1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "basic-block.h"
41 #include "tree-pass.h"
45 /* This pass does simple forward propagation and simplification when an
46 operand of an insn can only come from a single def. This pass uses
47 df.c, so it is global. However, we only do limited analysis of
48 available expressions.
50 1) The pass tries to propagate the source of the def into the use,
51 and checks if the result is independent of the substituted value.
52 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
53 zero, independent of the source register.
55 In particular, we propagate constants into the use site. Sometimes
56 RTL expansion did not put the constant in the same insn on purpose,
57 to satisfy a predicate, and the result will fail to be recognized;
58 but this happens rarely and in this case we can still create a
59 REG_EQUAL note. For multi-word operations, this
61 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
62 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
63 (set (subreg:SI (reg:DI 122) 0)
64 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
65 (set (subreg:SI (reg:DI 122) 4)
66 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
68 can be simplified to the much simpler
70 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
71 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
73 This particular propagation is also effective at putting together
74 complex addressing modes. We are more aggressive inside MEMs, in
75 that all definitions are propagated if the use is in a MEM; if the
76 result is a valid memory address we check address_cost to decide
77 whether the substitution is worthwhile.
79 2) The pass propagates register copies. This is not as effective as
80 the copy propagation done by CSE's canon_reg, which works by walking
81 the instruction chain, it can help the other transformations.
83 We should consider removing this optimization, and instead reorder the
84 RTL passes, because GCSE does this transformation too. With some luck,
85 the CSE pass at the end of rest_of_handle_gcse could also go away.
87 3) The pass looks for paradoxical subregs that are actually unnecessary.
90 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
91 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
92 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
93 (subreg:SI (reg:QI 121) 0)))
95 are very common on machines that can only do word-sized operations.
96 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
97 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
98 we can replace the paradoxical subreg with simply (reg:WIDE M). The
99 above will simplify this to
101 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
105 where the first two insns are now dead.
107 We used to use reaching definitions to find which uses have a
108 single reaching definition (sounds obvious...), but this is too
109 complex a problem in nasty testcases like PR33928. Now we use the
110 multiple definitions problem in df-problems.c. The similarity
111 between that problem and SSA form creation is taken further, in
112 that fwprop does a dominator walk to create its chains; however,
113 instead of creating a PHI function where multiple definitions meet
114 I just punt and record only singleton use-def chains, which is
115 all that is needed by fwprop. */
118 static int num_changes
;
121 DEF_VEC_ALLOC_P(df_ref
,heap
);
122 static VEC(df_ref
,heap
) *use_def_ref
;
123 static VEC(df_ref
,heap
) *reg_defs
;
124 static VEC(df_ref
,heap
) *reg_defs_stack
;
126 /* The MD bitmaps are trimmed to include only live registers to cut
127 memory usage on testcases like insn-recog.c. Track live registers
128 in the basic block and do not perform forward propagation if the
129 destination is a dead pseudo occurring in a note. */
130 static bitmap local_md
;
131 static bitmap local_lr
;
133 /* Return the only def in USE's use-def chain, or NULL if there is
134 more than one def in the chain. */
137 get_def_for_use (df_ref use
)
139 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
143 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
144 TOP_FLAG says which artificials uses should be used, when DEF_REC
145 is an artificial def vector. LOCAL_MD is modified as after a
146 df_md_simulate_* function; we do more or less the same processing
147 done there, so we do not use those functions. */
149 #define DF_MD_GEN_FLAGS \
150 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
153 process_defs (df_ref
*def_rec
, int top_flag
)
156 while ((def
= *def_rec
++) != NULL
)
158 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
161 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
164 dregno
= DF_REF_REGNO (def
);
166 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
169 /* Do not store anything if "transitioning" from NULL to NULL. But
170 otherwise, push a special entry on the stack to tell the
171 leave_block callback that the entry in reg_defs was NULL. */
172 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
175 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
178 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
180 bitmap_set_bit (local_md
, dregno
);
181 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
185 bitmap_clear_bit (local_md
, dregno
);
186 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
192 /* Fill the use_def_ref vector with values for the uses in USE_REC,
193 taking reaching definitions info from LOCAL_MD and REG_DEFS.
