1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
49 - to define an interface to access this data.
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
62 has an integer solution x = 1 and y = -1.
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
78 #include "coretypes.h"
81 #include "gimple-pretty-print.h"
88 #include "hard-reg-set.h"
91 #include "dominance.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-expr.h"
99 #include "gimple-iterator.h"
100 #include "tree-ssa-loop-niter.h"
101 #include "tree-ssa-loop.h"
102 #include "tree-ssa.h"
104 #include "tree-data-ref.h"
105 #include "tree-scalar-evolution.h"
106 #include "dumpfile.h"
107 #include "langhooks.h"
108 #include "tree-affine.h"
111 static struct datadep_stats
113 int num_dependence_tests
;
114 int num_dependence_dependent
;
115 int num_dependence_independent
;
116 int num_dependence_undetermined
;
118 int num_subscript_tests
;
119 int num_subscript_undetermined
;
120 int num_same_subscript_function
;
123 int num_ziv_independent
;
124 int num_ziv_dependent
;
125 int num_ziv_unimplemented
;
128 int num_siv_independent
;
129 int num_siv_dependent
;
130 int num_siv_unimplemented
;
133 int num_miv_independent
;
134 int num_miv_dependent
;
135 int num_miv_unimplemented
;
138 static bool subscript_dependence_tester_1 (struct data_dependence_relation
*,
139 struct data_reference
*,
140 struct data_reference
*,
142 /* Returns true iff A divides B. */
145 tree_fold_divides_p (const_tree a
, const_tree b
)
147 gcc_assert (TREE_CODE (a
) == INTEGER_CST
);
148 gcc_assert (TREE_CODE (b
) == INTEGER_CST
);
149 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR
, b
, a
));
152 /* Returns true iff A divides B. */
155 int_divides_p (int a
, int b
)
157 return ((b
% a
) == 0);
162 /* Dump into FILE all the data references from DATAREFS. */
165 dump_data_references (FILE *file
, vec
<data_reference_p
> datarefs
)
168 struct data_reference
*dr
;
170 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
171 dump_data_reference (file
, dr
);
174 /* Unified dump into FILE all the data references from DATAREFS. */
177 debug (vec
<data_reference_p
> &ref
)
179 dump_data_references (stderr
, ref
);
183 debug (vec
<data_reference_p
> *ptr
)
188 fprintf (stderr
, "<nil>\n");
192 /* Dump into STDERR all the data references from DATAREFS. */
195 debug_data_references (vec
<data_reference_p
> datarefs
)
197 dump_data_references (stderr
, datarefs
);
200 /* Print to STDERR the data_reference DR. */
203 debug_data_reference (struct data_reference
*dr
)
205 dump_data_reference (stderr
, dr
);
208 /* Dump function for a DATA_REFERENCE structure. */
211 dump_data_reference (FILE *outf
,
212 struct data_reference
*dr
)
216 fprintf (outf
, "#(Data Ref: \n");
217 fprintf (outf
, "# bb: %d \n", gimple_bb (DR_STMT (dr
))->index
);
218 fprintf (outf
, "# stmt: ");
219 print_gimple_stmt (outf
, DR_STMT (dr
), 0, 0);
220 fprintf (outf
, "# ref: ");
221 print_generic_stmt (outf
, DR_REF (dr
), 0);
222 fprintf (outf
, "# base_object: ");
223 print_generic_stmt (outf
, DR_BASE_OBJECT (dr
), 0);
225 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
227 fprintf (outf
, "# Access function %d: ", i
);
228 print_generic_stmt (outf
, DR_ACCESS_FN (dr
, i
), 0);
230 fprintf (outf
, "#)\n");
233 /* Unified dump function for a DATA_REFERENCE structure. */
236 debug (data_reference
&ref
)
238 dump_data_reference (stderr
, &ref
);
242 debug (data_reference
*ptr
)
247 fprintf (stderr
, "<nil>\n");
251 /* Dumps the affine function described by FN to the file OUTF. */
254 dump_affine_function (FILE *outf
, affine_fn fn
)
259 print_generic_expr (outf
, fn
[0], TDF_SLIM
);
260 for (i
= 1; fn
.iterate (i
, &coef
); i
++)
262 fprintf (outf
, " + ");
263 print_generic_expr (outf
, coef
, TDF_SLIM
);
264 fprintf (outf
, " * x_%u", i
);
268 /* Dumps the conflict function CF to the file OUTF. */
271 dump_conflict_function (FILE *outf
, conflict_function
*cf
)
275 if (cf
->n
== NO_DEPENDENCE
)
276 fprintf (outf
, "no dependence");
277 else if (cf
->n
== NOT_KNOWN
)
278 fprintf (outf
, "not known");
281 for (i
= 0; i
< cf
->n
; i
++)
286 dump_affine_function (outf
, cf
->fns
[i
]);
292 /* Dump function for a SUBSCRIPT structure. */
295 dump_subscript (FILE *outf
, struct subscript
*subscript
)
297 conflict_function
*cf
= SUB_CONFLICTS_IN_A (subscript
);
299 fprintf (outf
, "\n (subscript \n");
300 fprintf (outf
, " iterations_that_access_an_element_twice_in_A: ");
301 dump_conflict_function (outf
, cf
);
302 if (CF_NONTRIVIAL_P (cf
))
304 tree last_iteration
= SUB_LAST_CONFLICT (subscript
);
305 fprintf (outf
, "\n last_conflict: ");
306 print_generic_expr (outf
, last_iteration
, 0);
309 cf
= SUB_CONFLICTS_IN_B (subscript
);
310 fprintf (outf
, "\n iterations_that_access_an_element_twice_in_B: ");
311 dump_conflict_function (outf
, cf
);
312 if (CF_NONTRIVIAL_P (cf
))
314 tree last_iteration
= SUB_LAST_CONFLICT (subscript
);
315 fprintf (outf
, "\n last_conflict: ");
316 print_generic_expr (outf
, last_iteration
, 0);
319 fprintf (outf
, "\n (Subscript distance: ");
320 print_generic_expr (outf
, SUB_DISTANCE (subscript
), 0);
321 fprintf (outf
, " ))\n");
324 /* Print the classic direction vector DIRV to OUTF. */
327 print_direction_vector (FILE *outf
,
333 for (eq
= 0; eq
< length
; eq
++)
335 enum data_dependence_direction dir
= ((enum data_dependence_direction
)
341 fprintf (outf
, " +");
344 fprintf (outf
, " -");
347 fprintf (outf
, " =");
349 case dir_positive_or_equal
:
350 fprintf (outf
, " +=");
352 case dir_positive_or_negative
:
353 fprintf (outf
, " +-");
355 case dir_negative_or_equal
:
356 fprintf (outf
, " -=");
359 fprintf (outf
, " *");
362 fprintf (outf
, "indep");
366 fprintf (outf
, "\n");
369 /* Print a vector of direction vectors. */
372 print_dir_vectors (FILE *outf
, vec
<lambda_vector
> dir_vects
,
378 FOR_EACH_VEC_ELT (dir_vects
, j
, v
)
379 print_direction_vector (outf
, v
, length
);
382 /* Print out a vector VEC of length N to OUTFILE. */
385 print_lambda_vector (FILE * outfile
, lambda_vector vector
, int n
)
389 for (i
= 0; i
< n
; i
++)
390 fprintf (outfile
, "%3d ", vector
[i
]);
391 fprintf (outfile
, "\n");
394 /* Print a vector of distance vectors. */
397 print_dist_vectors (FILE *outf
, vec
<lambda_vector
> dist_vects
,
403 FOR_EACH_VEC_ELT (dist_vects
, j
, v
)
404 print_lambda_vector (outf
, v
, length
);
407 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
410 dump_data_dependence_relation (FILE *outf
,
411 struct data_dependence_relation
*ddr
)
413 struct data_reference
*dra
, *drb
;
415 fprintf (outf
, "(Data Dep: \n");
417 if (!ddr
|| DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
424 dump_data_reference (outf
, dra
);
426 fprintf (outf
, " (nil)\n");
428 dump_data_reference (outf
, drb
);
430 fprintf (outf
, " (nil)\n");
432 fprintf (outf
, " (don't know)\n)\n");
438 dump_data_reference (outf
, dra
);
439 dump_data_reference (outf
, drb
);
441 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
442 fprintf (outf
, " (no dependence)\n");
444 else if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
449 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
451 fprintf (outf
, " access_fn_A: ");
452 print_generic_stmt (outf
, DR_ACCESS_FN (dra
, i
), 0);
453 fprintf (outf
, " access_fn_B: ");
454 print_generic_stmt (outf
, DR_ACCESS_FN (drb
, i
), 0);
455 dump_subscript (outf
, DDR_SUBSCRIPT (ddr
, i
));
458 fprintf (outf
, " inner loop index: %d\n", DDR_INNER_LOOP (ddr
));
459 fprintf (outf
, " loop nest: (");
460 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr
), i
, loopi
)
461 fprintf (outf
, "%d ", loopi
->num
);
462 fprintf (outf
, ")\n");
464 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
466 fprintf (outf
, " distance_vector: ");
467 print_lambda_vector (outf
, DDR_DIST_VECT (ddr
, i
),
471 for (i
= 0; i
< DDR_NUM_DIR_VECTS (ddr
); i
++)
473 fprintf (outf
, " direction_vector: ");
474 print_direction_vector (outf
, DDR_DIR_VECT (ddr
, i
),
479 fprintf (outf
, ")\n");
485 debug_data_dependence_relation (struct data_dependence_relation
*ddr
)
487 dump_data_dependence_relation (stderr
, ddr
);
490 /* Dump into FILE all the dependence relations from DDRS. */
493 dump_data_dependence_relations (FILE *file
,
497 struct data_dependence_relation
*ddr
;
499 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
500 dump_data_dependence_relation (file
, ddr
);
504 debug (vec
<ddr_p
> &ref
)
506 dump_data_dependence_relations (stderr
, ref
);
510 debug (vec
<ddr_p
> *ptr
)
515 fprintf (stderr
, "<nil>\n");
519 /* Dump to STDERR all the dependence relations from DDRS. */
522 debug_data_dependence_relations (vec
<ddr_p
> ddrs
)
524 dump_data_dependence_relations (stderr
, ddrs
);
527 /* Dumps the distance and direction vectors in FILE. DDRS contains
528 the dependence relations, and VECT_SIZE is the size of the
529 dependence vectors, or in other words the number of loops in the
533 dump_dist_dir_vectors (FILE *file
, vec
<ddr_p
> ddrs
)
536 struct data_dependence_relation
*ddr
;
539 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
540 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
&& DDR_AFFINE_P (ddr
))
542 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), j
, v
)
544 fprintf (file
, "DISTANCE_V (");
545 print_lambda_vector (file
, v
, DDR_NB_LOOPS (ddr
));
546 fprintf (file
, ")\n");
549 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr
), j
, v
)
551 fprintf (file
, "DIRECTION_V (");
552 print_direction_vector (file
, v
, DDR_NB_LOOPS (ddr
));
553 fprintf (file
, ")\n");
557 fprintf (file
, "\n\n");
560 /* Dumps the data dependence relations DDRS in FILE. */
563 dump_ddrs (FILE *file
, vec
<ddr_p
> ddrs
)
566 struct data_dependence_relation
*ddr
;
568 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
569 dump_data_dependence_relation (file
, ddr
);
571 fprintf (file
, "\n\n");
575 debug_ddrs (vec
<ddr_p
> ddrs
)
577 dump_ddrs (stderr
, ddrs
);
580 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
581 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
582 constant of type ssizetype, and returns true. If we cannot do this
583 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
587 split_constant_offset_1 (tree type
, tree op0
, enum tree_code code
, tree op1
,
588 tree
*var
, tree
*off
)
592 enum tree_code ocode
= code
;
600 *var
= build_int_cst (type
, 0);
601 *off
= fold_convert (ssizetype
, op0
);
604 case POINTER_PLUS_EXPR
:
609 split_constant_offset (op0
, &var0
, &off0
);
610 split_constant_offset (op1
, &var1
, &off1
);
611 *var
= fold_build2 (code
, type
, var0
, var1
);
612 *off
= size_binop (ocode
, off0
, off1
);
616 if (TREE_CODE (op1
) != INTEGER_CST
)
619 split_constant_offset (op0
, &var0
, &off0
);
620 *var
= fold_build2 (MULT_EXPR
, type
, var0
, op1
);
621 *off
= size_binop (MULT_EXPR
, off0
, fold_convert (ssizetype
, op1
));
627 HOST_WIDE_INT pbitsize
, pbitpos
;
629 int punsignedp
, pvolatilep
;
631 op0
= TREE_OPERAND (op0
, 0);
632 base
= get_inner_reference (op0
, &pbitsize
, &pbitpos
, &poffset
,
633 &pmode
, &punsignedp
, &pvolatilep
, false);
635 if (pbitpos
% BITS_PER_UNIT
!= 0)
637 base
= build_fold_addr_expr (base
);
638 off0
= ssize_int (pbitpos
/ BITS_PER_UNIT
);
642 split_constant_offset (poffset
, &poffset
, &off1
);
643 off0
= size_binop (PLUS_EXPR
, off0
, off1
);
644 if (POINTER_TYPE_P (TREE_TYPE (base
)))
645 base
= fold_build_pointer_plus (base
, poffset
);
647 base
= fold_build2 (PLUS_EXPR
, TREE_TYPE (base
), base
,
648 fold_convert (TREE_TYPE (base
), poffset
));
651 var0
= fold_convert (type
, base
);
653 /* If variable length types are involved, punt, otherwise casts
654 might be converted into ARRAY_REFs in gimplify_conversion.
655 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
656 possibly no longer appears in current GIMPLE, might resurface.
657 This perhaps could run
658 if (CONVERT_EXPR_P (var0))
660 gimplify_conversion (&var0);
661 // Attempt to fill in any within var0 found ARRAY_REF's
662 // element size from corresponding op embedded ARRAY_REF,
663 // if unsuccessful, just punt.
665 while (POINTER_TYPE_P (type
))
666 type
= TREE_TYPE (type
);
667 if (int_size_in_bytes (type
) < 0)
677 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0
))
680 gimple def_stmt
= SSA_NAME_DEF_STMT (op0
);
681 enum tree_code subcode
;
683 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
686 var0
= gimple_assign_rhs1 (def_stmt
);
687 subcode
= gimple_assign_rhs_code (def_stmt
);
688 var1
= gimple_assign_rhs2 (def_stmt
);
690 return split_constant_offset_1 (type
, var0
, subcode
, var1
, var
, off
);
694 /* We must not introduce undefined overflow, and we must not change the value.
