* config/i386/i386.md (fmodxf3): Enable for flag_finite_math_only only.
[official-gcc.git] / gcc / predict.c
blobb5556db1839bf452a3bc179cf8266aedcb994c37
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "hash-map.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 static void combine_predictions_for_insn (rtx_insn *, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const rtx_insn *);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (struct function *fun, int freq)
116 struct cgraph_node *node = cgraph_node::get (fun->decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
128 return false;
129 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
130 return false;
131 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
132 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
133 return false;
134 return true;
137 static gcov_type min_count = -1;
139 /* Determine the threshold for hot BB counts. */
141 gcov_type
142 get_hot_bb_threshold ()
144 gcov_working_set_t *ws;
145 if (min_count == -1)
147 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
148 gcc_assert (ws);
149 min_count = ws->min_counter;
151 return min_count;
154 /* Set the threshold for hot BB counts. */
156 void
157 set_hot_bb_threshold (gcov_type min)
159 min_count = min;
162 /* Return TRUE if frequency FREQ is considered to be hot. */
164 static inline bool
165 maybe_hot_count_p (struct function *fun, gcov_type count)
167 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
168 return true;
169 /* Code executed at most once is not hot. */
170 if (profile_info->runs >= count)
171 return false;
172 return (count >= get_hot_bb_threshold ());
175 /* Return true in case BB can be CPU intensive and should be optimized
176 for maximal performance. */
178 bool
179 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 gcc_checking_assert (fun);
182 if (profile_status_for_fn (fun) == PROFILE_READ)
183 return maybe_hot_count_p (fun, bb->count);
184 return maybe_hot_frequency_p (fun, bb->frequency);
187 /* Return true if the call can be hot. */
189 bool
190 cgraph_edge::maybe_hot_p (void)
192 if (profile_info && flag_branch_probabilities
193 && !maybe_hot_count_p (NULL, count))
194 return false;
195 if (caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
196 || (callee
197 && callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
198 return false;
199 if (caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
200 && (callee
201 && callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
202 return false;
203 if (optimize_size)
204 return false;
205 if (caller->frequency == NODE_FREQUENCY_HOT)
206 return true;
207 if (caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
208 && frequency < CGRAPH_FREQ_BASE * 3 / 2)
209 return false;
210 if (flag_guess_branch_prob)
212 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
213 || frequency <= (CGRAPH_FREQ_BASE
214 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
215 return false;
217 return true;
220 /* Return true in case BB can be CPU intensive and should be optimized
221 for maximal performance. */
223 bool
224 maybe_hot_edge_p (edge e)
226 if (profile_status_for_fn (cfun) == PROFILE_READ)
227 return maybe_hot_count_p (cfun, e->count);
228 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
233 /* Return true if profile COUNT and FREQUENCY, or function FUN static
234 node frequency reflects never being executed. */
236 static bool
237 probably_never_executed (struct function *fun,
238 gcov_type count, int frequency)
240 gcc_checking_assert (fun);
241 if (profile_status_for_fn (cfun) == PROFILE_READ)
243 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
244 if (count * unlikely_count_fraction >= profile_info->runs)
245 return false;
246 if (!frequency)
247 return true;
248 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
249 return false;
250 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
252 gcov_type computed_count;
253 /* Check for possibility of overflow, in which case entry bb count
254 is large enough to do the division first without losing much
255 precision. */
256 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
257 REG_BR_PROB_BASE)
259 gcov_type scaled_count
260 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
261 unlikely_count_fraction;
262 computed_count = RDIV (scaled_count,
263 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
265 else
267 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
268 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
269 computed_count *= frequency * unlikely_count_fraction;
271 if (computed_count >= profile_info->runs)
272 return false;
274 return true;
276 if ((!profile_info || !flag_branch_probabilities)
277 && (cgraph_node::get (fun->decl)->frequency
278 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
279 return true;
280 return false;
284 /* Return true in case BB is probably never executed. */
286 bool
287 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
289 return probably_never_executed (fun, bb->count, bb->frequency);
293 /* Return true in case edge E is probably never executed. */
295 bool
296 probably_never_executed_edge_p (struct function *fun, edge e)
298 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
301 /* Return true if function should be optimized for size. */
303 bool
304 cgraph_node::optimize_for_size_p (void)
306 if (optimize_size)
307 return true;
308 if (frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
309 return true;
310 else
311 return false;
314 /* Return true when current function should always be optimized for size. */
316 bool
317 optimize_function_for_size_p (struct function *fun)
319 if (optimize_size)
320 return true;
321 if (!fun || !fun->decl)
322 return false;
324 cgraph_node *n = cgraph_node::get (fun->decl);
325 return n && n->optimize_for_size_p ();
328 /* Return true when current function should always be optimized for speed. */
330 bool
331 optimize_function_for_speed_p (struct function *fun)
333 return !optimize_function_for_size_p (fun);
336 /* Return TRUE when BB should be optimized for size. */
338 bool
339 optimize_bb_for_size_p (const_basic_block bb)
341 return (optimize_function_for_size_p (cfun)
342 || (bb && !maybe_hot_bb_p (cfun, bb)));
345 /* Return TRUE when BB should be optimized for speed. */
347 bool
348 optimize_bb_for_speed_p (const_basic_block bb)
350 return !optimize_bb_for_size_p (bb);
353 /* Return TRUE when BB should be optimized for size. */
355 bool
356 optimize_edge_for_size_p (edge e)
358 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
361 /* Return TRUE when BB should be optimized for speed. */
363 bool
364 optimize_edge_for_speed_p (edge e)
366 return !optimize_edge_for_size_p (e);
369 /* Return TRUE when BB should be optimized for size. */
371 bool
372 optimize_insn_for_size_p (void)
374 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
377 /* Return TRUE when BB should be optimized for speed. */
379 bool
380 optimize_insn_for_speed_p (void)
382 return !optimize_insn_for_size_p ();
385 /* Return TRUE when LOOP should be optimized for size. */
387 bool
388 optimize_loop_for_size_p (struct loop *loop)
390 return optimize_bb_for_size_p (loop->header);
393 /* Return TRUE when LOOP should be optimized for speed. */
395 bool
396 optimize_loop_for_speed_p (struct loop *loop)
398 return optimize_bb_for_speed_p (loop->header);
401 /* Return TRUE when LOOP nest should be optimized for speed. */
403 bool
404 optimize_loop_nest_for_speed_p (struct loop *loop)
406 struct loop *l = loop;
407 if (optimize_loop_for_speed_p (loop))
408 return true;
409 l = loop->inner;
410 while (l && l != loop)
412 if (optimize_loop_for_speed_p (l))
413 return true;
414 if (l->inner)
415 l = l->inner;
416 else if (l->next)
417 l = l->next;
418 else
420 while (l != loop && !l->next)
421 l = loop_outer (l);
422 if (l != loop)
423 l = l->next;
426 return false;
429 /* Return TRUE when LOOP nest should be optimized for size. */
431 bool
432 optimize_loop_nest_for_size_p (struct loop *loop)
434 return !optimize_loop_nest_for_speed_p (loop);
437 /* Return true when edge E is likely to be well predictable by branch
438 predictor. */
440 bool
441 predictable_edge_p (edge e)
443 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
444 return false;
445 if ((e->probability
446 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
447 || (REG_BR_PROB_BASE - e->probability
448 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
449 return true;
450 return false;
454 /* Set RTL expansion for BB profile. */
456 void
457 rtl_profile_for_bb (basic_block bb)
459 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
462 /* Set RTL expansion for edge profile. */
464 void
465 rtl_profile_for_edge (edge e)
467 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
470 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
471 void
472 default_rtl_profile (void)
474 crtl->maybe_hot_insn_p = true;
477 /* Return true if the one of outgoing edges is already predicted by
478 PREDICTOR. */
480 bool
481 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
483 rtx note;
484 if (!INSN_P (BB_END (bb)))
485 return false;
486 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
487 if (REG_NOTE_KIND (note) == REG_BR_PRED
488 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
489 return true;
490 return false;
493 /* Structure representing predictions in tree level. */
495 struct edge_prediction {
496 struct edge_prediction *ep_next;
497 edge ep_edge;
498 enum br_predictor ep_predictor;
499 int ep_probability;
502 /* This map contains for a basic block the list of predictions for the
503 outgoing edges. */
505 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
507 /* Return true if the one of outgoing edges is already predicted by
508 PREDICTOR. */
510 bool
511 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
513 struct edge_prediction *i;
514 edge_prediction **preds = bb_predictions->get (bb);
516 if (!preds)
517 return false;
519 for (i = *preds; i; i = i->ep_next)
520 if (i->ep_predictor == predictor)
521 return true;
522 return false;
525 /* Return true when the probability of edge is reliable.
527 The profile guessing code is good at predicting branch outcome (ie.
528 taken/not taken), that is predicted right slightly over 75% of time.
529 It is however notoriously poor on predicting the probability itself.
530 In general the profile appear a lot flatter (with probabilities closer
531 to 50%) than the reality so it is bad idea to use it to drive optimization
532 such as those disabling dynamic branch prediction for well predictable
533 branches.