194 TOP_FLAG says which artificials uses should be used, when USE_REC
195 is an artificial use vector. */
198 process_uses (df_ref
*use_rec
, int top_flag
)
201 while ((use
= *use_rec
++) != NULL
)
202 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
204 unsigned int uregno
= DF_REF_REGNO (use
);
205 if (VEC_index (df_ref
, reg_defs
, uregno
)
206 && !bitmap_bit_p (local_md
, uregno
)
207 && bitmap_bit_p (local_lr
, uregno
))
208 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
209 VEC_index (df_ref
, reg_defs
, uregno
));
215 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
218 int bb_index
= bb
->index
;
219 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
220 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
223 bitmap_copy (local_md
, md_bb_info
->in
);
224 bitmap_copy (local_lr
, lr_bb_info
->in
);
226 /* Push a marker for the leave_block callback. */
227 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
229 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
230 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb
, insn
)
239 unsigned int uid
= INSN_UID (insn
);
240 process_uses (DF_INSN_UID_USES (uid
), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
242 process_defs (DF_INSN_UID_DEFS (uid
), 0);
243 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
246 process_uses (df_get_artificial_uses (bb_index
), 0);
247 process_defs (df_get_artificial_defs (bb_index
), 0);
250 /* Pop the definitions created in this basic block when leaving its
254 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
255 basic_block bb ATTRIBUTE_UNUSED
)
258 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
260 unsigned int dregno
= DF_REF_REGNO (saved_def
);
262 /* See also process_defs. */
263 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
264 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
266 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
271 /* Build a vector holding the reaching definitions of uses reached by a
272 single dominating definition. */
275 build_single_def_use_links (void)
277 struct dom_walk_data walk_data
;
279 /* We use the multiple definitions problem to compute our restricted
281 df_set_flags (DF_EQ_NOTES
);
282 df_md_add_problem ();
283 df_note_add_problem ();
285 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
287 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
288 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
290 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
291 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
293 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
294 local_md
= BITMAP_ALLOC (NULL
);
295 local_lr
= BITMAP_ALLOC (NULL
);
297 /* Walk the dominator tree looking for single reaching definitions
298 dominating the uses. This is similar to how SSA form is built. */
299 walk_data
.dom_direction
= CDI_DOMINATORS
;
300 walk_data
.initialize_block_local_data
= NULL
;
301 walk_data
.before_dom_children
= single_def_use_enter_block
;
302 walk_data
.after_dom_children
= single_def_use_leave_block
;
304 init_walk_dominator_tree (&walk_data
);
305 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
306 fini_walk_dominator_tree (&walk_data
);
308 BITMAP_FREE (local_lr
);
309 BITMAP_FREE (local_md
);
310 VEC_free (df_ref
, heap
, reg_defs
);
311 VEC_free (df_ref
, heap
, reg_defs_stack
);
315 /* Do not try to replace constant addresses or addresses of local and
316 argument slots. These MEM expressions are made only once and inserted
317 in many instructions, as well as being used to control symbol table
318 output. It is not safe to clobber them.
320 There are some uncommon cases where the address is already in a register
321 for some reason, but we cannot take advantage of that because we have
322 no easy way to unshare the MEM. In addition, looking up all stack
323 addresses is costly. */
326 can_simplify_addr (rtx addr
)
330 if (CONSTANT_ADDRESS_P (addr
))
333 if (GET_CODE (addr
) == PLUS
)
334 reg
= XEXP (addr
, 0);
339 || (REGNO (reg
) != FRAME_POINTER_REGNUM
340 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
341 && REGNO (reg
) != ARG_POINTER_REGNUM
));
344 /* Returns a canonical version of X for the address, from the point of view,
345 that all multiplications are represented as MULT instead of the multiply
346 by a power of 2 being represented as ASHIFT.