695 Hence we're okay if the inner type doesn't overflow to start with
696 (pointer or signed), the outer type also is an integer or pointer
697 and the outer precision is at least as large as the inner. */
698 tree itype
= TREE_TYPE (op0
);
699 if ((POINTER_TYPE_P (itype
)
700 || (INTEGRAL_TYPE_P (itype
) && TYPE_OVERFLOW_UNDEFINED (itype
)))
701 && TYPE_PRECISION (type
) >= TYPE_PRECISION (itype
)
702 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)))
704 split_constant_offset (op0
, &var0
, off
);
705 *var
= fold_convert (type
, var0
);
716 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
717 will be ssizetype. */
720 split_constant_offset (tree exp
, tree
*var
, tree
*off
)
722 tree type
= TREE_TYPE (exp
), otype
, op0
, op1
, e
, o
;
726 *off
= ssize_int (0);
729 if (tree_is_chrec (exp
)
730 || get_gimple_rhs_class (TREE_CODE (exp
)) == GIMPLE_TERNARY_RHS
)
733 otype
= TREE_TYPE (exp
);
734 code
= TREE_CODE (exp
);
735 extract_ops_from_tree (exp
, &code
, &op0
, &op1
);
736 if (split_constant_offset_1 (otype
, op0
, code
, op1
, &e
, &o
))
738 *var
= fold_convert (type
, e
);
743 /* Returns the address ADDR of an object in a canonical shape (without nop
744 casts, and with type of pointer to the object). */
747 canonicalize_base_object_address (tree addr
)
753 /* The base address may be obtained by casting from integer, in that case
755 if (!POINTER_TYPE_P (TREE_TYPE (addr
)))
758 if (TREE_CODE (addr
) != ADDR_EXPR
)
761 return build_fold_addr_expr (TREE_OPERAND (addr
, 0));
764 /* Analyzes the behavior of the memory reference DR in the innermost loop or
765 basic block that contains it. Returns true if analysis succeed or false
769 dr_analyze_innermost (struct data_reference
*dr
, struct loop
*nest
)
771 gimple stmt
= DR_STMT (dr
);
772 struct loop
*loop
= loop_containing_stmt (stmt
);
773 tree ref
= DR_REF (dr
);
774 HOST_WIDE_INT pbitsize
, pbitpos
;
777 int punsignedp
, pvolatilep
;
778 affine_iv base_iv
, offset_iv
;
779 tree init
, dinit
, step
;
780 bool in_loop
= (loop
&& loop
->num
);
782 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
783 fprintf (dump_file
, "analyze_innermost: ");
785 base
= get_inner_reference (ref
, &pbitsize
, &pbitpos
, &poffset
,
786 &pmode
, &punsignedp
, &pvolatilep
, false);
787 gcc_assert (base
!= NULL_TREE
);
789 if (pbitpos
% BITS_PER_UNIT
!= 0)
791 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
792 fprintf (dump_file
, "failed: bit offset alignment.\n");
796 if (TREE_CODE (base
) == MEM_REF
)
798 if (!integer_zerop (TREE_OPERAND (base
, 1)))
800 offset_int moff
= mem_ref_offset (base
);
801 tree mofft
= wide_int_to_tree (sizetype
, moff
);
805 poffset
= size_binop (PLUS_EXPR
, poffset
, mofft
);
807 base
= TREE_OPERAND (base
, 0);
810 base
= build_fold_addr_expr (base
);
814 if (!simple_iv (loop
, loop_containing_stmt (stmt
), base
, &base_iv
,
815 nest
? true : false))
819 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
820 fprintf (dump_file
, "failed: evolution of base is not"
827 base_iv
.step
= ssize_int (0);
828 base_iv
.no_overflow
= true;
835 base_iv
.step
= ssize_int (0);
836 base_iv
.no_overflow
= true;
841 offset_iv
.base
= ssize_int (0);
842 offset_iv
.step
= ssize_int (0);
848 offset_iv
.base
= poffset
;
849 offset_iv
.step
= ssize_int (0);
851 else if (!simple_iv (loop
, loop_containing_stmt (stmt
),
853 nest
? true : false))
857 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
858 fprintf (dump_file
, "failed: evolution of offset is not"
864 offset_iv
.base
= poffset
;
865 offset_iv
.step
= ssize_int (0);
870 init
= ssize_int (pbitpos
/ BITS_PER_UNIT
);
871 split_constant_offset (base_iv
.base
, &base_iv
.base
, &dinit
);
872 init
= size_binop (PLUS_EXPR
, init
, dinit
);
873 split_constant_offset (offset_iv
.base
, &offset_iv
.base
, &dinit
);
874 init
= size_binop (PLUS_EXPR
, init
, dinit
);
876 step
= size_binop (PLUS_EXPR
,
877 fold_convert (ssizetype
, base_iv
.step
),
878 fold_convert (ssizetype
, offset_iv
.step
));
880 DR_BASE_ADDRESS (dr
) = canonicalize_base_object_address (base_iv
.base
);
882 DR_OFFSET (dr
) = fold_convert (ssizetype
, offset_iv
.base
);
886 DR_ALIGNED_TO (dr
) = size_int (highest_pow2_factor (offset_iv
.base
));
888 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
889 fprintf (dump_file
, "success.\n");
894 /* Determines the base object and the list of indices of memory reference
895 DR, analyzed in LOOP and instantiated in loop nest NEST. */
898 dr_analyze_indices (struct data_reference
*dr
, loop_p nest
, loop_p loop
)
900 vec
<tree
> access_fns
= vNULL
;
902 tree base
, off
, access_fn
;
903 basic_block before_loop
;
905 /* If analyzing a basic-block there are no indices to analyze
906 and thus no access functions. */
909 DR_BASE_OBJECT (dr
) = DR_REF (dr
);
910 DR_ACCESS_FNS (dr
).create (0);
915 before_loop
= block_before_loop (nest
);
917 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
918 into a two element array with a constant index. The base is
919 then just the immediate underlying object. */
920 if (TREE_CODE (ref
) == REALPART_EXPR
)
922 ref
= TREE_OPERAND (ref
, 0);
923 access_fns
.safe_push (integer_zero_node
);
925 else if (TREE_CODE (ref
) == IMAGPART_EXPR
)
927 ref
= TREE_OPERAND (ref
, 0);
928 access_fns
.safe_push (integer_one_node
);
931 /* Analyze access functions of dimensions we know to be independent. */
932 while (handled_component_p (ref
))
934 if (TREE_CODE (ref
) == ARRAY_REF
)
936 op
= TREE_OPERAND (ref
, 1);
937 access_fn
= analyze_scalar_evolution (loop
, op
);
938 access_fn
= instantiate_scev (before_loop
, loop
, access_fn
);
939 access_fns
.safe_push (access_fn
);
941 else if (TREE_CODE (ref
) == COMPONENT_REF
942 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
944 /* For COMPONENT_REFs of records (but not unions!) use the
945 FIELD_DECL offset as constant access function so we can
946 disambiguate a[i].f1 and a[i].f2. */
947 tree off
= component_ref_field_offset (ref
);
948 off
= size_binop (PLUS_EXPR
,
949 size_binop (MULT_EXPR
,
950 fold_convert (bitsizetype
, off
),
951 bitsize_int (BITS_PER_UNIT
)),
952 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1)));
953 access_fns
.safe_push (off
);
956 /* If we have an unhandled component we could not translate
957 to an access function stop analyzing. We have determined
958 our base object in this case. */
961 ref
= TREE_OPERAND (ref
, 0);
964 /* If the address operand of a MEM_REF base has an evolution in the
965 analyzed nest, add it as an additional independent access-function. */
966 if (TREE_CODE (ref
) == MEM_REF
)
968 op
= TREE_OPERAND (ref
, 0);
969 access_fn
= analyze_scalar_evolution (loop
, op
);
970 access_fn
= instantiate_scev (before_loop
, loop
, access_fn
);
971 if (TREE_CODE (access_fn
) == POLYNOMIAL_CHREC
)
974 tree memoff
= TREE_OPERAND (ref
, 1);
975 base
= initial_condition (access_fn
);
976 orig_type
= TREE_TYPE (base
);
977 STRIP_USELESS_TYPE_CONVERSION (base
);
978 split_constant_offset (base
, &base
, &off
);
979 STRIP_USELESS_TYPE_CONVERSION (base
);
980 /* Fold the MEM_REF offset into the evolutions initial
981 value to make more bases comparable. */
982 if (!integer_zerop (memoff
))
984 off
= size_binop (PLUS_EXPR
, off
,
985 fold_convert (ssizetype
, memoff
));
986 memoff
= build_int_cst (TREE_TYPE (memoff
), 0);
988 access_fn
= chrec_replace_initial_condition
989 (access_fn
, fold_convert (orig_type
, off
));
990 /* ??? This is still not a suitable base object for
991 dr_may_alias_p - the base object needs to be an
992 access that covers the object as whole. With
993 an evolution in the pointer this cannot be
995 As a band-aid, mark the access so we can special-case
996 it in dr_may_alias_p. */
998 ref
= fold_build2_loc (EXPR_LOCATION (ref
),
999 MEM_REF
, TREE_TYPE (ref
),
1001 MR_DEPENDENCE_CLIQUE (ref
) = MR_DEPENDENCE_CLIQUE (old
);
1002 MR_DEPENDENCE_BASE (ref
) = MR_DEPENDENCE_BASE (old
);
1003 access_fns
.safe_push (access_fn
);
1006 else if (DECL_P (ref
))
1008 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1009 ref
= build2 (MEM_REF
, TREE_TYPE (ref
),
1010 build_fold_addr_expr (ref
),
1011 build_int_cst (reference_alias_ptr_type (ref
), 0));
1014 DR_BASE_OBJECT (dr
) = ref
;
1015 DR_ACCESS_FNS (dr
) = access_fns
;
1018 /* Extracts the alias analysis information from the memory reference DR. */
1021 dr_analyze_alias (struct data_reference
*dr
)
1023 tree ref
= DR_REF (dr
);
1024 tree base
= get_base_address (ref
), addr
;
1026 if (INDIRECT_REF_P (base
)
1027 || TREE_CODE (base
) == MEM_REF
)
1029 addr
= TREE_OPERAND (base
, 0);
1030 if (TREE_CODE (addr
) == SSA_NAME
)
1031 DR_PTR_INFO (dr
) = SSA_NAME_PTR_INFO (addr
);
1035 /* Frees data reference DR. */
1038 free_data_ref (data_reference_p dr
)
1040 DR_ACCESS_FNS (dr
).release ();
1044 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1045 is read if IS_READ is true, write otherwise. Returns the
1046 data_reference description of MEMREF. NEST is the outermost loop
1047 in which the reference should be instantiated, LOOP is the loop in
1048 which the data reference should be analyzed. */
1050 struct data_reference
*
1051 create_data_ref (loop_p nest
, loop_p loop
, tree memref
, gimple stmt
,
1054 struct data_reference
*dr
;
1056 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1058 fprintf (dump_file
, "Creating dr for ");
1059 print_generic_expr (dump_file
, memref
, TDF_SLIM
);
1060 fprintf (dump_file
, "\n");
1063 dr
= XCNEW (struct data_reference
);
1064 DR_STMT (dr
) = stmt
;
1065 DR_REF (dr
) = memref
;
1066 DR_IS_READ (dr
) = is_read
;
1068 dr_analyze_innermost (dr
, nest
);
1069 dr_analyze_indices (dr
, nest
, loop
);
1070 dr_analyze_alias (dr
);
1072 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1075 fprintf (dump_file
, "\tbase_address: ");
1076 print_generic_expr (dump_file
, DR_BASE_ADDRESS (dr
), TDF_SLIM
);
1077 fprintf (dump_file
, "\n\toffset from base address: ");
1078 print_generic_expr (dump_file
, DR_OFFSET (dr
), TDF_SLIM
);
1079 fprintf (dump_file
, "\n\tconstant offset from base address: ");
1080 print_generic_expr (dump_file
, DR_INIT (dr
), TDF_SLIM
);
1081 fprintf (dump_file
, "\n\tstep: ");
1082 print_generic_expr (dump_file
, DR_STEP (dr
), TDF_SLIM
);
1083 fprintf (dump_file
, "\n\taligned to: ");
1084 print_generic_expr (dump_file
, DR_ALIGNED_TO (dr
), TDF_SLIM
);
1085 fprintf (dump_file
, "\n\tbase_object: ");
1086 print_generic_expr (dump_file
, DR_BASE_OBJECT (dr
), TDF_SLIM
);
1087 fprintf (dump_file
, "\n");
1088 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
1090 fprintf (dump_file
, "\tAccess function %d: ", i
);
1091 print_generic_stmt (dump_file
, DR_ACCESS_FN (dr
, i
), TDF_SLIM
);
1098 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1101 dr_equal_offsets_p1 (tree offset1
, tree offset2
)
1105 STRIP_NOPS (offset1
);
1106 STRIP_NOPS (offset2
);
1108 if (offset1
== offset2
)
1111 if (TREE_CODE (offset1
) != TREE_CODE (offset2
)
1112 || (!BINARY_CLASS_P (offset1
) && !UNARY_CLASS_P (offset1
)))
1115 res
= dr_equal_offsets_p1 (TREE_OPERAND (offset1
, 0),
1116 TREE_OPERAND (offset2
, 0));
1118 if (!res
|| !BINARY_CLASS_P (offset1
))
1121 res
= dr_equal_offsets_p1 (TREE_OPERAND (offset1
, 1),
1122 TREE_OPERAND (offset2
, 1));
1127 /* Check if DRA and DRB have equal offsets. */
1129 dr_equal_offsets_p (struct data_reference
*dra
,
1130 struct data_reference
*drb
)
1132 tree offset1
, offset2
;
1134 offset1
= DR_OFFSET (dra
);
1135 offset2
= DR_OFFSET (drb
);
1137 return dr_equal_offsets_p1 (offset1
, offset2
);
1140 /* Returns true if FNA == FNB. */
1143 affine_function_equal_p (affine_fn fna
, affine_fn fnb
)
1145 unsigned i
, n
= fna
.length ();
1147 if (n
!= fnb
.length ())
1150 for (i
= 0; i
< n
; i
++)
1151 if (!operand_equal_p (fna
[i
], fnb
[i
], 0))
1157 /* If all the functions in CF are the same, returns one of them,
1158 otherwise returns NULL. */
1161 common_affine_function (conflict_function
*cf
)
1166 if (!CF_NONTRIVIAL_P (cf
))
1167 return affine_fn ();
1171 for (i
= 1; i
< cf
->n
; i
++)
1172 if (!affine_function_equal_p (comm
, cf
->fns
[i
]))
1173 return affine_fn ();
1178 /* Returns the base of the affine function FN. */
1181 affine_function_base (affine_fn fn
)
1186 /* Returns true if FN is a constant. */
1189 affine_function_constant_p (affine_fn fn
)
1194 for (i
= 1; fn
.iterate (i
, &coef
); i
++)
1195 if (!integer_zerop (coef
))
1201 /* Returns true if FN is the zero constant function. */
1204 affine_function_zero_p (affine_fn fn
)
1206 return (integer_zerop (affine_function_base (fn
))
1207 && affine_function_constant_p (fn
));
1210 /* Returns a signed integer type with the largest precision from TA
1214 signed_type_for_types (tree ta
, tree tb
)
1216 if (TYPE_PRECISION (ta
) > TYPE_PRECISION (tb
))
1217 return signed_type_for (ta
);
1219 return signed_type_for (tb
);
1222 /* Applies operation OP on affine functions FNA and FNB, and returns the
1226 affine_fn_op (enum tree_code op
, affine_fn fna
, affine_fn fnb
)
1232 if (fnb
.length () > fna
.length ())
1244 for (i
= 0; i
< n
; i
++)
1246 tree type
= signed_type_for_types (TREE_TYPE (fna
[i
]),
1247 TREE_TYPE (fnb
[i
]));
1248 ret
.quick_push (fold_build2 (op
, type
, fna
[i
], fnb
[i
]));
1251 for (; fna
.iterate (i
, &coef
); i
++)
1252 ret
.quick_push (fold_build2 (op
, signed_type_for (TREE_TYPE (coef
)),
1253 coef
, integer_zero_node
));
1254 for (; fnb
.iterate (i
, &coef
); i
++)
1255 ret
.quick_push (fold_build2 (op
, signed_type_for (TREE_TYPE (coef
)),
1256 integer_zero_node
, coef
));
1261 /* Returns the sum of affine functions FNA and FNB. */
1264 affine_fn_plus (affine_fn fna
, affine_fn fnb
)
1266 return affine_fn_op (PLUS_EXPR
, fna
, fnb
);
1269 /* Returns the difference of affine functions FNA and FNB. */
1272 affine_fn_minus (affine_fn fna
, affine_fn fnb
)
1274 return affine_fn_op (MINUS_EXPR
, fna
, fnb
);
1277 /* Frees affine function FN. */
1280 affine_fn_free (affine_fn fn
)
1285 /* Determine for each subscript in the data dependence relation DDR
1289 compute_subscript_distance (struct data_dependence_relation
*ddr
)
1291 conflict_function
*cf_a
, *cf_b
;
1292 affine_fn fn_a
, fn_b
, diff
;
1294 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
1298 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
1300 struct subscript
*subscript
;
1302 subscript
= DDR_SUBSCRIPT (ddr
, i
);
1303 cf_a
= SUB_CONFLICTS_IN_A (subscript
);
1304 cf_b
= SUB_CONFLICTS_IN_B (subscript
);
1306 fn_a
= common_affine_function (cf_a
);
1307 fn_b
= common_affine_function (cf_b
);
1308 if (!fn_a
.exists () || !fn_b
.exists ())
1310 SUB_DISTANCE (subscript
) = chrec_dont_know
;
1313 diff
= affine_fn_minus (fn_a
, fn_b
);
1315 if (affine_function_constant_p (diff
))
1316 SUB_DISTANCE (subscript
) = affine_function_base (diff
);
1318 SUB_DISTANCE (subscript
) = chrec_dont_know
;
1320 affine_fn_free (diff
);
1325 /* Returns the conflict function for "unknown". */
1327 static conflict_function
*
1328 conflict_fn_not_known (void)
1330 conflict_function
*fn
= XCNEW (conflict_function
);
1336 /* Returns the conflict function for "independent". */
1338 static conflict_function
*
1339 conflict_fn_no_dependence (void)
1341 conflict_function
*fn
= XCNEW (conflict_function
);
1342 fn
->n
= NO_DEPENDENCE
;
1347 /* Returns true if the address of OBJ is invariant in LOOP. */
1350 object_address_invariant_in_loop_p (const struct loop
*loop
, const_tree obj
)
1352 while (handled_component_p (obj
))
1354 if (TREE_CODE (obj
) == ARRAY_REF
)
1356 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1357 need to check the stride and the lower bound of the reference. */
1358 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 2),
1360 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 3),
1364 else if (TREE_CODE (obj
) == COMPONENT_REF
)
1366 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 2),
1370 obj
= TREE_OPERAND (obj
, 0);
1373 if (!INDIRECT_REF_P (obj
)
1374 && TREE_CODE (obj
) != MEM_REF
)
1377 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj
, 0),
1381 /* Returns false if we can prove that data references A and B do not alias,
1382 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1386 dr_may_alias_p (const struct data_reference
*a
, const struct data_reference
*b
,
1389 tree addr_a
= DR_BASE_OBJECT (a
);
1390 tree addr_b
= DR_BASE_OBJECT (b
);
