Daily bump.
[official-gcc.git] / gcc / ipa-profile.c
blobf540bd6558b6b58dcb2d5b50def14de4e5e87de4
1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complete only with LTO,
26 otherwise it contains information only about the current unit.
28 Similar histogram is also estimated by coverage runtime. This histogram
29 is not dependent on LTO, but it suffers from various defects; first
30 gcov runtime is not weighting individual basic block by estimated execution
31 time and second the merging of multiple runs makes assumption that the
32 histogram distribution did not change. Consequentely histogram constructed
33 here may be more precise.
35 The information is used to set hot/cold thresholds.
36 - Next speculative indirect call resolution is performed: the local
37 profile pass assigns profile-id to each function and provide us with a
38 histogram specifying the most common target. We look up the callgraph
39 node corresponding to the target and produce a speculative call.
41 This call may or may not survive through IPA optimization based on decision
42 of inliner.
43 - Finally we propagate the following flags: unlikely executed, executed
44 once, executed at startup and executed at exit. These flags are used to
45 control code size/performance threshold and and code placement (by producing
46 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51 #include "tree.h"
52 #include "predict.h"
53 #include "dominance.h"
54 #include "cfg.h"
55 #include "basic-block.h"
56 #include "hash-map.h"
57 #include "is-a.h"
58 #include "plugin-api.h"
59 #include "vec.h"
60 #include "hashtab.h"
61 #include "hash-set.h"
62 #include "machmode.h"
63 #include "hard-reg-set.h"
64 #include "input.h"
65 #include "function.h"
66 #include "ipa-ref.h"
67 #include "cgraph.h"
68 #include "tree-pass.h"
69 #include "tree-ssa-alias.h"
70 #include "internal-fn.h"
71 #include "gimple-expr.h"
72 #include "gimple.h"
73 #include "gimple-iterator.h"
74 #include "flags.h"
75 #include "target.h"
76 #include "tree-iterator.h"
77 #include "ipa-utils.h"
78 #include "profile.h"
79 #include "params.h"
80 #include "value-prof.h"
81 #include "alloc-pool.h"
82 #include "tree-inline.h"
83 #include "lto-streamer.h"
84 #include "data-streamer.h"
85 #include "ipa-prop.h"
86 #include "ipa-inline.h"
88 /* Entry in the histogram. */
90 struct histogram_entry
92 gcov_type count;
93 int time;
94 int size;
97 /* Histogram of profile values.
98 The histogram is represented as an ordered vector of entries allocated via
99 histogram_pool. During construction a separate hashtable is kept to lookup
100 duplicate entries. */
102 vec<histogram_entry *> histogram;
103 static alloc_pool histogram_pool;
105 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
107 struct histogram_hash : typed_noop_remove <histogram_entry>
109 typedef histogram_entry value_type;
110 typedef histogram_entry compare_type;
111 static inline hashval_t hash (const value_type *);
112 static inline int equal (const value_type *, const compare_type *);
115 inline hashval_t
116 histogram_hash::hash (const histogram_entry *val)
118 return val->count;
121 inline int
122 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
124 return val->count == val2->count;
127 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
128 HASHTABLE is the on-side hash kept to avoid duplicates. */
130 static void
131 account_time_size (hash_table<histogram_hash> *hashtable,
132 vec<histogram_entry *> &histogram,
133 gcov_type count, int time, int size)
135 histogram_entry key = {count, 0, 0};
136 histogram_entry **val = hashtable->find_slot (&key, INSERT);
138 if (!*val)
140 *val = (histogram_entry *) pool_alloc (histogram_pool);
141 **val = key;
142 histogram.safe_push (*val);
144 (*val)->time += time;
145 (*val)->size += size;
149 cmp_counts (const void *v1, const void *v2)
151 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
152 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
153 if (h1->count < h2->count)
154 return 1;
155 if (h1->count > h2->count)
156 return -1;
157 return 0;
160 /* Dump HISTOGRAM to FILE. */
162 static void
163 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
165 unsigned int i;
166 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
168 fprintf (dump_file, "Histogram:\n");
169 for (i = 0; i < histogram.length (); i++)
171 overall_time += histogram[i]->count * histogram[i]->time;
172 overall_size += histogram[i]->size;
174 if (!overall_time)
175 overall_time = 1;
176 if (!overall_size)
177 overall_size = 1;