348 Every ASHIFT we find has been made by simplify_gen_binary and was not
349 there before, so it is not shared. So we can do this in place. */
352 canonicalize_address (rtx x
)
355 switch (GET_CODE (x
))
358 if (CONST_INT_P (XEXP (x
, 1))
359 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
360 && INTVAL (XEXP (x
, 1)) >= 0)
362 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
364 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
372 if (GET_CODE (XEXP (x
, 0)) == PLUS
373 || GET_CODE (XEXP (x
, 0)) == ASHIFT
374 || GET_CODE (XEXP (x
, 0)) == CONST
)
375 canonicalize_address (XEXP (x
, 0));
389 /* OLD is a memory address. Return whether it is good to use NEW instead,
390 for a memory access in the given MODE. */
393 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
394 addr_space_t as
, bool speed
)
398 if (rtx_equal_p (old_rtx
, new_rtx
)
399 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
402 /* Copy propagation is always ok. */
403 if (REG_P (old_rtx
) && REG_P (new_rtx
))
406 /* Prefer the new address if it is less expensive. */
407 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
408 - address_cost (new_rtx
, mode
, as
, speed
));
410 /* If the addresses have equivalent cost, prefer the new address
411 if it has the highest `rtx_cost'. That has the potential of
412 eliminating the most insns without additional costs, and it
413 is the same that cse.c used to do. */
415 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
421 /* Flags for the last parameter of propagate_rtx_1. */
424 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
425 if it is false, propagate_rtx_1 returns false if, for at least
426 one occurrence OLD, it failed to collapse the result to a constant.
427 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
428 collapse to zero if replacing (reg:M B) with (reg:M A).
430 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
431 propagate_rtx_1 just tries to make cheaper and valid memory
435 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
436 outside memory addresses. This is needed because propagate_rtx_1 does
437 not do any analysis on memory; thus it is very conservative and in general
438 it will fail if non-read-only MEMs are found in the source expression.
440 PR_HANDLE_MEM is set when the source of the propagation was not
441 another MEM. Then, it is safe not to treat non-read-only MEMs as
442 ``opaque'' objects. */
445 /* Set when costs should be optimized for speed. */
446 PR_OPTIMIZE_FOR_SPEED
= 4
450 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
451 resulting expression. Replace *PX with a new RTL expression if an
452 occurrence of OLD was found.
454 This is only a wrapper around simplify-rtx.c: do not add any pattern
455 matching code here. (The sole exception is the handling of LO_SUM, but
456 that is because there is no simplify_gen_* function for LO_SUM). */
459 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
461 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
462 enum rtx_code code
= GET_CODE (x
);
463 enum machine_mode mode
= GET_MODE (x
);
464 enum machine_mode op_mode
;
465 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
466 bool valid_ops
= true;
468 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
470 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
471 they have side effects or not). */
472 *px
= (side_effects_p (x
)
473 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
474 : gen_rtx_SCRATCH (GET_MODE (x
)));
478 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
479 address, and we are *not* inside one. */
486 /* If this is an expression, try recursive substitution. */
487 switch (GET_RTX_CLASS (code
))
491 op_mode
= GET_MODE (op0
);
492 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
493 if (op0
== XEXP (x
, 0))
495 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
502 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
503 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
504 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
506 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
510 case RTX_COMM_COMPARE
:
513 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
514 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
515 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
516 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
518 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
522 case RTX_BITFIELD_OPS
:
526 op_mode
= GET_MODE (op0
);
527 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
528 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
529 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
530 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
532 if (op_mode
== VOIDmode
)
533 op_mode
= GET_MODE (op0
);
534 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
538 /* The only case we try to handle is a SUBREG. */
542 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
