1 /* If-conversion support.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
31 #include "hard-reg-set.h"
35 #include "insn-config.h"
39 #include "dominance.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
47 #include "insn-codes.h"
49 #include "diagnostic-core.h"
53 #include "tree-pass.h"
56 #include "shrink-wrap.h"
59 #ifndef HAVE_conditional_move
60 #define HAVE_conditional_move 0
72 #ifndef MAX_CONDITIONAL_EXECUTE
73 #define MAX_CONDITIONAL_EXECUTE \
74 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
78 #ifndef HAVE_cbranchcc4
79 #define HAVE_cbranchcc4 0
82 #define IFCVT_MULTIPLE_DUMPS 1
84 #define NULL_BLOCK ((basic_block) NULL)
86 /* True if after combine pass. */
87 static bool ifcvt_after_combine
;
89 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
90 static int num_possible_if_blocks
;
92 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
94 static int num_updated_if_blocks
;
96 /* # of changes made. */
97 static int num_true_changes
;
99 /* Whether conditional execution changes were made. */
100 static int cond_exec_changed_p
;
102 /* Forward references. */
103 static int count_bb_insns (const_basic_block
);
104 static bool cheap_bb_rtx_cost_p (const_basic_block
, int, int);
105 static rtx_insn
*first_active_insn (basic_block
);
106 static rtx_insn
*last_active_insn (basic_block
, int);
107 static rtx_insn
*find_active_insn_before (basic_block
, rtx_insn
*);
108 static rtx_insn
*find_active_insn_after (basic_block
, rtx_insn
*);
109 static basic_block
block_fallthru (basic_block
);
110 static int cond_exec_process_insns (ce_if_block
*, rtx_insn
*, rtx
, rtx
, int,
112 static rtx
cond_exec_get_condition (rtx_insn
*);
113 static rtx
noce_get_condition (rtx_insn
*, rtx_insn
**, bool);
114 static int noce_operand_ok (const_rtx
);
115 static void merge_if_block (ce_if_block
*);
116 static int find_cond_trap (basic_block
, edge
, edge
);
117 static basic_block
find_if_header (basic_block
, int);
118 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
119 static int noce_find_if_block (basic_block
, edge
, edge
, int);
120 static int cond_exec_find_if_block (ce_if_block
*);
121 static int find_if_case_1 (basic_block
, edge
, edge
);
122 static int find_if_case_2 (basic_block
, edge
, edge
);
123 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
125 static void noce_emit_move_insn (rtx
, rtx
);
126 static rtx_insn
*block_has_only_trap (basic_block
);
128 /* Count the number of non-jump active insns in BB. */
131 count_bb_insns (const_basic_block bb
)
134 rtx_insn
*insn
= BB_HEAD (bb
);
138 if (active_insn_p (insn
) && !JUMP_P (insn
))
141 if (insn
== BB_END (bb
))
143 insn
= NEXT_INSN (insn
);
149 /* Determine whether the total insn_rtx_cost on non-jump insns in
150 basic block BB is less than MAX_COST. This function returns
151 false if the cost of any instruction could not be estimated.
153 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
154 as those insns are being speculated. MAX_COST is scaled with SCALE
155 plus a small fudge factor. */
158 cheap_bb_rtx_cost_p (const_basic_block bb
, int scale
, int max_cost
)
161 rtx_insn
*insn
= BB_HEAD (bb
);
162 bool speed
= optimize_bb_for_speed_p (bb
);
164 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
165 applied to insn_rtx_cost when optimizing for size. Only do
166 this after combine because if-conversion might interfere with
167 passes before combine.
169 Use optimize_function_for_speed_p instead of the pre-defined
170 variable speed to make sure it is set to same value for all
171 basic blocks in one if-conversion transformation. */
172 if (!optimize_function_for_speed_p (cfun
) && ifcvt_after_combine
)
173 scale
= REG_BR_PROB_BASE
;
174 /* Our branch probability/scaling factors are just estimates and don't
175 account for cases where we can get speculation for free and other
176 secondary benefits. So we fudge the scale factor to make speculating
177 appear a little more profitable when optimizing for performance. */
179 scale
+= REG_BR_PROB_BASE
/ 8;
186 if (NONJUMP_INSN_P (insn
))
188 int cost
= insn_rtx_cost (PATTERN (insn
), speed
) * REG_BR_PROB_BASE
;
192 /* If this instruction is the load or set of a "stack" register,
193 such as a floating point register on x87, then the cost of
194 speculatively executing this insn may need to include
195 the additional cost of popping its result off of the
196 register stack. Unfortunately, correctly recognizing and
197 accounting for this additional overhead is tricky, so for
198 now we simply prohibit such speculative execution. */
201 rtx set
= single_set (insn
);
202 if (set
&& STACK_REG_P (SET_DEST (set
)))
208 if (count
>= max_cost
)
211 else if (CALL_P (insn
))
214 if (insn
== BB_END (bb
))
216 insn
= NEXT_INSN (insn
);
222 /* Return the first non-jump active insn in the basic block. */
225 first_active_insn (basic_block bb
)
227 rtx_insn
*insn
= BB_HEAD (bb
);
231 if (insn
== BB_END (bb
))
233 insn
= NEXT_INSN (insn
);
236 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
238 if (insn
== BB_END (bb
))
240 insn
= NEXT_INSN (insn
);
249 /* Return the last non-jump active (non-jump) insn in the basic block. */
252 last_active_insn (basic_block bb
, int skip_use_p
)
254 rtx_insn
*insn
= BB_END (bb
);
255 rtx_insn
*head
= BB_HEAD (bb
);
259 || DEBUG_INSN_P (insn
)
261 && NONJUMP_INSN_P (insn
)
262 && GET_CODE (PATTERN (insn
)) == USE
))
266 insn
= PREV_INSN (insn
);
275 /* Return the active insn before INSN inside basic block CURR_BB. */
278 find_active_insn_before (basic_block curr_bb
, rtx_insn
*insn
)
280 if (!insn
|| insn
== BB_HEAD (curr_bb
))
283 while ((insn
= PREV_INSN (insn
)) != NULL_RTX
)
285 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
288 /* No other active insn all the way to the start of the basic block. */
289 if (insn
== BB_HEAD (curr_bb
))
296 /* Return the active insn after INSN inside basic block CURR_BB. */
299 find_active_insn_after (basic_block curr_bb
, rtx_insn
*insn
)
301 if (!insn
|| insn
== BB_END (curr_bb
))
304 while ((insn
= NEXT_INSN (insn
)) != NULL_RTX
)
306 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
309 /* No other active insn all the way to the end of the basic block. */
310 if (insn
== BB_END (curr_bb
))
317 /* Return the basic block reached by falling though the basic block BB. */
320 block_fallthru (basic_block bb
)
322 edge e
= find_fallthru_edge (bb
->succs
);
324 return (e
) ? e
->dest
: NULL_BLOCK
;
327 /* Return true if RTXs A and B can be safely interchanged. */
330 rtx_interchangeable_p (const_rtx a
, const_rtx b
)
332 if (!rtx_equal_p (a
, b
))
335 if (GET_CODE (a
) != MEM
)
338 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
339 reference is not. Interchanging a dead type-unsafe memory reference with
340 a live type-safe one creates a live type-unsafe memory reference, in other
341 words, it makes the program illegal.
342 We check here conservatively whether the two memory references have equal
343 memory attributes. */
345 return mem_attrs_eq_p (get_mem_attrs (a
), get_mem_attrs (b
));
349 /* Go through a bunch of insns, converting them to conditional
350 execution format if possible. Return TRUE if all of the non-note
351 insns were processed. */
354 cond_exec_process_insns (ce_if_block
*ce_info ATTRIBUTE_UNUSED
,
355 /* if block information */rtx_insn
*start
,
356 /* first insn to look at */rtx end
,
357 /* last insn to look at */rtx test
,
358 /* conditional execution test */int prob_val
,
359 /* probability of branch taken. */int mod_ok
)
361 int must_be_last
= FALSE
;
369 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
371 /* dwarf2out can't cope with conditional prologues. */
372 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
375 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
378 gcc_assert (NONJUMP_INSN_P (insn
) || CALL_P (insn
));
380 /* dwarf2out can't cope with conditional unwind info. */
381 if (RTX_FRAME_RELATED_P (insn
))
384 /* Remove USE insns that get in the way. */
385 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
387 /* ??? Ug. Actually unlinking the thing is problematic,
388 given what we'd have to coordinate with our callers. */
389 SET_INSN_DELETED (insn
);
393 /* Last insn wasn't last? */
397 if (modified_in_p (test
, insn
))
404 /* Now build the conditional form of the instruction. */
405 pattern
= PATTERN (insn
);
406 xtest
= copy_rtx (test
);
408 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
410 if (GET_CODE (pattern
) == COND_EXEC
)
412 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
415 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
416 COND_EXEC_TEST (pattern
));
417 pattern
= COND_EXEC_CODE (pattern
);
420 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
422 /* If the machine needs to modify the insn being conditionally executed,
423 say for example to force a constant integer operand into a temp
424 register, do so here. */
425 #ifdef IFCVT_MODIFY_INSN
426 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
431 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
433 if (CALL_P (insn
) && prob_val
>= 0)
434 validate_change (insn
, ®_NOTES (insn
),
435 gen_rtx_INT_LIST ((machine_mode
) REG_BR_PROB
,
436 prob_val
, REG_NOTES (insn
)), 1);
446 /* Return the condition for a jump. Do not do any special processing. */
449 cond_exec_get_condition (rtx_insn
*jump
)
453 if (any_condjump_p (jump
))
454 test_if
= SET_SRC (pc_set (jump
));
457 cond
= XEXP (test_if
, 0);
459 /* If this branches to JUMP_LABEL when the condition is false,
460 reverse the condition. */
461 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
462 && LABEL_REF_LABEL (XEXP (test_if
, 2)) == JUMP_LABEL (jump
))
464 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
468 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
475 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
476 to conditional execution. Return TRUE if we were successful at
477 converting the block. */
480 cond_exec_process_if_block (ce_if_block
* ce_info
,
481 /* if block information */int do_multiple_p
)
483 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
484 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
485 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
486 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
487 rtx_insn
*then_start
; /* first insn in THEN block */
488 rtx_insn
*then_end
; /* last insn + 1 in THEN block */
489 rtx_insn
*else_start
= NULL
; /* first insn in ELSE block or NULL */
490 rtx_insn
*else_end
= NULL
; /* last insn + 1 in ELSE block */
491 int max
; /* max # of insns to convert. */
492 int then_mod_ok
; /* whether conditional mods are ok in THEN */
493 rtx true_expr
; /* test for else block insns */
494 rtx false_expr
; /* test for then block insns */
495 int true_prob_val
; /* probability of else block */
496 int false_prob_val
; /* probability of then block */
497 rtx_insn
*then_last_head
= NULL
; /* Last match at the head of THEN */
498 rtx_insn
*else_last_head
= NULL
; /* Last match at the head of ELSE */
499 rtx_insn
*then_first_tail
= NULL
; /* First match at the tail of THEN */
500 rtx_insn
*else_first_tail
= NULL
; /* First match at the tail of ELSE */
501 int then_n_insns
, else_n_insns
, n_insns
;
502 enum rtx_code false_code
;
505 /* If test is comprised of && or || elements, and we've failed at handling
506 all of them together, just use the last test if it is the special case of
507 && elements without an ELSE block. */
508 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
510 if (else_bb
|| ! ce_info
->and_and_p
)
513 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
514 ce_info
->num_multiple_test_blocks
= 0;
515 ce_info
->num_and_and_blocks
= 0;
516 ce_info
->num_or_or_blocks
= 0;
519 /* Find the conditional jump to the ELSE or JOIN part, and isolate
521 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
525 /* If the conditional jump is more than just a conditional jump,
526 then we can not do conditional execution conversion on this block. */
527 if (! onlyjump_p (BB_END (test_bb
)))
530 /* Collect the bounds of where we're to search, skipping any labels, jumps
531 and notes at the beginning and end of the block. Then count the total
532 number of insns and see if it is small enough to convert. */
533 then_start
= first_active_insn (then_bb
);
534 then_end
= last_active_insn (then_bb
, TRUE
);
535 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
536 n_insns
= then_n_insns
;
537 max
= MAX_CONDITIONAL_EXECUTE
;
544 else_start
= first_active_insn (else_bb
);
545 else_end
= last_active_insn (else_bb
, TRUE
);
546 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
547 n_insns
+= else_n_insns
;
549 /* Look for matching sequences at the head and tail of the two blocks,
550 and limit the range of insns to be converted if possible. */
551 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
552 &then_first_tail
, &else_first_tail
,
554 if (then_first_tail
== BB_HEAD (then_bb
))
555 then_start
= then_end
= NULL
;
556 if (else_first_tail
== BB_HEAD (else_bb
))
557 else_start
= else_end
= NULL
;
562 then_end
= find_active_insn_before (then_bb
, then_first_tail
);
564 else_end
= find_active_insn_before (else_bb
, else_first_tail
);
565 n_insns
-= 2 * n_matching
;
570 && then_n_insns
> n_matching
571 && else_n_insns
> n_matching
)
573 int longest_match
= MIN (then_n_insns
- n_matching
,
574 else_n_insns
- n_matching
);
576 = flow_find_head_matching_sequence (then_bb
, else_bb
,
585 /* We won't pass the insns in the head sequence to
586 cond_exec_process_insns, so we need to test them here
587 to make sure that they don't clobber the condition. */
588 for (insn
= BB_HEAD (then_bb
);
589 insn
!= NEXT_INSN (then_last_head
);
590 insn
= NEXT_INSN (insn
))
591 if (!LABEL_P (insn
) && !NOTE_P (insn
)
592 && !DEBUG_INSN_P (insn
)
593 && modified_in_p (test_expr
, insn
))
597 if (then_last_head
== then_end
)
598 then_start
= then_end
= NULL
;
599 if (else_last_head
== else_end
)
600 else_start
= else_end
= NULL
;
605 then_start
= find_active_insn_after (then_bb
, then_last_head
);
607 else_start
= find_active_insn_after (else_bb
, else_last_head
);
608 n_insns
-= 2 * n_matching
;
616 /* Map test_expr/test_jump into the appropriate MD tests to use on
617 the conditionally executed code. */
619 true_expr
= test_expr
;
621 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
622 if (false_code
!= UNKNOWN
)
623 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
624 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
626 false_expr
= NULL_RTX
;
628 #ifdef IFCVT_MODIFY_TESTS
629 /* If the machine description needs to modify the tests, such as setting a
630 conditional execution register from a comparison, it can do so here. */
631 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
633 /* See if the conversion failed. */
634 if (!true_expr
|| !false_expr
)
638 note
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
641 true_prob_val
= XINT (note
, 0);
642 false_prob_val
= REG_BR_PROB_BASE
- true_prob_val
;
650 /* If we have && or || tests, do them here. These tests are in the adjacent
651 blocks after the first block containing the test. */
652 if (ce_info
->num_multiple_test_blocks
> 0)
654 basic_block bb
= test_bb
;
655 basic_block last_test_bb
= ce_info
->last_test_bb
;
662 rtx_insn
*start
, *end
;
664 enum rtx_code f_code
;
666 bb
= block_fallthru (bb
);
667 start
= first_active_insn (bb
);
668 end
= last_active_insn (bb
, TRUE
);
670 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
671 false_prob_val
, FALSE
))
674 /* If the conditional jump is more than just a conditional jump, then
675 we can not do conditional execution conversion on this block. */
676 if (! onlyjump_p (BB_END (bb
)))
679 /* Find the conditional jump and isolate the test. */
680 t
= cond_exec_get_condition (BB_END (bb
));
684 f_code
= reversed_comparison_code (t
, BB_END (bb
));
685 if (f_code
== UNKNOWN
)
688 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
689 if (ce_info
->and_and_p
)
691 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
692 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
696 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
697 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
700 /* If the machine description needs to modify the tests, such as
701 setting a conditional execution register from a comparison, it can
703 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
704 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
706 /* See if the conversion failed. */
714 while (bb
!= last_test_bb
);
717 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
718 on then THEN block. */
719 then_mod_ok
= (else_bb
== NULL_BLOCK
);
721 /* Go through the THEN and ELSE blocks converting the insns if possible
722 to conditional execution. */
726 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
727 false_expr
, false_prob_val
,
731 if (else_bb
&& else_end
732 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
733 true_expr
, true_prob_val
, TRUE
))
736 /* If we cannot apply the changes, fail. Do not go through the normal fail
737 processing, since apply_change_group will call cancel_changes. */
738 if (! apply_change_group ())
740 #ifdef IFCVT_MODIFY_CANCEL
741 /* Cancel any machine dependent changes. */
742 IFCVT_MODIFY_CANCEL (ce_info
);
747 #ifdef IFCVT_MODIFY_FINAL
748 /* Do any machine dependent final modifications. */
749 IFCVT_MODIFY_FINAL (ce_info
);
752 /* Conversion succeeded. */
754 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
755 n_insns
, (n_insns
== 1) ? " was" : "s were");
757 /* Merge the blocks! If we had matching sequences, make sure to delete one
758 copy at the appropriate location first: delete the copy in the THEN branch
759 for a tail sequence so that the remaining one is executed last for both
760 branches, and delete the copy in the ELSE branch for a head sequence so
761 that the remaining one is executed first for both branches. */
764 rtx_insn
*from
= then_first_tail
;
766 from
= find_active_insn_after (then_bb
, from
);
767 delete_insn_chain (from
, BB_END (then_bb
), false);
770 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
772 merge_if_block (ce_info
);
773 cond_exec_changed_p
= TRUE
;
777 #ifdef IFCVT_MODIFY_CANCEL
778 /* Cancel any machine dependent changes. */
779 IFCVT_MODIFY_CANCEL (ce_info
);
786 /* Used by noce_process_if_block to communicate with its subroutines.