535 There are two exceptions - edges leading to noreturn edges and edges
536 predicted by number of iterations heuristics are predicted well. This macro
537 should be able to distinguish those, but at the moment it simply check for
538 noreturn heuristic that is only one giving probability over 99% or bellow
539 1%. In future we might want to propagate reliability information across the
540 CFG if we find this information useful on multiple places. */
541 static bool
542 probability_reliable_p (int prob)
544 return (profile_status_for_fn (cfun) == PROFILE_READ
545 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
546 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
549 /* Same predicate as above, working on edges. */
550 bool
551 edge_probability_reliable_p (const_edge e)
553 return probability_reliable_p (e->probability);
556 /* Same predicate as edge_probability_reliable_p, working on notes. */
557 bool
558 br_prob_note_reliable_p (const_rtx note)
560 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
561 return probability_reliable_p (XINT (note, 0));
564 static void
565 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
567 gcc_assert (any_condjump_p (insn));
568 if (!flag_guess_branch_prob)
569 return;
571 add_reg_note (insn, REG_BR_PRED,
572 gen_rtx_CONCAT (VOIDmode,
573 GEN_INT ((int) predictor),
574 GEN_INT ((int) probability)));
577 /* Predict insn by given predictor. */
579 void
580 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
581 enum prediction taken)
583 int probability = predictor_info[(int) predictor].hitrate;
585 if (taken != TAKEN)
586 probability = REG_BR_PROB_BASE - probability;
588 predict_insn (insn, predictor, probability);
591 /* Predict edge E with given probability if possible. */
593 void
594 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
596 rtx_insn *last_insn;
597 last_insn = BB_END (e->src);
599 /* We can store the branch prediction information only about
600 conditional jumps. */
601 if (!any_condjump_p (last_insn))
602 return;
604 /* We always store probability of branching. */
605 if (e->flags & EDGE_FALLTHRU)
606 probability = REG_BR_PROB_BASE - probability;
608 predict_insn (last_insn, predictor, probability);
611 /* Predict edge E with the given PROBABILITY. */
612 void
613 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
615 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
616 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
618 && flag_guess_branch_prob && optimize)
620 struct edge_prediction *i = XNEW (struct edge_prediction);
621 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
623 i->ep_next = preds;
624 preds = i;
625 i->ep_probability = probability;
626 i->ep_predictor = predictor;
627 i->ep_edge = e;
631 /* Remove all predictions on given basic block that are attached
632 to edge E. */
633 void
634 remove_predictions_associated_with_edge (edge e)
636 if (!bb_predictions)
637 return;
639 edge_prediction **preds = bb_predictions->get (e->src);
641 if (preds)
643 struct edge_prediction **prediction = preds;
644 struct edge_prediction *next;
646 while (*prediction)
648 if ((*prediction)->ep_edge == e)
650 next = (*prediction)->ep_next;
651 free (*prediction);
652 *prediction = next;
654 else
655 prediction = &((*prediction)->ep_next);
660 /* Clears the list of predictions stored for BB. */
662 static void
663 clear_bb_predictions (basic_block bb)
665 edge_prediction **preds = bb_predictions->get (bb);
666 struct edge_prediction *pred, *next;
668 if (!preds)
669 return;
671 for (pred = *preds; pred; pred = next)
673 next = pred->ep_next;
674 free (pred);
676 *preds = NULL;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
682 static bool
683 can_predict_insn_p (const rtx_insn *insn)
685 return (JUMP_P (insn)
686 && any_condjump_p (insn)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
690 /* Predict edge E by given predictor if possible. */
692 void
693 predict_edge_def (edge e, enum br_predictor predictor,
694 enum prediction taken)
696 int probability = predictor_info[(int) predictor].hitrate;
698 if (taken != TAKEN)
699 probability = REG_BR_PROB_BASE - probability;
701 predict_edge (e, predictor, probability);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
707 void
708 invert_br_probabilities (rtx insn)
710 rtx note;
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_BR_PROB)
714 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
715 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
716 XEXP (XEXP (note, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
722 static void
723 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
724 basic_block bb, int used)
726 edge e;
727 edge_iterator ei;
729 if (!file)
730 return;
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (! (e->flags & EDGE_FALLTHRU))
734 break;
736 fprintf (file, " %s heuristics%s: %.1f%%",
737 predictor_info[predictor].name,
738 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740 if (bb->count)
742 fprintf (file, " exec %"PRId64, bb->count);
743 if (e)
745 fprintf (file, " hit %"PRId64, e->count);
746 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
750 fprintf (file, "\n");
753 /* We can not predict the probabilities of outgoing edges of bb. Set them
754 evenly and hope for the best. */
755 static void
756 set_even_probabilities (basic_block bb)
758 int nedges = 0;
759 edge e;
760 edge_iterator ei;
762 FOR_EACH_EDGE (e, ei, bb->succs)
763 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
764 nedges ++;
765 FOR_EACH_EDGE (e, ei, bb->succs)
766 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
767 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
768 else
769 e->probability = 0;
772 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
773 note if not already present. Remove now useless REG_BR_PRED notes. */
775 static void
776 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
778 rtx prob_note;
779 rtx *pnote;
780 rtx note;
781 int best_probability = PROB_EVEN;
782 enum br_predictor best_predictor = END_PREDICTORS;
783 int combined_probability = REG_BR_PROB_BASE / 2;
784 int d;
785 bool first_match = false;
786 bool found = false;
788 if (!can_predict_insn_p (insn))
790 set_even_probabilities (bb);
791 return;
794 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
795 pnote = &REG_NOTES (insn);
796 if (dump_file)
797 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
798 bb->index);
800 /* We implement "first match" heuristics and use probability guessed
801 by predictor with smallest index. */
802 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
803 if (REG_NOTE_KIND (note) == REG_BR_PRED)
805 enum br_predictor predictor = ((enum br_predictor)
806 INTVAL (XEXP (XEXP (note, 0), 0)));
807 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
809 found = true;
810 if (best_predictor > predictor)
811 best_probability = probability, best_predictor = predictor;
813 d = (combined_probability * probability
814 + (REG_BR_PROB_BASE - combined_probability)
815 * (REG_BR_PROB_BASE - probability));
817 /* Use FP math to avoid overflows of 32bit integers. */
818 if (d == 0)
819 /* If one probability is 0% and one 100%, avoid division by zero. */
820 combined_probability = REG_BR_PROB_BASE / 2;
821 else
822 combined_probability = (((double) combined_probability) * probability
823 * REG_BR_PROB_BASE / d + 0.5);
826 /* Decide which heuristic to use. In case we didn't match anything,
827 use no_prediction heuristic, in case we did match, use either
828 first match or Dempster-Shaffer theory depending on the flags. */
830 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
831 first_match = true;
833 if (!found)
834 dump_prediction (dump_file, PRED_NO_PREDICTION,
835 combined_probability, bb, true);
836 else
838 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
839 bb, !first_match);
840 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
841 bb, first_match);
844 if (first_match)
845 combined_probability = best_probability;
846 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
848 while (*pnote)
850 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
852 enum br_predictor predictor = ((enum br_predictor)
853 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
854 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
856 dump_prediction (dump_file, predictor, probability, bb,
857 !first_match || best_predictor == predictor);
858 *pnote = XEXP (*pnote, 1);
860 else
861 pnote = &XEXP (*pnote, 1);
864 if (!prob_note)
866 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
868 /* Save the prediction into CFG in case we are seeing non-degenerated
869 conditional jump. */
870 if (!single_succ_p (bb))
872 BRANCH_EDGE (bb)->probability = combined_probability;
873 FALLTHRU_EDGE (bb)->probability
874 = REG_BR_PROB_BASE - combined_probability;
877 else if (!single_succ_p (bb))
879 int prob = XINT (prob_note, 0);
881 BRANCH_EDGE (bb)->probability = prob;
882 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
884 else
885 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
888 /* Combine predictions into single probability and store them into CFG.
889 Remove now useless prediction entries. */
891 static void
892 combine_predictions_for_bb (basic_block bb)
894 int best_probability = PROB_EVEN;
895 enum br_predictor best_predictor = END_PREDICTORS;
896 int combined_probability = REG_BR_PROB_BASE / 2;
897 int d;
898 bool first_match = false;
899 bool found = false;
900 struct edge_prediction *pred;
901 int nedges = 0;
902 edge e, first = NULL, second = NULL;
903 edge_iterator ei;
905 FOR_EACH_EDGE (e, ei, bb->succs)
906 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
908 nedges ++;
909 if (first && !second)
910 second = e;
911 if (!first)
912 first = e;
915 /* When there is no successor or only one choice, prediction is easy.
917 We are lazy for now and predict only basic blocks with two outgoing
918 edges. It is possible to predict generic case too, but we have to
919 ignore first match heuristics and do more involved combining. Implement
920 this later. */
921 if (nedges != 2)
923 if (!bb->count)
924 set_even_probabilities (bb);
925 clear_bb_predictions (bb);
926 if (dump_file)
927 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
928 nedges, bb->index);
929 return;
932 if (dump_file)
933 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
935 edge_prediction **preds = bb_predictions->get (bb);
936 if (preds)
938 /* We implement "first match" heuristics and use probability guessed
939 by predictor with smallest index. */
940 for (pred = *preds; pred; pred = pred->ep_next)
942 enum br_predictor predictor = pred->ep_predictor;
943 int probability = pred->ep_probability;
945 if (pred->ep_edge != first)
946 probability = REG_BR_PROB_BASE - probability;
948 found = true;
949 /* First match heuristics would be widly confused if we predicted
950 both directions. */
951 if (best_predictor > predictor)
953 struct edge_prediction *pred2;
954 int prob = probability;
956 for (pred2 = (struct edge_prediction *) *preds;
957 pred2; pred2 = pred2->ep_next)
958 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
960 int probability2 = pred->ep_probability;
962 if (pred2->ep_edge != first)
963 probability2 = REG_BR_PROB_BASE - probability2;
965 if ((probability < REG_BR_PROB_BASE / 2) !=
966 (probability2 < REG_BR_PROB_BASE / 2))
967 break;
969 /* If the same predictor later gave better result, go for it! */
970 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
971 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
972 prob = probability2;
974 if (!pred2)
975 best_probability = prob, best_predictor = predictor;
978 d = (combined_probability * probability
979 + (REG_BR_PROB_BASE - combined_probability)
980 * (REG_BR_PROB_BASE - probability));
982 /* Use FP math to avoid overflows of 32bit integers. */
983 if (d == 0)
984 /* If one probability is 0% and one 100%, avoid division by zero. */
985 combined_probability = REG_BR_PROB_BASE / 2;
986 else
987 combined_probability = (((double) combined_probability)
988 * probability
989 * REG_BR_PROB_BASE / d + 0.5);
993 /* Decide which heuristic to use. In case we didn't match anything,
994 use no_prediction heuristic, in case we did match, use either
995 first match or Dempster-Shaffer theory depending on the flags. */
997 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
998 first_match = true;
1000 if (!found)
1001 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1002 else
1004 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1005 !first_match);
1006 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1007 first_match);
1010 if (first_match)
1011 combined_probability = best_probability;
1012 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1014 if (preds)
1016 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1018 enum br_predictor predictor = pred->ep_predictor;
1019 int probability = pred->ep_probability;
1021 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1022 probability = REG_BR_PROB_BASE - probability;
1023 dump_prediction (dump_file, predictor, probability, bb,
1024 !first_match || best_predictor == predictor);
1027 clear_bb_predictions (bb);
1029 if (!bb->count)
1031 first->probability = combined_probability;
1032 second->probability = REG_BR_PROB_BASE - combined_probability;
1036 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1037 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1039 T1 and T2 should be one of the following cases:
1040 1. T1 is SSA_NAME, T2 is NULL
1041 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1042 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1044 static tree
1045 strips_small_constant (tree t1, tree t2)
1047 tree ret = NULL;
1048 int value = 0;
1050 if (!t1)
1051 return NULL;
1052 else if (TREE_CODE (t1) == SSA_NAME)
1053 ret = t1;
1054 else if (tree_fits_shwi_p (t1))
1055 value = tree_to_shwi (t1);
1056 else
1057 return NULL;
1059 if (!t2)
1060 return ret;
1061 else if (tree_fits_shwi_p (t2))
1062 value = tree_to_shwi (t2);
1063 else if (TREE_CODE (t2) == SSA_NAME)
1065 if (ret)
1066 return NULL;
1067 else
1068 ret = t2;
1071 if (value <= 4 && value >= -4)
1072 return ret;
1073 else
1074 return NULL;
1077 /* Return the SSA_NAME in T or T's operands.