1392 /* If we are not processing a loop nest but scalar code we
1393 do not need to care about possible cross-iteration dependences
1394 and thus can process the full original reference. Do so,
1395 similar to how loop invariant motion applies extra offset-based
1399 aff_tree off1
, off2
;
1400 widest_int size1
, size2
;
1401 get_inner_reference_aff (DR_REF (a
), &off1
, &size1
);
1402 get_inner_reference_aff (DR_REF (b
), &off2
, &size2
);
1403 aff_combination_scale (&off1
, -1);
1404 aff_combination_add (&off2
, &off1
);
1405 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
1409 if ((TREE_CODE (addr_a
) == MEM_REF
|| TREE_CODE (addr_a
) == TARGET_MEM_REF
)
1410 && (TREE_CODE (addr_b
) == MEM_REF
|| TREE_CODE (addr_b
) == TARGET_MEM_REF
)
1411 && MR_DEPENDENCE_CLIQUE (addr_a
) == MR_DEPENDENCE_CLIQUE (addr_b
)
1412 && MR_DEPENDENCE_BASE (addr_a
) != MR_DEPENDENCE_BASE (addr_b
))
1415 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1416 do not know the size of the base-object. So we cannot do any
1417 offset/overlap based analysis but have to rely on points-to
1418 information only. */
1419 if (TREE_CODE (addr_a
) == MEM_REF
1420 && TREE_CODE (TREE_OPERAND (addr_a
, 0)) == SSA_NAME
)
1422 /* For true dependences we can apply TBAA. */
1423 if (flag_strict_aliasing
1424 && DR_IS_WRITE (a
) && DR_IS_READ (b
)
1425 && !alias_sets_conflict_p (get_alias_set (DR_REF (a
)),
1426 get_alias_set (DR_REF (b
))))
1428 if (TREE_CODE (addr_b
) == MEM_REF
)
1429 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
1430 TREE_OPERAND (addr_b
, 0));
1432 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
1433 build_fold_addr_expr (addr_b
));
1435 else if (TREE_CODE (addr_b
) == MEM_REF
1436 && TREE_CODE (TREE_OPERAND (addr_b
, 0)) == SSA_NAME
)
1438 /* For true dependences we can apply TBAA. */
1439 if (flag_strict_aliasing
1440 && DR_IS_WRITE (a
) && DR_IS_READ (b
)
1441 && !alias_sets_conflict_p (get_alias_set (DR_REF (a
)),
1442 get_alias_set (DR_REF (b
))))
1444 if (TREE_CODE (addr_a
) == MEM_REF
)
1445 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a
, 0),
1446 TREE_OPERAND (addr_b
, 0));
1448 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a
),
1449 TREE_OPERAND (addr_b
, 0));
1452 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1453 that is being subsetted in the loop nest. */
1454 if (DR_IS_WRITE (a
) && DR_IS_WRITE (b
))
1455 return refs_output_dependent_p (addr_a
, addr_b
);
1456 else if (DR_IS_READ (a
) && DR_IS_WRITE (b
))
1457 return refs_anti_dependent_p (addr_a
, addr_b
);
1458 return refs_may_alias_p (addr_a
, addr_b
);
1461 /* Initialize a data dependence relation between data accesses A and
1462 B. NB_LOOPS is the number of loops surrounding the references: the
1463 size of the classic distance/direction vectors. */
1465 struct data_dependence_relation
*
1466 initialize_data_dependence_relation (struct data_reference
*a
,
1467 struct data_reference
*b
,
1468 vec
<loop_p
> loop_nest
)
1470 struct data_dependence_relation
*res
;
1473 res
= XNEW (struct data_dependence_relation
);
1476 DDR_LOOP_NEST (res
).create (0);
1477 DDR_REVERSED_P (res
) = false;
1478 DDR_SUBSCRIPTS (res
).create (0);
1479 DDR_DIR_VECTS (res
).create (0);
1480 DDR_DIST_VECTS (res
).create (0);
1482 if (a
== NULL
|| b
== NULL
)
1484 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
1488 /* If the data references do not alias, then they are independent. */
1489 if (!dr_may_alias_p (a
, b
, loop_nest
.exists ()))
1491 DDR_ARE_DEPENDENT (res
) = chrec_known
;
1495 /* The case where the references are exactly the same. */
1496 if (operand_equal_p (DR_REF (a
), DR_REF (b
), 0))
1498 if (loop_nest
.exists ()
1499 && !object_address_invariant_in_loop_p (loop_nest
[0],
1500 DR_BASE_OBJECT (a
)))
1502 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
1505 DDR_AFFINE_P (res
) = true;
1506 DDR_ARE_DEPENDENT (res
) = NULL_TREE
;
1507 DDR_SUBSCRIPTS (res
).create (DR_NUM_DIMENSIONS (a
));
1508 DDR_LOOP_NEST (res
) = loop_nest
;
1509 DDR_INNER_LOOP (res
) = 0;
1510 DDR_SELF_REFERENCE (res
) = true;
1511 for (i
= 0; i
< DR_NUM_DIMENSIONS (a
); i
++)
1513 struct subscript
*subscript
;
1515 subscript
= XNEW (struct subscript
);
1516 SUB_CONFLICTS_IN_A (subscript
) = conflict_fn_not_known ();
1517 SUB_CONFLICTS_IN_B (subscript
) = conflict_fn_not_known ();
1518 SUB_LAST_CONFLICT (subscript
) = chrec_dont_know
;
1519 SUB_DISTANCE (subscript
) = chrec_dont_know
;
1520 DDR_SUBSCRIPTS (res
).safe_push (subscript
);
1525 /* If the references do not access the same object, we do not know
1526 whether they alias or not. */
1527 if (!operand_equal_p (DR_BASE_OBJECT (a
), DR_BASE_OBJECT (b
), 0))
1529 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
1533 /* If the base of the object is not invariant in the loop nest, we cannot
1534 analyze it. TODO -- in fact, it would suffice to record that there may
1535 be arbitrary dependences in the loops where the base object varies. */
1536 if (loop_nest
.exists ()
1537 && !object_address_invariant_in_loop_p (loop_nest
[0],
1538 DR_BASE_OBJECT (a
)))
1540 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
1544 /* If the number of dimensions of the access to not agree we can have
1545 a pointer access to a component of the array element type and an
1546 array access while the base-objects are still the same. Punt. */
1547 if (DR_NUM_DIMENSIONS (a
) != DR_NUM_DIMENSIONS (b
))
1549 DDR_ARE_DEPENDENT (res
) = chrec_dont_know
;
1553 DDR_AFFINE_P (res
) = true;
1554 DDR_ARE_DEPENDENT (res
) = NULL_TREE
;
1555 DDR_SUBSCRIPTS (res
).create (DR_NUM_DIMENSIONS (a
));
1556 DDR_LOOP_NEST (res
) = loop_nest
;
1557 DDR_INNER_LOOP (res
) = 0;
1558 DDR_SELF_REFERENCE (res
) = false;
1560 for (i
= 0; i
< DR_NUM_DIMENSIONS (a
); i
++)
1562 struct subscript
*subscript
;
1564 subscript
= XNEW (struct subscript
);
1565 SUB_CONFLICTS_IN_A (subscript
) = conflict_fn_not_known ();
1566 SUB_CONFLICTS_IN_B (subscript
) = conflict_fn_not_known ();
1567 SUB_LAST_CONFLICT (subscript
) = chrec_dont_know
;
1568 SUB_DISTANCE (subscript
) = chrec_dont_know
;
1569 DDR_SUBSCRIPTS (res
).safe_push (subscript
);
1575 /* Frees memory used by the conflict function F. */
1578 free_conflict_function (conflict_function
*f
)
1582 if (CF_NONTRIVIAL_P (f
))
1584 for (i
= 0; i
< f
->n
; i
++)
1585 affine_fn_free (f
->fns
[i
]);
1590 /* Frees memory used by SUBSCRIPTS. */
1593 free_subscripts (vec
<subscript_p
> subscripts
)
1598 FOR_EACH_VEC_ELT (subscripts
, i
, s
)
1600 free_conflict_function (s
->conflicting_iterations_in_a
);
1601 free_conflict_function (s
->conflicting_iterations_in_b
);
1604 subscripts
.release ();
1607 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1611 finalize_ddr_dependent (struct data_dependence_relation
*ddr
,
1614 DDR_ARE_DEPENDENT (ddr
) = chrec
;
1615 free_subscripts (DDR_SUBSCRIPTS (ddr
));
1616 DDR_SUBSCRIPTS (ddr
).create (0);
1619 /* The dependence relation DDR cannot be represented by a distance
1623 non_affine_dependence_relation (struct data_dependence_relation
*ddr
)
1625 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1626 fprintf (dump_file
, "(Dependence relation cannot be represented by distance vector.) \n");
1628 DDR_AFFINE_P (ddr
) = false;
1633 /* This section contains the classic Banerjee tests. */
1635 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1636 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1639 ziv_subscript_p (const_tree chrec_a
, const_tree chrec_b
)
1641 return (evolution_function_is_constant_p (chrec_a
)
1642 && evolution_function_is_constant_p (chrec_b
));
1645 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1646 variable, i.e., if the SIV (Single Index Variable) test is true. */
1649 siv_subscript_p (const_tree chrec_a
, const_tree chrec_b
)
1651 if ((evolution_function_is_constant_p (chrec_a
)
1652 && evolution_function_is_univariate_p (chrec_b
))
1653 || (evolution_function_is_constant_p (chrec_b
)
1654 && evolution_function_is_univariate_p (chrec_a
)))
1657 if (evolution_function_is_univariate_p (chrec_a
)
1658 && evolution_function_is_univariate_p (chrec_b
))
1660 switch (TREE_CODE (chrec_a
))
1662 case POLYNOMIAL_CHREC
:
1663 switch (TREE_CODE (chrec_b
))
1665 case POLYNOMIAL_CHREC
:
1666 if (CHREC_VARIABLE (chrec_a
) != CHREC_VARIABLE (chrec_b
))
1681 /* Creates a conflict function with N dimensions. The affine functions
1682 in each dimension follow. */
1684 static conflict_function
*
1685 conflict_fn (unsigned n
, ...)
1688 conflict_function
*ret
= XCNEW (conflict_function
);
1691 gcc_assert (0 < n
&& n
<= MAX_DIM
);
1695 for (i
= 0; i
< n
; i
++)
1696 ret
->fns
[i
] = va_arg (ap
, affine_fn
);
1702 /* Returns constant affine function with value CST. */
1705 affine_fn_cst (tree cst
)
1709 fn
.quick_push (cst
);
1713 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1716 affine_fn_univar (tree cst
, unsigned dim
, tree coef
)
1719 fn
.create (dim
+ 1);
1722 gcc_assert (dim
> 0);
1723 fn
.quick_push (cst
);
1724 for (i
= 1; i
< dim
; i
++)
1725 fn
.quick_push (integer_zero_node
);
1726 fn
.quick_push (coef
);
1730 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1731 *OVERLAPS_B are initialized to the functions that describe the
1732 relation between the elements accessed twice by CHREC_A and
1733 CHREC_B. For k >= 0, the following property is verified:
1735 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1738 analyze_ziv_subscript (tree chrec_a
,
1740 conflict_function
**overlaps_a
,
1741 conflict_function
**overlaps_b
,
1742 tree
*last_conflicts
)
1744 tree type
, difference
;
1745 dependence_stats
.num_ziv
++;
1747 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1748 fprintf (dump_file
, "(analyze_ziv_subscript \n");
1750 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
1751 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
1752 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
1753 difference
= chrec_fold_minus (type
, chrec_a
, chrec_b
);
1755 switch (TREE_CODE (difference
))
1758 if (integer_zerop (difference
))
1760 /* The difference is equal to zero: the accessed index
1761 overlaps for each iteration in the loop. */
1762 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
1763 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
1764 *last_conflicts
= chrec_dont_know
;
1765 dependence_stats
.num_ziv_dependent
++;
1769 /* The accesses do not overlap. */
1770 *overlaps_a
= conflict_fn_no_dependence ();
1771 *overlaps_b
= conflict_fn_no_dependence ();
1772 *last_conflicts
= integer_zero_node
;
1773 dependence_stats
.num_ziv_independent
++;
1778 /* We're not sure whether the indexes overlap. For the moment,
1779 conservatively answer "don't know". */
1780 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1781 fprintf (dump_file
, "ziv test failed: difference is non-integer.\n");
1783 *overlaps_a
= conflict_fn_not_known ();
1784 *overlaps_b
= conflict_fn_not_known ();
1785 *last_conflicts
= chrec_dont_know
;
1786 dependence_stats
.num_ziv_unimplemented
++;
1790 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1791 fprintf (dump_file
, ")\n");
1794 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1795 and only if it fits to the int type. If this is not the case, or the
1796 bound on the number of iterations of LOOP could not be derived, returns
1800 max_stmt_executions_tree (struct loop
*loop
)
1804 if (!max_stmt_executions (loop
, &nit
))
1805 return chrec_dont_know
;
1807 if (!wi::fits_to_tree_p (nit
, unsigned_type_node
))
1808 return chrec_dont_know
;
1810 return wide_int_to_tree (unsigned_type_node
, nit
);
1813 /* Determine whether the CHREC is always positive/negative. If the expression
1814 cannot be statically analyzed, return false, otherwise set the answer into
1818 chrec_is_positive (tree chrec
, bool *value
)
1820 bool value0
, value1
, value2
;
1821 tree end_value
, nb_iter
;
1823 switch (TREE_CODE (chrec
))
1825 case POLYNOMIAL_CHREC
:
1826 if (!chrec_is_positive (CHREC_LEFT (chrec
), &value0
)
1827 || !chrec_is_positive (CHREC_RIGHT (chrec
), &value1
))
1830 /* FIXME -- overflows. */
1831 if (value0
== value1
)
1837 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1838 and the proof consists in showing that the sign never
1839 changes during the execution of the loop, from 0 to
1840 loop->nb_iterations. */
1841 if (!evolution_function_is_affine_p (chrec
))
1844 nb_iter
= number_of_latch_executions (get_chrec_loop (chrec
));
1845 if (chrec_contains_undetermined (nb_iter
))
1849 /* TODO -- If the test is after the exit, we may decrease the number of
1850 iterations by one. */
1852 nb_iter
= chrec_fold_minus (type
, nb_iter
, build_int_cst (type
, 1));
1855 end_value
= chrec_apply (CHREC_VARIABLE (chrec
), chrec
, nb_iter
);
1857 if (!chrec_is_positive (end_value
, &value2
))
1861 return value0
== value1
;
1864 switch (tree_int_cst_sgn (chrec
))
1883 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1884 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1885 *OVERLAPS_B are initialized to the functions that describe the
1886 relation between the elements accessed twice by CHREC_A and
1887 CHREC_B. For k >= 0, the following property is verified:
1889 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1892 analyze_siv_subscript_cst_affine (tree chrec_a
,
1894 conflict_function
**overlaps_a
,
1895 conflict_function
**overlaps_b
,
1896 tree
*last_conflicts
)
1898 bool value0
, value1
, value2
;
1899 tree type
, difference
, tmp
;
1901 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
1902 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
1903 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
1904 difference
= chrec_fold_minus (type
, initial_condition (chrec_b
), chrec_a
);
1906 /* Special case overlap in the first iteration. */
1907 if (integer_zerop (difference
))
1909 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
1910 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
1911 *last_conflicts
= integer_one_node
;
1915 if (!chrec_is_positive (initial_condition (difference
), &value0
))
1917 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1918 fprintf (dump_file
, "siv test failed: chrec is not positive.\n");
1920 dependence_stats
.num_siv_unimplemented
++;
1921 *overlaps_a
= conflict_fn_not_known ();
1922 *overlaps_b
= conflict_fn_not_known ();
1923 *last_conflicts
= chrec_dont_know
;
1928 if (value0
== false)
1930 if (!chrec_is_positive (CHREC_RIGHT (chrec_b
), &value1
))
1932 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1933 fprintf (dump_file
, "siv test failed: chrec not positive.\n");
1935 *overlaps_a
= conflict_fn_not_known ();
1936 *overlaps_b
= conflict_fn_not_known ();
1937 *last_conflicts
= chrec_dont_know
;
1938 dependence_stats
.num_siv_unimplemented
++;
1947 chrec_b = {10, +, 1}
1950 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b
), difference
))
1952 HOST_WIDE_INT numiter
;
1953 struct loop
*loop
= get_chrec_loop (chrec_b
);
1955 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
1956 tmp
= fold_build2 (EXACT_DIV_EXPR
, type
,
1957 fold_build1 (ABS_EXPR
, type
, difference
),
1958 CHREC_RIGHT (chrec_b
));
1959 *overlaps_b
= conflict_fn (1, affine_fn_cst (tmp
));
1960 *last_conflicts
= integer_one_node
;
1963 /* Perform weak-zero siv test to see if overlap is
1964 outside the loop bounds. */
1965 numiter
= max_stmt_executions_int (loop
);
1968 && compare_tree_int (tmp
, numiter
) > 0)
1970 free_conflict_function (*overlaps_a
);
1971 free_conflict_function (*overlaps_b
);
1972 *overlaps_a
= conflict_fn_no_dependence ();
1973 *overlaps_b
= conflict_fn_no_dependence ();
1974 *last_conflicts
= integer_zero_node
;
1975 dependence_stats
.num_siv_independent
++;
1978 dependence_stats
.num_siv_dependent
++;
1982 /* When the step does not divide the difference, there are
1986 *overlaps_a
= conflict_fn_no_dependence ();
1987 *overlaps_b
= conflict_fn_no_dependence ();
1988 *last_conflicts
= integer_zero_node
;
1989 dependence_stats
.num_siv_independent
++;
1998 chrec_b = {10, +, -1}
2000 In this case, chrec_a will not overlap with chrec_b. */
2001 *overlaps_a
= conflict_fn_no_dependence ();
2002 *overlaps_b
= conflict_fn_no_dependence ();
2003 *last_conflicts
= integer_zero_node
;
2004 dependence_stats
.num_siv_independent
++;
2011 if (!chrec_is_positive (CHREC_RIGHT (chrec_b
), &value2
))
