Renamer improvements.
[official-gcc.git] / gcc / rtlanal.c
bloba19ebeff81e08bf54bb24e11decf73a26a03b0d4
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
28 static int rtx_addr_can_trap_p PARAMS ((rtx));
29 static void reg_set_p_1 PARAMS ((rtx, rtx, void *));
30 static void insn_dependent_p_1 PARAMS ((rtx, rtx, void *));
31 static void reg_set_last_1 PARAMS ((rtx, rtx, void *));
34 /* Forward declarations */
35 static int jmp_uses_reg_or_mem PARAMS ((rtx));
37 /* Bit flags that specify the machine subtype we are compiling for.
38 Bits are tested using macros TARGET_... defined in the tm.h file
39 and set by `-m...' switches. Must be defined in rtlanal.c. */
41 int target_flags;
43 /* Return 1 if the value of X is unstable
44 (would be different at a different point in the program).
45 The frame pointer, arg pointer, etc. are considered stable
46 (within one function) and so is anything marked `unchanging'. */
48 int
49 rtx_unstable_p (x)
50 rtx x;
52 register RTX_CODE code = GET_CODE (x);
53 register int i;
54 register const char *fmt;
56 switch (code)
58 case MEM:
59 return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));
61 case QUEUED:
62 return 1;
64 case CONST:
65 case CONST_INT:
66 case CONST_DOUBLE:
67 case SYMBOL_REF:
68 case LABEL_REF:
69 return 0;
71 case REG:
72 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
73 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
74 || x == arg_pointer_rtx || RTX_UNCHANGING_P (x))
75 return 0;
76 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
77 /* ??? When call-clobbered, the value is stable modulo the restore
78 that must happen after a call. This currently screws up local-alloc
79 into believing that the restore is not needed. */
80 if (x == pic_offset_table_rtx)
81 return 0;
82 #endif
83 return 1;
85 case ASM_OPERANDS:
86 if (MEM_VOLATILE_P (x))
87 return 1;
89 /* FALLTHROUGH */
91 default:
92 break;
95 fmt = GET_RTX_FORMAT (code);
96 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
97 if (fmt[i] == 'e')
99 if (rtx_unstable_p (XEXP (x, i)))
100 return 1;
102 else if (fmt[i] == 'E')
104 int j;
105 for (j = 0; j < XVECLEN (x, i); j++)
106 if (rtx_unstable_p (XVECEXP (x, i, j)))
107 return 1;
110 return 0;
113 /* Return 1 if X has a value that can vary even between two
114 executions of the program. 0 means X can be compared reliably
115 against certain constants or near-constants.
116 The frame pointer and the arg pointer are considered constant. */
119 rtx_varies_p (x)
120 rtx x;
122 register RTX_CODE code = GET_CODE (x);
123 register int i;
124 register const char *fmt;
126 switch (code)
128 case MEM:
129 return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0));
131 case QUEUED:
132 return 1;
134 case CONST:
135 case CONST_INT:
136 case CONST_DOUBLE:
137 case SYMBOL_REF:
138 case LABEL_REF:
139 return 0;
141 case REG:
142 /* Note that we have to test for the actual rtx used for the frame
143 and arg pointers and not just the register number in case we have
144 eliminated the frame and/or arg pointer and are using it
145 for pseudos. */
146 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
147 || x == arg_pointer_rtx)
148 return 0;
149 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
150 /* ??? When call-clobbered, the value is stable modulo the restore
151 that must happen after a call. This currently screws up local-alloc