788 The subroutines know that A and B may be evaluated freely. They
789 know that X is a register. They should insert new instructions
790 before cond_earliest. */
794 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
795 basic_block test_bb
, then_bb
, else_bb
, join_bb
;
797 /* The jump that ends TEST_BB. */
800 /* The jump condition. */
803 /* New insns should be inserted before this one. */
804 rtx_insn
*cond_earliest
;
806 /* Insns in the THEN and ELSE block. There is always just this
807 one insns in those blocks. The insns are single_set insns.
808 If there was no ELSE block, INSN_B is the last insn before
809 COND_EARLIEST, or NULL_RTX. In the former case, the insn
810 operands are still valid, as if INSN_B was moved down below
812 rtx_insn
*insn_a
, *insn_b
;
814 /* The SET_SRC of INSN_A and INSN_B. */
817 /* The SET_DEST of INSN_A. */
820 /* True if this if block is not canonical. In the canonical form of
821 if blocks, the THEN_BB is the block reached via the fallthru edge
822 from TEST_BB. For the noce transformations, we allow the symmetric
824 bool then_else_reversed
;
826 /* Estimated cost of the particular branch instruction. */
830 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
831 static int noce_try_move (struct noce_if_info
*);
832 static int noce_try_store_flag (struct noce_if_info
*);
833 static int noce_try_addcc (struct noce_if_info
*);
834 static int noce_try_store_flag_constants (struct noce_if_info
*);
835 static int noce_try_store_flag_mask (struct noce_if_info
*);
836 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
838 static int noce_try_cmove (struct noce_if_info
*);
839 static int noce_try_cmove_arith (struct noce_if_info
*);
840 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx_insn
**);
841 static int noce_try_minmax (struct noce_if_info
*);
842 static int noce_try_abs (struct noce_if_info
*);
843 static int noce_try_sign_mask (struct noce_if_info
*);
845 /* Helper function for noce_try_store_flag*. */
848 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
851 rtx cond
= if_info
->cond
;
855 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
856 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
858 /* If earliest == jump, or when the condition is complex, try to
859 build the store_flag insn directly. */
863 rtx set
= pc_set (if_info
->jump
);
864 cond
= XEXP (SET_SRC (set
), 0);
865 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
866 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
))
867 reversep
= !reversep
;
868 if (if_info
->then_else_reversed
)
869 reversep
= !reversep
;
873 code
= reversed_comparison_code (cond
, if_info
->jump
);
875 code
= GET_CODE (cond
);
877 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
878 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
880 rtx src
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
882 rtx set
= gen_rtx_SET (VOIDmode
, x
, src
);
885 rtx_insn
*insn
= emit_insn (set
);
887 if (recog_memoized (insn
) >= 0)
889 rtx_insn
*seq
= get_insns ();
893 if_info
->cond_earliest
= if_info
->jump
;
901 /* Don't even try if the comparison operands or the mode of X are weird. */
902 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
905 return emit_store_flag (x
, code
, XEXP (cond
, 0),
906 XEXP (cond
, 1), VOIDmode
,
907 (code
== LTU
|| code
== LEU
908 || code
== GEU
|| code
== GTU
), normalize
);
911 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
912 X is the destination/target and Y is the value to copy. */
915 noce_emit_move_insn (rtx x
, rtx y
)
917 machine_mode outmode
;
921 if (GET_CODE (x
) != STRICT_LOW_PART
)
923 rtx_insn
*seq
, *insn
;
928 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
929 otherwise construct a suitable SET pattern ourselves. */
930 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
931 ? emit_move_insn (x
, y
)
932 : emit_insn (gen_rtx_SET (VOIDmode
, x
, y
));
936 if (recog_memoized (insn
) <= 0)
938 if (GET_CODE (x
) == ZERO_EXTRACT
)
940 rtx op
= XEXP (x
, 0);
941 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
942 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
944 /* store_bit_field expects START to be relative to
945 BYTES_BIG_ENDIAN and adjusts this value for machines with
946 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
947 invoke store_bit_field again it is necessary to have the START
948 value from the first call. */
949 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
952 start
= BITS_PER_UNIT
- start
- size
;
955 gcc_assert (REG_P (op
));
956 start
= BITS_PER_WORD
- start
- size
;
960 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
961 store_bit_field (op
, size
, start
, 0, 0, GET_MODE (x
), y
);
965 switch (GET_RTX_CLASS (GET_CODE (y
)))
968 ot
= code_to_optab (GET_CODE (y
));
972 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
973 if (target
!= NULL_RTX
)
976 emit_move_insn (x
, target
);
985 ot
= code_to_optab (GET_CODE (y
));
989 target
= expand_binop (GET_MODE (y
), ot
,
990 XEXP (y
, 0), XEXP (y
, 1),
992 if (target
!= NULL_RTX
)
995 emit_move_insn (x
, target
);
1011 outer
= XEXP (x
, 0);
1012 inner
= XEXP (outer
, 0);
1013 outmode
= GET_MODE (outer
);
1014 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
1015 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
,
1019 /* Return sequence of instructions generated by if conversion. This
1020 function calls end_sequence() to end the current stream, ensures
1021 that are instructions are unshared, recognizable non-jump insns.
1022 On failure, this function returns a NULL_RTX. */
1025 end_ifcvt_sequence (struct noce_if_info
*if_info
)
1028 rtx_insn
*seq
= get_insns ();
1030 set_used_flags (if_info
->x
);
1031 set_used_flags (if_info
->cond
);
1032 set_used_flags (if_info
->a
);
1033 set_used_flags (if_info
->b
);
1034 unshare_all_rtl_in_chain (seq
);
1037 /* Make sure that all of the instructions emitted are recognizable,
1038 and that we haven't introduced a new jump instruction.
1039 As an exercise for the reader, build a general mechanism that
1040 allows proper placement of required clobbers. */
1041 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
1043 || recog_memoized (insn
) == -1)
1049 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1050 "if (a == b) x = a; else x = b" into "x = b". */
1053 noce_try_move (struct noce_if_info
*if_info
)
1055 rtx cond
= if_info
->cond
;
1056 enum rtx_code code
= GET_CODE (cond
);
1060 if (code
!= NE
&& code
!= EQ
)
1063 /* This optimization isn't valid if either A or B could be a NaN
1064 or a signed zero. */
1065 if (HONOR_NANS (if_info
->x
)
1066 || HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
1069 /* Check whether the operands of the comparison are A and in
1071 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
1072 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
1073 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
1074 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
1076 if (!rtx_interchangeable_p (if_info
->a
, if_info
->b
))
1079 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
1081 /* Avoid generating the move if the source is the destination. */
1082 if (! rtx_equal_p (if_info
->x
, y
))
1085 noce_emit_move_insn (if_info
->x
, y
);
1086 seq
= end_ifcvt_sequence (if_info
);
1090 emit_insn_before_setloc (seq
, if_info
->jump
,
1091 INSN_LOCATION (if_info
->insn_a
));
1098 /* Convert "if (test) x = 1; else x = 0".