1078 Return NULL if SSA_NAME cannot be found. */
1080 static tree
1081 get_base_value (tree t)
1083 if (TREE_CODE (t) == SSA_NAME)
1084 return t;
1086 if (!BINARY_CLASS_P (t))
1087 return NULL;
1089 switch (TREE_OPERAND_LENGTH (t))
1091 case 1:
1092 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1093 case 2:
1094 return strips_small_constant (TREE_OPERAND (t, 0),
1095 TREE_OPERAND (t, 1));
1096 default:
1097 return NULL;
1101 /* Check the compare STMT in LOOP. If it compares an induction
1102 variable to a loop invariant, return true, and save
1103 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1104 Otherwise return false and set LOOP_INVAIANT to NULL. */
1106 static bool
1107 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1108 tree *loop_invariant,
1109 enum tree_code *compare_code,
1110 tree *loop_step,
1111 tree *loop_iv_base)
1113 tree op0, op1, bound, base;
1114 affine_iv iv0, iv1;
1115 enum tree_code code;
1116 tree step;
1118 code = gimple_cond_code (stmt);
1119 *loop_invariant = NULL;
1121 switch (code)
1123 case GT_EXPR:
1124 case GE_EXPR:
1125 case NE_EXPR:
1126 case LT_EXPR:
1127 case LE_EXPR:
1128 case EQ_EXPR:
1129 break;
1131 default:
1132 return false;
1135 op0 = gimple_cond_lhs (stmt);
1136 op1 = gimple_cond_rhs (stmt);
1138 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1139 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1140 return false;
1141 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1142 return false;
1143 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1144 return false;
1145 if (TREE_CODE (iv0.step) != INTEGER_CST
1146 || TREE_CODE (iv1.step) != INTEGER_CST)
1147 return false;
1148 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1149 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1150 return false;
1152 if (integer_zerop (iv0.step))
1154 if (code != NE_EXPR && code != EQ_EXPR)
1155 code = invert_tree_comparison (code, false);
1156 bound = iv0.base;
1157 base = iv1.base;
1158 if (tree_fits_shwi_p (iv1.step))
1159 step = iv1.step;
1160 else
1161 return false;
1163 else
1165 bound = iv1.base;
1166 base = iv0.base;
1167 if (tree_fits_shwi_p (iv0.step))
1168 step = iv0.step;
1169 else
1170 return false;
1173 if (TREE_CODE (bound) != INTEGER_CST)
1174 bound = get_base_value (bound);
1175 if (!bound)
1176 return false;
1177 if (TREE_CODE (base) != INTEGER_CST)
1178 base = get_base_value (base);
1179 if (!base)
1180 return false;
1182 *loop_invariant = bound;
1183 *compare_code = code;
1184 *loop_step = step;
1185 *loop_iv_base = base;
1186 return true;
1189 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1191 static bool
1192 expr_coherent_p (tree t1, tree t2)
1194 gimple stmt;
1195 tree ssa_name_1 = NULL;
1196 tree ssa_name_2 = NULL;
1198 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1199 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1201 if (t1 == t2)
1202 return true;
1204 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1205 return true;
1206 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1207 return false;
1209 /* Check to see if t1 is expressed/defined with t2. */
1210 stmt = SSA_NAME_DEF_STMT (t1);
1211 gcc_assert (stmt != NULL);
1212 if (is_gimple_assign (stmt))
1214 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1215 if (ssa_name_1 && ssa_name_1 == t2)
1216 return true;
1219 /* Check to see if t2 is expressed/defined with t1. */
1220 stmt = SSA_NAME_DEF_STMT (t2);
1221 gcc_assert (stmt != NULL);
1222 if (is_gimple_assign (stmt))
1224 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1225 if (ssa_name_2 && ssa_name_2 == t1)
1226 return true;
1229 /* Compare if t1 and t2's def_stmts are identical. */
1230 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1231 return true;
1232 else
1233 return false;
1236 /* Predict branch probability of BB when BB contains a branch that compares
1237 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1238 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1240 E.g.
1241 for (int i = 0; i < bound; i++) {
1242 if (i < bound - 2)
1243 computation_1();
1244 else
1245 computation_2();
1248 In this loop, we will predict the branch inside the loop to be taken. */
1250 static void
1251 predict_iv_comparison (struct loop *loop, basic_block bb,
1252 tree loop_bound_var,
1253 tree loop_iv_base_var,
1254 enum tree_code loop_bound_code,
1255 int loop_bound_step)
1257 gimple stmt;
1258 tree compare_var, compare_base;
1259 enum tree_code compare_code;
1260 tree compare_step_var;
1261 edge then_edge;
1262 edge_iterator ei;
1264 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1265 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1266 || predicted_by_p (bb, PRED_LOOP_EXIT))
1267 return;
1269 stmt = last_stmt (bb);
1270 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1271 return;
1272 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1273 &compare_code,
1274 &compare_step_var,
1275 &compare_base))
1276 return;
1278 /* Find the taken edge. */
1279 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1280 if (then_edge->flags & EDGE_TRUE_VALUE)
1281 break;
1283 /* When comparing an IV to a loop invariant, NE is more likely to be
1284 taken while EQ is more likely to be not-taken. */
1285 if (compare_code == NE_EXPR)
1287 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1288 return;
1290 else if (compare_code == EQ_EXPR)
1292 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1293 return;
1296 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1297 return;
1299 /* If loop bound, base and compare bound are all constants, we can
1300 calculate the probability directly. */
1301 if (tree_fits_shwi_p (loop_bound_var)
1302 && tree_fits_shwi_p (compare_var)
1303 && tree_fits_shwi_p (compare_base))
1305 int probability;
1306 bool overflow, overall_overflow = false;
1307 widest_int compare_count, tem;
1309 /* (loop_bound - base) / compare_step */
1310 tem = wi::sub (wi::to_widest (loop_bound_var),
1311 wi::to_widest (compare_base), SIGNED, &overflow);
1312 overall_overflow |= overflow;
1313 widest_int loop_count = wi::div_trunc (tem,
1314 wi::to_widest (compare_step_var),
1315 SIGNED, &overflow);
1316 overall_overflow |= overflow;
1318 if (!wi::neg_p (wi::to_widest (compare_step_var))
1319 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1321 /* (loop_bound - compare_bound) / compare_step */
1322 tem = wi::sub (wi::to_widest (loop_bound_var),
1323 wi::to_widest (compare_var), SIGNED, &overflow);
1324 overall_overflow |= overflow;
1325 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1326 SIGNED, &overflow);
1327 overall_overflow |= overflow;
1329 else
1331 /* (compare_bound - base) / compare_step */
1332 tem = wi::sub (wi::to_widest (compare_var),
1333 wi::to_widest (compare_base), SIGNED, &overflow);
1334 overall_overflow |= overflow;
1335 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1336 SIGNED, &overflow);
1337 overall_overflow |= overflow;
1339 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1340 ++compare_count;
1341 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1342 ++loop_count;
1343 if (wi::neg_p (compare_count))
1344 compare_count = 0;
1345 if (wi::neg_p (loop_count))
1346 loop_count = 0;
1347 if (loop_count == 0)
1348 probability = 0;
1349 else if (wi::cmps (compare_count, loop_count) == 1)
1350 probability = REG_BR_PROB_BASE;
1351 else
1353 tem = compare_count * REG_BR_PROB_BASE;
1354 tem = wi::udiv_trunc (tem, loop_count);
1355 probability = tem.to_uhwi ();
1358 if (!overall_overflow)
1359 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1361 return;
1364 if (expr_coherent_p (loop_bound_var, compare_var))
1366 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1367 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1368 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1369 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1370 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1372 else if (loop_bound_code == NE_EXPR)
1374 /* If the loop backedge condition is "(i != bound)", we do
1375 the comparison based on the step of IV:
1376 * step < 0 : backedge condition is like (i > bound)
1377 * step > 0 : backedge condition is like (i < bound) */
1378 gcc_assert (loop_bound_step != 0);
1379 if (loop_bound_step > 0
1380 && (compare_code == LT_EXPR
1381 || compare_code == LE_EXPR))
1382 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1383 else if (loop_bound_step < 0
1384 && (compare_code == GT_EXPR
1385 || compare_code == GE_EXPR))
1386 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1387 else
1388 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1390 else
1391 /* The branch is predicted not-taken if loop_bound_code is
1392 opposite with compare_code. */
1393 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1395 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1397 /* For cases like:
1398 for (i = s; i < h; i++)
1399 if (i > s + 2) ....
