insns to be converted if possible. */
440 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
441 &then_first_tail
, &else_first_tail
);
442 if (then_first_tail
== BB_HEAD (then_bb
))
443 then_start
= then_end
= NULL_RTX
;
444 if (else_first_tail
== BB_HEAD (else_bb
))
445 else_start
= else_end
= NULL_RTX
;
450 then_end
= prev_active_insn (then_first_tail
);
452 else_end
= prev_active_insn (else_first_tail
);
453 n_insns
-= 2 * n_matching
;
456 if (then_start
&& else_start
)
458 int longest_match
= MIN (then_n_insns
- n_matching
,
459 else_n_insns
- n_matching
);
461 = flow_find_head_matching_sequence (then_bb
, else_bb
,
470 /* We won't pass the insns in the head sequence to
471 cond_exec_process_insns, so we need to test them here
472 to make sure that they don't clobber the condition. */
473 for (insn
= BB_HEAD (then_bb
);
474 insn
!= NEXT_INSN (then_last_head
);
475 insn
= NEXT_INSN (insn
))
476 if (!LABEL_P (insn
) && !NOTE_P (insn
)
477 && !DEBUG_INSN_P (insn
)
478 && modified_in_p (test_expr
, insn
))
482 if (then_last_head
== then_end
)
483 then_start
= then_end
= NULL_RTX
;
484 if (else_last_head
== else_end
)
485 else_start
= else_end
= NULL_RTX
;
490 then_start
= next_active_insn (then_last_head
);
492 else_start
= next_active_insn (else_last_head
);
493 n_insns
-= 2 * n_matching
;
501 /* Map test_expr/test_jump into the appropriate MD tests to use on
502 the conditionally executed code. */
504 true_expr
= test_expr
;
506 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
507 if (false_code
!= UNKNOWN
)
508 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
509 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
511 false_expr
= NULL_RTX
;
513 #ifdef IFCVT_MODIFY_TESTS
514 /* If the machine description needs to modify the tests, such as setting a
515 conditional execution register from a comparison, it can do so here. */
516 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
518 /* See if the conversion failed. */
519 if (!true_expr
|| !false_expr
)
523 true_prob_val
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
526 true_prob_val
= XEXP (true_prob_val
, 0);
527 false_prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (true_prob_val
));
530 false_prob_val
= NULL_RTX
;
532 /* If we have && or || tests, do them here. These tests are in the adjacent
533 blocks after the first block containing the test. */
534 if (ce_info
->num_multiple_test_blocks
> 0)
536 basic_block bb
= test_bb
;
537 basic_block last_test_bb
= ce_info
->last_test_bb
;
546 enum rtx_code f_code
;
548 bb
= block_fallthru (bb
);
549 start
= first_active_insn (bb
);
550 end
= last_active_insn (bb
, TRUE
);
552 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
553 false_prob_val
, FALSE
))
556 /* If the conditional jump is more than just a conditional jump, then
557 we can not do conditional execution conversion on this block. */
558 if (! onlyjump_p (BB_END (bb
)))
561 /* Find the conditional jump and isolate the test. */
562 t
= cond_exec_get_condition (BB_END (bb
));
566 f_code
= reversed_comparison_code (t
, BB_END (bb
));
567 if (f_code
== UNKNOWN
)
570 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
571 if (ce_info
->and_and_p
)
573 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
574 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
578 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
579 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
582 /* If the machine description needs to modify the tests, such as
583 setting a conditional execution register from a comparison, it can
585 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
586 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
588 /* See if the conversion failed. */
596 while (bb
!= last_test_bb
);
599 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
600 on then THEN block. */
601 then_mod_ok
= (else_bb
== NULL_BLOCK
);
603 /* Go through the THEN and ELSE blocks converting the insns if possible
604 to conditional execution. */
608 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
609 false_expr
, false_prob_val
,
613 if (else_bb
&& else_end
614 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
615 true_expr
, true_prob_val
, TRUE
))
618 /* If we cannot apply the changes, fail. Do not go through the normal fail
619 processing, since apply_change_group will call cancel_changes. */
620 if (! apply_change_group ())
622 #ifdef IFCVT_MODIFY_CANCEL
623 /* Cancel any machine dependent changes. */
624 IFCVT_MODIFY_CANCEL (ce_info
);
629 #ifdef IFCVT_MODIFY_FINAL
630 /* Do any machine dependent final modifications. */
631 IFCVT_MODIFY_FINAL (ce_info
);
634 /* Conversion succeeded. */
636 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
637 n_insns
, (n_insns
== 1) ? " was" : "s were");
639 /* Merge the blocks! If we had matching sequences, make sure to delete one
640 copy at the appropriate location first: delete the copy in the THEN branch
641 for a tail sequence so that the remaining one is executed last for both
642 branches, and delete the copy in the ELSE branch for a head sequence so
643 that the remaining one is executed first for both branches. */
646 rtx from
= then_first_tail
;
648 from
= next_active_insn (from
);
649 delete_insn_chain (from
, BB_END (then_bb
), false);
652 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
654 merge_if_block (ce_info
);
655 cond_exec_changed_p
= TRUE
;
659 #ifdef IFCVT_MODIFY_CANCEL
660 /* Cancel any machine dependent changes. */
661 IFCVT_MODIFY_CANCEL (ce_info
);
668 /* Used by noce_process_if_block to communicate with its subroutines.
670 The subroutines know that A and B may be evaluated freely. They
671 know that X is a register. They should insert new instructions
672 before cond_earliest. */
676 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
677 basic_block test_bb
, then_bb
, else_bb
, join_bb
;
679 /* The jump that ends TEST_BB. */
682 /* The jump condition. */
685 /* New insns should be inserted before this one. */
688 /* Insns in the THEN and ELSE block. There is always just this
689 one insns in those blocks. The insns are single_set insns.
690 If there was no ELSE block, INSN_B is the last insn before
691 COND_EARLIEST, or NULL_RTX. In the former case, the insn
692 operands are still valid, as if INSN_B was moved down below
696 /* The SET_SRC of INSN_A and INSN_B. */
699 /* The SET_DEST of INSN_A. */
702 /* True if this if block is not canonical. In the canonical form of
703 if blocks, the THEN_BB is the block reached via the fallthru edge
704 from TEST_BB. For the noce transformations, we allow the symmetric
706 bool then_else_reversed
;
708 /* Estimated cost of the particular branch instruction. */
712 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
713 static int noce_try_move (struct noce_if_info
*);
714 static int noce_try_store_flag (struct noce_if_info
*);
715 static int noce_try_addcc (struct noce_if_info
*);
716 static int noce_try_store_flag_constants (struct noce_if_info
*);
717 static int noce_try_store_flag_mask (struct noce_if_info
*);
718 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
720 static int noce_try_cmove (struct noce_if_info
*);
721 static int noce_try_cmove_arith (struct noce_if_info
*);
722 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx
*);
723 static int noce_try_minmax (struct noce_if_info
*);
724 static int noce_try_abs (struct noce_if_info
*);
725 static int noce_try_sign_mask (struct noce_if_info
*);
727 /* Helper function for noce_try_store_flag*. */
730 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
733 rtx cond
= if_info
->cond
;
737 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
738 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
740 /* If earliest == jump, or when the condition is complex, try to
741 build the store_flag insn directly. */
745 rtx set
= pc_set (if_info
->jump
);
746 cond
= XEXP (SET_SRC (set
), 0);
747 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
748 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
))
749 reversep
= !reversep
;
750 if (if_info
->then_else_reversed
)
751 reversep
= !reversep
;
755 code
= reversed_comparison_code (cond
, if_info
->jump
);
757 code
= GET_CODE (cond
);
759 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
760 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
764 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
766 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
769 tmp
= emit_insn (tmp
);
771 if (recog_memoized (tmp
) >= 0)
777 if_info
->cond_earliest
= if_info
->jump
;
785 /* Don't even try if the comparison operands or the mode of X are weird. */
786 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
789 return emit_store_flag (x
, code
, XEXP (cond
, 0),
790 XEXP (cond
, 1), VOIDmode
,
791 (code
== LTU
|| code
== LEU
792 || code
== GEU
|| code
== GTU
), normalize
);
795 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
796 X is the destination/target and Y is the value to copy. */
799 noce_emit_move_insn (rtx x
, rtx y
)
801 enum machine_mode outmode
;
805 if (GET_CODE (x
) != STRICT_LOW_PART
)
807 rtx seq
, insn
, target
;
811 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
812 otherwise construct a suitable SET pattern ourselves. */
813 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
814 ? emit_move_insn (x
, y
)
815 : emit_insn (gen_rtx_SET (VOIDmode
, x
, y
));
819 if (recog_memoized (insn
) <= 0)
821 if (GET_CODE (x
) == ZERO_EXTRACT
)
823 rtx op
= XEXP (x
, 0);
824 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
825 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
827 /* store_bit_field expects START to be relative to
828 BYTES_BIG_ENDIAN and adjusts this value for machines with
829 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
830 invoke store_bit_field again it is necessary to have the START
831 value from the first call. */
832 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
835 start
= BITS_PER_UNIT
- start
- size
;
838 gcc_assert (REG_P (op
));
839 start
= BITS_PER_WORD
- start
- size
;
843 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
844 store_bit_field (op
, size
, start
, GET_MODE (x
), y
);
848 switch (GET_RTX_CLASS (GET_CODE (y
)))
851 ot
= code_to_optab
[GET_CODE (y
)];
855 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
856 if (target
!= NULL_RTX
)
859 emit_move_insn (x
, target
);
868 ot
= code_to_optab
[GET_CODE (y
)];
872 target
= expand_binop (GET_MODE (y
), ot
,
873 XEXP (y
, 0), XEXP (y
, 1),
875 if (target
!= NULL_RTX
)
878 emit_move_insn (x
, target
);
895 inner
= XEXP (outer
, 0);
896 outmode
= GET_MODE (outer
);
897 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
898 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
, outmode
, y
);
901 /* Return sequence of instructions generated by if conversion. This
902 function calls end_sequence() to end the current stream, ensures
903 that are instructions are unshared, recognizable non-jump insns.
904 On failure, this function returns a NULL_RTX. */
907 end_ifcvt_sequence (struct noce_if_info
*if_info
)
910 rtx seq
= get_insns ();
912 set_used_flags (if_info
->x
);
913 set_used_flags (if_info
->cond
);
914 unshare_all_rtl_in_chain (seq
);
917 /* Make sure that all of the instructions emitted are recognizable,
918 and that we haven't introduced a new jump instruction.
919 As an exercise for the reader, build a general mechanism that
920 allows proper placement of required clobbers. */
921 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
923 || recog_memoized (insn
) == -1)
929 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
930 "if (a == b) x = a; else x = b" into "x = b". */
933 noce_try_move (struct noce_if_info
*if_info
)
935 rtx cond
= if_info
->cond
;
936 enum rtx_code code
= GET_CODE (cond
);
939 if (code
!= NE
&& code
!= EQ
)
942 /* This optimization isn't valid if either A or B could be a NaN
944 if (HONOR_NANS (GET_MODE (if_info
->x
))
945 || HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
948 /* Check whether the operands of the comparison are A and in
950 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
951 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
952 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
953 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
955 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
957 /* Avoid generating the move if the source is the destination. */
958 if (! rtx_equal_p (if_info
->x
, y
))
961 noce_emit_move_insn (if_info
->x
, y
);
962 seq
= end_ifcvt_sequence (if_info
);
966 emit_insn_before_setloc (seq
, if_info
->jump
,
967 INSN_LOCATOR (if_info
->insn_a
));
974 /* Convert "if (test) x = 1; else x = 0".
