1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40 #include "gimple-fold.h"
45 /* Type of value ranges. See value_range_d for a description of these
47 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
49 /* Range of values that can be associated with an SSA_NAME after VRP
53 /* Lattice value represented by this range. */
54 enum value_range_type type
;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
75 typedef struct value_range_d value_range_t
;
77 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
83 /* Return true if the SSA name NAME is live on the edge E. */
86 live_on_edge (edge e
, tree name
)
88 return (live
[e
->dest
->index
]
89 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
92 /* Local functions. */
93 static int compare_values (tree val1
, tree val2
);
94 static int compare_values_warnv (tree val1
, tree val2
, bool *);
95 static void vrp_meet (value_range_t
*, value_range_t
*);
96 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
97 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
98 tree
, tree
, bool, bool *,
101 /* Location information for ASSERT_EXPRs. Each instance of this
102 structure describes an ASSERT_EXPR for an SSA name. Since a single
103 SSA name may have more than one assertion associated with it, these
104 locations are kept in a linked list attached to the corresponding
106 struct assert_locus_d
108 /* Basic block where the assertion would be inserted. */
111 /* Some assertions need to be inserted on an edge (e.g., assertions
112 generated by COND_EXPRs). In those cases, BB will be NULL. */
115 /* Pointer to the statement that generated this assertion. */
116 gimple_stmt_iterator si
;
118 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
119 enum tree_code comp_code
;
121 /* Value being compared against. */
124 /* Expression to compare. */
127 /* Next node in the linked list. */
128 struct assert_locus_d
*next
;
131 typedef struct assert_locus_d
*assert_locus_t
;
133 /* If bit I is present, it means that SSA name N_i has a list of
134 assertions that should be inserted in the IL. */
135 static bitmap need_assert_for
;
137 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
138 holds a list of ASSERT_LOCUS_T nodes that describe where
139 ASSERT_EXPRs for SSA name N_I should be inserted. */
140 static assert_locus_t
*asserts_for
;
142 /* Value range array. After propagation, VR_VALUE[I] holds the range
143 of values that SSA name N_I may take. */
144 static unsigned num_vr_values
;
145 static value_range_t
**vr_value
;
146 static bool values_propagated
;
148 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
149 number of executable edges we saw the last time we visited the
151 static int *vr_phi_edge_counts
;
158 static vec
<edge
> to_remove_edges
;
159 static vec
<switch_update
> to_update_switch_stmts
;
162 /* Return the maximum value for TYPE. */
165 vrp_val_max (const_tree type
)
167 if (!INTEGRAL_TYPE_P (type
))
170 return TYPE_MAX_VALUE (type
);
173 /* Return the minimum value for TYPE. */
176 vrp_val_min (const_tree type
)
178 if (!INTEGRAL_TYPE_P (type
))
181 return TYPE_MIN_VALUE (type
);
184 /* Return whether VAL is equal to the maximum value of its type. This
185 will be true for a positive overflow infinity. We can't do a
186 simple equality comparison with TYPE_MAX_VALUE because C typedefs
187 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
188 to the integer constant with the same value in the type. */
191 vrp_val_is_max (const_tree val
)
193 tree type_max
= vrp_val_max (TREE_TYPE (val
));
194 return (val
== type_max
195 || (type_max
!= NULL_TREE
196 && operand_equal_p (val
, type_max
, 0)));
199 /* Return whether VAL is equal to the minimum value of its type. This
200 will be true for a negative overflow infinity. */
203 vrp_val_is_min (const_tree val
)
205 tree type_min
= vrp_val_min (TREE_TYPE (val
));
206 return (val
== type_min
207 || (type_min
!= NULL_TREE
208 && operand_equal_p (val
, type_min
, 0)));
212 /* Return whether TYPE should use an overflow infinity distinct from
213 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
214 represent a signed overflow during VRP computations. An infinity
215 is distinct from a half-range, which will go from some number to
216 TYPE_{MIN,MAX}_VALUE. */
219 needs_overflow_infinity (const_tree type
)
221 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
224 /* Return whether TYPE can support our overflow infinity
225 representation: we use the TREE_OVERFLOW flag, which only exists
226 for constants. If TYPE doesn't support this, we don't optimize
227 cases which would require signed overflow--we drop them to
231 supports_overflow_infinity (const_tree type
)
233 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
234 #ifdef ENABLE_CHECKING
235 gcc_assert (needs_overflow_infinity (type
));
237 return (min
!= NULL_TREE
238 && CONSTANT_CLASS_P (min
)
240 && CONSTANT_CLASS_P (max
));
243 /* VAL is the maximum or minimum value of a type. Return a
244 corresponding overflow infinity. */
247 make_overflow_infinity (tree val
)
249 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
250 val
= copy_node (val
);
251 TREE_OVERFLOW (val
) = 1;
255 /* Return a negative overflow infinity for TYPE. */
258 negative_overflow_infinity (tree type
)
260 gcc_checking_assert (supports_overflow_infinity (type
));
261 return make_overflow_infinity (vrp_val_min (type
));
264 /* Return a positive overflow infinity for TYPE. */
267 positive_overflow_infinity (tree type
)
269 gcc_checking_assert (supports_overflow_infinity (type
));
270 return make_overflow_infinity (vrp_val_max (type
));
273 /* Return whether VAL is a negative overflow infinity. */
276 is_negative_overflow_infinity (const_tree val
)
278 return (needs_overflow_infinity (TREE_TYPE (val
))
279 && CONSTANT_CLASS_P (val
)
280 && TREE_OVERFLOW (val
)
281 && vrp_val_is_min (val
));
284 /* Return whether VAL is a positive overflow infinity. */
287 is_positive_overflow_infinity (const_tree val
)
289 return (needs_overflow_infinity (TREE_TYPE (val
))
290 && CONSTANT_CLASS_P (val
)
291 && TREE_OVERFLOW (val
)
292 && vrp_val_is_max (val
));
295 /* Return whether VAL is a positive or negative overflow infinity. */
298 is_overflow_infinity (const_tree val
)
300 return (needs_overflow_infinity (TREE_TYPE (val
))
301 && CONSTANT_CLASS_P (val
)
302 && TREE_OVERFLOW (val
)
303 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
306 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
309 stmt_overflow_infinity (gimple stmt
)
311 if (is_gimple_assign (stmt
)
312 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
314 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
318 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
319 the same value with TREE_OVERFLOW clear. This can be used to avoid
320 confusing a regular value with an overflow value. */
323 avoid_overflow_infinity (tree val
)
325 if (!is_overflow_infinity (val
))
328 if (vrp_val_is_max (val
))
329 return vrp_val_max (TREE_TYPE (val
));
332 gcc_checking_assert (vrp_val_is_min (val
));
333 return vrp_val_min (TREE_TYPE (val
));
338 /* Return true if ARG is marked with the nonnull attribute in the
339 current function signature. */
342 nonnull_arg_p (const_tree arg
)
344 tree t
, attrs
, fntype
;
345 unsigned HOST_WIDE_INT arg_num
;
347 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
349 /* The static chain decl is always non null. */
350 if (arg
== cfun
->static_chain_decl
)
353 fntype
= TREE_TYPE (current_function_decl
);
354 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
356 attrs
= lookup_attribute ("nonnull", attrs
);
358 /* If "nonnull" wasn't specified, we know nothing about the argument. */
359 if (attrs
== NULL_TREE
)
362 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
363 if (TREE_VALUE (attrs
) == NULL_TREE
)
366 /* Get the position number for ARG in the function signature. */
367 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
369 t
= DECL_CHAIN (t
), arg_num
++)
375 gcc_assert (t
== arg
);
377 /* Now see if ARG_NUM is mentioned in the nonnull list. */
378 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
380 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
389 /* Set value range VR to VR_UNDEFINED. */
392 set_value_range_to_undefined (value_range_t
*vr
)
394 vr
->type
= VR_UNDEFINED
;
395 vr
->min
= vr
->max
= NULL_TREE
;
397 bitmap_clear (vr
->equiv
);
401 /* Set value range VR to VR_VARYING. */
404 set_value_range_to_varying (value_range_t
*vr
)
406 vr
->type
= VR_VARYING
;
407 vr
->min
= vr
->max
= NULL_TREE
;
409 bitmap_clear (vr
->equiv
);
413 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
416 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
417 tree max
, bitmap equiv
)
419 #if defined ENABLE_CHECKING
420 /* Check the validity of the range. */
421 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
425 gcc_assert (min
&& max
);
427 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
428 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
430 cmp
= compare_values (min
, max
);
431 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
433 if (needs_overflow_infinity (TREE_TYPE (min
)))
434 gcc_assert (!is_overflow_infinity (min
)
435 || !is_overflow_infinity (max
));
438 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
439 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
441 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
442 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
449 /* Since updating the equivalence set involves deep copying the
450 bitmaps, only do it if absolutely necessary. */
451 if (vr
->equiv
== NULL
453 vr
->equiv
= BITMAP_ALLOC (NULL
);
455 if (equiv
!= vr
->equiv
)
457 if (equiv
&& !bitmap_empty_p (equiv
))
458 bitmap_copy (vr
->equiv
, equiv
);
460 bitmap_clear (vr
->equiv
);
465 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
466 This means adjusting T, MIN and MAX representing the case of a
467 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
468 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
469 In corner cases where MAX+1 or MIN-1 wraps this will fall back
471 This routine exists to ease canonicalization in the case where we
472 extract ranges from var + CST op limit. */
475 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
476 tree min
, tree max
, bitmap equiv
)
478 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
479 if (t
== VR_UNDEFINED
)
481 set_value_range_to_undefined (vr
);
484 else if (t
== VR_VARYING
)
486 set_value_range_to_varying (vr
);
490 /* Nothing to canonicalize for symbolic ranges. */
491 if (TREE_CODE (min
) != INTEGER_CST
492 || TREE_CODE (max
) != INTEGER_CST
)
494 set_value_range (vr
, t
, min
, max
, equiv
);
498 /* Wrong order for min and max, to swap them and the VR type we need
500 if (tree_int_cst_lt (max
, min
))
504 /* For one bit precision if max < min, then the swapped
505 range covers all values, so for VR_RANGE it is varying and
506 for VR_ANTI_RANGE empty range, so drop to varying as well. */
507 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
509 set_value_range_to_varying (vr
);
513 one
= build_int_cst (TREE_TYPE (min
), 1);
514 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
515 max
= int_const_binop (MINUS_EXPR
, min
, one
);
518 /* There's one corner case, if we had [C+1, C] before we now have
519 that again. But this represents an empty value range, so drop
520 to varying in this case. */
521 if (tree_int_cst_lt (max
, min
))
523 set_value_range_to_varying (vr
);
527 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
530 /* Anti-ranges that can be represented as ranges should be so. */
531 if (t
== VR_ANTI_RANGE
)
533 bool is_min
= vrp_val_is_min (min
);
534 bool is_max
= vrp_val_is_max (max
);
536 if (is_min
&& is_max
)
538 /* We cannot deal with empty ranges, drop to varying.
539 ??? This could be VR_UNDEFINED instead. */
540 set_value_range_to_varying (vr
);
543 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
544 && (is_min
|| is_max
))
546 /* Non-empty boolean ranges can always be represented
547 as a singleton range. */
549 min
= max
= vrp_val_max (TREE_TYPE (min
));
551 min
= max
= vrp_val_min (TREE_TYPE (min
));
555 /* As a special exception preserve non-null ranges. */
556 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
557 && integer_zerop (max
)))
559 tree one
= build_int_cst (TREE_TYPE (max
), 1);
560 min
= int_const_binop (PLUS_EXPR
, max
, one
);
561 max
= vrp_val_max (TREE_TYPE (max
));
566 tree one
= build_int_cst (TREE_TYPE (min
), 1);
567 max
= int_const_binop (MINUS_EXPR
, min
, one
);
568 min
= vrp_val_min (TREE_TYPE (min
));
573 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
574 if (needs_overflow_infinity (TREE_TYPE (min
))
575 && is_overflow_infinity (min
)
576 && is_overflow_infinity (max
))
578 set_value_range_to_varying (vr
);
582 set_value_range (vr
, t
, min
, max
, equiv
);
585 /* Copy value range FROM into value range TO. */
588 copy_value_range (value_range_t
*to
, value_range_t
*from
)
590 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
593 /* Set value range VR to a single value. This function is only called
594 with values we get from statements, and exists to clear the
595 TREE_OVERFLOW flag so that we don't think we have an overflow
596 infinity when we shouldn't. */
599 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
601 gcc_assert (is_gimple_min_invariant (val
));
602 val
= avoid_overflow_infinity (val
);
603 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
606 /* Set value range VR to a non-negative range of type TYPE.
607 OVERFLOW_INFINITY indicates whether to use an overflow infinity
608 rather than TYPE_MAX_VALUE; this should be true if we determine
609 that the range is nonnegative based on the assumption that signed
610 overflow does not occur. */
613 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
614 bool overflow_infinity
)
618 if (overflow_infinity
&& !supports_overflow_infinity (type
))
620 set_value_range_to_varying (vr
);
624 zero
= build_int_cst (type
, 0);
625 set_value_range (vr
, VR_RANGE
, zero
,
627 ? positive_overflow_infinity (type
)
628 : TYPE_MAX_VALUE (type
)),
632 /* Set value range VR to a non-NULL range of type TYPE. */
635 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
637 tree zero
= build_int_cst (type
, 0);
638 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
642 /* Set value range VR to a NULL range of type TYPE. */
645 set_value_range_to_null (value_range_t
*vr
, tree type
)
647 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
651 /* Set value range VR to a range of a truthvalue of type TYPE. */
654 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
656 if (TYPE_PRECISION (type
) == 1)
657 set_value_range_to_varying (vr
);
659 set_value_range (vr
, VR_RANGE
,
660 build_int_cst (type
, 0), build_int_cst (type
, 1),
665 /* If abs (min) < abs (max), set VR to [-max, max], if
666 abs (min) >= abs (max), set VR to [-min, min]. */
669 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
673 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
674 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
675 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
676 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
677 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
678 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
679 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
681 set_value_range_to_varying (vr
);
684 cmp
= compare_values (min
, max
);
686 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
687 else if (cmp
== 0 || cmp
== 1)
690 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
694 set_value_range_to_varying (vr
);
697 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
701 /* Return value range information for VAR.
703 If we have no values ranges recorded (ie, VRP is not running), then
704 return NULL. Otherwise create an empty range if none existed for VAR. */
706 static value_range_t
*
707 get_value_range (const_tree var
)
709 static const struct value_range_d vr_const_varying
710 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
713 unsigned ver
= SSA_NAME_VERSION (var
);
715 /* If we have no recorded ranges, then return NULL. */
719 /* If we query the range for a new SSA name return an unmodifiable VARYING.
720 We should get here at most from the substitute-and-fold stage which
721 will never try to change values. */
722 if (ver
>= num_vr_values
)
723 return CONST_CAST (value_range_t
*, &vr_const_varying
);
729 /* After propagation finished do not allocate new value-ranges. */
730 if (values_propagated
)
731 return CONST_CAST (value_range_t
*, &vr_const_varying
);
733 /* Create a default value range. */
734 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
736 /* Defer allocating the equivalence set. */
739 /* If VAR is a default definition of a parameter, the variable can
740 take any value in VAR's type. */
741 if (SSA_NAME_IS_DEFAULT_DEF (var
))
743 sym
= SSA_NAME_VAR (var
);
744 if (TREE_CODE (sym
) == PARM_DECL
)
746 /* Try to use the "nonnull" attribute to create ~[0, 0]
747 anti-ranges for pointers. Note that this is only valid with
748 default definitions of PARM_DECLs. */
749 if (POINTER_TYPE_P (TREE_TYPE (sym
))
750 && nonnull_arg_p (sym
))
751 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
753 set_value_range_to_varying (vr
);
755 else if (TREE_CODE (sym
) == RESULT_DECL
756 && DECL_BY_REFERENCE (sym
))
757 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
763 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
766 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
770 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
772 if (is_overflow_infinity (val1
))
773 return is_overflow_infinity (val2
);
777 /* Return true, if the bitmaps B1 and B2 are equal. */
780 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
783 || ((!b1
|| bitmap_empty_p (b1
))
784 && (!b2
|| bitmap_empty_p (b2
)))
786 && bitmap_equal_p (b1
, b2
)));
789 /* Update the value range and equivalence set for variable VAR to
790 NEW_VR. Return true if NEW_VR is different from VAR's previous
793 NOTE: This function assumes that NEW_VR is a temporary value range
794 object created for the sole purpose of updating VAR's range. The
795 storage used by the equivalence set from NEW_VR will be freed by
796 this function. Do not call update_value_range when NEW_VR
797 is the range object associated with another SSA name. */
800 update_value_range (const_tree var
, value_range_t
*new_vr
)
802 value_range_t
*old_vr
;
805 /* Update the value range, if necessary. */
806 old_vr
= get_value_range (var
);
807 is_new
= old_vr
->type
!= new_vr
->type
808 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
809 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
810 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
814 /* Do not allow transitions up the lattice. The following
815 is slightly more awkward than just new_vr->type < old_vr->type
816 because VR_RANGE and VR_ANTI_RANGE need to be considered
817 the same. We may not have is_new when transitioning to
818 UNDEFINED or from VARYING. */
819 if (new_vr
->type
== VR_UNDEFINED
820 || old_vr
->type
== VR_VARYING
)
821 set_value_range_to_varying (old_vr
);
823 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
827 BITMAP_FREE (new_vr
->equiv
);
833 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
834 point where equivalence processing can be turned on/off. */
837 add_equivalence (bitmap
*equiv
, const_tree var
)
839 unsigned ver
= SSA_NAME_VERSION (var
);
840 value_range_t
*vr
= vr_value
[ver
];
843 *equiv
= BITMAP_ALLOC (NULL
);
844 bitmap_set_bit (*equiv
, ver
);
846 bitmap_ior_into (*equiv
, vr
->equiv
);
850 /* Return true if VR is ~[0, 0]. */
853 range_is_nonnull (value_range_t
*vr
)
855 return vr
->type
== VR_ANTI_RANGE
856 && integer_zerop (vr
->min
)
857 && integer_zerop (vr
->max
);
861 /* Return true if VR is [0, 0]. */
864 range_is_null (value_range_t
*vr
)
866 return vr
->type
== VR_RANGE
867 && integer_zerop (vr
->min
)
868 && integer_zerop (vr
->max
);
871 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
875 range_int_cst_p (value_range_t
*vr
)
877 return (vr
->type
== VR_RANGE
878 && TREE_CODE (vr
->max
) == INTEGER_CST
879 && TREE_CODE (vr
->min
) == INTEGER_CST
);
882 /* Return true if VR is a INTEGER_CST singleton. */
885 range_int_cst_singleton_p (value_range_t
*vr
)
887 return (range_int_cst_p (vr
)
888 && !TREE_OVERFLOW (vr
->min
)
889 && !TREE_OVERFLOW (vr
->max
)
890 && tree_int_cst_equal (vr
->min
, vr
->max
));
893 /* Return true if value range VR involves at least one symbol. */
896 symbolic_range_p (value_range_t
*vr
)
898 return (!is_gimple_min_invariant (vr
->min
)
899 || !is_gimple_min_invariant (vr
->max
));
902 /* Return true if value range VR uses an overflow infinity. */
905 overflow_infinity_range_p (value_range_t
*vr
)
907 return (vr
->type
== VR_RANGE
908 && (is_overflow_infinity (vr
->min
)
909 || is_overflow_infinity (vr
->max
)));
912 /* Return false if we can not make a valid comparison based on VR;
913 this will be the case if it uses an overflow infinity and overflow
914 is not undefined (i.e., -fno-strict-overflow is in effect).
915 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
916 uses an overflow infinity. */
919 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
921 gcc_assert (vr
->type
== VR_RANGE
);
922 if (is_overflow_infinity (vr
->min
))
924 *strict_overflow_p
= true;
925 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
928 if (is_overflow_infinity (vr
->max
))
930 *strict_overflow_p
= true;
931 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
938 /* Return true if the result of assignment STMT is know to be non-negative.
939 If the return value is based on the assumption that signed overflow is
940 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
941 *STRICT_OVERFLOW_P.*/
944 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
946 enum tree_code code
= gimple_assign_rhs_code (stmt
);
947 switch (get_gimple_rhs_class (code
))
949 case GIMPLE_UNARY_RHS
:
950 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
951 gimple_expr_type (stmt
),
952 gimple_assign_rhs1 (stmt
),
954 case GIMPLE_BINARY_RHS
:
955 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
956 gimple_expr_type (stmt
),
957 gimple_assign_rhs1 (stmt
),
958 gimple_assign_rhs2 (stmt
),
960 case GIMPLE_TERNARY_RHS
:
962 case GIMPLE_SINGLE_RHS
:
963 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
965 case GIMPLE_INVALID_RHS
:
972 /* Return true if return value of call STMT is know to be non-negative.
973 If the return value is based on the assumption that signed overflow is
974 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
975 *STRICT_OVERFLOW_P.*/
978 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
980 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
981 gimple_call_arg (stmt
, 0) : NULL_TREE
;
982 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
983 gimple_call_arg (stmt
, 1) : NULL_TREE
;
985 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
986 gimple_call_fndecl (stmt
),
992 /* Return true if STMT is know to to compute a non-negative value.
993 If the return value is based on the assumption that signed overflow is
994 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
995 *STRICT_OVERFLOW_P.*/
998 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1000 switch (gimple_code (stmt
))
1003 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1005 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1011 /* Return true if the result of assignment STMT is know to be non-zero.
1012 If the return value is based on the assumption that signed overflow is
1013 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1014 *STRICT_OVERFLOW_P.*/
1017 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1019 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1020 switch (get_gimple_rhs_class (code
))
1022 case GIMPLE_UNARY_RHS
:
1023 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1024 gimple_expr_type (stmt
),
1025 gimple_assign_rhs1 (stmt
),
1027 case GIMPLE_BINARY_RHS
:
1028 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1029 gimple_expr_type (stmt
),
1030 gimple_assign_rhs1 (stmt
),
1031 gimple_assign_rhs2 (stmt
),
1033 case GIMPLE_TERNARY_RHS
:
1035 case GIMPLE_SINGLE_RHS
:
1036 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1038 case GIMPLE_INVALID_RHS
:
1045 /* Return true if STMT is know to to compute a non-zero value.
1046 If the return value is based on the assumption that signed overflow is
1047 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1048 *STRICT_OVERFLOW_P.*/
1051 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1053 switch (gimple_code (stmt
))
1056 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1058 return gimple_alloca_call_p (stmt
);
1064 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1068 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1070 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1073 /* If we have an expression of the form &X->a, then the expression
1074 is nonnull if X is nonnull. */
1075 if (is_gimple_assign (stmt
)
1076 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1078 tree expr
= gimple_assign_rhs1 (stmt
);
1079 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1081 if (base
!= NULL_TREE
1082 && TREE_CODE (base
) == MEM_REF
1083 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1085 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1086 if (range_is_nonnull (vr
))
1094 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1095 a gimple invariant, or SSA_NAME +- CST. */
1098 valid_value_p (tree expr
)
1100 if (TREE_CODE (expr
) == SSA_NAME
)
1103 if (TREE_CODE (expr
) == PLUS_EXPR
1104 || TREE_CODE (expr
) == MINUS_EXPR
)
1105 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1106 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1108 return is_gimple_min_invariant (expr
);
1114 -2 if those are incomparable. */
1116 operand_less_p (tree val
, tree val2
)
1118 /* LT is folded faster than GE and others. Inline the common case. */
1119 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1121 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1122 return INT_CST_LT_UNSIGNED (val
, val2
);
1125 if (INT_CST_LT (val
, val2
))
1133 fold_defer_overflow_warnings ();
1135 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1137 fold_undefer_and_ignore_overflow_warnings ();
1140 || TREE_CODE (tcmp
) != INTEGER_CST
)
1143 if (!integer_zerop (tcmp
))
1147 /* val >= val2, not considering overflow infinity. */
1148 if (is_negative_overflow_infinity (val
))
1149 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1150 else if (is_positive_overflow_infinity (val2
))
1151 return is_positive_overflow_infinity (val
) ? 0 : 1;
1156 /* Compare two values VAL1 and VAL2. Return
1158 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1161 +1 if VAL1 > VAL2, and
1164 This is similar to tree_int_cst_compare but supports pointer values
1165 and values that cannot be compared at compile time.