1400 The branch should be predicted taken. */
1401 if (loop_bound_step > 0
1402 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1403 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1404 else if (loop_bound_step < 0
1405 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else
1408 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1412 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1413 exits are resulted from short-circuit conditions that will generate an
1414 if_tmp. E.g.:
1416 if (foo() || global > 10)
1417 break;
1419 This will be translated into:
1421 BB3:
1422 loop header...
1423 BB4:
1424 if foo() goto BB6 else goto BB5
1425 BB5:
1426 if global > 10 goto BB6 else goto BB7
1427 BB6:
1428 goto BB7
1429 BB7:
1430 iftmp = (PHI 0(BB5), 1(BB6))
1431 if iftmp == 1 goto BB8 else goto BB3
1432 BB8:
1433 outside of the loop...
1435 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1436 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1437 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1438 exits to predict them using PRED_LOOP_EXIT. */
1440 static void
1441 predict_extra_loop_exits (edge exit_edge)
1443 unsigned i;
1444 bool check_value_one;
1445 gimple phi_stmt;
1446 tree cmp_rhs, cmp_lhs;
1447 gimple cmp_stmt = last_stmt (exit_edge->src);
1449 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1450 return;
1451 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1452 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1453 if (!TREE_CONSTANT (cmp_rhs)
1454 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1455 return;
1456 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1457 return;
1459 /* If check_value_one is true, only the phi_args with value '1' will lead
1460 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1461 loop exit. */
1462 check_value_one = (((integer_onep (cmp_rhs))
1463 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1464 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1466 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1467 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1468 return;
1470 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1472 edge e1;
1473 edge_iterator ei;
1474 tree val = gimple_phi_arg_def (phi_stmt, i);
1475 edge e = gimple_phi_arg_edge (phi_stmt, i);
1477 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1478 continue;
1479 if ((check_value_one ^ integer_onep (val)) == 1)
1480 continue;
1481 if (EDGE_COUNT (e->src->succs) != 1)
1483 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1484 continue;
1487 FOR_EACH_EDGE (e1, ei, e->src->preds)
1488 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1492 /* Predict edge probabilities by exploiting loop structure. */
1494 static void
1495 predict_loops (void)
1497 struct loop *loop;
1499 /* Try to predict out blocks in a loop that are not part of a
1500 natural loop. */
1501 FOR_EACH_LOOP (loop, 0)
1503 basic_block bb, *bbs;
1504 unsigned j, n_exits;
1505 vec<edge> exits;
1506 struct tree_niter_desc niter_desc;
1507 edge ex;
1508 struct nb_iter_bound *nb_iter;
1509 enum tree_code loop_bound_code = ERROR_MARK;
1510 tree loop_bound_step = NULL;
1511 tree loop_bound_var = NULL;
1512 tree loop_iv_base = NULL;
1513 gimple stmt = NULL;
1515 exits = get_loop_exit_edges (loop);
1516 n_exits = exits.length ();
1517 if (!n_exits)
1519 exits.release ();
1520 continue;
1523 FOR_EACH_VEC_ELT (exits, j, ex)
1525 tree niter = NULL;
1526 HOST_WIDE_INT nitercst;
1527 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1528 int probability;
1529 enum br_predictor predictor;
1531 predict_extra_loop_exits (ex);
1533 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1534 niter = niter_desc.niter;
1535 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1536 niter = loop_niter_by_eval (loop, ex);
1538 if (TREE_CODE (niter) == INTEGER_CST)
1540 if (tree_fits_uhwi_p (niter)
1541 && max
1542 && compare_tree_int (niter, max - 1) == -1)
1543 nitercst = tree_to_uhwi (niter) + 1;
1544 else
1545 nitercst = max;
1546 predictor = PRED_LOOP_ITERATIONS;
1548 /* If we have just one exit and we can derive some information about
1549 the number of iterations of the loop from the statements inside
1550 the loop, use it to predict this exit. */
1551 else if (n_exits == 1)
1553 nitercst = estimated_stmt_executions_int (loop);
1554 if (nitercst < 0)
1555 continue;
1556 if (nitercst > max)
1557 nitercst = max;
1559 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1561 else
1562 continue;
1564 /* If the prediction for number of iterations is zero, do not
1565 predict the exit edges. */
1566 if (nitercst == 0)
1567 continue;
1569 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1570 predict_edge (ex, predictor, probability);
1572 exits.release ();
1574 /* Find information about loop bound variables. */
1575 for (nb_iter = loop->bounds; nb_iter;
1576 nb_iter = nb_iter->next)
1577 if (nb_iter->stmt
1578 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1580 stmt = nb_iter->stmt;
1581 break;
1583 if (!stmt && last_stmt (loop->header)
1584 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1585 stmt = last_stmt (loop->header);
1586 if (stmt)
1587 is_comparison_with_loop_invariant_p (stmt, loop,
1588 &loop_bound_var,
1589 &loop_bound_code,
1590 &loop_bound_step,
1591 &loop_iv_base);
1593 bbs = get_loop_body (loop);
1595 for (j = 0; j < loop->num_nodes; j++)
1597 int header_found = 0;
1598 edge e;
1599 edge_iterator ei;
1601 bb = bbs[j];
1603 /* Bypass loop heuristics on continue statement. These
1604 statements construct loops via "non-loop" constructs
1605 in the source language and are better to be handled
1606 separately. */
1607 if (predicted_by_p (bb, PRED_CONTINUE))
1608 continue;
1610 /* Loop branch heuristics - predict an edge back to a
1611 loop's head as taken. */
1612 if (bb == loop->latch)
1614 e = find_edge (loop->latch, loop->header);
1615 if (e)
1617 header_found = 1;
1618 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1622 /* Loop exit heuristics - predict an edge exiting the loop if the
1623 conditional has no loop header successors as not taken. */
1624 if (!header_found
1625 /* If we already used more reliable loop exit predictors, do not
1626 bother with PRED_LOOP_EXIT. */
1627 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1628 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1630 /* For loop with many exits we don't want to predict all exits
1631 with the pretty large probability, because if all exits are
1632 considered in row, the loop would be predicted to iterate
1633 almost never. The code to divide probability by number of
1634 exits is very rough. It should compute the number of exits
1635 taken in each patch through function (not the overall number
1636 of exits that might be a lot higher for loops with wide switch
1637 statements in them) and compute n-th square root.
1639 We limit the minimal probability by 2% to avoid
1640 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1641 as this was causing regression in perl benchmark containing such
1642 a wide loop. */
1644 int probability = ((REG_BR_PROB_BASE
1645 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1646 / n_exits);
1647 if (probability < HITRATE (2))
1648 probability = HITRATE (2);
1649 FOR_EACH_EDGE (e, ei, bb->succs)
1650 if (e->dest->index < NUM_FIXED_BLOCKS
1651 || !flow_bb_inside_loop_p (loop, e->dest))
1652 predict_edge (e, PRED_LOOP_EXIT, probability);
1654 if (loop_bound_var)
1655 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1656 loop_bound_code,
1657 tree_to_shwi (loop_bound_step));
1660 /* Free basic blocks from get_loop_body. */
1661 free (bbs);
1665 /* Attempt to predict probabilities of BB outgoing edges using local
1666 properties. */
1667 static void
1668 bb_estimate_probability_locally (basic_block bb)
1670 rtx_insn *last_insn = BB_END (bb);
1671 rtx cond;
1673 if (! can_predict_insn_p (last_insn))
1674 return;
1675 cond = get_condition (last_insn, NULL, false, false);
1676 if (! cond)
1677 return;
1679 /* Try "pointer heuristic."
1680 A comparison ptr == 0 is predicted as false.
1681 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1682 if (COMPARISON_P (cond)
1683 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1684 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1686 if (GET_CODE (cond) == EQ)
1687 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1688 else if (GET_CODE (cond) == NE)
1689 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1691 else
1693 /* Try "opcode heuristic."
