* config/i386/i386.md (fmodxf3): Enable for flag_finite_math_only only.
[official-gcc.git] / gcc / asan.c
blobf520eab4c547d70d43b98ab8514e01e0b4dbee73
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
92 [Protection of stack variables]
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
98 int
99 foo ()
101 char a[23] = {0};
102 int b[2] = {0};
104 a[5] = 1;
105 b[1] = 2;
107 return a[5] + b[1];
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
119 Slot 3/ [24 bytes for variable 'a']
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
125 Slot 6/ [8 bytes for variable 'b']
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
150 4/ The following 8 bytes are reserved for internal use by the run-time.
152 The shadow memory for that stack layout is going to look like this:
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
199 [Protection of global variables]
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
213 struct __asan_global
215 // Address of the beginning of the global variable.
216 const void *__beg;
218 // Initial size of the global variable.
219 uptr __size;
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
225 // Name of the global variable.
226 const void *__name;
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
234 // A pointer to struct that contains source location, could be NULL.
235 __asan_global_source_location *__location;
238 A destructor function that calls the runtime asan library function
239 _asan_unregister_globals is also installed. */
241 alias_set_type asan_shadow_set = -1;
243 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
244 alias set is used for all shadow memory accesses. */
245 static GTY(()) tree shadow_ptr_types[2];
247 /* Decl for __asan_option_detect_stack_use_after_return. */
248 static GTY(()) tree asan_detect_stack_use_after_return;
250 /* Various flags for Asan builtins. */
251 enum asan_check_flags
253 ASAN_CHECK_STORE = 1 << 0,
254 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
255 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
256 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
257 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
258 ASAN_CHECK_LAST
261 /* Hashtable support for memory references used by gimple
262 statements. */
264 /* This type represents a reference to a memory region. */
265 struct asan_mem_ref
267 /* The expression of the beginning of the memory region. */
268 tree start;
270 /* The size of the access. */
271 HOST_WIDE_INT access_size;
274 static alloc_pool asan_mem_ref_alloc_pool;
276 /* This creates the alloc pool used to store the instances of
277 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
279 static alloc_pool
280 asan_mem_ref_get_alloc_pool ()
282 if (asan_mem_ref_alloc_pool == NULL)
283 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
284 sizeof (asan_mem_ref),
285 10);
286 return asan_mem_ref_alloc_pool;
290 /* Initializes an instance of asan_mem_ref. */
292 static void
293 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
295 ref->start = start;
296 ref->access_size = access_size;
299 /* Allocates memory for an instance of asan_mem_ref into the memory
300 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
301 START is the address of (or the expression pointing to) the
302 beginning of memory reference. ACCESS_SIZE is the size of the
303 access to the referenced memory. */
305 static asan_mem_ref*
306 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
308 asan_mem_ref *ref =
309 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
311 asan_mem_ref_init (ref, start, access_size);
312 return ref;
315 /* This builds and returns a pointer to the end of the memory region
316 that starts at START and of length LEN. */
318 tree
319 asan_mem_ref_get_end (tree start, tree len)
321 if (len == NULL_TREE || integer_zerop (len))
322 return start;
324 if (!ptrofftype_p (len))
325 len = convert_to_ptrofftype (len);
327 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
330 /* Return a tree expression that represents the end of the referenced
331 memory region. Beware that this function can actually build a new
332 tree expression. */
334 tree
335 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
337 return asan_mem_ref_get_end (ref->start, len);
340 struct asan_mem_ref_hasher
341 : typed_noop_remove <asan_mem_ref>
343 typedef asan_mem_ref value_type;
344 typedef asan_mem_ref compare_type;
346 static inline hashval_t hash (const value_type *);
347 static inline bool equal (const value_type *, const compare_type *);
350 /* Hash a memory reference. */
352 inline hashval_t
353 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
355 inchash::hash hstate;
356 inchash::add_expr (mem_ref->start, hstate);
357 hstate.add_wide_int (mem_ref->access_size);
358 return hstate.end ();
361 /* Compare two memory references. We accept the length of either
362 memory references to be NULL_TREE. */
364 inline bool
365 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
366 const asan_mem_ref *m2)
368 return (m1->access_size == m2->access_size
369 && operand_equal_p (m1->start, m2->start, 0));
372 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
374 /* Returns a reference to the hash table containing memory references.
375 This function ensures that the hash table is created. Note that
376 this hash table is updated by the function
377 update_mem_ref_hash_table. */
379 static hash_table<asan_mem_ref_hasher> *
380 get_mem_ref_hash_table ()
382 if (!asan_mem_ref_ht)
383 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
385 return asan_mem_ref_ht;
388 /* Clear all entries from the memory references hash table. */
390 static void
391 empty_mem_ref_hash_table ()
393 if (asan_mem_ref_ht)
394 asan_mem_ref_ht->empty ();
397 /* Free the memory references hash table. */
399 static void
400 free_mem_ref_resources ()
402 delete asan_mem_ref_ht;
403 asan_mem_ref_ht = NULL;
405 if (asan_mem_ref_alloc_pool)
407 free_alloc_pool (asan_mem_ref_alloc_pool);
408 asan_mem_ref_alloc_pool = NULL;
412 /* Return true iff the memory reference REF has been instrumented. */
414 static bool
415 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
417 asan_mem_ref r;
418 asan_mem_ref_init (&r, ref, access_size);
420 return (get_mem_ref_hash_table ()->find (&r) != NULL);
423 /* Return true iff the memory reference REF has been instrumented. */
425 static bool
426 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
428 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
431 /* Return true iff access to memory region starting at REF and of
432 length LEN has been instrumented. */
434 static bool
435 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
437 /* First let's see if the address of the beginning of REF has been
438 instrumented. */
439 if (!has_mem_ref_been_instrumented (ref))
440 return false;
442 if (len != 0)
444 /* Let's see if the end of the region has been instrumented. */
445 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
446 ref->access_size))
447 return false;
449 return true;
452 /* Set REF to the memory reference present in a gimple assignment
453 ASSIGNMENT. Return true upon successful completion, false
454 otherwise. */
456 static bool
457 get_mem_ref_of_assignment (const gimple assignment,
458 asan_mem_ref *ref,
459 bool *ref_is_store)
461 gcc_assert (gimple_assign_single_p (assignment));
463 if (gimple_store_p (assignment)
464 && !gimple_clobber_p (assignment))
466 ref->start = gimple_assign_lhs (assignment);
467 *ref_is_store = true;
469 else if (gimple_assign_load_p (assignment))
471 ref->start = gimple_assign_rhs1 (assignment);
472 *ref_is_store = false;
474 else
475 return false;
477 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
478 return true;
481 /* Return the memory references contained in a gimple statement
482 representing a builtin call that has to do with memory access. */
484 static bool
485 get_mem_refs_of_builtin_call (const gimple call,
486 asan_mem_ref *src0,
487 tree *src0_len,
488 bool *src0_is_store,
489 asan_mem_ref *src1,
490 tree *src1_len,
491 bool *src1_is_store,
492 asan_mem_ref *dst,
493 tree *dst_len,
494 bool *dst_is_store,
495 bool *dest_is_deref)
497 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
499 tree callee = gimple_call_fndecl (call);
500 tree source0 = NULL_TREE, source1 = NULL_TREE,
501 dest = NULL_TREE, len = NULL_TREE;
502 bool is_store = true, got_reference_p = false;
503 HOST_WIDE_INT access_size = 1;
505 switch (DECL_FUNCTION_CODE (callee))
507 /* (s, s, n) style memops. */
508 case BUILT_IN_BCMP:
509 case BUILT_IN_MEMCMP:
510 source0 = gimple_call_arg (call, 0);
511 source1 = gimple_call_arg (call, 1);
512 len = gimple_call_arg (call, 2);
513 break;
515 /* (src, dest, n) style memops. */
516 case BUILT_IN_BCOPY:
517 source0 = gimple_call_arg (call, 0);
518 dest = gimple_call_arg (call, 1);
519 len = gimple_call_arg (call, 2);
520 break;
522 /* (dest, src, n) style memops. */
523 case BUILT_IN_MEMCPY:
524 case BUILT_IN_MEMCPY_CHK:
525 case BUILT_IN_MEMMOVE:
526 case BUILT_IN_MEMMOVE_CHK:
527 case BUILT_IN_MEMPCPY:
528 case BUILT_IN_MEMPCPY_CHK:
529 dest = gimple_call_arg (call, 0);
530 source0 = gimple_call_arg (call, 1);
531 len = gimple_call_arg (call, 2);
532 break;
534 /* (dest, n) style memops. */
535 case BUILT_IN_BZERO:
536 dest = gimple_call_arg (call, 0);
537 len = gimple_call_arg (call, 1);
538 break;
540 /* (dest, x, n) style memops*/
541 case BUILT_IN_MEMSET:
542 case BUILT_IN_MEMSET_CHK:
543 dest = gimple_call_arg (call, 0);
544 len = gimple_call_arg (call, 2);
545 break;
547 case BUILT_IN_STRLEN:
548 source0 = gimple_call_arg (call, 0);
549 len = gimple_call_lhs (call);
550 break ;
552 /* And now the __atomic* and __sync builtins.