1167 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1168 true if the return value is only valid if we assume that signed
1169 overflow is undefined. */
1172 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1177 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1179 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1180 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1181 /* Convert the two values into the same type. This is needed because
1182 sizetype causes sign extension even for unsigned types. */
1183 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1184 STRIP_USELESS_TYPE_CONVERSION (val2
);
1186 if ((TREE_CODE (val1
) == SSA_NAME
1187 || TREE_CODE (val1
) == PLUS_EXPR
1188 || TREE_CODE (val1
) == MINUS_EXPR
)
1189 && (TREE_CODE (val2
) == SSA_NAME
1190 || TREE_CODE (val2
) == PLUS_EXPR
1191 || TREE_CODE (val2
) == MINUS_EXPR
))
1193 tree n1
, c1
, n2
, c2
;
1194 enum tree_code code1
, code2
;
1196 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1197 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1198 same name, return -2. */
1199 if (TREE_CODE (val1
) == SSA_NAME
)
1207 code1
= TREE_CODE (val1
);
1208 n1
= TREE_OPERAND (val1
, 0);
1209 c1
= TREE_OPERAND (val1
, 1);
1210 if (tree_int_cst_sgn (c1
) == -1)
1212 if (is_negative_overflow_infinity (c1
))
1214 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1217 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1221 if (TREE_CODE (val2
) == SSA_NAME
)
1229 code2
= TREE_CODE (val2
);
1230 n2
= TREE_OPERAND (val2
, 0);
1231 c2
= TREE_OPERAND (val2
, 1);
1232 if (tree_int_cst_sgn (c2
) == -1)
1234 if (is_negative_overflow_infinity (c2
))
1236 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1239 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1243 /* Both values must use the same name. */
1247 if (code1
== SSA_NAME
1248 && code2
== SSA_NAME
)
1252 /* If overflow is defined we cannot simplify more. */
1253 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1256 if (strict_overflow_p
!= NULL
1257 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1258 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1259 *strict_overflow_p
= true;
1261 if (code1
== SSA_NAME
)
1263 if (code2
== PLUS_EXPR
)
1264 /* NAME < NAME + CST */
1266 else if (code2
== MINUS_EXPR
)
1267 /* NAME > NAME - CST */
1270 else if (code1
== PLUS_EXPR
)
1272 if (code2
== SSA_NAME
)
1273 /* NAME + CST > NAME */
1275 else if (code2
== PLUS_EXPR
)
1276 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1277 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1278 else if (code2
== MINUS_EXPR
)
1279 /* NAME + CST1 > NAME - CST2 */
1282 else if (code1
== MINUS_EXPR
)
1284 if (code2
== SSA_NAME
)
1285 /* NAME - CST < NAME */
1287 else if (code2
== PLUS_EXPR
)
1288 /* NAME - CST1 < NAME + CST2 */
1290 else if (code2
== MINUS_EXPR
)
1291 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1292 C1 and C2 are swapped in the call to compare_values. */
1293 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1299 /* We cannot compare non-constants. */
1300 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1305 /* We cannot compare overflowed values, except for overflow
1307 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1309 if (strict_overflow_p
!= NULL
)
1310 *strict_overflow_p
= true;
1311 if (is_negative_overflow_infinity (val1
))
1312 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2
))
1315 else if (is_positive_overflow_infinity (val1
))
1316 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2
))
1322 return tree_int_cst_compare (val1
, val2
);
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1
, val2
) == 1)
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2
, val1
) == 1)
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1
) != INTEGER_CST
1345 || TREE_CODE (val2
) != INTEGER_CST
)
1347 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1348 if (t
&& integer_onep (t
))
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1360 compare_values (tree val1
, tree val2
)
1366 ret
= compare_values_warnv (val1
, val2
, &sop
);
1368 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1382 value_inside_range (tree val
, tree min
, tree max
)
1386 cmp1
= operand_less_p (val
, min
);
1392 cmp2
= operand_less_p (max
, val
);
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1403 Benchmark compile/20001226-1.c compilation time after changing this
1408 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1415 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1425 range_includes_zero_p (tree min
, tree max
)
1427 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1428 return value_inside_range (zero
, min
, max
);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1434 value_range_nonnegative_p (value_range_t
*vr
)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1439 if (vr
->type
== VR_RANGE
)
1441 int result
= compare_values (vr
->min
, integer_zero_node
);
1442 return (result
== 0 || result
== 1);
1448 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1449 false otherwise or if no value range information is available. */
1452 ssa_name_nonnegative_p (const_tree t
)
1454 value_range_t
*vr
= get_value_range (t
);
1456 if (INTEGRAL_TYPE_P (t
)
1457 && TYPE_UNSIGNED (t
))
1463 return value_range_nonnegative_p (vr
);
1466 /* If *VR has a value rante that is a single constant value return that,
1467 otherwise return NULL_TREE. */
1470 value_range_constant_singleton (value_range_t
*vr
)
1472 if (vr
->type
== VR_RANGE
1473 && operand_equal_p (vr
->min
, vr
->max
, 0)
1474 && is_gimple_min_invariant (vr
->min
))
1480 /* If OP has a value range with a single constant value return that,
1481 otherwise return NULL_TREE. This returns OP itself if OP is a
1485 op_with_constant_singleton_value_range (tree op
)
1487 if (is_gimple_min_invariant (op
))
1490 if (TREE_CODE (op
) != SSA_NAME
)
1493 return value_range_constant_singleton (get_value_range (op
));
1496 /* Return true if op is in a boolean [0, 1] value-range. */
1499 op_with_boolean_value_range_p (tree op
)
1503 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1506 if (integer_zerop (op
)
1507 || integer_onep (op
))
1510 if (TREE_CODE (op
) != SSA_NAME
)
1513 vr
= get_value_range (op
);
1514 return (vr
->type
== VR_RANGE
1515 && integer_zerop (vr
->min
)
1516 && integer_onep (vr
->max
));
1519 /* Extract value range information from an ASSERT_EXPR EXPR and store
1523 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1525 tree var
, cond
, limit
, min
, max
, type
;
1526 value_range_t
*limit_vr
;
1527 enum tree_code cond_code
;
1529 var
= ASSERT_EXPR_VAR (expr
);
1530 cond
= ASSERT_EXPR_COND (expr
);
1532 gcc_assert (COMPARISON_CLASS_P (cond
));
1534 /* Find VAR in the ASSERT_EXPR conditional. */
1535 if (var
== TREE_OPERAND (cond
, 0)
1536 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1537 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1539 /* If the predicate is of the form VAR COMP LIMIT, then we just
1540 take LIMIT from the RHS and use the same comparison code. */
1541 cond_code
= TREE_CODE (cond
);
1542 limit
= TREE_OPERAND (cond
, 1);
1543 cond
= TREE_OPERAND (cond
, 0);
1547 /* If the predicate is of the form LIMIT COMP VAR, then we need
1548 to flip around the comparison code to create the proper range
1550 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1551 limit
= TREE_OPERAND (cond
, 0);
1552 cond
= TREE_OPERAND (cond
, 1);
1555 limit
= avoid_overflow_infinity (limit
);
1557 type
= TREE_TYPE (var
);
1558 gcc_assert (limit
!= var
);
1560 /* For pointer arithmetic, we only keep track of pointer equality
1562 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1564 set_value_range_to_varying (vr_p
);
1568 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1569 try to use LIMIT's range to avoid creating symbolic ranges
1571 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1573 /* LIMIT's range is only interesting if it has any useful information. */
1575 && (limit_vr
->type
== VR_UNDEFINED
1576 || limit_vr
->type
== VR_VARYING
1577 || symbolic_range_p (limit_vr
)))
1580 /* Initially, the new range has the same set of equivalences of
1581 VAR's range. This will be revised before returning the final
1582 value. Since assertions may be chained via mutually exclusive
1583 predicates, we will need to trim the set of equivalences before
1585 gcc_assert (vr_p
->equiv
== NULL
);
1586 add_equivalence (&vr_p
->equiv
, var
);
1588 /* Extract a new range based on the asserted comparison for VAR and
1589 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1590 will only use it for equality comparisons (EQ_EXPR). For any
1591 other kind of assertion, we cannot derive a range from LIMIT's
1592 anti-range that can be used to describe the new range. For
1593 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1594 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1595 no single range for x_2 that could describe LE_EXPR, so we might
1596 as well build the range [b_4, +INF] for it.
1597 One special case we handle is extracting a range from a
1598 range test encoded as (unsigned)var + CST <= limit. */
1599 if (TREE_CODE (cond
) == NOP_EXPR
1600 || TREE_CODE (cond
) == PLUS_EXPR
)
1602 if (TREE_CODE (cond
) == PLUS_EXPR
)
1604 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1605 TREE_OPERAND (cond
, 1));
1606 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1607 cond
= TREE_OPERAND (cond
, 0);
1611 min
= build_int_cst (TREE_TYPE (var
), 0);
1615 /* Make sure to not set TREE_OVERFLOW on the final type
1616 conversion. We are willingly interpreting large positive
1617 unsigned values as negative singed values here. */
1618 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1620 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1623 /* We can transform a max, min range to an anti-range or
1624 vice-versa. Use set_and_canonicalize_value_range which does
1626 if (cond_code
== LE_EXPR
)
1627 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1628 min
, max
, vr_p
->equiv
);
1629 else if (cond_code
== GT_EXPR
)
1630 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1631 min
, max
, vr_p
->equiv
);
1635 else if (cond_code
== EQ_EXPR
)
1637 enum value_range_type range_type
;
1641 range_type
= limit_vr
->type
;
1642 min
= limit_vr
->min
;
1643 max
= limit_vr
->max
;
1647 range_type
= VR_RANGE
;
1652 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1654 /* When asserting the equality VAR == LIMIT and LIMIT is another
1655 SSA name, the new range will also inherit the equivalence set
1657 if (TREE_CODE (limit
) == SSA_NAME
)
1658 add_equivalence (&vr_p
->equiv
, limit
);
1660 else if (cond_code
== NE_EXPR
)
1662 /* As described above, when LIMIT's range is an anti-range and
1663 this assertion is an inequality (NE_EXPR), then we cannot
1664 derive anything from the anti-range. For instance, if
1665 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1666 not imply that VAR's range is [0, 0]. So, in the case of
1667 anti-ranges, we just assert the inequality using LIMIT and
1670 If LIMIT_VR is a range, we can only use it to build a new
1671 anti-range if LIMIT_VR is a single-valued range. For
1672 instance, if LIMIT_VR is [0, 1], the predicate
1673 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1674 Rather, it means that for value 0 VAR should be ~[0, 0]
1675 and for value 1, VAR should be ~[1, 1]. We cannot
1676 represent these ranges.
1678 The only situation in which we can build a valid
1679 anti-range is when LIMIT_VR is a single-valued range
1680 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1681 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1683 && limit_vr
->type
== VR_RANGE
1684 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1686 min
= limit_vr
->min
;
1687 max
= limit_vr
->max
;
1691 /* In any other case, we cannot use LIMIT's range to build a
1692 valid anti-range. */
1696 /* If MIN and MAX cover the whole range for their type, then
1697 just use the original LIMIT. */
1698 if (INTEGRAL_TYPE_P (type
)
1699 && vrp_val_is_min (min
)
1700 && vrp_val_is_max (max
))
1703 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1704 min
, max
, vr_p
->equiv
);
1706 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1708 min
= TYPE_MIN_VALUE (type
);
1710 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1714 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1715 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1717 max
= limit_vr
->max
;
1720 /* If the maximum value forces us to be out of bounds, simply punt.
1721 It would be pointless to try and do anything more since this
1722 all should be optimized away above us. */
1723 if ((cond_code
== LT_EXPR
1724 && compare_values (max
, min
) == 0)
1725 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1726 set_value_range_to_varying (vr_p
);
1729 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1730 if (cond_code
== LT_EXPR
)
1732 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1733 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1734 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1735 build_int_cst (TREE_TYPE (max
), -1));
1737 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1738 build_int_cst (TREE_TYPE (max
), 1));
1740 TREE_NO_WARNING (max
) = 1;
1743 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1746 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1748 max
= TYPE_MAX_VALUE (type
);
1750 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1754 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1755 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1757 min
= limit_vr
->min
;
1760 /* If the minimum value forces us to be out of bounds, simply punt.
1761 It would be pointless to try and do anything more since this
1762 all should be optimized away above us. */
1763 if ((cond_code
== GT_EXPR
1764 && compare_values (min
, max
) == 0)
1765 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1766 set_value_range_to_varying (vr_p
);
1769 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1770 if (cond_code
== GT_EXPR
)
1772 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1773 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1774 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1775 build_int_cst (TREE_TYPE (min
), -1));
1777 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1778 build_int_cst (TREE_TYPE (min
), 1));
1780 TREE_NO_WARNING (min
) = 1;
1783 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1789 /* Finally intersect the new range with what we already know about var. */
1790 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1794 /* Extract range information from SSA name VAR and store it in VR. If
1795 VAR has an interesting range, use it. Otherwise, create the
1796 range [VAR, VAR] and return it. This is useful in situations where
1797 we may have conditionals testing values of VARYING names. For
1804 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1808 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1810 value_range_t
*var_vr
= get_value_range (var
);
1812 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1813 copy_value_range (vr
, var_vr
);
1815 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1817 add_equivalence (&vr
->equiv
, var
);
1821 /* Wrapper around int_const_binop. If the operation overflows and we
1822 are not using wrapping arithmetic, then adjust the result to be
1823 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1824 NULL_TREE if we need to use an overflow infinity representation but
1825 the type does not support it. */
1828 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1832 res
= int_const_binop (code
, val1
, val2
);
1834 /* If we are using unsigned arithmetic, operate symbolically
1835 on -INF and +INF as int_const_binop only handles signed overflow. */
1836 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1838 int checkz
= compare_values (res
, val1
);
1839 bool overflow
= false;
1841 /* Ensure that res = val1 [+*] val2 >= val1
1842 or that res = val1 - val2 <= val1. */
1843 if ((code
== PLUS_EXPR
1844 && !(checkz
== 1 || checkz
== 0))
1845 || (code
== MINUS_EXPR
1846 && !(checkz
== 0 || checkz
== -1)))
1850 /* Checking for multiplication overflow is done by dividing the
1851 output of the multiplication by the first input of the
1852 multiplication. If the result of that division operation is
1853 not equal to the second input of the multiplication, then the
1854 multiplication overflowed. */
1855 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1857 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1860 int check
= compare_values (tmp
, val2
);
1868 res
= copy_node (res
);
1869 TREE_OVERFLOW (res
) = 1;
1873 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1874 /* If the singed operation wraps then int_const_binop has done
1875 everything we want. */
1877 else if ((TREE_OVERFLOW (res
)
1878 && !TREE_OVERFLOW (val1
)
1879 && !TREE_OVERFLOW (val2
))
1880 || is_overflow_infinity (val1
)
1881 || is_overflow_infinity (val2
))
1883 /* If the operation overflowed but neither VAL1 nor VAL2 are
1884 overflown, return -INF or +INF depending on the operation
1885 and the combination of signs of the operands. */
1886 int sgn1
= tree_int_cst_sgn (val1
);
1887 int sgn2
= tree_int_cst_sgn (val2
);
1889 if (needs_overflow_infinity (TREE_TYPE (res
))
1890 && !supports_overflow_infinity (TREE_TYPE (res
)))
1893 /* We have to punt on adding infinities of different signs,
1894 since we can't tell what the sign of the result should be.
1895 Likewise for subtracting infinities of the same sign. */
1896 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1897 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1898 && is_overflow_infinity (val1
)
1899 && is_overflow_infinity (val2
))
1902 /* Don't try to handle division or shifting of infinities. */
1903 if ((code
== TRUNC_DIV_EXPR
1904 || code
== FLOOR_DIV_EXPR
1905 || code
== CEIL_DIV_EXPR
1906 || code
== EXACT_DIV_EXPR
1907 || code
== ROUND_DIV_EXPR
1908 || code
== RSHIFT_EXPR
)
1909 && (is_overflow_infinity (val1
)
1910 || is_overflow_infinity (val2
)))
1913 /* Notice that we only need to handle the restricted set of
1914 operations handled by extract_range_from_binary_expr.
1915 Among them, only multiplication, addition and subtraction
1916 can yield overflow without overflown operands because we
1917 are working with integral types only... except in the
1918 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1919 for division too. */
1921 /* For multiplication, the sign of the overflow is given
1922 by the comparison of the signs of the operands. */
1923 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1924 /* For addition, the operands must be of the same sign
1925 to yield an overflow. Its sign is therefore that
1926 of one of the operands, for example the first. For
1927 infinite operands X + -INF is negative, not positive. */
1928 || (code
== PLUS_EXPR
1930 ? !is_negative_overflow_infinity (val2
)
1931 : is_positive_overflow_infinity (val2
)))
1932 /* For subtraction, non-infinite operands must be of
1933 different signs to yield an overflow. Its sign is
1934 therefore that of the first operand or the opposite of
1935 that of the second operand. A first operand of 0 counts
1936 as positive here, for the corner case 0 - (-INF), which
1937 overflows, but must yield +INF. For infinite operands 0
1938 - INF is negative, not positive. */
1939 || (code
== MINUS_EXPR
1941 ? !is_positive_overflow_infinity (val2
)
1942 : is_negative_overflow_infinity (val2
)))
1943 /* We only get in here with positive shift count, so the
1944 overflow direction is the same as the sign of val1.
1945 Actually rshift does not overflow at all, but we only
1946 handle the case of shifting overflowed -INF and +INF. */
1947 || (code
== RSHIFT_EXPR
1949 /* For division, the only case is -INF / -1 = +INF. */
1950 || code
== TRUNC_DIV_EXPR
1951 || code
== FLOOR_DIV_EXPR
1952 || code
== CEIL_DIV_EXPR
1953 || code
== EXACT_DIV_EXPR
1954 || code
== ROUND_DIV_EXPR
)
1955 return (needs_overflow_infinity (TREE_TYPE (res
))
1956 ? positive_overflow_infinity (TREE_TYPE (res
))
1957 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
1959 return (needs_overflow_infinity (TREE_TYPE (res
))
1960 ? negative_overflow_infinity (TREE_TYPE (res
))
1961 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
1968 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1969 bitmask if some bit is unset, it means for all numbers in the range
1970 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1971 bitmask if some bit is set, it means for all numbers in the range
1972 the bit is 1, otherwise it might be 0 or 1. */
1975 zero_nonzero_bits_from_vr (value_range_t
*vr
,
1976 double_int
*may_be_nonzero
,
1977 double_int
*must_be_nonzero
)
1979 *may_be_nonzero
= double_int_minus_one
;
1980 *must_be_nonzero
= double_int_zero
;
1981 if (!range_int_cst_p (vr
)
1982 || TREE_OVERFLOW (vr
->min
)
1983 || TREE_OVERFLOW (vr
->max
))
1986 if (range_int_cst_singleton_p (vr
))
1988 *may_be_nonzero
= tree_to_double_int (vr
->min
);
1989 *must_be_nonzero
= *may_be_nonzero
;
1991 else if (tree_int_cst_sgn (vr
->min
) >= 0
1992 || tree_int_cst_sgn (vr
->max
) < 0)
1994 double_int dmin
= tree_to_double_int (vr
->min
);
1995 double_int dmax
= tree_to_double_int (vr
->max
);
1996 double_int xor_mask
= dmin
^ dmax
;
1997 *may_be_nonzero
= dmin
| dmax
;
1998 *must_be_nonzero
= dmin
& dmax
;
1999 if (xor_mask
.high
!= 0)
2001 unsigned HOST_WIDE_INT mask
2002 = ((unsigned HOST_WIDE_INT
) 1
2003 << floor_log2 (xor_mask
.high
)) - 1;
2004 may_be_nonzero
->low
= ALL_ONES
;
2005 may_be_nonzero
->high
|= mask
;
2006 must_be_nonzero
->low
= 0;
2007 must_be_nonzero
->high
&= ~mask
;
2009 else if (xor_mask
.low
!= 0)
2011 unsigned HOST_WIDE_INT mask
2012 = ((unsigned HOST_WIDE_INT
) 1
2013 << floor_log2 (xor_mask
.low
)) - 1;
2014 may_be_nonzero
->low
|= mask
;
2015 must_be_nonzero
->low
&= ~mask
;
2022 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2023 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2024 false otherwise. If *AR can be represented with a single range
2025 *VR1 will be VR_UNDEFINED. */
2028 ranges_from_anti_range (value_range_t
*ar
,
2029 value_range_t
*vr0
, value_range_t
*vr1
)
2031 tree type
= TREE_TYPE (ar
->min
);
2033 vr0
->type
= VR_UNDEFINED
;
2034 vr1
->type
= VR_UNDEFINED
;
2036 if (ar
->type
!= VR_ANTI_RANGE
2037 || TREE_CODE (ar
->min
) != INTEGER_CST
2038 || TREE_CODE (ar
->max
) != INTEGER_CST
2039 || !vrp_val_min (type
)
2040 || !vrp_val_max (type
))
2043 if (!vrp_val_is_min (ar
->min
))
2045 vr0
->type
= VR_RANGE
;
2046 vr0
->min
= vrp_val_min (type
);
2048 = double_int_to_tree (type
,
2049 tree_to_double_int (ar
->min
) - double_int_one
);
2051 if (!vrp_val_is_max (ar
->max
))
2053 vr1
->type
= VR_RANGE
;
2055 = double_int_to_tree (type
,
2056 tree_to_double_int (ar
->max
) + double_int_one
);
2057 vr1
->max
= vrp_val_max (type
);
2059 if (vr0
->type
== VR_UNDEFINED
)
2062 vr1
->type
= VR_UNDEFINED
;
2065 return vr0
->type
!= VR_UNDEFINED
;
2068 /* Helper to extract a value-range *VR for a multiplicative operation
2072 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2073 enum tree_code code
,
2074 value_range_t
*vr0
, value_range_t
*vr1
)
2076 enum value_range_type type
;
2083 /* Multiplications, divisions and shifts are a bit tricky to handle,
2084 depending on the mix of signs we have in the two ranges, we
2085 need to operate on different values to get the minimum and
2086 maximum values for the new range. One approach is to figure
2087 out all the variations of range combinations and do the
2090 However, this involves several calls to compare_values and it
2091 is pretty convoluted. It's simpler to do the 4 operations
2092 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2093 MAX1) and then figure the smallest and largest values to form
2095 gcc_assert (code
== MULT_EXPR
2096 || code
== TRUNC_DIV_EXPR
2097 || code
== FLOOR_DIV_EXPR
2098 || code
== CEIL_DIV_EXPR
2099 || code
== EXACT_DIV_EXPR
2100 || code
== ROUND_DIV_EXPR
2101 || code
== RSHIFT_EXPR
2102 || code
== LSHIFT_EXPR
);
2103 gcc_assert ((vr0
->type
== VR_RANGE
2104 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2105 && vr0
->type
== vr1
->type
);
2109 /* Compute the 4 cross operations. */
2111 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2112 if (val
[0] == NULL_TREE
)
2115 if (vr1
->max
== vr1
->min
)
2119 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2120 if (val
[1] == NULL_TREE
)
2124 if (vr0
->max
== vr0
->min
)
2128 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2129 if (val
[2] == NULL_TREE
)
2133 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2137 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2138 if (val
[3] == NULL_TREE
)
2144 set_value_range_to_varying (vr
);
2148 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2152 for (i
= 1; i
< 4; i
++)
2154 if (!is_gimple_min_invariant (min
)
2155 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2156 || !is_gimple_min_invariant (max
)
2157 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2162 if (!is_gimple_min_invariant (val
[i
])
2163 || (TREE_OVERFLOW (val
[i
])
2164 && !is_overflow_infinity (val
[i
])))
2166 /* If we found an overflowed value, set MIN and MAX
2167 to it so that we set the resulting range to
2173 if (compare_values (val
[i
], min
) == -1)
2176 if (compare_values (val
[i
], max
) == 1)
2181 /* If either MIN or MAX overflowed, then set the resulting range to
2182 VARYING. But we do accept an overflow infinity
2184 if (min
== NULL_TREE
2185 || !is_gimple_min_invariant (min
)
2186 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2188 || !is_gimple_min_invariant (max
)
2189 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2191 set_value_range_to_varying (vr
);
2197 2) [-INF, +-INF(OVF)]
2198 3) [+-INF(OVF), +INF]
2199 4) [+-INF(OVF), +-INF(OVF)]
2200 We learn nothing when we have INF and INF(OVF) on both sides.
2201 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2203 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2204 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2206 set_value_range_to_varying (vr
);
2210 cmp
= compare_values (min
, max
);
2211 if (cmp
== -2 || cmp
== 1)
2213 /* If the new range has its limits swapped around (MIN > MAX),
2214 then the operation caused one of them to wrap around, mark
2215 the new range VARYING. */
2216 set_value_range_to_varying (vr
);
2219 set_value_range (vr
, type
, min
, max
, NULL
);
2222 /* Some quadruple precision helpers. */
2224 quad_int_cmp (double_int l0
, double_int h0
,
2225 double_int l1
, double_int h1
, bool uns
)
2227 int c
= h0
.cmp (h1
, uns
);
2228 if (c
!= 0) return c
;
2229 return l0
.ucmp (l1
);
2233 quad_int_pair_sort (double_int
*l0
, double_int
*h0
,
2234 double_int
*l1
, double_int
*h1
, bool uns
)
2236 if (quad_int_cmp (*l0
, *h0
, *l1
, *h1
, uns
) > 0)
2239 tmp
= *l0
; *l0
= *l1
; *l1
= tmp
;
2240 tmp
= *h0
; *h0
= *h1
; *h1
= tmp
;
2244 /* Extract range information from a binary operation CODE based on
2245 the ranges of each of its operands, *VR0 and *VR1 with resulting
2246 type EXPR_TYPE. The resulting range is stored in *VR. */
2249 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2250 enum tree_code code
, tree expr_type
,
2251 value_range_t
*vr0_
, value_range_t
*vr1_
)
2253 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2254 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2255 enum value_range_type type
;
2256 tree min
= NULL_TREE
, max
= NULL_TREE
;
2259 if (!INTEGRAL_TYPE_P (expr_type
)
2260 && !POINTER_TYPE_P (expr_type
))
2262 set_value_range_to_varying (vr
);
2266 /* Not all binary expressions can be applied to ranges in a
2267 meaningful way. Handle only arithmetic operations. */
2268 if (code
!= PLUS_EXPR
2269 && code
!= MINUS_EXPR
2270 && code
!= POINTER_PLUS_EXPR
2271 && code
!= MULT_EXPR
2272 && code
!= TRUNC_DIV_EXPR
2273 && code
!= FLOOR_DIV_EXPR
2274 && code
!= CEIL_DIV_EXPR
2275 && code
!= EXACT_DIV_EXPR
2276 && code
!= ROUND_DIV_EXPR
2277 && code
!= TRUNC_MOD_EXPR
2278 && code
!= RSHIFT_EXPR
2279 && code
!= LSHIFT_EXPR
2282 && code
!= BIT_AND_EXPR
2283 && code
!= BIT_IOR_EXPR
2284 && code
!= BIT_XOR_EXPR
)
2286 set_value_range_to_varying (vr
);
2290 /* If both ranges are UNDEFINED, so is the result. */
2291 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2293 set_value_range_to_undefined (vr
);
2296 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2297 code. At some point we may want to special-case operations that
2298 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2300 else if (vr0
.type
== VR_UNDEFINED
)
2301 set_value_range_to_varying (&vr0
);
2302 else if (vr1
.type
== VR_UNDEFINED
)
2303 set_value_range_to_varying (&vr1
);
2305 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2306 and express ~[] op X as ([]' op X) U ([]'' op X). */
2307 if (vr0
.type
== VR_ANTI_RANGE
2308 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2310 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2311 if (vrtem1
.type
!= VR_UNDEFINED
)
2313 value_range_t vrres
= VR_INITIALIZER
;
2314 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2316 vrp_meet (vr
, &vrres
);
2320 /* Likewise for X op ~[]. */
2321 if (vr1
.type
== VR_ANTI_RANGE
2322 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2324 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2325 if (vrtem1
.type
!= VR_UNDEFINED
)
2327 value_range_t vrres
= VR_INITIALIZER
;
2328 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2330 vrp_meet (vr
, &vrres
);
2335 /* The type of the resulting value range defaults to VR0.TYPE. */
2338 /* Refuse to operate on VARYING ranges, ranges of different kinds
2339 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2340 because we may be able to derive a useful range even if one of
2341 the operands is VR_VARYING or symbolic range. Similarly for
2342 divisions. TODO, we may be able to derive anti-ranges in
2344 if (code
!= BIT_AND_EXPR
2345 && code
!= BIT_IOR_EXPR
2346 && code
!= TRUNC_DIV_EXPR
2347 && code
!= FLOOR_DIV_EXPR
2348 && code
!= CEIL_DIV_EXPR
2349 && code
!= EXACT_DIV_EXPR
2350 && code
!= ROUND_DIV_EXPR
2351 && code
!= TRUNC_MOD_EXPR
2352 && (vr0
.type
== VR_VARYING
2353 || vr1
.type
== VR_VARYING
2354 || vr0
.type
!= vr1
.type
2355 || symbolic_range_p (&vr0
)
2356 || symbolic_range_p (&vr1
)))
2358 set_value_range_to_varying (vr
);
2362 /* Now evaluate the expression to determine the new range. */
2363 if (POINTER_TYPE_P (expr_type
))
2365 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2367 /* For MIN/MAX expressions with pointers, we only care about
2368 nullness, if both are non null, then the result is nonnull.