1694 EQ tests are usually false and NE tests are usually true. Also,
1695 most quantities are positive, so we can make the appropriate guesses
1696 about signed comparisons against zero. */
1697 switch (GET_CODE (cond))
1699 case CONST_INT:
1700 /* Unconditional branch. */
1701 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1702 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1703 break;
1705 case EQ:
1706 case UNEQ:
1707 /* Floating point comparisons appears to behave in a very
1708 unpredictable way because of special role of = tests in
1709 FP code. */
1710 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1712 /* Comparisons with 0 are often used for booleans and there is
1713 nothing useful to predict about them. */
1714 else if (XEXP (cond, 1) == const0_rtx
1715 || XEXP (cond, 0) == const0_rtx)
1717 else
1718 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1719 break;
1721 case NE:
1722 case LTGT:
1723 /* Floating point comparisons appears to behave in a very
1724 unpredictable way because of special role of = tests in
1725 FP code. */
1726 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1728 /* Comparisons with 0 are often used for booleans and there is
1729 nothing useful to predict about them. */
1730 else if (XEXP (cond, 1) == const0_rtx
1731 || XEXP (cond, 0) == const0_rtx)
1733 else
1734 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1735 break;
1737 case ORDERED:
1738 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1739 break;
1741 case UNORDERED:
1742 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1743 break;
1745 case LE:
1746 case LT:
1747 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1748 || XEXP (cond, 1) == constm1_rtx)
1749 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1750 break;
1752 case GE:
1753 case GT:
1754 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1755 || XEXP (cond, 1) == constm1_rtx)
1756 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1757 break;
1759 default:
1760 break;
1764 /* Set edge->probability for each successor edge of BB. */
1765 void
1766 guess_outgoing_edge_probabilities (basic_block bb)
1768 bb_estimate_probability_locally (bb);
1769 combine_predictions_for_insn (BB_END (bb), bb);
1772 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1774 /* Helper function for expr_expected_value. */
1776 static tree
1777 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1778 tree op1, bitmap visited, enum br_predictor *predictor)
1780 gimple def;
1782 if (predictor)
1783 *predictor = PRED_UNCONDITIONAL;
1785 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1787 if (TREE_CONSTANT (op0))
1788 return op0;
1790 if (code != SSA_NAME)
1791 return NULL_TREE;
1793 def = SSA_NAME_DEF_STMT (op0);
1795 /* If we were already here, break the infinite cycle. */
1796 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1797 return NULL;
1799 if (gimple_code (def) == GIMPLE_PHI)
1801 /* All the arguments of the PHI node must have the same constant
1802 length. */
1803 int i, n = gimple_phi_num_args (def);
1804 tree val = NULL, new_val;
1806 for (i = 0; i < n; i++)
1808 tree arg = PHI_ARG_DEF (def, i);
1809 enum br_predictor predictor2;
1811 /* If this PHI has itself as an argument, we cannot
1812 determine the string length of this argument. However,
1813 if we can find an expected constant value for the other
1814 PHI args then we can still be sure that this is
1815 likely a constant. So be optimistic and just
1816 continue with the next argument. */
1817 if (arg == PHI_RESULT (def))
1818 continue;
1820 new_val = expr_expected_value (arg, visited, &predictor2);
1822 /* It is difficult to combine value predictors. Simply assume
1823 that later predictor is weaker and take its prediction. */
1824 if (predictor && *predictor < predictor2)
1825 *predictor = predictor2;
1826 if (!new_val)
1827 return NULL;
1828 if (!val)
1829 val = new_val;
1830 else if (!operand_equal_p (val, new_val, false))
1831 return NULL;
1833 return val;
1835 if (is_gimple_assign (def))
1837 if (gimple_assign_lhs (def) != op0)
1838 return NULL;
1840 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1841 gimple_assign_rhs1 (def),
1842 gimple_assign_rhs_code (def),
1843 gimple_assign_rhs2 (def),
1844 visited, predictor);
1847 if (is_gimple_call (def))
1849 tree decl = gimple_call_fndecl (def);
1850 if (!decl)
1852 if (gimple_call_internal_p (def)
1853 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1855 gcc_assert (gimple_call_num_args (def) == 3);
1856 tree val = gimple_call_arg (def, 0);
1857 if (TREE_CONSTANT (val))
1858 return val;
1859 if (predictor)
1861 tree val2 = gimple_call_arg (def, 2);
1862 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1863 && tree_fits_uhwi_p (val2)
1864 && tree_to_uhwi (val2) < END_PREDICTORS);
1865 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1867 return gimple_call_arg (def, 1);
1869 return NULL;
1871 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1872 switch (DECL_FUNCTION_CODE (decl))
1874 case BUILT_IN_EXPECT:
1876 tree val;
1877 if (gimple_call_num_args (def) != 2)
1878 return NULL;
1879 val = gimple_call_arg (def, 0);
1880 if (TREE_CONSTANT (val))
1881 return val;
1882 if (predictor)
1883 *predictor = PRED_BUILTIN_EXPECT;
1884 return gimple_call_arg (def, 1);
1887 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1888 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1889 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1890 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1892 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1894 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1897 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1898 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1899 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1900 /* Assume that any given atomic operation has low contention,
1901 and thus the compare-and-swap operation succeeds. */
1902 if (predictor)
1903 *predictor = PRED_COMPARE_AND_SWAP;
1904 return boolean_true_node;
1905 default:
1906 break;
1910 return NULL;
1913 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1915 tree res;
1916 enum br_predictor predictor2;
1917 op0 = expr_expected_value (op0, visited, predictor);
1918 if (!op0)
1919 return NULL;
1920 op1 = expr_expected_value (op1, visited, &predictor2);
1921 if (predictor && *predictor < predictor2)
1922 *predictor = predictor2;
1923 if (!op1)
1924 return NULL;
1925 res = fold_build2 (code, type, op0, op1);
1926 if (TREE_CONSTANT (res))
1927 return res;
1928 return NULL;
1930 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1932 tree res;
1933 op0 = expr_expected_value (op0, visited, predictor);
1934 if (!op0)
1935 return NULL;
1936 res = fold_build1 (code, type, op0);
1937 if (TREE_CONSTANT (res))
1938 return res;
1939 return NULL;
1941 return NULL;
1944 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1945 The function is used by builtin_expect branch predictor so the evidence
1946 must come from this construct and additional possible constant folding.
1948 We may want to implement more involved value guess (such as value range
1949 propagation based prediction), but such tricks shall go to new
1950 implementation. */
1952 static tree
1953 expr_expected_value (tree expr, bitmap visited,
1954 enum br_predictor *predictor)
1956 enum tree_code code;
1957 tree op0, op1;
1959 if (TREE_CONSTANT (expr))
1961 if (predictor)
1962 *predictor = PRED_UNCONDITIONAL;
1963 return expr;
1966 extract_ops_from_tree (expr, &code, &op0, &op1);
1967 return expr_expected_value_1 (TREE_TYPE (expr),
1968 op0, code, op1, visited, predictor);
1971 /* Predict using opcode of the last statement in basic block. */
1972 static void
1973 tree_predict_by_opcode (basic_block bb)
1975 gimple stmt = last_stmt (bb);
1976 edge then_edge;
1977 tree op0, op1;
1978 tree type;
1979 tree val;
1980 enum tree_code cmp;
1981 bitmap visited;
1982 edge_iterator ei;
1983 enum br_predictor predictor;
1985 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1986 return;
1987 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1988 if (then_edge->flags & EDGE_TRUE_VALUE)
1989 break;
1990 op0 = gimple_cond_lhs (stmt);
1991 op1 = gimple_cond_rhs (stmt);
1992 cmp = gimple_cond_code (stmt);
1993 type = TREE_TYPE (op0);
1994 visited = BITMAP_ALLOC (NULL);
1995 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1996 &predictor);
1997 BITMAP_FREE (visited);
1998 if (val && TREE_CODE (val) == INTEGER_CST)
2000 if (predictor == PRED_BUILTIN_EXPECT)
2002 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2004 gcc_assert (percent >= 0 && percent <= 100);
2005 if (integer_zerop (val))
2006 percent = 100 - percent;
2007 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2009 else
2010 predict_edge (then_edge, predictor,
2011 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2013 /* Try "pointer heuristic."
2014 A comparison ptr == 0 is predicted as false.
2015 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2016 if (POINTER_TYPE_P (type))
2018 if (cmp == EQ_EXPR)
2019 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2020 else if (cmp == NE_EXPR)
2021 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2023 else
2025 /* Try "opcode heuristic."
2026 EQ tests are usually false and NE tests are usually true. Also,
2027 most quantities are positive, so we can make the appropriate guesses
2028 about signed comparisons against zero. */
2029 switch (cmp)
2031 case EQ_EXPR:
2032 case UNEQ_EXPR:
2033 /* Floating point comparisons appears to behave in a very
2034 unpredictable way because of special role of = tests in
2035 FP code. */
2036 if (FLOAT_TYPE_P (type))
2038 /* Comparisons with 0 are often used for booleans and there is
2039 nothing useful to predict about them. */
2040 else if (integer_zerop (op0) || integer_zerop (op1))
2042 else
2043 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2044 break;
2046 case NE_EXPR:
2047 case LTGT_EXPR:
2048 /* Floating point comparisons appears to behave in a very
2049 unpredictable way because of special role of = tests in
2050 FP code. */
2051 if (FLOAT_TYPE_P (type))
2053 /* Comparisons with 0 are often used for booleans and there is
2054 nothing useful to predict about them. */
2055 else if (integer_zerop (op0)
2056 || integer_zerop (op1))
2058 else
2059 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2060 break;
2062 case ORDERED_EXPR:
2063 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2064 break;
2066 case UNORDERED_EXPR:
2067 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2068 break;
2070 case LE_EXPR:
2071 case LT_EXPR:
2072 if (integer_zerop (op1)
2073 || integer_onep (op1)
2074 || integer_all_onesp (op1)
2075 || real_zerop (op1)
2076 || real_onep (op1)
2077 || real_minus_onep (op1))
2078 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2079 break;
2081 case GE_EXPR:
2082 case GT_EXPR:
2083 if (integer_zerop (op1)
2084 || integer_onep (op1)
2085 || integer_all_onesp (op1)
2086 || real_zerop (op1)
2087 || real_onep (op1)
2088 || real_minus_onep (op1))
2089 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2090 break;
2092 default:
2093 break;
2097 /* Try to guess whether the value of return means error code. */
2099 static enum br_predictor
2100 return_prediction (tree val, enum prediction *prediction)
2102 /* VOID. */
2103 if (!val)
2104 return PRED_NO_PREDICTION;
2105 /* Different heuristics for pointers and scalars. */
2106 if (POINTER_TYPE_P (TREE_TYPE (val)))
2108 /* NULL is usually not returned. */
2109 if (integer_zerop (val))
2111 *prediction = NOT_TAKEN;
2112 return PRED_NULL_RETURN;
2115 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2117 /* Negative return values are often used to indicate
2118 errors. */
2119 if (TREE_CODE (val) == INTEGER_CST
2120 && tree_int_cst_sgn (val) < 0)
2122 *prediction = NOT_TAKEN;
2123 return PRED_NEGATIVE_RETURN;
2125 /* Constant return values seems to be commonly taken.