553 These are handled differently from the classical memory memory
554 access builtins above. */
556 case BUILT_IN_ATOMIC_LOAD_1:
557 case BUILT_IN_ATOMIC_LOAD_2:
558 case BUILT_IN_ATOMIC_LOAD_4:
559 case BUILT_IN_ATOMIC_LOAD_8:
560 case BUILT_IN_ATOMIC_LOAD_16:
561 is_store = false;
562 /* fall through. */
564 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
565 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
566 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
567 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
568 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
570 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
571 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
572 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
573 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
574 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
576 case BUILT_IN_SYNC_FETCH_AND_OR_1:
577 case BUILT_IN_SYNC_FETCH_AND_OR_2:
578 case BUILT_IN_SYNC_FETCH_AND_OR_4:
579 case BUILT_IN_SYNC_FETCH_AND_OR_8:
580 case BUILT_IN_SYNC_FETCH_AND_OR_16:
582 case BUILT_IN_SYNC_FETCH_AND_AND_1:
583 case BUILT_IN_SYNC_FETCH_AND_AND_2:
584 case BUILT_IN_SYNC_FETCH_AND_AND_4:
585 case BUILT_IN_SYNC_FETCH_AND_AND_8:
586 case BUILT_IN_SYNC_FETCH_AND_AND_16:
588 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
589 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
590 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
591 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
592 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
594 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
595 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
596 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
597 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
599 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
600 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
601 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
602 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
603 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
605 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
606 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
607 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
608 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
609 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
611 case BUILT_IN_SYNC_OR_AND_FETCH_1:
612 case BUILT_IN_SYNC_OR_AND_FETCH_2:
613 case BUILT_IN_SYNC_OR_AND_FETCH_4:
614 case BUILT_IN_SYNC_OR_AND_FETCH_8:
615 case BUILT_IN_SYNC_OR_AND_FETCH_16:
617 case BUILT_IN_SYNC_AND_AND_FETCH_1:
618 case BUILT_IN_SYNC_AND_AND_FETCH_2:
619 case BUILT_IN_SYNC_AND_AND_FETCH_4:
620 case BUILT_IN_SYNC_AND_AND_FETCH_8:
621 case BUILT_IN_SYNC_AND_AND_FETCH_16:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
625 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
626 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
627 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
629 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
630 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
631 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
632 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
634 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
640 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
641 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
642 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
643 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
644 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
646 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
647 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
648 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
649 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
650 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
652 case BUILT_IN_SYNC_LOCK_RELEASE_1:
653 case BUILT_IN_SYNC_LOCK_RELEASE_2:
654 case BUILT_IN_SYNC_LOCK_RELEASE_4:
655 case BUILT_IN_SYNC_LOCK_RELEASE_8:
656 case BUILT_IN_SYNC_LOCK_RELEASE_16:
658 case BUILT_IN_ATOMIC_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_EXCHANGE_16:
664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
666 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
668 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
670 case BUILT_IN_ATOMIC_STORE_1:
671 case BUILT_IN_ATOMIC_STORE_2:
672 case BUILT_IN_ATOMIC_STORE_4:
673 case BUILT_IN_ATOMIC_STORE_8:
674 case BUILT_IN_ATOMIC_STORE_16:
676 case BUILT_IN_ATOMIC_ADD_FETCH_1:
677 case BUILT_IN_ATOMIC_ADD_FETCH_2:
678 case BUILT_IN_ATOMIC_ADD_FETCH_4:
679 case BUILT_IN_ATOMIC_ADD_FETCH_8:
680 case BUILT_IN_ATOMIC_ADD_FETCH_16:
682 case BUILT_IN_ATOMIC_SUB_FETCH_1:
683 case BUILT_IN_ATOMIC_SUB_FETCH_2:
684 case BUILT_IN_ATOMIC_SUB_FETCH_4:
685 case BUILT_IN_ATOMIC_SUB_FETCH_8:
686 case BUILT_IN_ATOMIC_SUB_FETCH_16:
688 case BUILT_IN_ATOMIC_AND_FETCH_1:
689 case BUILT_IN_ATOMIC_AND_FETCH_2:
690 case BUILT_IN_ATOMIC_AND_FETCH_4:
691 case BUILT_IN_ATOMIC_AND_FETCH_8:
692 case BUILT_IN_ATOMIC_AND_FETCH_16:
694 case BUILT_IN_ATOMIC_NAND_FETCH_1:
695 case BUILT_IN_ATOMIC_NAND_FETCH_2:
696 case BUILT_IN_ATOMIC_NAND_FETCH_4:
697 case BUILT_IN_ATOMIC_NAND_FETCH_8:
698 case BUILT_IN_ATOMIC_NAND_FETCH_16:
700 case BUILT_IN_ATOMIC_XOR_FETCH_1:
701 case BUILT_IN_ATOMIC_XOR_FETCH_2:
702 case BUILT_IN_ATOMIC_XOR_FETCH_4:
703 case BUILT_IN_ATOMIC_XOR_FETCH_8:
704 case BUILT_IN_ATOMIC_XOR_FETCH_16:
706 case BUILT_IN_ATOMIC_OR_FETCH_1:
707 case BUILT_IN_ATOMIC_OR_FETCH_2:
708 case BUILT_IN_ATOMIC_OR_FETCH_4:
709 case BUILT_IN_ATOMIC_OR_FETCH_8:
710 case BUILT_IN_ATOMIC_OR_FETCH_16:
712 case BUILT_IN_ATOMIC_FETCH_ADD_1:
713 case BUILT_IN_ATOMIC_FETCH_ADD_2:
714 case BUILT_IN_ATOMIC_FETCH_ADD_4:
715 case BUILT_IN_ATOMIC_FETCH_ADD_8:
716 case BUILT_IN_ATOMIC_FETCH_ADD_16:
718 case BUILT_IN_ATOMIC_FETCH_SUB_1:
719 case BUILT_IN_ATOMIC_FETCH_SUB_2:
720 case BUILT_IN_ATOMIC_FETCH_SUB_4:
721 case BUILT_IN_ATOMIC_FETCH_SUB_8:
722 case BUILT_IN_ATOMIC_FETCH_SUB_16:
724 case BUILT_IN_ATOMIC_FETCH_AND_1:
725 case BUILT_IN_ATOMIC_FETCH_AND_2:
726 case BUILT_IN_ATOMIC_FETCH_AND_4:
727 case BUILT_IN_ATOMIC_FETCH_AND_8:
728 case BUILT_IN_ATOMIC_FETCH_AND_16:
730 case BUILT_IN_ATOMIC_FETCH_NAND_1:
731 case BUILT_IN_ATOMIC_FETCH_NAND_2:
732 case BUILT_IN_ATOMIC_FETCH_NAND_4:
733 case BUILT_IN_ATOMIC_FETCH_NAND_8:
734 case BUILT_IN_ATOMIC_FETCH_NAND_16:
736 case BUILT_IN_ATOMIC_FETCH_XOR_1:
737 case BUILT_IN_ATOMIC_FETCH_XOR_2:
738 case BUILT_IN_ATOMIC_FETCH_XOR_4:
739 case BUILT_IN_ATOMIC_FETCH_XOR_8:
740 case BUILT_IN_ATOMIC_FETCH_XOR_16:
742 case BUILT_IN_ATOMIC_FETCH_OR_1:
743 case BUILT_IN_ATOMIC_FETCH_OR_2:
744 case BUILT_IN_ATOMIC_FETCH_OR_4:
745 case BUILT_IN_ATOMIC_FETCH_OR_8:
746 case BUILT_IN_ATOMIC_FETCH_OR_16:
748 dest = gimple_call_arg (call, 0);
749 /* DEST represents the address of a memory location.
750 instrument_derefs wants the memory location, so lets
751 dereference the address DEST before handing it to
752 instrument_derefs. */
753 if (TREE_CODE (dest) == ADDR_EXPR)
754 dest = TREE_OPERAND (dest, 0);
755 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
756 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
757 dest, build_int_cst (TREE_TYPE (dest), 0));
758 else
759 gcc_unreachable ();
761 access_size = int_size_in_bytes (TREE_TYPE (dest));
764 default:
765 /* The other builtins memory access are not instrumented in this
766 function because they either don't have any length parameter,
767 or their length parameter is just a limit. */
768 break;
771 if (len != NULL_TREE)
773 if (source0 != NULL_TREE)
775 src0->start = source0;
776 src0->access_size = access_size;
777 *src0_len = len;
778 *src0_is_store = false;
781 if (source1 != NULL_TREE)
783 src1->start = source1;
784 src1->access_size = access_size;
785 *src1_len = len;
786 *src1_is_store = false;
789 if (dest != NULL_TREE)
791 dst->start = dest;
792 dst->access_size = access_size;
793 *dst_len = len;
794 *dst_is_store = true;
797 got_reference_p = true;
799 else if (dest)
801 dst->start = dest;
802 dst->access_size = access_size;
803 *dst_len = NULL_TREE;
804 *dst_is_store = is_store;
805 *dest_is_deref = true;
806 got_reference_p = true;
809 return got_reference_p;
812 /* Return true iff a given gimple statement has been instrumented.