152 into believing that the restore is not needed. */
153 if (x == pic_offset_table_rtx)
154 return 0;
155 #endif
156 return 1;
158 case LO_SUM:
159 /* The operand 0 of a LO_SUM is considered constant
160 (in fact is it related specifically to operand 1). */
161 return rtx_varies_p (XEXP (x, 1));
163 case ASM_OPERANDS:
164 if (MEM_VOLATILE_P (x))
165 return 1;
167 /* FALLTHROUGH */
169 default:
170 break;
173 fmt = GET_RTX_FORMAT (code);
174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
175 if (fmt[i] == 'e')
177 if (rtx_varies_p (XEXP (x, i)))
178 return 1;
180 else if (fmt[i] == 'E')
182 int j;
183 for (j = 0; j < XVECLEN (x, i); j++)
184 if (rtx_varies_p (XVECEXP (x, i, j)))
185 return 1;
188 return 0;
191 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
193 static int
194 rtx_addr_can_trap_p (x)
195 register rtx x;
197 register enum rtx_code code = GET_CODE (x);
199 switch (code)
201 case SYMBOL_REF:
202 case LABEL_REF:
203 /* SYMBOL_REF is problematic due to the possible presence of
204 a #pragma weak, but to say that loads from symbols can trap is
205 *very* costly. It's not at all clear what's best here. For
206 now, we ignore the impact of #pragma weak. */
207 return 0;
209 case REG:
210 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
211 return ! (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
212 || x == stack_pointer_rtx || x == arg_pointer_rtx);
214 case CONST:
215 return rtx_addr_can_trap_p (XEXP (x, 0));
217 case PLUS:
218 /* An address is assumed not to trap if it is an address that can't
219 trap plus a constant integer or it is the pic register plus a
220 constant. */
221 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
222 && GET_CODE (XEXP (x, 1)) == CONST_INT)
223 || (XEXP (x, 0) == pic_offset_table_rtx
224 && CONSTANT_P (XEXP (x, 1))));
226 case LO_SUM:
227 return rtx_addr_can_trap_p (XEXP (x, 1));
229 default:
230 break;
233 /* If it isn't one of the case above, it can cause a trap. */
234 return 1;
237 /* Return 1 if X refers to a memory location whose address
238 cannot be compared reliably with constant addresses,
239 or if X refers to a BLKmode memory object. */
242 rtx_addr_varies_p (x)
243 rtx x;
245 register enum rtx_code code;
246 register int i;
247 register const char *fmt;
249 if (x == 0)
250 return 0;
252 code = GET_CODE (x);
253 if (code == MEM)
254 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0));
256 fmt = GET_RTX_FORMAT (code);
257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
258 if (fmt[i] == 'e')
260 if (rtx_addr_varies_p (XEXP (x, i)))
261 return 1;
263 else if (fmt[i] == 'E')
265 int j;
266 for (j = 0; j < XVECLEN (x, i); j++)
267 if (rtx_addr_varies_p (XVECEXP (x, i, j)))
268 return 1;
270 return 0;
273 /* Return the value of the integer term in X, if one is apparent;
274 otherwise return 0.
275 Only obvious integer terms are detected.
276 This is used in cse.c with the `related_value' field.*/
278 HOST_WIDE_INT
279 get_integer_term (x)
280 rtx x;
282 if (GET_CODE (x) == CONST)
283 x = XEXP (x, 0);
285 if (GET_CODE (x) == MINUS
286 && GET_CODE (XEXP (x, 1)) == CONST_INT)
287 return - INTVAL (XEXP (x, 1));
288 if (GET_CODE (x) == PLUS
289 && GET_CODE (XEXP (x, 1)) == CONST_INT)
290 return INTVAL (XEXP (x, 1));
291 return 0;
294 /* If X is a constant, return the value sans apparent integer term;
295 otherwise return 0.