543 if (op0
== XEXP (x
, 0))
545 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
551 if (code
== MEM
&& x
!= new_rtx
)
556 /* There are some addresses that we cannot work on. */
557 if (!can_simplify_addr (op0
))
560 op0
= new_op0
= targetm
.delegitimize_address (op0
);
561 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
562 flags
| PR_CAN_APPEAR
);
564 /* Dismiss transformation that we do not want to carry on. */
567 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
568 || GET_MODE (new_op0
) == VOIDmode
))
571 canonicalize_address (new_op0
);
573 /* Copy propagations are always ok. Otherwise check the costs. */
574 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
575 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
577 flags
& PR_OPTIMIZE_FOR_SPEED
))
580 tem
= replace_equiv_address_nv (x
, new_op0
);
583 else if (code
== LO_SUM
)
588 /* The only simplification we do attempts to remove references to op0
589 or make it constant -- in both cases, op0's invalidity will not
590 make the result invalid. */
591 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
592 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
593 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
596 /* (lo_sum (high x) x) -> x */
597 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
600 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
602 /* OP1 is likely not a legitimate address, otherwise there would have
603 been no LO_SUM. We want it to disappear if it is invalid, return
604 false in that case. */
605 return memory_address_p (mode
, tem
);
608 else if (code
== REG
)
610 if (rtx_equal_p (x
, old_rtx
))
622 /* No change, no trouble. */
628 /* The replacement we made so far is valid, if all of the recursive
629 replacements were valid, or we could simplify everything to
631 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
635 /* for_each_rtx traversal function that returns 1 if BODY points to
636 a non-constant mem. */
639 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
642 return MEM_P (x
) && !MEM_READONLY_P (x
);
646 /* Replace all occurrences of OLD in X with NEW and try to simplify the
647 resulting expression (in mode MODE). Return a new expression if it is
648 a constant, otherwise X.
650 Simplifications where occurrences of NEW collapse to a constant are always
651 accepted. All simplifications are accepted if NEW is a pseudo too.
652 Otherwise, we accept simplifications that have a lower or equal cost. */
655 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
662 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
666 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
667 flags
|= PR_CAN_APPEAR
;
668 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
669 flags
|= PR_HANDLE_MEM
;
672 flags
|= PR_OPTIMIZE_FOR_SPEED
;
675 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
676 if (tem
== x
|| !collapsed
)
679 /* gen_lowpart_common will not be able to process VOIDmode entities other
681 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
684 if (GET_MODE (tem
) == VOIDmode
)
685 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
687 gcc_assert (GET_MODE (tem
) == mode
);
695 /* Return true if the register from reference REF is killed
696 between FROM to (but not including) TO. */
699 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
703 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
709 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
711 df_ref def
= *def_rec
;
712 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
720 /* Check if the given DEF is available in INSN. This would require full
721 computation of available expressions; we check only restricted conditions:
722 - if DEF is the sole definition of its register, go ahead;
723 - in the same basic block, we check for no definitions killing the
724 definition of DEF_INSN;
725 - if USE's basic block has DEF's basic block as the sole predecessor,
726 we check if the definition is killed after DEF_INSN or before
727 TARGET_INSN insn, in their respective basic blocks. */
729 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
731 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
732 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
736 /* We used to have a def reaching a use that is _before_ the def,
737 with the def not dominating the use even though the use and def
738 are in the same basic block, when a register may be used
739 uninitialized in a loop. This should not happen anymore since
740 we do not use reaching definitions, but still we test for such
741 cases and assume that DEF is not available. */
742 if (def_bb
== target_bb
743 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
744 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
747 /* Check if the reg in USE has only one definition. We already
748 know that this definition reaches use, or we wouldn't be here.