1100 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1101 tried in noce_try_store_flag_constants after noce_try_cmove has had
1102 a go at the conversion. */
1105 noce_try_store_flag (struct noce_if_info
*if_info
)
1111 if (CONST_INT_P (if_info
->b
)
1112 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
1113 && if_info
->a
== const0_rtx
)
1115 else if (if_info
->b
== const0_rtx
1116 && CONST_INT_P (if_info
->a
)
1117 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
1118 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1126 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1129 if (target
!= if_info
->x
)
1130 noce_emit_move_insn (if_info
->x
, target
);
1132 seq
= end_ifcvt_sequence (if_info
);
1136 emit_insn_before_setloc (seq
, if_info
->jump
,
1137 INSN_LOCATION (if_info
->insn_a
));
1147 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1150 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1155 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1156 int normalize
, can_reverse
;
1159 if (CONST_INT_P (if_info
->a
)
1160 && CONST_INT_P (if_info
->b
))
1162 mode
= GET_MODE (if_info
->x
);
1163 ifalse
= INTVAL (if_info
->a
);
1164 itrue
= INTVAL (if_info
->b
);
1166 diff
= (unsigned HOST_WIDE_INT
) itrue
- ifalse
;
1167 /* Make sure we can represent the difference between the two values. */
1169 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1172 diff
= trunc_int_for_mode (diff
, mode
);
1174 can_reverse
= (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1178 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1180 else if (ifalse
== 0 && exact_log2 (itrue
) >= 0
1181 && (STORE_FLAG_VALUE
== 1
1182 || if_info
->branch_cost
>= 2))
1184 else if (itrue
== 0 && exact_log2 (ifalse
) >= 0 && can_reverse
1185 && (STORE_FLAG_VALUE
== 1 || if_info
->branch_cost
>= 2))
1186 normalize
= 1, reversep
= 1;
1187 else if (itrue
== -1
1188 && (STORE_FLAG_VALUE
== -1
1189 || if_info
->branch_cost
>= 2))
1191 else if (ifalse
== -1 && can_reverse
1192 && (STORE_FLAG_VALUE
== -1 || if_info
->branch_cost
>= 2))
1193 normalize
= -1, reversep
= 1;
1194 else if ((if_info
->branch_cost
>= 2 && STORE_FLAG_VALUE
== -1)
1195 || if_info
->branch_cost
>= 3)
1202 tmp
= itrue
; itrue
= ifalse
; ifalse
= tmp
;
1203 diff
= trunc_int_for_mode (-(unsigned HOST_WIDE_INT
) diff
, mode
);
1207 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1214 /* if (test) x = 3; else x = 4;
1215 => x = 3 + (test == 0); */
1216 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1218 target
= expand_simple_binop (mode
,
1219 (diff
== STORE_FLAG_VALUE
1221 gen_int_mode (ifalse
, mode
), target
,
1222 if_info
->x
, 0, OPTAB_WIDEN
);
1225 /* if (test) x = 8; else x = 0;
1226 => x = (test != 0) << 3; */
1227 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1229 target
= expand_simple_binop (mode
, ASHIFT
,
1230 target
, GEN_INT (tmp
), if_info
->x
, 0,
1234 /* if (test) x = -1; else x = b;
1235 => x = -(test != 0) | b; */
1236 else if (itrue
== -1)
1238 target
= expand_simple_binop (mode
, IOR
,
1239 target
, gen_int_mode (ifalse
, mode
),
1240 if_info
->x
, 0, OPTAB_WIDEN
);
1243 /* if (test) x = a; else x = b;
1244 => x = (-(test != 0) & (b - a)) + a; */
1247 target
= expand_simple_binop (mode
, AND
,
1248 target
, gen_int_mode (diff
, mode
),
1249 if_info
->x
, 0, OPTAB_WIDEN
);
1251 target
= expand_simple_binop (mode
, PLUS
,
1252 target
, gen_int_mode (ifalse
, mode
),
1253 if_info
->x
, 0, OPTAB_WIDEN
);
1262 if (target
!= if_info
->x
)
1263 noce_emit_move_insn (if_info
->x
, target
);
1265 seq
= end_ifcvt_sequence (if_info
);
1269 emit_insn_before_setloc (seq
, if_info
->jump
,
1270 INSN_LOCATION (if_info
->insn_a
));
1277 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1278 similarly for "foo--". */
1281 noce_try_addcc (struct noce_if_info
*if_info
)
1285 int subtract
, normalize
;
1287 if (GET_CODE (if_info
->a
) == PLUS
1288 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1289 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1292 rtx cond
= if_info
->cond
;
1293 enum rtx_code code
= reversed_comparison_code (cond
, if_info
->jump
);
1295 /* First try to use addcc pattern. */
1296 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1297 && general_operand (XEXP (cond
, 1), VOIDmode
))
1300 target
= emit_conditional_add (if_info
->x
, code
,
1305 XEXP (if_info
->a
, 1),
1306 GET_MODE (if_info
->x
),
1307 (code
== LTU
|| code
== GEU
1308 || code
== LEU
|| code
== GTU
));
1311 if (target
!= if_info
->x
)
1312 noce_emit_move_insn (if_info
->x
, target
);
1314 seq
= end_ifcvt_sequence (if_info
);
1318 emit_insn_before_setloc (seq
, if_info
->jump
,
1319 INSN_LOCATION (if_info
->insn_a
));
1325 /* If that fails, construct conditional increment or decrement using
1327 if (if_info
->branch_cost
>= 2
1328 && (XEXP (if_info
->a
, 1) == const1_rtx
1329 || XEXP (if_info
->a
, 1) == constm1_rtx
))
1332 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1333 subtract
= 0, normalize
= 0;
1334 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1335 subtract
= 1, normalize
= 0;
1337 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1340 target
= noce_emit_store_flag (if_info
,
1341 gen_reg_rtx (GET_MODE (if_info
->x
)),
1345 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1346 subtract
? MINUS
: PLUS
,
1347 if_info
->b
, target
, if_info
->x
,
1351 if (target
!= if_info
->x
)
1352 noce_emit_move_insn (if_info
->x
, target
);
1354 seq
= end_ifcvt_sequence (if_info
);
1358 emit_insn_before_setloc (seq
, if_info
->jump
,
1359 INSN_LOCATION (if_info
->insn_a
));
1369 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1372 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1379 if ((if_info
->branch_cost
>= 2
1380 || STORE_FLAG_VALUE
== -1)
1381 && ((if_info
->a
== const0_rtx
1382 && rtx_equal_p (if_info
->b
, if_info
->x
))
1383 || ((reversep
= (reversed_comparison_code (if_info
->cond
,
1386 && if_info
->b
== const0_rtx
1387 && rtx_equal_p (if_info
->a
, if_info
->x
))))
1390 target
= noce_emit_store_flag (if_info
,
1391 gen_reg_rtx (GET_MODE (if_info
->x
)),
1394 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1396 target
, if_info
->x
, 0,
1401 int old_cost
, new_cost
, insn_cost
;
1404 if (target
!= if_info
->x
)
1405 noce_emit_move_insn (if_info
->x
, target
);
1407 seq
= end_ifcvt_sequence (if_info
);
1411 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info
->insn_a
));
1412 insn_cost
= insn_rtx_cost (PATTERN (if_info
->insn_a
), speed_p
);
1413 old_cost
= COSTS_N_INSNS (if_info
->branch_cost
) + insn_cost
;
1414 new_cost
= seq_cost (seq
, speed_p
);
1416 if (new_cost
> old_cost
)
1419 emit_insn_before_setloc (seq
, if_info
->jump
,
1420 INSN_LOCATION (if_info
->insn_a
));
1430 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1433 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1434 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1436 rtx target ATTRIBUTE_UNUSED
;
1437 int unsignedp ATTRIBUTE_UNUSED
;
1439 /* If earliest == jump, try to build the cmove insn directly.
1440 This is helpful when combine has created some complex condition
1441 (like for alpha's cmovlbs) that we can't hope to regenerate
1442 through the normal interface. */
1444 if (if_info
->cond_earliest
== if_info
->jump
)
1446 rtx cond
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1447 rtx if_then_else
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
),
1448 cond
, vtrue
, vfalse
);
1449 rtx set
= gen_rtx_SET (VOIDmode
, x
, if_then_else
);
1452 rtx_insn
*insn
= emit_insn (set
);
1454 if (recog_memoized (insn
) >= 0)
1456 rtx_insn
*seq
= get_insns ();
1466 /* Don't even try if the comparison operands are weird
1467 except that the target supports cbranchcc4. */
1468 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1469 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1471 if (!(HAVE_cbranchcc4
)
1472 || GET_MODE_CLASS (GET_MODE (cmp_a
)) != MODE_CC
1473 || cmp_b
!= const0_rtx
)
1477 #if HAVE_conditional_move
1478 unsignedp
= (code
== LTU
|| code
== GEU
1479 || code
== LEU
|| code
== GTU
);
1481 target
= emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1482 vtrue
, vfalse
, GET_MODE (x
),
1487 /* We might be faced with a situation like:
1490 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1491 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1493 We can't do a conditional move in mode M, but it's possible that we
1494 could do a conditional move in mode N instead and take a subreg of
1497 If we can't create new pseudos, though, don't bother. */
1498 if (reload_completed
)
1501 if (GET_CODE (vtrue
) == SUBREG
&& GET_CODE (vfalse
) == SUBREG
)
1503 rtx reg_vtrue
= SUBREG_REG (vtrue
);
1504 rtx reg_vfalse
= SUBREG_REG (vfalse
);
1505 unsigned int byte_vtrue
= SUBREG_BYTE (vtrue
);
1506 unsigned int byte_vfalse
= SUBREG_BYTE (vfalse
);
1507 rtx promoted_target
;
1509 if (GET_MODE (reg_vtrue
) != GET_MODE (reg_vfalse
)
1510 || byte_vtrue
!= byte_vfalse
1511 || (SUBREG_PROMOTED_VAR_P (vtrue
)
1512 != SUBREG_PROMOTED_VAR_P (vfalse
))
1513 || (SUBREG_PROMOTED_GET (vtrue
)
1514 != SUBREG_PROMOTED_GET (vfalse
)))
1517 promoted_target
= gen_reg_rtx (GET_MODE (reg_vtrue
));
1519 target
= emit_conditional_move (promoted_target
, code
, cmp_a
, cmp_b
,
1520 VOIDmode
, reg_vtrue
, reg_vfalse
,
1521 GET_MODE (reg_vtrue
), unsignedp
);
1522 /* Nope, couldn't do it in that mode either. */
1526 target
= gen_rtx_SUBREG (GET_MODE (vtrue
), promoted_target
, byte_vtrue
);
1527 SUBREG_PROMOTED_VAR_P (target
) = SUBREG_PROMOTED_VAR_P (vtrue
);
1528 SUBREG_PROMOTED_SET (target
, SUBREG_PROMOTED_GET (vtrue
));
1529 emit_move_insn (x
, target
);
1535 /* We'll never get here, as noce_process_if_block doesn't call the
1536 functions involved. Ifdef code, however, should be discouraged
1537 because it leads to typos in the code not selected. However,
1538 emit_conditional_move won't exist either. */
1543 /* Try only simple constants and registers here. More complex cases
1544 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1545 has had a go at it. */
1548 noce_try_cmove (struct noce_if_info
*if_info
)
1554 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1555 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1559 code
= GET_CODE (if_info
->cond
);
1560 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1561 XEXP (if_info
->cond
, 0),
1562 XEXP (if_info
->cond
, 1),
1563 if_info
->a
, if_info
->b
);
1567 if (target
!= if_info
->x
)
1568 noce_emit_move_insn (if_info
->x
, target
);
1570 seq
= end_ifcvt_sequence (if_info
);
1574 emit_insn_before_setloc (seq
, if_info
->jump
,
1575 INSN_LOCATION (if_info
->insn_a
));
1588 /* Try more complex cases involving conditional_move. */
1591 noce_try_cmove_arith (struct noce_if_info
*if_info
)
1597 rtx_insn
*insn_a
, *insn_b
;
1602 rtx_insn
*ifcvt_seq
;
1604 /* A conditional move from two memory sources is equivalent to a
1605 conditional on their addresses followed by a load. Don't do this
1606 early because it'll screw alias analysis. Note that we've
1607 already checked for no side effects. */
1608 /* ??? FIXME: Magic number 5. */
1609 if (cse_not_expected
1610 && MEM_P (a
) && MEM_P (b
)
1611 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
)
1612 && if_info
->branch_cost
>= 5)
1614 machine_mode address_mode
= get_address_mode (a
);
1618 x
= gen_reg_rtx (address_mode
);
1622 /* ??? We could handle this if we knew that a load from A or B could
1623 not trap or fault. This is also true if we've already loaded
1624 from the address along the path from ENTRY. */
1625 else if (may_trap_or_fault_p (a
) || may_trap_or_fault_p (b
))
1628 /* if (test) x = a + b; else x = c - d;
1635 code
= GET_CODE (if_info
->cond
);
1636 insn_a
= if_info
->insn_a
;
1637 insn_b
= if_info
->insn_b
;
1639 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1640 if insn_rtx_cost can't be estimated. */
1644 = insn_rtx_cost (PATTERN (insn_a
),
1645 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a
)));
1646 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1655 += insn_rtx_cost (PATTERN (insn_b
),
1656 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b
)));
1657 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1661 /* Possibly rearrange operands to make things come out more natural. */
1662 if (reversed_comparison_code (if_info
->cond
, if_info
->jump
) != UNKNOWN
)
1665 if (rtx_equal_p (b
, x
))
1667 else if (general_operand (b
, GET_MODE (b
)))
1674 code
= reversed_comparison_code (if_info
->cond
, if_info
->jump
);
1675 tmp
= a
, a
= b
, b
= tmp
;
1676 tmp_insn
= insn_a
, insn_a
= insn_b
, insn_b
= tmp_insn
;
1685 /* If either operand is complex, load it into a register first.
1686 The best way to do this is to copy the original insn. In this
1687 way we preserve any clobbers etc that the insn may have had.
1688 This is of course not possible in the IS_MEM case. */
1689 if (! general_operand (a
, GET_MODE (a
)))
1695 rtx reg
= gen_reg_rtx (GET_MODE (a
));
1696 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, a
));
1699 goto end_seq_and_fail
;
1702 a
= gen_reg_rtx (GET_MODE (a
));
1703 rtx_insn
*copy_of_a
= as_a
<rtx_insn
*> (copy_rtx (insn_a
));
1704 rtx set
= single_set (copy_of_a
);
1706 insn
= emit_insn (PATTERN (copy_of_a
));
1708 if (recog_memoized (insn
) < 0)
1709 goto end_seq_and_fail
;
1711 if (! general_operand (b
, GET_MODE (b
)))
1719 rtx reg
= gen_reg_rtx (GET_MODE (b
));
1720 pat
= gen_rtx_SET (VOIDmode
, reg
, b
);
1723 goto end_seq_and_fail
;
1726 b
= gen_reg_rtx (GET_MODE (b
));
1727 rtx_insn
*copy_of_insn_b
= as_a
<rtx_insn
*> (copy_rtx (insn_b
));
1728 rtx set
= single_set (copy_of_insn_b
);
1730 pat
= PATTERN (copy_of_insn_b
);
1733 /* If insn to set up A clobbers any registers B depends on, try to
1734 swap insn that sets up A with the one that sets up B. If even
1735 that doesn't help, punt. */
1736 last
= get_last_insn ();
1737 if (last
&& modified_in_p (orig_b
, last
))
1739 new_insn
= emit_insn_before (pat
, get_insns ());
1740 if (modified_in_p (orig_a
, new_insn
))
1741 goto end_seq_and_fail
;
1744 new_insn
= emit_insn (pat
);
1746 if (recog_memoized (new_insn
) < 0)
1747 goto end_seq_and_fail
;
1750 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (if_info
->cond
, 0),
1751 XEXP (if_info
->cond
, 1), a
, b
);
1754 goto end_seq_and_fail
;
1756 /* If we're handling a memory for above, emit the load now. */
1759 rtx mem
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
1761 /* Copy over flags as appropriate. */
1762 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
1763 MEM_VOLATILE_P (mem
) = 1;
1764 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
1765 set_mem_alias_set (mem
, MEM_ALIAS_SET (if_info
->a
));
1767 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
1769 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
1770 set_mem_addr_space (mem
, MEM_ADDR_SPACE (if_info
->a
));
1772 noce_emit_move_insn (if_info
->x
, mem
);
1774 else if (target
!= x
)
1775 noce_emit_move_insn (x
, target
);
1777 ifcvt_seq
= end_ifcvt_sequence (if_info
);
1781 emit_insn_before_setloc (ifcvt_seq
, if_info
->jump
,
1782 INSN_LOCATION (if_info
->insn_a
));
1790 /* For most cases, the simplified condition we found is the best
1791 choice, but this is not the case for the min/max/abs transforms.