2369 If both are null, then the result is null. Otherwise they
2371 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2372 set_value_range_to_nonnull (vr
, expr_type
);
2373 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2374 set_value_range_to_null (vr
, expr_type
);
2376 set_value_range_to_varying (vr
);
2378 else if (code
== POINTER_PLUS_EXPR
)
2380 /* For pointer types, we are really only interested in asserting
2381 whether the expression evaluates to non-NULL. */
2382 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2383 set_value_range_to_nonnull (vr
, expr_type
);
2384 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2385 set_value_range_to_null (vr
, expr_type
);
2387 set_value_range_to_varying (vr
);
2389 else if (code
== BIT_AND_EXPR
)
2391 /* For pointer types, we are really only interested in asserting
2392 whether the expression evaluates to non-NULL. */
2393 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2394 set_value_range_to_nonnull (vr
, expr_type
);
2395 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2396 set_value_range_to_null (vr
, expr_type
);
2398 set_value_range_to_varying (vr
);
2401 set_value_range_to_varying (vr
);
2406 /* For integer ranges, apply the operation to each end of the
2407 range and see what we end up with. */
2408 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2410 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2411 ranges compute the precise range for such case if possible. */
2412 if (range_int_cst_p (&vr0
)
2413 && range_int_cst_p (&vr1
)
2414 /* We need as many bits as the possibly unsigned inputs. */
2415 && TYPE_PRECISION (expr_type
) <= HOST_BITS_PER_DOUBLE_INT
)
2417 double_int min0
= tree_to_double_int (vr0
.min
);
2418 double_int max0
= tree_to_double_int (vr0
.max
);
2419 double_int min1
= tree_to_double_int (vr1
.min
);
2420 double_int max1
= tree_to_double_int (vr1
.max
);
2421 bool uns
= TYPE_UNSIGNED (expr_type
);
2423 = double_int::min_value (TYPE_PRECISION (expr_type
), uns
);
2425 = double_int::max_value (TYPE_PRECISION (expr_type
), uns
);
2426 double_int dmin
, dmax
;
2430 if (code
== PLUS_EXPR
)
2435 /* Check for overflow in double_int. */
2436 if (min1
.cmp (double_int_zero
, uns
) != dmin
.cmp (min0
, uns
))
2437 min_ovf
= min0
.cmp (dmin
, uns
);
2438 if (max1
.cmp (double_int_zero
, uns
) != dmax
.cmp (max0
, uns
))
2439 max_ovf
= max0
.cmp (dmax
, uns
);
2441 else /* if (code == MINUS_EXPR) */
2446 if (double_int_zero
.cmp (max1
, uns
) != dmin
.cmp (min0
, uns
))
2447 min_ovf
= min0
.cmp (max1
, uns
);
2448 if (double_int_zero
.cmp (min1
, uns
) != dmax
.cmp (max0
, uns
))
2449 max_ovf
= max0
.cmp (min1
, uns
);
2452 /* For non-wrapping arithmetic look at possibly smaller
2453 value-ranges of the type. */
2454 if (!TYPE_OVERFLOW_WRAPS (expr_type
))
2456 if (vrp_val_min (expr_type
))
2457 type_min
= tree_to_double_int (vrp_val_min (expr_type
));
2458 if (vrp_val_max (expr_type
))
2459 type_max
= tree_to_double_int (vrp_val_max (expr_type
));
2462 /* Check for type overflow. */
2465 if (dmin
.cmp (type_min
, uns
) == -1)
2467 else if (dmin
.cmp (type_max
, uns
) == 1)
2472 if (dmax
.cmp (type_min
, uns
) == -1)
2474 else if (dmax
.cmp (type_max
, uns
) == 1)
2478 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2480 /* If overflow wraps, truncate the values and adjust the
2481 range kind and bounds appropriately. */
2483 = dmin
.ext (TYPE_PRECISION (expr_type
), uns
);
2485 = dmax
.ext (TYPE_PRECISION (expr_type
), uns
);
2486 if (min_ovf
== max_ovf
)
2488 /* No overflow or both overflow or underflow. The
2489 range kind stays VR_RANGE. */
2490 min
= double_int_to_tree (expr_type
, tmin
);
2491 max
= double_int_to_tree (expr_type
, tmax
);
2493 else if (min_ovf
== -1
2496 /* Underflow and overflow, drop to VR_VARYING. */
2497 set_value_range_to_varying (vr
);
2502 /* Min underflow or max overflow. The range kind
2503 changes to VR_ANTI_RANGE. */
2504 bool covers
= false;
2505 double_int tem
= tmin
;
2506 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2507 || (max_ovf
== 1 && min_ovf
== 0));
2508 type
= VR_ANTI_RANGE
;
2509 tmin
= tmax
+ double_int_one
;
2510 if (tmin
.cmp (tmax
, uns
) < 0)
2512 tmax
= tem
+ double_int_minus_one
;
2513 if (tmax
.cmp (tem
, uns
) > 0)
2515 /* If the anti-range would cover nothing, drop to varying.
2516 Likewise if the anti-range bounds are outside of the
2518 if (covers
|| tmin
.cmp (tmax
, uns
) > 0)
2520 set_value_range_to_varying (vr
);
2523 min
= double_int_to_tree (expr_type
, tmin
);
2524 max
= double_int_to_tree (expr_type
, tmax
);
2529 /* If overflow does not wrap, saturate to the types min/max
2533 if (needs_overflow_infinity (expr_type
)
2534 && supports_overflow_infinity (expr_type
))
2535 min
= negative_overflow_infinity (expr_type
);
2537 min
= double_int_to_tree (expr_type
, type_min
);
2539 else if (min_ovf
== 1)
2541 if (needs_overflow_infinity (expr_type
)
2542 && supports_overflow_infinity (expr_type
))
2543 min
= positive_overflow_infinity (expr_type
);
2545 min
= double_int_to_tree (expr_type
, type_max
);
2548 min
= double_int_to_tree (expr_type
, dmin
);
2552 if (needs_overflow_infinity (expr_type
)
2553 && supports_overflow_infinity (expr_type
))
2554 max
= negative_overflow_infinity (expr_type
);
2556 max
= double_int_to_tree (expr_type
, type_min
);
2558 else if (max_ovf
== 1)
2560 if (needs_overflow_infinity (expr_type
)
2561 && supports_overflow_infinity (expr_type
))
2562 max
= positive_overflow_infinity (expr_type
);
2564 max
= double_int_to_tree (expr_type
, type_max
);
2567 max
= double_int_to_tree (expr_type
, dmax
);
2569 if (needs_overflow_infinity (expr_type
)
2570 && supports_overflow_infinity (expr_type
))
2572 if (is_negative_overflow_infinity (vr0
.min
)
2573 || (code
== PLUS_EXPR
2574 ? is_negative_overflow_infinity (vr1
.min
)
2575 : is_positive_overflow_infinity (vr1
.max
)))
2576 min
= negative_overflow_infinity (expr_type
);
2577 if (is_positive_overflow_infinity (vr0
.max
)
2578 || (code
== PLUS_EXPR
2579 ? is_positive_overflow_infinity (vr1
.max
)
2580 : is_negative_overflow_infinity (vr1
.min
)))
2581 max
= positive_overflow_infinity (expr_type
);
2586 /* For other cases, for example if we have a PLUS_EXPR with two
2587 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2588 to compute a precise range for such a case.
2589 ??? General even mixed range kind operations can be expressed
2590 by for example transforming ~[3, 5] + [1, 2] to range-only
2591 operations and a union primitive:
2592 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2593 [-INF+1, 4] U [6, +INF(OVF)]
2594 though usually the union is not exactly representable with
2595 a single range or anti-range as the above is
2596 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2597 but one could use a scheme similar to equivalences for this. */
2598 set_value_range_to_varying (vr
);
2602 else if (code
== MIN_EXPR
2603 || code
== MAX_EXPR
)
2605 if (vr0
.type
== VR_ANTI_RANGE
)
2607 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2608 the resulting VR_ANTI_RANGE is the same - intersection
2609 of the two ranges. */
2610 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2611 max
= vrp_int_const_binop (MIN_EXPR
, vr0
.max
, vr1
.max
);
2615 /* For operations that make the resulting range directly
2616 proportional to the original ranges, apply the operation to
2617 the same end of each range. */
2618 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2619 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2622 else if (code
== MULT_EXPR
)
2624 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2626 if (range_int_cst_p (&vr0
)
2627 && range_int_cst_p (&vr1
)
2628 && TYPE_OVERFLOW_WRAPS (expr_type
))
2630 double_int min0
, max0
, min1
, max1
, sizem1
, size
;
2631 double_int prod0l
, prod0h
, prod1l
, prod1h
,
2632 prod2l
, prod2h
, prod3l
, prod3h
;
2633 bool uns0
, uns1
, uns
;
2635 sizem1
= double_int::max_value (TYPE_PRECISION (expr_type
), true);
2636 size
= sizem1
+ double_int_one
;
2638 min0
= tree_to_double_int (vr0
.min
);
2639 max0
= tree_to_double_int (vr0
.max
);
2640 min1
= tree_to_double_int (vr1
.min
);
2641 max1
= tree_to_double_int (vr1
.max
);
2643 uns0
= TYPE_UNSIGNED (expr_type
);
2646 /* Canonicalize the intervals. */
2647 if (TYPE_UNSIGNED (expr_type
))
2649 double_int min2
= size
- min0
;
2650 if (!min2
.is_zero () && min2
.cmp (max0
, true) < 0)
2658 if (!min2
.is_zero () && min2
.cmp (max1
, true) < 0)
2668 prod0l
= min0
.wide_mul_with_sign (min1
, true, &prod0h
, &overflow
);
2669 if (!uns0
&& min0
.is_negative ())
2671 if (!uns1
&& min1
.is_negative ())
2674 prod1l
= min0
.wide_mul_with_sign (max1
, true, &prod1h
, &overflow
);
2675 if (!uns0
&& min0
.is_negative ())
2677 if (!uns1
&& max1
.is_negative ())
2680 prod2l
= max0
.wide_mul_with_sign (min1
, true, &prod2h
, &overflow
);
2681 if (!uns0
&& max0
.is_negative ())
2683 if (!uns1
&& min1
.is_negative ())
2686 prod3l
= max0
.wide_mul_with_sign (max1
, true, &prod3h
, &overflow
);
2687 if (!uns0
&& max0
.is_negative ())
2689 if (!uns1
&& max1
.is_negative ())
2692 /* Sort the 4 products. */
2693 quad_int_pair_sort (&prod0l
, &prod0h
, &prod3l
, &prod3h
, uns
);
2694 quad_int_pair_sort (&prod1l
, &prod1h
, &prod2l
, &prod2h
, uns
);
2695 quad_int_pair_sort (&prod0l
, &prod0h
, &prod1l
, &prod1h
, uns
);
2696 quad_int_pair_sort (&prod2l
, &prod2h
, &prod3l
, &prod3h
, uns
);
2699 if (prod0l
.is_zero ())
2701 prod1l
= double_int_zero
;
2709 prod2l
= prod3l
+ prod1l
;
2710 prod2h
= prod3h
+ prod1h
;
2711 if (prod2l
.ult (prod3l
))
2712 prod2h
+= double_int_one
; /* carry */
2714 if (!prod2h
.is_zero ()
2715 || prod2l
.cmp (sizem1
, true) >= 0)
2717 /* the range covers all values. */
2718 set_value_range_to_varying (vr
);
2722 /* The following should handle the wrapping and selecting
2723 VR_ANTI_RANGE for us. */
2724 min
= double_int_to_tree (expr_type
, prod0l
);
2725 max
= double_int_to_tree (expr_type
, prod3l
);
2726 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2730 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2731 drop to VR_VARYING. It would take more effort to compute a
2732 precise range for such a case. For example, if we have
2733 op0 == 65536 and op1 == 65536 with their ranges both being
2734 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2735 we cannot claim that the product is in ~[0,0]. Note that we
2736 are guaranteed to have vr0.type == vr1.type at this
2738 if (vr0
.type
== VR_ANTI_RANGE
2739 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2741 set_value_range_to_varying (vr
);
2745 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2748 else if (code
== RSHIFT_EXPR
2749 || code
== LSHIFT_EXPR
)
2751 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2752 then drop to VR_VARYING. Outside of this range we get undefined
2753 behavior from the shift operation. We cannot even trust
2754 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2755 shifts, and the operation at the tree level may be widened. */
2756 if (range_int_cst_p (&vr1
)
2757 && compare_tree_int (vr1
.min
, 0) >= 0
2758 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2760 if (code
== RSHIFT_EXPR
)
2762 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2765 /* We can map lshifts by constants to MULT_EXPR handling. */
2766 else if (code
== LSHIFT_EXPR
2767 && range_int_cst_singleton_p (&vr1
))
2769 bool saved_flag_wrapv
;
2770 value_range_t vr1p
= VR_INITIALIZER
;
2771 vr1p
.type
= VR_RANGE
;
2773 = double_int_to_tree (expr_type
,
2775 .llshift (TREE_INT_CST_LOW (vr1
.min
),
2776 TYPE_PRECISION (expr_type
)));
2777 vr1p
.max
= vr1p
.min
;
2778 /* We have to use a wrapping multiply though as signed overflow
2779 on lshifts is implementation defined in C89. */
2780 saved_flag_wrapv
= flag_wrapv
;
2782 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
2784 flag_wrapv
= saved_flag_wrapv
;
2787 else if (code
== LSHIFT_EXPR
2788 && range_int_cst_p (&vr0
))
2790 int prec
= TYPE_PRECISION (expr_type
);
2791 int overflow_pos
= prec
;
2793 double_int bound
, complement
, low_bound
, high_bound
;
2794 bool uns
= TYPE_UNSIGNED (expr_type
);
2795 bool in_bounds
= false;
2800 bound_shift
= overflow_pos
- TREE_INT_CST_LOW (vr1
.max
);
2801 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2802 overflow. However, for that to happen, vr1.max needs to be
2803 zero, which means vr1 is a singleton range of zero, which
2804 means it should be handled by the previous LSHIFT_EXPR
2806 bound
= double_int_one
.llshift (bound_shift
, prec
);
2807 complement
= ~(bound
- double_int_one
);
2812 high_bound
= complement
.zext (prec
);
2813 if (tree_to_double_int (vr0
.max
).ult (low_bound
))
2815 /* [5, 6] << [1, 2] == [10, 24]. */
2816 /* We're shifting out only zeroes, the value increases
2820 else if (high_bound
.ult (tree_to_double_int (vr0
.min
)))
2822 /* [0xffffff00, 0xffffffff] << [1, 2]
2823 == [0xfffffc00, 0xfffffffe]. */
2824 /* We're shifting out only ones, the value decreases
2831 /* [-1, 1] << [1, 2] == [-4, 4]. */
2832 low_bound
= complement
.sext (prec
);
2834 if (tree_to_double_int (vr0
.max
).slt (high_bound
)
2835 && low_bound
.slt (tree_to_double_int (vr0
.min
)))
2837 /* For non-negative numbers, we're shifting out only
2838 zeroes, the value increases monotonically.
2839 For negative numbers, we're shifting out only ones, the
2840 value decreases monotomically. */
2847 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2852 set_value_range_to_varying (vr
);
2855 else if (code
== TRUNC_DIV_EXPR
2856 || code
== FLOOR_DIV_EXPR
2857 || code
== CEIL_DIV_EXPR
2858 || code
== EXACT_DIV_EXPR
2859 || code
== ROUND_DIV_EXPR
)
2861 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2863 /* For division, if op1 has VR_RANGE but op0 does not, something
2864 can be deduced just from that range. Say [min, max] / [4, max]
2865 gives [min / 4, max / 4] range. */
2866 if (vr1
.type
== VR_RANGE
2867 && !symbolic_range_p (&vr1
)
2868 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
2870 vr0
.type
= type
= VR_RANGE
;
2871 vr0
.min
= vrp_val_min (expr_type
);
2872 vr0
.max
= vrp_val_max (expr_type
);
2876 set_value_range_to_varying (vr
);
2881 /* For divisions, if flag_non_call_exceptions is true, we must
2882 not eliminate a division by zero. */
2883 if (cfun
->can_throw_non_call_exceptions
2884 && (vr1
.type
!= VR_RANGE
2885 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2887 set_value_range_to_varying (vr
);
2891 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2892 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2894 if (vr0
.type
== VR_RANGE
2895 && (vr1
.type
!= VR_RANGE
2896 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2898 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2903 if (TYPE_UNSIGNED (expr_type
)
2904 || value_range_nonnegative_p (&vr1
))
2906 /* For unsigned division or when divisor is known
2907 to be non-negative, the range has to cover
2908 all numbers from 0 to max for positive max
2909 and all numbers from min to 0 for negative min. */
2910 cmp
= compare_values (vr0
.max
, zero
);
2913 else if (cmp
== 0 || cmp
== 1)
2917 cmp
= compare_values (vr0
.min
, zero
);
2920 else if (cmp
== 0 || cmp
== -1)
2927 /* Otherwise the range is -max .. max or min .. -min
2928 depending on which bound is bigger in absolute value,
2929 as the division can change the sign. */
2930 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2933 if (type
== VR_VARYING
)
2935 set_value_range_to_varying (vr
);
2941 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2945 else if (code
== TRUNC_MOD_EXPR
)
2947 if (vr1
.type
!= VR_RANGE
2948 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0
2949 || vrp_val_is_min (vr1
.min
))
2951 set_value_range_to_varying (vr
);
2955 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2956 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
2957 if (tree_int_cst_lt (max
, vr1
.max
))
2959 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
2960 /* If the dividend is non-negative the modulus will be
2961 non-negative as well. */
2962 if (TYPE_UNSIGNED (expr_type
)
2963 || value_range_nonnegative_p (&vr0
))
2964 min
= build_int_cst (TREE_TYPE (max
), 0);
2966 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
2968 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
2970 bool int_cst_range0
, int_cst_range1
;
2971 double_int may_be_nonzero0
, may_be_nonzero1
;
2972 double_int must_be_nonzero0
, must_be_nonzero1
;
2974 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2976 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2980 if (code
== BIT_AND_EXPR
)
2983 min
= double_int_to_tree (expr_type
,
2984 must_be_nonzero0
& must_be_nonzero1
);
2985 dmax
= may_be_nonzero0
& may_be_nonzero1
;
2986 /* If both input ranges contain only negative values we can
2987 truncate the result range maximum to the minimum of the
2988 input range maxima. */
2989 if (int_cst_range0
&& int_cst_range1
2990 && tree_int_cst_sgn (vr0
.max
) < 0
2991 && tree_int_cst_sgn (vr1
.max
) < 0)
2993 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
2994 TYPE_UNSIGNED (expr_type
));
2995 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
2996 TYPE_UNSIGNED (expr_type
));
2998 /* If either input range contains only non-negative values
2999 we can truncate the result range maximum to the respective
3000 maximum of the input range. */
3001 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3002 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
3003 TYPE_UNSIGNED (expr_type
));
3004 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3005 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
3006 TYPE_UNSIGNED (expr_type
));
3007 max
= double_int_to_tree (expr_type
, dmax
);
3009 else if (code
== BIT_IOR_EXPR
)
3012 max
= double_int_to_tree (expr_type
,
3013 may_be_nonzero0
| may_be_nonzero1
);
3014 dmin
= must_be_nonzero0
| must_be_nonzero1
;
3015 /* If the input ranges contain only positive values we can
3016 truncate the minimum of the result range to the maximum
3017 of the input range minima. */
3018 if (int_cst_range0
&& int_cst_range1
3019 && tree_int_cst_sgn (vr0
.min
) >= 0
3020 && tree_int_cst_sgn (vr1
.min
) >= 0)
3022 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3023 TYPE_UNSIGNED (expr_type
));
3024 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3025 TYPE_UNSIGNED (expr_type
));
3027 /* If either input range contains only negative values
3028 we can truncate the minimum of the result range to the
3029 respective minimum range. */
3030 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3031 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3032 TYPE_UNSIGNED (expr_type
));
3033 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3034 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3035 TYPE_UNSIGNED (expr_type
));
3036 min
= double_int_to_tree (expr_type
, dmin
);
3038 else if (code
== BIT_XOR_EXPR
)
3040 double_int result_zero_bits
, result_one_bits
;
3041 result_zero_bits
= (must_be_nonzero0
& must_be_nonzero1
)
3042 | ~(may_be_nonzero0
| may_be_nonzero1
);
3043 result_one_bits
= must_be_nonzero0
.and_not (may_be_nonzero1
)
3044 | must_be_nonzero1
.and_not (may_be_nonzero0
);
3045 max
= double_int_to_tree (expr_type
, ~result_zero_bits
);
3046 min
= double_int_to_tree (expr_type
, result_one_bits
);
3047 /* If the range has all positive or all negative values the
3048 result is better than VARYING. */
3049 if (tree_int_cst_sgn (min
) < 0
3050 || tree_int_cst_sgn (max
) >= 0)
3053 max
= min
= NULL_TREE
;
3059 /* If either MIN or MAX overflowed, then set the resulting range to
3060 VARYING. But we do accept an overflow infinity
3062 if (min
== NULL_TREE
3063 || !is_gimple_min_invariant (min
)
3064 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
3066 || !is_gimple_min_invariant (max
)
3067 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
3069 set_value_range_to_varying (vr
);
3075 2) [-INF, +-INF(OVF)]
3076 3) [+-INF(OVF), +INF]
3077 4) [+-INF(OVF), +-INF(OVF)]
3078 We learn nothing when we have INF and INF(OVF) on both sides.
3079 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3081 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3082 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3084 set_value_range_to_varying (vr
);
3088 cmp
= compare_values (min
, max
);
3089 if (cmp
== -2 || cmp
== 1)
3091 /* If the new range has its limits swapped around (MIN > MAX),
3092 then the operation caused one of them to wrap around, mark
3093 the new range VARYING. */
3094 set_value_range_to_varying (vr
);
3097 set_value_range (vr
, type
, min
, max
, NULL
);
3100 /* Extract range information from a binary expression OP0 CODE OP1 based on
3101 the ranges of each of its operands with resulting type EXPR_TYPE.
3102 The resulting range is stored in *VR. */
3105 extract_range_from_binary_expr (value_range_t
*vr
,
3106 enum tree_code code
,
3107 tree expr_type
, tree op0
, tree op1
)
3109 value_range_t vr0
= VR_INITIALIZER
;
3110 value_range_t vr1
= VR_INITIALIZER
;
3112 /* Get value ranges for each operand. For constant operands, create
3113 a new value range with the operand to simplify processing. */
3114 if (TREE_CODE (op0
) == SSA_NAME
)
3115 vr0
= *(get_value_range (op0
));
3116 else if (is_gimple_min_invariant (op0
))
3117 set_value_range_to_value (&vr0
, op0
, NULL
);
3119 set_value_range_to_varying (&vr0
);
3121 if (TREE_CODE (op1
) == SSA_NAME
)
3122 vr1
= *(get_value_range (op1
));
3123 else if (is_gimple_min_invariant (op1
))
3124 set_value_range_to_value (&vr1
, op1
, NULL
);
3126 set_value_range_to_varying (&vr1
);
3128 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3131 /* Extract range information from a unary operation CODE based on
3132 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3133 The The resulting range is stored in *VR. */
3136 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3137 enum tree_code code
, tree type
,
3138 value_range_t
*vr0_
, tree op0_type
)
3140 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3142 /* VRP only operates on integral and pointer types. */
3143 if (!(INTEGRAL_TYPE_P (op0_type
)
3144 || POINTER_TYPE_P (op0_type
))
3145 || !(INTEGRAL_TYPE_P (type
)
3146 || POINTER_TYPE_P (type
)))
3148 set_value_range_to_varying (vr
);
3152 /* If VR0 is UNDEFINED, so is the result. */
3153 if (vr0
.type
== VR_UNDEFINED
)
3155 set_value_range_to_undefined (vr
);
3159 /* Handle operations that we express in terms of others. */
3160 if (code
== PAREN_EXPR
)
3162 /* PAREN_EXPR is a simple copy. */
3163 copy_value_range (vr
, &vr0
);
3166 else if (code
== NEGATE_EXPR
)
3168 /* -X is simply 0 - X, so re-use existing code that also handles
3169 anti-ranges fine. */
3170 value_range_t zero
= VR_INITIALIZER
;
3171 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3172 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3175 else if (code
== BIT_NOT_EXPR
)
3177 /* ~X is simply -1 - X, so re-use existing code that also handles
3178 anti-ranges fine. */
3179 value_range_t minusone
= VR_INITIALIZER
;
3180 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3181 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3182 type
, &minusone
, &vr0
);
3186 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3187 and express op ~[] as (op []') U (op []''). */
3188 if (vr0
.type
== VR_ANTI_RANGE
3189 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3191 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3192 if (vrtem1
.type
!= VR_UNDEFINED
)
3194 value_range_t vrres
= VR_INITIALIZER
;
3195 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3197 vrp_meet (vr
, &vrres
);
3202 if (CONVERT_EXPR_CODE_P (code
))
3204 tree inner_type
= op0_type
;
3205 tree outer_type
= type
;
3207 /* If the expression evaluates to a pointer, we are only interested in
3208 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3209 if (POINTER_TYPE_P (type
))
3211 if (range_is_nonnull (&vr0
))
3212 set_value_range_to_nonnull (vr
, type
);
3213 else if (range_is_null (&vr0
))
3214 set_value_range_to_null (vr
, type
);
3216 set_value_range_to_varying (vr
);
3220 /* If VR0 is varying and we increase the type precision, assume
3221 a full range for the following transformation. */
3222 if (vr0
.type
== VR_VARYING
3223 && INTEGRAL_TYPE_P (inner_type
)
3224 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3226 vr0
.type
= VR_RANGE
;
3227 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3228 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3231 /* If VR0 is a constant range or anti-range and the conversion is
3232 not truncating we can convert the min and max values and
3233 canonicalize the resulting range. Otherwise we can do the
3234 conversion if the size of the range is less than what the
3235 precision of the target type can represent and the range is
3236 not an anti-range. */
3237 if ((vr0
.type
== VR_RANGE
3238 || vr0
.type
== VR_ANTI_RANGE
)
3239 && TREE_CODE (vr0
.min
) == INTEGER_CST
3240 && TREE_CODE (vr0
.max
) == INTEGER_CST
3241 && (!is_overflow_infinity (vr0
.min
)
3242 || (vr0
.type
== VR_RANGE
3243 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3244 && needs_overflow_infinity (outer_type
)
3245 && supports_overflow_infinity (outer_type
)))
3246 && (!is_overflow_infinity (vr0
.max
)
3247 || (vr0
.type
== VR_RANGE
3248 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3249 && needs_overflow_infinity (outer_type
)
3250 && supports_overflow_infinity (outer_type
)))
3251 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3252 || (vr0
.type
== VR_RANGE
3253 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3254 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3255 size_int (TYPE_PRECISION (outer_type
)))))))
3257 tree new_min
, new_max
;
3258 if (is_overflow_infinity (vr0
.min
))
3259 new_min
= negative_overflow_infinity (outer_type
);
3261 new_min
= force_fit_type_double (outer_type
,
3262 tree_to_double_int (vr0
.min
),
3264 if (is_overflow_infinity (vr0
.max
))
3265 new_max
= positive_overflow_infinity (outer_type
);
3267 new_max
= force_fit_type_double (outer_type
,
3268 tree_to_double_int (vr0
.max
),
3270 set_and_canonicalize_value_range (vr
, vr0
.type
,
3271 new_min
, new_max
, NULL
);
3275 set_value_range_to_varying (vr
);
3278 else if (code
== ABS_EXPR
)
3283 /* Pass through vr0 in the easy cases. */
3284 if (TYPE_UNSIGNED (type
)
3285 || value_range_nonnegative_p (&vr0
))
3287 copy_value_range (vr
, &vr0
);
3291 /* For the remaining varying or symbolic ranges we can't do anything
3293 if (vr0
.type
== VR_VARYING
3294 || symbolic_range_p (&vr0
))
3296 set_value_range_to_varying (vr
);
3300 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3302 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3303 && ((vr0
.type
== VR_RANGE
3304 && vrp_val_is_min (vr0
.min
))
3305 || (vr0
.type
== VR_ANTI_RANGE
3306 && !vrp_val_is_min (vr0
.min
))))
3308 set_value_range_to_varying (vr
);
3312 /* ABS_EXPR may flip the range around, if the original range
3313 included negative values. */
3314 if (is_overflow_infinity (vr0
.min
))
3315 min
= positive_overflow_infinity (type
);
3316 else if (!vrp_val_is_min (vr0
.min
))
3317 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3318 else if (!needs_overflow_infinity (type
))
3319 min
= TYPE_MAX_VALUE (type
);
3320 else if (supports_overflow_infinity (type
))
3321 min
= positive_overflow_infinity (type
);
3324 set_value_range_to_varying (vr
);
3328 if (is_overflow_infinity (vr0
.max
))
3329 max
= positive_overflow_infinity (type
);
3330 else if (!vrp_val_is_min (vr0
.max
))
3331 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3332 else if (!needs_overflow_infinity (type
))
3333 max
= TYPE_MAX_VALUE (type
);
3334 else if (supports_overflow_infinity (type
)
3335 /* We shouldn't generate [+INF, +INF] as set_value_range
3336 doesn't like this and ICEs. */
3337 && !is_positive_overflow_infinity (min
))
3338 max
= positive_overflow_infinity (type
);
3341 set_value_range_to_varying (vr
);
3345 cmp
= compare_values (min
, max
);
3347 /* If a VR_ANTI_RANGEs contains zero, then we have
3348 ~[-INF, min(MIN, MAX)]. */
3349 if (vr0
.type
== VR_ANTI_RANGE
)
3351 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3353 /* Take the lower of the two values. */
3357 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3358 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3359 flag_wrapv is set and the original anti-range doesn't include
3360 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3361 if (TYPE_OVERFLOW_WRAPS (type
))
3363 tree type_min_value
= TYPE_MIN_VALUE (type
);
3365 min
= (vr0
.min
!= type_min_value
3366 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3372 if (overflow_infinity_range_p (&vr0
))
3373 min
= negative_overflow_infinity (type
);
3375 min
= TYPE_MIN_VALUE (type
);
3380 /* All else has failed, so create the range [0, INF], even for
3381 flag_wrapv since TYPE_MIN_VALUE is in the original
3383 vr0
.type
= VR_RANGE
;
3384 min
= build_int_cst (type
, 0);
3385 if (needs_overflow_infinity (type
))
3387 if (supports_overflow_infinity (type
))
3388 max
= positive_overflow_infinity (type
);
3391 set_value_range_to_varying (vr
);
3396 max
= TYPE_MAX_VALUE (type
);
3400 /* If the range contains zero then we know that the minimum value in the
3401 range will be zero. */
3402 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3406 min
= build_int_cst (type
, 0);
3410 /* If the range was reversed, swap MIN and MAX. */
3419 cmp
= compare_values (min
, max
);
3420 if (cmp
== -2 || cmp
== 1)
3422 /* If the new range has its limits swapped around (MIN > MAX),
3423 then the operation caused one of them to wrap around, mark
3424 the new range VARYING. */
3425 set_value_range_to_varying (vr
);
3428 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3432 /* For unhandled operations fall back to varying. */
3433 set_value_range_to_varying (vr
);
3438 /* Extract range information from a unary expression CODE OP0 based on
3439 the range of its operand with resulting type TYPE.