813 Note that the statement is "defined" by the memory references it
814 contains. */
816 static bool
817 has_stmt_been_instrumented_p (gimple stmt)
819 if (gimple_assign_single_p (stmt))
821 bool r_is_store;
822 asan_mem_ref r;
823 asan_mem_ref_init (&r, NULL, 1);
825 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
826 return has_mem_ref_been_instrumented (&r);
828 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
830 asan_mem_ref src0, src1, dest;
831 asan_mem_ref_init (&src0, NULL, 1);
832 asan_mem_ref_init (&src1, NULL, 1);
833 asan_mem_ref_init (&dest, NULL, 1);
835 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
836 bool src0_is_store = false, src1_is_store = false,
837 dest_is_store = false, dest_is_deref = false;
838 if (get_mem_refs_of_builtin_call (stmt,
839 &src0, &src0_len, &src0_is_store,
840 &src1, &src1_len, &src1_is_store,
841 &dest, &dest_len, &dest_is_store,
842 &dest_is_deref))
844 if (src0.start != NULL_TREE
845 && !has_mem_ref_been_instrumented (&src0, src0_len))
846 return false;
848 if (src1.start != NULL_TREE
849 && !has_mem_ref_been_instrumented (&src1, src1_len))
850 return false;
852 if (dest.start != NULL_TREE
853 && !has_mem_ref_been_instrumented (&dest, dest_len))
854 return false;
856 return true;
859 return false;
862 /* Insert a memory reference into the hash table. */
864 static void
865 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
867 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
869 asan_mem_ref r;
870 asan_mem_ref_init (&r, ref, access_size);
872 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
873 if (*slot == NULL)
874 *slot = asan_mem_ref_new (ref, access_size);
877 /* Initialize shadow_ptr_types array. */
879 static void
880 asan_init_shadow_ptr_types (void)
882 asan_shadow_set = new_alias_set ();
883 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
884 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
885 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
886 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
887 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
888 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
889 initialize_sanitizer_builtins ();
892 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
894 static tree
895 asan_pp_string (pretty_printer *pp)
897 const char *buf = pp_formatted_text (pp);
898 size_t len = strlen (buf);
899 tree ret = build_string (len + 1, buf);
900 TREE_TYPE (ret)
901 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
902 build_index_type (size_int (len)));
903 TREE_READONLY (ret) = 1;
904 TREE_STATIC (ret) = 1;
905 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
908 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
910 static rtx
911 asan_shadow_cst (unsigned char shadow_bytes[4])
913 int i;
914 unsigned HOST_WIDE_INT val = 0;
915 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
916 for (i = 0; i < 4; i++)
917 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
918 << (BITS_PER_UNIT * i);
919 return gen_int_mode (val, SImode);
922 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
923 though. */
925 static void
926 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
928 rtx_insn *insn, *insns, *jump;
929 rtx_code_label *top_label;
930 rtx end, addr, tmp;
932 start_sequence ();
933 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
934 insns = get_insns ();
935 end_sequence ();
936 for (insn = insns; insn; insn = NEXT_INSN (insn))
937 if (CALL_P (insn))
938 break;
939 if (insn == NULL_RTX)
941 emit_insn (insns);
942 return;
945 gcc_assert ((len & 3) == 0);
946 top_label = gen_label_rtx ();
947 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
948 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
949 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
950 emit_label (top_label);
952 emit_move_insn (shadow_mem, const0_rtx);
953 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
954 true, OPTAB_LIB_WIDEN);
955 if (tmp != addr)
956 emit_move_insn (addr, tmp);
957 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
958 jump = get_last_insn ();
959 gcc_assert (JUMP_P (jump));
960 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
963 void
964 asan_function_start (void)
966 section *fnsec = function_section (current_function_decl);
967 switch_to_section (fnsec);
968 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
969 current_function_funcdef_no);
972 /* Insert code to protect stack vars. The prologue sequence should be emitted
973 directly, epilogue sequence returned. BASE is the register holding the
974 stack base, against which OFFSETS array offsets are relative to, OFFSETS
975 array contains pairs of offsets in reverse order, always the end offset
976 of some gap that needs protection followed by starting offset,
977 and DECLS is an array of representative decls for each var partition.
978 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
979 elements long (OFFSETS include gap before the first variable as well
980 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
981 register which stack vars DECL_RTLs are based on. Either BASE should be
982 assigned to PBASE, when not doing use after return protection, or
983 corresponding address based on __asan_stack_malloc* return value. */
985 rtx_insn *
986 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
987 HOST_WIDE_INT *offsets, tree *decls, int length)
989 rtx shadow_base, shadow_mem, ret, mem, orig_base;
990 rtx_code_label *lab;
991 rtx_insn *insns;
992 char buf[30];
993 unsigned char shadow_bytes[4];
994 HOST_WIDE_INT base_offset = offsets[length - 1];
995 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
996 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
997 HOST_WIDE_INT last_offset, last_size;
998 int l;
999 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1000 tree str_cst, decl, id;
1001 int use_after_return_class = -1;
1003 if (shadow_ptr_types[0] == NULL_TREE)
1004 asan_init_shadow_ptr_types ();
1006 /* First of all, prepare the description string. */
1007 pretty_printer asan_pp;
1009 pp_decimal_int (&asan_pp, length / 2 - 1);
1010 pp_space (&asan_pp);
1011 for (l = length - 2; l; l -= 2)
1013 tree decl = decls[l / 2 - 1];
1014 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1015 pp_space (&asan_pp);
1016 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1017 pp_space (&asan_pp);
1018 if (DECL_P (decl) && DECL_NAME (decl))
1020 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1021 pp_space (&asan_pp);
1022 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1024 else
1025 pp_string (&asan_pp, "9 <unknown>");
1026 pp_space (&asan_pp);
1028 str_cst = asan_pp_string (&asan_pp);
1030 /* Emit the prologue sequence. */
1031 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1032 && ASAN_USE_AFTER_RETURN)
1034 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1035 /* __asan_stack_malloc_N guarantees alignment
1036 N < 6 ? (64 << N) : 4096 bytes. */
1037 if (alignb > (use_after_return_class < 6
1038 ? (64U << use_after_return_class) : 4096U))
1039 use_after_return_class = -1;
1040 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1041 base_align_bias = ((asan_frame_size + alignb - 1)
1042 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1044 /* Align base if target is STRICT_ALIGNMENT. */
1045 if (STRICT_ALIGNMENT)
1046 base = expand_binop (Pmode, and_optab, base,
1047 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1048 << ASAN_SHADOW_SHIFT)
1049 / BITS_PER_UNIT), Pmode), NULL_RTX,
1050 1, OPTAB_DIRECT);
1052 if (use_after_return_class == -1 && pbase)
1053 emit_move_insn (pbase, base);
1055 base = expand_binop (Pmode, add_optab, base,
1056 gen_int_mode (base_offset - base_align_bias, Pmode),
1057 NULL_RTX, 1, OPTAB_DIRECT);
1058 orig_base = NULL_RTX;
1059 if (use_after_return_class != -1)
1061 if (asan_detect_stack_use_after_return == NULL_TREE)
1063 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1064 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1065 integer_type_node);
1066 SET_DECL_ASSEMBLER_NAME (decl, id);
1067 TREE_ADDRESSABLE (decl) = 1;
1068 DECL_ARTIFICIAL (decl) = 1;
1069 DECL_IGNORED_P (decl) = 1;
1070 DECL_EXTERNAL (decl) = 1;
1071 TREE_STATIC (decl) = 1;
1072 TREE_PUBLIC (decl) = 1;
1073 TREE_USED (decl) = 1;
1074 asan_detect_stack_use_after_return = decl;
1076 orig_base = gen_reg_rtx (Pmode);
1077 emit_move_insn (orig_base, base);
1078 ret = expand_normal (asan_detect_stack_use_after_return);
1079 lab = gen_label_rtx ();
1080 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1081 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1082 VOIDmode, 0, lab, very_likely);
1083 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1084 use_after_return_class);
1085 ret = init_one_libfunc (buf);
1086 rtx addr = convert_memory_address (ptr_mode, base);
1087 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1088 GEN_INT (asan_frame_size
1089 + base_align_bias),
1090 TYPE_MODE (pointer_sized_int_node),
1091 addr, ptr_mode);
1092 ret = convert_memory_address (Pmode, ret);
1093 emit_move_insn (base, ret);
1094 emit_label (lab);
1095 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1096 gen_int_mode (base_align_bias
1097 - base_offset, Pmode),
1098 NULL_RTX, 1, OPTAB_DIRECT));
1100 mem = gen_rtx_MEM (ptr_mode, base);
1101 mem = adjust_address (mem, VOIDmode, base_align_bias);
1102 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1103 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1104 emit_move_insn (mem, expand_normal (str_cst));
1105 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1106 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1107 id = get_identifier (buf);
1108 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1109 VAR_DECL, id, char_type_node);
1110 SET_DECL_ASSEMBLER_NAME (decl, id);
1111 TREE_ADDRESSABLE (decl) = 1;
1112 TREE_READONLY (decl) = 1;
1113 DECL_ARTIFICIAL (decl) = 1;
1114 DECL_IGNORED_P (decl) = 1;
1115 TREE_STATIC (decl) = 1;
1116 TREE_PUBLIC (decl) = 0;
1117 TREE_USED (decl) = 1;
1118 DECL_INITIAL (decl) = decl;
1119 TREE_ASM_WRITTEN (decl) = 1;
1120 TREE_ASM_WRITTEN (id) = 1;
1121 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1122 shadow_base = expand_binop (Pmode, lshr_optab, base,
1123 GEN_INT (ASAN_SHADOW_SHIFT),
1124 NULL_RTX, 1, OPTAB_DIRECT);
1125 shadow_base
1126 = plus_constant (Pmode, shadow_base,
1127 targetm.asan_shadow_offset ()
1128 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1129 gcc_assert (asan_shadow_set != -1
1130 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1131 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1132 set_mem_alias_set (shadow_mem, asan_shadow_set);
1133 if (STRICT_ALIGNMENT)
1134 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1135 prev_offset = base_offset;
1136 for (l = length; l; l -= 2)
1138 if (l == 2)
1139 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1140 offset = offsets[l - 1];
1141 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1143 int i;
1144 HOST_WIDE_INT aoff
1145 = base_offset + ((offset - base_offset)