1792 For these we wish to know that it is A or B in the condition. */
1795 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
1796 rtx_insn
**earliest
)
1802 /* If target is already mentioned in the known condition, return it. */
1803 if (reg_mentioned_p (target
, if_info
->cond
))
1805 *earliest
= if_info
->cond_earliest
;
1806 return if_info
->cond
;
1809 set
= pc_set (if_info
->jump
);
1810 cond
= XEXP (SET_SRC (set
), 0);
1812 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
1813 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
);
1814 if (if_info
->then_else_reversed
)
1817 /* If we're looking for a constant, try to make the conditional
1818 have that constant in it. There are two reasons why it may
1819 not have the constant we want:
1821 1. GCC may have needed to put the constant in a register, because
1822 the target can't compare directly against that constant. For
1823 this case, we look for a SET immediately before the comparison
1824 that puts a constant in that register.
1826 2. GCC may have canonicalized the conditional, for example
1827 replacing "if x < 4" with "if x <= 3". We can undo that (or
1828 make equivalent types of changes) to get the constants we need
1829 if they're off by one in the right direction. */
1831 if (CONST_INT_P (target
))
1833 enum rtx_code code
= GET_CODE (if_info
->cond
);
1834 rtx op_a
= XEXP (if_info
->cond
, 0);
1835 rtx op_b
= XEXP (if_info
->cond
, 1);
1838 /* First, look to see if we put a constant in a register. */
1839 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
1841 && BLOCK_FOR_INSN (prev_insn
)
1842 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
1843 && INSN_P (prev_insn
)
1844 && GET_CODE (PATTERN (prev_insn
)) == SET
)
1846 rtx src
= find_reg_equal_equiv_note (prev_insn
);
1848 src
= SET_SRC (PATTERN (prev_insn
));
1849 if (CONST_INT_P (src
))
1851 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
1853 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
1856 if (CONST_INT_P (op_a
))
1861 code
= swap_condition (code
);
1866 /* Now, look to see if we can get the right constant by
1867 adjusting the conditional. */
1868 if (CONST_INT_P (op_b
))
1870 HOST_WIDE_INT desired_val
= INTVAL (target
);
1871 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
1876 if (actual_val
== desired_val
+ 1)
1879 op_b
= GEN_INT (desired_val
);
1883 if (actual_val
== desired_val
- 1)
1886 op_b
= GEN_INT (desired_val
);
1890 if (actual_val
== desired_val
- 1)
1893 op_b
= GEN_INT (desired_val
);
1897 if (actual_val
== desired_val
+ 1)
1900 op_b
= GEN_INT (desired_val
);
1908 /* If we made any changes, generate a new conditional that is
1909 equivalent to what we started with, but has the right
1911 if (code
!= GET_CODE (if_info
->cond
)
1912 || op_a
!= XEXP (if_info
->cond
, 0)
1913 || op_b
!= XEXP (if_info
->cond
, 1))
1915 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
1916 *earliest
= if_info
->cond_earliest
;
1921 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
1922 earliest
, target
, HAVE_cbranchcc4
, true);
1923 if (! cond
|| ! reg_mentioned_p (target
, cond
))
1926 /* We almost certainly searched back to a different place.
1927 Need to re-verify correct lifetimes. */
1929 /* X may not be mentioned in the range (cond_earliest, jump]. */
1930 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
1931 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
1934 /* A and B may not be modified in the range [cond_earliest, jump). */
1935 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
1937 && (modified_in_p (if_info
->a
, insn
)
1938 || modified_in_p (if_info
->b
, insn
)))
1944 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1947 noce_try_minmax (struct noce_if_info
*if_info
)
1950 rtx_insn
*earliest
, *seq
;
1951 enum rtx_code code
, op
;
1954 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1955 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1956 to get the target to tell us... */
1957 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
))
1958 || HONOR_NANS (if_info
->x
))
1961 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
1965 /* Verify the condition is of the form we expect, and canonicalize
1966 the comparison code. */
1967 code
= GET_CODE (cond
);
1968 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
1970 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
1973 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
1975 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
1977 code
= swap_condition (code
);
1982 /* Determine what sort of operation this is. Note that the code is for
1983 a taken branch, so the code->operation mapping appears backwards. */
2016 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
2017 if_info
->a
, if_info
->b
,
2018 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
2024 if (target
!= if_info
->x
)
2025 noce_emit_move_insn (if_info
->x
, target
);
2027 seq
= end_ifcvt_sequence (if_info
);
2031 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2032 if_info
->cond
= cond
;
2033 if_info
->cond_earliest
= earliest
;
2038 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2039 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2043 noce_try_abs (struct noce_if_info
*if_info
)
2045 rtx cond
, target
, a
, b
, c
;
2046 rtx_insn
*earliest
, *seq
;
2048 bool one_cmpl
= false;
2050 /* Reject modes with signed zeros. */
2051 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
2054 /* Recognize A and B as constituting an ABS or NABS. The canonical
2055 form is a branch around the negation, taken when the object is the
2056 first operand of a comparison against 0 that evaluates to true. */
2059 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
2061 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
2063 c
= a
; a
= b
; b
= c
;
2066 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
2071 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
2073 c
= a
; a
= b
; b
= c
;
2080 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
2084 /* Verify the condition is of the form we expect. */
2085 if (rtx_equal_p (XEXP (cond
, 0), b
))
2087 else if (rtx_equal_p (XEXP (cond
, 1), b
))
2095 /* Verify that C is zero. Search one step backward for a
2096 REG_EQUAL note or a simple source if necessary. */
2100 rtx_insn
*insn
= prev_nonnote_insn (earliest
);
2102 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
2103 && (set
= single_set (insn
))
2104 && rtx_equal_p (SET_DEST (set
), c
))
2106 rtx note
= find_reg_equal_equiv_note (insn
);
2116 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
2117 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
2118 c
= get_pool_constant (XEXP (c
, 0));
2120 /* Work around funny ideas get_condition has wrt canonicalization.
2121 Note that these rtx constants are known to be CONST_INT, and
2122 therefore imply integer comparisons. */
2123 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
2125 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
2127 else if (c
!= CONST0_RTX (GET_MODE (b
)))
2130 /* Determine what sort of operation this is. */
2131 switch (GET_CODE (cond
))
2150 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
2153 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
2155 /* ??? It's a quandary whether cmove would be better here, especially
2156 for integers. Perhaps combine will clean things up. */
2157 if (target
&& negate
)
2160 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
2163 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
2173 if (target
!= if_info
->x
)
2174 noce_emit_move_insn (if_info
->x
, target
);
2176 seq
= end_ifcvt_sequence (if_info
);
2180 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2181 if_info
->cond
= cond
;
2182 if_info
->cond_earliest
= earliest
;
2187 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2190 noce_try_sign_mask (struct noce_if_info
*if_info
)
2196 bool t_unconditional
;
2198 cond
= if_info
->cond
;
2199 code
= GET_CODE (cond
);
2204 if (if_info
->a
== const0_rtx
)
2206 if ((code
== LT
&& c
== const0_rtx
)
2207 || (code
== LE
&& c
== constm1_rtx
))
2210 else if (if_info
->b
== const0_rtx
)
2212 if ((code
== GE
&& c
== const0_rtx
)
2213 || (code
== GT
&& c
== constm1_rtx
))
2217 if (! t
|| side_effects_p (t
))
2220 /* We currently don't handle different modes. */
2221 mode
= GET_MODE (t
);
2222 if (GET_MODE (m
) != mode
)
2225 /* This is only profitable if T is unconditionally executed/evaluated in the
2226 original insn sequence or T is cheap. The former happens if B is the
2227 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2228 INSN_B which can happen for e.g. conditional stores to memory. For the
2229 cost computation use the block TEST_BB where the evaluation will end up
2230 after the transformation. */
2233 && (if_info
->insn_b
== NULL_RTX
2234 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2235 if (!(t_unconditional
2236 || (set_src_cost (t
, optimize_bb_for_speed_p (if_info
->test_bb
))
2237 < COSTS_N_INSNS (2))))
2241 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2242 "(signed) m >> 31" directly. This benefits targets with specialized
2243 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2244 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2245 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2254 noce_emit_move_insn (if_info
->x
, t
);
2256 seq
= end_ifcvt_sequence (if_info
);
2260 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2265 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2269 noce_try_bitop (struct noce_if_info
*if_info
)
2271 rtx cond
, x
, a
, result
;
2278 cond
= if_info
->cond
;
2279 code
= GET_CODE (cond
);
2281 /* Check for no else condition. */
2282 if (! rtx_equal_p (x
, if_info
->b
))
2285 /* Check for a suitable condition. */
2286 if (code
!= NE
&& code
!= EQ
)
2288 if (XEXP (cond
, 1) != const0_rtx
)
2290 cond
= XEXP (cond
, 0);
2292 /* ??? We could also handle AND here. */
2293 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2295 if (XEXP (cond
, 1) != const1_rtx
2296 || !CONST_INT_P (XEXP (cond
, 2))
2297 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2299 bitnum
= INTVAL (XEXP (cond
, 2));
2300 mode
= GET_MODE (x
);
2301 if (BITS_BIG_ENDIAN
)
2302 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2303 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2310 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2312 /* Check for "if (X & C) x = x op C". */
2313 if (! rtx_equal_p (x
, XEXP (a
, 0))
2314 || !CONST_INT_P (XEXP (a
, 1))
2315 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2316 != (unsigned HOST_WIDE_INT
) 1 << bitnum
)
2319 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2320 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2321 if (GET_CODE (a
) == IOR
)
2322 result
= (code
== NE
) ? a
: NULL_RTX
;
2323 else if (code
== NE
)
2325 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2326 result
= gen_int_mode ((HOST_WIDE_INT
) 1 << bitnum
, mode
);
2327 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2331 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2332 result
= gen_int_mode (~((HOST_WIDE_INT
) 1 << bitnum
), mode
);
2333 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2336 else if (GET_CODE (a
) == AND
)
2338 /* Check for "if (X & C) x &= ~C". */
2339 if (! rtx_equal_p (x
, XEXP (a
, 0))
2340 || !CONST_INT_P (XEXP (a
, 1))
2341 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2342 != (~((HOST_WIDE_INT
) 1 << bitnum
) & GET_MODE_MASK (mode
)))
2345 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2346 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2347 result
= (code
== EQ
) ? a
: NULL_RTX
;
2355 noce_emit_move_insn (x
, result
);
2356 seq
= end_ifcvt_sequence (if_info
);
2360 emit_insn_before_setloc (seq
, if_info
->jump
,
2361 INSN_LOCATION (if_info
->insn_a
));
2367 /* Similar to get_condition, only the resulting condition must be
2368 valid at JUMP, instead of at EARLIEST.
2370 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2371 THEN block of the caller, and we have to reverse the condition. */
2374 noce_get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, bool then_else_reversed
)
2379 if (! any_condjump_p (jump
))
2382 set
= pc_set (jump
);
2384 /* If this branches to JUMP_LABEL when the condition is false,
2385 reverse the condition. */
2386 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2387 && LABEL_REF_LABEL (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
));
2389 /* We may have to reverse because the caller's if block is not canonical,
2390 i.e. the THEN block isn't the fallthrough block for the TEST block
2391 (see find_if_header). */
2392 if (then_else_reversed
)
2395 /* If the condition variable is a register and is MODE_INT, accept it. */
2397 cond
= XEXP (SET_SRC (set
), 0);
2398 tmp
= XEXP (cond
, 0);
2399 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
2400 && (GET_MODE (tmp
) != BImode
2401 || !targetm
.small_register_classes_for_mode_p (BImode
)))
2406 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2407 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2411 /* Otherwise, fall back on canonicalize_condition to do the dirty
2412 work of manipulating MODE_CC values and COMPARE rtx codes. */
2413 tmp
= canonicalize_condition (jump
, cond
, reverse
, earliest
,
2414 NULL_RTX
, HAVE_cbranchcc4
, true);
2416 /* We don't handle side-effects in the condition, like handling
2417 REG_INC notes and making sure no duplicate conditions are emitted. */
2418 if (tmp
!= NULL_RTX
&& side_effects_p (tmp
))
2424 /* Return true if OP is ok for if-then-else processing. */
2427 noce_operand_ok (const_rtx op
)
2429 if (side_effects_p (op
))
2432 /* We special-case memories, so handle any of them with
2433 no address side effects. */
2435 return ! side_effects_p (XEXP (op
, 0));
2437 return ! may_trap_p (op
);
2440 /* Return true if a write into MEM may trap or fault. */
2443 noce_mem_write_may_trap_or_fault_p (const_rtx mem
)
2447 if (MEM_READONLY_P (mem
))
2450 if (may_trap_or_fault_p (mem
))
2453 addr
= XEXP (mem
, 0);
2455 /* Call target hook to avoid the effects of -fpic etc.... */
2456 addr
= targetm
.delegitimize_address (addr
);
2459 switch (GET_CODE (addr
))
2467 addr
= XEXP (addr
, 0);
2471 addr
= XEXP (addr
, 1);
2474 if (CONST_INT_P (XEXP (addr
, 1)))
2475 addr
= XEXP (addr
, 0);
2482 if (SYMBOL_REF_DECL (addr
)
2483 && decl_readonly_section (SYMBOL_REF_DECL (addr
), 0))
2493 /* Return whether we can use store speculation for MEM. TOP_BB is the
2494 basic block above the conditional block where we are considering
2495 doing the speculative store. We look for whether MEM is set
2496 unconditionally later in the function. */
2499 noce_can_store_speculate_p (basic_block top_bb
, const_rtx mem
)
2501 basic_block dominator
;
2503 for (dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, top_bb
);
2505 dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, dominator
))
2509 FOR_BB_INSNS (dominator
, insn
)
2511 /* If we see something that might be a memory barrier, we
2512 have to stop looking. Even if the MEM is set later in
2513 the function, we still don't want to set it
2514 unconditionally before the barrier. */
2516 && (volatile_insn_p (PATTERN (insn
))
2517 || (CALL_P (insn
) && (!RTL_CONST_CALL_P (insn
)))))
2520 if (memory_must_be_modified_in_insn_p (mem
, insn
))
2522 if (modified_in_p (XEXP (mem
, 0), insn
))
2531 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2532 it without using conditional execution. Return TRUE if we were successful
2533 at converting the block. */
2536 noce_process_if_block (struct noce_if_info
*if_info
)
2538 basic_block test_bb
= if_info
->test_bb
; /* test block */
2539 basic_block then_bb
= if_info
->then_bb
; /* THEN */
2540 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
2541 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
2542 rtx_insn
*jump
= if_info
->jump
;
2543 rtx cond
= if_info
->cond
;
2544 rtx_insn
*insn_a
, *insn_b
;
2546 rtx orig_x
, x
, a
, b
;
2548 /* We're looking for patterns of the form
2550 (1) if (...) x = a; else x = b;
2551 (2) x = b; if (...) x = a;
2552 (3) if (...) x = a; // as if with an initial x = x.