178 for (i = 0; i < histogram.length (); i++)
180 cumulated_time += histogram[i]->count * histogram[i]->time;
181 cumulated_size += histogram[i]->size;
182 fprintf (file, " %"PRId64": time:%i (%2.2f) size:%i (%2.2f)\n",
183 (int64_t) histogram[i]->count,
184 histogram[i]->time,
185 cumulated_time * 100.0 / overall_time,
186 histogram[i]->size,
187 cumulated_size * 100.0 / overall_size);
191 /* Collect histogram from CFG profiles. */
193 static void
194 ipa_profile_generate_summary (void)
196 struct cgraph_node *node;
197 gimple_stmt_iterator gsi;
198 basic_block bb;
200 hash_table<histogram_hash> hashtable (10);
201 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
202 10);
204 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
205 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
207 int time = 0;
208 int size = 0;
209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
211 gimple stmt = gsi_stmt (gsi);
212 if (gimple_code (stmt) == GIMPLE_CALL
213 && !gimple_call_fndecl (stmt))
215 histogram_value h;
216 h = gimple_histogram_value_of_type
217 (DECL_STRUCT_FUNCTION (node->decl),
218 stmt, HIST_TYPE_INDIR_CALL);
219 /* No need to do sanity check: gimple_ic_transform already
220 takes away bad histograms. */
221 if (h)
223 /* counter 0 is target, counter 1 is number of execution we called target,
224 counter 2 is total number of executions. */
225 if (h->hvalue.counters[2])
227 struct cgraph_edge * e = node->get_edge (stmt);
228 if (e && !e->indirect_unknown_callee)
229 continue;
230 e->indirect_info->common_target_id
231 = h->hvalue.counters [0];
232 e->indirect_info->common_target_probability
233 = GCOV_COMPUTE_SCALE (h->hvalue.counters [1], h->hvalue.counters [2]);
234 if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
236 if (dump_file)
237 fprintf (dump_file, "Probability capped to 1\n");
238 e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
241 gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
242 stmt, h);
245 time += estimate_num_insns (stmt, &eni_time_weights);
246 size += estimate_num_insns (stmt, &eni_size_weights);
248 account_time_size (&hashtable, histogram, bb->count, time, size);
250 histogram.qsort (cmp_counts);
253 /* Serialize the ipa info for lto. */
255 static void
256 ipa_profile_write_summary (void)
258 struct lto_simple_output_block *ob
259 = lto_create_simple_output_block (LTO_section_ipa_profile);
260 unsigned int i;
262 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
263 for (i = 0; i < histogram.length (); i++)
265 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
266 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
267 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
269 lto_destroy_simple_output_block (ob);
272 /* Deserialize the ipa info for lto. */
274 static void
275 ipa_profile_read_summary (void)
277 struct lto_file_decl_data ** file_data_vec
278 = lto_get_file_decl_data ();
279 struct lto_file_decl_data * file_data;
280 int j = 0;
282 hash_table<histogram_hash> hashtable (10);
283 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
284 10);
286 while ((file_data = file_data_vec[j++]))
288 const char *data;
289 size_t len;
290 struct lto_input_block *ib
291 = lto_create_simple_input_block (file_data,
292 LTO_section_ipa_profile,
293 &data, &len);
294 if (ib)
296 unsigned int num = streamer_read_uhwi (ib);
297 unsigned int n;
298 for (n = 0; n < num; n++)
300 gcov_type count = streamer_read_gcov_count (ib);
301 int time = streamer_read_uhwi (ib);
302 int size = streamer_read_uhwi (ib);
303 account_time_size (&hashtable, histogram,
304 count, time, size);
306 lto_destroy_simple_input_block (file_data,
307 LTO_section_ipa_profile,
308 ib, data, len);
311 histogram.qsort (cmp_counts);
314 /* Data used by ipa_propagate_frequency. */
316 struct ipa_propagate_frequency_data
318 bool maybe_unlikely_executed;
319 bool maybe_executed_once;
320 bool only_called_at_startup;
321 bool only_called_at_exit;
324 /* Worker for ipa_propagate_frequency_1. */
326 static bool
327 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
329 struct ipa_propagate_frequency_data *d;
330 struct cgraph_edge *edge;
332 d = (struct ipa_propagate_frequency_data *)data;
333 for (edge = node->callers;
334 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
335 || d->only_called_at_startup || d->only_called_at_exit);
336 edge = edge->next_caller)
338 if (edge->caller != node)
340 d->only_called_at_startup &= edge->caller->only_called_at_startup;
341 /* It makes sense to put main() together with the static constructors.