976 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
977 tried in noce_try_store_flag_constants after noce_try_cmove has had
978 a go at the conversion. */
981 noce_try_store_flag (struct noce_if_info
*if_info
)
986 if (CONST_INT_P (if_info
->b
)
987 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
988 && if_info
->a
== const0_rtx
)
990 else if (if_info
->b
== const0_rtx
991 && CONST_INT_P (if_info
->a
)
992 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
993 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1001 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1004 if (target
!= if_info
->x
)
1005 noce_emit_move_insn (if_info
->x
, target
);
1007 seq
= end_ifcvt_sequence (if_info
);
1011 emit_insn_before_setloc (seq
, if_info
->jump
,
1012 INSN_LOCATOR (if_info
->insn_a
));
1022 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1025 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1029 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1030 int normalize
, can_reverse
;
1031 enum machine_mode mode
;
1033 if (CONST_INT_P (if_info
->a
)
1034 && CONST_INT_P (if_info
->b
))
1036 mode
= GET_MODE (if_info
->x
);
1037 ifalse
= INTVAL (if_info
->a
);
1038 itrue
= INTVAL (if_info
->b
);
1040 /* Make sure we can represent the difference between the two values. */
1041 if ((itrue
- ifalse
> 0)
1042 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1045 diff
= trunc_int_for_mode (itrue
- ifalse
, mode
);
1047 can_reverse
= (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1051 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1053 else if (ifalse
== 0 && exact_log2 (itrue
) >= 0
1054 && (STORE_FLAG_VALUE
== 1
1055 || if_info
->branch_cost
>= 2))
1057 else if (itrue
== 0 && exact_log2 (ifalse
) >= 0 && can_reverse
1058 && (STORE_FLAG_VALUE
== 1 || if_info
->branch_cost
>= 2))
1059 normalize
= 1, reversep
= 1;
1060 else if (itrue
== -1
1061 && (STORE_FLAG_VALUE
== -1
1062 || if_info
->branch_cost
>= 2))
1064 else if (ifalse
== -1 && can_reverse
1065 && (STORE_FLAG_VALUE
== -1 || if_info
->branch_cost
>= 2))
1066 normalize
= -1, reversep
= 1;
1067 else if ((if_info
->branch_cost
>= 2 && STORE_FLAG_VALUE
== -1)
1068 || if_info
->branch_cost
>= 3)
1075 tmp
= itrue
; itrue
= ifalse
; ifalse
= tmp
;
1076 diff
= trunc_int_for_mode (-diff
, mode
);
1080 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1087 /* if (test) x = 3; else x = 4;
1088 => x = 3 + (test == 0); */
1089 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1091 target
= expand_simple_binop (mode
,
1092 (diff
== STORE_FLAG_VALUE
1094 GEN_INT (ifalse
), target
, if_info
->x
, 0,
1098 /* if (test) x = 8; else x = 0;
1099 => x = (test != 0) << 3; */
1100 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1102 target
= expand_simple_binop (mode
, ASHIFT
,
1103 target
, GEN_INT (tmp
), if_info
->x
, 0,
1107 /* if (test) x = -1; else x = b;
1108 => x = -(test != 0) | b; */
1109 else if (itrue
== -1)
1111 target
= expand_simple_binop (mode
, IOR
,
1112 target
, GEN_INT (ifalse
), if_info
->x
, 0,
1116 /* if (test) x = a; else x = b;
1117 => x = (-(test != 0) & (b - a)) + a; */
1120 target
= expand_simple_binop (mode
, AND
,
1121 target
, GEN_INT (diff
), if_info
->x
, 0,
1124 target
= expand_simple_binop (mode
, PLUS
,
1125 target
, GEN_INT (ifalse
),
1126 if_info
->x
, 0, OPTAB_WIDEN
);
1135 if (target
!= if_info
->x
)
1136 noce_emit_move_insn (if_info
->x
, target
);
1138 seq
= end_ifcvt_sequence (if_info
);
1142 emit_insn_before_setloc (seq
, if_info
->jump
,
1143 INSN_LOCATOR (if_info
->insn_a
));
1150 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1151 similarly for "foo--". */
1154 noce_try_addcc (struct noce_if_info
*if_info
)
1157 int subtract
, normalize
;
1159 if (GET_CODE (if_info
->a
) == PLUS
1160 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1161 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1164 rtx cond
= if_info
->cond
;
1165 enum rtx_code code
= reversed_comparison_code (cond
, if_info
->jump
);
1167 /* First try to use addcc pattern. */
1168 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1169 && general_operand (XEXP (cond
, 1), VOIDmode
))
1172 target
= emit_conditional_add (if_info
->x
, code
,
1177 XEXP (if_info
->a
, 1),
1178 GET_MODE (if_info
->x
),
1179 (code
== LTU
|| code
== GEU
1180 || code
== LEU
|| code
== GTU
));
1183 if (target
!= if_info
->x
)
1184 noce_emit_move_insn (if_info
->x
, target
);
1186 seq
= end_ifcvt_sequence (if_info
);
1190 emit_insn_before_setloc (seq
, if_info
->jump
,
1191 INSN_LOCATOR (if_info
->insn_a
));
1197 /* If that fails, construct conditional increment or decrement using
1199 if (if_info
->branch_cost
>= 2
1200 && (XEXP (if_info
->a
, 1) == const1_rtx
1201 || XEXP (if_info
->a
, 1) == constm1_rtx
))
1204 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1205 subtract
= 0, normalize
= 0;
1206 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1207 subtract
= 1, normalize
= 0;
1209 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1212 target
= noce_emit_store_flag (if_info
,
1213 gen_reg_rtx (GET_MODE (if_info
->x
)),
1217 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1218 subtract
? MINUS
: PLUS
,
1219 if_info
->b
, target
, if_info
->x
,
1223 if (target
!= if_info
->x
)
1224 noce_emit_move_insn (if_info
->x
, target
);
1226 seq
= end_ifcvt_sequence (if_info
);
1230 emit_insn_before_setloc (seq
, if_info
->jump
,
1231 INSN_LOCATOR (if_info
->insn_a
));
1241 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1244 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1250 if ((if_info
->branch_cost
>= 2
1251 || STORE_FLAG_VALUE
== -1)
1252 && ((if_info
->a
== const0_rtx
1253 && rtx_equal_p (if_info
->b
, if_info
->x
))
1254 || ((reversep
= (reversed_comparison_code (if_info
->cond
,
1257 && if_info
->b
== const0_rtx
1258 && rtx_equal_p (if_info
->a
, if_info
->x
))))
1261 target
= noce_emit_store_flag (if_info
,
1262 gen_reg_rtx (GET_MODE (if_info
->x
)),
1265 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1267 target
, if_info
->x
, 0,
1272 if (target
!= if_info
->x
)
1273 noce_emit_move_insn (if_info
->x
, target
);
1275 seq
= end_ifcvt_sequence (if_info
);
1279 emit_insn_before_setloc (seq
, if_info
->jump
,
1280 INSN_LOCATOR (if_info
->insn_a
));
1290 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1293 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1294 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1296 /* If earliest == jump, try to build the cmove insn directly.
1297 This is helpful when combine has created some complex condition
1298 (like for alpha's cmovlbs) that we can't hope to regenerate
1299 through the normal interface. */
1301 if (if_info
->cond_earliest
== if_info
->jump
)
1305 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1306 tmp
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
), tmp
, vtrue
, vfalse
);
1307 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
1310 tmp
= emit_insn (tmp
);
1312 if (recog_memoized (tmp
) >= 0)
1324 /* Don't even try if the comparison operands are weird. */
1325 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1326 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1329 #if HAVE_conditional_move
1330 return emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1331 vtrue
, vfalse
, GET_MODE (x
),
1332 (code
== LTU
|| code
== GEU
1333 || code
== LEU
|| code
== GTU
));
1335 /* We'll never get here, as noce_process_if_block doesn't call the
1336 functions involved. Ifdef code, however, should be discouraged
1337 because it leads to typos in the code not selected. However,
1338 emit_conditional_move won't exist either. */
1343 /* Try only simple constants and registers here. More complex cases
1344 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1345 has had a go at it. */
1348 noce_try_cmove (struct noce_if_info
*if_info
)
1353 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1354 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1358 code
= GET_CODE (if_info
->cond
);
1359 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1360 XEXP (if_info
->cond
, 0),
1361 XEXP (if_info
->cond
, 1),
1362 if_info
->a
, if_info
->b
);
1366 if (target
!= if_info
->x
)
1367 noce_emit_move_insn (if_info
->x
, target
);
1369 seq
= end_ifcvt_sequence (if_info
);
1373 emit_insn_before_setloc (seq
, if_info
->jump
,
1374 INSN_LOCATOR (if_info
->insn_a
));
1387 /* Try more complex cases involving conditional_move. */
1390 noce_try_cmove_arith (struct noce_if_info
*if_info
)
1402 /* A conditional move from two memory sources is equivalent to a
1403 conditional on their addresses followed by a load. Don't do this
1404 early because it'll screw alias analysis. Note that we've
1405 already checked for no side effects. */
1406 /* ??? FIXME: Magic number 5. */
1407 if (cse_not_expected
1408 && MEM_P (a
) && MEM_P (b
)
1409 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
)
1410 && if_info
->branch_cost
>= 5)
1412 enum machine_mode address_mode
1413 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (a
));
1417 x
= gen_reg_rtx (address_mode
);
1421 /* ??? We could handle this if we knew that a load from A or B could
1422 not fault. This is also true if we've already loaded
1423 from the address along the path from ENTRY. */
1424 else if (may_trap_p (a
) || may_trap_p (b
))
1427 /* if (test) x = a + b; else x = c - d;
1434 code
= GET_CODE (if_info
->cond
);
1435 insn_a
= if_info
->insn_a
;
1436 insn_b
= if_info
->insn_b
;
1438 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1439 if insn_rtx_cost can't be estimated. */
1443 = insn_rtx_cost (PATTERN (insn_a
),
1444 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a
)));
1445 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1454 += insn_rtx_cost (PATTERN (insn_b
),
1455 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b
)));
1456 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1460 /* Possibly rearrange operands to make things come out more natural. */
1461 if (reversed_comparison_code (if_info
->cond
, if_info
->jump
) != UNKNOWN
)
1464 if (rtx_equal_p (b
, x
))
1466 else if (general_operand (b
, GET_MODE (b
)))
1471 code
= reversed_comparison_code (if_info
->cond
, if_info
->jump
);
1472 tmp
= a
, a
= b
, b
= tmp
;
1473 tmp
= insn_a
, insn_a
= insn_b
, insn_b
= tmp
;
1482 /* If either operand is complex, load it into a register first.
1483 The best way to do this is to copy the original insn. In this
1484 way we preserve any clobbers etc that the insn may have had.