296 Only obvious integer terms are detected. */
299 get_related_value (x)
300 rtx x;
302 if (GET_CODE (x) != CONST)
303 return 0;
304 x = XEXP (x, 0);
305 if (GET_CODE (x) == PLUS
306 && GET_CODE (XEXP (x, 1)) == CONST_INT)
307 return XEXP (x, 0);
308 else if (GET_CODE (x) == MINUS
309 && GET_CODE (XEXP (x, 1)) == CONST_INT)
310 return XEXP (x, 0);
311 return 0;
314 /* Return the number of places FIND appears within X. If COUNT_DEST is
315 zero, we do not count occurrences inside the destination of a SET. */
318 count_occurrences (x, find, count_dest)
319 rtx x, find;
320 int count_dest;
322 int i, j;
323 enum rtx_code code;
324 const char *format_ptr;
325 int count;
327 if (x == find)
328 return 1;
330 code = GET_CODE (x);
332 switch (code)
334 case REG:
335 case CONST_INT:
336 case CONST_DOUBLE:
337 case SYMBOL_REF:
338 case CODE_LABEL:
339 case PC:
340 case CC0:
341 return 0;
343 case MEM:
344 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
345 return 1;
346 break;
348 case SET:
349 if (SET_DEST (x) == find && ! count_dest)
350 return count_occurrences (SET_SRC (x), find, count_dest);
351 break;
353 default:
354 break;
357 format_ptr = GET_RTX_FORMAT (code);
358 count = 0;
360 for (i = 0; i < GET_RTX_LENGTH (code); i++)
362 switch (*format_ptr++)
364 case 'e':
365 count += count_occurrences (XEXP (x, i), find, count_dest);
366 break;
368 case 'E':
369 for (j = 0; j < XVECLEN (x, i); j++)
370 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
371 break;
374 return count;
377 /* Nonzero if register REG appears somewhere within IN.
378 Also works if REG is not a register; in this case it checks
379 for a subexpression of IN that is Lisp "equal" to REG. */
382 reg_mentioned_p (reg, in)
383 register rtx reg, in;
385 register const char *fmt;
386 register int i;
387 register enum rtx_code code;
389 if (in == 0)
390 return 0;
392 if (reg == in)
393 return 1;
395 if (GET_CODE (in) == LABEL_REF)
396 return reg == XEXP (in, 0);
398 code = GET_CODE (in);
400 switch (code)
402 /* Compare registers by number. */
403 case REG:
404 return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg);
406 /* These codes have no constituent expressions
407 and are unique. */
408 case SCRATCH:
409 case CC0:
410 case PC:
411 return 0;
413 case CONST_INT:
414 return GET_CODE (reg) == CONST_INT && INTVAL (in) == INTVAL (reg);
416 case CONST_DOUBLE:
417 /* These are kept unique for a given value. */
418 return 0;
420 default:
421 break;
424 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
425 return 1;
427 fmt = GET_RTX_FORMAT (code);
429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
431 if (fmt[i] == 'E')
433 register int j;
434 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
435 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
436 return 1;
438 else if (fmt[i] == 'e'
439 && reg_mentioned_p (reg, XEXP (in, i)))
440 return 1;
442 return 0;
445 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
446 no CODE_LABEL insn. */
449 no_labels_between_p (beg, end)
450 rtx beg, end;
452 register rtx p;
453 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
454 if (GET_CODE (p) == CODE_LABEL)
455 return 0;
456 return 1;
459 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
460 no JUMP_INSN insn. */
463 no_jumps_between_p (beg, end)
464 rtx beg, end;
466 register rtx p;
467 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
468 if (GET_CODE (p) == JUMP_INSN)
469 return 0;
470 return 1;
473 /* Nonzero if register REG is used in an insn between
474 FROM_INSN and TO_INSN (exclusive of those two). */
477 reg_used_between_p (reg, from_insn, to_insn)
478 rtx reg, from_insn, to_insn;
480 register rtx insn;
482 if (from_insn == to_insn)
483 return 0;
485 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
486 if (INSN_P (insn)
487 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
488 || (GET_CODE (insn) == CALL_INSN
489 && (find_reg_fusage (insn, USE, reg)