3440 The resulting range is stored in *VR. */
3443 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3444 tree type
, tree op0
)
3446 value_range_t vr0
= VR_INITIALIZER
;
3448 /* Get value ranges for the operand. For constant operands, create
3449 a new value range with the operand to simplify processing. */
3450 if (TREE_CODE (op0
) == SSA_NAME
)
3451 vr0
= *(get_value_range (op0
));
3452 else if (is_gimple_min_invariant (op0
))
3453 set_value_range_to_value (&vr0
, op0
, NULL
);
3455 set_value_range_to_varying (&vr0
);
3457 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3461 /* Extract range information from a conditional expression STMT based on
3462 the ranges of each of its operands and the expression code. */
3465 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3468 value_range_t vr0
= VR_INITIALIZER
;
3469 value_range_t vr1
= VR_INITIALIZER
;
3471 /* Get value ranges for each operand. For constant operands, create
3472 a new value range with the operand to simplify processing. */
3473 op0
= gimple_assign_rhs2 (stmt
);
3474 if (TREE_CODE (op0
) == SSA_NAME
)
3475 vr0
= *(get_value_range (op0
));
3476 else if (is_gimple_min_invariant (op0
))
3477 set_value_range_to_value (&vr0
, op0
, NULL
);
3479 set_value_range_to_varying (&vr0
);
3481 op1
= gimple_assign_rhs3 (stmt
);
3482 if (TREE_CODE (op1
) == SSA_NAME
)
3483 vr1
= *(get_value_range (op1
));
3484 else if (is_gimple_min_invariant (op1
))
3485 set_value_range_to_value (&vr1
, op1
, NULL
);
3487 set_value_range_to_varying (&vr1
);
3489 /* The resulting value range is the union of the operand ranges */
3490 copy_value_range (vr
, &vr0
);
3491 vrp_meet (vr
, &vr1
);
3495 /* Extract range information from a comparison expression EXPR based
3496 on the range of its operand and the expression code. */
3499 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3500 tree type
, tree op0
, tree op1
)
3505 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3508 /* A disadvantage of using a special infinity as an overflow
3509 representation is that we lose the ability to record overflow
3510 when we don't have an infinity. So we have to ignore a result
3511 which relies on overflow. */
3513 if (val
&& !is_overflow_infinity (val
) && !sop
)
3515 /* Since this expression was found on the RHS of an assignment,
3516 its type may be different from _Bool. Convert VAL to EXPR's
3518 val
= fold_convert (type
, val
);
3519 if (is_gimple_min_invariant (val
))
3520 set_value_range_to_value (vr
, val
, vr
->equiv
);
3522 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3525 /* The result of a comparison is always true or false. */
3526 set_value_range_to_truthvalue (vr
, type
);
3529 /* Try to derive a nonnegative or nonzero range out of STMT relying
3530 primarily on generic routines in fold in conjunction with range data.
3531 Store the result in *VR */
3534 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3537 tree type
= gimple_expr_type (stmt
);
3539 if (INTEGRAL_TYPE_P (type
)
3540 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3541 set_value_range_to_nonnegative (vr
, type
,
3542 sop
|| stmt_overflow_infinity (stmt
));
3543 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3545 set_value_range_to_nonnull (vr
, type
);
3547 set_value_range_to_varying (vr
);
3551 /* Try to compute a useful range out of assignment STMT and store it
3555 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3557 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3559 if (code
== ASSERT_EXPR
)
3560 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3561 else if (code
== SSA_NAME
)
3562 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3563 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3564 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3565 gimple_expr_type (stmt
),
3566 gimple_assign_rhs1 (stmt
),
3567 gimple_assign_rhs2 (stmt
));
3568 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3569 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3570 gimple_expr_type (stmt
),
3571 gimple_assign_rhs1 (stmt
));
3572 else if (code
== COND_EXPR
)
3573 extract_range_from_cond_expr (vr
, stmt
);
3574 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3575 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3576 gimple_expr_type (stmt
),
3577 gimple_assign_rhs1 (stmt
),
3578 gimple_assign_rhs2 (stmt
));
3579 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3580 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3581 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3583 set_value_range_to_varying (vr
);
3585 if (vr
->type
== VR_VARYING
)
3586 extract_range_basic (vr
, stmt
);
3589 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3590 would be profitable to adjust VR using scalar evolution information
3591 for VAR. If so, update VR with the new limits. */
3594 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3595 gimple stmt
, tree var
)
3597 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3598 enum ev_direction dir
;
3600 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3601 better opportunities than a regular range, but I'm not sure. */
3602 if (vr
->type
== VR_ANTI_RANGE
)
3605 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3607 /* Like in PR19590, scev can return a constant function. */
3608 if (is_gimple_min_invariant (chrec
))
3610 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3614 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3617 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3618 tem
= op_with_constant_singleton_value_range (init
);
3621 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3622 tem
= op_with_constant_singleton_value_range (step
);
3626 /* If STEP is symbolic, we can't know whether INIT will be the
3627 minimum or maximum value in the range. Also, unless INIT is
3628 a simple expression, compare_values and possibly other functions
3629 in tree-vrp won't be able to handle it. */
3630 if (step
== NULL_TREE
3631 || !is_gimple_min_invariant (step
)
3632 || !valid_value_p (init
))
3635 dir
= scev_direction (chrec
);
3636 if (/* Do not adjust ranges if we do not know whether the iv increases
3637 or decreases, ... */
3638 dir
== EV_DIR_UNKNOWN
3639 /* ... or if it may wrap. */
3640 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3644 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3645 negative_overflow_infinity and positive_overflow_infinity,
3646 because we have concluded that the loop probably does not
3649 type
= TREE_TYPE (var
);
3650 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3651 tmin
= lower_bound_in_type (type
, type
);
3653 tmin
= TYPE_MIN_VALUE (type
);
3654 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3655 tmax
= upper_bound_in_type (type
, type
);
3657 tmax
= TYPE_MAX_VALUE (type
);
3659 /* Try to use estimated number of iterations for the loop to constrain the
3660 final value in the evolution. */
3661 if (TREE_CODE (step
) == INTEGER_CST
3662 && is_gimple_val (init
)
3663 && (TREE_CODE (init
) != SSA_NAME
3664 || get_value_range (init
)->type
== VR_RANGE
))
3668 /* We are only entering here for loop header PHI nodes, so using
3669 the number of latch executions is the correct thing to use. */
3670 if (max_loop_iterations (loop
, &nit
))
3672 value_range_t maxvr
= VR_INITIALIZER
;
3674 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3675 bool overflow
= false;
3677 dtmp
= tree_to_double_int (step
)
3678 .mul_with_sign (nit
, unsigned_p
, &overflow
);
3679 /* If the multiplication overflowed we can't do a meaningful
3680 adjustment. Likewise if the result doesn't fit in the type
3681 of the induction variable. For a signed type we have to
3682 check whether the result has the expected signedness which
3683 is that of the step as number of iterations is unsigned. */
3685 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3687 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3689 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3690 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3691 TREE_TYPE (init
), init
, tem
);
3692 /* Likewise if the addition did. */
3693 if (maxvr
.type
== VR_RANGE
)
3702 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3707 /* For VARYING or UNDEFINED ranges, just about anything we get
3708 from scalar evolutions should be better. */
3710 if (dir
== EV_DIR_DECREASES
)
3715 /* If we would create an invalid range, then just assume we
3716 know absolutely nothing. This may be over-conservative,
3717 but it's clearly safe, and should happen only in unreachable
3718 parts of code, or for invalid programs. */
3719 if (compare_values (min
, max
) == 1)
3722 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3724 else if (vr
->type
== VR_RANGE
)
3729 if (dir
== EV_DIR_DECREASES
)
3731 /* INIT is the maximum value. If INIT is lower than VR->MAX
3732 but no smaller than VR->MIN, set VR->MAX to INIT. */
3733 if (compare_values (init
, max
) == -1)
3736 /* According to the loop information, the variable does not
3737 overflow. If we think it does, probably because of an
3738 overflow due to arithmetic on a different INF value,
3740 if (is_negative_overflow_infinity (min
)
3741 || compare_values (min
, tmin
) == -1)
3747 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3748 if (compare_values (init
, min
) == 1)
3751 if (is_positive_overflow_infinity (max
)
3752 || compare_values (tmax
, max
) == -1)
3756 /* If we just created an invalid range with the minimum
3757 greater than the maximum, we fail conservatively.
3758 This should happen only in unreachable
3759 parts of code, or for invalid programs. */
3760 if (compare_values (min
, max
) == 1)
3763 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3767 /* Return true if VAR may overflow at STMT. This checks any available
3768 loop information to see if we can determine that VAR does not
3772 vrp_var_may_overflow (tree var
, gimple stmt
)
3775 tree chrec
, init
, step
;
3777 if (current_loops
== NULL
)
3780 l
= loop_containing_stmt (stmt
);
3785 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3786 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3789 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3790 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3792 if (step
== NULL_TREE
3793 || !is_gimple_min_invariant (step
)
3794 || !valid_value_p (init
))
3797 /* If we get here, we know something useful about VAR based on the
3798 loop information. If it wraps, it may overflow. */
3800 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3804 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3806 print_generic_expr (dump_file
, var
, 0);
3807 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3814 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3816 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3817 all the values in the ranges.
3819 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3821 - Return NULL_TREE if it is not always possible to determine the
3822 value of the comparison.
3824 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3825 overflow infinity was used in the test. */
3829 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3830 bool *strict_overflow_p
)
3832 /* VARYING or UNDEFINED ranges cannot be compared. */
3833 if (vr0
->type
== VR_VARYING
3834 || vr0
->type
== VR_UNDEFINED
3835 || vr1
->type
== VR_VARYING
3836 || vr1
->type
== VR_UNDEFINED
)
3839 /* Anti-ranges need to be handled separately. */
3840 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3842 /* If both are anti-ranges, then we cannot compute any
3844 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3847 /* These comparisons are never statically computable. */
3854 /* Equality can be computed only between a range and an
3855 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3856 if (vr0
->type
== VR_RANGE
)
3858 /* To simplify processing, make VR0 the anti-range. */
3859 value_range_t
*tmp
= vr0
;
3864 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3866 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3867 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3868 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3873 if (!usable_range_p (vr0
, strict_overflow_p
)
3874 || !usable_range_p (vr1
, strict_overflow_p
))
3877 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3878 operands around and change the comparison code. */
3879 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3882 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3888 if (comp
== EQ_EXPR
)
3890 /* Equality may only be computed if both ranges represent
3891 exactly one value. */
3892 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3893 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3895 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3897 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3899 if (cmp_min
== 0 && cmp_max
== 0)
3900 return boolean_true_node
;
3901 else if (cmp_min
!= -2 && cmp_max
!= -2)
3902 return boolean_false_node
;
3904 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3905 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3906 strict_overflow_p
) == 1
3907 || compare_values_warnv (vr1
->min
, vr0
->max
,
3908 strict_overflow_p
) == 1)
3909 return boolean_false_node
;
3913 else if (comp
== NE_EXPR
)
3917 /* If VR0 is completely to the left or completely to the right
3918 of VR1, they are always different. Notice that we need to
3919 make sure that both comparisons yield similar results to
3920 avoid comparing values that cannot be compared at
3922 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3923 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3924 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3925 return boolean_true_node
;
3927 /* If VR0 and VR1 represent a single value and are identical,
3929 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3930 strict_overflow_p
) == 0
3931 && compare_values_warnv (vr1
->min
, vr1
->max
,
3932 strict_overflow_p
) == 0
3933 && compare_values_warnv (vr0
->min
, vr1
->min
,
3934 strict_overflow_p
) == 0
3935 && compare_values_warnv (vr0
->max
, vr1
->max
,
3936 strict_overflow_p
) == 0)
3937 return boolean_false_node
;
3939 /* Otherwise, they may or may not be different. */
3943 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3947 /* If VR0 is to the left of VR1, return true. */
3948 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3949 if ((comp
== LT_EXPR
&& tst
== -1)
3950 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3952 if (overflow_infinity_range_p (vr0
)
3953 || overflow_infinity_range_p (vr1
))
3954 *strict_overflow_p
= true;
3955 return boolean_true_node
;
3958 /* If VR0 is to the right of VR1, return false. */
3959 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3960 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3961 || (comp
== LE_EXPR
&& tst
== 1))
3963 if (overflow_infinity_range_p (vr0
)
3964 || overflow_infinity_range_p (vr1
))
3965 *strict_overflow_p
= true;
3966 return boolean_false_node
;
3969 /* Otherwise, we don't know. */
3977 /* Given a value range VR, a value VAL and a comparison code COMP, return
3978 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3979 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3980 always returns false. Return NULL_TREE if it is not always
3981 possible to determine the value of the comparison. Also set
3982 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3983 infinity was used in the test. */
3986 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3987 bool *strict_overflow_p
)
3989 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3992 /* Anti-ranges need to be handled separately. */
3993 if (vr
->type
== VR_ANTI_RANGE
)
3995 /* For anti-ranges, the only predicates that we can compute at
3996 compile time are equality and inequality. */
4003 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4004 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4005 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4010 if (!usable_range_p (vr
, strict_overflow_p
))
4013 if (comp
== EQ_EXPR
)
4015 /* EQ_EXPR may only be computed if VR represents exactly
4017 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4019 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4021 return boolean_true_node
;
4022 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4023 return boolean_false_node
;
4025 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4026 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4027 return boolean_false_node
;
4031 else if (comp
== NE_EXPR
)
4033 /* If VAL is not inside VR, then they are always different. */
4034 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4035 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4036 return boolean_true_node
;
4038 /* If VR represents exactly one value equal to VAL, then return
4040 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4041 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4042 return boolean_false_node
;
4044 /* Otherwise, they may or may not be different. */
4047 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4051 /* If VR is to the left of VAL, return true. */
4052 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4053 if ((comp
== LT_EXPR
&& tst
== -1)
4054 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4056 if (overflow_infinity_range_p (vr
))
4057 *strict_overflow_p
= true;
4058 return boolean_true_node
;
4061 /* If VR is to the right of VAL, return false. */
4062 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4063 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4064 || (comp
== LE_EXPR
&& tst
== 1))
4066 if (overflow_infinity_range_p (vr
))
4067 *strict_overflow_p
= true;
4068 return boolean_false_node
;
4071 /* Otherwise, we don't know. */
4074 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4078 /* If VR is to the right of VAL, return true. */
4079 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4080 if ((comp
== GT_EXPR
&& tst
== 1)
4081 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4083 if (overflow_infinity_range_p (vr
))
4084 *strict_overflow_p
= true;
4085 return boolean_true_node
;
4088 /* If VR is to the left of VAL, return false. */
4089 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4090 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4091 || (comp
== GE_EXPR
&& tst
== -1))
4093 if (overflow_infinity_range_p (vr
))
4094 *strict_overflow_p
= true;
4095 return boolean_false_node
;
4098 /* Otherwise, we don't know. */
4106 /* Debugging dumps. */
4108 void dump_value_range (FILE *, value_range_t
*);
4109 void debug_value_range (value_range_t
*);
4110 void dump_all_value_ranges (FILE *);
4111 void debug_all_value_ranges (void);
4112 void dump_vr_equiv (FILE *, bitmap
);
4113 void debug_vr_equiv (bitmap
);
4116 /* Dump value range VR to FILE. */
4119 dump_value_range (FILE *file
, value_range_t
*vr
)
4122 fprintf (file
, "[]");
4123 else if (vr
->type
== VR_UNDEFINED
)
4124 fprintf (file
, "UNDEFINED");
4125 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4127 tree type
= TREE_TYPE (vr
->min
);
4129 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4131 if (is_negative_overflow_infinity (vr
->min
))
4132 fprintf (file
, "-INF(OVF)");
4133 else if (INTEGRAL_TYPE_P (type
)
4134 && !TYPE_UNSIGNED (type
)
4135 && vrp_val_is_min (vr
->min
))
4136 fprintf (file
, "-INF");
4138 print_generic_expr (file
, vr
->min
, 0);
4140 fprintf (file
, ", ");
4142 if (is_positive_overflow_infinity (vr
->max
))
4143 fprintf (file
, "+INF(OVF)");
4144 else if (INTEGRAL_TYPE_P (type
)
4145 && vrp_val_is_max (vr
->max
))
4146 fprintf (file
, "+INF");
4148 print_generic_expr (file
, vr
->max
, 0);
4150 fprintf (file
, "]");
4157 fprintf (file
, " EQUIVALENCES: { ");
4159 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4161 print_generic_expr (file
, ssa_name (i
), 0);
4162 fprintf (file
, " ");
4166 fprintf (file
, "} (%u elements)", c
);
4169 else if (vr
->type
== VR_VARYING
)
4170 fprintf (file
, "VARYING");
4172 fprintf (file
, "INVALID RANGE");
4176 /* Dump value range VR to stderr. */
4179 debug_value_range (value_range_t
*vr
)
4181 dump_value_range (stderr
, vr
);
4182 fprintf (stderr
, "\n");
4186 /* Dump value ranges of all SSA_NAMEs to FILE. */
4189 dump_all_value_ranges (FILE *file
)
4193 for (i
= 0; i
< num_vr_values
; i
++)
4197 print_generic_expr (file
, ssa_name (i
), 0);
4198 fprintf (file
, ": ");
4199 dump_value_range (file
, vr_value
[i
]);
4200 fprintf (file
, "\n");
4204 fprintf (file
, "\n");
4208 /* Dump all value ranges to stderr. */
4211 debug_all_value_ranges (void)
4213 dump_all_value_ranges (stderr
);
4217 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4218 create a new SSA name N and return the assertion assignment
4219 'V = ASSERT_EXPR <V, V OP W>'. */
4222 build_assert_expr_for (tree cond
, tree v
)
4227 gcc_assert (TREE_CODE (v
) == SSA_NAME
4228 && COMPARISON_CLASS_P (cond
));
4230 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4231 assertion
= gimple_build_assign (NULL_TREE
, a
);
4233 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4234 operand of the ASSERT_EXPR. Create it so the new name and the old one
4235 are registered in the replacement table so that we can fix the SSA web
4236 after adding all the ASSERT_EXPRs. */
4237 create_new_def_for (v
, assertion
, NULL
);
4243 /* Return false if EXPR is a predicate expression involving floating
4247 fp_predicate (gimple stmt
)
4249 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4251 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4255 /* If the range of values taken by OP can be inferred after STMT executes,
4256 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4257 describes the inferred range. Return true if a range could be
4261 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4264 *comp_code_p
= ERROR_MARK
;
4266 /* Do not attempt to infer anything in names that flow through
4268 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4271 /* Similarly, don't infer anything from statements that may throw
4273 if (stmt_could_throw_p (stmt
))
4276 /* If STMT is the last statement of a basic block with no
4277 successors, there is no point inferring anything about any of its
4278 operands. We would not be able to find a proper insertion point
4279 for the assertion, anyway. */
4280 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4283 /* We can only assume that a pointer dereference will yield
4284 non-NULL if -fdelete-null-pointer-checks is enabled. */
4285 if (flag_delete_null_pointer_checks
4286 && POINTER_TYPE_P (TREE_TYPE (op
))
4287 && gimple_code (stmt
) != GIMPLE_ASM
)
4289 unsigned num_uses
, num_loads
, num_stores
;
4291 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4292 if (num_loads
+ num_stores
> 0)
4294 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4295 *comp_code_p
= NE_EXPR
;
4304 void dump_asserts_for (FILE *, tree
);
4305 void debug_asserts_for (tree
);
4306 void dump_all_asserts (FILE *);
4307 void debug_all_asserts (void);
4309 /* Dump all the registered assertions for NAME to FILE. */
4312 dump_asserts_for (FILE *file
, tree name
)
4316 fprintf (file
, "Assertions to be inserted for ");
4317 print_generic_expr (file
, name
, 0);
4318 fprintf (file
, "\n");
4320 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4323 fprintf (file
, "\t");
4324 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4325 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4328 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4329 loc
->e
->dest
->index
);
4330 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4332 fprintf (file
, "\n\tPREDICATE: ");
4333 print_generic_expr (file
, name
, 0);
4334 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4335 print_generic_expr (file
, loc
->val
, 0);
4336 fprintf (file
, "\n\n");
4340 fprintf (file
, "\n");
4344 /* Dump all the registered assertions for NAME to stderr. */
4347 debug_asserts_for (tree name
)
4349 dump_asserts_for (stderr
, name
);
4353 /* Dump all the registered assertions for all the names to FILE. */
4356 dump_all_asserts (FILE *file
)
4361 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4362 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4363 dump_asserts_for (file
, ssa_name (i
));
4364 fprintf (file
, "\n");
4368 /* Dump all the registered assertions for all the names to stderr. */
4371 debug_all_asserts (void)
4373 dump_all_asserts (stderr
);
4377 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4378 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4379 E->DEST, then register this location as a possible insertion point
4380 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4382 BB, E and SI provide the exact insertion point for the new
4383 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4384 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4385 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4386 must not be NULL. */
4389 register_new_assert_for (tree name
, tree expr
,
4390 enum tree_code comp_code
,
4394 gimple_stmt_iterator si
)
4396 assert_locus_t n
, loc
, last_loc
;
4397 basic_block dest_bb
;
4399 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4402 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4403 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4405 /* Never build an assert comparing against an integer constant with
4406 TREE_OVERFLOW set. This confuses our undefined overflow warning
4408 if (TREE_CODE (val
) == INTEGER_CST
4409 && TREE_OVERFLOW (val
))
4410 val
= build_int_cst_wide (TREE_TYPE (val
),
4411 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4413 /* The new assertion A will be inserted at BB or E. We need to
4414 determine if the new location is dominated by a previously
4415 registered location for A. If we are doing an edge insertion,
4416 assume that A will be inserted at E->DEST. Note that this is not
4419 If E is a critical edge, it will be split. But even if E is
4420 split, the new block will dominate the same set of blocks that
4423 The reverse, however, is not true, blocks dominated by E->DEST
4424 will not be dominated by the new block created to split E. So,
4425 if the insertion location is on a critical edge, we will not use
4426 the new location to move another assertion previously registered
4427 at a block dominated by E->DEST. */
4428 dest_bb
= (bb
) ? bb
: e
->dest
;
4430 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4431 VAL at a block dominating DEST_BB, then we don't need to insert a new
4432 one. Similarly, if the same assertion already exists at a block
4433 dominated by DEST_BB and the new location is not on a critical
4434 edge, then update the existing location for the assertion (i.e.,
4435 move the assertion up in the dominance tree).
4437 Note, this is implemented as a simple linked list because there
4438 should not be more than a handful of assertions registered per
4439 name. If this becomes a performance problem, a table hashed by
4440 COMP_CODE and VAL could be implemented. */
4441 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4445 if (loc
->comp_code
== comp_code
4447 || operand_equal_p (loc
->val
, val
, 0))
4448 && (loc
->expr
== expr
4449 || operand_equal_p (loc
->expr
, expr
, 0)))
4451 /* If E is not a critical edge and DEST_BB
4452 dominates the existing location for the assertion, move
4453 the assertion up in the dominance tree by updating its
4454 location information. */
4455 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4456 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4465 /* Update the last node of the list and move to the next one. */
4470 /* If we didn't find an assertion already registered for
4471 NAME COMP_CODE VAL, add a new one at the end of the list of
4472 assertions associated with NAME. */
4473 n
= XNEW (struct assert_locus_d
);
4477 n
->comp_code
= comp_code
;
4485 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4487 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4490 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4491 Extract a suitable test code and value and store them into *CODE_P and
4492 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4494 If no extraction was possible, return FALSE, otherwise return TRUE.
4496 If INVERT is true, then we invert the result stored into *CODE_P. */
4499 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4500 tree cond_op0
, tree cond_op1
,
4501 bool invert
, enum tree_code
*code_p
,
4504 enum tree_code comp_code
;
4507 /* Otherwise, we have a comparison of the form NAME COMP VAL
4508 or VAL COMP NAME. */
4509 if (name
== cond_op1
)
4511 /* If the predicate is of the form VAL COMP NAME, flip
4512 COMP around because we need to register NAME as the
4513 first operand in the predicate. */
4514 comp_code
= swap_tree_comparison (cond_code
);
4519 /* The comparison is of the form NAME COMP VAL, so the
4520 comparison code remains unchanged. */
4521 comp_code
= cond_code
;
4525 /* Invert the comparison code as necessary. */
4527 comp_code
= invert_tree_comparison (comp_code
, 0);
4529 /* VRP does not handle float types. */
4530 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4533 /* Do not register always-false predicates.