1485 This is of course not possible in the IS_MEM case. */
1486 if (! general_operand (a
, GET_MODE (a
)))
1492 tmp
= gen_reg_rtx (GET_MODE (a
));
1493 tmp
= emit_insn (gen_rtx_SET (VOIDmode
, tmp
, a
));
1496 goto end_seq_and_fail
;
1499 a
= gen_reg_rtx (GET_MODE (a
));
1500 tmp
= copy_rtx (insn_a
);
1501 set
= single_set (tmp
);
1503 tmp
= emit_insn (PATTERN (tmp
));
1505 if (recog_memoized (tmp
) < 0)
1506 goto end_seq_and_fail
;
1508 if (! general_operand (b
, GET_MODE (b
)))
1514 tmp
= gen_reg_rtx (GET_MODE (b
));
1515 tmp
= gen_rtx_SET (VOIDmode
, tmp
, b
);
1518 goto end_seq_and_fail
;
1521 b
= gen_reg_rtx (GET_MODE (b
));
1522 tmp
= copy_rtx (insn_b
);
1523 set
= single_set (tmp
);
1525 tmp
= PATTERN (tmp
);
1528 /* If insn to set up A clobbers any registers B depends on, try to
1529 swap insn that sets up A with the one that sets up B. If even
1530 that doesn't help, punt. */
1531 last
= get_last_insn ();
1532 if (last
&& modified_in_p (orig_b
, last
))
1534 tmp
= emit_insn_before (tmp
, get_insns ());
1535 if (modified_in_p (orig_a
, tmp
))
1536 goto end_seq_and_fail
;
1539 tmp
= emit_insn (tmp
);
1541 if (recog_memoized (tmp
) < 0)
1542 goto end_seq_and_fail
;
1545 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (if_info
->cond
, 0),
1546 XEXP (if_info
->cond
, 1), a
, b
);
1549 goto end_seq_and_fail
;
1551 /* If we're handling a memory for above, emit the load now. */
1554 tmp
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
1556 /* Copy over flags as appropriate. */
1557 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
1558 MEM_VOLATILE_P (tmp
) = 1;
1559 if (MEM_IN_STRUCT_P (if_info
->a
) && MEM_IN_STRUCT_P (if_info
->b
))
1560 MEM_IN_STRUCT_P (tmp
) = 1;
1561 if (MEM_SCALAR_P (if_info
->a
) && MEM_SCALAR_P (if_info
->b
))
1562 MEM_SCALAR_P (tmp
) = 1;
1563 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
1564 set_mem_alias_set (tmp
, MEM_ALIAS_SET (if_info
->a
));
1566 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
1568 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
1569 set_mem_addr_space (tmp
, MEM_ADDR_SPACE (if_info
->a
));
1571 noce_emit_move_insn (if_info
->x
, tmp
);
1573 else if (target
!= x
)
1574 noce_emit_move_insn (x
, target
);
1576 tmp
= end_ifcvt_sequence (if_info
);
1580 emit_insn_before_setloc (tmp
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1588 /* For most cases, the simplified condition we found is the best
1589 choice, but this is not the case for the min/max/abs transforms.
1590 For these we wish to know that it is A or B in the condition. */
1593 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
1596 rtx cond
, set
, insn
;
1599 /* If target is already mentioned in the known condition, return it. */
1600 if (reg_mentioned_p (target
, if_info
->cond
))
1602 *earliest
= if_info
->cond_earliest
;
1603 return if_info
->cond
;
1606 set
= pc_set (if_info
->jump
);
1607 cond
= XEXP (SET_SRC (set
), 0);
1609 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
1610 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
);
1611 if (if_info
->then_else_reversed
)
1614 /* If we're looking for a constant, try to make the conditional
1615 have that constant in it. There are two reasons why it may
1616 not have the constant we want:
1618 1. GCC may have needed to put the constant in a register, because
1619 the target can't compare directly against that constant. For
1620 this case, we look for a SET immediately before the comparison
1621 that puts a constant in that register.
1623 2. GCC may have canonicalized the conditional, for example
1624 replacing "if x < 4" with "if x <= 3". We can undo that (or
1625 make equivalent types of changes) to get the constants we need
1626 if they're off by one in the right direction. */
1628 if (CONST_INT_P (target
))
1630 enum rtx_code code
= GET_CODE (if_info
->cond
);
1631 rtx op_a
= XEXP (if_info
->cond
, 0);
1632 rtx op_b
= XEXP (if_info
->cond
, 1);
1635 /* First, look to see if we put a constant in a register. */
1636 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
1638 && BLOCK_FOR_INSN (prev_insn
)
1639 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
1640 && INSN_P (prev_insn
)
1641 && GET_CODE (PATTERN (prev_insn
)) == SET
)
1643 rtx src
= find_reg_equal_equiv_note (prev_insn
);
1645 src
= SET_SRC (PATTERN (prev_insn
));
1646 if (CONST_INT_P (src
))
1648 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
1650 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
1653 if (CONST_INT_P (op_a
))
1658 code
= swap_condition (code
);
1663 /* Now, look to see if we can get the right constant by
1664 adjusting the conditional. */
1665 if (CONST_INT_P (op_b
))
1667 HOST_WIDE_INT desired_val
= INTVAL (target
);
1668 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
1673 if (actual_val
== desired_val
+ 1)
1676 op_b
= GEN_INT (desired_val
);
1680 if (actual_val
== desired_val
- 1)
1683 op_b
= GEN_INT (desired_val
);
1687 if (actual_val
== desired_val
- 1)
1690 op_b
= GEN_INT (desired_val
);
1694 if (actual_val
== desired_val
+ 1)
1697 op_b
= GEN_INT (desired_val
);
1705 /* If we made any changes, generate a new conditional that is
1706 equivalent to what we started with, but has the right
1708 if (code
!= GET_CODE (if_info
->cond
)
1709 || op_a
!= XEXP (if_info
->cond
, 0)
1710 || op_b
!= XEXP (if_info
->cond
, 1))
1712 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
1713 *earliest
= if_info
->cond_earliest
;
1718 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
1719 earliest
, target
, false, true);
1720 if (! cond
|| ! reg_mentioned_p (target
, cond
))
1723 /* We almost certainly searched back to a different place.
1724 Need to re-verify correct lifetimes. */
1726 /* X may not be mentioned in the range (cond_earliest, jump]. */
1727 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
1728 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
1731 /* A and B may not be modified in the range [cond_earliest, jump). */
1732 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
1734 && (modified_in_p (if_info
->a
, insn
)
1735 || modified_in_p (if_info
->b
, insn
)))
1741 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1744 noce_try_minmax (struct noce_if_info
*if_info
)
1746 rtx cond
, earliest
, target
, seq
;
1747 enum rtx_code code
, op
;
1750 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1751 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1752 to get the target to tell us... */
1753 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
))
1754 || HONOR_NANS (GET_MODE (if_info
->x
)))
1757 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
1761 /* Verify the condition is of the form we expect, and canonicalize
1762 the comparison code. */
1763 code
= GET_CODE (cond
);
1764 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
1766 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
1769 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
1771 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
1773 code
= swap_condition (code
);
1778 /* Determine what sort of operation this is. Note that the code is for
1779 a taken branch, so the code->operation mapping appears backwards. */
1812 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
1813 if_info
->a
, if_info
->b
,
1814 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
1820 if (target
!= if_info
->x
)
1821 noce_emit_move_insn (if_info
->x
, target
);
1823 seq
= end_ifcvt_sequence (if_info
);
1827 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1828 if_info
->cond
= cond
;
1829 if_info
->cond_earliest
= earliest
;
1834 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1835 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1839 noce_try_abs (struct noce_if_info
*if_info
)
1841 rtx cond
, earliest
, target
, seq
, a
, b
, c
;
1843 bool one_cmpl
= false;
1845 /* Reject modes with signed zeros. */
1846 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
1849 /* Recognize A and B as constituting an ABS or NABS. The canonical
1850 form is a branch around the negation, taken when the object is the
1851 first operand of a comparison against 0 that evaluates to true. */
1854 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
1856 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
1858 c
= a
; a
= b
; b
= c
;
1861 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
1866 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
1868 c
= a
; a
= b
; b
= c
;
1875 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
1879 /* Verify the condition is of the form we expect. */
1880 if (rtx_equal_p (XEXP (cond
, 0), b
))
1882 else if (rtx_equal_p (XEXP (cond
, 1), b
))
1890 /* Verify that C is zero. Search one step backward for a
1891 REG_EQUAL note or a simple source if necessary. */
1894 rtx set
, insn
= prev_nonnote_insn (earliest
);
1896 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
1897 && (set
= single_set (insn
))
1898 && rtx_equal_p (SET_DEST (set
), c
))
1900 rtx note
= find_reg_equal_equiv_note (insn
);
1910 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
1911 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
1912 c
= get_pool_constant (XEXP (c
, 0));
1914 /* Work around funny ideas get_condition has wrt canonicalization.
1915 Note that these rtx constants are known to be CONST_INT, and
1916 therefore imply integer comparisons. */
1917 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
1919 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
1921 else if (c
!= CONST0_RTX (GET_MODE (b
)))
1924 /* Determine what sort of operation this is. */
1925 switch (GET_CODE (cond
))
1944 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
1947 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
1949 /* ??? It's a quandary whether cmove would be better here, especially
1950 for integers. Perhaps combine will clean things up. */
1951 if (target
&& negate
)
1954 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
1957 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
1967 if (target
!= if_info
->x
)
1968 noce_emit_move_insn (if_info
->x
, target
);
1970 seq
= end_ifcvt_sequence (if_info
);
1974 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1975 if_info
->cond
= cond
;
1976 if_info
->cond_earliest
= earliest
;
1981 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1984 noce_try_sign_mask (struct noce_if_info
*if_info
)
1986 rtx cond
, t
, m
, c
, seq
;
1987 enum machine_mode mode
;
1989 bool t_unconditional
;
1991 cond
= if_info
->cond
;
1992 code
= GET_CODE (cond
);
1997 if (if_info
->a
== const0_rtx
)
1999 if ((code
== LT
&& c
== const0_rtx
)
2000 || (code
== LE
&& c
== constm1_rtx
))
2003 else if (if_info
->b
== const0_rtx
)
2005 if ((code
== GE
&& c
== const0_rtx
)
2006 || (code
== GT
&& c
== constm1_rtx
))
2010 if (! t
|| side_effects_p (t
))
2013 /* We currently don't handle different modes. */
2014 mode
= GET_MODE (t
);
2015 if (GET_MODE (m
) != mode
)
2018 /* This is only profitable if T is unconditionally executed/evaluated in the
2019 original insn sequence or T is cheap. The former happens if B is the
2020 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2021 INSN_B which can happen for e.g. conditional stores to memory. For the
2022 cost computation use the block TEST_BB where the evaluation will end up
2023 after the transformation. */
2026 && (if_info
->insn_b
== NULL_RTX
2027 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2028 if (!(t_unconditional
2029 || (rtx_cost (t
, SET
, optimize_bb_for_speed_p (if_info
->test_bb
))
2030 < COSTS_N_INSNS (2))))
2034 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2035 "(signed) m >> 31" directly. This benefits targets with specialized
2036 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2037 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2038 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2047 noce_emit_move_insn (if_info
->x
, t
);
2049 seq
= end_ifcvt_sequence (if_info
);
2053 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
2058 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2062 noce_try_bitop (struct noce_if_info
*if_info
)
2064 rtx cond
, x
, a
, result
, seq
;
2065 enum machine_mode mode
;
2070 cond
= if_info
->cond
;
2071 code
= GET_CODE (cond
);
2073 /* Check for no else condition. */
2074 if (! rtx_equal_p (x
, if_info
->b
))
2077 /* Check for a suitable condition. */
2078 if (code
!= NE
&& code
!= EQ
)
2080 if (XEXP (cond
, 1) != const0_rtx
)
2082 cond
= XEXP (cond
, 0);
2084 /* ??? We could also handle AND here. */
2085 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2087 if (XEXP (cond
, 1) != const1_rtx
2088 || !CONST_INT_P (XEXP (cond
, 2))
2089 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2091 bitnum
= INTVAL (XEXP (cond
, 2));
2092 mode
= GET_MODE (x
);
2093 if (BITS_BIG_ENDIAN
)
2094 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2095 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2102 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2104 /* Check for "if (X & C) x = x op C". */
2105 if (! rtx_equal_p (x
, XEXP (a
, 0))
2106 || !CONST_INT_P (XEXP (a
, 1))
2107 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2108 != (unsigned HOST_WIDE_INT
) 1 << bitnum
)
2111 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2112 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2113 if (GET_CODE (a
) == IOR
)
2114 result
= (code
== NE
) ? a
: NULL_RTX
;
2115 else if (code
== NE
)
2117 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2118 result
= gen_int_mode ((HOST_WIDE_INT
) 1 << bitnum
, mode
);
2119 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2123 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2124 result
= gen_int_mode (~((HOST_WIDE_INT
) 1 << bitnum
), mode
);
2125 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2128 else if (GET_CODE (a
) == AND
)
2130 /* Check for "if (X & C) x &= ~C". */
2131 if (! rtx_equal_p (x
, XEXP (a
, 0))
2132 || !CONST_INT_P (XEXP (a
, 1))
2133 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2134 != (~((HOST_WIDE_INT
) 1 << bitnum
) & GET_MODE_MASK (mode
)))
2137 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2138 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2139 result
= (code
== EQ
) ? a
: NULL_RTX
;
2147 noce_emit_move_insn (x
, result
);
2148 seq
= end_ifcvt_sequence (if_info
);
2152 emit_insn_before_setloc (seq
, if_info
->jump
,
2153 INSN_LOCATOR (if_info
->insn_a
));
2159 /* Similar to get_condition, only the resulting condition must be
2160 valid at JUMP, instead of at EARLIEST.