2013 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2014 fprintf (dump_file
, "siv test failed: chrec not positive.\n");
2016 *overlaps_a
= conflict_fn_not_known ();
2017 *overlaps_b
= conflict_fn_not_known ();
2018 *last_conflicts
= chrec_dont_know
;
2019 dependence_stats
.num_siv_unimplemented
++;
2024 if (value2
== false)
2028 chrec_b = {10, +, -1}
2030 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b
), difference
))
2032 HOST_WIDE_INT numiter
;
2033 struct loop
*loop
= get_chrec_loop (chrec_b
);
2035 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2036 tmp
= fold_build2 (EXACT_DIV_EXPR
, type
, difference
,
2037 CHREC_RIGHT (chrec_b
));
2038 *overlaps_b
= conflict_fn (1, affine_fn_cst (tmp
));
2039 *last_conflicts
= integer_one_node
;
2041 /* Perform weak-zero siv test to see if overlap is
2042 outside the loop bounds. */
2043 numiter
= max_stmt_executions_int (loop
);
2046 && compare_tree_int (tmp
, numiter
) > 0)
2048 free_conflict_function (*overlaps_a
);
2049 free_conflict_function (*overlaps_b
);
2050 *overlaps_a
= conflict_fn_no_dependence ();
2051 *overlaps_b
= conflict_fn_no_dependence ();
2052 *last_conflicts
= integer_zero_node
;
2053 dependence_stats
.num_siv_independent
++;
2056 dependence_stats
.num_siv_dependent
++;
2060 /* When the step does not divide the difference, there
2064 *overlaps_a
= conflict_fn_no_dependence ();
2065 *overlaps_b
= conflict_fn_no_dependence ();
2066 *last_conflicts
= integer_zero_node
;
2067 dependence_stats
.num_siv_independent
++;
2077 In this case, chrec_a will not overlap with chrec_b. */
2078 *overlaps_a
= conflict_fn_no_dependence ();
2079 *overlaps_b
= conflict_fn_no_dependence ();
2080 *last_conflicts
= integer_zero_node
;
2081 dependence_stats
.num_siv_independent
++;
2089 /* Helper recursive function for initializing the matrix A. Returns
2090 the initial value of CHREC. */
2093 initialize_matrix_A (lambda_matrix A
, tree chrec
, unsigned index
, int mult
)
2097 switch (TREE_CODE (chrec
))
2099 case POLYNOMIAL_CHREC
:
2100 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec
)) == INTEGER_CST
);
2102 A
[index
][0] = mult
* int_cst_value (CHREC_RIGHT (chrec
));
2103 return initialize_matrix_A (A
, CHREC_LEFT (chrec
), index
+ 1, mult
);
2109 tree op0
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
2110 tree op1
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 1), index
, mult
);
2112 return chrec_fold_op (TREE_CODE (chrec
), chrec_type (chrec
), op0
, op1
);
2117 tree op
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
2118 return chrec_convert (chrec_type (chrec
), op
, NULL
);
2123 /* Handle ~X as -1 - X. */
2124 tree op
= initialize_matrix_A (A
, TREE_OPERAND (chrec
, 0), index
, mult
);
2125 return chrec_fold_op (MINUS_EXPR
, chrec_type (chrec
),
2126 build_int_cst (TREE_TYPE (chrec
), -1), op
);
2138 #define FLOOR_DIV(x,y) ((x) / (y))
2140 /* Solves the special case of the Diophantine equation:
2141 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2143 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2144 number of iterations that loops X and Y run. The overlaps will be
2145 constructed as evolutions in dimension DIM. */
2148 compute_overlap_steps_for_affine_univar (int niter
, int step_a
, int step_b
,
2149 affine_fn
*overlaps_a
,
2150 affine_fn
*overlaps_b
,
2151 tree
*last_conflicts
, int dim
)
2153 if (((step_a
> 0 && step_b
> 0)
2154 || (step_a
< 0 && step_b
< 0)))
2156 int step_overlaps_a
, step_overlaps_b
;
2157 int gcd_steps_a_b
, last_conflict
, tau2
;
2159 gcd_steps_a_b
= gcd (step_a
, step_b
);
2160 step_overlaps_a
= step_b
/ gcd_steps_a_b
;
2161 step_overlaps_b
= step_a
/ gcd_steps_a_b
;
2165 tau2
= FLOOR_DIV (niter
, step_overlaps_a
);
2166 tau2
= MIN (tau2
, FLOOR_DIV (niter
, step_overlaps_b
));
2167 last_conflict
= tau2
;
2168 *last_conflicts
= build_int_cst (NULL_TREE
, last_conflict
);
2171 *last_conflicts
= chrec_dont_know
;
2173 *overlaps_a
= affine_fn_univar (integer_zero_node
, dim
,
2174 build_int_cst (NULL_TREE
,
2176 *overlaps_b
= affine_fn_univar (integer_zero_node
, dim
,
2177 build_int_cst (NULL_TREE
,
2183 *overlaps_a
= affine_fn_cst (integer_zero_node
);
2184 *overlaps_b
= affine_fn_cst (integer_zero_node
);
2185 *last_conflicts
= integer_zero_node
;
2189 /* Solves the special case of a Diophantine equation where CHREC_A is
2190 an affine bivariate function, and CHREC_B is an affine univariate
2191 function. For example,
2193 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2195 has the following overlapping functions:
2197 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2198 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2199 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2201 FORNOW: This is a specialized implementation for a case occurring in
2202 a common benchmark. Implement the general algorithm. */
2205 compute_overlap_steps_for_affine_1_2 (tree chrec_a
, tree chrec_b
,
2206 conflict_function
**overlaps_a
,
2207 conflict_function
**overlaps_b
,
2208 tree
*last_conflicts
)
2210 bool xz_p
, yz_p
, xyz_p
;
2211 int step_x
, step_y
, step_z
;
2212 HOST_WIDE_INT niter_x
, niter_y
, niter_z
, niter
;
2213 affine_fn overlaps_a_xz
, overlaps_b_xz
;
2214 affine_fn overlaps_a_yz
, overlaps_b_yz
;
2215 affine_fn overlaps_a_xyz
, overlaps_b_xyz
;
2216 affine_fn ova1
, ova2
, ovb
;
2217 tree last_conflicts_xz
, last_conflicts_yz
, last_conflicts_xyz
;
2219 step_x
= int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a
)));
2220 step_y
= int_cst_value (CHREC_RIGHT (chrec_a
));
2221 step_z
= int_cst_value (CHREC_RIGHT (chrec_b
));
2223 niter_x
= max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a
)));
2224 niter_y
= max_stmt_executions_int (get_chrec_loop (chrec_a
));
2225 niter_z
= max_stmt_executions_int (get_chrec_loop (chrec_b
));
2227 if (niter_x
< 0 || niter_y
< 0 || niter_z
< 0)
2229 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2230 fprintf (dump_file
, "overlap steps test failed: no iteration counts.\n");
2232 *overlaps_a
= conflict_fn_not_known ();
2233 *overlaps_b
= conflict_fn_not_known ();
2234 *last_conflicts
= chrec_dont_know
;
2238 niter
= MIN (niter_x
, niter_z
);
2239 compute_overlap_steps_for_affine_univar (niter
, step_x
, step_z
,
2242 &last_conflicts_xz
, 1);
2243 niter
= MIN (niter_y
, niter_z
);
2244 compute_overlap_steps_for_affine_univar (niter
, step_y
, step_z
,
2247 &last_conflicts_yz
, 2);
2248 niter
= MIN (niter_x
, niter_z
);
2249 niter
= MIN (niter_y
, niter
);
2250 compute_overlap_steps_for_affine_univar (niter
, step_x
+ step_y
, step_z
,
2253 &last_conflicts_xyz
, 3);
2255 xz_p
= !integer_zerop (last_conflicts_xz
);
2256 yz_p
= !integer_zerop (last_conflicts_yz
);
2257 xyz_p
= !integer_zerop (last_conflicts_xyz
);
2259 if (xz_p
|| yz_p
|| xyz_p
)
2261 ova1
= affine_fn_cst (integer_zero_node
);
2262 ova2
= affine_fn_cst (integer_zero_node
);
2263 ovb
= affine_fn_cst (integer_zero_node
);
2266 affine_fn t0
= ova1
;
2269 ova1
= affine_fn_plus (ova1
, overlaps_a_xz
);
2270 ovb
= affine_fn_plus (ovb
, overlaps_b_xz
);
2271 affine_fn_free (t0
);
2272 affine_fn_free (t2
);
2273 *last_conflicts
= last_conflicts_xz
;
2277 affine_fn t0
= ova2
;
2280 ova2
= affine_fn_plus (ova2
, overlaps_a_yz
);
2281 ovb
= affine_fn_plus (ovb
, overlaps_b_yz
);
2282 affine_fn_free (t0
);
2283 affine_fn_free (t2
);
2284 *last_conflicts
= last_conflicts_yz
;
2288 affine_fn t0
= ova1
;
2289 affine_fn t2
= ova2
;
2292 ova1
= affine_fn_plus (ova1
, overlaps_a_xyz
);
2293 ova2
= affine_fn_plus (ova2
, overlaps_a_xyz
);
2294 ovb
= affine_fn_plus (ovb
, overlaps_b_xyz
);
2295 affine_fn_free (t0
);
2296 affine_fn_free (t2
);
2297 affine_fn_free (t4
);
2298 *last_conflicts
= last_conflicts_xyz
;
2300 *overlaps_a
= conflict_fn (2, ova1
, ova2
);
2301 *overlaps_b
= conflict_fn (1, ovb
);
2305 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2306 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2307 *last_conflicts
= integer_zero_node
;
2310 affine_fn_free (overlaps_a_xz
);
2311 affine_fn_free (overlaps_b_xz
);
2312 affine_fn_free (overlaps_a_yz
);
2313 affine_fn_free (overlaps_b_yz
);
2314 affine_fn_free (overlaps_a_xyz
);
2315 affine_fn_free (overlaps_b_xyz
);
2318 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2321 lambda_vector_copy (lambda_vector vec1
, lambda_vector vec2
,
2324 memcpy (vec2
, vec1
, size
* sizeof (*vec1
));
2327 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2330 lambda_matrix_copy (lambda_matrix mat1
, lambda_matrix mat2
,
2335 for (i
= 0; i
< m
; i
++)
2336 lambda_vector_copy (mat1
[i
], mat2
[i
], n
);
2339 /* Store the N x N identity matrix in MAT. */
2342 lambda_matrix_id (lambda_matrix mat
, int size
)
2346 for (i
= 0; i
< size
; i
++)
2347 for (j
= 0; j
< size
; j
++)
2348 mat
[i
][j
] = (i
== j
) ? 1 : 0;
2351 /* Return the first nonzero element of vector VEC1 between START and N.
2352 We must have START <= N. Returns N if VEC1 is the zero vector. */
2355 lambda_vector_first_nz (lambda_vector vec1
, int n
, int start
)
2358 while (j
< n
&& vec1
[j
] == 0)
2363 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2364 R2 = R2 + CONST1 * R1. */
2367 lambda_matrix_row_add (lambda_matrix mat
, int n
, int r1
, int r2
, int const1
)
2374 for (i
= 0; i
< n
; i
++)
2375 mat
[r2
][i
] += const1
* mat
[r1
][i
];
2378 /* Swap rows R1 and R2 in matrix MAT. */
2381 lambda_matrix_row_exchange (lambda_matrix mat
, int r1
, int r2
)
2390 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2391 and store the result in VEC2. */
2394 lambda_vector_mult_const (lambda_vector vec1
, lambda_vector vec2
,
2395 int size
, int const1
)
2400 lambda_vector_clear (vec2
, size
);
2402 for (i
= 0; i
< size
; i
++)
2403 vec2
[i
] = const1
* vec1
[i
];
2406 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2409 lambda_vector_negate (lambda_vector vec1
, lambda_vector vec2
,
2412 lambda_vector_mult_const (vec1
, vec2
, size
, -1);
2415 /* Negate row R1 of matrix MAT which has N columns. */
2418 lambda_matrix_row_negate (lambda_matrix mat
, int n
, int r1
)
2420 lambda_vector_negate (mat
[r1
], mat
[r1
], n
);
2423 /* Return true if two vectors are equal. */
2426 lambda_vector_equal (lambda_vector vec1
, lambda_vector vec2
, int size
)
2429 for (i
= 0; i
< size
; i
++)
2430 if (vec1
[i
] != vec2
[i
])
2435 /* Given an M x N integer matrix A, this function determines an M x
2436 M unimodular matrix U, and an M x N echelon matrix S such that
2437 "U.A = S". This decomposition is also known as "right Hermite".
2439 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2440 Restructuring Compilers" Utpal Banerjee. */
2443 lambda_matrix_right_hermite (lambda_matrix A
, int m
, int n
,
2444 lambda_matrix S
, lambda_matrix U
)
2448 lambda_matrix_copy (A
, S
, m
, n
);
2449 lambda_matrix_id (U
, m
);
2451 for (j
= 0; j
< n
; j
++)
2453 if (lambda_vector_first_nz (S
[j
], m
, i0
) < m
)
2456 for (i
= m
- 1; i
>= i0
; i
--)
2458 while (S
[i
][j
] != 0)
2460 int sigma
, factor
, a
, b
;
2464 sigma
= (a
* b
< 0) ? -1: 1;
2467 factor
= sigma
* (a
/ b
);
2469 lambda_matrix_row_add (S
, n
, i
, i
-1, -factor
);
2470 lambda_matrix_row_exchange (S
, i
, i
-1);
2472 lambda_matrix_row_add (U
, m
, i
, i
-1, -factor
);
2473 lambda_matrix_row_exchange (U
, i
, i
-1);
2480 /* Determines the overlapping elements due to accesses CHREC_A and
2481 CHREC_B, that are affine functions. This function cannot handle
2482 symbolic evolution functions, ie. when initial conditions are
2483 parameters, because it uses lambda matrices of integers. */
2486 analyze_subscript_affine_affine (tree chrec_a
,
2488 conflict_function
**overlaps_a
,
2489 conflict_function
**overlaps_b
,
2490 tree
*last_conflicts
)
2492 unsigned nb_vars_a
, nb_vars_b
, dim
;
2493 HOST_WIDE_INT init_a
, init_b
, gamma
, gcd_alpha_beta
;
2494 lambda_matrix A
, U
, S
;
2495 struct obstack scratch_obstack
;
2497 if (eq_evolutions_p (chrec_a
, chrec_b
))
2499 /* The accessed index overlaps for each iteration in the
2501 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2502 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2503 *last_conflicts
= chrec_dont_know
;
2506 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2507 fprintf (dump_file
, "(analyze_subscript_affine_affine \n");
2509 /* For determining the initial intersection, we have to solve a
2510 Diophantine equation. This is the most time consuming part.
2512 For answering to the question: "Is there a dependence?" we have
2513 to prove that there exists a solution to the Diophantine
2514 equation, and that the solution is in the iteration domain,
2515 i.e. the solution is positive or zero, and that the solution
2516 happens before the upper bound loop.nb_iterations. Otherwise
2517 there is no dependence. This function outputs a description of
2518 the iterations that hold the intersections. */
2520 nb_vars_a
= nb_vars_in_chrec (chrec_a
);
2521 nb_vars_b
= nb_vars_in_chrec (chrec_b
);
2523 gcc_obstack_init (&scratch_obstack
);
2525 dim
= nb_vars_a
+ nb_vars_b
;
2526 U
= lambda_matrix_new (dim
, dim
, &scratch_obstack
);
2527 A
= lambda_matrix_new (dim
, 1, &scratch_obstack
);
2528 S
= lambda_matrix_new (dim
, 1, &scratch_obstack
);
2530 init_a
= int_cst_value (initialize_matrix_A (A
, chrec_a
, 0, 1));
2531 init_b
= int_cst_value (initialize_matrix_A (A
, chrec_b
, nb_vars_a
, -1));
2532 gamma
= init_b
- init_a
;
2534 /* Don't do all the hard work of solving the Diophantine equation
2535 when we already know the solution: for example,
2538 | gamma = 3 - 3 = 0.
2539 Then the first overlap occurs during the first iterations:
2540 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2544 if (nb_vars_a
== 1 && nb_vars_b
== 1)
2546 HOST_WIDE_INT step_a
, step_b
;
2547 HOST_WIDE_INT niter
, niter_a
, niter_b
;
2550 niter_a
= max_stmt_executions_int (get_chrec_loop (chrec_a
));
2551 niter_b
= max_stmt_executions_int (get_chrec_loop (chrec_b
));
2552 niter
= MIN (niter_a
, niter_b
);
2553 step_a
= int_cst_value (CHREC_RIGHT (chrec_a
));
2554 step_b
= int_cst_value (CHREC_RIGHT (chrec_b
));
2556 compute_overlap_steps_for_affine_univar (niter
, step_a
, step_b
,
2559 *overlaps_a
= conflict_fn (1, ova
);
2560 *overlaps_b
= conflict_fn (1, ovb
);
2563 else if (nb_vars_a
== 2 && nb_vars_b
== 1)
2564 compute_overlap_steps_for_affine_1_2
2565 (chrec_a
, chrec_b
, overlaps_a
, overlaps_b
, last_conflicts
);
2567 else if (nb_vars_a
== 1 && nb_vars_b
== 2)
2568 compute_overlap_steps_for_affine_1_2
2569 (chrec_b
, chrec_a
, overlaps_b
, overlaps_a
, last_conflicts
);
2573 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2574 fprintf (dump_file
, "affine-affine test failed: too many variables.\n");
2575 *overlaps_a
= conflict_fn_not_known ();
2576 *overlaps_b
= conflict_fn_not_known ();
2577 *last_conflicts
= chrec_dont_know
;
2579 goto end_analyze_subs_aa
;
2583 lambda_matrix_right_hermite (A
, dim
, 1, S
, U
);
2588 lambda_matrix_row_negate (U
, dim
, 0);
2590 gcd_alpha_beta
= S
[0][0];
2592 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2593 but that is a quite strange case. Instead of ICEing, answer
2595 if (gcd_alpha_beta
== 0)
2597 *overlaps_a
= conflict_fn_not_known ();
2598 *overlaps_b
= conflict_fn_not_known ();
2599 *last_conflicts
= chrec_dont_know
;
2600 goto end_analyze_subs_aa
;
2603 /* The classic "gcd-test". */
2604 if (!int_divides_p (gcd_alpha_beta
, gamma
))
2606 /* The "gcd-test" has determined that there is no integer
2607 solution, i.e. there is no dependence. */
2608 *overlaps_a
= conflict_fn_no_dependence ();
2609 *overlaps_b
= conflict_fn_no_dependence ();
2610 *last_conflicts
= integer_zero_node
;
2613 /* Both access functions are univariate. This includes SIV and MIV cases. */
2614 else if (nb_vars_a
== 1 && nb_vars_b
== 1)
2616 /* Both functions should have the same evolution sign. */
2617 if (((A
[0][0] > 0 && -A
[1][0] > 0)
2618 || (A
[0][0] < 0 && -A
[1][0] < 0)))
2620 /* The solutions are given by:
2622 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2625 For a given integer t. Using the following variables,
2627 | i0 = u11 * gamma / gcd_alpha_beta
2628 | j0 = u12 * gamma / gcd_alpha_beta
2635 | y0 = j0 + j1 * t. */
2636 HOST_WIDE_INT i0
, j0
, i1
, j1
;
2638 i0
= U
[0][0] * gamma
/ gcd_alpha_beta
;
2639 j0
= U
[0][1] * gamma
/ gcd_alpha_beta
;
2643 if ((i1
== 0 && i0
< 0)
2644 || (j1
== 0 && j0
< 0))
2646 /* There is no solution.