4534 FIXME: this works around a limitation in fold() when dealing with
4535 enumerations. Given 'enum { N1, N2 } x;', fold will not
4536 fold 'if (x > N2)' to 'if (0)'. */
4537 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4538 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4540 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4541 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4543 if (comp_code
== GT_EXPR
4545 || compare_values (val
, max
) == 0))
4548 if (comp_code
== LT_EXPR
4550 || compare_values (val
, min
) == 0))
4553 *code_p
= comp_code
;
4558 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4559 (otherwise return VAL). VAL and MASK must be zero-extended for
4560 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4561 (to transform signed values into unsigned) and at the end xor
4565 masked_increment (double_int val
, double_int mask
, double_int sgnbit
,
4568 double_int bit
= double_int_one
, res
;
4572 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
4575 if ((res
& bit
).is_zero ())
4577 res
= bit
- double_int_one
;
4578 res
= (val
+ bit
).and_not (res
);
4581 return res
^ sgnbit
;
4583 return val
^ sgnbit
;
4586 /* Try to register an edge assertion for SSA name NAME on edge E for
4587 the condition COND contributing to the conditional jump pointed to by BSI.
4588 Invert the condition COND if INVERT is true.
4589 Return true if an assertion for NAME could be registered. */
4592 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4593 enum tree_code cond_code
,
4594 tree cond_op0
, tree cond_op1
, bool invert
)
4597 enum tree_code comp_code
;
4598 bool retval
= false;
4600 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4603 invert
, &comp_code
, &val
))
4606 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4607 reachable from E. */
4608 if (live_on_edge (e
, name
)
4609 && !has_single_use (name
))
4611 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4615 /* In the case of NAME <= CST and NAME being defined as
4616 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4617 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4618 This catches range and anti-range tests. */
4619 if ((comp_code
== LE_EXPR
4620 || comp_code
== GT_EXPR
)
4621 && TREE_CODE (val
) == INTEGER_CST
4622 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4624 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4625 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4627 /* Extract CST2 from the (optional) addition. */
4628 if (is_gimple_assign (def_stmt
)
4629 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4631 name2
= gimple_assign_rhs1 (def_stmt
);
4632 cst2
= gimple_assign_rhs2 (def_stmt
);
4633 if (TREE_CODE (name2
) == SSA_NAME
4634 && TREE_CODE (cst2
) == INTEGER_CST
)
4635 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4638 /* Extract NAME2 from the (optional) sign-changing cast. */
4639 if (gimple_assign_cast_p (def_stmt
))
4641 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4642 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4643 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4644 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4645 name3
= gimple_assign_rhs1 (def_stmt
);
4648 /* If name3 is used later, create an ASSERT_EXPR for it. */
4649 if (name3
!= NULL_TREE
4650 && TREE_CODE (name3
) == SSA_NAME
4651 && (cst2
== NULL_TREE
4652 || TREE_CODE (cst2
) == INTEGER_CST
)
4653 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4654 && live_on_edge (e
, name3
)
4655 && !has_single_use (name3
))
4659 /* Build an expression for the range test. */
4660 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4661 if (cst2
!= NULL_TREE
)
4662 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4666 fprintf (dump_file
, "Adding assert for ");
4667 print_generic_expr (dump_file
, name3
, 0);
4668 fprintf (dump_file
, " from ");
4669 print_generic_expr (dump_file
, tmp
, 0);
4670 fprintf (dump_file
, "\n");
4673 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4678 /* If name2 is used later, create an ASSERT_EXPR for it. */
4679 if (name2
!= NULL_TREE
4680 && TREE_CODE (name2
) == SSA_NAME
4681 && TREE_CODE (cst2
) == INTEGER_CST
4682 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4683 && live_on_edge (e
, name2
)
4684 && !has_single_use (name2
))
4688 /* Build an expression for the range test. */
4690 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4691 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4692 if (cst2
!= NULL_TREE
)
4693 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4697 fprintf (dump_file
, "Adding assert for ");
4698 print_generic_expr (dump_file
, name2
, 0);
4699 fprintf (dump_file
, " from ");
4700 print_generic_expr (dump_file
, tmp
, 0);
4701 fprintf (dump_file
, "\n");
4704 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4710 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
4711 && TREE_CODE (val
) == INTEGER_CST
)
4713 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4714 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
4715 tree val2
= NULL_TREE
;
4716 double_int mask
= double_int_zero
;
4717 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
4718 unsigned int nprec
= prec
;
4719 enum tree_code rhs_code
= ERROR_MARK
;
4721 if (is_gimple_assign (def_stmt
))
4722 rhs_code
= gimple_assign_rhs_code (def_stmt
);
4724 /* Add asserts for NAME cmp CST and NAME being defined
4725 as NAME = (int) NAME2. */
4726 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
4727 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
4728 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
4729 && gimple_assign_cast_p (def_stmt
))
4731 name2
= gimple_assign_rhs1 (def_stmt
);
4732 if (CONVERT_EXPR_CODE_P (rhs_code
)
4733 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4734 && TYPE_UNSIGNED (TREE_TYPE (name2
))
4735 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
4736 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
4737 || !tree_int_cst_equal (val
,
4738 TYPE_MIN_VALUE (TREE_TYPE (val
))))
4739 && live_on_edge (e
, name2
)
4740 && !has_single_use (name2
))
4743 enum tree_code new_comp_code
= comp_code
;
4745 cst
= fold_convert (TREE_TYPE (name2
),
4746 TYPE_MIN_VALUE (TREE_TYPE (val
)));
4747 /* Build an expression for the range test. */
4748 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
4749 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
4750 fold_convert (TREE_TYPE (name2
), val
));
4751 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
4753 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
4754 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
4755 build_int_cst (TREE_TYPE (name2
), 1));
4760 fprintf (dump_file
, "Adding assert for ");
4761 print_generic_expr (dump_file
, name2
, 0);
4762 fprintf (dump_file
, " from ");
4763 print_generic_expr (dump_file
, tmp
, 0);
4764 fprintf (dump_file
, "\n");
4767 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
4774 /* Add asserts for NAME cmp CST and NAME being defined as
4775 NAME = NAME2 >> CST2.
4777 Extract CST2 from the right shift. */
4778 if (rhs_code
== RSHIFT_EXPR
)
4780 name2
= gimple_assign_rhs1 (def_stmt
);
4781 cst2
= gimple_assign_rhs2 (def_stmt
);
4782 if (TREE_CODE (name2
) == SSA_NAME
4783 && host_integerp (cst2
, 1)
4784 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4785 && IN_RANGE (tree_low_cst (cst2
, 1), 1, prec
- 1)
4786 && prec
<= HOST_BITS_PER_DOUBLE_INT
4787 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
4788 && live_on_edge (e
, name2
)
4789 && !has_single_use (name2
))
4791 mask
= double_int::mask (tree_low_cst (cst2
, 1));
4792 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
4795 if (val2
!= NULL_TREE
4796 && TREE_CODE (val2
) == INTEGER_CST
4797 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
4801 enum tree_code new_comp_code
= comp_code
;
4805 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
4807 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
4809 tree type
= build_nonstandard_integer_type (prec
, 1);
4810 tmp
= build1 (NOP_EXPR
, type
, name2
);
4811 val2
= fold_convert (type
, val2
);
4813 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
4814 new_val
= double_int_to_tree (TREE_TYPE (tmp
), mask
);
4815 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
4817 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
4822 = double_int::max_value (prec
, TYPE_UNSIGNED (TREE_TYPE (val
)));
4823 mask
|= tree_to_double_int (val2
);
4825 new_val
= NULL_TREE
;
4827 new_val
= double_int_to_tree (TREE_TYPE (val2
), mask
);
4834 fprintf (dump_file
, "Adding assert for ");
4835 print_generic_expr (dump_file
, name2
, 0);
4836 fprintf (dump_file
, " from ");
4837 print_generic_expr (dump_file
, tmp
, 0);
4838 fprintf (dump_file
, "\n");
4841 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
4847 /* Add asserts for NAME cmp CST and NAME being defined as
4848 NAME = NAME2 & CST2.
4850 Extract CST2 from the and.
4853 NAME = (unsigned) NAME2;
4854 casts where NAME's type is unsigned and has smaller precision
4855 than NAME2's type as if it was NAME = NAME2 & MASK. */
4856 names
[0] = NULL_TREE
;
4857 names
[1] = NULL_TREE
;
4859 if (rhs_code
== BIT_AND_EXPR
4860 || (CONVERT_EXPR_CODE_P (rhs_code
)
4861 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
4862 && TYPE_UNSIGNED (TREE_TYPE (val
))
4863 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4867 name2
= gimple_assign_rhs1 (def_stmt
);
4868 if (rhs_code
== BIT_AND_EXPR
)
4869 cst2
= gimple_assign_rhs2 (def_stmt
);
4872 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4873 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
4875 if (TREE_CODE (name2
) == SSA_NAME
4876 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4877 && TREE_CODE (cst2
) == INTEGER_CST
4878 && !integer_zerop (cst2
)
4879 && nprec
<= HOST_BITS_PER_DOUBLE_INT
4881 || TYPE_UNSIGNED (TREE_TYPE (val
))))
4883 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
4884 if (gimple_assign_cast_p (def_stmt2
))
4886 names
[1] = gimple_assign_rhs1 (def_stmt2
);
4887 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
4888 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
4889 || (TYPE_PRECISION (TREE_TYPE (name2
))
4890 != TYPE_PRECISION (TREE_TYPE (names
[1])))
4891 || !live_on_edge (e
, names
[1])
4892 || has_single_use (names
[1]))
4893 names
[1] = NULL_TREE
;
4895 if (live_on_edge (e
, name2
)
4896 && !has_single_use (name2
))
4900 if (names
[0] || names
[1])
4902 double_int minv
, maxv
= double_int_zero
, valv
, cst2v
;
4903 double_int tem
, sgnbit
;
4904 bool valid_p
= false, valn
= false, cst2n
= false;
4905 enum tree_code ccode
= comp_code
;
4907 valv
= tree_to_double_int (val
).zext (nprec
);
4908 cst2v
= tree_to_double_int (cst2
).zext (nprec
);
4909 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
4911 valn
= valv
.sext (nprec
).is_negative ();
4912 cst2n
= cst2v
.sext (nprec
).is_negative ();
4914 /* If CST2 doesn't have most significant bit set,
4915 but VAL is negative, we have comparison like
4916 if ((x & 0x123) > -4) (always true). Just give up. */
4920 sgnbit
= double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
4922 sgnbit
= double_int_zero
;
4923 minv
= valv
& cst2v
;
4927 /* Minimum unsigned value for equality is VAL & CST2
4928 (should be equal to VAL, otherwise we probably should
4929 have folded the comparison into false) and
4930 maximum unsigned value is VAL | ~CST2. */
4931 maxv
= valv
| ~cst2v
;
4932 maxv
= maxv
.zext (nprec
);
4936 tem
= valv
| ~cst2v
;
4937 tem
= tem
.zext (nprec
);
4938 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
4939 if (valv
.is_zero ())
4942 sgnbit
= double_int_zero
;
4945 /* If (VAL | ~CST2) is all ones, handle it as
4946 (X & CST2) < VAL. */
4947 if (tem
== double_int::mask (nprec
))
4951 sgnbit
= double_int_zero
;
4955 && cst2v
.sext (nprec
).is_negative ())
4957 = double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
4958 if (!sgnbit
.is_zero ())
4966 if (tem
== double_int::mask (nprec
- 1))
4972 sgnbit
= double_int_zero
;
4976 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
4977 is VAL and maximum unsigned value is ~0. For signed
4978 comparison, if CST2 doesn't have most significant bit
4979 set, handle it similarly. If CST2 has MSB set,
4980 the minimum is the same, and maximum is ~0U/2. */
4983 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
4985 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
4989 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
4994 /* Find out smallest MINV where MINV > VAL
4995 && (MINV & CST2) == MINV, if any. If VAL is signed and
4996 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
4997 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5000 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
5004 /* Minimum unsigned value for <= is 0 and maximum
5005 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5006 Otherwise, find smallest VAL2 where VAL2 > VAL
5007 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5009 For signed comparison, if CST2 doesn't have most
5010 significant bit set, handle it similarly. If CST2 has
5011 MSB set, the maximum is the same and minimum is INT_MIN. */
5016 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5019 maxv
-= double_int_one
;
5022 maxv
= maxv
.zext (nprec
);
5028 /* Minimum unsigned value for < is 0 and maximum
5029 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5030 Otherwise, find smallest VAL2 where VAL2 > VAL
5031 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5033 For signed comparison, if CST2 doesn't have most
5034 significant bit set, handle it similarly. If CST2 has
5035 MSB set, the maximum is the same and minimum is INT_MIN. */
5044 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5048 maxv
-= double_int_one
;
5050 maxv
= maxv
.zext (nprec
);
5058 && (maxv
- minv
).zext (nprec
) != double_int::mask (nprec
))
5060 tree tmp
, new_val
, type
;
5063 for (i
= 0; i
< 2; i
++)
5066 double_int maxv2
= maxv
;
5068 type
= TREE_TYPE (names
[i
]);
5069 if (!TYPE_UNSIGNED (type
))
5071 type
= build_nonstandard_integer_type (nprec
, 1);
5072 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5074 if (!minv
.is_zero ())
5076 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5077 double_int_to_tree (type
, -minv
));
5078 maxv2
= maxv
- minv
;
5080 new_val
= double_int_to_tree (type
, maxv2
);
5084 fprintf (dump_file
, "Adding assert for ");
5085 print_generic_expr (dump_file
, names
[i
], 0);
5086 fprintf (dump_file
, " from ");
5087 print_generic_expr (dump_file
, tmp
, 0);
5088 fprintf (dump_file
, "\n");
5091 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5092 new_val
, NULL
, e
, bsi
);
5102 /* OP is an operand of a truth value expression which is known to have
5103 a particular value. Register any asserts for OP and for any
5104 operands in OP's defining statement.
5106 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5107 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5110 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5111 edge e
, gimple_stmt_iterator bsi
)
5113 bool retval
= false;
5116 enum tree_code rhs_code
;
5118 /* We only care about SSA_NAMEs. */
5119 if (TREE_CODE (op
) != SSA_NAME
)
5122 /* We know that OP will have a zero or nonzero value. If OP is used
5123 more than once go ahead and register an assert for OP.
5125 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5126 it will always be set for OP (because OP is used in a COND_EXPR in
5128 if (!has_single_use (op
))
5130 val
= build_int_cst (TREE_TYPE (op
), 0);
5131 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5135 /* Now look at how OP is set. If it's set from a comparison,
5136 a truth operation or some bit operations, then we may be able
5137 to register information about the operands of that assignment. */
5138 op_def
= SSA_NAME_DEF_STMT (op
);
5139 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5142 rhs_code
= gimple_assign_rhs_code (op_def
);
5144 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5146 bool invert
= (code
== EQ_EXPR
? true : false);
5147 tree op0
= gimple_assign_rhs1 (op_def
);
5148 tree op1
= gimple_assign_rhs2 (op_def
);
5150 if (TREE_CODE (op0
) == SSA_NAME
)
5151 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
5153 if (TREE_CODE (op1
) == SSA_NAME
)
5154 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
5157 else if ((code
== NE_EXPR
5158 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5160 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5162 /* Recurse on each operand. */
5163 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5165 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
5168 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5169 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5171 /* Recurse, flipping CODE. */
5172 code
= invert_tree_comparison (code
, false);
5173 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5176 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5178 /* Recurse through the copy. */
5179 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5182 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5184 /* Recurse through the type conversion. */
5185 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5192 /* Try to register an edge assertion for SSA name NAME on edge E for
5193 the condition COND contributing to the conditional jump pointed to by SI.
5194 Return true if an assertion for NAME could be registered. */
5197 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5198 enum tree_code cond_code
, tree cond_op0
,
5202 enum tree_code comp_code
;
5203 bool retval
= false;
5204 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5206 /* Do not attempt to infer anything in names that flow through
5208 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5211 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5217 /* Register ASSERT_EXPRs for name. */
5218 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5219 cond_op1
, is_else_edge
);
5222 /* If COND is effectively an equality test of an SSA_NAME against
5223 the value zero or one, then we may be able to assert values
5224 for SSA_NAMEs which flow into COND. */
5226 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5227 statement of NAME we can assert both operands of the BIT_AND_EXPR
5228 have nonzero value. */
5229 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5230 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5232 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5234 if (is_gimple_assign (def_stmt
)
5235 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5237 tree op0
= gimple_assign_rhs1 (def_stmt
);
5238 tree op1
= gimple_assign_rhs2 (def_stmt
);
5239 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5240 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5244 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5245 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5247 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5248 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5250 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5252 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5253 necessarily zero value, or if type-precision is one. */
5254 if (is_gimple_assign (def_stmt
)
5255 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5256 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5257 || comp_code
== EQ_EXPR
)))
5259 tree op0
= gimple_assign_rhs1 (def_stmt
);
5260 tree op1
= gimple_assign_rhs2 (def_stmt
);
5261 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5262 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5270 /* Determine whether the outgoing edges of BB should receive an
5271 ASSERT_EXPR for each of the operands of BB's LAST statement.
5272 The last statement of BB must be a COND_EXPR.
5274 If any of the sub-graphs rooted at BB have an interesting use of
5275 the predicate operands, an assert location node is added to the
5276 list of assertions for the corresponding operands. */
5279 find_conditional_asserts (basic_block bb
, gimple last
)
5282 gimple_stmt_iterator bsi
;
5288 need_assert
= false;
5289 bsi
= gsi_for_stmt (last
);
5291 /* Look for uses of the operands in each of the sub-graphs
5292 rooted at BB. We need to check each of the outgoing edges
5293 separately, so that we know what kind of ASSERT_EXPR to
5295 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5300 /* Register the necessary assertions for each operand in the
5301 conditional predicate. */
5302 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5304 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5305 gimple_cond_code (last
),
5306 gimple_cond_lhs (last
),
5307 gimple_cond_rhs (last
));
5320 /* Compare two case labels sorting first by the destination bb index
5321 and then by the case value. */
5324 compare_case_labels (const void *p1
, const void *p2
)
5326 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5327 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5328 int idx1
= ci1
->bb
->index
;
5329 int idx2
= ci2
->bb
->index
;
5333 else if (idx1
== idx2
)
5335 /* Make sure the default label is first in a group. */
5336 if (!CASE_LOW (ci1
->expr
))
5338 else if (!CASE_LOW (ci2
->expr
))
5341 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5342 CASE_LOW (ci2
->expr
));
5348 /* Determine whether the outgoing edges of BB should receive an
5349 ASSERT_EXPR for each of the operands of BB's LAST statement.
5350 The last statement of BB must be a SWITCH_EXPR.
5352 If any of the sub-graphs rooted at BB have an interesting use of
5353 the predicate operands, an assert location node is added to the
5354 list of assertions for the corresponding operands. */
5357 find_switch_asserts (basic_block bb
, gimple last
)
5360 gimple_stmt_iterator bsi
;
5363 struct case_info
*ci
;
5364 size_t n
= gimple_switch_num_labels (last
);
5365 #if GCC_VERSION >= 4000
5368 /* Work around GCC 3.4 bug (PR 37086). */
5369 volatile unsigned int idx
;
5372 need_assert
= false;
5373 bsi
= gsi_for_stmt (last
);
5374 op
= gimple_switch_index (last
);
5375 if (TREE_CODE (op
) != SSA_NAME
)
5378 /* Build a vector of case labels sorted by destination label. */
5379 ci
= XNEWVEC (struct case_info
, n
);
5380 for (idx
= 0; idx
< n
; ++idx
)
5382 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
5383 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
5385 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
5387 for (idx
= 0; idx
< n
; ++idx
)
5390 tree cl
= ci
[idx
].expr
;
5391 basic_block cbb
= ci
[idx
].bb
;
5393 min
= CASE_LOW (cl
);
5394 max
= CASE_HIGH (cl
);
5396 /* If there are multiple case labels with the same destination
5397 we need to combine them to a single value range for the edge. */
5398 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
5400 /* Skip labels until the last of the group. */
5403 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
5406 /* Pick up the maximum of the case label range. */
5407 if (CASE_HIGH (ci
[idx
].expr
))
5408 max
= CASE_HIGH (ci
[idx
].expr
);
5410 max
= CASE_LOW (ci
[idx
].expr
);
5413 /* Nothing to do if the range includes the default label until we
5414 can register anti-ranges. */
5415 if (min
== NULL_TREE
)
5418 /* Find the edge to register the assert expr on. */
5419 e
= find_edge (bb
, cbb
);
5421 /* Register the necessary assertions for the operand in the
5423 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5424 max
? GE_EXPR
: EQ_EXPR
,
5426 fold_convert (TREE_TYPE (op
),
5430 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
5432 fold_convert (TREE_TYPE (op
),
5442 /* Traverse all the statements in block BB looking for statements that
5443 may generate useful assertions for the SSA names in their operand.
5444 If a statement produces a useful assertion A for name N_i, then the
5445 list of assertions already generated for N_i is scanned to
5446 determine if A is actually needed.
5448 If N_i already had the assertion A at a location dominating the
5449 current location, then nothing needs to be done. Otherwise, the
5450 new location for A is recorded instead.
5452 1- For every statement S in BB, all the variables used by S are
5453 added to bitmap FOUND_IN_SUBGRAPH.
5455 2- If statement S uses an operand N in a way that exposes a known
5456 value range for N, then if N was not already generated by an
5457 ASSERT_EXPR, create a new assert location for N. For instance,
5458 if N is a pointer and the statement dereferences it, we can
5459 assume that N is not NULL.
5461 3- COND_EXPRs are a special case of #2. We can derive range
5462 information from the predicate but need to insert different
5463 ASSERT_EXPRs for each of the sub-graphs rooted at the
5464 conditional block. If the last statement of BB is a conditional
5465 expression of the form 'X op Y', then
5467 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5469 b) If the conditional is the only entry point to the sub-graph
5470 corresponding to the THEN_CLAUSE, recurse into it. On
5471 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5472 an ASSERT_EXPR is added for the corresponding variable.
5474 c) Repeat step (b) on the ELSE_CLAUSE.
5476 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5485 In this case, an assertion on the THEN clause is useful to
5486 determine that 'a' is always 9 on that edge. However, an assertion
5487 on the ELSE clause would be unnecessary.
5489 4- If BB does not end in a conditional expression, then we recurse
5490 into BB's dominator children.
5492 At the end of the recursive traversal, every SSA name will have a
5493 list of locations where ASSERT_EXPRs should be added. When a new
5494 location for name N is found, it is registered by calling
5495 register_new_assert_for. That function keeps track of all the
5496 registered assertions to prevent adding unnecessary assertions.
5497 For instance, if a pointer P_4 is dereferenced more than once in a
5498 dominator tree, only the location dominating all the dereference of
5499 P_4 will receive an ASSERT_EXPR.
5501 If this function returns true, then it means that there are names
5502 for which we need to generate ASSERT_EXPRs. Those assertions are
5503 inserted by process_assert_insertions. */
5506 find_assert_locations_1 (basic_block bb
, sbitmap live
)
5508 gimple_stmt_iterator si
;
5512 need_assert
= false;
5513 last
= last_stmt (bb
);
5515 /* If BB's last statement is a conditional statement involving integer
5516 operands, determine if we need to add ASSERT_EXPRs. */
5518 && gimple_code (last
) == GIMPLE_COND
5519 && !fp_predicate (last
)
5520 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5521 need_assert
|= find_conditional_asserts (bb
, last
);
5523 /* If BB's last statement is a switch statement involving integer
5524 operands, determine if we need to add ASSERT_EXPRs. */
5526 && gimple_code (last
) == GIMPLE_SWITCH
5527 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5528 need_assert
|= find_switch_asserts (bb
, last
);
5530 /* Traverse all the statements in BB marking used names and looking
5531 for statements that may infer assertions for their used operands. */
5532 for (si
= gsi_last_bb (bb
); !gsi_end_p (si
); gsi_prev (&si
))
5538 stmt
= gsi_stmt (si
);
5540 if (is_gimple_debug (stmt
))
5543 /* See if we can derive an assertion for any of STMT's operands. */
5544 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5547 enum tree_code comp_code
;
5549 /* If op is not live beyond this stmt, do not bother to insert
5551 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
5554 /* If OP is used in such a way that we can infer a value
5555 range for it, and we don't find a previous assertion for
5556 it, create a new assertion location node for OP. */
5557 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
5559 /* If we are able to infer a nonzero value range for OP,
5560 then walk backwards through the use-def chain to see if OP
5561 was set via a typecast.
5563 If so, then we can also infer a nonzero value range
5564 for the operand of the NOP_EXPR. */
5565 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
5568 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
5570 while (is_gimple_assign (def_stmt
)
5571 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
5573 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
5575 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
5577 t
= gimple_assign_rhs1 (def_stmt
);
5578 def_stmt
= SSA_NAME_DEF_STMT (t
);
5580 /* Note we want to register the assert for the
5581 operand of the NOP_EXPR after SI, not after the
5583 if (! has_single_use (t
))
5585 register_new_assert_for (t
, t
, comp_code
, value
,
5592 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
5598 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5599 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
5600 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
5601 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
5604 /* Traverse all PHI nodes in BB, updating live. */
5605 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
5607 use_operand_p arg_p
;
5609 gimple phi
= gsi_stmt (si
);
5610 tree res
= gimple_phi_result (phi
);
5612 if (virtual_operand_p (res
))
5615 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
5617 tree arg
= USE_FROM_PTR (arg_p
);
5618 if (TREE_CODE (arg
) == SSA_NAME
)
5619 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
5622 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
5628 /* Do an RPO walk over the function computing SSA name liveness
5629 on-the-fly and deciding on assert expressions to insert.