2162 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2163 THEN block of the caller, and we have to reverse the condition. */
2166 noce_get_condition (rtx jump
, rtx
*earliest
, bool then_else_reversed
)
2171 if (! any_condjump_p (jump
))
2174 set
= pc_set (jump
);
2176 /* If this branches to JUMP_LABEL when the condition is false,
2177 reverse the condition. */
2178 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2179 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
));
2181 /* We may have to reverse because the caller's if block is not canonical,
2182 i.e. the THEN block isn't the fallthrough block for the TEST block
2183 (see find_if_header). */
2184 if (then_else_reversed
)
2187 /* If the condition variable is a register and is MODE_INT, accept it. */
2189 cond
= XEXP (SET_SRC (set
), 0);
2190 tmp
= XEXP (cond
, 0);
2191 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
)
2196 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2197 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2201 /* Otherwise, fall back on canonicalize_condition to do the dirty
2202 work of manipulating MODE_CC values and COMPARE rtx codes. */
2203 return canonicalize_condition (jump
, cond
, reverse
, earliest
,
2204 NULL_RTX
, false, true);
2207 /* Return true if OP is ok for if-then-else processing. */
2210 noce_operand_ok (const_rtx op
)
2212 /* We special-case memories, so handle any of them with
2213 no address side effects. */
2215 return ! side_effects_p (XEXP (op
, 0));
2217 if (side_effects_p (op
))
2220 return ! may_trap_p (op
);
2223 /* Return true if a write into MEM may trap or fault. */
2226 noce_mem_write_may_trap_or_fault_p (const_rtx mem
)
2230 if (MEM_READONLY_P (mem
))
2233 if (may_trap_or_fault_p (mem
))
2236 addr
= XEXP (mem
, 0);
2238 /* Call target hook to avoid the effects of -fpic etc.... */
2239 addr
= targetm
.delegitimize_address (addr
);
2242 switch (GET_CODE (addr
))
2250 addr
= XEXP (addr
, 0);
2254 addr
= XEXP (addr
, 1);
2257 if (CONST_INT_P (XEXP (addr
, 1)))
2258 addr
= XEXP (addr
, 0);
2265 if (SYMBOL_REF_DECL (addr
)
2266 && decl_readonly_section (SYMBOL_REF_DECL (addr
), 0))
2276 /* Return whether we can use store speculation for MEM. TOP_BB is the
2277 basic block above the conditional block where we are considering
2278 doing the speculative store. We look for whether MEM is set
2279 unconditionally later in the function. */
2282 noce_can_store_speculate_p (basic_block top_bb
, const_rtx mem
)
2284 basic_block dominator
;
2286 for (dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, top_bb
);
2288 dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, dominator
))
2292 FOR_BB_INSNS (dominator
, insn
)
2294 /* If we see something that might be a memory barrier, we
2295 have to stop looking. Even if the MEM is set later in
2296 the function, we still don't want to set it
2297 unconditionally before the barrier. */
2299 && (volatile_insn_p (PATTERN (insn
))
2300 || (CALL_P (insn
) && (!RTL_CONST_CALL_P (insn
)))))
2303 if (memory_modified_in_insn_p (mem
, insn
))
2305 if (modified_in_p (XEXP (mem
, 0), insn
))
2314 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2315 it without using conditional execution. Return TRUE if we were successful
2316 at converting the block. */
2319 noce_process_if_block (struct noce_if_info
*if_info
)
2321 basic_block test_bb
= if_info
->test_bb
; /* test block */
2322 basic_block then_bb
= if_info
->then_bb
; /* THEN */
2323 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
2324 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
2325 rtx jump
= if_info
->jump
;
2326 rtx cond
= if_info
->cond
;
2329 rtx orig_x
, x
, a
, b
;
2331 /* We're looking for patterns of the form
2333 (1) if (...) x = a; else x = b;
2334 (2) x = b; if (...) x = a;
2335 (3) if (...) x = a; // as if with an initial x = x.
2337 The later patterns require jumps to be more expensive.
2339 ??? For future expansion, look for multiple X in such patterns. */
2341 /* Look for one of the potential sets. */
2342 insn_a
= first_active_insn (then_bb
);
2344 || insn_a
!= last_active_insn (then_bb
, FALSE
)
2345 || (set_a
= single_set (insn_a
)) == NULL_RTX
)
2348 x
= SET_DEST (set_a
);
2349 a
= SET_SRC (set_a
);
2351 /* Look for the other potential set. Make sure we've got equivalent
2353 /* ??? This is overconservative. Storing to two different mems is
2354 as easy as conditionally computing the address. Storing to a
2355 single mem merely requires a scratch memory to use as one of the
2356 destination addresses; often the memory immediately below the
2357 stack pointer is available for this. */
2361 insn_b
= first_active_insn (else_bb
);
2363 || insn_b
!= last_active_insn (else_bb
, FALSE
)
2364 || (set_b
= single_set (insn_b
)) == NULL_RTX
2365 || ! rtx_equal_p (x
, SET_DEST (set_b
)))
2370 insn_b
= prev_nonnote_insn (if_info
->cond_earliest
);
2371 while (insn_b
&& DEBUG_INSN_P (insn_b
))
2372 insn_b
= prev_nonnote_insn (insn_b
);
2373 /* We're going to be moving the evaluation of B down from above
2374 COND_EARLIEST to JUMP. Make sure the relevant data is still
2377 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
2378 || !NONJUMP_INSN_P (insn_b
)
2379 || (set_b
= single_set (insn_b
)) == NULL_RTX
2380 || ! rtx_equal_p (x
, SET_DEST (set_b
))
2381 || ! noce_operand_ok (SET_SRC (set_b
))
2382 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
2383 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
2384 /* Likewise with X. In particular this can happen when
2385 noce_get_condition looks farther back in the instruction
2386 stream than one might expect. */
2387 || reg_overlap_mentioned_p (x
, cond
)
2388 || reg_overlap_mentioned_p (x
, a
)
2389 || modified_between_p (x
, insn_b
, jump
))
2390 insn_b
= set_b
= NULL_RTX
;
2393 /* If x has side effects then only the if-then-else form is safe to
2394 convert. But even in that case we would need to restore any notes
2395 (such as REG_INC) at then end. That can be tricky if
2396 noce_emit_move_insn expands to more than one insn, so disable the
2397 optimization entirely for now if there are side effects. */
2398 if (side_effects_p (x
))
2401 b
= (set_b
? SET_SRC (set_b
) : x
);
2403 /* Only operate on register destinations, and even then avoid extending
2404 the lifetime of hard registers on small register class machines. */
2407 || (HARD_REGISTER_P (x
)
2408 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
2410 if (GET_MODE (x
) == BLKmode
)
2413 if (GET_CODE (x
) == ZERO_EXTRACT
2414 && (!CONST_INT_P (XEXP (x
, 1))
2415 || !CONST_INT_P (XEXP (x
, 2))))
2418 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
2419 ? XEXP (x
, 0) : x
));
2422 /* Don't operate on sources that may trap or are volatile. */
2423 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
2427 /* Set up the info block for our subroutines. */
2428 if_info
->insn_a
= insn_a
;
2429 if_info
->insn_b
= insn_b
;
2434 /* Try optimizations in some approximation of a useful order. */
2435 /* ??? Should first look to see if X is live incoming at all. If it
2436 isn't, we don't need anything but an unconditional set. */
2438 /* Look and see if A and B are really the same. Avoid creating silly
2439 cmove constructs that no one will fix up later. */
2440 if (rtx_equal_p (a
, b
))
2442 /* If we have an INSN_B, we don't have to create any new rtl. Just
2443 move the instruction that we already have. If we don't have an
2444 INSN_B, that means that A == X, and we've got a noop move. In
2445 that case don't do anything and let the code below delete INSN_A. */
2446 if (insn_b
&& else_bb
)
2450 if (else_bb
&& insn_b
== BB_END (else_bb
))
2451 BB_END (else_bb
) = PREV_INSN (insn_b
);
2452 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
2454 /* If there was a REG_EQUAL note, delete it since it may have been
2455 true due to this insn being after a jump. */
2456 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
2457 remove_note (insn_b
, note
);
2461 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2462 x must be executed twice. */
2463 else if (insn_b
&& side_effects_p (orig_x
))
2470 if (!set_b
&& MEM_P (orig_x
))
2472 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2473 for optimizations if writing to x may trap or fault,
2474 i.e. it's a memory other than a static var or a stack slot,
2475 is misaligned on strict aligned machines or is read-only. If
2476 x is a read-only memory, then the program is valid only if we
2477 avoid the store into it. If there are stores on both the
2478 THEN and ELSE arms, then we can go ahead with the conversion;
2479 either the program is broken, or the condition is always
2480 false such that the other memory is selected. */
2481 if (noce_mem_write_may_trap_or_fault_p (orig_x
))
2484 /* Avoid store speculation: given "if (...) x = a" where x is a
2485 MEM, we only want to do the store if x is always set
2486 somewhere in the function. This avoids cases like
2487 if (pthread_mutex_trylock(mutex))
2489 where we only want global_variable to be changed if the mutex
2490 is held. FIXME: This should ideally be expressed directly in
2492 if (!noce_can_store_speculate_p (test_bb
, orig_x
))
2496 if (noce_try_move (if_info
))
2498 if (noce_try_store_flag (if_info
))
2500 if (noce_try_bitop (if_info
))
2502 if (noce_try_minmax (if_info
))
2504 if (noce_try_abs (if_info
))
2506 if (HAVE_conditional_move
2507 && noce_try_cmove (if_info
))
2509 if (! targetm
.have_conditional_execution ())
2511 if (noce_try_store_flag_constants (if_info
))
2513 if (noce_try_addcc (if_info
))
2515 if (noce_try_store_flag_mask (if_info
))
2517 if (HAVE_conditional_move
2518 && noce_try_cmove_arith (if_info
))
2520 if (noce_try_sign_mask (if_info
))
2524 if (!else_bb
&& set_b
)
2526 insn_b
= set_b
= NULL_RTX
;
2535 /* If we used a temporary, fix it up now. */
2541 noce_emit_move_insn (orig_x
, x
);
2543 set_used_flags (orig_x
);
2544 unshare_all_rtl_in_chain (seq
);
2547 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATOR (insn_a
));
2550 /* The original THEN and ELSE blocks may now be removed. The test block
2551 must now jump to the join block. If the test block and the join block
2552 can be merged, do so. */
2555 delete_basic_block (else_bb
);
2559 remove_edge (find_edge (test_bb
, join_bb
));
2561 remove_edge (find_edge (then_bb
, join_bb
));
2562 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2563 delete_basic_block (then_bb
);
2566 if (can_merge_blocks_p (test_bb
, join_bb
))
2568 merge_blocks (test_bb
, join_bb
);
2572 num_updated_if_blocks
++;
2576 /* Check whether a block is suitable for conditional move conversion.