342 It will be executed for sure, but rest of functions called from
343 main are definitely not at startup only. */
344 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
345 d->only_called_at_startup = 0;
346 d->only_called_at_exit &= edge->caller->only_called_at_exit;
349 /* When profile feedback is available, do not try to propagate too hard;
350 counts are already good guide on function frequencies and roundoff
351 errors can make us to push function into unlikely section even when
352 it is executed by the train run. Transfer the function only if all
353 callers are unlikely executed. */
354 if (profile_info && flag_branch_probabilities
355 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
356 || (edge->caller->global.inlined_to
357 && edge->caller->global.inlined_to->frequency
358 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
359 d->maybe_unlikely_executed = false;
360 if (!edge->frequency)
361 continue;
362 switch (edge->caller->frequency)
364 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
365 break;
366 case NODE_FREQUENCY_EXECUTED_ONCE:
367 if (dump_file && (dump_flags & TDF_DETAILS))
368 fprintf (dump_file, " Called by %s that is executed once\n",
369 edge->caller->name ());
370 d->maybe_unlikely_executed = false;
371 if (inline_edge_summary (edge)->loop_depth)
373 d->maybe_executed_once = false;
374 if (dump_file && (dump_flags & TDF_DETAILS))
375 fprintf (dump_file, " Called in loop\n");
377 break;
378 case NODE_FREQUENCY_HOT:
379 case NODE_FREQUENCY_NORMAL:
380 if (dump_file && (dump_flags & TDF_DETAILS))
381 fprintf (dump_file, " Called by %s that is normal or hot\n",
382 edge->caller->name ());
383 d->maybe_unlikely_executed = false;
384 d->maybe_executed_once = false;
385 break;
388 return edge != NULL;
391 /* Return ture if NODE contains hot calls. */
393 bool
394 contains_hot_call_p (struct cgraph_node *node)
396 struct cgraph_edge *e;
397 for (e = node->callees; e; e = e->next_callee)
398 if (e->maybe_hot_p ())
399 return true;
400 else if (!e->inline_failed
401 && contains_hot_call_p (e->callee))
402 return true;
403 for (e = node->indirect_calls; e; e = e->next_callee)
404 if (e->maybe_hot_p ())
405 return true;
406 return false;
409 /* See if the frequency of NODE can be updated based on frequencies of its
410 callers. */
411 bool
412 ipa_propagate_frequency (struct cgraph_node *node)
414 struct ipa_propagate_frequency_data d = {true, true, true, true};
415 bool changed = false;
417 /* We can not propagate anything useful about externally visible functions
418 nor about virtuals. */
419 if (!node->local.local
420 || node->alias
421 || (opt_for_fn (node->decl, flag_devirtualize)
422 && DECL_VIRTUAL_P (node->decl)))
423 return false;
424 gcc_assert (node->analyzed);
425 if (dump_file && (dump_flags & TDF_DETAILS))
426 fprintf (dump_file, "Processing frequency %s\n", node->name ());
428 node->call_for_symbol_thunks_and_aliases (ipa_propagate_frequency_1, &d,
429 true);
431 if ((d.only_called_at_startup && !d.only_called_at_exit)
432 && !node->only_called_at_startup)
434 node->only_called_at_startup = true;
435 if (dump_file)
436 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
437 node->name ());
438 changed = true;
440 if ((d.only_called_at_exit && !d.only_called_at_startup)
441 && !node->only_called_at_exit)
443 node->only_called_at_exit = true;
444 if (dump_file)
445 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
446 node->name ());
447 changed = true;
450 /* With profile we can decide on hot/normal based on count. */
451 if (node->count)
453 bool hot = false;
454 if (node->count >= get_hot_bb_threshold ())
455 hot = true;
456 if (!hot)
457 hot |= contains_hot_call_p (node);
458 if (hot)
460 if (node->frequency != NODE_FREQUENCY_HOT)
462 if (dump_file)
463 fprintf (dump_file, "Node %s promoted to hot.\n",
464 node->name ());
465 node->frequency = NODE_FREQUENCY_HOT;
466 return true;
468 return false;
470 else if (node->frequency == NODE_FREQUENCY_HOT)
472 if (dump_file)
473 fprintf (dump_file, "Node %s reduced to normal.\n",
474 node->name ());
475 node->frequency = NODE_FREQUENCY_NORMAL;
476 changed = true;
479 /* These come either from profile or user hints; never update them. */
480 if (node->frequency == NODE_FREQUENCY_HOT
481 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
482 return changed;
483 if (d.maybe_unlikely_executed)