2554 The later patterns require jumps to be more expensive.
2556 ??? For future expansion, look for multiple X in such patterns. */
2558 /* Look for one of the potential sets. */
2559 insn_a
= first_active_insn (then_bb
);
2561 || insn_a
!= last_active_insn (then_bb
, FALSE
)
2562 || (set_a
= single_set (insn_a
)) == NULL_RTX
)
2565 x
= SET_DEST (set_a
);
2566 a
= SET_SRC (set_a
);
2568 /* Look for the other potential set. Make sure we've got equivalent
2570 /* ??? This is overconservative. Storing to two different mems is
2571 as easy as conditionally computing the address. Storing to a
2572 single mem merely requires a scratch memory to use as one of the
2573 destination addresses; often the memory immediately below the
2574 stack pointer is available for this. */
2578 insn_b
= first_active_insn (else_bb
);
2580 || insn_b
!= last_active_insn (else_bb
, FALSE
)
2581 || (set_b
= single_set (insn_b
)) == NULL_RTX
2582 || ! rtx_interchangeable_p (x
, SET_DEST (set_b
)))
2587 insn_b
= prev_nonnote_nondebug_insn (if_info
->cond_earliest
);
2588 /* We're going to be moving the evaluation of B down from above
2589 COND_EARLIEST to JUMP. Make sure the relevant data is still
2592 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
2593 || !NONJUMP_INSN_P (insn_b
)
2594 || (set_b
= single_set (insn_b
)) == NULL_RTX
2595 || ! rtx_interchangeable_p (x
, SET_DEST (set_b
))
2596 || ! noce_operand_ok (SET_SRC (set_b
))
2597 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
2598 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
2599 /* Avoid extending the lifetime of hard registers on small
2600 register class machines. */
2601 || (REG_P (SET_SRC (set_b
))
2602 && HARD_REGISTER_P (SET_SRC (set_b
))
2603 && targetm
.small_register_classes_for_mode_p
2604 (GET_MODE (SET_SRC (set_b
))))
2605 /* Likewise with X. In particular this can happen when
2606 noce_get_condition looks farther back in the instruction
2607 stream than one might expect. */
2608 || reg_overlap_mentioned_p (x
, cond
)
2609 || reg_overlap_mentioned_p (x
, a
)
2610 || modified_between_p (x
, insn_b
, jump
))
2617 /* If x has side effects then only the if-then-else form is safe to
2618 convert. But even in that case we would need to restore any notes
2619 (such as REG_INC) at then end. That can be tricky if
2620 noce_emit_move_insn expands to more than one insn, so disable the
2621 optimization entirely for now if there are side effects. */
2622 if (side_effects_p (x
))
2625 b
= (set_b
? SET_SRC (set_b
) : x
);
2627 /* Only operate on register destinations, and even then avoid extending
2628 the lifetime of hard registers on small register class machines. */
2631 || (HARD_REGISTER_P (x
)
2632 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
2634 if (GET_MODE (x
) == BLKmode
)
2637 if (GET_CODE (x
) == ZERO_EXTRACT
2638 && (!CONST_INT_P (XEXP (x
, 1))
2639 || !CONST_INT_P (XEXP (x
, 2))))
2642 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
2643 ? XEXP (x
, 0) : x
));
2646 /* Don't operate on sources that may trap or are volatile. */
2647 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
2651 /* Set up the info block for our subroutines. */
2652 if_info
->insn_a
= insn_a
;
2653 if_info
->insn_b
= insn_b
;
2658 /* Try optimizations in some approximation of a useful order. */
2659 /* ??? Should first look to see if X is live incoming at all. If it
2660 isn't, we don't need anything but an unconditional set. */
2662 /* Look and see if A and B are really the same. Avoid creating silly
2663 cmove constructs that no one will fix up later. */
2664 if (rtx_interchangeable_p (a
, b
))
2666 /* If we have an INSN_B, we don't have to create any new rtl. Just
2667 move the instruction that we already have. If we don't have an
2668 INSN_B, that means that A == X, and we've got a noop move. In
2669 that case don't do anything and let the code below delete INSN_A. */
2670 if (insn_b
&& else_bb
)
2674 if (else_bb
&& insn_b
== BB_END (else_bb
))
2675 BB_END (else_bb
) = PREV_INSN (insn_b
);
2676 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
2678 /* If there was a REG_EQUAL note, delete it since it may have been
2679 true due to this insn being after a jump. */
2680 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
2681 remove_note (insn_b
, note
);
2685 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2686 x must be executed twice. */
2687 else if (insn_b
&& side_effects_p (orig_x
))
2694 if (!set_b
&& MEM_P (orig_x
))
2696 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2697 for optimizations if writing to x may trap or fault,
2698 i.e. it's a memory other than a static var or a stack slot,
2699 is misaligned on strict aligned machines or is read-only. If
2700 x is a read-only memory, then the program is valid only if we
2701 avoid the store into it. If there are stores on both the
2702 THEN and ELSE arms, then we can go ahead with the conversion;
2703 either the program is broken, or the condition is always
2704 false such that the other memory is selected. */
2705 if (noce_mem_write_may_trap_or_fault_p (orig_x
))
2708 /* Avoid store speculation: given "if (...) x = a" where x is a
2709 MEM, we only want to do the store if x is always set
2710 somewhere in the function. This avoids cases like
2711 if (pthread_mutex_trylock(mutex))
2713 where we only want global_variable to be changed if the mutex
2714 is held. FIXME: This should ideally be expressed directly in
2716 if (!noce_can_store_speculate_p (test_bb
, orig_x
))
2720 if (noce_try_move (if_info
))
2722 if (noce_try_store_flag (if_info
))
2724 if (noce_try_bitop (if_info
))
2726 if (noce_try_minmax (if_info
))
2728 if (noce_try_abs (if_info
))
2730 if (HAVE_conditional_move
2731 && noce_try_cmove (if_info
))
2733 if (! targetm
.have_conditional_execution ())
2735 if (noce_try_store_flag_constants (if_info
))
2737 if (noce_try_addcc (if_info
))
2739 if (noce_try_store_flag_mask (if_info
))
2741 if (HAVE_conditional_move
2742 && noce_try_cmove_arith (if_info
))
2744 if (noce_try_sign_mask (if_info
))
2748 if (!else_bb
&& set_b
)
2760 /* If we used a temporary, fix it up now. */
2766 noce_emit_move_insn (orig_x
, x
);
2768 set_used_flags (orig_x
);
2769 unshare_all_rtl_in_chain (seq
);
2772 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATION (insn_a
));
2775 /* The original THEN and ELSE blocks may now be removed. The test block
2776 must now jump to the join block. If the test block and the join block
2777 can be merged, do so. */
2780 delete_basic_block (else_bb
);
2784 remove_edge (find_edge (test_bb
, join_bb
));
2786 remove_edge (find_edge (then_bb
, join_bb
));
2787 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2788 delete_basic_block (then_bb
);
2791 if (can_merge_blocks_p (test_bb
, join_bb
))
2793 merge_blocks (test_bb
, join_bb
);
2797 num_updated_if_blocks
++;
2801 /* Check whether a block is suitable for conditional move conversion.
2802 Every insn must be a simple set of a register to a constant or a
2803 register. For each assignment, store the value in the pointer map
2804 VALS, keyed indexed by register pointer, then store the register
2805 pointer in REGS. COND is the condition we will test. */
2808 check_cond_move_block (basic_block bb
,
2809 hash_map
<rtx
, rtx
> *vals
,
2815 /* We can only handle simple jumps at the end of the basic block.
2816 It is almost impossible to update the CFG otherwise. */
2818 if (JUMP_P (insn
) && !onlyjump_p (insn
))
2821 FOR_BB_INSNS (bb
, insn
)
2825 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2827 set
= single_set (insn
);
2831 dest
= SET_DEST (set
);
2832 src
= SET_SRC (set
);
2834 || (HARD_REGISTER_P (dest
)
2835 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
2838 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
2841 if (side_effects_p (src
) || side_effects_p (dest
))
2844 if (may_trap_p (src
) || may_trap_p (dest
))
2847 /* Don't try to handle this if the source register was
2848 modified earlier in the block. */
2851 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
2852 && vals
->get (SUBREG_REG (src
))))
2855 /* Don't try to handle this if the destination register was
2856 modified earlier in the block. */
2857 if (vals
->get (dest
))
2860 /* Don't try to handle this if the condition uses the
2861 destination register. */
2862 if (reg_overlap_mentioned_p (dest
, cond
))
2865 /* Don't try to handle this if the source register is modified
2866 later in the block. */
2867 if (!CONSTANT_P (src
)
2868 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
2871 vals
->put (dest
, src
);
2873 regs
->safe_push (dest
);
2879 /* Given a basic block BB suitable for conditional move conversion,
2880 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2881 the register values depending on COND, emit the insns in the block as
2882 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2883 processed. The caller has started a sequence for the conversion.
2884 Return true if successful, false if something goes wrong. */
2887 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
2888 basic_block bb
, rtx cond
,
2889 hash_map
<rtx
, rtx
> *then_vals
,
2890 hash_map
<rtx
, rtx
> *else_vals
,
2895 rtx cond_arg0
, cond_arg1
;
2897 code
= GET_CODE (cond
);
2898 cond_arg0
= XEXP (cond
, 0);
2899 cond_arg1
= XEXP (cond
, 1);
2901 FOR_BB_INSNS (bb
, insn
)
2903 rtx set
, target
, dest
, t
, e
;
2905 /* ??? Maybe emit conditional debug insn? */
2906 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2908 set
= single_set (insn
);
2909 gcc_assert (set
&& REG_P (SET_DEST (set
)));
2911 dest
= SET_DEST (set
);
2913 rtx
*then_slot
= then_vals
->get (dest
);
2914 rtx
*else_slot
= else_vals
->get (dest
);
2915 t
= then_slot
? *then_slot
: NULL_RTX
;
2916 e
= else_slot
? *else_slot
: NULL_RTX
;
2920 /* If this register was set in the then block, we already
2921 handled this case there. */
2934 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
2940 noce_emit_move_insn (dest
, target
);
2946 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2947 it using only conditional moves. Return TRUE if we were successful at
2948 converting the block. */
2951 cond_move_process_if_block (struct noce_if_info
*if_info
)
2953 basic_block test_bb
= if_info
->test_bb
;
2954 basic_block then_bb
= if_info
->then_bb
;
2955 basic_block else_bb
= if_info
->else_bb
;
2956 basic_block join_bb
= if_info
->join_bb
;
2957 rtx_insn
*jump
= if_info
->jump
;
2958 rtx cond
= if_info
->cond
;
2959 rtx_insn
*seq
, *loc_insn
;
2962 vec
<rtx
> then_regs
= vNULL
;
2963 vec
<rtx
> else_regs
= vNULL
;
2965 int success_p
= FALSE
;
2967 /* Build a mapping for each block to the value used for each
2969 hash_map
<rtx
, rtx
> then_vals
;
2970 hash_map
<rtx
, rtx
> else_vals
;
2972 /* Make sure the blocks are suitable. */
2973 if (!check_cond_move_block (then_bb
, &then_vals
, &then_regs
, cond
)
2975 && !check_cond_move_block (else_bb
, &else_vals
, &else_regs
, cond
)))
2978 /* Make sure the blocks can be used together. If the same register
2979 is set in both blocks, and is not set to a constant in both
2980 cases, then both blocks must set it to the same register. We
2981 have already verified that if it is set to a register, that the
2982 source register does not change after the assignment. Also count
2983 the number of registers set in only one of the blocks. */
2985 FOR_EACH_VEC_ELT (then_regs
, i
, reg
)
2987 rtx
*then_slot
= then_vals
.get (reg
);
2988 rtx
*else_slot
= else_vals
.get (reg
);
2990 gcc_checking_assert (then_slot
);
2995 rtx then_val
= *then_slot
;
2996 rtx else_val
= *else_slot
;
2997 if (!CONSTANT_P (then_val
) && !CONSTANT_P (else_val
)
2998 && !rtx_equal_p (then_val
, else_val
))
3003 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3004 FOR_EACH_VEC_ELT (else_regs
, i
, reg
)
3006 gcc_checking_assert (else_vals
.get (reg
));
3007 if (!then_vals
.get (reg
))
3011 /* Make sure it is reasonable to convert this block. What matters
3012 is the number of assignments currently made in only one of the
3013 branches, since if we convert we are going to always execute
3015 if (c
> MAX_CONDITIONAL_EXECUTE
)
3018 /* Try to emit the conditional moves. First do the then block,
3019 then do anything left in the else blocks. */
3021 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
3022 &then_vals
, &else_vals
, false)
3024 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
3025 &then_vals
, &else_vals
, true)))
3030 seq
= end_ifcvt_sequence (if_info
);
3034 loc_insn
= first_active_insn (then_bb
);
3037 loc_insn
= first_active_insn (else_bb
);
3038 gcc_assert (loc_insn
);
3040 emit_insn_before_setloc (seq
, jump
, INSN_LOCATION (loc_insn
));
3044 delete_basic_block (else_bb
);
3048 remove_edge (find_edge (test_bb
, join_bb
));
3050 remove_edge (find_edge (then_bb
, join_bb
));
3051 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3052 delete_basic_block (then_bb
);
3055 if (can_merge_blocks_p (test_bb
, join_bb
))
3057 merge_blocks (test_bb
, join_bb
);
3061 num_updated_if_blocks
++;
3066 then_regs
.release ();
3067 else_regs
.release ();
3072 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3073 IF-THEN-ELSE-JOIN block.