2577 Every insn must be a simple set of a register to a constant or a
2578 register. For each assignment, store the value in the array VALS,
2579 indexed by register number, then store the register number in
2580 REGS. COND is the condition we will test. */
2583 check_cond_move_block (basic_block bb
, rtx
*vals
, VEC (int, heap
) **regs
,
2588 /* We can only handle simple jumps at the end of the basic block.
2589 It is almost impossible to update the CFG otherwise. */
2591 if (JUMP_P (insn
) && !onlyjump_p (insn
))
2594 FOR_BB_INSNS (bb
, insn
)
2598 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2600 set
= single_set (insn
);
2604 dest
= SET_DEST (set
);
2605 src
= SET_SRC (set
);
2607 || (HARD_REGISTER_P (dest
)
2608 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
2611 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
2614 if (side_effects_p (src
) || side_effects_p (dest
))
2617 if (may_trap_p (src
) || may_trap_p (dest
))
2620 /* Don't try to handle this if the source register was
2621 modified earlier in the block. */
2623 && vals
[REGNO (src
)] != NULL
)
2624 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
2625 && vals
[REGNO (SUBREG_REG (src
))] != NULL
))
2628 /* Don't try to handle this if the destination register was
2629 modified earlier in the block. */
2630 if (vals
[REGNO (dest
)] != NULL
)
2633 /* Don't try to handle this if the condition uses the
2634 destination register. */
2635 if (reg_overlap_mentioned_p (dest
, cond
))
2638 /* Don't try to handle this if the source register is modified
2639 later in the block. */
2640 if (!CONSTANT_P (src
)
2641 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
2644 vals
[REGNO (dest
)] = src
;
2646 VEC_safe_push (int, heap
, *regs
, REGNO (dest
));
2652 /* Given a basic block BB suitable for conditional move conversion,
2653 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2654 register values depending on COND, emit the insns in the block as
2655 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2656 processed. The caller has started a sequence for the conversion.
2657 Return true if successful, false if something goes wrong. */
2660 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
2661 basic_block bb
, rtx cond
,
2662 rtx
*then_vals
, rtx
*else_vals
,
2666 rtx insn
, cond_arg0
, cond_arg1
;
2668 code
= GET_CODE (cond
);
2669 cond_arg0
= XEXP (cond
, 0);
2670 cond_arg1
= XEXP (cond
, 1);
2672 FOR_BB_INSNS (bb
, insn
)
2674 rtx set
, target
, dest
, t
, e
;
2677 /* ??? Maybe emit conditional debug insn? */
2678 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2680 set
= single_set (insn
);
2681 gcc_assert (set
&& REG_P (SET_DEST (set
)));
2683 dest
= SET_DEST (set
);
2684 regno
= REGNO (dest
);
2686 t
= then_vals
[regno
];
2687 e
= else_vals
[regno
];
2691 /* If this register was set in the then block, we already
2692 handled this case there. */
2705 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
2711 noce_emit_move_insn (dest
, target
);
2717 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2718 it using only conditional moves. Return TRUE if we were successful at
2719 converting the block. */
2722 cond_move_process_if_block (struct noce_if_info
*if_info
)
2724 basic_block test_bb
= if_info
->test_bb
;
2725 basic_block then_bb
= if_info
->then_bb
;
2726 basic_block else_bb
= if_info
->else_bb
;
2727 basic_block join_bb
= if_info
->join_bb
;
2728 rtx jump
= if_info
->jump
;
2729 rtx cond
= if_info
->cond
;
2731 int max_reg
, size
, c
, reg
;
2734 VEC (int, heap
) *then_regs
= NULL
;
2735 VEC (int, heap
) *else_regs
= NULL
;
2738 /* Build a mapping for each block to the value used for each
2740 max_reg
= max_reg_num ();
2741 size
= (max_reg
+ 1) * sizeof (rtx
);
2742 then_vals
= (rtx
*) alloca (size
);
2743 else_vals
= (rtx
*) alloca (size
);
2744 memset (then_vals
, 0, size
);
2745 memset (else_vals
, 0, size
);
2747 /* Make sure the blocks are suitable. */
2748 if (!check_cond_move_block (then_bb
, then_vals
, &then_regs
, cond
)
2750 && !check_cond_move_block (else_bb
, else_vals
, &else_regs
, cond
)))
2752 VEC_free (int, heap
, then_regs
);
2753 VEC_free (int, heap
, else_regs
);
2757 /* Make sure the blocks can be used together. If the same register
2758 is set in both blocks, and is not set to a constant in both
2759 cases, then both blocks must set it to the same register. We
2760 have already verified that if it is set to a register, that the
2761 source register does not change after the assignment. Also count
2762 the number of registers set in only one of the blocks. */
2764 for (i
= 0; VEC_iterate (int, then_regs
, i
, reg
); i
++)
2766 if (!then_vals
[reg
] && !else_vals
[reg
])
2769 if (!else_vals
[reg
])
2773 if (!CONSTANT_P (then_vals
[reg
])
2774 && !CONSTANT_P (else_vals
[reg
])
2775 && !rtx_equal_p (then_vals
[reg
], else_vals
[reg
]))
2777 VEC_free (int, heap
, then_regs
);
2778 VEC_free (int, heap
, else_regs
);
2784 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2785 for (i
= 0; VEC_iterate (int, else_regs
, i
, reg
); ++i
)
2786 if (!then_vals
[reg
])
2789 /* Make sure it is reasonable to convert this block. What matters
2790 is the number of assignments currently made in only one of the
2791 branches, since if we convert we are going to always execute
2793 if (c
> MAX_CONDITIONAL_EXECUTE
)
2795 VEC_free (int, heap
, then_regs
);
2796 VEC_free (int, heap
, else_regs
);
2800 /* Try to emit the conditional moves. First do the then block,
2801 then do anything left in the else blocks. */
2803 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
2804 then_vals
, else_vals
, false)
2806 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
2807 then_vals
, else_vals
, true)))
2810 VEC_free (int, heap
, then_regs
);
2811 VEC_free (int, heap
, else_regs
);
2814 seq
= end_ifcvt_sequence (if_info
);
2817 VEC_free (int, heap
, then_regs
);
2818 VEC_free (int, heap
, else_regs
);
2822 loc_insn
= first_active_insn (then_bb
);
2825 loc_insn
= first_active_insn (else_bb
);
2826 gcc_assert (loc_insn
);
2828 emit_insn_before_setloc (seq
, jump
, INSN_LOCATOR (loc_insn
));
2832 delete_basic_block (else_bb
);
2836 remove_edge (find_edge (test_bb
, join_bb
));
2838 remove_edge (find_edge (then_bb
, join_bb
));
2839 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2840 delete_basic_block (then_bb
);
2843 if (can_merge_blocks_p (test_bb
, join_bb
))
2845 merge_blocks (test_bb
, join_bb
);
2849 num_updated_if_blocks
++;
2851 VEC_free (int, heap
, then_regs
);
2852 VEC_free (int, heap
, else_regs
);
2857 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2858 IF-THEN-ELSE-JOIN block.
2860 If so, we'll try to convert the insns to not require the branch,
2861 using only transformations that do not require conditional execution.
2863 Return TRUE if we were successful at converting the block. */
2866 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
2869 basic_block then_bb
, else_bb
, join_bb
;
2870 bool then_else_reversed
= false;
2873 struct noce_if_info if_info
;
2875 /* We only ever should get here before reload. */
2876 gcc_assert (!reload_completed
);
2878 /* Recognize an IF-THEN-ELSE-JOIN block. */
2879 if (single_pred_p (then_edge
->dest
)
2880 && single_succ_p (then_edge
->dest
)
2881 && single_pred_p (else_edge
->dest
)
2882 && single_succ_p (else_edge
->dest
)
2883 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
2885 then_bb
= then_edge
->dest
;
2886 else_bb
= else_edge
->dest
;
2887 join_bb
= single_succ (then_bb
);
2889 /* Recognize an IF-THEN-JOIN block. */
2890 else if (single_pred_p (then_edge
->dest
)
2891 && single_succ_p (then_edge
->dest
)
2892 && single_succ (then_edge
->dest
) == else_edge
->dest
)
2894 then_bb
= then_edge
->dest
;
2895 else_bb
= NULL_BLOCK
;
2896 join_bb
= else_edge
->dest
;
2898 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2899 of basic blocks in cfglayout mode does not matter, so the fallthrough
2900 edge can go to any basic block (and not just to bb->next_bb, like in
2902 else if (single_pred_p (else_edge
->dest
)
2903 && single_succ_p (else_edge
->dest
)
2904 && single_succ (else_edge
->dest
) == then_edge
->dest
)
2906 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2907 To make this work, we have to invert the THEN and ELSE blocks
2908 and reverse the jump condition. */
2909 then_bb
= else_edge
->dest
;
2910 else_bb
= NULL_BLOCK
;
2911 join_bb
= single_succ (then_bb
);
2912 then_else_reversed
= true;
2915 /* Not a form we can handle. */
2918 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2919 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
2922 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
2925 num_possible_if_blocks
++;
2930 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2931 (else_bb
) ? "-ELSE" : "",
2932 pass
, test_bb
->index
, then_bb
->index
);
2935 fprintf (dump_file
, ", else %d", else_bb
->index
);
2937 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
2940 /* If the conditional jump is more than just a conditional
2941 jump, then we can not do if-conversion on this block. */
2942 jump
= BB_END (test_bb
);
2943 if (! onlyjump_p (jump
))
2946 /* If this is not a standard conditional jump, we can't parse it. */
2947 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
2951 /* We must be comparing objects whose modes imply the size. */
2952 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
2955 /* Initialize an IF_INFO struct to pass around. */
2956 memset (&if_info
, 0, sizeof if_info
);
2957 if_info
.test_bb
= test_bb
;
2958 if_info
.then_bb
= then_bb
;
2959 if_info
.else_bb
= else_bb
;
2960 if_info
.join_bb
= join_bb
;
2961 if_info
.cond
= cond
;
2962 if_info
.cond_earliest
= cond_earliest
;
2963 if_info
.jump
= jump
;
2964 if_info
.then_else_reversed
= then_else_reversed
;
2965 if_info
.branch_cost
= BRANCH_COST (optimize_bb_for_speed_p (test_bb
),
2966 predictable_edge_p (then_edge
));
2968 /* Do the real work. */
2970 if (noce_process_if_block (&if_info
))
2973 if (HAVE_conditional_move
2974 && cond_move_process_if_block (&if_info
))
2981 /* Merge the blocks and mark for local life update. */
2984 merge_if_block (struct ce_if_block
* ce_info
)
2986 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
2987 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
2988 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
2989 basic_block join_bb
= ce_info
->join_bb
; /* join block */
2990 basic_block combo_bb
;
2992 /* All block merging is done into the lower block numbers. */
2995 df_set_bb_dirty (test_bb
);
2997 /* Merge any basic blocks to handle && and || subtests. Each of
2998 the blocks are on the fallthru path from the predecessor block. */
2999 if (ce_info
->num_multiple_test_blocks
> 0)
3001 basic_block bb
= test_bb
;
3002 basic_block last_test_bb
= ce_info
->last_test_bb
;
3003 basic_block fallthru
= block_fallthru (bb
);
3008 fallthru
= block_fallthru (bb
);
3009 merge_blocks (combo_bb
, bb
);
3012 while (bb
!= last_test_bb
);
3015 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3016 label, but it might if there were || tests. That label's count should be
3017 zero, and it normally should be removed. */
3021 merge_blocks (combo_bb
, then_bb
);
3025 /* The ELSE block, if it existed, had a label. That label count
3026 will almost always be zero, but odd things can happen when labels
3027 get their addresses taken. */
3030 merge_blocks (combo_bb
, else_bb
);
3034 /* If there was no join block reported, that means it was not adjacent
3035 to the others, and so we cannot merge them. */
3039 rtx last
= BB_END (combo_bb
);
3041 /* The outgoing edge for the current COMBO block should already
3042 be correct. Verify this. */
3043 if (EDGE_COUNT (combo_bb
->succs
) == 0)
3044 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
3045 || (NONJUMP_INSN_P (last
)
3046 && GET_CODE (PATTERN (last
)) == TRAP_IF
3047 && (TRAP_CONDITION (PATTERN (last
))
3048 == const_true_rtx
)));
3051 /* There should still be something at the end of the THEN or ELSE
3052 blocks taking us to our final destination. */
3053 gcc_assert (JUMP_P (last
)
3054 || (EDGE_SUCC (combo_bb
, 0)->dest
== EXIT_BLOCK_PTR
3056 && SIBLING_CALL_P (last
))
3057 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
3058 && can_throw_internal (last
)));
3061 /* The JOIN block may have had quite a number of other predecessors too.