2647 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2648 falls in here, but for the moment we don't look at the
2649 upper bound of the iteration domain. */
2650 *overlaps_a
= conflict_fn_no_dependence ();
2651 *overlaps_b
= conflict_fn_no_dependence ();
2652 *last_conflicts
= integer_zero_node
;
2653 goto end_analyze_subs_aa
;
2656 if (i1
> 0 && j1
> 0)
2658 HOST_WIDE_INT niter_a
2659 = max_stmt_executions_int (get_chrec_loop (chrec_a
));
2660 HOST_WIDE_INT niter_b
2661 = max_stmt_executions_int (get_chrec_loop (chrec_b
));
2662 HOST_WIDE_INT niter
= MIN (niter_a
, niter_b
);
2664 /* (X0, Y0) is a solution of the Diophantine equation:
2665 "chrec_a (X0) = chrec_b (Y0)". */
2666 HOST_WIDE_INT tau1
= MAX (CEIL (-i0
, i1
),
2668 HOST_WIDE_INT x0
= i1
* tau1
+ i0
;
2669 HOST_WIDE_INT y0
= j1
* tau1
+ j0
;
2671 /* (X1, Y1) is the smallest positive solution of the eq
2672 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2673 first conflict occurs. */
2674 HOST_WIDE_INT min_multiple
= MIN (x0
/ i1
, y0
/ j1
);
2675 HOST_WIDE_INT x1
= x0
- i1
* min_multiple
;
2676 HOST_WIDE_INT y1
= y0
- j1
* min_multiple
;
2680 HOST_WIDE_INT tau2
= MIN (FLOOR_DIV (niter
- i0
, i1
),
2681 FLOOR_DIV (niter
- j0
, j1
));
2682 HOST_WIDE_INT last_conflict
= tau2
- (x1
- i0
)/i1
;
2684 /* If the overlap occurs outside of the bounds of the
2685 loop, there is no dependence. */
2686 if (x1
>= niter
|| y1
>= niter
)
2688 *overlaps_a
= conflict_fn_no_dependence ();
2689 *overlaps_b
= conflict_fn_no_dependence ();
2690 *last_conflicts
= integer_zero_node
;
2691 goto end_analyze_subs_aa
;
2694 *last_conflicts
= build_int_cst (NULL_TREE
, last_conflict
);
2697 *last_conflicts
= chrec_dont_know
;
2701 affine_fn_univar (build_int_cst (NULL_TREE
, x1
),
2703 build_int_cst (NULL_TREE
, i1
)));
2706 affine_fn_univar (build_int_cst (NULL_TREE
, y1
),
2708 build_int_cst (NULL_TREE
, j1
)));
2712 /* FIXME: For the moment, the upper bound of the
2713 iteration domain for i and j is not checked. */
2714 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2715 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
2716 *overlaps_a
= conflict_fn_not_known ();
2717 *overlaps_b
= conflict_fn_not_known ();
2718 *last_conflicts
= chrec_dont_know
;
2723 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2724 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
2725 *overlaps_a
= conflict_fn_not_known ();
2726 *overlaps_b
= conflict_fn_not_known ();
2727 *last_conflicts
= chrec_dont_know
;
2732 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2733 fprintf (dump_file
, "affine-affine test failed: unimplemented.\n");
2734 *overlaps_a
= conflict_fn_not_known ();
2735 *overlaps_b
= conflict_fn_not_known ();
2736 *last_conflicts
= chrec_dont_know
;
2739 end_analyze_subs_aa
:
2740 obstack_free (&scratch_obstack
, NULL
);
2741 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2743 fprintf (dump_file
, " (overlaps_a = ");
2744 dump_conflict_function (dump_file
, *overlaps_a
);
2745 fprintf (dump_file
, ")\n (overlaps_b = ");
2746 dump_conflict_function (dump_file
, *overlaps_b
);
2747 fprintf (dump_file
, "))\n");
2751 /* Returns true when analyze_subscript_affine_affine can be used for
2752 determining the dependence relation between chrec_a and chrec_b,
2753 that contain symbols. This function modifies chrec_a and chrec_b
2754 such that the analysis result is the same, and such that they don't
2755 contain symbols, and then can safely be passed to the analyzer.
2757 Example: The analysis of the following tuples of evolutions produce
2758 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2761 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2762 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2766 can_use_analyze_subscript_affine_affine (tree
*chrec_a
, tree
*chrec_b
)
2768 tree diff
, type
, left_a
, left_b
, right_b
;
2770 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a
))
2771 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b
)))
2772 /* FIXME: For the moment not handled. Might be refined later. */
2775 type
= chrec_type (*chrec_a
);
2776 left_a
= CHREC_LEFT (*chrec_a
);
2777 left_b
= chrec_convert (type
, CHREC_LEFT (*chrec_b
), NULL
);
2778 diff
= chrec_fold_minus (type
, left_a
, left_b
);
2780 if (!evolution_function_is_constant_p (diff
))
2783 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2784 fprintf (dump_file
, "can_use_subscript_aff_aff_for_symbolic \n");
2786 *chrec_a
= build_polynomial_chrec (CHREC_VARIABLE (*chrec_a
),
2787 diff
, CHREC_RIGHT (*chrec_a
));
2788 right_b
= chrec_convert (type
, CHREC_RIGHT (*chrec_b
), NULL
);
2789 *chrec_b
= build_polynomial_chrec (CHREC_VARIABLE (*chrec_b
),
2790 build_int_cst (type
, 0),
2795 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2796 *OVERLAPS_B are initialized to the functions that describe the
2797 relation between the elements accessed twice by CHREC_A and
2798 CHREC_B. For k >= 0, the following property is verified:
2800 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2803 analyze_siv_subscript (tree chrec_a
,
2805 conflict_function
**overlaps_a
,
2806 conflict_function
**overlaps_b
,
2807 tree
*last_conflicts
,
2810 dependence_stats
.num_siv
++;
2812 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2813 fprintf (dump_file
, "(analyze_siv_subscript \n");
2815 if (evolution_function_is_constant_p (chrec_a
)
2816 && evolution_function_is_affine_in_loop (chrec_b
, loop_nest_num
))
2817 analyze_siv_subscript_cst_affine (chrec_a
, chrec_b
,
2818 overlaps_a
, overlaps_b
, last_conflicts
);
2820 else if (evolution_function_is_affine_in_loop (chrec_a
, loop_nest_num
)
2821 && evolution_function_is_constant_p (chrec_b
))
2822 analyze_siv_subscript_cst_affine (chrec_b
, chrec_a
,
2823 overlaps_b
, overlaps_a
, last_conflicts
);
2825 else if (evolution_function_is_affine_in_loop (chrec_a
, loop_nest_num
)
2826 && evolution_function_is_affine_in_loop (chrec_b
, loop_nest_num
))
2828 if (!chrec_contains_symbols (chrec_a
)
2829 && !chrec_contains_symbols (chrec_b
))
2831 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
2832 overlaps_a
, overlaps_b
,
2835 if (CF_NOT_KNOWN_P (*overlaps_a
)
2836 || CF_NOT_KNOWN_P (*overlaps_b
))
2837 dependence_stats
.num_siv_unimplemented
++;
2838 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
2839 || CF_NO_DEPENDENCE_P (*overlaps_b
))
2840 dependence_stats
.num_siv_independent
++;
2842 dependence_stats
.num_siv_dependent
++;
2844 else if (can_use_analyze_subscript_affine_affine (&chrec_a
,
2847 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
2848 overlaps_a
, overlaps_b
,
2851 if (CF_NOT_KNOWN_P (*overlaps_a
)
2852 || CF_NOT_KNOWN_P (*overlaps_b
))
2853 dependence_stats
.num_siv_unimplemented
++;
2854 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
2855 || CF_NO_DEPENDENCE_P (*overlaps_b
))
2856 dependence_stats
.num_siv_independent
++;
2858 dependence_stats
.num_siv_dependent
++;
2861 goto siv_subscript_dontknow
;
2866 siv_subscript_dontknow
:;
2867 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2868 fprintf (dump_file
, " siv test failed: unimplemented");
2869 *overlaps_a
= conflict_fn_not_known ();
2870 *overlaps_b
= conflict_fn_not_known ();
2871 *last_conflicts
= chrec_dont_know
;
2872 dependence_stats
.num_siv_unimplemented
++;
2875 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2876 fprintf (dump_file
, ")\n");
2879 /* Returns false if we can prove that the greatest common divisor of the steps
2880 of CHREC does not divide CST, false otherwise. */
2883 gcd_of_steps_may_divide_p (const_tree chrec
, const_tree cst
)
2885 HOST_WIDE_INT cd
= 0, val
;
2888 if (!tree_fits_shwi_p (cst
))
2890 val
= tree_to_shwi (cst
);
2892 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
2894 step
= CHREC_RIGHT (chrec
);
2895 if (!tree_fits_shwi_p (step
))
2897 cd
= gcd (cd
, tree_to_shwi (step
));
2898 chrec
= CHREC_LEFT (chrec
);
2901 return val
% cd
== 0;
2904 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2905 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2906 functions that describe the relation between the elements accessed
2907 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2910 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2913 analyze_miv_subscript (tree chrec_a
,
2915 conflict_function
**overlaps_a
,
2916 conflict_function
**overlaps_b
,
2917 tree
*last_conflicts
,
2918 struct loop
*loop_nest
)
2920 tree type
, difference
;
2922 dependence_stats
.num_miv
++;
2923 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2924 fprintf (dump_file
, "(analyze_miv_subscript \n");
2926 type
= signed_type_for_types (TREE_TYPE (chrec_a
), TREE_TYPE (chrec_b
));
2927 chrec_a
= chrec_convert (type
, chrec_a
, NULL
);
2928 chrec_b
= chrec_convert (type
, chrec_b
, NULL
);
2929 difference
= chrec_fold_minus (type
, chrec_a
, chrec_b
);
2931 if (eq_evolutions_p (chrec_a
, chrec_b
))
2933 /* Access functions are the same: all the elements are accessed
2934 in the same order. */
2935 *overlaps_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2936 *overlaps_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
2937 *last_conflicts
= max_stmt_executions_tree (get_chrec_loop (chrec_a
));
2938 dependence_stats
.num_miv_dependent
++;
2941 else if (evolution_function_is_constant_p (difference
)
2942 /* For the moment, the following is verified:
2943 evolution_function_is_affine_multivariate_p (chrec_a,
2945 && !gcd_of_steps_may_divide_p (chrec_a
, difference
))
2947 /* testsuite/.../ssa-chrec-33.c
2948 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2950 The difference is 1, and all the evolution steps are multiples
2951 of 2, consequently there are no overlapping elements. */
2952 *overlaps_a
= conflict_fn_no_dependence ();
2953 *overlaps_b
= conflict_fn_no_dependence ();
2954 *last_conflicts
= integer_zero_node
;
2955 dependence_stats
.num_miv_independent
++;
2958 else if (evolution_function_is_affine_multivariate_p (chrec_a
, loop_nest
->num
)
2959 && !chrec_contains_symbols (chrec_a
)
2960 && evolution_function_is_affine_multivariate_p (chrec_b
, loop_nest
->num
)
2961 && !chrec_contains_symbols (chrec_b
))
2963 /* testsuite/.../ssa-chrec-35.c
2964 {0, +, 1}_2 vs. {0, +, 1}_3
2965 the overlapping elements are respectively located at iterations:
2966 {0, +, 1}_x and {0, +, 1}_x,
2967 in other words, we have the equality:
2968 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2971 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2972 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2974 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2975 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2977 analyze_subscript_affine_affine (chrec_a
, chrec_b
,
2978 overlaps_a
, overlaps_b
, last_conflicts
);
2980 if (CF_NOT_KNOWN_P (*overlaps_a
)
2981 || CF_NOT_KNOWN_P (*overlaps_b
))
2982 dependence_stats
.num_miv_unimplemented
++;
2983 else if (CF_NO_DEPENDENCE_P (*overlaps_a
)
2984 || CF_NO_DEPENDENCE_P (*overlaps_b
))
2985 dependence_stats
.num_miv_independent
++;
2987 dependence_stats
.num_miv_dependent
++;
2992 /* When the analysis is too difficult, answer "don't know". */
2993 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2994 fprintf (dump_file
, "analyze_miv_subscript test failed: unimplemented.\n");
2996 *overlaps_a
= conflict_fn_not_known ();
2997 *overlaps_b
= conflict_fn_not_known ();
2998 *last_conflicts
= chrec_dont_know
;
2999 dependence_stats
.num_miv_unimplemented
++;
3002 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3003 fprintf (dump_file
, ")\n");
3006 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
3007 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3008 OVERLAP_ITERATIONS_B are initialized with two functions that
3009 describe the iterations that contain conflicting elements.