749 However, this is invalid for hard registers because if they are
750 live at the beginning of the function it does not mean that we
751 have an uninitialized access. */
752 regno
= DF_REF_REGNO (use
);
753 def
= DF_REG_DEF_CHAIN (regno
);
755 && DF_REF_NEXT_REG (def
) == NULL
756 && regno
>= FIRST_PSEUDO_REGISTER
)
759 /* Check locally if we are in the same basic block. */
760 if (def_bb
== target_bb
)
761 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
763 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
764 if (single_pred_p (target_bb
)
765 && single_pred (target_bb
) == def_bb
)
769 /* See if USE is killed between DEF_INSN and the last insn in the
770 basic block containing DEF_INSN. */
771 x
= df_bb_regno_last_def_find (def_bb
, regno
);
772 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
775 /* See if USE is killed between TARGET_INSN and the first insn in the
776 basic block containing TARGET_INSN. */
777 x
= df_bb_regno_first_def_find (target_bb
, regno
);
778 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
784 /* Otherwise assume the worst case. */
789 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
790 would require full computation of available expressions;
791 we check only restricted conditions, see use_killed_between. */
793 all_uses_available_at (rtx def_insn
, rtx target_insn
)
796 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
797 rtx def_set
= single_set (def_insn
);
799 gcc_assert (def_set
);
801 /* If target_insn comes right after def_insn, which is very common
802 for addresses, we can use a quicker test. */
803 if (NEXT_INSN (def_insn
) == target_insn
804 && REG_P (SET_DEST (def_set
)))
806 rtx def_reg
= SET_DEST (def_set
);
808 /* If the insn uses the reg that it defines, the substitution is
810 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
812 df_ref use
= *use_rec
;
813 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
816 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
818 df_ref use
= *use_rec
;
819 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
825 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
827 /* Look at all the uses of DEF_INSN, and see if they are not
828 killed between DEF_INSN and TARGET_INSN. */
829 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
831 df_ref use
= *use_rec
;
832 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
834 if (use_killed_between (use
, def_insn
, target_insn
))
837 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
839 df_ref use
= *use_rec
;
840 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
842 if (use_killed_between (use
, def_insn
, target_insn
))
851 struct find_occurrence_data
857 /* Callback for for_each_rtx, used in find_occurrence.
858 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
859 if successful, or 0 to continue traversing otherwise. */
862 find_occurrence_callback (rtx
*px
, void *data
)
864 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
866 rtx find
= fod
->find
;
877 /* Return a pointer to one of the occurrences of register FIND in *PX. */
880 find_occurrence (rtx
*px
, rtx find
)
882 struct find_occurrence_data data
;
884 gcc_assert (REG_P (find
)
885 || (GET_CODE (find
) == SUBREG
886 && REG_P (SUBREG_REG (find
))));
890 for_each_rtx (px
, find_occurrence_callback
, &data
);
895 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
896 uses from USE_VEC. Find those that are present, and create new items
897 in the data flow object of the pass. Mark any new uses as having the
900 update_df (rtx insn
, rtx
*loc
, df_ref
*use_rec
, enum df_ref_type type
,
903 bool changed
= false;
905 /* Add a use for the registers that were propagated. */
908 df_ref use
= *use_rec
;
909 df_ref orig_use
= use
, new_use
;
912 enum machine_mode mode
= VOIDmode
;
913 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
919 if (DF_REF_FLAGS_IS_SET (orig_use
, DF_REF_SIGN_EXTRACT
| DF_REF_ZERO_EXTRACT
))
921 width
= DF_REF_EXTRACT_WIDTH (orig_use
);
922 offset
= DF_REF_EXTRACT_OFFSET (orig_use
);
923 mode
= DF_REF_EXTRACT_MODE (orig_use
);
926 /* Add a new insn use. Use the original type, because it says if the
927 use was within a MEM. */
928 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
929 insn
, BLOCK_FOR_INSN (insn
),