2126 Zero/one often represent booleans so exclude them from the
2127 heuristics. */
2128 if (TREE_CONSTANT (val)
2129 && (!integer_zerop (val) && !integer_onep (val)))
2131 *prediction = TAKEN;
2132 return PRED_CONST_RETURN;
2135 return PRED_NO_PREDICTION;
2138 /* Find the basic block with return expression and look up for possible
2139 return value trying to apply RETURN_PREDICTION heuristics. */
2140 static void
2141 apply_return_prediction (void)
2143 gimple return_stmt = NULL;
2144 tree return_val;
2145 edge e;
2146 gimple phi;
2147 int phi_num_args, i;
2148 enum br_predictor pred;
2149 enum prediction direction;
2150 edge_iterator ei;
2152 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2154 return_stmt = last_stmt (e->src);
2155 if (return_stmt
2156 && gimple_code (return_stmt) == GIMPLE_RETURN)
2157 break;
2159 if (!e)
2160 return;
2161 return_val = gimple_return_retval (return_stmt);
2162 if (!return_val)
2163 return;
2164 if (TREE_CODE (return_val) != SSA_NAME
2165 || !SSA_NAME_DEF_STMT (return_val)
2166 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2167 return;
2168 phi = SSA_NAME_DEF_STMT (return_val);
2169 phi_num_args = gimple_phi_num_args (phi);
2170 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2172 /* Avoid the degenerate case where all return values form the function
2173 belongs to same category (ie they are all positive constants)
2174 so we can hardly say something about them. */
2175 for (i = 1; i < phi_num_args; i++)
2176 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2177 break;
2178 if (i != phi_num_args)
2179 for (i = 0; i < phi_num_args; i++)
2181 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2182 if (pred != PRED_NO_PREDICTION)
2183 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2184 direction);
2188 /* Look for basic block that contains unlikely to happen events
2189 (such as noreturn calls) and mark all paths leading to execution
2190 of this basic blocks as unlikely. */
2192 static void
2193 tree_bb_level_predictions (void)
2195 basic_block bb;
2196 bool has_return_edges = false;
2197 edge e;
2198 edge_iterator ei;
2200 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2201 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2203 has_return_edges = true;
2204 break;
2207 apply_return_prediction ();
2209 FOR_EACH_BB_FN (bb, cfun)
2211 gimple_stmt_iterator gsi;
2213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2215 gimple stmt = gsi_stmt (gsi);
2216 tree decl;
2218 if (is_gimple_call (stmt))
2220 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2221 && has_return_edges)
2222 predict_paths_leading_to (bb, PRED_NORETURN,
2223 NOT_TAKEN);
2224 decl = gimple_call_fndecl (stmt);
2225 if (decl
2226 && lookup_attribute ("cold",
2227 DECL_ATTRIBUTES (decl)))
2228 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2229 NOT_TAKEN);
2231 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2233 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2234 gimple_predict_outcome (stmt));
2235 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2236 hints to callers. */
2242 #ifdef ENABLE_CHECKING
2244 /* Callback for hash_map::traverse, asserts that the pointer map is
2245 empty. */
2247 bool
2248 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2249 void *)
2251 gcc_assert (!value);
2252 return false;
2254 #endif
2256 /* Predict branch probabilities and estimate profile for basic block BB. */
2258 static void
2259 tree_estimate_probability_bb (basic_block bb)
2261 edge e;
2262 edge_iterator ei;
2263 gimple last;
2265 FOR_EACH_EDGE (e, ei, bb->succs)
2267 /* Predict edges to user labels with attributes. */
2268 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2270 gimple_stmt_iterator gi;
2271 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2273 gimple stmt = gsi_stmt (gi);
2274 tree decl;
2276 if (gimple_code (stmt) != GIMPLE_LABEL)
2277 break;
2278 decl = gimple_label_label (stmt);
2279 if (DECL_ARTIFICIAL (decl))
2280 continue;
2282 /* Finally, we have a user-defined label. */
2283 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2284 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2285 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2286 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2290 /* Predict early returns to be probable, as we've already taken
2291 care for error returns and other cases are often used for
2292 fast paths through function.
2294 Since we've already removed the return statements, we are
2295 looking for CFG like:
2297 if (conditional)
2300 goto return_block
2302 some other blocks
2303 return_block:
2304 return_stmt. */
2305 if (e->dest != bb->next_bb
2306 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2307 && single_succ_p (e->dest)
2308 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2309 && (last = last_stmt (e->dest)) != NULL
2310 && gimple_code (last) == GIMPLE_RETURN)
2312 edge e1;
2313 edge_iterator ei1;
2315 if (single_succ_p (bb))
2317 FOR_EACH_EDGE (e1, ei1, bb->preds)
2318 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2319 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2320 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2321 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2323 else
2324 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2325 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2326 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2327 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2330 /* Look for block we are guarding (ie we dominate it,
2331 but it doesn't postdominate us). */
2332 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2333 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2334 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2336 gimple_stmt_iterator bi;
2338 /* The call heuristic claims that a guarded function call
2339 is improbable. This is because such calls are often used
2340 to signal exceptional situations such as printing error
2341 messages. */
2342 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2343 gsi_next (&bi))
2345 gimple stmt = gsi_stmt (bi);
2346 if (is_gimple_call (stmt)
2347 /* Constant and pure calls are hardly used to signalize
2348 something exceptional. */
2349 && gimple_has_side_effects (stmt))
2351 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2352 break;
2357 tree_predict_by_opcode (bb);
2360 /* Predict branch probabilities and estimate profile of the tree CFG.
2361 This function can be called from the loop optimizers to recompute
2362 the profile information. */
2364 void
2365 tree_estimate_probability (void)
2367 basic_block bb;
2369 add_noreturn_fake_exit_edges ();
2370 connect_infinite_loops_to_exit ();
2371 /* We use loop_niter_by_eval, which requires that the loops have
2372 preheaders. */
2373 create_preheaders (CP_SIMPLE_PREHEADERS);
2374 calculate_dominance_info (CDI_POST_DOMINATORS);
2376 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2377 tree_bb_level_predictions ();
2378 record_loop_exits ();
2380 if (number_of_loops (cfun) > 1)
2381 predict_loops ();
2383 FOR_EACH_BB_FN (bb, cfun)
2384 tree_estimate_probability_bb (bb);
2386 FOR_EACH_BB_FN (bb, cfun)
2387 combine_predictions_for_bb (bb);
2389 #ifdef ENABLE_CHECKING
2390 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2391 #endif
2392 delete bb_predictions;
2393 bb_predictions = NULL;
2395 estimate_bb_frequencies (false);
2396 free_dominance_info (CDI_POST_DOMINATORS);
2397 remove_fake_exit_edges ();
2400 /* Predict edges to successors of CUR whose sources are not postdominated by
2401 BB by PRED and recurse to all postdominators. */
2403 static void
2404 predict_paths_for_bb (basic_block cur, basic_block bb,
2405 enum br_predictor pred,
2406 enum prediction taken,
2407 bitmap visited)
2409 edge e;
2410 edge_iterator ei;
2411 basic_block son;
2413 /* We are looking for all edges forming edge cut induced by
2414 set of all blocks postdominated by BB. */
2415 FOR_EACH_EDGE (e, ei, cur->preds)
2416 if (e->src->index >= NUM_FIXED_BLOCKS
2417 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2419 edge e2;
2420 edge_iterator ei2;
2421 bool found = false;
2423 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2424 if (e->flags & (EDGE_EH | EDGE_FAKE))
2425 continue;
2426 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2428 /* See if there is an edge from e->src that is not abnormal
2429 and does not lead to BB. */
2430 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2431 if (e2 != e
2432 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2433 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2435 found = true;
2436 break;
2439 /* If there is non-abnormal path leaving e->src, predict edge
2440 using predictor. Otherwise we need to look for paths
2441 leading to e->src.
2443 The second may lead to infinite loop in the case we are predicitng
2444 regions that are only reachable by abnormal edges. We simply
2445 prevent visiting given BB twice. */
2446 if (found)
2447 predict_edge_def (e, pred, taken);
2448 else if (bitmap_set_bit (visited, e->src->index))
2449 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2451 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2452 son;
2453 son = next_dom_son (CDI_POST_DOMINATORS, son))
2454 predict_paths_for_bb (son, bb, pred, taken, visited);
2457 /* Sets branch probabilities according to PREDiction and
2458 FLAGS. */
2460 static void
2461 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2462 enum prediction taken)
2464 bitmap visited = BITMAP_ALLOC (NULL);
2465 predict_paths_for_bb (bb, bb, pred, taken, visited);
2466 BITMAP_FREE (visited);
2469 /* Like predict_paths_leading_to but take edge instead of basic block. */
2471 static void
2472 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2473 enum prediction taken)
2475 bool has_nonloop_edge = false;
2476 edge_iterator ei;
2477 edge e2;
2479 basic_block bb = e->src;
2480 FOR_EACH_EDGE (e2, ei, bb->succs)
2481 if (e2->dest != e->src && e2->dest != e->dest
2482 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2483 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2485 has_nonloop_edge = true;
2486 break;
2488 if (!has_nonloop_edge)
2490 bitmap visited = BITMAP_ALLOC (NULL);
2491 predict_paths_for_bb (bb, bb, pred, taken, visited);
2492 BITMAP_FREE (visited);
2494 else
2495 predict_edge_def (e, pred, taken);
2498 /* This is used to carry information about basic blocks. It is
2499 attached to the AUX field of the standard CFG block. */
2501 struct block_info
2503 /* Estimated frequency of execution of basic_block. */
2504 sreal frequency;
2506 /* To keep queue of basic blocks to process. */
2507 basic_block next;
2509 /* Number of predecessors we need to visit first. */
2510 int npredecessors;
2513 /* Similar information for edges. */
2514 struct edge_prob_info
2516 /* In case edge is a loopback edge, the probability edge will be reached
2517 in case header is. Estimated number of iterations of the loop can be
2518 then computed as 1 / (1 - back_edge_prob). */
2519 sreal back_edge_prob;
2520 /* True if the edge is a loopback edge in the natural loop. */
2521 unsigned int back_edge:1;
2524 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2525 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2527 /* Helper function for estimate_bb_frequencies.