3062 Since we've already merged the TEST, THEN and ELSE blocks, we should
3063 have only one remaining edge from our if-then-else diamond. If there
3064 is more than one remaining edge, it must come from elsewhere. There
3065 may be zero incoming edges if the THEN block didn't actually join
3066 back up (as with a call to a non-return function). */
3067 else if (EDGE_COUNT (join_bb
->preds
) < 2
3068 && join_bb
!= EXIT_BLOCK_PTR
)
3070 /* We can merge the JOIN cleanly and update the dataflow try
3071 again on this pass.*/
3072 merge_blocks (combo_bb
, join_bb
);
3077 /* We cannot merge the JOIN. */
3079 /* The outgoing edge for the current COMBO block should already
3080 be correct. Verify this. */
3081 gcc_assert (single_succ_p (combo_bb
)
3082 && single_succ (combo_bb
) == join_bb
);
3084 /* Remove the jump and cruft from the end of the COMBO block. */
3085 if (join_bb
!= EXIT_BLOCK_PTR
)
3086 tidy_fallthru_edge (single_succ_edge (combo_bb
));
3089 num_updated_if_blocks
++;
3092 /* Find a block ending in a simple IF condition and try to transform it
3093 in some way. When converting a multi-block condition, put the new code
3094 in the first such block and delete the rest. Return a pointer to this
3095 first block if some transformation was done. Return NULL otherwise. */
3098 find_if_header (basic_block test_bb
, int pass
)
3100 ce_if_block_t ce_info
;
3104 /* The kind of block we're looking for has exactly two successors. */
3105 if (EDGE_COUNT (test_bb
->succs
) != 2)
3108 then_edge
= EDGE_SUCC (test_bb
, 0);
3109 else_edge
= EDGE_SUCC (test_bb
, 1);
3111 if (df_get_bb_dirty (then_edge
->dest
))
3113 if (df_get_bb_dirty (else_edge
->dest
))
3116 /* Neither edge should be abnormal. */
3117 if ((then_edge
->flags
& EDGE_COMPLEX
)
3118 || (else_edge
->flags
& EDGE_COMPLEX
))
3121 /* Nor exit the loop. */
3122 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
3123 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
3126 /* The THEN edge is canonically the one that falls through. */
3127 if (then_edge
->flags
& EDGE_FALLTHRU
)
3129 else if (else_edge
->flags
& EDGE_FALLTHRU
)
3132 else_edge
= then_edge
;
3136 /* Otherwise this must be a multiway branch of some sort. */
3139 memset (&ce_info
, 0, sizeof (ce_info
));
3140 ce_info
.test_bb
= test_bb
;
3141 ce_info
.then_bb
= then_edge
->dest
;
3142 ce_info
.else_bb
= else_edge
->dest
;
3143 ce_info
.pass
= pass
;
3145 #ifdef IFCVT_INIT_EXTRA_FIELDS
3146 IFCVT_INIT_EXTRA_FIELDS (&ce_info
);
3149 if (!reload_completed
3150 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
3153 if (reload_completed
3154 && targetm
.have_conditional_execution ()
3155 && cond_exec_find_if_block (&ce_info
))
3159 && optab_handler (ctrap_optab
, word_mode
)->insn_code
!= CODE_FOR_nothing
3160 && find_cond_trap (test_bb
, then_edge
, else_edge
))
3163 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
3164 && (reload_completed
|| !targetm
.have_conditional_execution ()))
3166 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
3168 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
3176 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
3177 /* Set this so we continue looking. */
3178 cond_exec_changed_p
= TRUE
;
3179 return ce_info
.test_bb
;
3182 /* Return true if a block has two edges, one of which falls through to the next
3183 block, and the other jumps to a specific block, so that we can tell if the
3184 block is part of an && test or an || test. Returns either -1 or the number
3185 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3188 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
3191 int fallthru_p
= FALSE
;
3198 if (!cur_bb
|| !target_bb
)
3201 /* If no edges, obviously it doesn't jump or fallthru. */
3202 if (EDGE_COUNT (cur_bb
->succs
) == 0)
3205 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
3207 if (cur_edge
->flags
& EDGE_COMPLEX
)
3208 /* Anything complex isn't what we want. */
3211 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
3214 else if (cur_edge
->dest
== target_bb
)
3221 if ((jump_p
& fallthru_p
) == 0)
3224 /* Don't allow calls in the block, since this is used to group && and ||
3225 together for conditional execution support. ??? we should support
3226 conditional execution support across calls for IA-64 some day, but
3227 for now it makes the code simpler. */
3228 end
= BB_END (cur_bb
);
3229 insn
= BB_HEAD (cur_bb
);
3231 while (insn
!= NULL_RTX
)
3238 && !DEBUG_INSN_P (insn
)
3239 && GET_CODE (PATTERN (insn
)) != USE
3240 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3246 insn
= NEXT_INSN (insn
);
3252 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3253 block. If so, we'll try to convert the insns to not require the branch.
3254 Return TRUE if we were successful at converting the block. */
3257 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
3259 basic_block test_bb
= ce_info
->test_bb
;
3260 basic_block then_bb
= ce_info
->then_bb
;
3261 basic_block else_bb
= ce_info
->else_bb
;
3262 basic_block join_bb
= NULL_BLOCK
;
3267 ce_info
->last_test_bb
= test_bb
;
3269 /* We only ever should get here after reload,
3270 and if we have conditional execution. */
3271 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
3273 /* Discover if any fall through predecessors of the current test basic block
3274 were && tests (which jump to the else block) or || tests (which jump to
3276 if (single_pred_p (test_bb
)
3277 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
3279 basic_block bb
= single_pred (test_bb
);
3280 basic_block target_bb
;
3281 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
3284 /* Determine if the preceding block is an && or || block. */
3285 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
3287 ce_info
->and_and_p
= TRUE
;
3288 target_bb
= else_bb
;
3290 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
3292 ce_info
->and_and_p
= FALSE
;
3293 target_bb
= then_bb
;
3296 target_bb
= NULL_BLOCK
;
3298 if (target_bb
&& n_insns
<= max_insns
)
3300 int total_insns
= 0;
3303 ce_info
->last_test_bb
= test_bb
;
3305 /* Found at least one && or || block, look for more. */
3308 ce_info
->test_bb
= test_bb
= bb
;
3309 total_insns
+= n_insns
;
3312 if (!single_pred_p (bb
))
3315 bb
= single_pred (bb
);
3316 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
3318 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
3320 ce_info
->num_multiple_test_blocks
= blocks
;
3321 ce_info
->num_multiple_test_insns
= total_insns
;
3323 if (ce_info
->and_and_p
)
3324 ce_info
->num_and_and_blocks
= blocks
;
3326 ce_info
->num_or_or_blocks
= blocks
;
3330 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3331 other than any || blocks which jump to the THEN block. */
3332 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
3335 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3336 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
3338 if (cur_edge
->flags
& EDGE_COMPLEX
)
3342 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
3344 if (cur_edge
->flags
& EDGE_COMPLEX
)
3348 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3349 if (EDGE_COUNT (then_bb
->succs
) > 0
3350 && (!single_succ_p (then_bb
)
3351 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3352 || (epilogue_completed
3353 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
3356 /* If the THEN block has no successors, conditional execution can still
3357 make a conditional call. Don't do this unless the ELSE block has
3358 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3359 Check for the last insn of the THEN block being an indirect jump, which
3360 is listed as not having any successors, but confuses the rest of the CE
3361 code processing. ??? we should fix this in the future. */
3362 if (EDGE_COUNT (then_bb
->succs
) == 0)
3364 if (single_pred_p (else_bb
))
3366 rtx last_insn
= BB_END (then_bb
);
3369 && NOTE_P (last_insn
)
3370 && last_insn
!= BB_HEAD (then_bb
))
3371 last_insn
= PREV_INSN (last_insn
);
3374 && JUMP_P (last_insn
)
3375 && ! simplejump_p (last_insn
))
3379 else_bb
= NULL_BLOCK
;
3385 /* If the THEN block's successor is the other edge out of the TEST block,
3386 then we have an IF-THEN combo without an ELSE. */
3387 else if (single_succ (then_bb
) == else_bb
)
3390 else_bb
= NULL_BLOCK
;
3393 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3394 has exactly one predecessor and one successor, and the outgoing edge
3395 is not complex, then we have an IF-THEN-ELSE combo. */
3396 else if (single_succ_p (else_bb
)
3397 && single_succ (then_bb
) == single_succ (else_bb
)
3398 && single_pred_p (else_bb
)
3399 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3400 && !(epilogue_completed
3401 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
3402 join_bb
= single_succ (else_bb
);
3404 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3408 num_possible_if_blocks
++;
3413 "\nIF-THEN%s block found, pass %d, start block %d "
3414 "[insn %d], then %d [%d]",
3415 (else_bb
) ? "-ELSE" : "",
3418 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
3420 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
3423 fprintf (dump_file
, ", else %d [%d]",
3425 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
3427 fprintf (dump_file
, ", join %d [%d]",
3429 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
3431 if (ce_info
->num_multiple_test_blocks
> 0)
3432 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
3433 ce_info
->num_multiple_test_blocks
,
3434 (ce_info
->and_and_p
) ? "&&" : "||",
3435 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
3436 ce_info
->last_test_bb
->index
,
3437 ((BB_HEAD (ce_info
->last_test_bb
))
3438 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
3441 fputc ('\n', dump_file
);
3444 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3445 first condition for free, since we've already asserted that there's a
3446 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3447 we checked the FALLTHRU flag, those are already adjacent to the last IF
3449 /* ??? As an enhancement, move the ELSE block. Have to deal with
3450 BLOCK notes, if by no other means than backing out the merge if they
3451 exist. Sticky enough I don't want to think about it now. */
3453 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
3455 if ((next
= next
->next_bb
) != join_bb
&& join_bb
!= EXIT_BLOCK_PTR
)
3463 /* Do the real work. */
3465 ce_info
->else_bb
= else_bb
;
3466 ce_info
->join_bb
= join_bb
;
3468 /* If we have && and || tests, try to first handle combining the && and ||
3469 tests into the conditional code, and if that fails, go back and handle
3470 it without the && and ||, which at present handles the && case if there
3471 was no ELSE block. */
3472 if (cond_exec_process_if_block (ce_info
, TRUE
))
3475 if (ce_info
->num_multiple_test_blocks
)
3479 if (cond_exec_process_if_block (ce_info
, FALSE
))
3486 /* Convert a branch over a trap, or a branch
3487 to a trap, into a conditional trap. */
3490 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
3492 basic_block then_bb
= then_edge
->dest
;
3493 basic_block else_bb
= else_edge
->dest
;
3494 basic_block other_bb
, trap_bb
;
3495 rtx trap