930 type
, DF_REF_FLAGS (orig_use
) | new_flags
,
931 width
, offset
, mode
);
933 /* Set up the use-def chain. */
934 gcc_assert (DF_REF_ID (new_use
) == (int) VEC_length (df_ref
, use_def_ref
));
935 VEC_safe_push (df_ref
, heap
, use_def_ref
, get_def_for_use (orig_use
));
939 df_insn_rescan (insn
);
943 /* Try substituting NEW into LOC, which originated from forward propagation
944 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
945 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
946 new insn is not recognized. Return whether the substitution was
950 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
952 rtx insn
= DF_REF_INSN (use
);
953 enum df_ref_type type
= DF_REF_TYPE (use
);
954 int flags
= DF_REF_FLAGS (use
);
955 rtx set
= single_set (insn
);
956 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
960 /* forward_propagate_subreg may be operating on an instruction with
961 multiple sets. If so, assume the cost of the new instruction is
962 not greater than the old one. */
964 old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
967 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
968 print_inline_rtx (dump_file
, *loc
, 2);
969 fprintf (dump_file
, "\n with ");
970 print_inline_rtx (dump_file
, new_rtx
, 2);
971 fprintf (dump_file
, "\n");
974 validate_unshare_change (insn
, loc
, new_rtx
, true);
975 if (!verify_changes (0))
978 fprintf (dump_file
, "Changes to insn %d not recognized\n",
983 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
985 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
988 fprintf (dump_file
, "Changes to insn %d not profitable\n",
996 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
1002 confirm_change_group ();
1005 df_ref_remove (use
);
1006 if (!CONSTANT_P (new_rtx
))
1008 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1009 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
), type
, flags
);
1010 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
), type
, flags
);
1017 /* Can also record a simplified value in a REG_EQUAL note,
1018 making a new one if one does not already exist. */
1022 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1024 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1026 /* ??? Is this still necessary if we add the note through
1027 set_unique_reg_note? */
1028 if (!CONSTANT_P (new_rtx
))
1030 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1031 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
),
1032 type
, DF_REF_IN_NOTE
);
1033 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
),
1034 type
, DF_REF_IN_NOTE
);
1042 /* For the given single_set INSN, containing SRC known to be a
1043 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1044 is redundant due to the register being set by a LOAD_EXTEND_OP
1045 load from memory. */
1048 free_load_extend (rtx src
, rtx insn
)
1052 df_ref use
= 0, def
;
1054 reg
= XEXP (src
, 0);
1055 #ifdef LOAD_EXTEND_OP
1056 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1060 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1064 if (!DF_REF_IS_ARTIFICIAL (use
)
1065 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1066 && DF_REF_REG (use
) == reg
)
1072 def
= get_def_for_use (use
);
1076 if (DF_REF_IS_ARTIFICIAL (def
))
1079 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1081 rtx patt
= PATTERN (DF_REF_INSN (def
));
1083 if (GET_CODE (patt
) == SET
1084 && GET_CODE (SET_SRC (patt
)) == MEM
1085 && rtx_equal_p (SET_DEST (patt
), reg
))
1091 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1094 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1096 rtx use_reg
= DF_REF_REG (use
);
1099 /* Only consider subregs... */
1100 enum machine_mode use_mode
= GET_MODE (use_reg
);
1101 if (GET_CODE (use_reg
) != SUBREG
1102 || !REG_P (SET_DEST (def_set
)))
1105 /* If this is a paradoxical SUBREG... */
1106 if (GET_MODE_SIZE (use_mode
)
1107 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1109 /* If this is a paradoxical SUBREG, we have no idea what value the
1110 extra bits would have. However, if the operand is equivalent to
1111 a SUBREG whose operand is the same as our mode, and all the modes
1112 are within a word, we can just use the inner operand because
1113 these SUBREGs just say how to treat the register. */