490 || find_reg_fusage (insn, CLOBBER, reg)))))
491 return 1;
492 return 0;
495 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
496 is entirely replaced by a new value and the only use is as a SET_DEST,
497 we do not consider it a reference. */
500 reg_referenced_p (x, body)
501 rtx x;
502 rtx body;
504 int i;
506 switch (GET_CODE (body))
508 case SET:
509 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
510 return 1;
512 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
513 of a REG that occupies all of the REG, the insn references X if
514 it is mentioned in the destination. */
515 if (GET_CODE (SET_DEST (body)) != CC0
516 && GET_CODE (SET_DEST (body)) != PC
517 && GET_CODE (SET_DEST (body)) != REG
518 && ! (GET_CODE (SET_DEST (body)) == SUBREG
519 && GET_CODE (SUBREG_REG (SET_DEST (body))) == REG
520 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
521 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
522 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
523 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
524 && reg_overlap_mentioned_p (x, SET_DEST (body)))
525 return 1;
526 return 0;
528 case ASM_OPERANDS:
529 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
530 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
531 return 1;
532 return 0;
534 case CALL:
535 case USE:
536 case IF_THEN_ELSE:
537 return reg_overlap_mentioned_p (x, body);
539 case TRAP_IF:
540 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
542 case UNSPEC:
543 case UNSPEC_VOLATILE:
544 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
545 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
546 return 1;
547 return 0;
549 case PARALLEL:
550 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
551 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
552 return 1;
553 return 0;
555 case CLOBBER:
556 if (GET_CODE (XEXP (body, 0)) == MEM)
557 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
558 return 1;
559 return 0;
561 case COND_EXEC:
562 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
563 return 1;
564 return reg_referenced_p (x, COND_EXEC_CODE (body));
566 default:
567 return 0;
571 /* Nonzero if register REG is referenced in an insn between
572 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
573 not count. */
576 reg_referenced_between_p (reg, from_insn, to_insn)
577 rtx reg, from_insn, to_insn;
579 register rtx insn;
581 if (from_insn == to_insn)
582 return 0;
584 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
585 if (INSN_P (insn)
586 && (reg_referenced_p (reg, PATTERN (insn))
587 || (GET_CODE (insn) == CALL_INSN
588 && find_reg_fusage (insn, USE, reg))))
589 return 1;
590 return 0;
593 /* Nonzero if register REG is set or clobbered in an insn between
594 FROM_INSN and TO_INSN (exclusive of those two). */
597 reg_set_between_p (reg, from_insn, to_insn)
598 rtx reg, from_insn, to_insn;
600 register rtx insn;
602 if (from_insn == to_insn)
603 return 0;
605 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
606 if (INSN_P (insn) && reg_set_p (reg, insn))
607 return 1;
608 return 0;
611 /* Internals of reg_set_between_p. */
613 static rtx reg_set_reg;
614 static int reg_set_flag;
616 static void
617 reg_set_p_1 (x, pat, data)
618 rtx x;
619 rtx pat ATTRIBUTE_UNUSED;
620 void *data ATTRIBUTE_UNUSED;
622 /* We don't want to return 1 if X is a MEM that contains a register
623 within REG_SET_REG. */
625 if ((GET_CODE (x) != MEM)
626 && reg_overlap_mentioned_p (reg_set_reg, x))
627 reg_set_flag = 1;
631 reg_set_p (reg, insn)
632 rtx reg, insn;
634 rtx body = insn;
636 /* We can be passed an insn or part of one. If we are passed an insn,
637 check if a side-effect of the insn clobbers REG. */
638 if (INSN_P (insn))
640 if (FIND_REG_INC_NOTE (insn, reg)
641 || (GET_CODE (insn) == CALL_INSN
642 /* We'd like to test call_used_regs here, but rtlanal.c can't
643 reference that variable due to its use in genattrtab. So
644 we'll just be more conservative.