3011 Remark: For an integer k >= 0, the following equality is true:
3013 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3017 analyze_overlapping_iterations (tree chrec_a
,
3019 conflict_function
**overlap_iterations_a
,
3020 conflict_function
**overlap_iterations_b
,
3021 tree
*last_conflicts
, struct loop
*loop_nest
)
3023 unsigned int lnn
= loop_nest
->num
;
3025 dependence_stats
.num_subscript_tests
++;
3027 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3029 fprintf (dump_file
, "(analyze_overlapping_iterations \n");
3030 fprintf (dump_file
, " (chrec_a = ");
3031 print_generic_expr (dump_file
, chrec_a
, 0);
3032 fprintf (dump_file
, ")\n (chrec_b = ");
3033 print_generic_expr (dump_file
, chrec_b
, 0);
3034 fprintf (dump_file
, ")\n");
3037 if (chrec_a
== NULL_TREE
3038 || chrec_b
== NULL_TREE
3039 || chrec_contains_undetermined (chrec_a
)
3040 || chrec_contains_undetermined (chrec_b
))
3042 dependence_stats
.num_subscript_undetermined
++;
3044 *overlap_iterations_a
= conflict_fn_not_known ();
3045 *overlap_iterations_b
= conflict_fn_not_known ();
3048 /* If they are the same chrec, and are affine, they overlap
3049 on every iteration. */
3050 else if (eq_evolutions_p (chrec_a
, chrec_b
)
3051 && (evolution_function_is_affine_multivariate_p (chrec_a
, lnn
)
3052 || operand_equal_p (chrec_a
, chrec_b
, 0)))
3054 dependence_stats
.num_same_subscript_function
++;
3055 *overlap_iterations_a
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3056 *overlap_iterations_b
= conflict_fn (1, affine_fn_cst (integer_zero_node
));
3057 *last_conflicts
= chrec_dont_know
;
3060 /* If they aren't the same, and aren't affine, we can't do anything
3062 else if ((chrec_contains_symbols (chrec_a
)
3063 || chrec_contains_symbols (chrec_b
))
3064 && (!evolution_function_is_affine_multivariate_p (chrec_a
, lnn
)
3065 || !evolution_function_is_affine_multivariate_p (chrec_b
, lnn
)))
3067 dependence_stats
.num_subscript_undetermined
++;
3068 *overlap_iterations_a
= conflict_fn_not_known ();
3069 *overlap_iterations_b
= conflict_fn_not_known ();
3072 else if (ziv_subscript_p (chrec_a
, chrec_b
))
3073 analyze_ziv_subscript (chrec_a
, chrec_b
,
3074 overlap_iterations_a
, overlap_iterations_b
,
3077 else if (siv_subscript_p (chrec_a
, chrec_b
))
3078 analyze_siv_subscript (chrec_a
, chrec_b
,
3079 overlap_iterations_a
, overlap_iterations_b
,
3080 last_conflicts
, lnn
);
3083 analyze_miv_subscript (chrec_a
, chrec_b
,
3084 overlap_iterations_a
, overlap_iterations_b
,
3085 last_conflicts
, loop_nest
);
3087 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3089 fprintf (dump_file
, " (overlap_iterations_a = ");
3090 dump_conflict_function (dump_file
, *overlap_iterations_a
);
3091 fprintf (dump_file
, ")\n (overlap_iterations_b = ");
3092 dump_conflict_function (dump_file
, *overlap_iterations_b
);
3093 fprintf (dump_file
, "))\n");
3097 /* Helper function for uniquely inserting distance vectors. */
3100 save_dist_v (struct data_dependence_relation
*ddr
, lambda_vector dist_v
)
3105 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, v
)
3106 if (lambda_vector_equal (v
, dist_v
, DDR_NB_LOOPS (ddr
)))
3109 DDR_DIST_VECTS (ddr
).safe_push (dist_v
);
3112 /* Helper function for uniquely inserting direction vectors. */
3115 save_dir_v (struct data_dependence_relation
*ddr
, lambda_vector dir_v
)
3120 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr
), i
, v
)
3121 if (lambda_vector_equal (v
, dir_v
, DDR_NB_LOOPS (ddr
)))
3124 DDR_DIR_VECTS (ddr
).safe_push (dir_v
);
3127 /* Add a distance of 1 on all the loops outer than INDEX. If we
3128 haven't yet determined a distance for this outer loop, push a new
3129 distance vector composed of the previous distance, and a distance
3130 of 1 for this outer loop. Example:
3138 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3139 save (0, 1), then we have to save (1, 0). */
3142 add_outer_distances (struct data_dependence_relation
*ddr
,
3143 lambda_vector dist_v
, int index
)
3145 /* For each outer loop where init_v is not set, the accesses are
3146 in dependence of distance 1 in the loop. */
3147 while (--index
>= 0)
3149 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3150 lambda_vector_copy (dist_v
, save_v
, DDR_NB_LOOPS (ddr
));
3152 save_dist_v (ddr
, save_v
);
3156 /* Return false when fail to represent the data dependence as a
3157 distance vector. INIT_B is set to true when a component has been
3158 added to the distance vector DIST_V. INDEX_CARRY is then set to
3159 the index in DIST_V that carries the dependence. */
3162 build_classic_dist_vector_1 (struct data_dependence_relation
*ddr
,
3163 struct data_reference
*ddr_a
,
3164 struct data_reference
*ddr_b
,
3165 lambda_vector dist_v
, bool *init_b
,
3169 lambda_vector init_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3171 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
3173 tree access_fn_a
, access_fn_b
;
3174 struct subscript
*subscript
= DDR_SUBSCRIPT (ddr
, i
);
3176 if (chrec_contains_undetermined (SUB_DISTANCE (subscript
)))
3178 non_affine_dependence_relation (ddr
);
3182 access_fn_a
= DR_ACCESS_FN (ddr_a
, i
);
3183 access_fn_b
= DR_ACCESS_FN (ddr_b
, i
);
3185 if (TREE_CODE (access_fn_a
) == POLYNOMIAL_CHREC
3186 && TREE_CODE (access_fn_b
) == POLYNOMIAL_CHREC
)
3189 int var_a
= CHREC_VARIABLE (access_fn_a
);
3190 int var_b
= CHREC_VARIABLE (access_fn_b
);
3193 || chrec_contains_undetermined (SUB_DISTANCE (subscript
)))
3195 non_affine_dependence_relation (ddr
);
3199 dist
= int_cst_value (SUB_DISTANCE (subscript
));
3200 index
= index_in_loop_nest (var_a
, DDR_LOOP_NEST (ddr
));
3201 *index_carry
= MIN (index
, *index_carry
);
3203 /* This is the subscript coupling test. If we have already
3204 recorded a distance for this loop (a distance coming from
3205 another subscript), it should be the same. For example,
3206 in the following code, there is no dependence:
3213 if (init_v
[index
] != 0 && dist_v
[index
] != dist
)
3215 finalize_ddr_dependent (ddr
, chrec_known
);
3219 dist_v
[index
] = dist
;
3223 else if (!operand_equal_p (access_fn_a
, access_fn_b
, 0))
3225 /* This can be for example an affine vs. constant dependence
3226 (T[i] vs. T[3]) that is not an affine dependence and is
3227 not representable as a distance vector. */
3228 non_affine_dependence_relation (ddr
);
3236 /* Return true when the DDR contains only constant access functions. */
3239 constant_access_functions (const struct data_dependence_relation
*ddr
)
3243 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
3244 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr
), i
))
3245 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr
), i
)))
3251 /* Helper function for the case where DDR_A and DDR_B are the same
3252 multivariate access function with a constant step. For an example
3256 add_multivariate_self_dist (struct data_dependence_relation
*ddr
, tree c_2
)
3259 tree c_1
= CHREC_LEFT (c_2
);
3260 tree c_0
= CHREC_LEFT (c_1
);
3261 lambda_vector dist_v
;
3264 /* Polynomials with more than 2 variables are not handled yet. When
3265 the evolution steps are parameters, it is not possible to
3266 represent the dependence using classical distance vectors. */
3267 if (TREE_CODE (c_0
) != INTEGER_CST
3268 || TREE_CODE (CHREC_RIGHT (c_1
)) != INTEGER_CST
3269 || TREE_CODE (CHREC_RIGHT (c_2
)) != INTEGER_CST
)
3271 DDR_AFFINE_P (ddr
) = false;
3275 x_2
= index_in_loop_nest (CHREC_VARIABLE (c_2
), DDR_LOOP_NEST (ddr
));
3276 x_1
= index_in_loop_nest (CHREC_VARIABLE (c_1
), DDR_LOOP_NEST (ddr
));
3278 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3279 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3280 v1
= int_cst_value (CHREC_RIGHT (c_1
));
3281 v2
= int_cst_value (CHREC_RIGHT (c_2
));
3294 save_dist_v (ddr
, dist_v
);
3296 add_outer_distances (ddr
, dist_v
, x_1
);
3299 /* Helper function for the case where DDR_A and DDR_B are the same
3300 access functions. */
3303 add_other_self_distances (struct data_dependence_relation
*ddr
)
3305 lambda_vector dist_v
;
3307 int index_carry
= DDR_NB_LOOPS (ddr
);
3309 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
3311 tree access_fun
= DR_ACCESS_FN (DDR_A (ddr
), i
);
3313 if (TREE_CODE (access_fun
) == POLYNOMIAL_CHREC
)
3315 if (!evolution_function_is_univariate_p (access_fun
))
3317 if (DDR_NUM_SUBSCRIPTS (ddr
) != 1)
3319 DDR_ARE_DEPENDENT (ddr
) = chrec_dont_know
;
3323 access_fun
= DR_ACCESS_FN (DDR_A (ddr
), 0);
3325 if (TREE_CODE (CHREC_LEFT (access_fun
)) == POLYNOMIAL_CHREC
)
3326 add_multivariate_self_dist (ddr
, access_fun
);
3328 /* The evolution step is not constant: it varies in
3329 the outer loop, so this cannot be represented by a
3330 distance vector. For example in pr34635.c the
3331 evolution is {0, +, {0, +, 4}_1}_2. */
3332 DDR_AFFINE_P (ddr
) = false;
3337 index_carry
= MIN (index_carry
,
3338 index_in_loop_nest (CHREC_VARIABLE (access_fun
),
3339 DDR_LOOP_NEST (ddr
)));
3343 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3344 add_outer_distances (ddr
, dist_v
, index_carry
);
3348 insert_innermost_unit_dist_vector (struct data_dependence_relation
*ddr
)
3350 lambda_vector dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3352 dist_v
[DDR_INNER_LOOP (ddr
)] = 1;
3353 save_dist_v (ddr
, dist_v
);
3356 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3357 is the case for example when access functions are the same and
3358 equal to a constant, as in:
3365 in which case the distance vectors are (0) and (1). */
3368 add_distance_for_zero_overlaps (struct data_dependence_relation
*ddr
)
3372 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
3374 subscript_p sub
= DDR_SUBSCRIPT (ddr
, i
);
3375 conflict_function
*ca
= SUB_CONFLICTS_IN_A (sub
);
3376 conflict_function
*cb
= SUB_CONFLICTS_IN_B (sub
);
3378 for (j
= 0; j
< ca
->n
; j
++)
3379 if (affine_function_zero_p (ca
->fns
[j
]))
3381 insert_innermost_unit_dist_vector (ddr
);
3385 for (j
= 0; j
< cb
->n
; j
++)
3386 if (affine_function_zero_p (cb
->fns
[j
]))
3388 insert_innermost_unit_dist_vector (ddr
);
3394 /* Compute the classic per loop distance vector. DDR is the data
3395 dependence relation to build a vector from. Return false when fail
3396 to represent the data dependence as a distance vector. */
3399 build_classic_dist_vector (struct data_dependence_relation
*ddr
,
3400 struct loop
*loop_nest
)
3402 bool init_b
= false;
3403 int index_carry
= DDR_NB_LOOPS (ddr
);
3404 lambda_vector dist_v
;
3406 if (DDR_ARE_DEPENDENT (ddr
) != NULL_TREE
)
3409 if (same_access_functions (ddr
))
3411 /* Save the 0 vector. */
3412 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3413 save_dist_v (ddr
, dist_v
);
3415 if (constant_access_functions (ddr
))
3416 add_distance_for_zero_overlaps (ddr
);
3418 if (DDR_NB_LOOPS (ddr
) > 1)
3419 add_other_self_distances (ddr
);
3424 dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3425 if (!build_classic_dist_vector_1 (ddr
, DDR_A (ddr
), DDR_B (ddr
),
3426 dist_v
, &init_b
, &index_carry
))
3429 /* Save the distance vector if we initialized one. */
3432 /* Verify a basic constraint: classic distance vectors should
3433 always be lexicographically positive.
3435 Data references are collected in the order of execution of
3436 the program, thus for the following loop
3438 | for (i = 1; i < 100; i++)
3439 | for (j = 1; j < 100; j++)
3441 | t = T[j+1][i-1]; // A
3442 | T[j][i] = t + 2; // B
3445 references are collected following the direction of the wind:
3446 A then B. The data dependence tests are performed also
3447 following this order, such that we're looking at the distance
3448 separating the elements accessed by A from the elements later
3449 accessed by B. But in this example, the distance returned by
3450 test_dep (A, B) is lexicographically negative (-1, 1), that
3451 means that the access A occurs later than B with respect to
3452 the outer loop, ie. we're actually looking upwind. In this
3453 case we solve test_dep (B, A) looking downwind to the
3454 lexicographically positive solution, that returns the
3455 distance vector (1, -1). */
3456 if (!lambda_vector_lexico_pos (dist_v
, DDR_NB_LOOPS (ddr
)))
3458 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3459 if (!subscript_dependence_tester_1 (ddr
, DDR_B (ddr
), DDR_A (ddr
),
3462 compute_subscript_distance (ddr
);
3463 if (!build_classic_dist_vector_1 (ddr
, DDR_B (ddr
), DDR_A (ddr
),
3464 save_v
, &init_b
, &index_carry
))
3466 save_dist_v (ddr
, save_v
);
3467 DDR_REVERSED_P (ddr
) = true;
3469 /* In this case there is a dependence forward for all the
3472 | for (k = 1; k < 100; k++)
3473 | for (i = 1; i < 100; i++)
3474 | for (j = 1; j < 100; j++)
3476 | t = T[j+1][i-1]; // A
3477 | T[j][i] = t + 2; // B
3485 if (DDR_NB_LOOPS (ddr
) > 1)
3487 add_outer_distances (ddr
, save_v
, index_carry
);
3488 add_outer_distances (ddr
, dist_v
, index_carry
);
3493 lambda_vector save_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3494 lambda_vector_copy (dist_v
, save_v
, DDR_NB_LOOPS (ddr
));
3496 if (DDR_NB_LOOPS (ddr
) > 1)
3498 lambda_vector opposite_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3500 if (!subscript_dependence_tester_1 (ddr
, DDR_B (ddr
),
3501 DDR_A (ddr
), loop_nest
))
3503 compute_subscript_distance (ddr
);
3504 if (!build_classic_dist_vector_1 (ddr
, DDR_B (ddr
), DDR_A (ddr
),
3505 opposite_v
, &init_b
,
3509 save_dist_v (ddr
, save_v
);
3510 add_outer_distances (ddr
, dist_v
, index_carry
);
3511 add_outer_distances (ddr
, opposite_v
, index_carry
);
3514 save_dist_v (ddr
, save_v
);
3519 /* There is a distance of 1 on all the outer loops: Example:
3520 there is a dependence of distance 1 on loop_1 for the array A.
3526 add_outer_distances (ddr
, dist_v
,
3527 lambda_vector_first_nz (dist_v
,
3528 DDR_NB_LOOPS (ddr
), 0));
3531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3535 fprintf (dump_file
, "(build_classic_dist_vector\n");
3536 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
3538 fprintf (dump_file
, " dist_vector = (");
3539 print_lambda_vector (dump_file
, DDR_DIST_VECT (ddr
, i
),
3540 DDR_NB_LOOPS (ddr
));
3541 fprintf (dump_file
, " )\n");
3543 fprintf (dump_file
, ")\n");
3549 /* Return the direction for a given distance.
3550 FIXME: Computing dir this way is suboptimal, since dir can catch
3551 cases that dist is unable to represent. */
3553 static inline enum data_dependence_direction
3554 dir_from_dist (int dist
)
3557 return dir_positive
;
3559 return dir_negative
;
3564 /* Compute the classic per loop direction vector. DDR is the data
3565 dependence relation to build a vector from. */
3568 build_classic_dir_vector (struct data_dependence_relation
*ddr
)
3571 lambda_vector dist_v
;
3573 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, dist_v
)
3575 lambda_vector dir_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3577 for (j
= 0; j
< DDR_NB_LOOPS (ddr
); j
++)
3578 dir_v
[j
] = dir_from_dist (dist_v
[j
]);
3580 save_dir_v (ddr
, dir_v
);
3584 /* Helper function. Returns true when there is a dependence between
3585 data references DRA and DRB. */
3588 subscript_dependence_tester_1 (struct data_dependence_relation
*ddr
,
3589 struct data_reference
*dra
,
3590 struct data_reference
*drb
,
3591 struct loop
*loop_nest
)
3594 tree last_conflicts
;
3595 struct subscript
*subscript
;
3596 tree res
= NULL_TREE
;
3598 for (i
= 0; DDR_SUBSCRIPTS (ddr
).iterate (i
, &subscript
); i
++)
3600 conflict_function
*overlaps_a
, *overlaps_b
;
3602 analyze_overlapping_iterations (DR_ACCESS_FN (dra
, i
),
3603 DR_ACCESS_FN (drb
, i
),
3604 &overlaps_a
, &overlaps_b
,
3605 &last_conflicts
, loop_nest
);
3607 if (SUB_CONFLICTS_IN_A (subscript
))
3608 free_conflict_function (SUB_CONFLICTS_IN_A (subscript
));
3609 if (SUB_CONFLICTS_IN_B (subscript
))
3610 free_conflict_function (SUB_CONFLICTS_IN_B (subscript
));
3612 SUB_CONFLICTS_IN_A (subscript
) = overlaps_a
;
3613 SUB_CONFLICTS_IN_B (subscript
) = overlaps_b
;
3614 SUB_LAST_CONFLICT (subscript
) = last_conflicts
;
3616 /* If there is any undetermined conflict function we have to
3617 give a conservative answer in case we cannot prove that
3618 no dependence exists when analyzing another subscript. */
3619 if (CF_NOT_KNOWN_P (overlaps_a
)
3620 || CF_NOT_KNOWN_P (overlaps_b
))
3622 res
= chrec_dont_know
;
3626 /* When there is a subscript with no dependence we can stop. */
3627 else if (CF_NO_DEPENDENCE_P (overlaps_a
)
3628 || CF_NO_DEPENDENCE_P (overlaps_b
))
3635 if (res
== NULL_TREE
)
3638 if (res
== chrec_known
)
3639 dependence_stats
.num_dependence_independent
++;
3641 dependence_stats
.num_dependence_undetermined
++;
3642 finalize_ddr_dependent (ddr
, res
);
3646 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3649 subscript_dependence_tester (struct data_dependence_relation
*ddr
,
3650 struct loop
*loop_nest
)
3652 if (subscript_dependence_tester_1 (ddr
, DDR_A (ddr
), DDR_B (ddr
), loop_nest
))
3653 dependence_stats
.num_dependence_dependent
++;
3655 compute_subscript_distance (ddr
);
3656 if (build_classic_dist_vector (ddr
, loop_nest
))
3657 build_classic_dir_vector (ddr
);
3660 /* Returns true when all the access functions of A are affine or
3661 constant with respect to LOOP_NEST. */
3664 access_functions_are_affine_or_constant_p (const struct data_reference
*a
,
3665 const struct loop
*loop_nest
)
3668 vec
<tree
> fns
= DR_ACCESS_FNS (a
);
3671 FOR_EACH_VEC_ELT (fns
, i
, t
)
3672 if (!evolution_function_is_invariant_p (t
, loop_nest
->num
)
3673 && !evolution_function_is_affine_multivariate_p (t
, loop_nest
->num
))
3679 /* Initializes an equation for an OMEGA problem using the information
3680 contained in the ACCESS_FUN. Returns true when the operation
3683 PB is the omega constraint system.
3684 EQ is the number of the equation to be initialized.
3685 OFFSET is used for shifting the variables names in the constraints:
3686 a constrain is composed of 2 * the number of variables surrounding
3687 dependence accesses. OFFSET is set either to 0 for the first n variables,
3688 then it is set to n.
3689 ACCESS_FUN is expected to be an affine chrec. */
3692 init_omega_eq_with_af (omega_pb pb
, unsigned eq
,
3693 unsigned int offset
, tree access_fun
,
3694 struct data_dependence_relation
*ddr
)
3696 switch (TREE_CODE (access_fun
))
3698 case POLYNOMIAL_CHREC
:
3700 tree left
= CHREC_LEFT (access_fun
);
3701 tree right
= CHREC_RIGHT (access_fun
);
3702 int var
= CHREC_VARIABLE (access_fun
);
3705 if (TREE_CODE (right
) != INTEGER_CST
)
3708 var_idx
= index_in_loop_nest (var
, DDR_LOOP_NEST (ddr
));
3709 pb
->eqs
[eq
].coef
[offset
+ var_idx
+ 1] = int_cst_value (right
);
3711 /* Compute the innermost loop index. */
3712 DDR_INNER_LOOP (ddr
) = MAX (DDR_INNER_LOOP (ddr
), var_idx
);
3715 pb
->eqs
[eq
].coef
[var_idx
+ DDR_NB_LOOPS (ddr
) + 1]
3716 += int_cst_value (right
);
3718 switch (TREE_CODE (left
))
3720 case POLYNOMIAL_CHREC
:
3721 return init_omega_eq_with_af (pb
, eq
, offset
, left
, ddr
);
3724 pb
->eqs
[eq
].coef
[0] += int_cst_value (left
);
3733 pb
->eqs
[eq
].coef
[0] += int_cst_value (access_fun
);
3741 /* As explained in the comments preceding init_omega_for_ddr, we have
3742 to set up a system for each loop level, setting outer loops
3743 variation to zero, and current loop variation to positive or zero.