5630 Returns true if there are assert expressions to be inserted. */
5633 find_assert_locations (void)
5635 int *rpo
= XNEWVEC (int, last_basic_block
);
5636 int *bb_rpo
= XNEWVEC (int, last_basic_block
);
5637 int *last_rpo
= XCNEWVEC (int, last_basic_block
);
5641 live
= XCNEWVEC (sbitmap
, last_basic_block
);
5642 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
5643 for (i
= 0; i
< rpo_cnt
; ++i
)
5646 need_asserts
= false;
5647 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
5649 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
5655 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
5656 bitmap_clear (live
[rpo
[i
]]);
5659 /* Process BB and update the live information with uses in
5661 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
5663 /* Merge liveness into the predecessor blocks and free it. */
5664 if (!bitmap_empty_p (live
[rpo
[i
]]))
5667 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5669 int pred
= e
->src
->index
;
5670 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
5675 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5676 bitmap_clear (live
[pred
]);
5678 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5680 if (bb_rpo
[pred
] < pred_rpo
)
5681 pred_rpo
= bb_rpo
[pred
];
5684 /* Record the RPO number of the last visited block that needs
5685 live information from this block. */
5686 last_rpo
[rpo
[i
]] = pred_rpo
;
5690 sbitmap_free (live
[rpo
[i
]]);
5691 live
[rpo
[i
]] = NULL
;
5694 /* We can free all successors live bitmaps if all their
5695 predecessors have been visited already. */
5696 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5697 if (last_rpo
[e
->dest
->index
] == i
5698 && live
[e
->dest
->index
])
5700 sbitmap_free (live
[e
->dest
->index
]);
5701 live
[e
->dest
->index
] = NULL
;
5706 XDELETEVEC (bb_rpo
);
5707 XDELETEVEC (last_rpo
);
5708 for (i
= 0; i
< last_basic_block
; ++i
)
5710 sbitmap_free (live
[i
]);
5713 return need_asserts
;
5716 /* Create an ASSERT_EXPR for NAME and insert it in the location
5717 indicated by LOC. Return true if we made any edge insertions. */
5720 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5722 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5729 /* If we have X <=> X do not insert an assert expr for that. */
5730 if (loc
->expr
== loc
->val
)
5733 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5734 assert_stmt
= build_assert_expr_for (cond
, name
);
5737 /* We have been asked to insert the assertion on an edge. This
5738 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5739 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5740 || (gimple_code (gsi_stmt (loc
->si
))
5743 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5747 /* Otherwise, we can insert right after LOC->SI iff the
5748 statement must not be the last statement in the block. */
5749 stmt
= gsi_stmt (loc
->si
);
5750 if (!stmt_ends_bb_p (stmt
))
5752 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5756 /* If STMT must be the last statement in BB, we can only insert new
5757 assertions on the non-abnormal edge out of BB. Note that since
5758 STMT is not control flow, there may only be one non-abnormal edge
5760 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5761 if (!(e
->flags
& EDGE_ABNORMAL
))
5763 gsi_insert_on_edge (e
, assert_stmt
);
5771 /* Process all the insertions registered for every name N_i registered
5772 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5773 found in ASSERTS_FOR[i]. */
5776 process_assert_insertions (void)
5780 bool update_edges_p
= false;
5781 int num_asserts
= 0;
5783 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5784 dump_all_asserts (dump_file
);
5786 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5788 assert_locus_t loc
= asserts_for
[i
];
5793 assert_locus_t next
= loc
->next
;
5794 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5802 gsi_commit_edge_inserts ();
5804 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5809 /* Traverse the flowgraph looking for conditional jumps to insert range
5810 expressions. These range expressions are meant to provide information
5811 to optimizations that need to reason in terms of value ranges. They
5812 will not be expanded into RTL. For instance, given:
5821 this pass will transform the code into:
5827 x = ASSERT_EXPR <x, x < y>
5832 y = ASSERT_EXPR <y, x <= y>
5836 The idea is that once copy and constant propagation have run, other
5837 optimizations will be able to determine what ranges of values can 'x'
5838 take in different paths of the code, simply by checking the reaching
5839 definition of 'x'. */
5842 insert_range_assertions (void)
5844 need_assert_for
= BITMAP_ALLOC (NULL
);
5845 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5847 calculate_dominance_info (CDI_DOMINATORS
);
5849 if (find_assert_locations ())
5851 process_assert_insertions ();
5852 update_ssa (TODO_update_ssa_no_phi
);
5855 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5857 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5858 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5862 BITMAP_FREE (need_assert_for
);
5865 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5866 and "struct" hacks. If VRP can determine that the
5867 array subscript is a constant, check if it is outside valid
5868 range. If the array subscript is a RANGE, warn if it is
5869 non-overlapping with valid range.
5870 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5873 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5875 value_range_t
* vr
= NULL
;
5876 tree low_sub
, up_sub
;
5877 tree low_bound
, up_bound
, up_bound_p1
;
5880 if (TREE_NO_WARNING (ref
))
5883 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5884 up_bound
= array_ref_up_bound (ref
);
5886 /* Can not check flexible arrays. */
5888 || TREE_CODE (up_bound
) != INTEGER_CST
)
5891 /* Accesses to trailing arrays via pointers may access storage
5892 beyond the types array bounds. */
5893 base
= get_base_address (ref
);
5894 if (base
&& TREE_CODE (base
) == MEM_REF
)
5896 tree cref
, next
= NULL_TREE
;
5898 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5901 cref
= TREE_OPERAND (ref
, 0);
5902 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5903 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5904 next
&& TREE_CODE (next
) != FIELD_DECL
;
5905 next
= DECL_CHAIN (next
))
5908 /* If this is the last field in a struct type or a field in a
5909 union type do not warn. */
5914 low_bound
= array_ref_low_bound (ref
);
5915 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
5917 if (TREE_CODE (low_sub
) == SSA_NAME
)
5919 vr
= get_value_range (low_sub
);
5920 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5922 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5923 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5927 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5929 if (TREE_CODE (up_sub
) == INTEGER_CST
5930 && tree_int_cst_lt (up_bound
, up_sub
)
5931 && TREE_CODE (low_sub
) == INTEGER_CST
5932 && tree_int_cst_lt (low_sub
, low_bound
))
5934 warning_at (location
, OPT_Warray_bounds
,
5935 "array subscript is outside array bounds");
5936 TREE_NO_WARNING (ref
) = 1;
5939 else if (TREE_CODE (up_sub
) == INTEGER_CST
5940 && (ignore_off_by_one
5941 ? (tree_int_cst_lt (up_bound
, up_sub
)
5942 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5943 : (tree_int_cst_lt (up_bound
, up_sub
)
5944 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5946 warning_at (location
, OPT_Warray_bounds
,
5947 "array subscript is above array bounds");
5948 TREE_NO_WARNING (ref
) = 1;
5950 else if (TREE_CODE (low_sub
) == INTEGER_CST
5951 && tree_int_cst_lt (low_sub
, low_bound
))
5953 warning_at (location
, OPT_Warray_bounds
,
5954 "array subscript is below array bounds");
5955 TREE_NO_WARNING (ref
) = 1;
5959 /* Searches if the expr T, located at LOCATION computes
5960 address of an ARRAY_REF, and call check_array_ref on it. */
5963 search_for_addr_array (tree t
, location_t location
)
5965 while (TREE_CODE (t
) == SSA_NAME
)
5967 gimple g
= SSA_NAME_DEF_STMT (t
);
5969 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5972 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5973 != GIMPLE_SINGLE_RHS
)
5976 t
= gimple_assign_rhs1 (g
);
5980 /* We are only interested in addresses of ARRAY_REF's. */
5981 if (TREE_CODE (t
) != ADDR_EXPR
)
5984 /* Check each ARRAY_REFs in the reference chain. */
5987 if (TREE_CODE (t
) == ARRAY_REF
)
5988 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5990 t
= TREE_OPERAND (t
, 0);
5992 while (handled_component_p (t
));
5994 if (TREE_CODE (t
) == MEM_REF
5995 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
5996 && !TREE_NO_WARNING (t
))
5998 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
5999 tree low_bound
, up_bound
, el_sz
;
6001 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6002 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6003 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6006 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6007 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6008 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6010 || TREE_CODE (low_bound
) != INTEGER_CST
6012 || TREE_CODE (up_bound
) != INTEGER_CST
6014 || TREE_CODE (el_sz
) != INTEGER_CST
)
6017 idx
= mem_ref_offset (t
);
6018 idx
= idx
.sdiv (tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
6019 if (idx
.slt (double_int_zero
))
6021 warning_at (location
, OPT_Warray_bounds
,
6022 "array subscript is below array bounds");
6023 TREE_NO_WARNING (t
) = 1;
6025 else if (idx
.sgt (tree_to_double_int (up_bound
)
6026 - tree_to_double_int (low_bound
)
6029 warning_at (location
, OPT_Warray_bounds
,
6030 "array subscript is above array bounds");
6031 TREE_NO_WARNING (t
) = 1;
6036 /* walk_tree() callback that checks if *TP is
6037 an ARRAY_REF inside an ADDR_EXPR (in which an array
6038 subscript one outside the valid range is allowed). Call
6039 check_array_ref for each ARRAY_REF found. The location is
6043 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6046 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6047 location_t location
;
6049 if (EXPR_HAS_LOCATION (t
))
6050 location
= EXPR_LOCATION (t
);
6053 location_t
*locp
= (location_t
*) wi
->info
;
6057 *walk_subtree
= TRUE
;
6059 if (TREE_CODE (t
) == ARRAY_REF
)
6060 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6062 if (TREE_CODE (t
) == MEM_REF
6063 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
6064 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
6066 if (TREE_CODE (t
) == ADDR_EXPR
)
6067 *walk_subtree
= FALSE
;
6072 /* Walk over all statements of all reachable BBs and call check_array_bounds
6076 check_all_array_refs (void)
6079 gimple_stmt_iterator si
;
6085 bool executable
= false;
6087 /* Skip blocks that were found to be unreachable. */
6088 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6089 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6093 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6095 gimple stmt
= gsi_stmt (si
);
6096 struct walk_stmt_info wi
;
6097 if (!gimple_has_location (stmt
))
6100 if (is_gimple_call (stmt
))
6103 size_t n
= gimple_call_num_args (stmt
);
6104 for (i
= 0; i
< n
; i
++)
6106 tree arg
= gimple_call_arg (stmt
, i
);
6107 search_for_addr_array (arg
, gimple_location (stmt
));
6112 memset (&wi
, 0, sizeof (wi
));
6113 wi
.info
= CONST_CAST (void *, (const void *)
6114 gimple_location_ptr (stmt
));
6116 walk_gimple_op (gsi_stmt (si
),
6124 /* Convert range assertion expressions into the implied copies and
6125 copy propagate away the copies. Doing the trivial copy propagation
6126 here avoids the need to run the full copy propagation pass after
6129 FIXME, this will eventually lead to copy propagation removing the
6130 names that had useful range information attached to them. For
6131 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6132 then N_i will have the range [3, +INF].
6134 However, by converting the assertion into the implied copy
6135 operation N_i = N_j, we will then copy-propagate N_j into the uses
6136 of N_i and lose the range information. We may want to hold on to
6137 ASSERT_EXPRs a little while longer as the ranges could be used in
6138 things like jump threading.
6140 The problem with keeping ASSERT_EXPRs around is that passes after
6141 VRP need to handle them appropriately.
6143 Another approach would be to make the range information a first
6144 class property of the SSA_NAME so that it can be queried from
6145 any pass. This is made somewhat more complex by the need for
6146 multiple ranges to be associated with one SSA_NAME. */
6149 remove_range_assertions (void)
6152 gimple_stmt_iterator si
;
6154 /* Note that the BSI iterator bump happens at the bottom of the
6155 loop and no bump is necessary if we're removing the statement
6156 referenced by the current BSI. */
6158 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
6160 gimple stmt
= gsi_stmt (si
);
6163 if (is_gimple_assign (stmt
)
6164 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6166 tree rhs
= gimple_assign_rhs1 (stmt
);
6168 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6169 use_operand_p use_p
;
6170 imm_use_iterator iter
;
6172 gcc_assert (cond
!= boolean_false_node
);
6174 /* Propagate the RHS into every use of the LHS. */
6175 var
= ASSERT_EXPR_VAR (rhs
);
6176 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
6177 gimple_assign_lhs (stmt
))
6178 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6180 SET_USE (use_p
, var
);
6181 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6184 /* And finally, remove the copy, it is not needed. */
6185 gsi_remove (&si
, true);
6186 release_defs (stmt
);
6194 /* Return true if STMT is interesting for VRP. */
6197 stmt_interesting_for_vrp (gimple stmt
)
6199 if (gimple_code (stmt
) == GIMPLE_PHI
)
6201 tree res
= gimple_phi_result (stmt
);
6202 return (!virtual_operand_p (res
)
6203 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6204 || POINTER_TYPE_P (TREE_TYPE (res
))));
6206 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6208 tree lhs
= gimple_get_lhs (stmt
);
6210 /* In general, assignments with virtual operands are not useful
6211 for deriving ranges, with the obvious exception of calls to
6212 builtin functions. */
6213 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6214 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6215 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6216 && ((is_gimple_call (stmt
)
6217 && gimple_call_fndecl (stmt
) != NULL_TREE
6218 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
6219 || !gimple_vuse (stmt
)))
6222 else if (gimple_code (stmt
) == GIMPLE_COND
6223 || gimple_code (stmt
) == GIMPLE_SWITCH
)
6230 /* Initialize local data structures for VRP. */
6233 vrp_initialize (void)
6237 values_propagated
= false;
6238 num_vr_values
= num_ssa_names
;
6239 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
6240 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
6244 gimple_stmt_iterator si
;
6246 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
6248 gimple phi
= gsi_stmt (si
);
6249 if (!stmt_interesting_for_vrp (phi
))
6251 tree lhs
= PHI_RESULT (phi
);
6252 set_value_range_to_varying (get_value_range (lhs
));
6253 prop_set_simulate_again (phi
, false);
6256 prop_set_simulate_again (phi
, true);
6259 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6261 gimple stmt
= gsi_stmt (si
);
6263 /* If the statement is a control insn, then we do not
6264 want to avoid simulating the statement once. Failure
6265 to do so means that those edges will never get added. */
6266 if (stmt_ends_bb_p (stmt
))
6267 prop_set_simulate_again (stmt
, true);
6268 else if (!stmt_interesting_for_vrp (stmt
))
6272 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
6273 set_value_range_to_varying (get_value_range (def
));
6274 prop_set_simulate_again (stmt
, false);
6277 prop_set_simulate_again (stmt
, true);
6282 /* Return the singleton value-range for NAME or NAME. */
6285 vrp_valueize (tree name
)
6287 if (TREE_CODE (name
) == SSA_NAME
)
6289 value_range_t
*vr
= get_value_range (name
);
6290 if (vr
->type
== VR_RANGE
6291 && (vr
->min
== vr
->max
6292 || operand_equal_p (vr
->min
, vr
->max
, 0)))
6298 /* Visit assignment STMT. If it produces an interesting range, record
6299 the SSA name in *OUTPUT_P. */
6301 static enum ssa_prop_result
6302 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
6306 enum gimple_code code
= gimple_code (stmt
);
6307 lhs
= gimple_get_lhs (stmt
);
6309 /* We only keep track of ranges in integral and pointer types. */
6310 if (TREE_CODE (lhs
) == SSA_NAME
6311 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6312 /* It is valid to have NULL MIN/MAX values on a type. See
6313 build_range_type. */
6314 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
6315 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
6316 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
6318 value_range_t new_vr
= VR_INITIALIZER
;
6320 /* Try folding the statement to a constant first. */
6321 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
6322 if (tem
&& !is_overflow_infinity (tem
))
6323 set_value_range (&new_vr
, VR_RANGE
, tem
, tem
, NULL
);
6324 /* Then dispatch to value-range extracting functions. */
6325 else if (code
== GIMPLE_CALL
)
6326 extract_range_basic (&new_vr
, stmt
);
6328 extract_range_from_assignment (&new_vr
, stmt
);
6330 if (update_value_range (lhs
, &new_vr
))
6334 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6336 fprintf (dump_file
, "Found new range for ");
6337 print_generic_expr (dump_file
, lhs
, 0);
6338 fprintf (dump_file
, ": ");
6339 dump_value_range (dump_file
, &new_vr
);
6340 fprintf (dump_file
, "\n\n");
6343 if (new_vr
.type
== VR_VARYING
)
6344 return SSA_PROP_VARYING
;
6346 return SSA_PROP_INTERESTING
;
6349 return SSA_PROP_NOT_INTERESTING
;
6352 /* Every other statement produces no useful ranges. */
6353 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6354 set_value_range_to_varying (get_value_range (def
));
6356 return SSA_PROP_VARYING
;
6359 /* Helper that gets the value range of the SSA_NAME with version I
6360 or a symbolic range containing the SSA_NAME only if the value range
6361 is varying or undefined. */
6363 static inline value_range_t
6364 get_vr_for_comparison (int i
)
6366 value_range_t vr
= *get_value_range (ssa_name (i
));
6368 /* If name N_i does not have a valid range, use N_i as its own
6369 range. This allows us to compare against names that may
6370 have N_i in their ranges. */
6371 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
6374 vr
.min
= ssa_name (i
);
6375 vr
.max
= ssa_name (i
);
6381 /* Compare all the value ranges for names equivalent to VAR with VAL
6382 using comparison code COMP. Return the same value returned by
6383 compare_range_with_value, including the setting of
6384 *STRICT_OVERFLOW_P. */
6387 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
6388 bool *strict_overflow_p
)
6394 int used_strict_overflow
;
6396 value_range_t equiv_vr
;
6398 /* Get the set of equivalences for VAR. */
6399 e
= get_value_range (var
)->equiv
;
6401 /* Start at -1. Set it to 0 if we do a comparison without relying
6402 on overflow, or 1 if all comparisons rely on overflow. */
6403 used_strict_overflow
= -1;
6405 /* Compare vars' value range with val. */
6406 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
6408 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6410 used_strict_overflow
= sop
? 1 : 0;
6412 /* If the equiv set is empty we have done all work we need to do. */
6416 && used_strict_overflow
> 0)
6417 *strict_overflow_p
= true;
6421 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
6423 equiv_vr
= get_vr_for_comparison (i
);
6425 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6428 /* If we get different answers from different members
6429 of the equivalence set this check must be in a dead
6430 code region. Folding it to a trap representation
6431 would be correct here. For now just return don't-know. */
6441 used_strict_overflow
= 0;
6442 else if (used_strict_overflow
< 0)
6443 used_strict_overflow
= 1;
6448 && used_strict_overflow
> 0)
6449 *strict_overflow_p
= true;
6455 /* Given a comparison code COMP and names N1 and N2, compare all the
6456 ranges equivalent to N1 against all the ranges equivalent to N2
6457 to determine the value of N1 COMP N2. Return the same value
6458 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6459 whether we relied on an overflow infinity in the comparison. */
6463 compare_names (enum tree_code comp
, tree n1
, tree n2
,
6464 bool *strict_overflow_p
)
6468 bitmap_iterator bi1
, bi2
;
6470 int used_strict_overflow
;
6471 static bitmap_obstack
*s_obstack
= NULL
;
6472 static bitmap s_e1
= NULL
, s_e2
= NULL
;
6474 /* Compare the ranges of every name equivalent to N1 against the
6475 ranges of every name equivalent to N2. */
6476 e1
= get_value_range (n1
)->equiv
;
6477 e2
= get_value_range (n2
)->equiv
;
6479 /* Use the fake bitmaps if e1 or e2 are not available. */
6480 if (s_obstack
== NULL
)
6482 s_obstack
= XNEW (bitmap_obstack
);
6483 bitmap_obstack_initialize (s_obstack
);
6484 s_e1
= BITMAP_ALLOC (s_obstack
);
6485 s_e2
= BITMAP_ALLOC (s_obstack
);
6492 /* Add N1 and N2 to their own set of equivalences to avoid
6493 duplicating the body of the loop just to check N1 and N2
6495 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
6496 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
6498 /* If the equivalence sets have a common intersection, then the two
6499 names can be compared without checking their ranges. */
6500 if (bitmap_intersect_p (e1
, e2
))
6502 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6503 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6505 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
6507 : boolean_false_node
;
6510 /* Start at -1. Set it to 0 if we do a comparison without relying
6511 on overflow, or 1 if all comparisons rely on overflow. */
6512 used_strict_overflow
= -1;
6514 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6515 N2 to their own set of equivalences to avoid duplicating the body
6516 of the loop just to check N1 and N2 ranges. */
6517 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
6519 value_range_t vr1
= get_vr_for_comparison (i1
);
6521 t
= retval
= NULL_TREE
;
6522 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
6526 value_range_t vr2
= get_vr_for_comparison (i2
);
6528 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
6531 /* If we get different answers from different members
6532 of the equivalence set this check must be in a dead
6533 code region. Folding it to a trap representation
6534 would be correct here. For now just return don't-know. */
6538 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6539 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6545 used_strict_overflow
= 0;
6546 else if (used_strict_overflow
< 0)
6547 used_strict_overflow
= 1;
6553 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6554 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6555 if (used_strict_overflow
> 0)
6556 *strict_overflow_p
= true;
6561 /* None of the equivalent ranges are useful in computing this
6563 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6564 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6568 /* Helper function for vrp_evaluate_conditional_warnv. */
6571 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
6573 bool * strict_overflow_p
)
6575 value_range_t
*vr0
, *vr1
;
6577 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
6578 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
6581 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
6582 else if (vr0
&& vr1
== NULL
)
6583 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
6584 else if (vr0
== NULL
&& vr1
)
6585 return (compare_range_with_value
6586 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
6590 /* Helper function for vrp_evaluate_conditional_warnv. */
6593 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
6594 tree op1
, bool use_equiv_p
,
6595 bool *strict_overflow_p
, bool *only_ranges
)
6599 *only_ranges
= true;
6601 /* We only deal with integral and pointer types. */
6602 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6603 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
6609 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
6610 (code
, op0
, op1
, strict_overflow_p
)))
6612 *only_ranges
= false;
6613 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
6614 return compare_names (code
, op0
, op1
, strict_overflow_p
);
6615 else if (TREE_CODE (op0
) == SSA_NAME
)
6616 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
6617 else if (TREE_CODE (op1
) == SSA_NAME
)
6618 return (compare_name_with_value
6619 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
6622 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
6627 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6628 information. Return NULL if the conditional can not be evaluated.
6629 The ranges of all the names equivalent with the operands in COND
6630 will be used when trying to compute the value. If the result is
6631 based on undefined signed overflow, issue a warning if
6635 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
6641 /* Some passes and foldings leak constants with overflow flag set
6642 into the IL. Avoid doing wrong things with these and bail out. */
6643 if ((TREE_CODE (op0
) == INTEGER_CST
6644 && TREE_OVERFLOW (op0
))
6645 || (TREE_CODE (op1
) == INTEGER_CST
6646 && TREE_OVERFLOW (op1
)))
6650 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
6655 enum warn_strict_overflow_code wc
;
6656 const char* warnmsg
;
6658 if (is_gimple_min_invariant (ret
))
6660 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
6661 warnmsg
= G_("assuming signed overflow does not occur when "
6662 "simplifying conditional to constant");
6666 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
6667 warnmsg
= G_("assuming signed overflow does not occur when "
6668 "simplifying conditional");
6671 if (issue_strict_overflow_warning (wc
))
6673 location_t location
;
6675 if (!gimple_has_location (stmt
))
6676 location
= input_location
;
6678 location
= gimple_location (stmt
);
6679 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
6683 if (warn_type_limits
6684 && ret
&& only_ranges
6685 && TREE_CODE_CLASS (code
) == tcc_comparison
6686 && TREE_CODE (op0
) == SSA_NAME
)
6688 /* If the comparison is being folded and the operand on the LHS
6689 is being compared against a constant value that is outside of
6690 the natural range of OP0's type, then the predicate will
6691 always fold regardless of the value of OP0. If -Wtype-limits
6692 was specified, emit a warning. */
6693 tree type
= TREE_TYPE (op0
);
6694 value_range_t
*vr0
= get_value_range (op0
);
6696 if (vr0
->type
!= VR_VARYING
6697 && INTEGRAL_TYPE_P (type
)
6698 && vrp_val_is_min (vr0
->min
)
6699 && vrp_val_is_max (vr0
->max
)
6700 && is_gimple_min_invariant (op1
))
6702 location_t location
;
6704 if (!gimple_has_location (stmt
))
6705 location
= input_location
;
6707 location
= gimple_location (stmt
);
6709 warning_at (location
, OPT_Wtype_limits
,
6711 ? G_("comparison always false "
6712 "due to limited range of data type")
6713 : G_("comparison always true "
6714 "due to limited range of data type"));
6722 /* Visit conditional statement STMT. If we can determine which edge
6723 will be taken out of STMT's basic block, record it in
6724 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6725 SSA_PROP_VARYING. */
6727 static enum ssa_prop_result
6728 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6733 *taken_edge_p
= NULL
;
6735 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6740 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6741 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6742 fprintf (dump_file
, "\nWith known ranges\n");
6744 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6746 fprintf (dump_file
, "\t");
6747 print_generic_expr (dump_file
, use
, 0);
6748 fprintf (dump_file
, ": ");
6749 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6752 fprintf (dump_file
, "\n");
6755 /* Compute the value of the predicate COND by checking the known
6756 ranges of each of its operands.
6758 Note that we cannot evaluate all the equivalent ranges here
6759 because those ranges may not yet be final and with the current
6760 propagation strategy, we cannot determine when the value ranges
6761 of the names in the equivalence set have changed.
6763 For instance, given the following code fragment
6767 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6771 Assume that on the first visit to i_14, i_5 has the temporary
6772 range [8, 8] because the second argument to the PHI function is
6773 not yet executable. We derive the range ~[0, 0] for i_14 and the
6774 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6775 the first time, since i_14 is equivalent to the range [8, 8], we
6776 determine that the predicate is always false.
6778 On the next round of propagation, i_13 is determined to be
6779 VARYING, which causes i_5 to drop down to VARYING. So, another
6780 visit to i_14 is scheduled. In this second visit, we compute the
6781 exact same range and equivalence set for i_14, namely ~[0, 0] and
6782 { i_5 }. But we did not have the previous range for i_5
6783 registered, so vrp_visit_assignment thinks that the range for
6784 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6785 is not visited again, which stops propagation from visiting
6786 statements in the THEN clause of that if().
6788 To properly fix this we would need to keep the previous range
6789 value for the names in the equivalence set. This way we would've
6790 discovered that from one visit to the other i_5 changed from
6791 range [8, 8] to VR_VARYING.
6793 However, fixing this apparent limitation may not be worth the
6794 additional checking. Testing on several code bases (GCC, DLV,
6795 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6796 4 more predicates folded in SPEC. */
6799 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6800 gimple_cond_lhs (stmt
),
6801 gimple_cond_rhs (stmt
),
6806 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6809 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6811 "\nIgnoring predicate evaluation because "
6812 "it assumes that signed overflow is undefined");
6817 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6819 fprintf (dump_file
, "\nPredicate evaluates to: ");
6820 if (val
== NULL_TREE
)
6821 fprintf (dump_file
, "DON'T KNOW\n");
6823 print_generic_stmt (dump_file
, val
, 0);
6826 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6829 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6830 that includes the value VAL. The search is restricted to the range
6831 [START_IDX, n - 1] where n is the size of VEC.
6833 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6836 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6837 it is placed in IDX and false is returned.
6839 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6843 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6845 size_t n
= gimple_switch_num_labels (stmt
);
6848 /* Find case label for minimum of the value range or the next one.
6849 At each iteration we are searching in [low, high - 1]. */
6851 for (low
= start_idx
, high
= n
; high
!= low
; )
6855 /* Note that i != high, so we never ask for n. */
6856 size_t i
= (high
+ low
) / 2;
6857 t
= gimple_switch_label (stmt
, i
);
6859 /* Cache the result of comparing CASE_LOW and val. */
6860 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6864 /* Ranges cannot be empty. */
6873 if (CASE_HIGH (t
) != NULL
6874 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6886 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6887 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6888 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6889 then MAX_IDX < MIN_IDX.
6890 Returns true if the default label is not needed. */
6893 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6897 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6898 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6902 && max_take_default
)
6904 /* Only the default case label reached.