1146 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1147 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1148 (aoff - prev_offset)
1149 >> ASAN_SHADOW_SHIFT);
1150 prev_offset = aoff;
1151 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1152 if (aoff < offset)
1154 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1155 shadow_bytes[i] = 0;
1156 else
1157 shadow_bytes[i] = offset - aoff;
1159 else
1160 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset = aoff;
1164 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1166 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1167 (offset - prev_offset)
1168 >> ASAN_SHADOW_SHIFT);
1169 prev_offset = offset;
1170 memset (shadow_bytes, cur_shadow_byte, 4);
1171 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1172 offset += ASAN_RED_ZONE_SIZE;
1174 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1176 do_pending_stack_adjust ();
1178 /* Construct epilogue sequence. */
1179 start_sequence ();
1181 lab = NULL;
1182 if (use_after_return_class != -1)
1184 rtx_code_label *lab2 = gen_label_rtx ();
1185 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1186 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1187 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1188 VOIDmode, 0, lab2, very_likely);
1189 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1190 set_mem_alias_set (shadow_mem, asan_shadow_set);
1191 mem = gen_rtx_MEM (ptr_mode, base);
1192 mem = adjust_address (mem, VOIDmode, base_align_bias);
1193 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1194 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1195 if (use_after_return_class < 5
1196 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1197 BITS_PER_UNIT, true))
1198 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1199 BITS_PER_UNIT, true, 0);
1200 else if (use_after_return_class >= 5
1201 || !set_storage_via_setmem (shadow_mem,
1202 GEN_INT (sz),
1203 gen_int_mode (c, QImode),
1204 BITS_PER_UNIT, BITS_PER_UNIT,
1205 -1, sz, sz, sz))
1207 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1208 use_after_return_class);
1209 ret = init_one_libfunc (buf);
1210 rtx addr = convert_memory_address (ptr_mode, base);
1211 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1212 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1213 GEN_INT (asan_frame_size + base_align_bias),
1214 TYPE_MODE (pointer_sized_int_node),
1215 orig_addr, ptr_mode);
1217 lab = gen_label_rtx ();
1218 emit_jump (lab);
1219 emit_label (lab2);
1222 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1223 set_mem_alias_set (shadow_mem, asan_shadow_set);
1225 if (STRICT_ALIGNMENT)
1226 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1228 prev_offset = base_offset;
1229 last_offset = base_offset;
1230 last_size = 0;
1231 for (l = length; l; l -= 2)
1233 offset = base_offset + ((offsets[l - 1] - base_offset)
1234 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1235 if (last_offset + last_size != offset)
1237 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1238 (last_offset - prev_offset)
1239 >> ASAN_SHADOW_SHIFT);
1240 prev_offset = last_offset;
1241 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1242 last_offset = offset;
1243 last_size = 0;
1245 last_size += base_offset + ((offsets[l - 2] - base_offset)
1246 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1247 - offset;
1249 if (last_size)
1251 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1252 (last_offset - prev_offset)
1253 >> ASAN_SHADOW_SHIFT);
1254 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1257 do_pending_stack_adjust ();
1258 if (lab)
1259 emit_label (lab);
1261 insns = get_insns ();
1262 end_sequence ();
1263 return insns;
1266 /* Return true if DECL, a global var, might be overridden and needs
1267 therefore a local alias. */
1269 static bool
1270 asan_needs_local_alias (tree decl)
1272 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1275 /* Return true if DECL is a VAR_DECL that should be protected
1276 by Address Sanitizer, by appending a red zone with protected
1277 shadow memory after it and aligning it to at least
1278 ASAN_RED_ZONE_SIZE bytes. */
1280 bool
1281 asan_protect_global (tree decl)
1283 if (!ASAN_GLOBALS)
1284 return false;
1286 rtx rtl, symbol;
1288 if (TREE_CODE (decl) == STRING_CST)
1290 /* Instrument all STRING_CSTs except those created
1291 by asan_pp_string here. */
1292 if (shadow_ptr_types[0] != NULL_TREE
1293 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1294 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1295 return false;
1296 return true;
1298 if (TREE_CODE (decl) != VAR_DECL
1299 /* TLS vars aren't statically protectable. */
1300 || DECL_THREAD_LOCAL_P (decl)
1301 /* Externs will be protected elsewhere. */
1302 || DECL_EXTERNAL (decl)
1303 || !DECL_RTL_SET_P (decl)
1304 /* Comdat vars pose an ABI problem, we can't know if
1305 the var that is selected by the linker will have
1306 padding or not. */
1307 || DECL_ONE_ONLY (decl)
1308 /* Similarly for common vars. People can use -fno-common. */
1309 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1310 /* Don't protect if using user section, often vars placed
1311 into user section from multiple TUs are then assumed
1312 to be an array of such vars, putting padding in there
1313 breaks this assumption. */
1314 || (DECL_SECTION_NAME (decl) != NULL
1315 && !symtab_node::get (decl)->implicit_section)
1316 || DECL_SIZE (decl) == 0
1317 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1318 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1319 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1320 return false;
1322 rtl = DECL_RTL (decl);
1323 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1324 return false;
1325 symbol = XEXP (rtl, 0);
1327 if (CONSTANT_POOL_ADDRESS_P (symbol)
1328 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1329 return false;
1331 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1332 return false;
1334 #ifndef ASM_OUTPUT_DEF
1335 if (asan_needs_local_alias (decl))
1336 return false;
1337 #endif
1339 return true;
1342 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1343 IS_STORE is either 1 (for a store) or 0 (for a load). */
1345 static tree
1346 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1348 static enum built_in_function report[2][6]
1349 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1350 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1351 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1352 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1353 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1354 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1355 if (size_in_bytes == -1)
1357 *nargs = 2;
1358 return builtin_decl_implicit (report[is_store][5]);
1360 *nargs = 1;
1361 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1364 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1365 IS_STORE is either 1 (for a store) or 0 (for a load). */
1367 static tree
1368 check_func (bool is_store, int size_in_bytes, int *nargs)
1370 static enum built_in_function check[2][6]
1371 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1372 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1373 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1374 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1375 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1376 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1377 if (size_in_bytes == -1)
1379 *nargs = 2;
1380 return builtin_decl_implicit (check[is_store][5]);
1382 *nargs = 1;
1383 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1386 /* Split the current basic block and create a condition statement
1387 insertion point right before or after the statement pointed to by
1388 ITER. Return an iterator to the point at which the caller might
1389 safely insert the condition statement.
1391 THEN_BLOCK must be set to the address of an uninitialized instance
1392 of basic_block. The function will then set *THEN_BLOCK to the
1393 'then block' of the condition statement to be inserted by the
1394 caller.
1396 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1397 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1399 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1400 block' of the condition statement to be inserted by the caller.
1402 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1403 statements starting from *ITER, and *THEN_BLOCK is a new empty
1404 block.
1406 *ITER is adjusted to point to always point to the first statement
1407 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1408 same as what ITER was pointing to prior to calling this function,
1409 if BEFORE_P is true; otherwise, it is its following statement. */
1411 gimple_stmt_iterator
1412 create_cond_insert_point (gimple_stmt_iterator *iter,
1413 bool before_p,
1414 bool then_more_likely_p,
1415 bool create_then_fallthru_edge,
1416 basic_block *then_block,
1417 basic_block *fallthrough_block)
1419 gimple_stmt_iterator gsi = *iter;
1421 if (!gsi_end_p (gsi) && before_p)
1422 gsi_prev (&gsi);
1424 basic_block cur_bb = gsi_bb (*iter);
1426 edge e = split_block (cur_bb, gsi_stmt (gsi));
1428 /* Get a hold on the 'condition block', the 'then block' and the
1429 'else block'. */
1430 basic_block cond_bb = e->src;
1431 basic_block fallthru_bb = e->dest;
1432 basic_block then_bb = create_empty_bb (cond_bb);
1433 if (current_loops)
1435 add_bb_to_loop (then_bb, cond_bb->loop_father);
1436 loops_state_set (LOOPS_NEED_FIXUP);
1439 /* Set up the newly created 'then block'. */
1440 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1441 int fallthrough_probability
1442 = then_more_likely_p
1443 ? PROB_VERY_UNLIKELY
1444 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1445 e->probability = PROB_ALWAYS - fallthrough_probability;
1446 if (create_then_fallthru_edge)
1447 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1449 /* Set up the fallthrough basic block. */
1450 e = find_edge (cond_bb, fallthru_bb);
1451 e->flags = EDGE_FALSE_VALUE;
1452 e->count = cond_bb->count;
1453 e->probability = fallthrough_probability;
1455 /* Update dominance info for the newly created then_bb; note that
1456 fallthru_bb's dominance info has already been updated by
1457 split_bock. */
1458 if (dom_info_available_p (CDI_DOMINATORS))
1459 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1461 *then_block = then_bb;
1462 *fallthrough_block = fallthru_bb;
1463 *iter = gsi_start_bb (fallthru_bb);
1465 return gsi_last_bb (cond_bb);
1468 /* Insert an if condition followed by a 'then block' right before the
1469 statement pointed to by ITER. The fallthrough block -- which is the
1470 else block of the condition as well as the destination of the
1471 outcoming edge of the 'then block' -- starts with the statement
1472 pointed to by ITER.
1474 COND is the condition of the if.
1476 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1477 'then block' is higher than the probability of the edge to the
1478 fallthrough block.
1480 Upon completion of the function, *THEN_BB is set to the newly
1481 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1482 fallthrough block.