3744 Save each lexico positive distance vector. */
3747 omega_extract_distance_vectors (omega_pb pb
,
3748 struct data_dependence_relation
*ddr
)
3752 struct loop
*loopi
, *loopj
;
3753 enum omega_result res
;
3755 /* Set a new problem for each loop in the nest. The basis is the
3756 problem that we have initialized until now. On top of this we
3757 add new constraints. */
3758 for (i
= 0; i
<= DDR_INNER_LOOP (ddr
)
3759 && DDR_LOOP_NEST (ddr
).iterate (i
, &loopi
); i
++)
3762 omega_pb copy
= omega_alloc_problem (2 * DDR_NB_LOOPS (ddr
),
3763 DDR_NB_LOOPS (ddr
));
3765 omega_copy_problem (copy
, pb
);
3767 /* For all the outer loops "loop_j", add "dj = 0". */
3768 for (j
= 0; j
< i
&& DDR_LOOP_NEST (ddr
).iterate (j
, &loopj
); j
++)
3770 eq
= omega_add_zero_eq (copy
, omega_black
);
3771 copy
->eqs
[eq
].coef
[j
+ 1] = 1;
3774 /* For "loop_i", add "0 <= di". */
3775 geq
= omega_add_zero_geq (copy
, omega_black
);
3776 copy
->geqs
[geq
].coef
[i
+ 1] = 1;
3778 /* Reduce the constraint system, and test that the current
3779 problem is feasible. */
3780 res
= omega_simplify_problem (copy
);
3781 if (res
== omega_false
3782 || res
== omega_unknown
3783 || copy
->num_geqs
> (int) DDR_NB_LOOPS (ddr
))
3786 for (eq
= 0; eq
< copy
->num_subs
; eq
++)
3787 if (copy
->subs
[eq
].key
== (int) i
+ 1)
3789 dist
= copy
->subs
[eq
].coef
[0];
3795 /* Reinitialize problem... */
3796 omega_copy_problem (copy
, pb
);
3797 for (j
= 0; j
< i
&& DDR_LOOP_NEST (ddr
).iterate (j
, &loopj
); j
++)
3799 eq
= omega_add_zero_eq (copy
, omega_black
);
3800 copy
->eqs
[eq
].coef
[j
+ 1] = 1;
3803 /* ..., but this time "di = 1". */
3804 eq
= omega_add_zero_eq (copy
, omega_black
);
3805 copy
->eqs
[eq
].coef
[i
+ 1] = 1;
3806 copy
->eqs
[eq
].coef
[0] = -1;
3808 res
= omega_simplify_problem (copy
);
3809 if (res
== omega_false
3810 || res
== omega_unknown
3811 || copy
->num_geqs
> (int) DDR_NB_LOOPS (ddr
))
3814 for (eq
= 0; eq
< copy
->num_subs
; eq
++)
3815 if (copy
->subs
[eq
].key
== (int) i
+ 1)
3817 dist
= copy
->subs
[eq
].coef
[0];
3823 /* Save the lexicographically positive distance vector. */
3826 lambda_vector dist_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3827 lambda_vector dir_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
3831 for (eq
= 0; eq
< copy
->num_subs
; eq
++)
3832 if (copy
->subs
[eq
].key
> 0)
3834 dist
= copy
->subs
[eq
].coef
[0];
3835 dist_v
[copy
->subs
[eq
].key
- 1] = dist
;
3838 for (j
= 0; j
< DDR_NB_LOOPS (ddr
); j
++)
3839 dir_v
[j
] = dir_from_dist (dist_v
[j
]);
3841 save_dist_v (ddr
, dist_v
);
3842 save_dir_v (ddr
, dir_v
);
3846 omega_free_problem (copy
);
3850 /* This is called for each subscript of a tuple of data references:
3851 insert an equality for representing the conflicts. */
3854 omega_setup_subscript (tree access_fun_a
, tree access_fun_b
,
3855 struct data_dependence_relation
*ddr
,
3856 omega_pb pb
, bool *maybe_dependent
)
3859 tree type
= signed_type_for_types (TREE_TYPE (access_fun_a
),
3860 TREE_TYPE (access_fun_b
));
3861 tree fun_a
= chrec_convert (type
, access_fun_a
, NULL
);
3862 tree fun_b
= chrec_convert (type
, access_fun_b
, NULL
);
3863 tree difference
= chrec_fold_minus (type
, fun_a
, fun_b
);
3866 /* When the fun_a - fun_b is not constant, the dependence is not
3867 captured by the classic distance vector representation. */
3868 if (TREE_CODE (difference
) != INTEGER_CST
)
3872 if (ziv_subscript_p (fun_a
, fun_b
) && !integer_zerop (difference
))
3874 /* There is no dependence. */
3875 *maybe_dependent
= false;
3879 minus_one
= build_int_cst (type
, -1);
3880 fun_b
= chrec_fold_multiply (type
, fun_b
, minus_one
);
3882 eq
= omega_add_zero_eq (pb
, omega_black
);
3883 if (!init_omega_eq_with_af (pb
, eq
, DDR_NB_LOOPS (ddr
), fun_a
, ddr
)
3884 || !init_omega_eq_with_af (pb
, eq
, 0, fun_b
, ddr
))
3885 /* There is probably a dependence, but the system of
3886 constraints cannot be built: answer "don't know". */
3890 if (DDR_NB_LOOPS (ddr
) != 0 && pb
->eqs
[eq
].coef
[0]
3891 && !int_divides_p (lambda_vector_gcd
3892 ((lambda_vector
) &(pb
->eqs
[eq
].coef
[1]),
3893 2 * DDR_NB_LOOPS (ddr
)),
3894 pb
->eqs
[eq
].coef
[0]))
3896 /* There is no dependence. */
3897 *maybe_dependent
= false;
3904 /* Helper function, same as init_omega_for_ddr but specialized for
3905 data references A and B. */
3908 init_omega_for_ddr_1 (struct data_reference
*dra
, struct data_reference
*drb
,
3909 struct data_dependence_relation
*ddr
,
3910 omega_pb pb
, bool *maybe_dependent
)
3915 unsigned nb_loops
= DDR_NB_LOOPS (ddr
);
3917 /* Insert an equality per subscript. */
3918 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
3920 if (!omega_setup_subscript (DR_ACCESS_FN (dra
, i
), DR_ACCESS_FN (drb
, i
),
3921 ddr
, pb
, maybe_dependent
))
3923 else if (*maybe_dependent
== false)
3925 /* There is no dependence. */
3926 DDR_ARE_DEPENDENT (ddr
) = chrec_known
;
3931 /* Insert inequalities: constraints corresponding to the iteration
3932 domain, i.e. the loops surrounding the references "loop_x" and
3933 the distance variables "dx". The layout of the OMEGA
3934 representation is as follows:
3935 - coef[0] is the constant
3936 - coef[1..nb_loops] are the protected variables that will not be
3937 removed by the solver: the "dx"
3938 - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
3940 for (i
= 0; i
<= DDR_INNER_LOOP (ddr
)
3941 && DDR_LOOP_NEST (ddr
).iterate (i
, &loopi
); i
++)
3943 HOST_WIDE_INT nbi
= max_stmt_executions_int (loopi
);
3946 ineq
= omega_add_zero_geq (pb
, omega_black
);
3947 pb
->geqs
[ineq
].coef
[i
+ nb_loops
+ 1] = 1;
3949 /* 0 <= loop_x + dx */
3950 ineq
= omega_add_zero_geq (pb
, omega_black
);
3951 pb
->geqs
[ineq
].coef
[i
+ nb_loops
+ 1] = 1;
3952 pb
->geqs
[ineq
].coef
[i
+ 1] = 1;
3956 /* loop_x <= nb_iters */
3957 ineq
= omega_add_zero_geq (pb
, omega_black
);
3958 pb
->geqs
[ineq
].coef
[i
+ nb_loops
+ 1] = -1;
3959 pb
->geqs
[ineq
].coef
[0] = nbi
;
3961 /* loop_x + dx <= nb_iters */
3962 ineq
= omega_add_zero_geq (pb
, omega_black
);
3963 pb
->geqs
[ineq
].coef
[i
+ nb_loops
+ 1] = -1;
3964 pb
->geqs
[ineq
].coef
[i
+ 1] = -1;
3965 pb
->geqs
[ineq
].coef
[0] = nbi
;
3967 /* A step "dx" bigger than nb_iters is not feasible, so
3968 add "0 <= nb_iters + dx", */
3969 ineq
= omega_add_zero_geq (pb
, omega_black
);
3970 pb
->geqs
[ineq
].coef
[i
+ 1] = 1;
3971 pb
->geqs
[ineq
].coef
[0] = nbi
;
3972 /* and "dx <= nb_iters". */
3973 ineq
= omega_add_zero_geq (pb
, omega_black
);
3974 pb
->geqs
[ineq
].coef
[i
+ 1] = -1;
3975 pb
->geqs
[ineq
].coef
[0] = nbi
;
3979 omega_extract_distance_vectors (pb
, ddr
);
3984 /* Sets up the Omega dependence problem for the data dependence
3985 relation DDR. Returns false when the constraint system cannot be
3986 built, ie. when the test answers "don't know". Returns true
3987 otherwise, and when independence has been proved (using one of the
3988 trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
3989 set MAYBE_DEPENDENT to true.
3991 Example: for setting up the dependence system corresponding to the
3992 conflicting accesses
3997 | ... A[2*j, 2*(i + j)]
4001 the following constraints come from the iteration domain:
4008 where di, dj are the distance variables. The constraints
4009 representing the conflicting elements are:
4012 i + 1 = 2 * (i + di + j + dj)
4014 For asking that the resulting distance vector (di, dj) be
4015 lexicographically positive, we insert the constraint "di >= 0". If
4016 "di = 0" in the solution, we fix that component to zero, and we
4017 look at the inner loops: we set a new problem where all the outer
4018 loop distances are zero, and fix this inner component to be
4019 positive. When one of the components is positive, we save that
4020 distance, and set a new problem where the distance on this loop is
4021 zero, searching for other distances in the inner loops. Here is
4022 the classic example that illustrates that we have to set for each
4023 inner loop a new problem:
4031 we have to save two distances (1, 0) and (0, 1).
4033 Given two array references, refA and refB, we have to set the
4034 dependence problem twice, refA vs. refB and refB vs. refA, and we
4035 cannot do a single test, as refB might occur before refA in the
4036 inner loops, and the contrary when considering outer loops: ex.
4041 | T[{1,+,1}_2][{1,+,1}_1] // refA
4042 | T[{2,+,1}_2][{0,+,1}_1] // refB
4047 refB touches the elements in T before refA, and thus for the same
4048 loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
4049 but for successive loop_0 iterations, we have (1, -1, 1)
4051 The Omega solver expects the distance variables ("di" in the
4052 previous example) to come first in the constraint system (as
4053 variables to be protected, or "safe" variables), the constraint
4054 system is built using the following layout:
4056 "cst | distance vars | index vars".
4060 init_omega_for_ddr (struct data_dependence_relation
*ddr
,
4061 bool *maybe_dependent
)
4066 *maybe_dependent
= true;
4068 if (same_access_functions (ddr
))
4071 lambda_vector dir_v
;
4073 /* Save the 0 vector. */
4074 save_dist_v (ddr
, lambda_vector_new (DDR_NB_LOOPS (ddr
)));
4075 dir_v
= lambda_vector_new (DDR_NB_LOOPS (ddr
));
4076 for (j
= 0; j
< DDR_NB_LOOPS (ddr
); j
++)
4077 dir_v
[j
] = dir_equal
;
4078 save_dir_v (ddr
, dir_v
);
4080 /* Save the dependences carried by outer loops. */
4081 pb
= omega_alloc_problem (2 * DDR_NB_LOOPS (ddr
), DDR_NB_LOOPS (ddr
));
4082 res
= init_omega_for_ddr_1 (DDR_A (ddr
), DDR_B (ddr
), ddr
, pb
,
4084 omega_free_problem (pb
);
4088 /* Omega expects the protected variables (those that have to be kept
4089 after elimination) to appear first in the constraint system.
4090 These variables are the distance variables. In the following
4091 initialization we declare NB_LOOPS safe variables, and the total
4092 number of variables for the constraint system is 2*NB_LOOPS. */
4093 pb
= omega_alloc_problem (2 * DDR_NB_LOOPS (ddr
), DDR_NB_LOOPS (ddr
));
4094 res
= init_omega_for_ddr_1 (DDR_A (ddr
), DDR_B (ddr
), ddr
, pb
,
4096 omega_free_problem (pb
);
4098 /* Stop computation if not decidable, or no dependence. */
4099 if (res
== false || *maybe_dependent
== false)
4102 pb
= omega_alloc_problem (2 * DDR_NB_LOOPS (ddr
), DDR_NB_LOOPS (ddr
));
4103 res
= init_omega_for_ddr_1 (DDR_B (ddr
), DDR_A (ddr
), ddr
, pb
,
4105 omega_free_problem (pb
);
4110 /* Return true when DDR contains the same information as that stored
4111 in DIR_VECTS and in DIST_VECTS, return false otherwise. */
4114 ddr_consistent_p (FILE *file
,
4115 struct data_dependence_relation
*ddr
,
4116 vec
<lambda_vector
> dist_vects
,
4117 vec
<lambda_vector
> dir_vects
)
4121 /* If dump_file is set, output there. */
4122 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4125 if (dist_vects
.length () != DDR_NUM_DIST_VECTS (ddr
))
4127 lambda_vector b_dist_v
;
4128 fprintf (file
, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
4129 dist_vects
.length (),
4130 DDR_NUM_DIST_VECTS (ddr
));
4132 fprintf (file
, "Banerjee dist vectors:\n");
4133 FOR_EACH_VEC_ELT (dist_vects
, i
, b_dist_v
)
4134 print_lambda_vector (file
, b_dist_v
, DDR_NB_LOOPS (ddr
));
4136 fprintf (file
, "Omega dist vectors:\n");
4137 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
4138 print_lambda_vector (file
, DDR_DIST_VECT (ddr
, i
), DDR_NB_LOOPS (ddr
));
4140 fprintf (file
, "data dependence relation:\n");
4141 dump_data_dependence_relation (file
, ddr
);
4143 fprintf (file
, ")\n");
4147 if (dir_vects
.length () != DDR_NUM_DIR_VECTS (ddr
))
4149 fprintf (file
, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
4150 dir_vects
.length (),
4151 DDR_NUM_DIR_VECTS (ddr
));
4155 for (i
= 0; i
< DDR_NUM_DIST_VECTS (ddr
); i
++)
4157 lambda_vector a_dist_v
;
4158 lambda_vector b_dist_v
= DDR_DIST_VECT (ddr
, i
);
4160 /* Distance vectors are not ordered in the same way in the DDR
4161 and in the DIST_VECTS: search for a matching vector. */
4162 FOR_EACH_VEC_ELT (dist_vects
, j
, a_dist_v
)
4163 if (lambda_vector_equal (a_dist_v
, b_dist_v
, DDR_NB_LOOPS (ddr
)))
4166 if (j
== dist_vects
.length ())
4168 fprintf (file
, "\n(Dist vectors from the first dependence analyzer:\n");
4169 print_dist_vectors (file
, dist_vects
, DDR_NB_LOOPS (ddr
));
4170 fprintf (file
, "not found in Omega dist vectors:\n");
4171 print_dist_vectors (file
, DDR_DIST_VECTS (ddr
), DDR_NB_LOOPS (ddr
));
4172 fprintf (file
, "data dependence relation:\n");
4173 dump_data_dependence_relation (file
, ddr
);
4174 fprintf (file
, ")\n");
4178 for (i
= 0; i
< DDR_NUM_DIR_VECTS (ddr
); i
++)
4180 lambda_vector a_dir_v
;
4181 lambda_vector b_dir_v
= DDR_DIR_VECT (ddr
, i
);
4183 /* Direction vectors are not ordered in the same way in the DDR
4184 and in the DIR_VECTS: search for a matching vector. */
4185 FOR_EACH_VEC_ELT (dir_vects
, j
, a_dir_v
)
4186 if (lambda_vector_equal (a_dir_v
, b_dir_v
, DDR_NB_LOOPS (ddr
)))
4189 if (j
== dist_vects
.length ())
4191 fprintf (file
, "\n(Dir vectors from the first dependence analyzer:\n");
4192 print_dir_vectors (file
, dir_vects
, DDR_NB_LOOPS (ddr
));
4193 fprintf (file
, "not found in Omega dir vectors:\n");
4194 print_dir_vectors (file
, DDR_DIR_VECTS (ddr
), DDR_NB_LOOPS (ddr
));
4195 fprintf (file
, "data dependence relation:\n");
4196 dump_data_dependence_relation (file
, ddr
);
4197 fprintf (file
, ")\n");
4204 /* This computes the affine dependence relation between A and B with
4205 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4206 independence between two accesses, while CHREC_DONT_KNOW is used
4207 for representing the unknown relation.