3075 If so, we'll try to convert the insns to not require the branch,
3076 using only transformations that do not require conditional execution.
3078 Return TRUE if we were successful at converting the block. */
3081 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
3084 basic_block then_bb
, else_bb
, join_bb
;
3085 bool then_else_reversed
= false;
3088 rtx_insn
*cond_earliest
;
3089 struct noce_if_info if_info
;
3091 /* We only ever should get here before reload. */
3092 gcc_assert (!reload_completed
);
3094 /* Recognize an IF-THEN-ELSE-JOIN block. */
3095 if (single_pred_p (then_edge
->dest
)
3096 && single_succ_p (then_edge
->dest
)
3097 && single_pred_p (else_edge
->dest
)
3098 && single_succ_p (else_edge
->dest
)
3099 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
3101 then_bb
= then_edge
->dest
;
3102 else_bb
= else_edge
->dest
;
3103 join_bb
= single_succ (then_bb
);
3105 /* Recognize an IF-THEN-JOIN block. */
3106 else if (single_pred_p (then_edge
->dest
)
3107 && single_succ_p (then_edge
->dest
)
3108 && single_succ (then_edge
->dest
) == else_edge
->dest
)
3110 then_bb
= then_edge
->dest
;
3111 else_bb
= NULL_BLOCK
;
3112 join_bb
= else_edge
->dest
;
3114 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3115 of basic blocks in cfglayout mode does not matter, so the fallthrough
3116 edge can go to any basic block (and not just to bb->next_bb, like in
3118 else if (single_pred_p (else_edge
->dest
)
3119 && single_succ_p (else_edge
->dest
)
3120 && single_succ (else_edge
->dest
) == then_edge
->dest
)
3122 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3123 To make this work, we have to invert the THEN and ELSE blocks
3124 and reverse the jump condition. */
3125 then_bb
= else_edge
->dest
;
3126 else_bb
= NULL_BLOCK
;
3127 join_bb
= single_succ (then_bb
);
3128 then_else_reversed
= true;
3131 /* Not a form we can handle. */
3134 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3135 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3138 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3141 num_possible_if_blocks
++;
3146 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3147 (else_bb
) ? "-ELSE" : "",
3148 pass
, test_bb
->index
, then_bb
->index
);
3151 fprintf (dump_file
, ", else %d", else_bb
->index
);
3153 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
3156 /* If the conditional jump is more than just a conditional
3157 jump, then we can not do if-conversion on this block. */
3158 jump
= BB_END (test_bb
);
3159 if (! onlyjump_p (jump
))
3162 /* If this is not a standard conditional jump, we can't parse it. */
3163 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
3167 /* We must be comparing objects whose modes imply the size. */
3168 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3171 /* Initialize an IF_INFO struct to pass around. */
3172 memset (&if_info
, 0, sizeof if_info
);
3173 if_info
.test_bb
= test_bb
;
3174 if_info
.then_bb
= then_bb
;
3175 if_info
.else_bb
= else_bb
;
3176 if_info
.join_bb
= join_bb
;
3177 if_info
.cond
= cond
;
3178 if_info
.cond_earliest
= cond_earliest
;
3179 if_info
.jump
= jump
;
3180 if_info
.then_else_reversed
= then_else_reversed
;
3181 if_info
.branch_cost
= BRANCH_COST (optimize_bb_for_speed_p (test_bb
),
3182 predictable_edge_p (then_edge
));
3184 /* Do the real work. */
3186 if (noce_process_if_block (&if_info
))
3189 if (HAVE_conditional_move
3190 && cond_move_process_if_block (&if_info
))
3197 /* Merge the blocks and mark for local life update. */
3200 merge_if_block (struct ce_if_block
* ce_info
)
3202 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
3203 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
3204 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
3205 basic_block join_bb
= ce_info
->join_bb
; /* join block */
3206 basic_block combo_bb
;
3208 /* All block merging is done into the lower block numbers. */
3211 df_set_bb_dirty (test_bb
);
3213 /* Merge any basic blocks to handle && and || subtests. Each of
3214 the blocks are on the fallthru path from the predecessor block. */
3215 if (ce_info
->num_multiple_test_blocks
> 0)
3217 basic_block bb
= test_bb
;
3218 basic_block last_test_bb
= ce_info
->last_test_bb
;
3219 basic_block fallthru
= block_fallthru (bb
);
3224 fallthru
= block_fallthru (bb
);
3225 merge_blocks (combo_bb
, bb
);
3228 while (bb
!= last_test_bb
);
3231 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3232 label, but it might if there were || tests. That label's count should be
3233 zero, and it normally should be removed. */
3237 /* If THEN_BB has no successors, then there's a BARRIER after it.
3238 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3239 is no longer needed, and in fact it is incorrect to leave it in
3241 if (EDGE_COUNT (then_bb
->succs
) == 0
3242 && EDGE_COUNT (combo_bb
->succs
) > 1)
3244 rtx_insn
*end
= NEXT_INSN (BB_END (then_bb
));
3245 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
3246 end
= NEXT_INSN (end
);
3248 if (end
&& BARRIER_P (end
))
3251 merge_blocks (combo_bb
, then_bb
);
3255 /* The ELSE block, if it existed, had a label. That label count
3256 will almost always be zero, but odd things can happen when labels
3257 get their addresses taken. */
3260 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3261 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3262 is no longer needed, and in fact it is incorrect to leave it in
3264 if (EDGE_COUNT (else_bb
->succs
) == 0
3265 && EDGE_COUNT (combo_bb
->succs
) > 1)
3267 rtx_insn
*end
= NEXT_INSN (BB_END (else_bb
));
3268 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
3269 end
= NEXT_INSN (end
);
3271 if (end
&& BARRIER_P (end
))
3274 merge_blocks (combo_bb
, else_bb
);
3278 /* If there was no join block reported, that means it was not adjacent
3279 to the others, and so we cannot merge them. */
3283 rtx_insn
*last
= BB_END (combo_bb
);
3285 /* The outgoing edge for the current COMBO block should already
3286 be correct. Verify this. */
3287 if (EDGE_COUNT (combo_bb
->succs
) == 0)
3288 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
3289 || (NONJUMP_INSN_P (last
)
3290 && GET_CODE (PATTERN (last
)) == TRAP_IF
3291 && (TRAP_CONDITION (PATTERN (last
))
3292 == const_true_rtx
)));
3295 /* There should still be something at the end of the THEN or ELSE
3296 blocks taking us to our final destination. */
3297 gcc_assert (JUMP_P (last
)
3298 || (EDGE_SUCC (combo_bb
, 0)->dest
3299 == EXIT_BLOCK_PTR_FOR_FN (cfun
)
3301 && SIBLING_CALL_P (last
))
3302 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
3303 && can_throw_internal (last
)));
3306 /* The JOIN block may have had quite a number of other predecessors too.
3307 Since we've already merged the TEST, THEN and ELSE blocks, we should
3308 have only one remaining edge from our if-then-else diamond. If there
3309 is more than one remaining edge, it must come from elsewhere. There
3310 may be zero incoming edges if the THEN block didn't actually join
3311 back up (as with a call to a non-return function). */
3312 else if (EDGE_COUNT (join_bb
->preds
) < 2
3313 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3315 /* We can merge the JOIN cleanly and update the dataflow try
3316 again on this pass.*/
3317 merge_blocks (combo_bb
, join_bb
);
3322 /* We cannot merge the JOIN. */
3324 /* The outgoing edge for the current COMBO block should already
3325 be correct. Verify this. */
3326 gcc_assert (single_succ_p (combo_bb
)
3327 && single_succ (combo_bb
) == join_bb
);
3329 /* Remove the jump and cruft from the end of the COMBO block. */
3330 if (join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3331 tidy_fallthru_edge (single_succ_edge (combo_bb
));
3334 num_updated_if_blocks
++;
3337 /* Find a block ending in a simple IF condition and try to transform it
3338 in some way. When converting a multi-block condition, put the new code
3339 in the first such block and delete the rest. Return a pointer to this
3340 first block if some transformation was done. Return NULL otherwise. */
3343 find_if_header (basic_block test_bb
, int pass
)
3345 ce_if_block ce_info
;
3349 /* The kind of block we're looking for has exactly two successors. */
3350 if (EDGE_COUNT (test_bb
->succs
) != 2)
3353 then_edge
= EDGE_SUCC (test_bb
, 0);
3354 else_edge
= EDGE_SUCC (test_bb
, 1);
3356 if (df_get_bb_dirty (then_edge
->dest
))
3358 if (df_get_bb_dirty (else_edge
->dest
))
3361 /* Neither edge should be abnormal. */
3362 if ((then_edge
->flags
& EDGE_COMPLEX
)
3363 || (else_edge
->flags
& EDGE_COMPLEX
))
3366 /* Nor exit the loop. */
3367 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
3368 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
3371 /* The THEN edge is canonically the one that falls through. */
3372 if (then_edge
->flags
& EDGE_FALLTHRU
)
3374 else if (else_edge
->flags
& EDGE_FALLTHRU
)
3377 else_edge
= then_edge
;
3381 /* Otherwise this must be a multiway branch of some sort. */
3384 memset (&ce_info
, 0, sizeof (ce_info
));
3385 ce_info
.test_bb
= test_bb
;
3386 ce_info
.then_bb
= then_edge
->dest
;
3387 ce_info
.else_bb
= else_edge
->dest
;
3388 ce_info
.pass
= pass
;
3390 #ifdef IFCVT_MACHDEP_INIT
3391 IFCVT_MACHDEP_INIT (&ce_info
);
3394 if (!reload_completed
3395 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
3398 if (reload_completed
3399 && targetm
.have_conditional_execution ()
3400 && cond_exec_find_if_block (&ce_info
))
3404 && optab_handler (ctrap_optab
, word_mode
) != CODE_FOR_nothing
3405 && find_cond_trap (test_bb
, then_edge
, else_edge
))
3408 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
3409 && (reload_completed
|| !targetm
.have_conditional_execution ()))
3411 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
3413 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
3421 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
3422 /* Set this so we continue looking. */
3423 cond_exec_changed_p
= TRUE
;
3424 return ce_info
.test_bb
;
3427 /* Return true if a block has two edges, one of which falls through to the next
3428 block, and the other jumps to a specific block, so that we can tell if the
3429 block is part of an && test or an || test. Returns either -1 or the number
3430 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3433 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
3436 int fallthru_p
= FALSE
;
3443 if (!cur_bb
|| !target_bb
)
3446 /* If no edges, obviously it doesn't jump or fallthru. */
3447 if (EDGE_COUNT (cur_bb
->succs
) == 0)
3450 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
3452 if (cur_edge
->flags
& EDGE_COMPLEX
)
3453 /* Anything complex isn't what we want. */
3456 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
3459 else if (cur_edge
->dest
== target_bb
)
3466 if ((jump_p
& fallthru_p
) == 0)
3469 /* Don't allow calls in the block, since this is used to group && and ||
3470 together for conditional execution support. ??? we should support
3471 conditional execution support across calls for IA-64 some day, but
3472 for now it makes the code simpler. */
3473 end
= BB_END (cur_bb
);
3474 insn
= BB_HEAD (cur_bb
);
3476 while (insn
!= NULL_RTX
)
3483 && !DEBUG_INSN_P (insn
)
3484 && GET_CODE (PATTERN (insn
)) != USE
3485 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3491 insn
= NEXT_INSN (insn
);
3497 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3498 block. If so, we'll try to convert the insns to not require the branch.