1114 use_insn
= DF_REF_INSN (use
);
1115 src
= SET_SRC (def_set
);
1116 if (GET_CODE (src
) == SUBREG
1117 && REG_P (SUBREG_REG (src
))
1118 && GET_MODE (SUBREG_REG (src
)) == use_mode
1119 && subreg_lowpart_p (src
)
1120 && all_uses_available_at (def_insn
, use_insn
))
1121 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1125 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1126 is the low part of the reg being extended then just use the inner
1127 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1128 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1129 else if (subreg_lowpart_p (use_reg
))
1131 use_insn
= DF_REF_INSN (use
);
1132 src
= SET_SRC (def_set
);
1133 if ((GET_CODE (src
) == ZERO_EXTEND
1134 || GET_CODE (src
) == SIGN_EXTEND
)
1135 && REG_P (XEXP (src
, 0))
1136 && GET_MODE (XEXP (src
, 0)) == use_mode
1137 && !free_load_extend (src
, def_insn
)
1138 && all_uses_available_at (def_insn
, use_insn
))
1139 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1146 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1149 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1151 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1155 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1157 src
= SET_SRC (def_set
);
1158 use_pat
= PATTERN (use_insn
);
1160 /* In __asm don't replace if src might need more registers than
1161 reg, as that could increase register pressure on the __asm. */
1162 use_vec
= DF_INSN_USES (def_insn
);
1163 if (use_vec
[0] && use_vec
[1])
1166 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1167 asm_operands
= NULL_RTX
;
1168 switch (GET_CODE (use_pat
))
1171 asm_operands
= use_pat
;
1174 if (MEM_P (SET_DEST (use_pat
)))
1176 loc
= &SET_DEST (use_pat
);
1177 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1179 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1181 asm_operands
= SET_SRC (use_pat
);
1184 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1185 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1187 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1189 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1190 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1193 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1195 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1197 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1198 asm_operands
= XVECEXP (use_pat
, 0, i
);
1204 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1205 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1207 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1208 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1210 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1213 if (num_changes_pending () == 0 || !apply_change_group ())
1220 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1224 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1226 rtx use_insn
= DF_REF_INSN (use
);
1227 rtx use_set
= single_set (use_insn
);
1228 rtx src
, reg
, new_rtx
, *loc
;
1230 enum machine_mode mode
;
1233 if (INSN_CODE (use_insn
) < 0)
1234 asm_use
= asm_noperands (PATTERN (use_insn
));
1236 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1239 /* Do not propagate into PC, CC0, etc. */
1240 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1243 /* If def and use are subreg, check if they match. */
1244 reg
= DF_REF_REG (use
);
1245 if (GET_CODE (reg
) == SUBREG
1246 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1247 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1248 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1251 /* Check if the def had a subreg, but the use has the whole reg. */
1252 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1255 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1256 previous case, the optimization is possible and often useful indeed. */
1257 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1258 reg
= SUBREG_REG (reg
);
1260 /* Check if the substitution is valid (last, because it's the most
1261 expensive check!). */
1262 src
= SET_SRC (def_set
);
1263 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1266 /* Check if the def is loading something from the constant pool; in this
1267 case we would undo optimization such as compress_float_constant.