4209 Note that it is possible to stop the computation of the dependence
4210 relation the first time we detect a CHREC_KNOWN element for a given
4214 compute_affine_dependence (struct data_dependence_relation
*ddr
,
4215 struct loop
*loop_nest
)
4217 struct data_reference
*dra
= DDR_A (ddr
);
4218 struct data_reference
*drb
= DDR_B (ddr
);
4220 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4222 fprintf (dump_file
, "(compute_affine_dependence\n");
4223 fprintf (dump_file
, " stmt_a: ");
4224 print_gimple_stmt (dump_file
, DR_STMT (dra
), 0, TDF_SLIM
);
4225 fprintf (dump_file
, " stmt_b: ");
4226 print_gimple_stmt (dump_file
, DR_STMT (drb
), 0, TDF_SLIM
);
4229 /* Analyze only when the dependence relation is not yet known. */
4230 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
4232 dependence_stats
.num_dependence_tests
++;
4234 if (access_functions_are_affine_or_constant_p (dra
, loop_nest
)
4235 && access_functions_are_affine_or_constant_p (drb
, loop_nest
))
4237 subscript_dependence_tester (ddr
, loop_nest
);
4239 if (flag_check_data_deps
)
4241 /* Dump the dependences from the first algorithm. */
4242 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4244 fprintf (dump_file
, "\n\nBanerjee Analyzer\n");
4245 dump_data_dependence_relation (dump_file
, ddr
);
4248 if (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
)
4250 bool maybe_dependent
;
4251 vec
<lambda_vector
> dir_vects
, dist_vects
;
4253 /* Save the result of the first DD analyzer. */
4254 dist_vects
= DDR_DIST_VECTS (ddr
);
4255 dir_vects
= DDR_DIR_VECTS (ddr
);
4257 /* Reset the information. */
4258 DDR_DIST_VECTS (ddr
).create (0);
4259 DDR_DIR_VECTS (ddr
).create (0);
4261 /* Compute the same information using Omega. */
4262 if (!init_omega_for_ddr (ddr
, &maybe_dependent
))
4263 goto csys_dont_know
;
4265 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4267 fprintf (dump_file
, "Omega Analyzer\n");
4268 dump_data_dependence_relation (dump_file
, ddr
);
4271 /* Check that we get the same information. */
4272 if (maybe_dependent
)
4273 gcc_assert (ddr_consistent_p (stderr
, ddr
, dist_vects
,
4279 /* As a last case, if the dependence cannot be determined, or if
4280 the dependence is considered too difficult to determine, answer
4285 dependence_stats
.num_dependence_undetermined
++;
4287 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4289 fprintf (dump_file
, "Data ref a:\n");
4290 dump_data_reference (dump_file
, dra
);
4291 fprintf (dump_file
, "Data ref b:\n");
4292 dump_data_reference (dump_file
, drb
);
4293 fprintf (dump_file
, "affine dependence test not usable: access function not affine or constant.\n");
4295 finalize_ddr_dependent (ddr
, chrec_dont_know
);
4299 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4301 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
4302 fprintf (dump_file
, ") -> no dependence\n");
4303 else if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
4304 fprintf (dump_file
, ") -> dependence analysis failed\n");
4306 fprintf (dump_file
, ")\n");
4310 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4311 the data references in DATAREFS, in the LOOP_NEST. When
4312 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4313 relations. Return true when successful, i.e. data references number
4314 is small enough to be handled. */
4317 compute_all_dependences (vec
<data_reference_p
> datarefs
,
4318 vec
<ddr_p
> *dependence_relations
,
4319 vec
<loop_p
> loop_nest
,
4320 bool compute_self_and_rr
)
4322 struct data_dependence_relation
*ddr
;
4323 struct data_reference
*a
, *b
;
4326 if ((int) datarefs
.length ()
4327 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS
))
4329 struct data_dependence_relation
*ddr
;
4331 /* Insert a single relation into dependence_relations:
4333 ddr
= initialize_data_dependence_relation (NULL
, NULL
, loop_nest
);
4334 dependence_relations
->safe_push (ddr
);
4338 FOR_EACH_VEC_ELT (datarefs
, i
, a
)
4339 for (j
= i
+ 1; datarefs
.iterate (j
, &b
); j
++)
4340 if (DR_IS_WRITE (a
) || DR_IS_WRITE (b
) || compute_self_and_rr
)
4342 ddr
= initialize_data_dependence_relation (a
, b
, loop_nest
);
4343 dependence_relations
->safe_push (ddr
);
4344 if (loop_nest
.exists ())
4345 compute_affine_dependence (ddr
, loop_nest
[0]);
4348 if (compute_self_and_rr
)
4349 FOR_EACH_VEC_ELT (datarefs
, i
, a
)
4351 ddr
= initialize_data_dependence_relation (a
, a
, loop_nest
);
4352 dependence_relations
->safe_push (ddr
);
4353 if (loop_nest
.exists ())
4354 compute_affine_dependence (ddr
, loop_nest
[0]);
4360 /* Describes a location of a memory reference. */
4362 typedef struct data_ref_loc_d
4364 /* The memory reference. */
4367 /* True if the memory reference is read. */
4372 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4373 true if STMT clobbers memory, false otherwise. */
4376 get_references_in_stmt (gimple stmt
, vec
<data_ref_loc
, va_heap
> *references
)
4378 bool clobbers_memory
= false;
4381 enum gimple_code stmt_code
= gimple_code (stmt
);
4383 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4384 As we cannot model data-references to not spelled out
4385 accesses give up if they may occur. */
4386 if (stmt_code
== GIMPLE_CALL
4387 && !(gimple_call_flags (stmt
) & ECF_CONST
))
4389 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
4390 if (gimple_call_internal_p (stmt
))
4391 switch (gimple_call_internal_fn (stmt
))
4393 case IFN_GOMP_SIMD_LANE
:
4395 struct loop
*loop
= gimple_bb (stmt
)->loop_father
;
4396 tree uid
= gimple_call_arg (stmt
, 0);
4397 gcc_assert (TREE_CODE (uid
) == SSA_NAME
);
4399 || loop
->simduid
!= SSA_NAME_VAR (uid
))
4400 clobbers_memory
= true;
4404 case IFN_MASK_STORE
:
4407 clobbers_memory
= true;
4411 clobbers_memory
= true;
4413 else if (stmt_code
== GIMPLE_ASM
4414 && (gimple_asm_volatile_p (as_a
<gasm
*> (stmt
))
4415 || gimple_vuse (stmt
)))
4416 clobbers_memory
= true;
4418 if (!gimple_vuse (stmt
))
4419 return clobbers_memory
;
4421 if (stmt_code
== GIMPLE_ASSIGN
)
4424 op0
= gimple_assign_lhs (stmt
);
4425 op1
= gimple_assign_rhs1 (stmt
);
4428 || (REFERENCE_CLASS_P (op1
)
4429 && (base
= get_base_address (op1
))
4430 && TREE_CODE (base
) != SSA_NAME
))
4434 references
->safe_push (ref
);
4437 else if (stmt_code
== GIMPLE_CALL
)
4441 ref
.is_read
= false;
4442 if (gimple_call_internal_p (stmt
))
4443 switch (gimple_call_internal_fn (stmt
))
4446 if (gimple_call_lhs (stmt
) == NULL_TREE
)
4449 case IFN_MASK_STORE
:
4450 ref
.ref
= fold_build2 (MEM_REF
,
4452 ? TREE_TYPE (gimple_call_lhs (stmt
))
4453 : TREE_TYPE (gimple_call_arg (stmt
, 3)),
4454 gimple_call_arg (stmt
, 0),
4455 gimple_call_arg (stmt
, 1));
4456 references
->safe_push (ref
);
4462 op0
= gimple_call_lhs (stmt
);
4463 n
= gimple_call_num_args (stmt
);
4464 for (i
= 0; i
< n
; i
++)
4466 op1
= gimple_call_arg (stmt
, i
);
4469 || (REFERENCE_CLASS_P (op1
) && get_base_address (op1
)))
4473 references
->safe_push (ref
);
4478 return clobbers_memory
;
4482 || (REFERENCE_CLASS_P (op0
) && get_base_address (op0
))))
4485 ref
.is_read
= false;
4486 references
->safe_push (ref
);
4488 return clobbers_memory
;
4491 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
4492 reference, returns false, otherwise returns true. NEST is the outermost
4493 loop of the loop nest in which the references should be analyzed. */
4496 find_data_references_in_stmt (struct loop
*nest
, gimple stmt
,
4497 vec
<data_reference_p
> *datarefs
)
4500 auto_vec
<data_ref_loc
, 2> references
;
4503 data_reference_p dr
;
4505 if (get_references_in_stmt (stmt
, &references
))
4508 FOR_EACH_VEC_ELT (references
, i
, ref
)
4510 dr
= create_data_ref (nest
, loop_containing_stmt (stmt
),
4511 ref
->ref
, stmt
, ref
->is_read
);
4512 gcc_assert (dr
!= NULL
);
4513 datarefs
->safe_push (dr
);
4515 references
.release ();
4519 /* Stores the data references in STMT to DATAREFS. If there is an
4520 unanalyzable reference, returns false, otherwise returns true.
4521 NEST is the outermost loop of the loop nest in which the references
4522 should be instantiated, LOOP is the loop in which the references
4523 should be analyzed. */
4526 graphite_find_data_references_in_stmt (loop_p nest
, loop_p loop
, gimple stmt
,
4527 vec
<data_reference_p
> *datarefs
)
4530 auto_vec
<data_ref_loc
, 2> references
;
4533 data_reference_p dr
;
4535 if (get_references_in_stmt (stmt
, &references
))
4538 FOR_EACH_VEC_ELT (references
, i
, ref
)
4540 dr
= create_data_ref (nest
, loop
, ref
->ref
, stmt
, ref
->is_read
);
4541 gcc_assert (dr
!= NULL
);
4542 datarefs
->safe_push (dr
);
4545 references
.release ();
4549 /* Search the data references in LOOP, and record the information into
4550 DATAREFS. Returns chrec_dont_know when failing to analyze a
4551 difficult case, returns NULL_TREE otherwise. */
4554 find_data_references_in_bb (struct loop
*loop
, basic_block bb
,
4555 vec
<data_reference_p
> *datarefs
)
4557 gimple_stmt_iterator bsi
;
4559 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
4561 gimple stmt
= gsi_stmt (bsi
);
4563 if (!find_data_references_in_stmt (loop
, stmt
, datarefs
))
4565 struct data_reference
*res
;
4566 res
= XCNEW (struct data_reference
);
4567 datarefs
->safe_push (res
);
4569 return chrec_dont_know
;
4576 /* Search the data references in LOOP, and record the information into
4577 DATAREFS. Returns chrec_dont_know when failing to analyze a
4578 difficult case, returns NULL_TREE otherwise.
4580 TODO: This function should be made smarter so that it can handle address
4581 arithmetic as if they were array accesses, etc. */
4584 find_data_references_in_loop (struct loop
*loop
,
4585 vec
<data_reference_p
> *datarefs
)
4587 basic_block bb
, *bbs
;
4590 bbs
= get_loop_body_in_dom_order (loop
);
4592 for (i
= 0; i
< loop
->num_nodes
; i
++)
4596 if (find_data_references_in_bb (loop
, bb
, datarefs
) == chrec_dont_know
)
4599 return chrec_dont_know
;
4607 /* Recursive helper function. */
4610 find_loop_nest_1 (struct loop
*loop
, vec
<loop_p
> *loop_nest
)
4612 /* Inner loops of the nest should not contain siblings. Example:
4613 when there are two consecutive loops,
4624 the dependence relation cannot be captured by the distance
4629 loop_nest
->safe_push (loop
);
4631 return find_loop_nest_1 (loop
->inner
, loop_nest
);
4635 /* Return false when the LOOP is not well nested. Otherwise return
4636 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4637 contain the loops from the outermost to the innermost, as they will
4638 appear in the classic distance vector. */
4641 find_loop_nest (struct loop
*loop
, vec
<loop_p
> *loop_nest
)
4643 loop_nest
->safe_push (loop
);
4645 return find_loop_nest_1 (loop
->inner
, loop_nest
);
4649 /* Returns true when the data dependences have been computed, false otherwise.
4650 Given a loop nest LOOP, the following vectors are returned:
4651 DATAREFS is initialized to all the array elements contained in this loop,
4652 DEPENDENCE_RELATIONS contains the relations between the data references.
4653 Compute read-read and self relations if
4654 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4657 compute_data_dependences_for_loop (struct loop
*loop
,
4658 bool compute_self_and_read_read_dependences
,
4659 vec
<loop_p
> *loop_nest
,
4660 vec
<data_reference_p
> *datarefs
,
4661 vec
<ddr_p
> *dependence_relations
)
4665 memset (&dependence_stats
, 0, sizeof (dependence_stats
));
4667 /* If the loop nest is not well formed, or one of the data references
4668 is not computable, give up without spending time to compute other
4671 || !find_loop_nest (loop
, loop_nest
)
4672 || find_data_references_in_loop (loop
, datarefs
) == chrec_dont_know
4673 || !compute_all_dependences (*datarefs
, dependence_relations
, *loop_nest
,
4674 compute_self_and_read_read_dependences
))
4677 if (dump_file
&& (dump_flags
& TDF_STATS
))
4679 fprintf (dump_file
, "Dependence tester statistics:\n");
4681 fprintf (dump_file
, "Number of dependence tests: %d\n",
4682 dependence_stats
.num_dependence_tests
);
4683 fprintf (dump_file
, "Number of dependence tests classified dependent: %d\n",
4684 dependence_stats
.num_dependence_dependent
);
4685 fprintf (dump_file
, "Number of dependence tests classified independent: %d\n",
4686 dependence_stats
.num_dependence_independent
);
4687 fprintf (dump_file
, "Number of undetermined dependence tests: %d\n",
4688 dependence_stats
.num_dependence_undetermined
);
4690 fprintf (dump_file
, "Number of subscript tests: %d\n",
4691 dependence_stats
.num_subscript_tests
);
4692 fprintf (dump_file
, "Number of undetermined subscript tests: %d\n",
4693 dependence_stats
.num_subscript_undetermined
);
4694 fprintf (dump_file
, "Number of same subscript function: %d\n",
4695 dependence_stats
.num_same_subscript_function
);
4697 fprintf (dump_file
, "Number of ziv tests: %d\n",
4698 dependence_stats
.num_ziv
);
4699 fprintf (dump_file
, "Number of ziv tests returning dependent: %d\n",
4700 dependence_stats
.num_ziv_dependent
);
4701 fprintf (dump_file
, "Number of ziv tests returning independent: %d\n",
4702 dependence_stats
.num_ziv_independent
);
4703 fprintf (dump_file
, "Number of ziv tests unimplemented: %d\n",
4704 dependence_stats
.num_ziv_unimplemented
);
4706 fprintf (dump_file
, "Number of siv tests: %d\n",
4707 dependence_stats
.num_siv
);
4708 fprintf (dump_file
, "Number of siv tests returning dependent: %d\n",
4709 dependence_stats
.num_siv_dependent
);
4710 fprintf (dump_file
, "Number of siv tests returning independent: %d\n",
4711 dependence_stats
.num_siv_independent
);
4712 fprintf (dump_file
, "Number of siv tests unimplemented: %d\n",
4713 dependence_stats
.num_siv_unimplemented
);
4715 fprintf (dump_file
, "Number of miv tests: %d\n",
4716 dependence_stats
.num_miv
);
4717 fprintf (dump_file
, "Number of miv tests returning dependent: %d\n",
4718 dependence_stats
.num_miv_dependent
);
4719 fprintf (dump_file
, "Number of miv tests returning independent: %d\n",
4720 dependence_stats
.num_miv_independent
);
4721 fprintf (dump_file
, "Number of miv tests unimplemented: %d\n",
4722 dependence_stats
.num_miv_unimplemented
);
4728 /* Returns true when the data dependences for the basic block BB have been
4729 computed, false otherwise.
4730 DATAREFS is initialized to all the array elements contained in this basic
4731 block, DEPENDENCE_RELATIONS contains the relations between the data
4732 references. Compute read-read and self relations if
4733 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4735 compute_data_dependences_for_bb (basic_block bb
,
4736 bool compute_self_and_read_read_dependences
,
4737 vec
<data_reference_p
> *datarefs
,
4738 vec
<ddr_p
> *dependence_relations
)
4740 if (find_data_references_in_bb (NULL
, bb
, datarefs
) == chrec_dont_know
)
4743 return compute_all_dependences (*datarefs
, dependence_relations
, vNULL
,
4744 compute_self_and_read_read_dependences
);
4747 /* Entry point (for testing only). Analyze all the data references
4748 and the dependence relations in LOOP.
4750 The data references are computed first.
4752 A relation on these nodes is represented by a complete graph. Some
4753 of the relations could be of no interest, thus the relations can be
4756 In the following function we compute all the relations. This is
4757 just a first implementation that is here for:
4758 - for showing how to ask for the dependence relations,
4759 - for the debugging the whole dependence graph,
4760 - for the dejagnu testcases and maintenance.
4762 It is possible to ask only for a part of the graph, avoiding to
4763 compute the whole dependence graph. The computed dependences are
4764 stored in a knowledge base (KB) such that later queries don't
4765 recompute the same information. The implementation of this KB is
4766 transparent to the optimizer, and thus the KB can be changed with a
4767 more efficient implementation, or the KB could be disabled. */
4769 analyze_all_data_dependences (struct loop
*loop
)
4772 int nb_data_refs
= 10;
4773 vec
<data_reference_p
> datarefs
;
4774 datarefs
.create (nb_data_refs
);
4775 vec
<ddr_p
> dependence_relations
;
4776 dependence_relations
.create (nb_data_refs
* nb_data_refs
);
4777 vec
<loop_p
> loop_nest
;
4778 loop_nest
.create (3);
4780 /* Compute DDs on the whole function. */
4781 compute_data_dependences_for_loop (loop
, false, &loop_nest
, &datarefs
,
4782 &dependence_relations
);
4786 dump_data_dependence_relations (dump_file
, dependence_relations
);
4787 fprintf (dump_file
, "\n\n");
4789 if (dump_flags
& TDF_DETAILS
)
4790 dump_dist_dir_vectors (dump_file
, dependence_relations
);
4792 if (dump_flags
& TDF_STATS
)
4794 unsigned nb_top_relations
= 0;
4795 unsigned nb_bot_relations
= 0;
4796 unsigned nb_chrec_relations
= 0;
4797 struct data_dependence_relation
*ddr
;
4799 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
4801 if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr
)))
4804 else if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
4808 nb_chrec_relations
++;
4811 gather_stats_on_scev_database ();
4815 loop_nest
.release ();
4816 free_dependence_relations (dependence_relations
);
4817 free_data_refs (datarefs
);
4820 /* Computes all the data dependences and check that the results of
4821 several analyzers are the same. */
4824 tree_check_data_deps (void)
4826 struct loop
*loop_nest
;
4828 FOR_EACH_LOOP (loop_nest
, 0)
4829 analyze_all_data_dependences (loop_nest
);
4832 /* Free the memory used by a data dependence relation DDR. */
4835 free_dependence_relation (struct data_dependence_relation
*ddr
)
4840 if (DDR_SUBSCRIPTS (ddr
).exists ())
4841 free_subscripts (DDR_SUBSCRIPTS (ddr
));
4842 DDR_DIST_VECTS (ddr
).release ();
4843 DDR_DIR_VECTS (ddr
).release ();
4848 /* Free the memory used by the data dependence relations from
4849 DEPENDENCE_RELATIONS. */
4852 free_dependence_relations (vec
<ddr_p
> dependence_relations
)
4855 struct data_dependence_relation
*ddr
;
4857 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
4859 free_dependence_relation (ddr
);
4861 dependence_relations
.release ();
4864 /* Free the memory used by the data references from DATAREFS. */
4867 free_data_refs (vec
<data_reference_p
> datarefs
)
4870 struct data_reference
*dr
;
4872 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
4874 datarefs
.release ();