1484 *ITER is adjusted to still point to the same statement it was
1485 pointing to initially. */
1487 static void
1488 insert_if_then_before_iter (gimple cond,
1489 gimple_stmt_iterator *iter,
1490 bool then_more_likely_p,
1491 basic_block *then_bb,
1492 basic_block *fallthrough_bb)
1494 gimple_stmt_iterator cond_insert_point =
1495 create_cond_insert_point (iter,
1496 /*before_p=*/true,
1497 then_more_likely_p,
1498 /*create_then_fallthru_edge=*/true,
1499 then_bb,
1500 fallthrough_bb);
1501 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1504 /* Build
1505 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1507 static tree
1508 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1509 tree base_addr, tree shadow_ptr_type)
1511 tree t, uintptr_type = TREE_TYPE (base_addr);
1512 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1513 gimple g;
1515 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1516 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1517 make_ssa_name (uintptr_type, NULL),
1518 base_addr, t);
1519 gimple_set_location (g, location);
1520 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1522 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1523 g = gimple_build_assign_with_ops (PLUS_EXPR,
1524 make_ssa_name (uintptr_type, NULL),
1525 gimple_assign_lhs (g), t);
1526 gimple_set_location (g, location);
1527 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1529 g = gimple_build_assign_with_ops (NOP_EXPR,
1530 make_ssa_name (shadow_ptr_type, NULL),
1531 gimple_assign_lhs (g), NULL_TREE);
1532 gimple_set_location (g, location);
1533 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1535 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1536 build_int_cst (shadow_ptr_type, 0));
1537 g = gimple_build_assign_with_ops (MEM_REF,
1538 make_ssa_name (shadow_type, NULL),
1539 t, NULL_TREE);
1540 gimple_set_location (g, location);
1541 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1542 return gimple_assign_lhs (g);
1545 /* BASE can already be an SSA_NAME; in that case, do not create a
1546 new SSA_NAME for it. */
1548 static tree
1549 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1550 bool before_p)
1552 if (TREE_CODE (base) == SSA_NAME)
1553 return base;
1554 gimple g
1555 = gimple_build_assign_with_ops (TREE_CODE (base),
1556 make_ssa_name (TREE_TYPE (base), NULL),
1557 base, NULL_TREE);
1558 gimple_set_location (g, loc);
1559 if (before_p)
1560 gsi_insert_before (iter, g, GSI_SAME_STMT);
1561 else
1562 gsi_insert_after (iter, g, GSI_NEW_STMT);
1563 return gimple_assign_lhs (g);
1566 /* LEN can already have necessary size and precision;
1567 in that case, do not create a new variable. */
1569 tree
1570 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1571 bool before_p)
1573 if (ptrofftype_p (len))
1574 return len;
1575 gimple g
1576 = gimple_build_assign_with_ops (NOP_EXPR,
1577 make_ssa_name (pointer_sized_int_node, NULL),
1578 len, NULL);
1579 gimple_set_location (g, loc);
1580 if (before_p)
1581 gsi_insert_before (iter, g, GSI_SAME_STMT);
1582 else
1583 gsi_insert_after (iter, g, GSI_NEW_STMT);
1584 return gimple_assign_lhs (g);
1587 /* Instrument the memory access instruction BASE. Insert new
1588 statements before or after ITER.
1590 Note that the memory access represented by BASE can be either an
1591 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1592 location. IS_STORE is TRUE for a store, FALSE for a load.
1593 BEFORE_P is TRUE for inserting the instrumentation code before
1594 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1595 for a scalar memory access and FALSE for memory region access.
1596 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1597 length. ALIGN tells alignment of accessed memory object.
1599 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1600 memory region have already been instrumented.
1602 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1603 statement it was pointing to prior to calling this function,
1604 otherwise, it points to the statement logically following it. */
1606 static void
1607 build_check_stmt (location_t loc, tree base, tree len,
1608 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1609 bool is_non_zero_len, bool before_p, bool is_store,
1610 bool is_scalar_access, unsigned int align = 0,
1611 bool start_instrumented = false,
1612 bool end_instrumented = false)
1614 gimple_stmt_iterator gsi = *iter;
1615 gimple g;
1617 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1619 if (start_instrumented && end_instrumented)
1621 if (!before_p)
1622 gsi_next (iter);
1623 return;
1626 gsi = *iter;
1628 base = unshare_expr (base);
1629 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1631 if (len)
1633 len = unshare_expr (len);
1634 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1636 else
1638 gcc_assert (size_in_bytes != -1);
1639 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1642 if (size_in_bytes > 1)
1644 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1645 || size_in_bytes > 16)
1646 is_scalar_access = false;
1647 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1649 /* On non-strict alignment targets, if
1650 16-byte access is just 8-byte aligned,
1651 this will result in misaligned shadow
1652 memory 2 byte load, but otherwise can
1653 be handled using one read. */
1654 if (size_in_bytes != 16
1655 || STRICT_ALIGNMENT
1656 || align < 8 * BITS_PER_UNIT)
1657 is_scalar_access = false;
1661 HOST_WIDE_INT flags = 0;
1662 if (is_store)
1663 flags |= ASAN_CHECK_STORE;
1664 if (is_non_zero_len)
1665 flags |= ASAN_CHECK_NON_ZERO_LEN;
1666 if (is_scalar_access)
1667 flags |= ASAN_CHECK_SCALAR_ACCESS;
1668 if (start_instrumented)
1669 flags |= ASAN_CHECK_START_INSTRUMENTED;
1670 if (end_instrumented)
1671 flags |= ASAN_CHECK_END_INSTRUMENTED;
1673 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1674 build_int_cst (integer_type_node, flags),
1675 base, len,
1676 build_int_cst (integer_type_node,
1677 align / BITS_PER_UNIT));
1678 gimple_set_location (g, loc);
1679 if (before_p)
1680 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1681 else
1683 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1684 gsi_next (&gsi);
1685 *iter = gsi;
1689 /* If T represents a memory access, add instrumentation code before ITER.
1690 LOCATION is source code location.
1691 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1693 static void
1694 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1695 location_t location, bool is_store)
1697 if (is_store && !ASAN_INSTRUMENT_WRITES)
1698 return;
1699 if (!is_store && !ASAN_INSTRUMENT_READS)
1700 return;
1702 tree type, base;
1703 HOST_WIDE_INT size_in_bytes;
1705 type = TREE_TYPE (t);
1706 switch (TREE_CODE (t))
1708 case ARRAY_REF:
1709 case COMPONENT_REF:
1710 case INDIRECT_REF:
1711 case MEM_REF:
1712 case VAR_DECL:
1713 break;
1714 /* FALLTHRU */
1715 default:
1716 return;
1719 size_in_bytes = int_size_in_bytes (type);
1720 if (size_in_bytes <= 0)
1721 return;
1723 HOST_WIDE_INT bitsize, bitpos;
1724 tree offset;
1725 enum machine_mode mode;
1726 int volatilep = 0, unsignedp = 0;
1727 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1728 &mode, &unsignedp, &volatilep, false);
1730 if (TREE_CODE (t) == COMPONENT_REF
1731 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1733 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1734 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1735 TREE_OPERAND (t, 0), repr,
1736 NULL_TREE), location, is_store);
1737 return;
1740 if (bitpos % BITS_PER_UNIT
1741 || bitsize != size_in_bytes * BITS_PER_UNIT)
1742 return;
1744 if (TREE_CODE (inner) == VAR_DECL
1745 && offset == NULL_TREE
1746 && bitpos >= 0
1747 && DECL_SIZE (inner)
1748 && tree_fits_shwi_p (DECL_SIZE (inner))
1749 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1751 if (DECL_THREAD_LOCAL_P (inner))
1752 return;
1753 if (!TREE_STATIC (inner))
1755 /* Automatic vars in the current function will be always
1756 accessible. */
1757 if (decl_function_context (inner) == current_function_decl)
1758 return;
1760 /* Always instrument external vars, they might be dynamically
1761 initialized. */
1762 else if (!DECL_EXTERNAL (inner))
1764 /* For static vars if they are known not to be dynamically
1765 initialized, they will be always accessible. */
1766 varpool_node *vnode = varpool_node::get (inner);
1767 if (vnode && !vnode->dynamically_initialized)
1768 return;
1772 base = build_fold_addr_expr (t);
1773 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1775 unsigned int align = get_object_alignment (t);
1776 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1777 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1778 is_store, /*is_scalar_access*/true, align);
1779 update_mem_ref_hash_table (base, size_in_bytes);
1780 update_mem_ref_hash_table (t, size_in_bytes);
1785 /* Instrument an access to a contiguous memory region that starts at
1786 the address pointed to by BASE, over a length of LEN (expressed in
1787 the sizeof (*BASE) bytes). ITER points to the instruction before
1788 which the instrumentation instructions must be inserted. LOCATION
1789 is the source location that the instrumentation instructions must
1790 have. If IS_STORE is true, then the memory access is a store;
1791 otherwise, it's a load. */
1793 static void
1794 instrument_mem_region_access (tree base, tree len,
1795 gimple_stmt_iterator *iter,
1796 location_t location, bool is_store)
1798 if (!POINTER_TYPE_P (TREE_TYPE (base))
1799 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1800 || integer_zerop (len))
1801 return;
1803 /* If the beginning of the memory region has already been
1804 instrumented, do not instrument it. */
1805 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1807 /* If the end of the memory region has already been instrumented, do
1808 not instrument it. */
1809 tree end = asan_mem_ref_get_end (base, len);
1810 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1812 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1814 build_check_stmt (location, base, len, size_in_bytes, iter,
1815 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1816 is_store, /*is_scalar_access*/false, /*align*/0,
1817 start_instrumented, end_instrumented);
1819 update_mem_ref_hash_table (base, 1);
1820 if (size_in_bytes != -1)
1821 update_mem_ref_hash_table (end, 1);
1823 *iter = gsi_for_stmt (gsi_stmt (*iter));
1826 /* Instrument the call (to the builtin strlen function) pointed to by
1827 ITER.
1829 This function instruments the access to the first byte of the
1830 argument, right before the call. After the call it instruments the
1831 access to the last byte of the argument; it uses the result of the
1832 call to deduce the offset of that last byte.