6905 Return an empty range. */
6912 bool take_default
= min_take_default
|| max_take_default
;
6916 if (max_take_default
)
6919 /* If the case label range is continuous, we do not need
6920 the default case label. Verify that. */
6921 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6922 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6923 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6924 for (k
= i
+ 1; k
<= j
; ++k
)
6926 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6927 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
6929 take_default
= true;
6933 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6934 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6939 return !take_default
;
6943 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
6944 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
6945 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
6946 Returns true if the default label is not needed. */
6949 find_case_label_ranges (gimple stmt
, value_range_t
*vr
, size_t *min_idx1
,
6950 size_t *max_idx1
, size_t *min_idx2
,
6954 unsigned int n
= gimple_switch_num_labels (stmt
);
6956 tree case_low
, case_high
;
6957 tree min
= vr
->min
, max
= vr
->max
;
6959 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
6961 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
6963 /* Set second range to emtpy. */
6967 if (vr
->type
== VR_RANGE
)
6971 return !take_default
;
6974 /* Set first range to all case labels. */
6981 /* Make sure all the values of case labels [i , j] are contained in
6982 range [MIN, MAX]. */
6983 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
6984 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
6985 if (tree_int_cst_compare (case_low
, min
) < 0)
6987 if (case_high
!= NULL_TREE
6988 && tree_int_cst_compare (max
, case_high
) < 0)
6994 /* If the range spans case labels [i, j], the corresponding anti-range spans
6995 the labels [1, i - 1] and [j + 1, n - 1]. */
7021 /* Visit switch statement STMT. If we can determine which edge
7022 will be taken out of STMT's basic block, record it in
7023 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7024 SSA_PROP_VARYING. */
7026 static enum ssa_prop_result
7027 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
7031 size_t i
= 0, j
= 0, k
, l
;
7034 *taken_edge_p
= NULL
;
7035 op
= gimple_switch_index (stmt
);
7036 if (TREE_CODE (op
) != SSA_NAME
)
7037 return SSA_PROP_VARYING
;
7039 vr
= get_value_range (op
);
7040 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7042 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7043 print_generic_expr (dump_file
, op
, 0);
7044 fprintf (dump_file
, " with known range ");
7045 dump_value_range (dump_file
, vr
);
7046 fprintf (dump_file
, "\n");
7049 if ((vr
->type
!= VR_RANGE
7050 && vr
->type
!= VR_ANTI_RANGE
)
7051 || symbolic_range_p (vr
))
7052 return SSA_PROP_VARYING
;
7054 /* Find the single edge that is taken from the switch expression. */
7055 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7057 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7061 gcc_assert (take_default
);
7062 val
= gimple_switch_default_label (stmt
);
7066 /* Check if labels with index i to j and maybe the default label
7067 are all reaching the same label. */
7069 val
= gimple_switch_label (stmt
, i
);
7071 && CASE_LABEL (gimple_switch_default_label (stmt
))
7072 != CASE_LABEL (val
))
7074 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7075 fprintf (dump_file
, " not a single destination for this "
7077 return SSA_PROP_VARYING
;
7079 for (++i
; i
<= j
; ++i
)
7081 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7083 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7084 fprintf (dump_file
, " not a single destination for this "
7086 return SSA_PROP_VARYING
;
7091 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7093 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7094 fprintf (dump_file
, " not a single destination for this "
7096 return SSA_PROP_VARYING
;
7101 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7102 label_to_block (CASE_LABEL (val
)));
7104 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7106 fprintf (dump_file
, " will take edge to ");
7107 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7110 return SSA_PROP_INTERESTING
;
7114 /* Evaluate statement STMT. If the statement produces a useful range,
7115 return SSA_PROP_INTERESTING and record the SSA name with the
7116 interesting range into *OUTPUT_P.
7118 If STMT is a conditional branch and we can determine its truth
7119 value, the taken edge is recorded in *TAKEN_EDGE_P.
7121 If STMT produces a varying value, return SSA_PROP_VARYING. */
7123 static enum ssa_prop_result
7124 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
7129 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7131 fprintf (dump_file
, "\nVisiting statement:\n");
7132 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
7133 fprintf (dump_file
, "\n");
7136 if (!stmt_interesting_for_vrp (stmt
))
7137 gcc_assert (stmt_ends_bb_p (stmt
));
7138 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
7140 /* In general, assignments with virtual operands are not useful
7141 for deriving ranges, with the obvious exception of calls to
7142 builtin functions. */
7143 if ((is_gimple_call (stmt
)
7144 && gimple_call_fndecl (stmt
) != NULL_TREE
7145 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
7146 || !gimple_vuse (stmt
))
7147 return vrp_visit_assignment_or_call (stmt
, output_p
);
7149 else if (gimple_code (stmt
) == GIMPLE_COND
)
7150 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
7151 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7152 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
7154 /* All other statements produce nothing of interest for VRP, so mark
7155 their outputs varying and prevent further simulation. */
7156 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7157 set_value_range_to_varying (get_value_range (def
));
7159 return SSA_PROP_VARYING
;
7162 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7163 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7164 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7165 possible such range. The resulting range is not canonicalized. */
7168 union_ranges (enum value_range_type
*vr0type
,
7169 tree
*vr0min
, tree
*vr0max
,
7170 enum value_range_type vr1type
,
7171 tree vr1min
, tree vr1max
)
7173 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7174 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7176 /* [] is vr0, () is vr1 in the following classification comments. */
7180 if (*vr0type
== vr1type
)
7181 /* Nothing to do for equal ranges. */
7183 else if ((*vr0type
== VR_RANGE
7184 && vr1type
== VR_ANTI_RANGE
)
7185 || (*vr0type
== VR_ANTI_RANGE
7186 && vr1type
== VR_RANGE
))
7188 /* For anti-range with range union the result is varying. */
7194 else if (operand_less_p (*vr0max
, vr1min
) == 1
7195 || operand_less_p (vr1max
, *vr0min
) == 1)
7197 /* [ ] ( ) or ( ) [ ]
7198 If the ranges have an empty intersection, result of the union
7199 operation is the anti-range or if both are anti-ranges
7201 if (*vr0type
== VR_ANTI_RANGE
7202 && vr1type
== VR_ANTI_RANGE
)
7204 else if (*vr0type
== VR_ANTI_RANGE
7205 && vr1type
== VR_RANGE
)
7207 else if (*vr0type
== VR_RANGE
7208 && vr1type
== VR_ANTI_RANGE
)
7214 else if (*vr0type
== VR_RANGE
7215 && vr1type
== VR_RANGE
)
7217 /* The result is the convex hull of both ranges. */
7218 if (operand_less_p (*vr0max
, vr1min
) == 1)
7220 /* If the result can be an anti-range, create one. */
7221 if (TREE_CODE (*vr0max
) == INTEGER_CST
7222 && TREE_CODE (vr1min
) == INTEGER_CST
7223 && vrp_val_is_min (*vr0min
)
7224 && vrp_val_is_max (vr1max
))
7226 tree min
= int_const_binop (PLUS_EXPR
,
7227 *vr0max
, integer_one_node
);
7228 tree max
= int_const_binop (MINUS_EXPR
,
7229 vr1min
, integer_one_node
);
7230 if (!operand_less_p (max
, min
))
7232 *vr0type
= VR_ANTI_RANGE
;
7244 /* If the result can be an anti-range, create one. */
7245 if (TREE_CODE (vr1max
) == INTEGER_CST
7246 && TREE_CODE (*vr0min
) == INTEGER_CST
7247 && vrp_val_is_min (vr1min
)
7248 && vrp_val_is_max (*vr0max
))
7250 tree min
= int_const_binop (PLUS_EXPR
,
7251 vr1max
, integer_one_node
);
7252 tree max
= int_const_binop (MINUS_EXPR
,
7253 *vr0min
, integer_one_node
);
7254 if (!operand_less_p (max
, min
))
7256 *vr0type
= VR_ANTI_RANGE
;
7270 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7271 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7273 /* [ ( ) ] or [( ) ] or [ ( )] */
7274 if (*vr0type
== VR_RANGE
7275 && vr1type
== VR_RANGE
)
7277 else if (*vr0type
== VR_ANTI_RANGE
7278 && vr1type
== VR_ANTI_RANGE
)
7284 else if (*vr0type
== VR_ANTI_RANGE
7285 && vr1type
== VR_RANGE
)
7287 /* Arbitrarily choose the right or left gap. */
7288 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
7289 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7290 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
7291 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7295 else if (*vr0type
== VR_RANGE
7296 && vr1type
== VR_ANTI_RANGE
)
7297 /* The result covers everything. */
7302 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7303 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7305 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7306 if (*vr0type
== VR_RANGE
7307 && vr1type
== VR_RANGE
)
7313 else if (*vr0type
== VR_ANTI_RANGE
7314 && vr1type
== VR_ANTI_RANGE
)
7316 else if (*vr0type
== VR_RANGE
7317 && vr1type
== VR_ANTI_RANGE
)
7319 *vr0type
= VR_ANTI_RANGE
;
7320 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
7322 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7325 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
7327 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7333 else if (*vr0type
== VR_ANTI_RANGE
7334 && vr1type
== VR_RANGE
)
7335 /* The result covers everything. */
7340 else if ((operand_less_p (vr1min
, *vr0max
) == 1
7341 || operand_equal_p (vr1min
, *vr0max
, 0))
7342 && operand_less_p (*vr0min
, vr1min
) == 1)
7344 /* [ ( ] ) or [ ]( ) */
7345 if (*vr0type
== VR_RANGE
7346 && vr1type
== VR_RANGE
)
7348 else if (*vr0type
== VR_ANTI_RANGE
7349 && vr1type
== VR_ANTI_RANGE
)
7351 else if (*vr0type
== VR_ANTI_RANGE
7352 && vr1type
== VR_RANGE
)
7354 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7355 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7359 else if (*vr0type
== VR_RANGE
7360 && vr1type
== VR_ANTI_RANGE
)
7362 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7365 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7374 else if ((operand_less_p (*vr0min
, vr1max
) == 1
7375 || operand_equal_p (*vr0min
, vr1max
, 0))
7376 && operand_less_p (vr1min
, *vr0min
) == 1)
7378 /* ( [ ) ] or ( )[ ] */
7379 if (*vr0type
== VR_RANGE
7380 && vr1type
== VR_RANGE
)
7382 else if (*vr0type
== VR_ANTI_RANGE
7383 && vr1type
== VR_ANTI_RANGE
)
7385 else if (*vr0type
== VR_ANTI_RANGE
7386 && vr1type
== VR_RANGE
)
7388 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7389 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7393 else if (*vr0type
== VR_RANGE
7394 && vr1type
== VR_ANTI_RANGE
)
7396 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7400 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7414 *vr0type
= VR_VARYING
;
7415 *vr0min
= NULL_TREE
;
7416 *vr0max
= NULL_TREE
;
7419 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7420 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7421 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7422 possible such range. The resulting range is not canonicalized. */
7425 intersect_ranges (enum value_range_type
*vr0type
,
7426 tree
*vr0min
, tree
*vr0max
,
7427 enum value_range_type vr1type
,
7428 tree vr1min
, tree vr1max
)
7430 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7431 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7433 /* [] is vr0, () is vr1 in the following classification comments. */
7437 if (*vr0type
== vr1type
)
7438 /* Nothing to do for equal ranges. */
7440 else if ((*vr0type
== VR_RANGE
7441 && vr1type
== VR_ANTI_RANGE
)
7442 || (*vr0type
== VR_ANTI_RANGE
7443 && vr1type
== VR_RANGE
))
7445 /* For anti-range with range intersection the result is empty. */
7446 *vr0type
= VR_UNDEFINED
;
7447 *vr0min
= NULL_TREE
;
7448 *vr0max
= NULL_TREE
;
7453 else if (operand_less_p (*vr0max
, vr1min
) == 1
7454 || operand_less_p (vr1max
, *vr0min
) == 1)
7456 /* [ ] ( ) or ( ) [ ]
7457 If the ranges have an empty intersection, the result of the
7458 intersect operation is the range for intersecting an
7459 anti-range with a range or empty when intersecting two ranges. */
7460 if (*vr0type
== VR_RANGE
7461 && vr1type
== VR_ANTI_RANGE
)
7463 else if (*vr0type
== VR_ANTI_RANGE
7464 && vr1type
== VR_RANGE
)
7470 else if (*vr0type
== VR_RANGE
7471 && vr1type
== VR_RANGE
)
7473 *vr0type
= VR_UNDEFINED
;
7474 *vr0min
= NULL_TREE
;
7475 *vr0max
= NULL_TREE
;
7477 else if (*vr0type
== VR_ANTI_RANGE
7478 && vr1type
== VR_ANTI_RANGE
)
7480 /* If the anti-ranges are adjacent to each other merge them. */
7481 if (TREE_CODE (*vr0max
) == INTEGER_CST
7482 && TREE_CODE (vr1min
) == INTEGER_CST
7483 && operand_less_p (*vr0max
, vr1min
) == 1
7484 && integer_onep (int_const_binop (MINUS_EXPR
,
7487 else if (TREE_CODE (vr1max
) == INTEGER_CST
7488 && TREE_CODE (*vr0min
) == INTEGER_CST
7489 && operand_less_p (vr1max
, *vr0min
) == 1
7490 && integer_onep (int_const_binop (MINUS_EXPR
,
7493 /* Else arbitrarily take VR0. */
7496 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7497 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7499 /* [ ( ) ] or [( ) ] or [ ( )] */
7500 if (*vr0type
== VR_RANGE
7501 && vr1type
== VR_RANGE
)
7503 /* If both are ranges the result is the inner one. */
7508 else if (*vr0type
== VR_RANGE
7509 && vr1type
== VR_ANTI_RANGE
)
7511 /* Choose the right gap if the left one is empty. */
7514 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7515 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7519 /* Choose the left gap if the right one is empty. */
7522 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7523 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
7528 /* Choose the anti-range if the range is effectively varying. */
7529 else if (vrp_val_is_min (*vr0min
)
7530 && vrp_val_is_max (*vr0max
))
7536 /* Else choose the range. */
7538 else if (*vr0type
== VR_ANTI_RANGE
7539 && vr1type
== VR_ANTI_RANGE
)
7540 /* If both are anti-ranges the result is the outer one. */
7542 else if (*vr0type
== VR_ANTI_RANGE
7543 && vr1type
== VR_RANGE
)
7545 /* The intersection is empty. */
7546 *vr0type
= VR_UNDEFINED
;
7547 *vr0min
= NULL_TREE
;
7548 *vr0max
= NULL_TREE
;
7553 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7554 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7556 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7557 if (*vr0type
== VR_RANGE
7558 && vr1type
== VR_RANGE
)
7559 /* Choose the inner range. */
7561 else if (*vr0type
== VR_ANTI_RANGE
7562 && vr1type
== VR_RANGE
)
7564 /* Choose the right gap if the left is empty. */
7567 *vr0type
= VR_RANGE
;
7568 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7569 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
7575 /* Choose the left gap if the right is empty. */
7578 *vr0type
= VR_RANGE
;
7579 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7580 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
7586 /* Choose the anti-range if the range is effectively varying. */
7587 else if (vrp_val_is_min (vr1min
)
7588 && vrp_val_is_max (vr1max
))
7590 /* Else choose the range. */
7598 else if (*vr0type
== VR_ANTI_RANGE
7599 && vr1type
== VR_ANTI_RANGE
)
7601 /* If both are anti-ranges the result is the outer one. */
7606 else if (vr1type
== VR_ANTI_RANGE
7607 && *vr0type
== VR_RANGE
)
7609 /* The intersection is empty. */
7610 *vr0type
= VR_UNDEFINED
;
7611 *vr0min
= NULL_TREE
;
7612 *vr0max
= NULL_TREE
;
7617 else if ((operand_less_p (vr1min
, *vr0max
) == 1
7618 || operand_equal_p (vr1min
, *vr0max
, 0))
7619 && operand_less_p (*vr0min
, vr1min
) == 1)
7621 /* [ ( ] ) or [ ]( ) */
7622 if (*vr0type
== VR_ANTI_RANGE
7623 && vr1type
== VR_ANTI_RANGE
)
7625 else if (*vr0type
== VR_RANGE
7626 && vr1type
== VR_RANGE
)
7628 else if (*vr0type
== VR_RANGE
7629 && vr1type
== VR_ANTI_RANGE
)
7631 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7632 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
7637 else if (*vr0type
== VR_ANTI_RANGE
7638 && vr1type
== VR_RANGE
)
7640 *vr0type
= VR_RANGE
;
7641 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7642 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
7651 else if ((operand_less_p (*vr0min
, vr1max
) == 1
7652 || operand_equal_p (*vr0min
, vr1max
, 0))
7653 && operand_less_p (vr1min
, *vr0min
) == 1)
7655 /* ( [ ) ] or ( )[ ] */
7656 if (*vr0type
== VR_ANTI_RANGE
7657 && vr1type
== VR_ANTI_RANGE
)
7659 else if (*vr0type
== VR_RANGE
7660 && vr1type
== VR_RANGE
)
7662 else if (*vr0type
== VR_RANGE
7663 && vr1type
== VR_ANTI_RANGE
)
7665 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7666 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
7671 else if (*vr0type
== VR_ANTI_RANGE
7672 && vr1type
== VR_RANGE
)
7674 *vr0type
= VR_RANGE
;
7675 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7676 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
7686 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
7687 result for the intersection. That's always a conservative
7688 correct estimate. */
7694 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
7695 in *VR0. This may not be the smallest possible such range. */
7698 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
7700 value_range_t saved
;
7702 /* If either range is VR_VARYING the other one wins. */
7703 if (vr1
->type
== VR_VARYING
)
7705 if (vr0
->type
== VR_VARYING
)
7707 copy_value_range (vr0
, vr1
);
7711 /* When either range is VR_UNDEFINED the resulting range is
7712 VR_UNDEFINED, too. */
7713 if (vr0
->type
== VR_UNDEFINED
)
7715 if (vr1
->type
== VR_UNDEFINED
)
7717 set_value_range_to_undefined (vr0
);
7721 /* Save the original vr0 so we can return it as conservative intersection
7722 result when our worker turns things to varying. */
7724 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
7725 vr1
->type
, vr1
->min
, vr1
->max
);
7726 /* Make sure to canonicalize the result though as the inversion of a
7727 VR_RANGE can still be a VR_RANGE. */
7728 set_and_canonicalize_value_range (vr0
, vr0
->type
,
7729 vr0
->min
, vr0
->max
, vr0
->equiv
);
7730 /* If that failed, use the saved original VR0. */
7731 if (vr0
->type
== VR_VARYING
)
7736 /* If the result is VR_UNDEFINED there is no need to mess with
7737 the equivalencies. */
7738 if (vr0
->type
== VR_UNDEFINED
)
7741 /* The resulting set of equivalences for range intersection is the union of
7743 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
7744 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
7745 else if (vr1
->equiv
&& !vr0
->equiv
)
7746 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
7750 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
7752 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7754 fprintf (dump_file
, "Intersecting\n ");
7755 dump_value_range (dump_file
, vr0
);
7756 fprintf (dump_file
, "\nand\n ");
7757 dump_value_range (dump_file
, vr1
);
7758 fprintf (dump_file
, "\n");
7760 vrp_intersect_ranges_1 (vr0
, vr1
);
7761 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7763 fprintf (dump_file
, "to\n ");
7764 dump_value_range (dump_file
, vr0
);
7765 fprintf (dump_file
, "\n");
7769 /* Meet operation for value ranges. Given two value ranges VR0 and
7770 VR1, store in VR0 a range that contains both VR0 and VR1. This
7771 may not be the smallest possible such range. */
7774 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
7776 value_range_t saved
;
7778 if (vr0
->type
== VR_UNDEFINED
)
7780 /* Drop equivalences. See PR53465. */
7781 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, NULL
);
7785 if (vr1
->type
== VR_UNDEFINED
)
7787 /* VR0 already has the resulting range, just drop equivalences.
7790 bitmap_clear (vr0
->equiv
);
7794 if (vr0
->type
== VR_VARYING
)
7796 /* Nothing to do. VR0 already has the resulting range. */
7800 if (vr1
->type
== VR_VARYING
)
7802 set_value_range_to_varying (vr0
);
7807 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
7808 vr1
->type
, vr1
->min
, vr1
->max
);
7809 if (vr0
->type
== VR_VARYING
)
7811 /* Failed to find an efficient meet. Before giving up and setting
7812 the result to VARYING, see if we can at least derive a useful
7813 anti-range. FIXME, all this nonsense about distinguishing
7814 anti-ranges from ranges is necessary because of the odd
7815 semantics of range_includes_zero_p and friends. */
7816 if (((saved
.type
== VR_RANGE
7817 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
7818 || (saved
.type
== VR_ANTI_RANGE
7819 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
7820 && ((vr1
->type
== VR_RANGE
7821 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
7822 || (vr1
->type
== VR_ANTI_RANGE
7823 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
7825 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
7827 /* Since this meet operation did not result from the meeting of
7828 two equivalent names, VR0 cannot have any equivalences. */
7830 bitmap_clear (vr0
->equiv
);
7834 set_value_range_to_varying (vr0
);
7837 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
7839 if (vr0
->type
== VR_VARYING
)
7842 /* The resulting set of equivalences is always the intersection of
7844 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
7845 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
7846 else if (vr0
->equiv
&& !vr1
->equiv
)
7847 bitmap_clear (vr0
->equiv
);
7851 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
7853 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7855 fprintf (dump_file
, "Meeting\n ");
7856 dump_value_range (dump_file
, vr0
);
7857 fprintf (dump_file
, "\nand\n ");
7858 dump_value_range (dump_file
, vr1
);
7859 fprintf (dump_file
, "\n");
7861 vrp_meet_1 (vr0
, vr1
);
7862 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7864 fprintf (dump_file
, "to\n ");
7865 dump_value_range (dump_file
, vr0
);
7866 fprintf (dump_file
, "\n");
7871 /* Visit all arguments for PHI node PHI that flow through executable
7872 edges. If a valid value range can be derived from all the incoming
7873 value ranges, set a new range for the LHS of PHI. */
7875 static enum ssa_prop_result
7876 vrp_visit_phi_node (gimple phi
)
7879 tree lhs
= PHI_RESULT (phi
);
7880 value_range_t
*lhs_vr
= get_value_range (lhs
);
7881 value_range_t vr_result
= VR_INITIALIZER
;
7883 int edges
, old_edges
;
7886 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7888 fprintf (dump_file
, "\nVisiting PHI node: ");
7889 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
7893 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
7895 edge e
= gimple_phi_arg_edge (phi
, i
);
7897 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7900 "\n Argument #%d (%d -> %d %sexecutable)\n",
7901 (int) i
, e
->src
->index
, e
->dest
->index
,
7902 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
7905 if (e
->flags
& EDGE_EXECUTABLE
)
7907 tree arg
= PHI_ARG_DEF (phi
, i
);
7908 value_range_t vr_arg
;
7912 if (TREE_CODE (arg
) == SSA_NAME
)
7914 vr_arg
= *(get_value_range (arg
));
7918 if (is_overflow_infinity (arg
))
7920 arg
= copy_node (arg
);
7921 TREE_OVERFLOW (arg
) = 0;
7924 vr_arg
.type
= VR_RANGE
;
7927 vr_arg
.equiv
= NULL
;
7930 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7932 fprintf (dump_file
, "\t");
7933 print_generic_expr (dump_file
, arg
, dump_flags
);
7934 fprintf (dump_file
, "\n\tValue: ");
7935 dump_value_range (dump_file
, &vr_arg
);
7936 fprintf (dump_file
, "\n");
7940 copy_value_range (&vr_result
, &vr_arg
);
7942 vrp_meet (&vr_result
, &vr_arg
);
7945 if (vr_result
.type
== VR_VARYING
)
7950 if (vr_result
.type
== VR_VARYING
)
7952 else if (vr_result
.type
== VR_UNDEFINED
)
7955 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
7956 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
7958 /* To prevent infinite iterations in the algorithm, derive ranges
7959 when the new value is slightly bigger or smaller than the
7960 previous one. We don't do this if we have seen a new executable
7961 edge; this helps us avoid an overflow infinity for conditionals
7962 which are not in a loop. If the old value-range was VR_UNDEFINED
7963 use the updated range and iterate one more time. */
7965 && gimple_phi_num_args (phi
) > 1
7966 && edges
== old_edges
7967 && lhs_vr
->type
!= VR_UNDEFINED
)
7969 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
7970 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
7972 /* For non VR_RANGE or for pointers fall back to varying if
7973 the range changed. */
7974 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
7975 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
7976 && (cmp_min
!= 0 || cmp_max
!= 0))
7979 /* If the new minimum is smaller or larger than the previous
7980 one, go all the way to -INF. In the first case, to avoid
7981 iterating millions of times to reach -INF, and in the
7982 other case to avoid infinite bouncing between different
7984 if (cmp_min
> 0 || cmp_min
< 0)
7986 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
7987 || !vrp_var_may_overflow (lhs
, phi
))
7988 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
7989 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
7991 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
7994 /* Similarly, if the new maximum is smaller or larger than
7995 the previous one, go all the way to +INF. */
7996 if (cmp_max
< 0 || cmp_max
> 0)
7998 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
7999 || !vrp_var_may_overflow (lhs
, phi
))
8000 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
8001 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
8003 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
8006 /* If we dropped either bound to +-INF then if this is a loop
8007 PHI node SCEV may known more about its value-range. */
8008 if ((cmp_min
> 0 || cmp_min
< 0
8009 || cmp_max
< 0 || cmp_max
> 0)
8011 && (l
= loop_containing_stmt (phi
))
8012 && l
->header
== gimple_bb (phi
))
8013 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8015 /* If we will end up with a (-INF, +INF) range, set it to
8016 VARYING. Same if the previous max value was invalid for
8017 the type and we end up with vr_result.min > vr_result.max. */
8018 if ((vrp_val_is_max (vr_result
.max
)
8019 && vrp_val_is_min (vr_result
.min
))
8020 || compare_values (vr_result
.min
,
8025 /* If the new range is different than the previous value, keep
8028 if (update_value_range (lhs
, &vr_result
))
8030 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8032 fprintf (dump_file
, "Found new range for ");
8033 print_generic_expr (dump_file
, lhs
, 0);
8034 fprintf (dump_file
, ": ");
8035 dump_value_range (dump_file
, &vr_result
);
8036 fprintf (dump_file
, "\n\n");
8039 return SSA_PROP_INTERESTING
;
8042 /* Nothing changed, don't add outgoing edges. */
8043 return SSA_PROP_NOT_INTERESTING
;
8045 /* No match found. Set the LHS to VARYING. */
8047 set_value_range_to_varying (lhs_vr
);
8048 return SSA_PROP_VARYING
;
8051 /* Simplify boolean operations if the source is known
8052 to be already a boolean. */
8054 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8056 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8058 bool need_conversion
;
8060 /* We handle only !=/== case here. */
8061 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8063 op0
= gimple_assign_rhs1 (stmt
);
8064 if (!op_with_boolean_value_range_p (op0
))
8067 op1
= gimple_assign_rhs2 (stmt
);
8068 if (!op_with_boolean_value_range_p (op1
))
8071 /* Reduce number of cases to handle to NE_EXPR. As there is no
8072 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8073 if (rhs_code
== EQ_EXPR
)
8075 if (TREE_CODE (op1
) == INTEGER_CST
)
8076 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
8081 lhs
= gimple_assign_lhs (stmt
);
8083 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
8085 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8087 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
8088 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
8089 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
8092 /* For A != 0 we can substitute A itself. */
8093 if (integer_zerop (op1
))
8094 gimple_assign_set_rhs_with_ops (gsi
,
8096 ? NOP_EXPR
: TREE_CODE (op0
),
8098 /* For A != B we substitute A ^ B. Either with conversion. */
8099 else if (need_conversion
)
8101 tree tem
= make_ssa_name (TREE_TYPE (op0
), NULL
);
8102 gimple newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
8103 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
8104 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
8108 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
8109 update_stmt (gsi_stmt (*gsi
));
8114 /* Simplify a division or modulo operator to a right shift or
8115 bitwise and if the first operand is unsigned or is greater
8116 than zero and the second operand is an exact power of two. */
8119 simplify_div_or_mod_using_ranges (gimple stmt
)
8121 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8123 tree op0
= gimple_assign_rhs1 (stmt
);
8124 tree op1
= gimple_assign_rhs2 (stmt
);
8125 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
8127 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
8129 val
= integer_one_node
;
8135 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
8139 && integer_onep (val
)
8140 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8142 location_t location
;
8144 if (!gimple_has_location (stmt
))
8145 location
= input_location
;
8147 location
= gimple_location (stmt
);
8148 warning_at (location
, OPT_Wstrict_overflow
,
8149 "assuming signed overflow does not occur when "
8150 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8154 if (val
&& integer_onep (val
))
8158 if (rhs_code
== TRUNC_DIV_EXPR
)
8160 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
8161 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
8162 gimple_assign_set_rhs1 (stmt
, op0
);
8163 gimple_assign_set_rhs2 (stmt
, t
);
8167 t
= build_int_cst (TREE_TYPE (op1
), 1);
8168 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
8169 t
= fold_convert (TREE_TYPE (op0
), t
);
8171 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
8172 gimple_assign_set_rhs1 (stmt
, op0
);
8173 gimple_assign_set_rhs2 (stmt
, t
);
8183 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8184 ABS_EXPR. If the operand is <= 0, then simplify the
8185 ABS_EXPR into a NEGATE_EXPR. */
8188 simplify_abs_using_ranges (gimple stmt
)
8191 tree op
= gimple_assign_rhs1 (stmt
);
8192 tree type
= TREE_TYPE (op
);
8193 value_range_t
*vr
= get_value_range (op
);
8195 if (TYPE_UNSIGNED (type
))
8197 val
= integer_zero_node
;
8203 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
8207 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
8212 if (integer_zerop (val
))
8213 val
= integer_one_node
;
8214 else if (integer_onep (val
))
8215 val
= integer_zero_node
;
8220 && (integer_onep (val
) || integer_zerop (val
)))
8222 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8224 location_t location
;
8226 if (!gimple_has_location (stmt
))
8227 location
= input_location
;
8229 location
= gimple_location (stmt
);
8230 warning_at (location
, OPT_Wstrict_overflow
,
8231 "assuming signed overflow does not occur when "
8232 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8235 gimple_assign_set_rhs1 (stmt
, op
);
8236 if (integer_onep (val
))
8237 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
8239 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
8248 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8249 If all the bits that are being cleared by & are already
8250 known to be zero from VR, or all the bits that are being
8251 set by | are already known to be one from VR, the bit
8252 operation is redundant. */
8255 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8257 tree op0
= gimple_assign_rhs1 (stmt
);
8258 tree op1
= gimple_assign_rhs2 (stmt
);
8259 tree op
= NULL_TREE
;
8260 value_range_t vr0
= VR_INITIALIZER
;
8261 value_range_t vr1
= VR_INITIALIZER
;
8262 double_int may_be_nonzero0
, may_be_nonzero1
;
8263 double_int must_be_nonzero0
, must_be_nonzero1
;
8266 if (TREE_CODE (op0
) == SSA_NAME
)
8267 vr0
= *(get_value_range (op0
));
8268 else if (is_gimple_min_invariant (op0
))
8269 set_value_range_to_value (&vr0
, op0
, NULL
);
8273 if (TREE_CODE (op1
) == SSA_NAME
)
8274 vr1
= *(get_value_range (op1
));
8275 else if (is_gimple_min_invariant (op1
))
8276 set_value_range_to_value (&vr1
, op1
, NULL
);
8280 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
8282 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
8285 switch (gimple_assign_rhs_code (stmt
))
8288 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8289 if (mask
.is_zero ())
8294 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8295 if (mask
.is_zero ())
8302 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8303 if (mask
.is_zero ())
8308 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8309 if (mask
.is_zero ())
8319 if (op
== NULL_TREE
)
8322 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
8323 update_stmt (gsi_stmt (*gsi
));
8327 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8328 a known value range VR.