1268 Still, we can set a REG_EQUAL note. */
1269 if (MEM_P (src
) && MEM_READONLY_P (src
))
1271 rtx x
= avoid_constant_pool_reference (src
);
1272 if (x
!= src
&& use_set
)
1274 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1275 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1276 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1277 if (old_rtx
!= new_rtx
)
1278 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1284 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1286 /* Else try simplifying. */
1288 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1290 loc
= &SET_DEST (use_set
);
1291 set_reg_equal
= false;
1295 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1296 set_reg_equal
= false;
1300 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1301 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1302 loc
= &XEXP (note
, 0);
1304 loc
= &SET_SRC (use_set
);
1306 /* Do not replace an existing REG_EQUAL note if the insn is not
1307 recognized. Either we're already replacing in the note, or
1308 we'll separately try plugging the definition in the note and
1310 set_reg_equal
= (note
== NULL_RTX
);
1313 if (GET_MODE (*loc
) == VOIDmode
)
1314 mode
= GET_MODE (SET_DEST (use_set
));
1316 mode
= GET_MODE (*loc
);
1318 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1319 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1324 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1328 /* Given a use USE of an insn, if it has a single reaching
1329 definition, try to forward propagate it into that insn. */
1332 forward_propagate_into (df_ref use
)
1335 rtx def_insn
, def_set
, use_insn
;
1338 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1340 if (DF_REF_IS_ARTIFICIAL (use
))
1343 /* Only consider uses that have a single definition. */
1344 def
= get_def_for_use (use
);
1347 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1349 if (DF_REF_IS_ARTIFICIAL (def
))
1352 /* Do not propagate loop invariant definitions inside the loop. */
1353 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1356 /* Check if the use is still present in the insn! */
1357 use_insn
= DF_REF_INSN (use
);
1358 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1359 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1361 parent
= PATTERN (use_insn
);
1363 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1366 def_insn
= DF_REF_INSN (def
);
1367 if (multiple_sets (def_insn
))
1369 def_set
= single_set (def_insn
);
1373 /* Only try one kind of propagation. If two are possible, we'll
1374 do it on the following iterations. */
1375 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1376 forward_propagate_subreg (use
, def_insn
, def_set
);
1384 calculate_dominance_info (CDI_DOMINATORS
);
1386 /* We do not always want to propagate into loops, so we have to find
1387 loops and be careful about them. But we have to call flow_loops_find
1388 before df_analyze, because flow_loops_find may introduce new jump
1389 insns (sadly) if we are not working in cfglayout mode. */
1390 loop_optimizer_init (0);
1392 build_single_def_use_links ();
1393 df_set_flags (DF_DEFER_INSN_RESCAN
);
1399 loop_optimizer_finalize ();
1401 VEC_free (df_ref
, heap
, use_def_ref
);
1402 free_dominance_info (CDI_DOMINATORS
);
1404 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1408 "\nNumber of successful forward propagations: %d\n\n",
1413 /* Main entry point. */
1418 return optimize
> 0 && flag_forward_propagate
;
1428 /* Go through all the uses. update_df will create new ones at the
1429 end, and we'll go through them as well.
1431 Do not forward propagate addresses into loops until after unrolling.
1432 CSE did so because it was able to fix its own mess, but we are not. */
1434 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1436 df_ref use
= DF_USES_GET (i
);
1438 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1439 || DF_REF_BB (use
)->loop_father
== NULL
1440 /* The outer most loop is not really a loop. */
1441 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1442 forward_propagate_into (use
);
1449 struct rtl_opt_pass pass_rtl_fwprop
=
1453 "fwprop1", /* name */
1454 gate_fwprop
, /* gate */
1455 fwprop
, /* execute */
1458 0, /* static_pass_number */
1459 TV_FWPROP
, /* tv_id */
1460 0, /* properties_required */
1461 0, /* properties_provided */
1462 0, /* properties_destroyed */
1463 0, /* todo_flags_start */
1464 TODO_df_finish
| TODO_verify_rtl_sharing
|
1465 TODO_dump_func
/* todo_flags_finish */
1475 /* Go through all the uses. update_df will create new ones at the
1476 end, and we'll go through them as well. */
1477 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1479 df_ref use
= DF_USES_GET (i
);
1481 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1482 && DF_REF_BB (use
)->loop_father
!= NULL
1483 /* The outer most loop is not really a loop. */
1484 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1485 forward_propagate_into (use
);
1493 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1497 "fwprop2", /* name */
1498 gate_fwprop
, /* gate */
1499 fwprop_addr
, /* execute */
1502 0, /* static_pass_number */
1503 TV_FWPROP
, /* tv_id */
1504 0, /* properties_required */
1505 0, /* properties_provided */
1506 0, /* properties_destroyed */
1507 0, /* todo_flags_start */
1508 TODO_df_finish
| TODO_verify_rtl_sharing
|
1509 TODO_dump_func
/* todo_flags_finish */