1834 Upon completion, iff the call has actually been instrumented, this
1835 function returns TRUE and *ITER points to the statement logically
1836 following the built-in strlen function call *ITER was initially
1837 pointing to. Otherwise, the function returns FALSE and *ITER
1838 remains unchanged. */
1840 static bool
1841 instrument_strlen_call (gimple_stmt_iterator *iter)
1843 gimple g;
1844 gimple call = gsi_stmt (*iter);
1845 gcc_assert (is_gimple_call (call));
1847 tree callee = gimple_call_fndecl (call);
1848 gcc_assert (is_builtin_fn (callee)
1849 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1850 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1852 location_t loc = gimple_location (call);
1854 tree len = gimple_call_lhs (call);
1855 if (len == NULL)
1856 /* Some passes might clear the return value of the strlen call;
1857 bail out in that case. Return FALSE as we are not advancing
1858 *ITER. */
1859 return false;
1860 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1862 len = maybe_cast_to_ptrmode (loc, len, iter, /*before_p*/false);
1864 tree str_arg = gimple_call_arg (call, 0);
1865 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1867 tree cptr_type = build_pointer_type (char_type_node);
1868 g = gimple_build_assign_with_ops (NOP_EXPR,
1869 make_ssa_name (cptr_type, NULL),
1870 str_arg, NULL);
1871 gimple_set_location (g, loc);
1872 gsi_insert_before (iter, g, GSI_SAME_STMT);
1873 str_arg = gimple_assign_lhs (g);
1875 build_check_stmt (loc, str_arg, NULL_TREE, 1, iter,
1876 /*is_non_zero_len*/true, /*before_p=*/true,
1877 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1878 start_instrumented, start_instrumented);
1880 g = gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1881 make_ssa_name (cptr_type, NULL),
1882 str_arg,
1883 len);
1884 gimple_set_location (g, loc);
1885 gsi_insert_after (iter, g, GSI_NEW_STMT);
1887 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1888 /*is_non_zero_len*/true, /*before_p=*/false,
1889 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1891 return true;
1894 /* Instrument the call to a built-in memory access function that is
1895 pointed to by the iterator ITER.
1897 Upon completion, return TRUE iff *ITER has been advanced to the
1898 statement following the one it was originally pointing to. */
1900 static bool
1901 instrument_builtin_call (gimple_stmt_iterator *iter)
1903 if (!ASAN_MEMINTRIN)
1904 return false;
1906 bool iter_advanced_p = false;
1907 gimple call = gsi_stmt (*iter);
1909 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1911 tree callee = gimple_call_fndecl (call);
1912 location_t loc = gimple_location (call);
1914 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1915 iter_advanced_p = instrument_strlen_call (iter);
1916 else
1918 asan_mem_ref src0, src1, dest;
1919 asan_mem_ref_init (&src0, NULL, 1);
1920 asan_mem_ref_init (&src1, NULL, 1);
1921 asan_mem_ref_init (&dest, NULL, 1);
1923 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1924 bool src0_is_store = false, src1_is_store = false,
1925 dest_is_store = false, dest_is_deref = false;
1927 if (get_mem_refs_of_builtin_call (call,
1928 &src0, &src0_len, &src0_is_store,
1929 &src1, &src1_len, &src1_is_store,
1930 &dest, &dest_len, &dest_is_store,
1931 &dest_is_deref))
1933 if (dest_is_deref)
1935 instrument_derefs (iter, dest.start, loc, dest_is_store);
1936 gsi_next (iter);
1937 iter_advanced_p = true;
1939 else if (src0_len || src1_len || dest_len)
1941 if (src0.start != NULL_TREE)
1942 instrument_mem_region_access (src0.start, src0_len,
1943 iter, loc, /*is_store=*/false);
1944 if (src1.start != NULL_TREE)
1945 instrument_mem_region_access (src1.start, src1_len,
1946 iter, loc, /*is_store=*/false);
1947 if (dest.start != NULL_TREE)
1948 instrument_mem_region_access (dest.start, dest_len,
1949 iter, loc, /*is_store=*/true);
1950 *iter = gsi_for_stmt (call);
1951 gsi_next (iter);
1952 iter_advanced_p = true;
1956 return iter_advanced_p;
1959 /* Instrument the assignment statement ITER if it is subject to
1960 instrumentation. Return TRUE iff instrumentation actually
1961 happened. In that case, the iterator ITER is advanced to the next
1962 logical expression following the one initially pointed to by ITER,
1963 and the relevant memory reference that which access has been
1964 instrumented is added to the memory references hash table. */
1966 static bool
1967 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1969 gimple s = gsi_stmt (*iter);
1971 gcc_assert (gimple_assign_single_p (s));
1973 tree ref_expr = NULL_TREE;
1974 bool is_store, is_instrumented = false;
1976 if (gimple_store_p (s))
1978 ref_expr = gimple_assign_lhs (s);
1979 is_store = true;
1980 instrument_derefs (iter, ref_expr,
1981 gimple_location (s),
1982 is_store);
1983 is_instrumented = true;
1986 if (gimple_assign_load_p (s))
1988 ref_expr = gimple_assign_rhs1 (s);
1989 is_store = false;
1990 instrument_derefs (iter, ref_expr,
1991 gimple_location (s),
1992 is_store);
1993 is_instrumented = true;
1996 if (is_instrumented)
1997 gsi_next (iter);
1999 return is_instrumented;
2002 /* Instrument the function call pointed to by the iterator ITER, if it
2003 is subject to instrumentation. At the moment, the only function
2004 calls that are instrumented are some built-in functions that access
2005 memory. Look at instrument_builtin_call to learn more.
2007 Upon completion return TRUE iff *ITER was advanced to the statement
2008 following the one it was originally pointing to. */
2010 static bool
2011 maybe_instrument_call (gimple_stmt_iterator *iter)
2013 gimple stmt = gsi_stmt (*iter);
2014 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2016 if (is_builtin && instrument_builtin_call (iter))
2017 return true;
2019 if (gimple_call_noreturn_p (stmt))
2021 if (is_builtin)
2023 tree callee = gimple_call_fndecl (stmt);
2024 switch (DECL_FUNCTION_CODE (callee))
2026 case BUILT_IN_UNREACHABLE:
2027 case BUILT_IN_TRAP:
2028 /* Don't instrument these. */
2029 return false;
2030 default:
2031 break;
2034 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2035 gimple g = gimple_build_call (decl, 0);
2036 gimple_set_location (g, gimple_location (stmt));
2037 gsi_insert_before (iter, g, GSI_SAME_STMT);
2039 return false;
2042 /* Walk each instruction of all basic block and instrument those that
2043 represent memory references: loads, stores, or function calls.
2044 In a given basic block, this function avoids instrumenting memory
2045 references that have already been instrumented. */
2047 static void
2048 transform_statements (void)
2050 basic_block bb, last_bb = NULL;
2051 gimple_stmt_iterator i;
2052 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2054 FOR_EACH_BB_FN (bb, cfun)
2056 basic_block prev_bb = bb;
2058 if (bb->index >= saved_last_basic_block) continue;
2060 /* Flush the mem ref hash table, if current bb doesn't have
2061 exactly one predecessor, or if that predecessor (skipping
2062 over asan created basic blocks) isn't the last processed
2063 basic block. Thus we effectively flush on extended basic
2064 block boundaries. */
2065 while (single_pred_p (prev_bb))
2067 prev_bb = single_pred (prev_bb);
2068 if (prev_bb->index < saved_last_basic_block)
2069 break;
2071 if (prev_bb != last_bb)
2072 empty_mem_ref_hash_table ();
2073 last_bb = bb;
2075 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2077 gimple s = gsi_stmt (i);
2079 if (has_stmt_been_instrumented_p (s))
2080 gsi_next (&i);
2081 else if (gimple_assign_single_p (s)
2082 && !gimple_clobber_p (s)
2083 && maybe_instrument_assignment (&i))
2084 /* Nothing to do as maybe_instrument_assignment advanced
2085 the iterator I. */;
2086 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2087 /* Nothing to do as maybe_instrument_call
2088 advanced the iterator I. */;
2089 else
2091 /* No instrumentation happened.
2093 If the current instruction is a function call that
2094 might free something, let's forget about the memory
2095 references that got instrumented. Otherwise we might
2096 miss some instrumentation opportunities. */
2097 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2098 empty_mem_ref_hash_table ();
2100 gsi_next (&i);
2104 free_mem_ref_resources ();
2107 /* Build
2108 __asan_before_dynamic_init (module_name)
2110 __asan_after_dynamic_init ()
2111 call. */
2113 tree
2114 asan_dynamic_init_call (bool after_p)
2116 tree fn = builtin_decl_implicit (after_p
2117 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2118 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2119 tree module_name_cst = NULL_TREE;
2120 if (!after_p)
2122 pretty_printer module_name_pp;
2123 pp_string (&module_name_pp, main_input_filename);
2125 if (shadow_ptr_types[0] == NULL_TREE)
2126 asan_init_shadow_ptr_types ();
2127 module_name_cst = asan_pp_string (&module_name_pp);
2128 module_name_cst = fold_convert (const_ptr_type_node,
2129 module_name_cst);
2132 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2135 /* Build
2136 struct __asan_global
2138 const void *__beg;
2139 uptr __size;
2140 uptr __size_with_redzone;
2141 const void *__name;
2142 const void *__module_name;
2143 uptr __has_dynamic_init;
2144 __asan_global_source_location *__location;
2145 } type. */
2147 static tree
2148 asan_global_struct (void)
2150 static const char *field_names[7]
2151 = { "__beg", "__size", "__size_with_redzone",
2152 "__name", "__module_name", "__has_dynamic_init", "__location"};
2153 tree fields[7], ret;
2154 int i;
2156 ret = make_node (RECORD_TYPE);
2157 for (i = 0; i < 7; i++)
2159 fields[i]
2160 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2161 get_identifier (field_names[i]),
2162 (i == 0 || i == 3) ? const_ptr_type_node
2163 : pointer_sized_int_node);
2164 DECL_CONTEXT (fields[i]) = ret;
2165 if (i)
2166 DECL_CHAIN (fields[i - 1]) = fields[i];
2168 TYPE_FIELDS (ret) = fields[0];
2169 TYPE_NAME (ret) = get_identifier ("__asan_global");
2170 layout_type (ret);
2171 return ret;
2174 /* Append description of a single global DECL into vector V.