2528 Propagate the frequencies in blocks marked in
2529 TOVISIT, starting in HEAD. */
2531 static void
2532 propagate_freq (basic_block head, bitmap tovisit)
2534 basic_block bb;
2535 basic_block last;
2536 unsigned i;
2537 edge e;
2538 basic_block nextbb;
2539 bitmap_iterator bi;
2541 /* For each basic block we need to visit count number of his predecessors
2542 we need to visit first. */
2543 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2545 edge_iterator ei;
2546 int count = 0;
2548 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2550 FOR_EACH_EDGE (e, ei, bb->preds)
2552 bool visit = bitmap_bit_p (tovisit, e->src->index);
2554 if (visit && !(e->flags & EDGE_DFS_BACK))
2555 count++;
2556 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2557 fprintf (dump_file,
2558 "Irreducible region hit, ignoring edge to %i->%i\n",
2559 e->src->index, bb->index);
2561 BLOCK_INFO (bb)->npredecessors = count;
2562 /* When function never returns, we will never process exit block. */
2563 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2564 bb->count = bb->frequency = 0;
2567 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2568 last = head;
2569 for (bb = head; bb; bb = nextbb)
2571 edge_iterator ei;
2572 sreal cyclic_probability, frequency;
2574 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2575 memcpy (&frequency, &real_zero, sizeof (real_zero));
2577 nextbb = BLOCK_INFO (bb)->next;
2578 BLOCK_INFO (bb)->next = NULL;
2580 /* Compute frequency of basic block. */
2581 if (bb != head)
2583 #ifdef ENABLE_CHECKING
2584 FOR_EACH_EDGE (e, ei, bb->preds)
2585 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2586 || (e->flags & EDGE_DFS_BACK));
2587 #endif
2589 FOR_EACH_EDGE (e, ei, bb->preds)
2590 if (EDGE_INFO (e)->back_edge)
2592 sreal_add (&cyclic_probability, &cyclic_probability,
2593 &EDGE_INFO (e)->back_edge_prob);
2595 else if (!(e->flags & EDGE_DFS_BACK))
2597 sreal tmp;
2599 /* frequency += (e->probability
2600 * BLOCK_INFO (e->src)->frequency /
2601 REG_BR_PROB_BASE); */
2603 sreal_init (&tmp, e->probability, 0);
2604 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2605 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2606 sreal_add (&frequency, &frequency, &tmp);
2609 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2611 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2612 sizeof (frequency));
2614 else
2616 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2618 memcpy (&cyclic_probability, &real_almost_one,
2619 sizeof (real_almost_one));
2622 /* BLOCK_INFO (bb)->frequency = frequency
2623 / (1 - cyclic_probability) */
2625 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2626 sreal_div (&BLOCK_INFO (bb)->frequency,
2627 &frequency, &cyclic_probability);
2631 bitmap_clear_bit (tovisit, bb->index);
2633 e = find_edge (bb, head);
2634 if (e)
2636 sreal tmp;
2638 /* EDGE_INFO (e)->back_edge_prob
2639 = ((e->probability * BLOCK_INFO (bb)->frequency)
2640 / REG_BR_PROB_BASE); */
2642 sreal_init (&tmp, e->probability, 0);
2643 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2644 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2645 &tmp, &real_inv_br_prob_base);
2648 /* Propagate to successor blocks. */
2649 FOR_EACH_EDGE (e, ei, bb->succs)
2650 if (!(e->flags & EDGE_DFS_BACK)
2651 && BLOCK_INFO (e->dest)->npredecessors)
2653 BLOCK_INFO (e->dest)->npredecessors--;
2654 if (!BLOCK_INFO (e->dest)->npredecessors)
2656 if (!nextbb)
2657 nextbb = e->dest;
2658 else
2659 BLOCK_INFO (last)->next = e->dest;
2661 last = e->dest;
2667 /* Estimate frequencies in loops at same nest level. */
2669 static void
2670 estimate_loops_at_level (struct loop *first_loop)
2672 struct loop *loop;
2674 for (loop = first_loop; loop; loop = loop->next)
2676 edge e;
2677 basic_block *bbs;
2678 unsigned i;
2679 bitmap tovisit = BITMAP_ALLOC (NULL);
2681 estimate_loops_at_level (loop->inner);
2683 /* Find current loop back edge and mark it. */
2684 e = loop_latch_edge (loop);
2685 EDGE_INFO (e)->back_edge = 1;
2687 bbs = get_loop_body (loop);
2688 for (i = 0; i < loop->num_nodes; i++)
2689 bitmap_set_bit (tovisit, bbs[i]->index);
2690 free (bbs);
2691 propagate_freq (loop->header, tovisit);
2692 BITMAP_FREE (tovisit);
2696 /* Propagates frequencies through structure of loops. */
2698 static void
2699 estimate_loops (void)
2701 bitmap tovisit = BITMAP_ALLOC (NULL);
2702 basic_block bb;
2704 /* Start by estimating the frequencies in the loops. */
2705 if (number_of_loops (cfun) > 1)
2706 estimate_loops_at_level (current_loops->tree_root->inner);
2708 /* Now propagate the frequencies through all the blocks. */
2709 FOR_ALL_BB_FN (bb, cfun)
2711 bitmap_set_bit (tovisit, bb->index);
2713 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2714 BITMAP_FREE (tovisit);
2717 /* Drop the profile for NODE to guessed, and update its frequency based on
2718 whether it is expected to be hot given the CALL_COUNT. */
2720 static void
2721 drop_profile (struct cgraph_node *node, gcov_type call_count)
2723 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2724 /* In the case where this was called by another function with a
2725 dropped profile, call_count will be 0. Since there are no
2726 non-zero call counts to this function, we don't know for sure
2727 whether it is hot, and therefore it will be marked normal below. */
2728 bool hot = maybe_hot_count_p (NULL, call_count);
2730 if (dump_file)
2731 fprintf (dump_file,
2732 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2733 node->name (), node->order,
2734 hot ? "Function is hot" : "Function is normal");
2735 /* We only expect to miss profiles for functions that are reached
2736 via non-zero call edges in cases where the function may have
2737 been linked from another module or library (COMDATs and extern
2738 templates). See the comments below for handle_missing_profiles.
2739 Also, only warn in cases where the missing counts exceed the
2740 number of training runs. In certain cases with an execv followed
2741 by a no-return call the profile for the no-return call is not
2742 dumped and there can be a mismatch. */
2743 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2744 && call_count > profile_info->runs)
2746 if (flag_profile_correction)
2748 if (dump_file)
2749 fprintf (dump_file,
2750 "Missing counts for called function %s/%i\n",
2751 node->name (), node->order);
2753 else
2754 warning (0, "Missing counts for called function %s/%i",
2755 node->name (), node->order);
2758 profile_status_for_fn (fn)
2759 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2760 node->frequency
2761 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2764 /* In the case of COMDAT routines, multiple object files will contain the same
2765 function and the linker will select one for the binary. In that case
2766 all the other copies from the profile instrument binary will be missing
2767 profile counts. Look for cases where this happened, due to non-zero
2768 call counts going to 0-count functions, and drop the profile to guessed
2769 so that we can use the estimated probabilities and avoid optimizing only
2770 for size.
2772 The other case where the profile may be missing is when the routine
2773 is not going to be emitted to the object file, e.g. for "extern template"
2774 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2775 all other cases of non-zero calls to 0-count functions. */
2777 void
2778 handle_missing_profiles (void)
2780 struct cgraph_node *node;
2781 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2782 vec<struct cgraph_node *> worklist;
2783 worklist.create (64);
2785 /* See if 0 count function has non-0 count callers. In this case we
2786 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2787 FOR_EACH_DEFINED_FUNCTION (node)
2789 struct cgraph_edge *e;
2790 gcov_type call_count = 0;
2791 gcov_type max_tp_first_run = 0;
2792 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2794 if (node->count)
2795 continue;
2796 for (e = node->callers; e; e = e->next_caller)
2798 call_count += e->count;
2800 if (e->caller->tp_first_run > max_tp_first_run)
2801 max_tp_first_run = e->caller->tp_first_run;
2804 /* If time profile is missing, let assign the maximum that comes from
2805 caller functions. */
2806 if (!node->tp_first_run && max_tp_first_run)
2807 node->tp_first_run = max_tp_first_run + 1;
2809 if (call_count
2810 && fn && fn->cfg
2811 && (call_count * unlikely_count_fraction >= profile_info->runs))
2813 drop_profile (node, call_count);
2814 worklist.safe_push (node);
2818 /* Propagate the profile dropping to other 0-count COMDATs that are
2819 potentially called by COMDATs we already dropped the profile on. */
2820 while (worklist.length () > 0)
2822 struct cgraph_edge *e;
2824 node = worklist.pop ();
2825 for (e = node->callees; e; e = e->next_caller)
2827 struct cgraph_node *callee = e->callee;
2828 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2830 if (callee->count > 0)
2831 continue;
2832 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2833 && profile_status_for_fn (fn) == PROFILE_READ)
2835 drop_profile (node, 0);
2836 worklist.safe_push (callee);
2840 worklist.release ();
2843 /* Convert counts measured by profile driven feedback to frequencies.