8330 If there is one and only one value which will satisfy the
8331 conditional, then return that value. Else return NULL. */
8334 test_for_singularity (enum tree_code cond_code
, tree op0
,
8335 tree op1
, value_range_t
*vr
)
8340 /* Extract minimum/maximum values which satisfy the
8341 the conditional as it was written. */
8342 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
8344 /* This should not be negative infinity; there is no overflow
8346 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
8349 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
8351 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8352 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
8354 TREE_NO_WARNING (max
) = 1;
8357 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
8359 /* This should not be positive infinity; there is no overflow
8361 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
8364 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
8366 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8367 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
8369 TREE_NO_WARNING (min
) = 1;
8373 /* Now refine the minimum and maximum values using any
8374 value range information we have for op0. */
8377 if (compare_values (vr
->min
, min
) == 1)
8379 if (compare_values (vr
->max
, max
) == -1)
8382 /* If the new min/max values have converged to a single value,
8383 then there is only one value which can satisfy the condition,
8384 return that value. */
8385 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
8391 /* Simplify a conditional using a relational operator to an equality
8392 test if the range information indicates only one value can satisfy
8393 the original conditional. */
8396 simplify_cond_using_ranges (gimple stmt
)
8398 tree op0
= gimple_cond_lhs (stmt
);
8399 tree op1
= gimple_cond_rhs (stmt
);
8400 enum tree_code cond_code
= gimple_cond_code (stmt
);
8402 if (cond_code
!= NE_EXPR
8403 && cond_code
!= EQ_EXPR
8404 && TREE_CODE (op0
) == SSA_NAME
8405 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8406 && is_gimple_min_invariant (op1
))
8408 value_range_t
*vr
= get_value_range (op0
);
8410 /* If we have range information for OP0, then we might be
8411 able to simplify this conditional. */
8412 if (vr
->type
== VR_RANGE
)
8414 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8420 fprintf (dump_file
, "Simplified relational ");
8421 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8422 fprintf (dump_file
, " into ");
8425 gimple_cond_set_code (stmt
, EQ_EXPR
);
8426 gimple_cond_set_lhs (stmt
, op0
);
8427 gimple_cond_set_rhs (stmt
, new_tree
);
8433 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8434 fprintf (dump_file
, "\n");
8440 /* Try again after inverting the condition. We only deal
8441 with integral types here, so no need to worry about
8442 issues with inverting FP comparisons. */
8443 cond_code
= invert_tree_comparison (cond_code
, false);
8444 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8450 fprintf (dump_file
, "Simplified relational ");
8451 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8452 fprintf (dump_file
, " into ");
8455 gimple_cond_set_code (stmt
, NE_EXPR
);
8456 gimple_cond_set_lhs (stmt
, op0
);
8457 gimple_cond_set_rhs (stmt
, new_tree
);
8463 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8464 fprintf (dump_file
, "\n");
8475 /* Simplify a switch statement using the value range of the switch
8479 simplify_switch_using_ranges (gimple stmt
)
8481 tree op
= gimple_switch_index (stmt
);
8486 size_t i
= 0, j
= 0, n
, n2
;
8489 size_t k
= 1, l
= 0;
8491 if (TREE_CODE (op
) == SSA_NAME
)
8493 vr
= get_value_range (op
);
8495 /* We can only handle integer ranges. */
8496 if ((vr
->type
!= VR_RANGE
8497 && vr
->type
!= VR_ANTI_RANGE
)
8498 || symbolic_range_p (vr
))
8501 /* Find case label for min/max of the value range. */
8502 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
8504 else if (TREE_CODE (op
) == INTEGER_CST
)
8506 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
8520 n
= gimple_switch_num_labels (stmt
);
8522 /* Bail out if this is just all edges taken. */
8528 /* Build a new vector of taken case labels. */
8529 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
8532 /* Add the default edge, if necessary. */
8534 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
8536 for (; i
<= j
; ++i
, ++n2
)
8537 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
8539 for (; k
<= l
; ++k
, ++n2
)
8540 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
8542 /* Mark needed edges. */
8543 for (i
= 0; i
< n2
; ++i
)
8545 e
= find_edge (gimple_bb (stmt
),
8546 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
8547 e
->aux
= (void *)-1;
8550 /* Queue not needed edges for later removal. */
8551 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
8553 if (e
->aux
== (void *)-1)
8559 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8561 fprintf (dump_file
, "removing unreachable case label\n");
8563 to_remove_edges
.safe_push (e
);
8564 e
->flags
&= ~EDGE_EXECUTABLE
;
8567 /* And queue an update for the stmt. */
8570 to_update_switch_stmts
.safe_push (su
);
8574 /* Simplify an integral conversion from an SSA name in STMT. */
8577 simplify_conversion_using_ranges (gimple stmt
)
8579 tree innerop
, middleop
, finaltype
;
8581 value_range_t
*innervr
;
8582 bool inner_unsigned_p
, middle_unsigned_p
, final_unsigned_p
;
8583 unsigned inner_prec
, middle_prec
, final_prec
;
8584 double_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
8586 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
8587 if (!INTEGRAL_TYPE_P (finaltype
))
8589 middleop
= gimple_assign_rhs1 (stmt
);
8590 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
8591 if (!is_gimple_assign (def_stmt
)
8592 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
8594 innerop
= gimple_assign_rhs1 (def_stmt
);
8595 if (TREE_CODE (innerop
) != SSA_NAME
)
8598 /* Get the value-range of the inner operand. */
8599 innervr
= get_value_range (innerop
);
8600 if (innervr
->type
!= VR_RANGE
8601 || TREE_CODE (innervr
->min
) != INTEGER_CST
8602 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
8605 /* Simulate the conversion chain to check if the result is equal if
8606 the middle conversion is removed. */
8607 innermin
= tree_to_double_int (innervr
->min
);
8608 innermax
= tree_to_double_int (innervr
->max
);
8610 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
8611 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
8612 final_prec
= TYPE_PRECISION (finaltype
);
8614 /* If the first conversion is not injective, the second must not
8616 if ((innermax
- innermin
).ugt (double_int::mask (middle_prec
))
8617 && middle_prec
< final_prec
)
8619 /* We also want a medium value so that we can track the effect that
8620 narrowing conversions with sign change have. */
8621 inner_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (innerop
));
8622 if (inner_unsigned_p
)
8623 innermed
= double_int::mask (inner_prec
).lrshift (1, inner_prec
);
8625 innermed
= double_int_zero
;
8626 if (innermin
.cmp (innermed
, inner_unsigned_p
) >= 0
8627 || innermed
.cmp (innermax
, inner_unsigned_p
) >= 0)
8628 innermed
= innermin
;
8630 middle_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (middleop
));
8631 middlemin
= innermin
.ext (middle_prec
, middle_unsigned_p
);
8632 middlemed
= innermed
.ext (middle_prec
, middle_unsigned_p
);
8633 middlemax
= innermax
.ext (middle_prec
, middle_unsigned_p
);
8635 /* Require that the final conversion applied to both the original
8636 and the intermediate range produces the same result. */
8637 final_unsigned_p
= TYPE_UNSIGNED (finaltype
);
8638 if (middlemin
.ext (final_prec
, final_unsigned_p
)
8639 != innermin
.ext (final_prec
, final_unsigned_p
)
8640 || middlemed
.ext (final_prec
, final_unsigned_p
)
8641 != innermed
.ext (final_prec
, final_unsigned_p
)
8642 || middlemax
.ext (final_prec
, final_unsigned_p
)
8643 != innermax
.ext (final_prec
, final_unsigned_p
))
8646 gimple_assign_set_rhs1 (stmt
, innerop
);
8651 /* Return whether the value range *VR fits in an integer type specified
8652 by PRECISION and UNSIGNED_P. */
8655 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
8658 unsigned src_precision
;
8661 /* We can only handle integral and pointer types. */
8662 src_type
= TREE_TYPE (vr
->min
);
8663 if (!INTEGRAL_TYPE_P (src_type
)
8664 && !POINTER_TYPE_P (src_type
))
8667 /* An extension is always fine, so is an identity transform. */
8668 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
8669 if (src_precision
< precision
8670 || (src_precision
== precision
8671 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
8674 /* Now we can only handle ranges with constant bounds. */
8675 if (vr
->type
!= VR_RANGE
8676 || TREE_CODE (vr
->min
) != INTEGER_CST
8677 || TREE_CODE (vr
->max
) != INTEGER_CST
)
8680 /* For precision-preserving sign-changes the MSB of the double-int
8682 if (src_precision
== precision
8683 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
8686 /* Then we can perform the conversion on both ends and compare
8687 the result for equality. */
8688 tem
= tree_to_double_int (vr
->min
).ext (precision
, unsigned_p
);
8689 if (tree_to_double_int (vr
->min
) != tem
)
8691 tem
= tree_to_double_int (vr
->max
).ext (precision
, unsigned_p
);
8692 if (tree_to_double_int (vr
->max
) != tem
)
8698 /* Simplify a conversion from integral SSA name to float in STMT. */
8701 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8703 tree rhs1
= gimple_assign_rhs1 (stmt
);
8704 value_range_t
*vr
= get_value_range (rhs1
);
8705 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
8706 enum machine_mode mode
;
8710 /* We can only handle constant ranges. */
8711 if (vr
->type
!= VR_RANGE
8712 || TREE_CODE (vr
->min
) != INTEGER_CST
8713 || TREE_CODE (vr
->max
) != INTEGER_CST
)
8716 /* First check if we can use a signed type in place of an unsigned. */
8717 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
8718 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
8719 != CODE_FOR_nothing
)
8720 && range_fits_type_p (vr
, GET_MODE_PRECISION
8721 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
8722 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
8723 /* If we can do the conversion in the current input mode do nothing. */
8724 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
8725 TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
8727 /* Otherwise search for a mode we can use, starting from the narrowest
8728 integer mode available. */
8731 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
8734 /* If we cannot do a signed conversion to float from mode
8735 or if the value-range does not fit in the signed type
8736 try with a wider mode. */
8737 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
8738 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
8741 mode
= GET_MODE_WIDER_MODE (mode
);
8742 /* But do not widen the input. Instead leave that to the
8743 optabs expansion code. */
8744 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
8747 while (mode
!= VOIDmode
);
8748 if (mode
== VOIDmode
)
8752 /* It works, insert a truncation or sign-change before the
8753 float conversion. */
8754 tem
= make_ssa_name (build_nonstandard_integer_type
8755 (GET_MODE_PRECISION (mode
), 0), NULL
);
8756 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
8757 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
8758 gimple_assign_set_rhs1 (stmt
, tem
);
8764 /* Simplify STMT using ranges if possible. */
8767 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
8769 gimple stmt
= gsi_stmt (*gsi
);
8770 if (is_gimple_assign (stmt
))
8772 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8773 tree rhs1
= gimple_assign_rhs1 (stmt
);
8779 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
8780 if the RHS is zero or one, and the LHS are known to be boolean
8782 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8783 return simplify_truth_ops_using_ranges (gsi
, stmt
);
8786 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
8787 and BIT_AND_EXPR respectively if the first operand is greater
8788 than zero and the second operand is an exact power of two. */
8789 case TRUNC_DIV_EXPR
:
8790 case TRUNC_MOD_EXPR
:
8791 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
8792 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
8793 return simplify_div_or_mod_using_ranges (stmt
);
8796 /* Transform ABS (X) into X or -X as appropriate. */
8798 if (TREE_CODE (rhs1
) == SSA_NAME
8799 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8800 return simplify_abs_using_ranges (stmt
);
8805 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
8806 if all the bits being cleared are already cleared or
8807 all the bits being set are already set. */
8808 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8809 return simplify_bit_ops_using_ranges (gsi
, stmt
);
8813 if (TREE_CODE (rhs1
) == SSA_NAME
8814 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8815 return simplify_conversion_using_ranges (stmt
);
8819 if (TREE_CODE (rhs1
) == SSA_NAME
8820 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
8821 return simplify_float_conversion_using_ranges (gsi
, stmt
);
8828 else if (gimple_code (stmt
) == GIMPLE_COND
)
8829 return simplify_cond_using_ranges (stmt
);
8830 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8831 return simplify_switch_using_ranges (stmt
);
8836 /* If the statement pointed by SI has a predicate whose value can be
8837 computed using the value range information computed by VRP, compute
8838 its value and return true. Otherwise, return false. */
8841 fold_predicate_in (gimple_stmt_iterator
*si
)
8843 bool assignment_p
= false;
8845 gimple stmt
= gsi_stmt (*si
);
8847 if (is_gimple_assign (stmt
)
8848 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
8850 assignment_p
= true;
8851 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
8852 gimple_assign_rhs1 (stmt
),
8853 gimple_assign_rhs2 (stmt
),
8856 else if (gimple_code (stmt
) == GIMPLE_COND
)
8857 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
8858 gimple_cond_lhs (stmt
),
8859 gimple_cond_rhs (stmt
),
8867 val
= fold_convert (gimple_expr_type (stmt
), val
);
8871 fprintf (dump_file
, "Folding predicate ");
8872 print_gimple_expr (dump_file
, stmt
, 0, 0);
8873 fprintf (dump_file
, " to ");
8874 print_generic_expr (dump_file
, val
, 0);
8875 fprintf (dump_file
, "\n");
8878 if (is_gimple_assign (stmt
))
8879 gimple_assign_set_rhs_from_tree (si
, val
);
8882 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
8883 if (integer_zerop (val
))
8884 gimple_cond_make_false (stmt
);
8885 else if (integer_onep (val
))
8886 gimple_cond_make_true (stmt
);
8897 /* Callback for substitute_and_fold folding the stmt at *SI. */
8900 vrp_fold_stmt (gimple_stmt_iterator
*si
)
8902 if (fold_predicate_in (si
))
8905 return simplify_stmt_using_ranges (si
);
8908 /* Stack of dest,src equivalency pairs that need to be restored after
8909 each attempt to thread a block's incoming edge to an outgoing edge.
8911 A NULL entry is used to mark the end of pairs which need to be
8913 static vec
<tree
> equiv_stack
;
8915 /* A trivial wrapper so that we can present the generic jump threading
8916 code with a simple API for simplifying statements. STMT is the
8917 statement we want to simplify, WITHIN_STMT provides the location
8918 for any overflow warnings. */
8921 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
8923 /* We only use VRP information to simplify conditionals. This is
8924 overly conservative, but it's unclear if doing more would be
8925 worth the compile time cost. */
8926 if (gimple_code (stmt
) != GIMPLE_COND
)
8929 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
8930 gimple_cond_lhs (stmt
),
8931 gimple_cond_rhs (stmt
), within_stmt
);
8934 /* Blocks which have more than one predecessor and more than
8935 one successor present jump threading opportunities, i.e.,
8936 when the block is reached from a specific predecessor, we
8937 may be able to determine which of the outgoing edges will
8938 be traversed. When this optimization applies, we are able
8939 to avoid conditionals at runtime and we may expose secondary
8940 optimization opportunities.
8942 This routine is effectively a driver for the generic jump
8943 threading code. It basically just presents the generic code
8944 with edges that may be suitable for jump threading.
8946 Unlike DOM, we do not iterate VRP if jump threading was successful.
8947 While iterating may expose new opportunities for VRP, it is expected
8948 those opportunities would be very limited and the compile time cost
8949 to expose those opportunities would be significant.
8951 As jump threading opportunities are discovered, they are registered
8952 for later realization. */
8955 identify_jump_threads (void)
8962 /* Ugh. When substituting values earlier in this pass we can
8963 wipe the dominance information. So rebuild the dominator
8964 information as we need it within the jump threading code. */
8965 calculate_dominance_info (CDI_DOMINATORS
);
8967 /* We do not allow VRP information to be used for jump threading
8968 across a back edge in the CFG. Otherwise it becomes too
8969 difficult to avoid eliminating loop exit tests. Of course
8970 EDGE_DFS_BACK is not accurate at this time so we have to
8972 mark_dfs_back_edges ();
8974 /* Do not thread across edges we are about to remove. Just marking
8975 them as EDGE_DFS_BACK will do. */
8976 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
8977 e
->flags
|= EDGE_DFS_BACK
;
8979 /* Allocate our unwinder stack to unwind any temporary equivalences
8980 that might be recorded. */
8981 equiv_stack
.create (20);
8983 /* To avoid lots of silly node creation, we create a single
8984 conditional and just modify it in-place when attempting to
8986 dummy
= gimple_build_cond (EQ_EXPR
,
8987 integer_zero_node
, integer_zero_node
,
8990 /* Walk through all the blocks finding those which present a
8991 potential jump threading opportunity. We could set this up
8992 as a dominator walker and record data during the walk, but
8993 I doubt it's worth the effort for the classes of jump
8994 threading opportunities we are trying to identify at this
8995 point in compilation. */
9000 /* If the generic jump threading code does not find this block
9001 interesting, then there is nothing to do. */
9002 if (! potentially_threadable_block (bb
))
9005 /* We only care about blocks ending in a COND_EXPR. While there
9006 may be some value in handling SWITCH_EXPR here, I doubt it's
9007 terribly important. */
9008 last
= gsi_stmt (gsi_last_bb (bb
));
9010 /* We're basically looking for a switch or any kind of conditional with
9011 integral or pointer type arguments. Note the type of the second
9012 argument will be the same as the first argument, so no need to
9013 check it explicitly. */
9014 if (gimple_code (last
) == GIMPLE_SWITCH
9015 || (gimple_code (last
) == GIMPLE_COND
9016 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
9017 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
9018 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
9019 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
9020 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
9024 /* We've got a block with multiple predecessors and multiple
9025 successors which also ends in a suitable conditional or
9026 switch statement. For each predecessor, see if we can thread
9027 it to a specific successor. */
9028 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
9030 /* Do not thread across back edges or abnormal edges
9032 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
9035 thread_across_edge (dummy
, e
, true, &equiv_stack
,
9036 simplify_stmt_for_jump_threading
);
9041 /* We do not actually update the CFG or SSA graphs at this point as
9042 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9043 handle ASSERT_EXPRs gracefully. */
9046 /* We identified all the jump threading opportunities earlier, but could
9047 not transform the CFG at that time. This routine transforms the
9048 CFG and arranges for the dominator tree to be rebuilt if necessary.
9050 Note the SSA graph update will occur during the normal TODO
9051 processing by the pass manager. */
9053 finalize_jump_threads (void)
9055 thread_through_all_blocks (false);
9056 equiv_stack
.release ();
9060 /* Traverse all the blocks folding conditionals with known ranges. */
9067 values_propagated
= true;
9071 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
9072 dump_all_value_ranges (dump_file
);
9073 fprintf (dump_file
, "\n");
9076 substitute_and_fold (op_with_constant_singleton_value_range
,
9077 vrp_fold_stmt
, false);
9079 if (warn_array_bounds
)
9080 check_all_array_refs ();
9082 /* We must identify jump threading opportunities before we release
9083 the datastructures built by VRP. */
9084 identify_jump_threads ();
9086 /* Free allocated memory. */
9087 for (i
= 0; i
< num_vr_values
; i
++)
9090 BITMAP_FREE (vr_value
[i
]->equiv
);
9095 free (vr_phi_edge_counts
);
9097 /* So that we can distinguish between VRP data being available
9098 and not available. */
9100 vr_phi_edge_counts
= NULL
;
9104 /* Main entry point to VRP (Value Range Propagation). This pass is
9105 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9106 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9107 Programming Language Design and Implementation, pp. 67-78, 1995.
9108 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9110 This is essentially an SSA-CCP pass modified to deal with ranges
9111 instead of constants.
9113 While propagating ranges, we may find that two or more SSA name
9114 have equivalent, though distinct ranges. For instance,
9117 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9119 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9123 In the code above, pointer p_5 has range [q_2, q_2], but from the
9124 code we can also determine that p_5 cannot be NULL and, if q_2 had
9125 a non-varying range, p_5's range should also be compatible with it.
9127 These equivalences are created by two expressions: ASSERT_EXPR and
9128 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9129 result of another assertion, then we can use the fact that p_5 and
9130 p_4 are equivalent when evaluating p_5's range.
9132 Together with value ranges, we also propagate these equivalences
9133 between names so that we can take advantage of information from
9134 multiple ranges when doing final replacement. Note that this
9135 equivalency relation is transitive but not symmetric.
9137 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9138 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9139 in contexts where that assertion does not hold (e.g., in line 6).
9141 TODO, the main difference between this pass and Patterson's is that
9142 we do not propagate edge probabilities. We only compute whether
9143 edges can be taken or not. That is, instead of having a spectrum
9144 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9145 DON'T KNOW. In the future, it may be worthwhile to propagate
9146 probabilities to aid branch prediction. */
9155 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
9156 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
9159 insert_range_assertions ();
9161 to_remove_edges
.create (10);
9162 to_update_switch_stmts
.create (5);
9163 threadedge_initialize_values ();
9166 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
9169 free_numbers_of_iterations_estimates ();
9171 /* ASSERT_EXPRs must be removed before finalizing jump threads
9172 as finalizing jump threads calls the CFG cleanup code which
9173 does not properly handle ASSERT_EXPRs. */
9174 remove_range_assertions ();
9176 /* If we exposed any new variables, go ahead and put them into
9177 SSA form now, before we handle jump threading. This simplifies
9178 interactions between rewriting of _DECL nodes into SSA form
9179 and rewriting SSA_NAME nodes into SSA form after block
9180 duplication and CFG manipulation. */
9181 update_ssa (TODO_update_ssa
);
9183 finalize_jump_threads ();
9185 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9186 CFG in a broken state and requires a cfg_cleanup run. */
9187 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
9189 /* Update SWITCH_EXPR case label vector. */
9190 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
9193 size_t n
= TREE_VEC_LENGTH (su
->vec
);
9195 gimple_switch_set_num_labels (su
->stmt
, n
);
9196 for (j
= 0; j
< n
; j
++)
9197 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
9198 /* As we may have replaced the default label with a regular one
9199 make sure to make it a real default label again. This ensures
9200 optimal expansion. */
9201 label
= gimple_switch_label (su
->stmt
, 0);
9202 CASE_LOW (label
) = NULL_TREE
;
9203 CASE_HIGH (label
) = NULL_TREE
;
9206 if (to_remove_edges
.length () > 0)
9207 free_dominance_info (CDI_DOMINATORS
);
9209 to_remove_edges
.release ();
9210 to_update_switch_stmts
.release ();
9211 threadedge_finalize_values ();
9214 loop_optimizer_finalize ();
9221 return flag_tree_vrp
!= 0;
9224 struct gimple_opt_pass pass_vrp
=
9229 OPTGROUP_NONE
, /* optinfo_flags */
9230 gate_vrp
, /* gate */
9231 execute_vrp
, /* execute */
9234 0, /* static_pass_number */
9235 TV_TREE_VRP
, /* tv_id */
9236 PROP_ssa
, /* properties_required */
9237 0, /* properties_provided */
9238 0, /* properties_destroyed */
9239 0, /* todo_flags_start */
9244 | TODO_ggc_collect
/* todo_flags_finish */