2175 TYPE is __asan_global struct type as returned by asan_global_struct. */
2177 static void
2178 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2180 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2181 unsigned HOST_WIDE_INT size;
2182 tree str_cst, module_name_cst, refdecl = decl;
2183 vec<constructor_elt, va_gc> *vinner = NULL;
2185 pretty_printer asan_pp, module_name_pp;
2187 if (DECL_NAME (decl))
2188 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2189 else
2190 pp_string (&asan_pp, "<unknown>");
2191 str_cst = asan_pp_string (&asan_pp);
2193 pp_string (&module_name_pp, main_input_filename);
2194 module_name_cst = asan_pp_string (&module_name_pp);
2196 if (asan_needs_local_alias (decl))
2198 char buf[20];
2199 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2200 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2201 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2202 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2203 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2204 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2205 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2206 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2207 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2208 TREE_STATIC (refdecl) = 1;
2209 TREE_PUBLIC (refdecl) = 0;
2210 TREE_USED (refdecl) = 1;
2211 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2214 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2215 fold_convert (const_ptr_type_node,
2216 build_fold_addr_expr (refdecl)));
2217 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2218 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2219 size += asan_red_zone_size (size);
2220 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2221 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2222 fold_convert (const_ptr_type_node, str_cst));
2223 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2224 fold_convert (const_ptr_type_node, module_name_cst));
2225 varpool_node *vnode = varpool_node::get (decl);
2226 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2227 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2228 build_int_cst (uptr, has_dynamic_init));
2229 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2230 build_int_cst (uptr, 0));
2231 init = build_constructor (type, vinner);
2232 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2235 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2236 void
2237 initialize_sanitizer_builtins (void)
2239 tree decl;
2241 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2242 return;
2244 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2245 tree BT_FN_VOID_PTR
2246 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2247 tree BT_FN_VOID_CONST_PTR
2248 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2249 tree BT_FN_VOID_PTR_PTR
2250 = build_function_type_list (void_type_node, ptr_type_node,
2251 ptr_type_node, NULL_TREE);
2252 tree BT_FN_VOID_PTR_PTR_PTR
2253 = build_function_type_list (void_type_node, ptr_type_node,
2254 ptr_type_node, ptr_type_node, NULL_TREE);
2255 tree BT_FN_VOID_PTR_PTRMODE
2256 = build_function_type_list (void_type_node, ptr_type_node,
2257 pointer_sized_int_node, NULL_TREE);
2258 tree BT_FN_VOID_INT
2259 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2260 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2261 tree BT_FN_IX_CONST_VPTR_INT[5];
2262 tree BT_FN_IX_VPTR_IX_INT[5];
2263 tree BT_FN_VOID_VPTR_IX_INT[5];
2264 tree vptr
2265 = build_pointer_type (build_qualified_type (void_type_node,
2266 TYPE_QUAL_VOLATILE));
2267 tree cvptr
2268 = build_pointer_type (build_qualified_type (void_type_node,
2269 TYPE_QUAL_VOLATILE
2270 |TYPE_QUAL_CONST));
2271 tree boolt
2272 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2273 int i;
2274 for (i = 0; i < 5; i++)
2276 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2277 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2278 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2279 integer_type_node, integer_type_node,
2280 NULL_TREE);
2281 BT_FN_IX_CONST_VPTR_INT[i]
2282 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2283 BT_FN_IX_VPTR_IX_INT[i]
2284 = build_function_type_list (ix, vptr, ix, integer_type_node,
2285 NULL_TREE);
2286 BT_FN_VOID_VPTR_IX_INT[i]
2287 = build_function_type_list (void_type_node, vptr, ix,
2288 integer_type_node, NULL_TREE);
2290 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2291 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2292 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2293 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2294 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2295 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2296 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2297 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2298 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2299 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2300 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2301 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2302 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2303 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2304 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2305 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2306 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2307 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2308 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2309 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2310 #undef ATTR_NOTHROW_LEAF_LIST
2311 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2312 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2313 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2314 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2315 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2316 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2317 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2318 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2319 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2320 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2321 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2322 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2323 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2324 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2325 #undef DEF_SANITIZER_BUILTIN
2326 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2327 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2328 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2329 set_call_expr_flags (decl, ATTRS); \
2330 set_builtin_decl (ENUM, decl, true);
2332 #include "sanitizer.def"
2334 #undef DEF_SANITIZER_BUILTIN
2337 /* Called via htab_traverse. Count number of emitted
2338 STRING_CSTs in the constant hash table. */
2340 static int
2341 count_string_csts (void **slot, void *data)
2343 struct constant_descriptor_tree *desc
2344 = (struct constant_descriptor_tree *) *slot;
2345 if (TREE_CODE (desc->value) == STRING_CST
2346 && TREE_ASM_WRITTEN (desc->value)
2347 && asan_protect_global (desc->value))
2348 ++*((unsigned HOST_WIDE_INT *) data);
2349 return 1;
2352 /* Helper structure to pass two parameters to
2353 add_string_csts. */
2355 struct asan_add_string_csts_data
2357 tree type;
2358 vec<constructor_elt, va_gc> *v;
2361 /* Called via htab_traverse. Call asan_add_global
2362 on emitted STRING_CSTs from the constant hash table. */
2364 static int
2365 add_string_csts (void **slot, void *data)
2367 struct constant_descriptor_tree *desc
2368 = (struct constant_descriptor_tree *) *slot;
2369 if (TREE_CODE (desc->value) == STRING_CST
2370 && TREE_ASM_WRITTEN (desc->value)
2371 && asan_protect_global (desc->value))
2373 struct asan_add_string_csts_data *aascd
2374 = (struct asan_add_string_csts_data *) data;
2375 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2376 aascd->type, aascd->v);
2378 return 1;
2381 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2382 invoke ggc_collect. */
2383 static GTY(()) tree asan_ctor_statements;
2385 /* Module-level instrumentation.
2386 - Insert __asan_init_vN() into the list of CTORs.
2387 - TODO: insert redzones around globals.
2390 void
2391 asan_finish_file (void)
2393 varpool_node *vnode;
2394 unsigned HOST_WIDE_INT gcount = 0;
2396 if (shadow_ptr_types[0] == NULL_TREE)
2397 asan_init_shadow_ptr_types ();
2398 /* Avoid instrumenting code in the asan ctors/dtors.
2399 We don't need to insert padding after the description strings,
2400 nor after .LASAN* array. */
2401 flag_sanitize &= ~SANITIZE_ADDRESS;
2403 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2404 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2405 FOR_EACH_DEFINED_VARIABLE (vnode)
2406 if (TREE_ASM_WRITTEN (vnode->decl)
2407 && asan_protect_global (vnode->decl))
2408 ++gcount;
2409 htab_t const_desc_htab = constant_pool_htab ();
2410 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2411 if (gcount)
2413 tree type = asan_global_struct (), var, ctor;
2414 tree dtor_statements = NULL_TREE;
2415 vec<constructor_elt, va_gc> *v;
2416 char buf[20];
2418 type = build_array_type_nelts (type, gcount);
2419 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2420 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2421 type);
2422 TREE_STATIC (var) = 1;
2423 TREE_PUBLIC (var) = 0;
2424 DECL_ARTIFICIAL (var) = 1;
2425 DECL_IGNORED_P (var) = 1;
2426 vec_alloc (v, gcount);
2427 FOR_EACH_DEFINED_VARIABLE (vnode)
2428 if (TREE_ASM_WRITTEN (vnode->decl)
2429 && asan_protect_global (vnode->decl))
2430 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2431 struct asan_add_string_csts_data aascd;
2432 aascd.type = TREE_TYPE (type);
2433 aascd.v = v;
2434 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2435 ctor = build_constructor (type, v);
2436 TREE_CONSTANT (ctor) = 1;
2437 TREE_STATIC (ctor) = 1;
2438 DECL_INITIAL (var) = ctor;
2439 varpool_node::finalize_decl (var);
2441 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2442 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2443 append_to_statement_list (build_call_expr (fn, 2,
2444 build_fold_addr_expr (var),
2445 gcount_tree),
2446 &asan_ctor_statements);
2448 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2449 append_to_statement_list (build_call_expr (fn, 2,
2450 build_fold_addr_expr (var),
2451 gcount_tree),
2452 &dtor_statements);
2453 cgraph_build_static_cdtor ('D', dtor_statements,
2454 MAX_RESERVED_INIT_PRIORITY - 1);
2456 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2457 MAX_RESERVED_INIT_PRIORITY - 1);
2458 flag_sanitize |= SANITIZE_ADDRESS;
2461 /* Expand the ASAN_{LOAD,STORE} builtins. */
2463 static bool
2464 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2466 gimple g = gsi_stmt (*iter);
2467 location_t loc = gimple_location (g);
2469 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2470 gcc_assert (flags < ASAN_CHECK_LAST);
2471 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2472 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2473 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2474 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2475 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2477 tree base = gimple_call_arg (g, 1);
2478 tree len = gimple_call_arg (g, 2);
2479 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2481 HOST_WIDE_INT size_in_bytes
2482 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2484 if (use_calls)
2486 /* Instrument using callbacks. */
2487 gimple g
2488 = gimple_build_assign_with_ops (NOP_EXPR,
2489 make_ssa_name (pointer_sized_int_node,
2490 NULL),
2491 base, NULL_TREE);
2492 gimple_set_location (g, loc);
2493 gsi_insert_before (iter, g, GSI_SAME_STMT);
2494 tree base_addr = gimple_assign_lhs (g);
2496 int nargs;
2497 tree fun = check_func (is_store, size_in_bytes, &nargs);
2498 if (nargs == 1)
2499 g = gimple_build_call (fun, 1, base_addr);
2500 else
2502 gcc_assert (nargs == 2);
2503 g = gimple_build_assign_with_ops (NOP_EXPR,
2504 make_ssa_name (pointer_sized_int_node,
2505 NULL),
2506 len, NULL_TREE);
2507 gimple_set_location (g, loc);
2508 gsi_insert_before (iter, g, GSI_SAME_STMT);
2509 tree sz_arg = gimple_assign_lhs (g);
2510 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2512 gimple_set_location (g, loc);
2513 gsi_replace (iter, g, false);
2514 return false;
2517 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2519 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2520 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2522 gimple_stmt_iterator gsi = *iter;
2524 if (!is_non_zero_len)
2526 /* So, the length of the memory area to asan-protect is
2527 non-constant. Let's guard the generated instrumentation code
2528 like:
2530 if (len != 0)
2532 //asan instrumentation code goes here.