485 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
486 if (dump_file)
487 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
488 node->name ());
489 changed = true;
491 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
493 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
494 if (dump_file)
495 fprintf (dump_file, "Node %s promoted to executed once.\n",
496 node->name ());
497 changed = true;
499 return changed;
502 /* Simple ipa profile pass propagating frequencies across the callgraph. */
504 static unsigned int
505 ipa_profile (void)
507 struct cgraph_node **order;
508 struct cgraph_edge *e;
509 int order_pos;
510 bool something_changed = false;
511 int i;
512 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
513 struct cgraph_node *n,*n2;
514 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
515 bool node_map_initialized = false;
517 if (dump_file)
518 dump_histogram (dump_file, histogram);
519 for (i = 0; i < (int)histogram.length (); i++)
521 overall_time += histogram[i]->count * histogram[i]->time;
522 overall_size += histogram[i]->size;
524 if (overall_time)
526 gcov_type threshold;
528 gcc_assert (overall_size);
529 if (dump_file)
531 gcov_type min, cumulated_time = 0, cumulated_size = 0;
533 fprintf (dump_file, "Overall time: %"PRId64"\n",
534 (int64_t)overall_time);
535 min = get_hot_bb_threshold ();
536 for (i = 0; i < (int)histogram.length () && histogram[i]->count >= min;
537 i++)
539 cumulated_time += histogram[i]->count * histogram[i]->time;
540 cumulated_size += histogram[i]->size;
542 fprintf (dump_file, "GCOV min count: %"PRId64
543 " Time:%3.2f%% Size:%3.2f%%\n",
544 (int64_t)min,
545 cumulated_time * 100.0 / overall_time,
546 cumulated_size * 100.0 / overall_size);
548 cutoff = (overall_time * PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE) + 500) / 1000;
549 threshold = 0;
550 for (i = 0; cumulated < cutoff; i++)
552 cumulated += histogram[i]->count * histogram[i]->time;
553 threshold = histogram[i]->count;
555 if (!threshold)
556 threshold = 1;
557 if (dump_file)
559 gcov_type cumulated_time = 0, cumulated_size = 0;
561 for (i = 0;
562 i < (int)histogram.length () && histogram[i]->count >= threshold;
563 i++)
565 cumulated_time += histogram[i]->count * histogram[i]->time;
566 cumulated_size += histogram[i]->size;
568 fprintf (dump_file, "Determined min count: %"PRId64
569 " Time:%3.2f%% Size:%3.2f%%\n",
570 (int64_t)threshold,
571 cumulated_time * 100.0 / overall_time,
572 cumulated_size * 100.0 / overall_size);
574 if (threshold > get_hot_bb_threshold ()
575 || in_lto_p)
577 if (dump_file)
578 fprintf (dump_file, "Threshold updated.\n");
579 set_hot_bb_threshold (threshold);
582 histogram.release ();
583 free_alloc_pool (histogram_pool);
585 /* Produce speculative calls: we saved common traget from porfiling into
586 e->common_target_id. Now, at link time, we can look up corresponding
587 function node and produce speculative call. */
589 FOR_EACH_DEFINED_FUNCTION (n)
591 bool update = false;
593 for (e = n->indirect_calls; e; e = e->next_callee)
595 if (n->count)
596 nindirect++;
597 if (e->indirect_info->common_target_id)
599 if (!node_map_initialized)
600 init_node_map (false);
601 node_map_initialized = true;
602 ncommon++;
603 n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
604 if (n2)
606 if (dump_file)
608 fprintf (dump_file, "Indirect call -> direct call from"
609 " other module %s/%i => %s/%i, prob %3.2f\n",
610 xstrdup_for_dump (n->name ()), n->order,
611 xstrdup_for_dump (n2->name ()), n2->order,
612 e->indirect_info->common_target_probability
613 / (float)REG_BR_PROB_BASE);
615 if (e->indirect_info->common_target_probability
616 < REG_BR_PROB_BASE / 2)
618 nuseless++;
619 if (dump_file)
620 fprintf (dump_file,
621 "Not speculating: probability is too low.\n");
623 else if (!e->maybe_hot_p ())
625 nuseless++;
626 if (dump_file)
627 fprintf (dump_file,
628 "Not speculating: call is cold.\n");
630 else if (n2->get_availability () <= AVAIL_INTERPOSABLE
631 && n2->can_be_discarded_p ())
633 nuseless++;
634 if (dump_file)
635 fprintf (dump_file,
636 "Not speculating: target is overwritable "
637 "and can be discarded.\n");
639 else
641 /* Target may be overwritable, but profile says that
642 control flow goes to this particular implementation
643 of N2. Speculate on the local alias to allow inlining.