, jump
, cond
, cond_earliest
, seq
;
3498 /* Locate the block with the trap instruction. */
3499 /* ??? While we look for no successors, we really ought to allow
3500 EH successors. Need to fix merge_if_block for that to work. */
3501 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
3502 trap_bb
= then_bb
, other_bb
= else_bb
;
3503 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
3504 trap_bb
= else_bb
, other_bb
= then_bb
;
3510 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
3511 test_bb
->index
, trap_bb
->index
);
3514 /* If this is not a standard conditional jump, we can't parse it. */
3515 jump
= BB_END (test_bb
);
3516 cond
= noce_get_condition (jump
, &cond_earliest
, false);
3520 /* If the conditional jump is more than just a conditional jump, then
3521 we can not do if-conversion on this block. */
3522 if (! onlyjump_p (jump
))
3525 /* We must be comparing objects whose modes imply the size. */
3526 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3529 /* Reverse the comparison code, if necessary. */
3530 code
= GET_CODE (cond
);
3531 if (then_bb
== trap_bb
)
3533 code
= reversed_comparison_code (cond
, jump
);
3534 if (code
== UNKNOWN
)
3538 /* Attempt to generate the conditional trap. */
3539 seq
= gen_cond_trap (code
, copy_rtx (XEXP (cond
, 0)),
3540 copy_rtx (XEXP (cond
, 1)),
3541 TRAP_CODE (PATTERN (trap
)));
3545 /* Emit the new insns before cond_earliest. */
3546 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATOR (trap
));
3548 /* Delete the trap block if possible. */
3549 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
3550 df_set_bb_dirty (test_bb
);
3551 df_set_bb_dirty (then_bb
);
3552 df_set_bb_dirty (else_bb
);
3554 if (EDGE_COUNT (trap_bb
->preds
) == 0)
3556 delete_basic_block (trap_bb
);
3560 /* Wire together the blocks again. */
3561 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3562 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
3567 lab
= JUMP_LABEL (jump
);
3568 newjump
= emit_jump_insn_after (gen_jump (lab
), jump
);
3569 LABEL_NUSES (lab
) += 1;
3570 JUMP_LABEL (newjump
) = lab
;
3571 emit_barrier_after (newjump
);
3575 if (can_merge_blocks_p (test_bb
, other_bb
))
3577 merge_blocks (test_bb
, other_bb
);
3581 num_updated_if_blocks
++;
3585 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3589 block_has_only_trap (basic_block bb
)
3593 /* We're not the exit block. */
3594 if (bb
== EXIT_BLOCK_PTR
)
3597 /* The block must have no successors. */
3598 if (EDGE_COUNT (bb
->succs
) > 0)
3601 /* The only instruction in the THEN block must be the trap. */
3602 trap
= first_active_insn (bb
);
3603 if (! (trap
== BB_END (bb
)
3604 && GET_CODE (PATTERN (trap
)) == TRAP_IF
3605 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
3611 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3612 transformable, but not necessarily the other. There need be no
3615 Return TRUE if we were successful at converting the block.
3617 Cases we'd like to look at:
3620 if (test) goto over; // x not live
3628 if (! test) goto label;
3631 if (test) goto E; // x not live
3645 (3) // This one's really only interesting for targets that can do
3646 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3647 // it results in multiple branches on a cache line, which often
3648 // does not sit well with predictors.
3650 if (test1) goto E; // predicted not taken
3666 (A) Don't do (2) if the branch is predicted against the block we're
3667 eliminating. Do it anyway if we can eliminate a branch; this requires
3668 that the sole successor of the eliminated block postdominate the other
3671 (B) With CE, on (3) we can steal from both sides of the if, creating
3680 Again, this is most useful if J postdominates.
3682 (C) CE substitutes for helpful life information.
3684 (D) These heuristics need a lot of work. */
3686 /* Tests for case 1 above. */
3689 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3691 basic_block then_bb
= then_edge
->dest
;
3692 basic_block else_bb
= else_edge
->dest
;
3696 /* If we are partitioning hot/cold basic blocks, we don't want to
3697 mess up unconditional or indirect jumps that cross between hot
3700 Basic block partitioning may result in some jumps that appear to
3701 be optimizable (or blocks that appear to be mergeable), but which really
3702 must be left untouched (they are required to make it safely across
3703 partition boundaries). See the comments at the top of
3704 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3706 if ((BB_END (then_bb
)
3707 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3708 || (BB_END (test_bb
)
3709 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3710 || (BB_END (else_bb
)
3711 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3715 /* THEN has one successor. */
3716 if (!single_succ_p (then_bb
))
3719 /* THEN does not fall through, but is not strange either. */
3720 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
3723 /* THEN has one predecessor. */
3724 if (!single_pred_p (then_bb
))
3727 /* THEN must do something. */
3728 if (forwarder_block_p (then_bb
))
3731 num_possible_if_blocks
++;
3734 "\nIF-CASE-1 found, start %d, then %d\n",
3735 test_bb
->index
, then_bb
->index
);
3737 /* THEN is small. */
3738 if (! cheap_bb_rtx_cost_p (then_bb
,
3739 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
3740 predictable_edge_p (then_edge
)))))
3743 /* Registers set are dead, or are predicable. */
3744 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
3745 single_succ (then_bb
), 1))
3748 /* Conversion went ok, including moving the insns and fixing up the
3749 jump. Adjust the CFG to match. */
3751 /* We can avoid creating a new basic block if then_bb is immediately
3752 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3755 if (then_bb
->next_bb
== else_bb
3756 && then_bb
->prev_bb
== test_bb
3757 && else_bb
!= EXIT_BLOCK_PTR
)
3759 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
3763 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
3766 df_set_bb_dirty (test_bb
);
3767 df_set_bb_dirty (else_bb
);
3769 then_bb_index
= then_bb
->index
;
3770 delete_basic_block (then_bb
);
3772 /* Make rest of code believe that the newly created block is the THEN_BB
3773 block we removed. */
3776 df_bb_replace (then_bb_index
, new_bb
);
3777 /* Since the fallthru edge was redirected from test_bb to new_bb,
3778 we need to ensure that new_bb is in the same partition as
3779 test bb (you can not fall through across section boundaries). */
3780 BB_COPY_PARTITION (new_bb
, test_bb
);
3784 num_updated_if_blocks
++;
3789 /* Test for case 2 above. */
3792 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3794 basic_block then_bb
= then_edge
->dest
;
3795 basic_block else_bb
= else_edge
->dest
;
3799 /* If we are partitioning hot/cold basic blocks, we don't want to
3800 mess up unconditional or indirect jumps that cross between hot
3803 Basic block partitioning may result in some jumps that appear to
3804 be optimizable (or blocks that appear to be mergeable), but which really
3805 must be left untouched (they are required to make it safely across
3806 partition boundaries). See the comments at the top of
3807 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3809 if ((BB_END (then_bb
)
3810 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3811 || (BB_END (test_bb
)
3812 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3813 || (BB_END (else_bb
)
3814 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3818 /* ELSE has one successor. */
3819 if (!single_succ_p (else_bb
))
3822 else_succ
= single_succ_edge (else_bb
);
3824 /* ELSE outgoing edge is not complex. */
3825 if (else_succ
->flags
& EDGE_COMPLEX
)
3828 /* ELSE has one predecessor. */
3829 if (!single_pred_p (else_bb
))
3832 /* THEN is not EXIT. */
3833 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
3836 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3837 note
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
3838 if (note
&& INTVAL (XEXP (note
, 0)) >= REG_BR_PROB_BASE
/ 2)
3840 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
3841 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
3847 num_possible_if_blocks
++;
3850 "\nIF-CASE-2 found, start %d, else %d\n",
3851 test_bb
->index
, else_bb
->index
);
3853 /* ELSE is small. */
3854 if (! cheap_bb_rtx_cost_p (else_bb
,
3855 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
3856 predictable_edge_p (else_edge
)))))
3859 /* Registers set are dead, or are predicable. */
3860 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
->dest
, 0))
3863 /* Conversion went ok, including moving the insns and fixing up the
3864 jump. Adjust the CFG to match. */
3866 df_set_bb_dirty (test_bb
);
3867 df_set_bb_dirty (then_bb
);
3868 delete_basic_block (else_bb
);
3871 num_updated_if_blocks
++;
3873 /* ??? We may now fallthru from one of THEN's successors into a join
3874 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3879 /* A subroutine of dead_or_predicable called through for_each_rtx.
3880 Return 1 if a memory is found. */
3883 find_memory (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
3888 /* Used by the code above to perform the actual rtl transformations.
3889 Return TRUE if successful.
3891 TEST_BB is the block containing the conditional branch. MERGE_BB
3892 is the block containing the code to manipulate. NEW_DEST is the
3893 label TEST_BB should be branching to after the conversion.
3894 REVERSEP is true if the sense of the branch should be reversed. */
3897 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
3898 basic_block other_bb
, basic_block new_dest
, int reversep
)
3900 rtx head
, end
, jump
, earliest
= NULL_RTX
, old_dest
, new_label
= NULL_RTX
;
3901 /* Number of pending changes. */
3902 int n_validated_changes
= 0;
3904 jump
= BB_END (test_bb
);
3906 /* Find the extent of the real code in the merge block. */
3907 head
= BB_HEAD (merge_bb
);
3908 end
= BB_END (merge_bb
);
3910 while (DEBUG_INSN_P (end
) && end
!= head
)
3911 end
= PREV_INSN (end
);
3913 /* If merge_bb ends with a tablejump, predicating/moving insn's
3914 into test_bb and then deleting merge_bb will result in the jumptable
3915 that follows merge_bb being removed along with merge_bb and then we
3916 get an unresolved reference to the jumptable. */
3917 if (tablejump_p (end
, NULL
, NULL
))
3921 head
= NEXT_INSN (head
);
3922 while (DEBUG_INSN_P (head
) && head
!= end
)
3923 head
= NEXT_INSN (head
);
3928 head
= end
= NULL_RTX
;
3931 head
= NEXT_INSN (head
);
3932 while (DEBUG_INSN_P (head
) && head
!= end
)
3933 head
= NEXT_INSN (head
);
3940 head
= end
= NULL_RTX
;
3943 end
= PREV_INSN (end
);
3944 while (DEBUG_INSN_P (end
) && end
!= head
)
3945 end
= PREV_INSN (end
);
3948 /* Disable handling dead code by conditional execution if the machine needs
3949 to do anything funny with the tests, etc. */
3950 #ifndef IFCVT_MODIFY_TESTS
3951 if (targetm
.have_conditional_execution ())
3953 /* In the conditional execution case, we have things easy. We know
3954 the condition is reversible. We don't have to check life info
3955 because we're going to conditionally execute the code anyway.