2844 Return nonzero iff there was any nonzero execution count. */
2847 counts_to_freqs (void)
2849 gcov_type count_max, true_count_max = 0;
2850 basic_block bb;
2852 /* Don't overwrite the estimated frequencies when the profile for
2853 the function is missing. We may drop this function PROFILE_GUESSED
2854 later in drop_profile (). */
2855 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2856 return 0;
2858 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2859 true_count_max = MAX (bb->count, true_count_max);
2861 count_max = MAX (true_count_max, 1);
2862 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2863 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2865 return true_count_max;
2868 /* Return true if function is likely to be expensive, so there is no point to
2869 optimize performance of prologue, epilogue or do inlining at the expense
2870 of code size growth. THRESHOLD is the limit of number of instructions
2871 function can execute at average to be still considered not expensive. */
2873 bool
2874 expensive_function_p (int threshold)
2876 unsigned int sum = 0;
2877 basic_block bb;
2878 unsigned int limit;
2880 /* We can not compute accurately for large thresholds due to scaled
2881 frequencies. */
2882 gcc_assert (threshold <= BB_FREQ_MAX);
2884 /* Frequencies are out of range. This either means that function contains
2885 internal loop executing more than BB_FREQ_MAX times or profile feedback
2886 is available and function has not been executed at all. */
2887 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2888 return true;
2890 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2891 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2892 FOR_EACH_BB_FN (bb, cfun)
2894 rtx_insn *insn;
2896 FOR_BB_INSNS (bb, insn)
2897 if (active_insn_p (insn))
2899 sum += bb->frequency;
2900 if (sum > limit)
2901 return true;
2905 return false;
2908 /* Estimate and propagate basic block frequencies using the given branch
2909 probabilities. If FORCE is true, the frequencies are used to estimate
2910 the counts even when there are already non-zero profile counts. */
2912 void
2913 estimate_bb_frequencies (bool force)
2915 basic_block bb;
2916 sreal freq_max;
2918 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2920 static int real_values_initialized = 0;
2922 if (!real_values_initialized)
2924 real_values_initialized = 1;
2925 sreal_init (&real_zero, 0, 0);
2926 sreal_init (&real_one, 1, 0);
2927 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2928 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2929 sreal_init (&real_one_half, 1, -1);
2930 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2931 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2934 mark_dfs_back_edges ();
2936 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2937 REG_BR_PROB_BASE;
2939 /* Set up block info for each basic block. */
2940 alloc_aux_for_blocks (sizeof (block_info));
2941 alloc_aux_for_edges (sizeof (edge_prob_info));
2942 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2944 edge e;
2945 edge_iterator ei;
2947 FOR_EACH_EDGE (e, ei, bb->succs)
2949 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2950 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2951 &EDGE_INFO (e)->back_edge_prob,
2952 &real_inv_br_prob_base);
2956 /* First compute frequencies locally for each loop from innermost
2957 to outermost to examine frequencies for back edges. */
2958 estimate_loops ();
2960 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2961 FOR_EACH_BB_FN (bb, cfun)
2962 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2963 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2965 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2966 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2968 sreal tmp;
2970 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2971 sreal_add (&tmp, &tmp, &real_one_half);
2972 bb->frequency = sreal_to_int (&tmp);
2975 free_aux_for_blocks ();
2976 free_aux_for_edges ();
2978 compute_function_frequency ();
2981 /* Decide whether function is hot, cold or unlikely executed. */
2982 void
2983 compute_function_frequency (void)
2985 basic_block bb;
2986 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2988 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2989 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2990 node->only_called_at_startup = true;
2991 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2992 node->only_called_at_exit = true;
2994 if (profile_status_for_fn (cfun) != PROFILE_READ)
2996 int flags = flags_from_decl_or_type (current_function_decl);
2997 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2998 != NULL)
2999 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3000 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3001 != NULL)
3002 node->frequency = NODE_FREQUENCY_HOT;
3003 else if (flags & ECF_NORETURN)
3004 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3005 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3006 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3007 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3008 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3009 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3010 return;
3013 /* Only first time try to drop function into unlikely executed.
3014 After inlining the roundoff errors may confuse us.
3015 Ipa-profile pass will drop functions only called from unlikely
3016 functions to unlikely and that is most of what we care about. */
3017 if (!cfun->after_inlining)
3018 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3019 FOR_EACH_BB_FN (bb, cfun)
3021 if (maybe_hot_bb_p (cfun, bb))
3023 node->frequency = NODE_FREQUENCY_HOT;
3024 return;
3026 if (!probably_never_executed_bb_p (cfun, bb))
3027 node->frequency = NODE_FREQUENCY_NORMAL;
3031 /* Build PREDICT_EXPR. */
3032 tree
3033 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3035 tree t = build1 (PREDICT_EXPR, void_type_node,
3036 build_int_cst (integer_type_node, predictor));
3037 SET_PREDICT_EXPR_OUTCOME (t, taken);
3038 return t;
3041 const char *
3042 predictor_name (enum br_predictor predictor)
3044 return predictor_info[predictor].name;
3047 /* Predict branch probabilities and estimate profile of the tree CFG. */
3049 namespace {
3051 const pass_data pass_data_profile =
3053 GIMPLE_PASS, /* type */
3054 "profile_estimate", /* name */
3055 OPTGROUP_NONE, /* optinfo_flags */
3056 TV_BRANCH_PROB, /* tv_id */
3057 PROP_cfg, /* properties_required */
3058 0, /* properties_provided */
3059 0, /* properties_destroyed */
3060 0, /* todo_flags_start */
3061 0, /* todo_flags_finish */
3064 class pass_profile : public gimple_opt_pass
3066 public:
3067 pass_profile (gcc::context *ctxt)
3068 : gimple_opt_pass (pass_data_profile, ctxt)
3071 /* opt_pass methods: */
3072 virtual bool gate (function *) { return flag_guess_branch_prob; }
3073 virtual unsigned int execute (function *);
3075 }; // class pass_profile
3077 unsigned int
3078 pass_profile::execute (function *fun)
3080 unsigned nb_loops;
3082 loop_optimizer_init (LOOPS_NORMAL);
3083 if (dump_file && (dump_flags & TDF_DETAILS))
3084 flow_loops_dump (dump_file, NULL, 0);
3086 mark_irreducible_loops ();
3088 nb_loops = number_of_loops (fun);
3089 if (nb_loops > 1)
3090 scev_initialize ();
3092 tree_estimate_probability ();
3094 if (nb_loops > 1)
3095 scev_finalize ();
3097 loop_optimizer_finalize ();
3098 if (dump_file && (dump_flags & TDF_DETAILS))
3099 gimple_dump_cfg (dump_file, dump_flags);
3100 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3101 profile_status_for_fn (fun) = PROFILE_GUESSED;
3102 return 0;
3105 } // anon namespace
3107 gimple_opt_pass *
3108 make_pass_profile (gcc::context *ctxt)
3110 return new pass_profile (ctxt);
3113 namespace {
3115 const pass_data pass_data_strip_predict_hints =
3117 GIMPLE_PASS, /* type */
3118 "*strip_predict_hints", /* name */
3119 OPTGROUP_NONE, /* optinfo_flags */
3120 TV_BRANCH_PROB, /* tv_id */
3121 PROP_cfg, /* properties_required */
3122 0, /* properties_provided */
3123 0, /* properties_destroyed */
3124 0, /* todo_flags_start */
3125 0, /* todo_flags_finish */
3128 class pass_strip_predict_hints : public gimple_opt_pass
3130 public:
3131 pass_strip_predict_hints (gcc::context *ctxt)
3132 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3135 /* opt_pass methods: */
3136 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3137 virtual unsigned int execute (function *);
3139 }; // class pass_strip_predict_hints
3141 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3142 we no longer need. */
3143 unsigned int
3144 pass_strip_predict_hints::execute (function *fun)
3146 basic_block bb;
3147 gimple ass_stmt;
3148 tree var;
3150 FOR_EACH_BB_FN (bb, fun)
3152 gimple_stmt_iterator bi;
3153 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3155 gimple stmt = gsi_stmt (bi);
3157 if (gimple_code (stmt) == GIMPLE_PREDICT)
3159 gsi_remove (&bi, true);
3160 continue;
3162 else if (is_gimple_call (stmt))
3164 tree fndecl = gimple_call_fndecl (stmt);
3166 if ((fndecl
3167 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3168 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3169 && gimple_call_num_args (stmt) == 2)
3170 || (gimple_call_internal_p (stmt)
3171 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3173 var = gimple_call_lhs (stmt);
3174 if (var)
3176 ass_stmt
3177 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3178 gsi_replace (&bi, ass_stmt, true);
3180 else
3182 gsi_remove (&bi, true);
3183 continue;
3187 gsi_next (&bi);
3190 return 0;
3193 } // anon namespace
3195 gimple_opt_pass *
3196 make_pass_strip_predict_hints (gcc::context *ctxt)
3198 return new pass_strip_predict_hints (ctxt);
3201 /* Rebuild function frequencies. Passes are in general expected to
3202 maintain profile by hand, however in some cases this is not possible:
3203 for example when inlining several functions with loops freuqencies might run
3204 out of scale and thus needs to be recomputed. */
3206 void
3207 rebuild_frequencies (void)
3209 timevar_push (TV_REBUILD_FREQUENCIES);
3211 /* When the max bb count in the function is small, there is a higher
3212 chance that there were truncation errors in the integer scaling
3213 of counts by inlining and other optimizations. This could lead
3214 to incorrect classification of code as being cold when it isn't.
3215 In that case, force the estimation of bb counts/frequencies from the
3216 branch probabilities, rather than computing frequencies from counts,
3217 which may also lead to frequencies incorrectly reduced to 0. There
3218 is less precision in the probabilities, so we only do this for small
3219 max counts. */
3220 gcov_type count_max = 0;
3221 basic_block bb;
3222 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3223 count_max = MAX (bb->count, count_max);
3225 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3226 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3228 loop_optimizer_init (0);
3229 add_noreturn_fake_exit_edges ();
3230 mark_irreducible_loops ();
3231 connect_infinite_loops_to_exit ();
3232 estimate_bb_frequencies (true);
3233 remove_fake_exit_edges ();
3234 loop_optimizer_finalize ();
3236 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3237 counts_to_freqs ();
3238 else
3239 gcc_unreachable ();
3240 timevar_pop (TV_REBUILD_FREQUENCIES);