645 if (!n2->can_be_discarded_p ())
647 cgraph_node *alias;
648 alias = dyn_cast<cgraph_node *> (n2->noninterposable_alias ());
649 if (alias)
650 n2 = alias;
652 nconverted++;
653 e->make_speculative
654 (n2,
655 apply_scale (e->count,
656 e->indirect_info->common_target_probability),
657 apply_scale (e->frequency,
658 e->indirect_info->common_target_probability));
659 update = true;
662 else
664 if (dump_file)
665 fprintf (dump_file, "Function with profile-id %i not found.\n",
666 e->indirect_info->common_target_id);
667 nunknown++;
671 if (update)
672 inline_update_overall_summary (n);
674 if (node_map_initialized)
675 del_node_map ();
676 if (dump_file && nindirect)
677 fprintf (dump_file,
678 "%i indirect calls trained.\n"
679 "%i (%3.2f%%) have common target.\n"
680 "%i (%3.2f%%) targets was not found.\n"
681 "%i (%3.2f%%) speculations seems useless.\n"
682 "%i (%3.2f%%) speculations produced.\n",
683 nindirect,
684 ncommon, ncommon * 100.0 / nindirect,
685 nunknown, nunknown * 100.0 / nindirect,
686 nuseless, nuseless * 100.0 / nindirect,
687 nconverted, nconverted * 100.0 / nindirect);
689 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
690 order_pos = ipa_reverse_postorder (order);
691 for (i = order_pos - 1; i >= 0; i--)
693 if (order[i]->local.local && ipa_propagate_frequency (order[i]))
695 for (e = order[i]->callees; e; e = e->next_callee)
696 if (e->callee->local.local && !e->callee->aux)
698 something_changed = true;
699 e->callee->aux = (void *)1;
702 order[i]->aux = NULL;
705 while (something_changed)
707 something_changed = false;
708 for (i = order_pos - 1; i >= 0; i--)
710 if (order[i]->aux && ipa_propagate_frequency (order[i]))
712 for (e = order[i]->callees; e; e = e->next_callee)
713 if (e->callee->local.local && !e->callee->aux)
715 something_changed = true;
716 e->callee->aux = (void *)1;
719 order[i]->aux = NULL;
722 free (order);
723 return 0;
726 namespace {
728 const pass_data pass_data_ipa_profile =
730 IPA_PASS, /* type */
731 "profile_estimate", /* name */
732 OPTGROUP_NONE, /* optinfo_flags */
733 TV_IPA_PROFILE, /* tv_id */
734 0, /* properties_required */
735 0, /* properties_provided */
736 0, /* properties_destroyed */
737 0, /* todo_flags_start */
738 0, /* todo_flags_finish */
741 class pass_ipa_profile : public ipa_opt_pass_d
743 public:
744 pass_ipa_profile (gcc::context *ctxt)
745 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
746 ipa_profile_generate_summary, /* generate_summary */
747 ipa_profile_write_summary, /* write_summary */
748 ipa_profile_read_summary, /* read_summary */
749 NULL, /* write_optimization_summary */
750 NULL, /* read_optimization_summary */
751 NULL, /* stmt_fixup */
752 0, /* function_transform_todo_flags_start */
753 NULL, /* function_transform */
754 NULL) /* variable_transform */
757 /* opt_pass methods: */
758 virtual bool gate (function *) { return flag_ipa_profile || in_lto_p; }
759 virtual unsigned int execute (function *) { return ipa_profile (); }
761 }; // class pass_ipa_profile
763 } // anon namespace
765 ipa_opt_pass_d *
766 make_pass_ipa_profile (gcc::context *ctxt)
768 return new pass_ipa_profile (ctxt);