3499 Return TRUE if we were successful at converting the block. */
3502 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
3504 basic_block test_bb
= ce_info
->test_bb
;
3505 basic_block then_bb
= ce_info
->then_bb
;
3506 basic_block else_bb
= ce_info
->else_bb
;
3507 basic_block join_bb
= NULL_BLOCK
;
3512 ce_info
->last_test_bb
= test_bb
;
3514 /* We only ever should get here after reload,
3515 and if we have conditional execution. */
3516 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
3518 /* Discover if any fall through predecessors of the current test basic block
3519 were && tests (which jump to the else block) or || tests (which jump to
3521 if (single_pred_p (test_bb
)
3522 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
3524 basic_block bb
= single_pred (test_bb
);
3525 basic_block target_bb
;
3526 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
3529 /* Determine if the preceding block is an && or || block. */
3530 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
3532 ce_info
->and_and_p
= TRUE
;
3533 target_bb
= else_bb
;
3535 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
3537 ce_info
->and_and_p
= FALSE
;
3538 target_bb
= then_bb
;
3541 target_bb
= NULL_BLOCK
;
3543 if (target_bb
&& n_insns
<= max_insns
)
3545 int total_insns
= 0;
3548 ce_info
->last_test_bb
= test_bb
;
3550 /* Found at least one && or || block, look for more. */
3553 ce_info
->test_bb
= test_bb
= bb
;
3554 total_insns
+= n_insns
;
3557 if (!single_pred_p (bb
))
3560 bb
= single_pred (bb
);
3561 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
3563 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
3565 ce_info
->num_multiple_test_blocks
= blocks
;
3566 ce_info
->num_multiple_test_insns
= total_insns
;
3568 if (ce_info
->and_and_p
)
3569 ce_info
->num_and_and_blocks
= blocks
;
3571 ce_info
->num_or_or_blocks
= blocks
;
3575 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3576 other than any || blocks which jump to the THEN block. */
3577 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
3580 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3581 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
3583 if (cur_edge
->flags
& EDGE_COMPLEX
)
3587 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
3589 if (cur_edge
->flags
& EDGE_COMPLEX
)
3593 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3594 if (EDGE_COUNT (then_bb
->succs
) > 0
3595 && (!single_succ_p (then_bb
)
3596 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3597 || (epilogue_completed
3598 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
3601 /* If the THEN block has no successors, conditional execution can still
3602 make a conditional call. Don't do this unless the ELSE block has
3603 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3604 Check for the last insn of the THEN block being an indirect jump, which
3605 is listed as not having any successors, but confuses the rest of the CE
3606 code processing. ??? we should fix this in the future. */
3607 if (EDGE_COUNT (then_bb
->succs
) == 0)
3609 if (single_pred_p (else_bb
) && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3611 rtx_insn
*last_insn
= BB_END (then_bb
);
3614 && NOTE_P (last_insn
)
3615 && last_insn
!= BB_HEAD (then_bb
))
3616 last_insn
= PREV_INSN (last_insn
);
3619 && JUMP_P (last_insn
)
3620 && ! simplejump_p (last_insn
))
3624 else_bb
= NULL_BLOCK
;
3630 /* If the THEN block's successor is the other edge out of the TEST block,
3631 then we have an IF-THEN combo without an ELSE. */
3632 else if (single_succ (then_bb
) == else_bb
)
3635 else_bb
= NULL_BLOCK
;
3638 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3639 has exactly one predecessor and one successor, and the outgoing edge
3640 is not complex, then we have an IF-THEN-ELSE combo. */
3641 else if (single_succ_p (else_bb
)
3642 && single_succ (then_bb
) == single_succ (else_bb
)
3643 && single_pred_p (else_bb
)
3644 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3645 && !(epilogue_completed
3646 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
3647 join_bb
= single_succ (else_bb
);
3649 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3653 num_possible_if_blocks
++;
3658 "\nIF-THEN%s block found, pass %d, start block %d "
3659 "[insn %d], then %d [%d]",
3660 (else_bb
) ? "-ELSE" : "",
3663 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
3665 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
3668 fprintf (dump_file
, ", else %d [%d]",
3670 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
3672 fprintf (dump_file
, ", join %d [%d]",
3674 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
3676 if (ce_info
->num_multiple_test_blocks
> 0)
3677 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
3678 ce_info
->num_multiple_test_blocks
,
3679 (ce_info
->and_and_p
) ? "&&" : "||",
3680 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
3681 ce_info
->last_test_bb
->index
,
3682 ((BB_HEAD (ce_info
->last_test_bb
))
3683 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
3686 fputc ('\n', dump_file
);
3689 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3690 first condition for free, since we've already asserted that there's a
3691 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3692 we checked the FALLTHRU flag, those are already adjacent to the last IF
3694 /* ??? As an enhancement, move the ELSE block. Have to deal with
3695 BLOCK notes, if by no other means than backing out the merge if they
3696 exist. Sticky enough I don't want to think about it now. */
3698 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
3700 if ((next
= next
->next_bb
) != join_bb
3701 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3709 /* Do the real work. */
3711 ce_info
->else_bb
= else_bb
;
3712 ce_info
->join_bb
= join_bb
;
3714 /* If we have && and || tests, try to first handle combining the && and ||
3715 tests into the conditional code, and if that fails, go back and handle
3716 it without the && and ||, which at present handles the && case if there
3717 was no ELSE block. */
3718 if (cond_exec_process_if_block (ce_info
, TRUE
))
3721 if (ce_info
->num_multiple_test_blocks
)
3725 if (cond_exec_process_if_block (ce_info
, FALSE
))
3732 /* Convert a branch over a trap, or a branch
3733 to a trap, into a conditional trap. */
3736 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
3738 basic_block then_bb
= then_edge
->dest
;
3739 basic_block else_bb
= else_edge
->dest
;
3740 basic_block other_bb
, trap_bb
;
3741 rtx_insn
*trap
, *jump
;
3743 rtx_insn
*cond_earliest
;
3746 /* Locate the block with the trap instruction. */
3747 /* ??? While we look for no successors, we really ought to allow
3748 EH successors. Need to fix merge_if_block for that to work. */
3749 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
3750 trap_bb
= then_bb
, other_bb
= else_bb
;
3751 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
3752 trap_bb
= else_bb
, other_bb
= then_bb
;
3758 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
3759 test_bb
->index
, trap_bb
->index
);
3762 /* If this is not a standard conditional jump, we can't parse it. */
3763 jump
= BB_END (test_bb
);
3764 cond
= noce_get_condition (jump
, &cond_earliest
, false);
3768 /* If the conditional jump is more than just a conditional jump, then
3769 we can not do if-conversion on this block. */
3770 if (! onlyjump_p (jump
))
3773 /* We must be comparing objects whose modes imply the size. */
3774 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3777 /* Reverse the comparison code, if necessary. */
3778 code
= GET_CODE (cond
);
3779 if (then_bb
== trap_bb
)
3781 code
= reversed_comparison_code (cond
, jump
);
3782 if (code
== UNKNOWN
)
3786 /* Attempt to generate the conditional trap. */
3787 seq
= gen_cond_trap (code
, copy_rtx (XEXP (cond
, 0)),
3788 copy_rtx (XEXP (cond
, 1)),
3789 TRAP_CODE (PATTERN (trap
)));
3793 /* Emit the new insns before cond_earliest. */
3794 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATION (trap
));
3796 /* Delete the trap block if possible. */
3797 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
3798 df_set_bb_dirty (test_bb
);
3799 df_set_bb_dirty (then_bb
);
3800 df_set_bb_dirty (else_bb
);
3802 if (EDGE_COUNT (trap_bb
->preds
) == 0)
3804 delete_basic_block (trap_bb
);
3808 /* Wire together the blocks again. */
3809 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3810 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
3811 else if (trap_bb
== then_bb
)
3816 lab
= JUMP_LABEL (jump
);
3817 newjump
= emit_jump_insn_after (gen_jump (lab
), jump
);
3818 LABEL_NUSES (lab
) += 1;
3819 JUMP_LABEL (newjump
) = lab
;
3820 emit_barrier_after (newjump
);
3824 if (can_merge_blocks_p (test_bb
, other_bb
))
3826 merge_blocks (test_bb
, other_bb
);
3830 num_updated_if_blocks
++;
3834 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3838 block_has_only_trap (basic_block bb
)
3842 /* We're not the exit block. */
3843 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
3846 /* The block must have no successors. */
3847 if (EDGE_COUNT (bb
->succs
) > 0)
3850 /* The only instruction in the THEN block must be the trap. */
3851 trap
= first_active_insn (bb
);
3852 if (! (trap
== BB_END (bb
)
3853 && GET_CODE (PATTERN (trap
)) == TRAP_IF
3854 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
3860 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3861 transformable, but not necessarily the other. There need be no
3864 Return TRUE if we were successful at converting the block.
3866 Cases we'd like to look at:
3869 if (test) goto over; // x not live
3877 if (! test) goto label;
3880 if (test) goto E; // x not live
3894 (3) // This one's really only interesting for targets that can do
3895 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3896 // it results in multiple branches on a cache line, which often
3897 // does not sit well with predictors.
3899 if (test1) goto E; // predicted not taken
3915 (A) Don't do (2) if the branch is predicted against the block we're
3916 eliminating. Do it anyway if we can eliminate a branch; this requires
3917 that the sole successor of the eliminated block postdominate the other
3920 (B) With CE, on (3) we can steal from both sides of the if, creating
3929 Again, this is most useful if J postdominates.
3931 (C) CE substitutes for helpful life information.
3933 (D) These heuristics need a lot of work. */
3935 /* Tests for case 1 above. */
3938 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3940 basic_block then_bb
= then_edge
->dest
;
3941 basic_block else_bb
= else_edge
->dest
;
3943 int then_bb_index
, then_prob
;
3944 rtx else_target
= NULL_RTX
;
3946 /* If we are partitioning hot/cold basic blocks, we don't want to
3947 mess up unconditional or indirect jumps that cross between hot
3950 Basic block partitioning may result in some jumps that appear to
3951 be optimizable (or blocks that appear to be mergeable), but which really
3952 must be left untouched (they are required to make it safely across
3953 partition boundaries). See the comments at the top of
3954 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3956 if ((BB_END (then_bb
)
3957 && JUMP_P (BB_END (then_bb
))
3958 && CROSSING_JUMP_P (BB_END (then_bb
)))
3959 || (BB_END (test_bb
)
3960 && JUMP_P (BB_END (test_bb
))
3961 && CROSSING_JUMP_P (BB_END (test_bb
)))
3962 || (BB_END (else_bb
)
3963 && JUMP_P (BB_END (else_bb
))
3964 && CROSSING_JUMP_P (BB_END (else_bb
))))
3967 /* THEN has one successor. */
3968 if (!single_succ_p (then_bb
))
3971 /* THEN does not fall through, but is not strange either. */
3972 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
3975 /* THEN has one predecessor. */
3976 if (!single_pred_p (then_bb
))
3979 /* THEN must do something. */
3980 if (forwarder_block_p (then_bb
))
3983 num_possible_if_blocks
++;
3986 "\nIF-CASE-1 found, start %d, then %d\n",
3987 test_bb
->index
, then_bb
->index
);
3989 if (then_edge
->probability
)
3990 then_prob
= REG_BR_PROB_BASE
- then_edge
->probability
;
3992 then_prob
= REG_BR_PROB_BASE
/ 2;
3994 /* We're speculating from the THEN path, we want to make sure the cost
3995 of speculation is within reason. */
3996 if (! cheap_bb_rtx_cost_p (then_bb
, then_prob
,
3997 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
3998 predictable_edge_p (then_edge
)))))
4001 if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4003 rtx_insn
*jump
= BB_END (else_edge
->src
);
4004 gcc_assert (JUMP_P (jump
));
4005 else_target
= JUMP_LABEL (jump
);
4008 /* Registers set are dead, or are predicable. */
4009 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
4010 single_succ_edge (then_bb
), 1))
4013 /* Conversion went ok, including moving the insns and fixing up the
4014 jump. Adjust the CFG to match. */
4016 /* We can avoid creating a new basic block if then_bb is immediately
4017 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4018 through to else_bb. */
4020 if (then_bb
->next_bb
== else_bb
4021 && then_bb
->prev_bb
== test_bb
4022 && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4024 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
4027 else if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4028 new_bb
= force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb
),
4029 else_bb
, else_target
);
4031 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
4034 df_set_bb_dirty (test_bb
);
4035 df_set_bb_dirty (else_bb
);
4037 then_bb_index
= then_bb
->index
;
4038 delete_basic_block (then_bb
);
4040 /* Make rest of code believe that the newly created block is the THEN_BB
4041 block we removed. */
4044 df_bb_replace (then_bb_index
, new_bb
);
4045 /* This should have been done above via force_nonfallthru_and_redirect
4046 (possibly called from redirect_edge_and_branch_force). */
4047 gcc_checking_assert (BB_PARTITION (new_bb
) == BB_PARTITION (test_bb
));
4051 num_updated_if_blocks
++;
4056 /* Test for case 2 above. */
4059 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
4061 basic_block then_bb
= then_edge
->dest
;
4062 basic_block else_bb
= else_edge
->dest
;
4064 int then_prob
, else_prob
;
4066 /* We do not want to speculate (empty) loop latches. */
4068 && else_bb
->loop_father
->latch
== else_bb
)
4071 /* If we are partitioning hot/cold basic blocks, we don't want to
4072 mess up unconditional or indirect jumps that cross between hot
4075 Basic block partitioning may result in some jumps that appear to
4076 be optimizable (or blocks that appear to be mergeable), but which really
4077 must be left untouched (they are required to make it safely across
4078 partition boundaries). See the comments at the top of
4079 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4081 if ((BB_END (then_bb
)
4082 && JUMP_P (BB_END (then_bb
))
4083 && CROSSING_JUMP_P (BB_END (then_bb
)))
4084 || (BB_END (test_bb
)
4085 && JUMP_P (BB_END (test_bb
))
4086 && CROSSING_JUMP_P (BB_END (test_bb
)))
4087 || (BB_END (else_bb
)
4088 && JUMP_P (BB_END (else_bb
))
4089 && CROSSING_JUMP_P (BB_END (else_bb
))))
4092 /* ELSE has one successor. */
4093 if (!single_succ_p (else_bb
))
4096 else_succ
= single_succ_edge (else_bb
);
4098 /* ELSE outgoing edge is not complex. */
4099 if (else_succ
->flags
& EDGE_COMPLEX
)
4102 /* ELSE has one predecessor. */
4103 if (!single_pred_p (else_bb
))
4106 /* THEN is not EXIT. */
4107 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
4110 if (else_edge
->probability
)
4112 else_prob
= else_edge
->probability
;
4113 then_prob
= REG_BR_PROB_BASE
- else_prob
;
4117 else_prob
= REG_BR_PROB_BASE
/ 2;
4118 then_prob
= REG_BR_PROB_BASE
/ 2;
4121 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4122 if (else_prob
> then_prob
)
4124 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
4125 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
4131 num_possible_if_blocks
++;
4134 "\nIF-CASE-2 found, start %d, else %d\n",
4135 test_bb
->index
, else_bb
->index
);
4137 /* We're speculating from the ELSE path, we want to make sure the cost
4138 of speculation is within reason. */
4139 if (! cheap_bb_rtx_cost_p (else_bb
, else_prob
,
4140 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
4141 predictable_edge_p (else_edge
)))))
4144 /* Registers set are dead, or are predicable. */
4145 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
, 0))
4148 /* Conversion went ok, including moving the insns and fixing up the
4149 jump. Adjust the CFG to match. */
4151 df_set_bb_dirty (test_bb
);
4152 df_set_bb_dirty (then_bb
);
4153 delete_basic_block (else_bb
);
4156 num_updated_if_blocks
++;
4158 /* ??? We may now fallthru from one of THEN's successors into a join
4159 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4164 /* Used by the code above to perform the actual rtl transformations.