3956 All that's left is making sure the insns involved can actually
3961 cond
= cond_exec_get_condition (jump
);
3965 prob_val
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
3967 prob_val
= XEXP (prob_val
, 0);
3971 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
3974 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
3977 prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (prob_val
));
3980 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
3981 && verify_changes (0))
3982 n_validated_changes
= num_validated_changes ();
3989 /* Try the NCE path if the CE path did not result in any changes. */
3990 if (n_validated_changes
== 0)
3992 /* In the non-conditional execution case, we have to verify that there
3993 are no trapping operations, no calls, no references to memory, and
3994 that any registers modified are dead at the branch site. */
3996 rtx insn
, cond
, prev
;
3997 bitmap merge_set
, merge_set_noclobber
, test_live
, test_set
;
3998 unsigned i
, fail
= 0;
4001 /* Check for no calls or trapping operations. */
4002 for (insn
= head
; ; insn
= NEXT_INSN (insn
))
4006 if (NONDEBUG_INSN_P (insn
))
4008 if (may_trap_p (PATTERN (insn
)))
4011 /* ??? Even non-trapping memories such as stack frame
4012 references must be avoided. For stores, we collect
4013 no lifetime info; for reads, we'd have to assert
4014 true_dependence false against every store in the
4016 if (for_each_rtx (&PATTERN (insn
), find_memory
, NULL
))
4023 if (! any_condjump_p (jump
))
4026 /* Find the extent of the conditional. */
4027 cond
= noce_get_condition (jump
, &earliest
, false);
4032 MERGE_SET = set of registers set in MERGE_BB
4033 MERGE_SET_NOCLOBBER = like MERGE_SET, but only includes registers
4034 that are really set, not just clobbered.
4035 TEST_LIVE = set of registers live at EARLIEST
4036 TEST_SET = set of registers set between EARLIEST and the
4037 end of the block. */
4039 merge_set
= BITMAP_ALLOC (®_obstack
);
4040 merge_set_noclobber
= BITMAP_ALLOC (®_obstack
);
4041 test_live
= BITMAP_ALLOC (®_obstack
);
4042 test_set
= BITMAP_ALLOC (®_obstack
);
4044 /* ??? bb->local_set is only valid during calculate_global_regs_live,
4045 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
4046 since we've already asserted that MERGE_BB is small. */
4047 /* If we allocated new pseudos (e.g. in the conditional move
4048 expander called from noce_emit_cmove), we must resize the
4050 if (max_regno
< max_reg_num ())
4051 max_regno
= max_reg_num ();
4053 FOR_BB_INSNS (merge_bb
, insn
)
4055 if (NONDEBUG_INSN_P (insn
))
4057 df_simulate_find_defs (insn
, merge_set
);
4058 df_simulate_find_noclobber_defs (insn
, merge_set_noclobber
);
4062 /* For small register class machines, don't lengthen lifetimes of
4063 hard registers before reload. */
4064 if (! reload_completed
4065 && targetm
.small_register_classes_for_mode_p (VOIDmode
))
4067 EXECUTE_IF_SET_IN_BITMAP (merge_set_noclobber
, 0, i
, bi
)
4069 if (i
< FIRST_PSEUDO_REGISTER
4071 && ! global_regs
[i
])
4076 /* For TEST, we're interested in a range of insns, not a whole block.
4077 Moreover, we're interested in the insns live from OTHER_BB. */
4079 /* The loop below takes the set of live registers
4080 after JUMP, and calculates the live set before EARLIEST. */
4081 bitmap_copy (test_live
, df_get_live_in (other_bb
));
4082 df_simulate_initialize_backwards (test_bb
, test_live
);
4083 for (insn
= jump
; ; insn
= prev
)
4087 df_simulate_find_defs (insn
, test_set
);
4088 df_simulate_one_insn_backwards (test_bb
, insn
, test_live
);
4090 prev
= PREV_INSN (insn
);
4091 if (insn
== earliest
)
4095 /* We can perform the transformation if
4096 MERGE_SET_NOCLOBBER & TEST_SET
4098 MERGE_SET & TEST_LIVE)
4100 TEST_SET & DF_LIVE_IN (merge_bb)
4103 if (bitmap_intersect_p (test_set
, merge_set_noclobber
)
4104 || bitmap_intersect_p (test_live
, merge_set
)
4105 || bitmap_intersect_p (test_set
, df_get_live_in (merge_bb
)))
4108 BITMAP_FREE (merge_set_noclobber
);
4109 BITMAP_FREE (merge_set
);
4110 BITMAP_FREE (test_live
);
4111 BITMAP_FREE (test_set
);
4118 /* We don't want to use normal invert_jump or redirect_jump because
4119 we don't want to delete_insn called. Also, we want to do our own
4120 change group management. */
4122 old_dest
= JUMP_LABEL (jump
);
4123 if (other_bb
!= new_dest
)
4125 new_label
= block_label (new_dest
);
4127 ? ! invert_jump_1 (jump
, new_label
)
4128 : ! redirect_jump_1 (jump
, new_label
))
4132 if (verify_changes (n_validated_changes
))
4133 confirm_change_group ();
4137 if (other_bb
!= new_dest
)
4139 redirect_jump_2 (jump
, old_dest
, new_label
, 0, reversep
);
4141 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
4144 gcov_type count
, probability
;
4145 count
= BRANCH_EDGE (test_bb
)->count
;
4146 BRANCH_EDGE (test_bb
)->count
= FALLTHRU_EDGE (test_bb
)->count
;
4147 FALLTHRU_EDGE (test_bb
)->count
= count
;
4148 probability
= BRANCH_EDGE (test_bb
)->probability
;
4149 BRANCH_EDGE (test_bb
)->probability
4150 = FALLTHRU_EDGE (test_bb
)->probability
;
4151 FALLTHRU_EDGE (test_bb
)->probability
= probability
;
4152 update_br_prob_note (test_bb
);
4156 /* Move the insns out of MERGE_BB to before the branch. */
4161 if (end
== BB_END (merge_bb
))
4162 BB_END (merge_bb
) = PREV_INSN (head
);
4164 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4165 notes might become invalid. */
4171 if (! INSN_P (insn
))
4173 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
4176 set
= single_set (insn
);
4177 if (!set
|| !function_invariant_p (SET_SRC (set
))
4178 || !function_invariant_p (XEXP (note
, 0)))
4179 remove_note (insn
, note
);
4180 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
4182 reorder_insns (head
, end
, PREV_INSN (earliest
));
4185 /* Remove the jump and edge if we can. */
4186 if (other_bb
== new_dest
)
4189 remove_edge (BRANCH_EDGE (test_bb
));
4190 /* ??? Can't merge blocks here, as then_bb is still in use.
4191 At minimum, the merge will get done just before bb-reorder. */
4201 /* Main entry point for all if-conversion. */
4211 df_live_add_problem ();
4212 df_live_set_all_dirty ();
4215 num_possible_if_blocks
= 0;
4216 num_updated_if_blocks
= 0;
4217 num_true_changes
= 0;
4219 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4220 mark_loop_exit_edges ();
4221 loop_optimizer_finalize ();
4222 free_dominance_info (CDI_DOMINATORS
);
4224 /* Compute postdominators. */
4225 calculate_dominance_info (CDI_POST_DOMINATORS
);
4227 df_set_flags (DF_LR_RUN_DCE
);
4229 /* Go through each of the basic blocks looking for things to convert. If we
4230 have conditional execution, we make multiple passes to allow us to handle
4231 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4236 /* Only need to do dce on the first pass. */
4237 df_clear_flags (DF_LR_RUN_DCE
);
4238 cond_exec_changed_p
= FALSE
;
4241 #ifdef IFCVT_MULTIPLE_DUMPS
4242 if (dump_file
&& pass
> 1)
4243 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
4249 while (!df_get_bb_dirty (bb
)
4250 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
4254 #ifdef IFCVT_MULTIPLE_DUMPS
4255 if (dump_file
&& cond_exec_changed_p
)
4257 if (dump_flags
& TDF_SLIM
)
4258 print_rtl_slim_with_bb (dump_file
, get_insns (), dump_flags
);
4260 print_rtl_with_bb (dump_file
, get_insns ());
4264 while (cond_exec_changed_p
);
4266 #ifdef IFCVT_MULTIPLE_DUMPS
4268 fprintf (dump_file
, "\n\n========== no more changes\n");
4271 free_dominance_info (CDI_POST_DOMINATORS
);
4276 clear_aux_for_blocks ();
4278 /* If we allocated new pseudos, we must resize the array for sched1. */
4279 if (max_regno
< max_reg_num ())
4280 max_regno
= max_reg_num ();
4282 /* Write the final stats. */
4283 if (dump_file
&& num_possible_if_blocks
> 0)
4286 "\n%d possible IF blocks searched.\n",
4287 num_possible_if_blocks
);
4289 "%d IF blocks converted.\n",
4290 num_updated_if_blocks
);
4292 "%d true changes made.\n\n\n",
4297 df_remove_problem (df_live
);
4299 #ifdef ENABLE_CHECKING
4300 verify_flow_info ();
4305 gate_handle_if_conversion (void)
4307 return (optimize
> 0)
4308 && dbg_cnt (if_conversion
);
4311 /* If-conversion and CFG cleanup. */
4313 rest_of_handle_if_conversion (void)
4315 if (flag_if_conversion
)
4318 dump_flow_info (dump_file
, dump_flags
);
4319 cleanup_cfg (CLEANUP_EXPENSIVE
);
4327 struct rtl_opt_pass pass_rtl_ifcvt
=
4332 gate_handle_if_conversion
, /* gate */
4333 rest_of_handle_if_conversion
, /* execute */
4336 0, /* static_pass_number */
4337 TV_IFCVT
, /* tv_id */
4338 0, /* properties_required */
4339 0, /* properties_provided */
4340 0, /* properties_destroyed */
4341 0, /* todo_flags_start */
4342 TODO_df_finish
| TODO_verify_rtl_sharing
|
4343 TODO_dump_func
/* todo_flags_finish */
4348 gate_handle_if_after_combine (void)
4350 return optimize
> 0 && flag_if_conversion
4351 && dbg_cnt (if_after_combine
);
4355 /* Rerun if-conversion, as combine may have simplified things enough
4356 to now meet sequence length restrictions. */
4358 rest_of_handle_if_after_combine (void)
4364 struct rtl_opt_pass pass_if_after_combine
=
4369 gate_handle_if_after_combine
, /* gate */
4370 rest_of_handle_if_after_combine
, /* execute */
4373 0, /* static_pass_number */
4374 TV_IFCVT
, /* tv_id */
4375 0, /* properties_required */
4376 0, /* properties_provided */
4377 0, /* properties_destroyed */
4378 0, /* todo_flags_start */
4379 TODO_df_finish
| TODO_verify_rtl_sharing
|
4381 TODO_ggc_collect
/* todo_flags_finish */
4387 gate_handle_if_after_reload (void)
4389 return optimize
> 0 && flag_if_conversion2
4390 && dbg_cnt (if_after_reload
);
4394 rest_of_handle_if_after_reload (void)
4401 struct rtl_opt_pass pass_if_after_reload
=
4406 gate_handle_if_after_reload
, /* gate */
4407 rest_of_handle_if_after_reload
, /* execute */
4410 0, /* static_pass_number */
4411 TV_IFCVT2
, /* tv_id */
4412 0, /* properties_required */
4413 0, /* properties_provided */
4414 0, /* properties_destroyed */
4415 0, /* todo_flags_start */
4416 TODO_df_finish
| TODO_verify_rtl_sharing
|
4418 TODO_ggc_collect
/* todo_flags_finish */