646 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
647 information holds all clobbered registers. */
648 && ((GET_CODE (reg) == REG
649 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
650 || GET_CODE (reg) == MEM
651 || find_reg_fusage (insn, CLOBBER, reg))))
652 return 1;
654 body = PATTERN (insn);
657 reg_set_reg = reg;
658 reg_set_flag = 0;
659 note_stores (body, reg_set_p_1, NULL);
660 return reg_set_flag;
663 /* Similar to reg_set_between_p, but check all registers in X. Return 0
664 only if none of them are modified between START and END. Do not
665 consider non-registers one way or the other. */
668 regs_set_between_p (x, start, end)
669 rtx x;
670 rtx start, end;
672 enum rtx_code code = GET_CODE (x);
673 const char *fmt;
674 int i, j;
676 switch (code)
678 case CONST_INT:
679 case CONST_DOUBLE:
680 case CONST:
681 case SYMBOL_REF:
682 case LABEL_REF:
683 case PC:
684 case CC0:
685 return 0;
687 case REG:
688 return reg_set_between_p (x, start, end);
690 default:
691 break;
694 fmt = GET_RTX_FORMAT (code);
695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
697 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
698 return 1;
700 else if (fmt[i] == 'E')
701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
702 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
703 return 1;
706 return 0;
709 /* Similar to reg_set_between_p, but check all registers in X. Return 0
710 only if none of them are modified between START and END. Return 1 if
711 X contains a MEM; this routine does not perform any memory aliasing. */
714 modified_between_p (x, start, end)
715 rtx x;
716 rtx start, end;
718 enum rtx_code code = GET_CODE (x);
719 const char *fmt;
720 int i, j;
722 switch (code)
724 case CONST_INT:
725 case CONST_DOUBLE:
726 case CONST:
727 case SYMBOL_REF:
728 case LABEL_REF:
729 return 0;
731 case PC:
732 case CC0:
733 return 1;
735 case MEM:
736 /* If the memory is not constant, assume it is modified. If it is
737 constant, we still have to check the address. */
738 if (! RTX_UNCHANGING_P (x))
739 return 1;
740 break;
742 case REG:
743 return reg_set_between_p (x, start, end);
745 default:
746 break;
749 fmt = GET_RTX_FORMAT (code);
750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
752 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
753 return 1;
755 else if (fmt[i] == 'E')
756 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
757 if (modified_between_p (XVECEXP (x, i, j), start, end))
758 return 1;
761 return 0;
764 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
765 of them are modified in INSN. Return 1 if X contains a MEM; this routine
766 does not perform any memory aliasing. */
769 modified_in_p (x, insn)
770 rtx x;
771 rtx insn;
773 enum rtx_code code = GET_CODE (x);
774 const char *fmt;
775 int i, j;
777 switch (code)
779 case CONST_INT:
780 case CONST_DOUBLE:
781 case CONST:
782 case SYMBOL_REF:
783 case LABEL_REF:
784 return 0;
786 case PC:
787 case CC0:
788 return 1;
790 case MEM:
791 /* If the memory is not constant, assume it is modified. If it is
792 constant, we still have to check the address. */
793 if (! RTX_UNCHANGING_P (x))
794 return 1;
795 break;
797 case REG:
798 return reg_set_p (x, insn);
800 default:
801 break;
804 fmt = GET_RTX_FORMAT (code);
805 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
807 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
808 return 1;
810 else if (fmt[i] == 'E')
811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
812 if (modified_in_p (XVECEXP (x, i, j), insn))
813 return 1;
816 return 0;
819 /* Return true if anything in insn X is (anti,output,true) dependent on
820 anything in insn Y. */
823 insn_dependent_p (x, y)
824 rtx x, y;
826 rtx tmp;
828 if (! INSN_P (x) || ! INSN_P (y))
829 abort ();
831 tmp = PATTERN (y);
832 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
833 if (tmp == NULL_RTX)
834 return 1;
836 tmp = PATTERN (x);
837 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
838 if (tmp == NULL_RTX)
839 return 1;
841 return 0;
844 /* A helper routine for insn_dependent_p called through note_stores. */
846 static void
847 insn_dependent_p_1 (x, pat, data)
848 rtx x;
849 rtx pat ATTRIBUTE_UNUSED;
850 void *data;
852 rtx * pinsn = (rtx *) data;
854 if (*pinsn && reg_mentioned_p (x, *pinsn))
855 *pinsn = NULL_RTX;
858 /* Given an INSN, return a SET expression if this insn has only a single SET.
859 It may also have CLOBBERs, USEs, or SET whose output
860 will not be used, which we ignore. */
863 single_set_2 (insn, pat)
864 rtx insn, pat;
866 rtx set = NULL;
867 int set_verified = 1;
868 int i;
870 if (GET_CODE (pat) == PARALLEL)
872 for (i = 0; i < XVECLEN (pat, 0); i++)
874 rtx sub = XVECEXP (pat, 0, i);
875 switch (GET_CODE (sub))
877 case USE:
878 case CLOBBER:
879 break;
881 case SET:
882 /* We can consider insns having multiple sets, where all
883 but one are dead as single set insns. In common case
884 only single set is present in the pattern so we want
885 to avoid checking for REG_UNUSED notes unless neccesary.