4165 Return TRUE if successful.
4167 TEST_BB is the block containing the conditional branch. MERGE_BB
4168 is the block containing the code to manipulate. DEST_EDGE is an
4169 edge representing a jump to the join block; after the conversion,
4170 TEST_BB should be branching to its destination.
4171 REVERSEP is true if the sense of the branch should be reversed. */
4174 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
4175 basic_block other_bb
, edge dest_edge
, int reversep
)
4177 basic_block new_dest
= dest_edge
->dest
;
4178 rtx_insn
*head
, *end
, *jump
;
4179 rtx_insn
*earliest
= NULL
;
4181 bitmap merge_set
= NULL
;
4182 /* Number of pending changes. */
4183 int n_validated_changes
= 0;
4184 rtx new_dest_label
= NULL_RTX
;
4186 jump
= BB_END (test_bb
);
4188 /* Find the extent of the real code in the merge block. */
4189 head
= BB_HEAD (merge_bb
);
4190 end
= BB_END (merge_bb
);
4192 while (DEBUG_INSN_P (end
) && end
!= head
)
4193 end
= PREV_INSN (end
);
4195 /* If merge_bb ends with a tablejump, predicating/moving insn's
4196 into test_bb and then deleting merge_bb will result in the jumptable
4197 that follows merge_bb being removed along with merge_bb and then we
4198 get an unresolved reference to the jumptable. */
4199 if (tablejump_p (end
, NULL
, NULL
))
4203 head
= NEXT_INSN (head
);
4204 while (DEBUG_INSN_P (head
) && head
!= end
)
4205 head
= NEXT_INSN (head
);
4213 head
= NEXT_INSN (head
);
4214 while (DEBUG_INSN_P (head
) && head
!= end
)
4215 head
= NEXT_INSN (head
);
4220 if (!onlyjump_p (end
))
4227 end
= PREV_INSN (end
);
4228 while (DEBUG_INSN_P (end
) && end
!= head
)
4229 end
= PREV_INSN (end
);
4232 /* Don't move frame-related insn across the conditional branch. This
4233 can lead to one of the paths of the branch having wrong unwind info. */
4234 if (epilogue_completed
)
4236 rtx_insn
*insn
= head
;
4239 if (INSN_P (insn
) && RTX_FRAME_RELATED_P (insn
))
4243 insn
= NEXT_INSN (insn
);
4247 /* Disable handling dead code by conditional execution if the machine needs
4248 to do anything funny with the tests, etc. */
4249 #ifndef IFCVT_MODIFY_TESTS
4250 if (targetm
.have_conditional_execution ())
4252 /* In the conditional execution case, we have things easy. We know
4253 the condition is reversible. We don't have to check life info
4254 because we're going to conditionally execute the code anyway.
4255 All that's left is making sure the insns involved can actually
4260 cond
= cond_exec_get_condition (jump
);
4264 rtx note
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
4265 int prob_val
= (note
? XINT (note
, 0) : -1);
4269 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
4272 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
4275 prob_val
= REG_BR_PROB_BASE
- prob_val
;
4278 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
4279 && verify_changes (0))
4280 n_validated_changes
= num_validated_changes ();
4288 /* If we allocated new pseudos (e.g. in the conditional move
4289 expander called from noce_emit_cmove), we must resize the
4291 if (max_regno
< max_reg_num ())
4292 max_regno
= max_reg_num ();
4294 /* Try the NCE path if the CE path did not result in any changes. */
4295 if (n_validated_changes
== 0)
4302 /* In the non-conditional execution case, we have to verify that there
4303 are no trapping operations, no calls, no references to memory, and
4304 that any registers modified are dead at the branch site. */
4306 if (!any_condjump_p (jump
))
4309 /* Find the extent of the conditional. */
4310 cond
= noce_get_condition (jump
, &earliest
, false);
4314 live
= BITMAP_ALLOC (®_obstack
);
4315 simulate_backwards_to_point (merge_bb
, live
, end
);
4316 success
= can_move_insns_across (head
, end
, earliest
, jump
,
4318 df_get_live_in (other_bb
), NULL
);
4323 /* Collect the set of registers set in MERGE_BB. */
4324 merge_set
= BITMAP_ALLOC (®_obstack
);
4326 FOR_BB_INSNS (merge_bb
, insn
)
4327 if (NONDEBUG_INSN_P (insn
))
4328 df_simulate_find_defs (insn
, merge_set
);
4330 /* If shrink-wrapping, disable this optimization when test_bb is
4331 the first basic block and merge_bb exits. The idea is to not
4332 move code setting up a return register as that may clobber a
4333 register used to pass function parameters, which then must be
4334 saved in caller-saved regs. A caller-saved reg requires the
4335 prologue, killing a shrink-wrap opportunity. */
4336 if ((SHRINK_WRAPPING_ENABLED
&& !epilogue_completed
)
4337 && ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
== test_bb
4338 && single_succ_p (new_dest
)
4339 && single_succ (new_dest
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
4340 && bitmap_intersect_p (df_get_live_in (new_dest
), merge_set
))
4345 return_regs
= BITMAP_ALLOC (®_obstack
);
4347 /* Start off with the intersection of regs used to pass
4348 params and regs used to return values. */
4349 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4350 if (FUNCTION_ARG_REGNO_P (i
)
4351 && targetm
.calls
.function_value_regno_p (i
))
4352 bitmap_set_bit (return_regs
, INCOMING_REGNO (i
));
4354 bitmap_and_into (return_regs
,
4355 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
4356 bitmap_and_into (return_regs
,
4357 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun
)));
4358 if (!bitmap_empty_p (return_regs
))
4360 FOR_BB_INSNS_REVERSE (new_dest
, insn
)
4361 if (NONDEBUG_INSN_P (insn
))
4365 /* If this insn sets any reg in return_regs, add all
4366 reg uses to the set of regs we're interested in. */
4367 FOR_EACH_INSN_DEF (def
, insn
)
4368 if (bitmap_bit_p (return_regs
, DF_REF_REGNO (def
)))
4370 df_simulate_uses (insn
, return_regs
);
4374 if (bitmap_intersect_p (merge_set
, return_regs
))
4376 BITMAP_FREE (return_regs
);
4377 BITMAP_FREE (merge_set
);
4381 BITMAP_FREE (return_regs
);
4386 /* We don't want to use normal invert_jump or redirect_jump because
4387 we don't want to delete_insn called. Also, we want to do our own
4388 change group management. */
4390 old_dest
= JUMP_LABEL (jump
);
4391 if (other_bb
!= new_dest
)
4393 if (!any_condjump_p (jump
))
4396 if (JUMP_P (BB_END (dest_edge
->src
)))
4397 new_dest_label
= JUMP_LABEL (BB_END (dest_edge
->src
));
4398 else if (new_dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4399 new_dest_label
= ret_rtx
;
4401 new_dest_label
= block_label (new_dest
);
4404 ? ! invert_jump_1 (jump
, new_dest_label
)
4405 : ! redirect_jump_1 (jump
, new_dest_label
))
4409 if (verify_changes (n_validated_changes
))
4410 confirm_change_group ();
4414 if (other_bb
!= new_dest
)
4416 redirect_jump_2 (jump
, old_dest
, new_dest_label
, 0, reversep
);
4418 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
4421 gcov_type count
, probability
;
4422 count
= BRANCH_EDGE (test_bb
)->count
;
4423 BRANCH_EDGE (test_bb
)->count
= FALLTHRU_EDGE (test_bb
)->count
;
4424 FALLTHRU_EDGE (test_bb
)->count
= count
;
4425 probability
= BRANCH_EDGE (test_bb
)->probability
;
4426 BRANCH_EDGE (test_bb
)->probability
4427 = FALLTHRU_EDGE (test_bb
)->probability
;
4428 FALLTHRU_EDGE (test_bb
)->probability
= probability
;
4429 update_br_prob_note (test_bb
);
4433 /* Move the insns out of MERGE_BB to before the branch. */
4438 if (end
== BB_END (merge_bb
))
4439 BB_END (merge_bb
) = PREV_INSN (head
);
4441 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4442 notes being moved might become invalid. */
4448 if (! INSN_P (insn
))
4450 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
4453 remove_note (insn
, note
);
4454 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
4456 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4457 notes referring to the registers being set might become invalid. */
4463 EXECUTE_IF_SET_IN_BITMAP (merge_set
, 0, i
, bi
)
4464 remove_reg_equal_equiv_notes_for_regno (i
);
4466 BITMAP_FREE (merge_set
);
4469 reorder_insns (head
, end
, PREV_INSN (earliest
));
4472 /* Remove the jump and edge if we can. */
4473 if (other_bb
== new_dest
)
4476 remove_edge (BRANCH_EDGE (test_bb
));
4477 /* ??? Can't merge blocks here, as then_bb is still in use.
4478 At minimum, the merge will get done just before bb-reorder. */
4487 BITMAP_FREE (merge_set
);
4492 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4493 we are after combine pass. */
4496 if_convert (bool after_combine
)
4503 df_live_add_problem ();
4504 df_live_set_all_dirty ();
4507 /* Record whether we are after combine pass. */
4508 ifcvt_after_combine
= after_combine
;
4509 num_possible_if_blocks
= 0;
4510 num_updated_if_blocks
= 0;
4511 num_true_changes
= 0;
4513 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4514 mark_loop_exit_edges ();
4515 loop_optimizer_finalize ();
4516 free_dominance_info (CDI_DOMINATORS
);
4518 /* Compute postdominators. */
4519 calculate_dominance_info (CDI_POST_DOMINATORS
);
4521 df_set_flags (DF_LR_RUN_DCE
);
4523 /* Go through each of the basic blocks looking for things to convert. If we
4524 have conditional execution, we make multiple passes to allow us to handle
4525 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4530 /* Only need to do dce on the first pass. */
4531 df_clear_flags (DF_LR_RUN_DCE
);
4532 cond_exec_changed_p
= FALSE
;
4535 #ifdef IFCVT_MULTIPLE_DUMPS
4536 if (dump_file
&& pass
> 1)
4537 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
4540 FOR_EACH_BB_FN (bb
, cfun
)
4543 while (!df_get_bb_dirty (bb
)
4544 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
4548 #ifdef IFCVT_MULTIPLE_DUMPS
4549 if (dump_file
&& cond_exec_changed_p
)
4550 print_rtl_with_bb (dump_file
, get_insns (), dump_flags
);
4553 while (cond_exec_changed_p
);
4555 #ifdef IFCVT_MULTIPLE_DUMPS
4557 fprintf (dump_file
, "\n\n========== no more changes\n");
4560 free_dominance_info (CDI_POST_DOMINATORS
);
4565 clear_aux_for_blocks ();
4567 /* If we allocated new pseudos, we must resize the array for sched1. */
4568 if (max_regno
< max_reg_num ())
4569 max_regno
= max_reg_num ();
4571 /* Write the final stats. */
4572 if (dump_file
&& num_possible_if_blocks
> 0)
4575 "\n%d possible IF blocks searched.\n",
4576 num_possible_if_blocks
);
4578 "%d IF blocks converted.\n",
4579 num_updated_if_blocks
);
4581 "%d true changes made.\n\n\n",
4586 df_remove_problem (df_live
);
4588 #ifdef ENABLE_CHECKING
4589 verify_flow_info ();
4593 /* If-conversion and CFG cleanup. */
4595 rest_of_handle_if_conversion (void)
4597 if (flag_if_conversion
)
4601 dump_reg_info (dump_file
);
4602 dump_flow_info (dump_file
, dump_flags
);
4604 cleanup_cfg (CLEANUP_EXPENSIVE
);
4614 const pass_data pass_data_rtl_ifcvt
=
4616 RTL_PASS
, /* type */
4618 OPTGROUP_NONE
, /* optinfo_flags */
4619 TV_IFCVT
, /* tv_id */
4620 0, /* properties_required */
4621 0, /* properties_provided */
4622 0, /* properties_destroyed */
4623 0, /* todo_flags_start */
4624 TODO_df_finish
, /* todo_flags_finish */
4627 class pass_rtl_ifcvt
: public rtl_opt_pass
4630 pass_rtl_ifcvt (gcc::context
*ctxt
)
4631 : rtl_opt_pass (pass_data_rtl_ifcvt
, ctxt
)
4634 /* opt_pass methods: */
4635 virtual bool gate (function
*)
4637 return (optimize
> 0) && dbg_cnt (if_conversion
);
4640 virtual unsigned int execute (function
*)
4642 return rest_of_handle_if_conversion ();
4645 }; // class pass_rtl_ifcvt
4650 make_pass_rtl_ifcvt (gcc::context
*ctxt
)
4652 return new pass_rtl_ifcvt (ctxt
);
4656 /* Rerun if-conversion, as combine may have simplified things enough
4657 to now meet sequence length restrictions. */
4661 const pass_data pass_data_if_after_combine
=
4663 RTL_PASS
, /* type */
4665 OPTGROUP_NONE
, /* optinfo_flags */
4666 TV_IFCVT
, /* tv_id */
4667 0, /* properties_required */
4668 0, /* properties_provided */
4669 0, /* properties_destroyed */
4670 0, /* todo_flags_start */
4671 TODO_df_finish
, /* todo_flags_finish */
4674 class pass_if_after_combine
: public rtl_opt_pass
4677 pass_if_after_combine (gcc::context
*ctxt
)
4678 : rtl_opt_pass (pass_data_if_after_combine
, ctxt
)
4681 /* opt_pass methods: */
4682 virtual bool gate (function
*)
4684 return optimize
> 0 && flag_if_conversion
4685 && dbg_cnt (if_after_combine
);
4688 virtual unsigned int execute (function
*)
4694 }; // class pass_if_after_combine
4699 make_pass_if_after_combine (gcc::context
*ctxt
)
4701 return new pass_if_after_combine (ctxt
);
4707 const pass_data pass_data_if_after_reload
=
4709 RTL_PASS
, /* type */
4711 OPTGROUP_NONE
, /* optinfo_flags */
4712 TV_IFCVT2
, /* tv_id */
4713 0, /* properties_required */
4714 0, /* properties_provided */
4715 0, /* properties_destroyed */
4716 0, /* todo_flags_start */
4717 TODO_df_finish
, /* todo_flags_finish */
4720 class pass_if_after_reload
: public rtl_opt_pass
4723 pass_if_after_reload (gcc::context
*ctxt
)
4724 : rtl_opt_pass (pass_data_if_after_reload
, ctxt
)
4727 /* opt_pass methods: */
4728 virtual bool gate (function
*)
4730 return optimize
> 0 && flag_if_conversion2
4731 && dbg_cnt (if_after_reload
);
4734 virtual unsigned int execute (function
*)
4740 }; // class pass_if_after_reload
4745 make_pass_if_after_reload (gcc::context
*ctxt
)
4747 return new pass_if_after_reload (ctxt
);