2534 // falltrough instructions, starting with *ITER. */
2536 g = gimple_build_cond (NE_EXPR,
2537 len,
2538 build_int_cst (TREE_TYPE (len), 0),
2539 NULL_TREE, NULL_TREE);
2540 gimple_set_location (g, loc);
2542 basic_block then_bb, fallthrough_bb;
2543 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2544 &then_bb, &fallthrough_bb);
2545 /* Note that fallthrough_bb starts with the statement that was
2546 pointed to by ITER. */
2548 /* The 'then block' of the 'if (len != 0) condition is where
2549 we'll generate the asan instrumentation code now. */
2550 gsi = gsi_last_bb (then_bb);
2553 /* Get an iterator on the point where we can add the condition
2554 statement for the instrumentation. */
2555 basic_block then_bb, else_bb;
2556 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2557 /*then_more_likely_p=*/false,
2558 /*create_then_fallthru_edge=*/false,
2559 &then_bb,
2560 &else_bb);
2562 g = gimple_build_assign_with_ops (NOP_EXPR,
2563 make_ssa_name (pointer_sized_int_node,
2564 NULL),
2565 base, NULL_TREE);
2566 gimple_set_location (g, loc);
2567 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2568 tree base_addr = gimple_assign_lhs (g);
2570 tree t = NULL_TREE;
2571 if (real_size_in_bytes >= 8)
2573 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2574 shadow_ptr_type);
2575 t = shadow;
2577 else
2579 /* Slow path for 1, 2 and 4 byte accesses. */
2581 if (!start_instrumented)
2583 /* Test (shadow != 0)
2584 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2585 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2586 shadow_ptr_type);
2587 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2588 gimple_seq seq = NULL;
2589 gimple_seq_add_stmt (&seq, shadow_test);
2590 /* Aligned (>= 8 bytes) can test just
2591 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2592 to be 0. */
2593 if (align < 8)
2595 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2596 base_addr, 7));
2597 gimple_seq_add_stmt (&seq,
2598 build_type_cast (shadow_type,
2599 gimple_seq_last (seq)));
2600 if (real_size_in_bytes > 1)
2601 gimple_seq_add_stmt (&seq,
2602 build_assign (PLUS_EXPR,
2603 gimple_seq_last (seq),
2604 real_size_in_bytes - 1));
2605 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2607 else
2608 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2609 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2610 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2611 gimple_seq_last (seq)));
2612 t = gimple_assign_lhs (gimple_seq_last (seq));
2613 gimple_seq_set_location (seq, loc);
2614 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2617 /* For non-constant, misaligned or otherwise weird access sizes,
2618 check first and last byte. */
2619 if (size_in_bytes == -1 && !end_instrumented)
2621 g = gimple_build_assign_with_ops (MINUS_EXPR,
2622 make_ssa_name (pointer_sized_int_node, NULL),
2623 len,
2624 build_int_cst (pointer_sized_int_node, 1));
2625 gimple_set_location (g, loc);
2626 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2627 tree last = gimple_assign_lhs (g);
2628 g = gimple_build_assign_with_ops (PLUS_EXPR,
2629 make_ssa_name (pointer_sized_int_node, NULL),
2630 base_addr,
2631 last);
2632 gimple_set_location (g, loc);
2633 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2634 tree base_end_addr = gimple_assign_lhs (g);
2636 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2637 shadow_ptr_type);
2638 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2639 gimple_seq seq = NULL;
2640 gimple_seq_add_stmt (&seq, shadow_test);
2641 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2642 base_end_addr, 7));
2643 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2644 gimple_seq_last (seq)));
2645 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2646 gimple_seq_last (seq),
2647 shadow));
2648 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2649 gimple_seq_last (seq)));
2650 if (!start_instrumented)
2651 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2652 gimple_seq_last (seq)));
2653 t = gimple_assign_lhs (gimple_seq_last (seq));
2654 gimple_seq_set_location (seq, loc);
2655 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2659 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2660 NULL_TREE, NULL_TREE);
2661 gimple_set_location (g, loc);
2662 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2664 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2665 gsi = gsi_start_bb (then_bb);
2666 int nargs;
2667 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2668 g = gimple_build_call (fun, nargs, base_addr, len);
2669 gimple_set_location (g, loc);
2670 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2672 gsi_remove (iter, true);
2673 *iter = gsi_start_bb (else_bb);
2675 return true;
2678 /* Instrument the current function. */
2680 static unsigned int
2681 asan_instrument (void)
2683 if (shadow_ptr_types[0] == NULL_TREE)
2684 asan_init_shadow_ptr_types ();
2685 transform_statements ();
2686 return 0;
2689 static bool
2690 gate_asan (void)
2692 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2693 && !lookup_attribute ("no_sanitize_address",
2694 DECL_ATTRIBUTES (current_function_decl));
2697 namespace {
2699 const pass_data pass_data_asan =
2701 GIMPLE_PASS, /* type */
2702 "asan", /* name */
2703 OPTGROUP_NONE, /* optinfo_flags */
2704 TV_NONE, /* tv_id */
2705 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2706 0, /* properties_provided */
2707 0, /* properties_destroyed */
2708 0, /* todo_flags_start */
2709 TODO_update_ssa, /* todo_flags_finish */
2712 class pass_asan : public gimple_opt_pass
2714 public:
2715 pass_asan (gcc::context *ctxt)
2716 : gimple_opt_pass (pass_data_asan, ctxt)
2719 /* opt_pass methods: */
2720 opt_pass * clone () { return new pass_asan (m_ctxt); }
2721 virtual bool gate (function *) { return gate_asan (); }
2722 virtual unsigned int execute (function *) { return asan_instrument (); }
2724 }; // class pass_asan
2726 } // anon namespace
2728 gimple_opt_pass *
2729 make_pass_asan (gcc::context *ctxt)
2731 return new pass_asan (ctxt);
2734 namespace {
2736 const pass_data pass_data_asan_O0 =
2738 GIMPLE_PASS, /* type */
2739 "asan0", /* name */
2740 OPTGROUP_NONE, /* optinfo_flags */
2741 TV_NONE, /* tv_id */
2742 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2743 0, /* properties_provided */
2744 0, /* properties_destroyed */
2745 0, /* todo_flags_start */
2746 TODO_update_ssa, /* todo_flags_finish */
2749 class pass_asan_O0 : public gimple_opt_pass
2751 public:
2752 pass_asan_O0 (gcc::context *ctxt)
2753 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2756 /* opt_pass methods: */
2757 virtual bool gate (function *) { return !optimize && gate_asan (); }
2758 virtual unsigned int execute (function *) { return asan_instrument (); }
2760 }; // class pass_asan_O0
2762 } // anon namespace
2764 gimple_opt_pass *
2765 make_pass_asan_O0 (gcc::context *ctxt)
2767 return new pass_asan_O0 (ctxt);
2770 /* Perform optimization of sanitize functions. */
2772 namespace {
2774 const pass_data pass_data_sanopt =
2776 GIMPLE_PASS, /* type */
2777 "sanopt", /* name */
2778 OPTGROUP_NONE, /* optinfo_flags */
2779 TV_NONE, /* tv_id */
2780 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2781 0, /* properties_provided */
2782 0, /* properties_destroyed */
2783 0, /* todo_flags_start */
2784 TODO_update_ssa, /* todo_flags_finish */
2787 class pass_sanopt : public gimple_opt_pass
2789 public:
2790 pass_sanopt (gcc::context *ctxt)
2791 : gimple_opt_pass (pass_data_sanopt, ctxt)
2794 /* opt_pass methods: */
2795 virtual bool gate (function *) { return flag_sanitize; }
2796 virtual unsigned int execute (function *);
2798 }; // class pass_sanopt
2800 unsigned int
2801 pass_sanopt::execute (function *fun)
2803 basic_block bb;
2805 int asan_num_accesses = 0;
2806 if (flag_sanitize & SANITIZE_ADDRESS)
2808 gimple_stmt_iterator gsi;
2809 FOR_EACH_BB_FN (bb, fun)
2810 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2812 gimple stmt = gsi_stmt (gsi);
2813 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2814 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2815 ++asan_num_accesses;
2819 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2820 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2822 FOR_EACH_BB_FN (bb, fun)
2824 gimple_stmt_iterator gsi;
2825 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2827 gimple stmt = gsi_stmt (gsi);
2828 bool no_next = false;
2830 if (!is_gimple_call (stmt))
2832 gsi_next (&gsi);
2833 continue;
2836 if (gimple_call_internal_p (stmt))
2838 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2839 switch (ifn)
2841 case IFN_UBSAN_NULL:
2842 no_next = ubsan_expand_null_ifn (&gsi);
2843 break;
2844 case IFN_UBSAN_BOUNDS:
2845 no_next = ubsan_expand_bounds_ifn (&gsi);
2846 break;
2847 case IFN_ASAN_CHECK:
2849 no_next = asan_expand_check_ifn (&gsi, use_calls);
2850 break;
2852 default:
2853 break;
2857 if (dump_file && (dump_flags & TDF_DETAILS))
2859 fprintf (dump_file, "Optimized\n ");
2860 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2861 fprintf (dump_file, "\n");
2864 if (!no_next)
2865 gsi_next (&gsi);
2868 return 0;
2871 } // anon namespace
2873 gimple_opt_pass *
2874 make_pass_sanopt (gcc::context *ctxt)
2876 return new pass_sanopt (ctxt);
2879 #include "gt-asan.h"