887 When we reach set first time, we just expect this is
888 the single set we are looking for and only when more
889 sets are found in the insn, we check them. */
890 if (!set_verified)
892 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
893 && !side_effects_p (set))
894 set = NULL;
895 else
896 set_verified = 1;
898 if (!set)
899 set = sub, set_verified = 0;
900 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
901 || side_effects_p (sub))
902 return NULL_RTX;
903 break;
905 default:
906 return NULL_RTX;
910 return set;
913 /* Given an INSN, return nonzero if it has more than one SET, else return
914 zero. */
917 multiple_sets (insn)
918 rtx insn;
920 int found;
921 int i;
923 /* INSN must be an insn. */
924 if (! INSN_P (insn))
925 return 0;
927 /* Only a PARALLEL can have multiple SETs. */
928 if (GET_CODE (PATTERN (insn)) == PARALLEL)
930 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
931 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
933 /* If we have already found a SET, then return now. */
934 if (found)
935 return 1;
936 else
937 found = 1;
941 /* Either zero or one SET. */
942 return 0;
945 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
946 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
947 If the object was modified, if we hit a partial assignment to X, or hit a
948 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
949 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
950 be the src. */
953 find_last_value (x, pinsn, valid_to, allow_hwreg)
954 rtx x;
955 rtx *pinsn;
956 rtx valid_to;
957 int allow_hwreg;
959 rtx p;
961 for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
962 p = PREV_INSN (p))
963 if (INSN_P (p))
965 rtx set = single_set (p);
966 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
968 if (set && rtx_equal_p (x, SET_DEST (set)))
970 rtx src = SET_SRC (set);
972 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
973 src = XEXP (note, 0);
975 if ((valid_to == NULL_RTX
976 || ! modified_between_p (src, PREV_INSN (p), valid_to))
977 /* Reject hard registers because we don't usually want
978 to use them; we'd rather use a pseudo. */
979 && (! (GET_CODE (src) == REG
980 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
982 *pinsn = p;
983 return src;
987 /* If set in non-simple way, we don't have a value. */
988 if (reg_set_p (x, p))
989 break;
992 return x;
995 /* Return nonzero if register in range [REGNO, ENDREGNO)
996 appears either explicitly or implicitly in X
997 other than being stored into.
999 References contained within the substructure at LOC do not count.
1000 LOC may be zero, meaning don't ignore anything. */
1003 refers_to_regno_p (regno, endregno, x, loc)
1004 unsigned int regno, endregno;
1005 rtx x;
1006 rtx *loc;
1008 int i;
1009 unsigned int x_regno;
1010 RTX_CODE code;
1011 const char *fmt;
1013 repeat:
1014 /* The contents of a REG_NONNEG note is always zero, so we must come here
1015 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1016 if (x == 0)
1017 return 0;
1019 code = GET_CODE (x);
1021 switch (code)
1023 case REG:
1024 x_regno = REGNO (x);
1026 /* If we modifying the stack, frame, or argument pointer, it will
1027 clobber a virtual register. In fact, we could be more precise,
1028 but it isn't worth it. */
1029 if ((x_regno == STACK_POINTER_REGNUM
1030 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 || x_regno == ARG_POINTER_REGNUM
1032 #endif
1033 || x_regno == FRAME_POINTER_REGNUM)
1034 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1035 return 1;
1037 return (endregno > x_regno
1038 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1039 ? HARD_REGNO_NREGS (x_regno, GET_MODE (x))
1040 : 1));
1042 case SUBREG:
1043 /* If this is a SUBREG of a hard reg, we can see exactly which
1044 registers are being modified. Otherwise, handle normally. */
1045 if (GET_CODE (SUBREG_REG (x)) == REG
1046 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1048 unsigned int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
1049 unsigned int inner_endregno
1050 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1051 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
1053 return endregno > inner_regno && regno < inner_endregno;
1055 break;
1057 case CLOBBER:
1058 case SET:
1059 if (&SET_DEST (x) != loc
1060 /* Note setting a SUBREG counts as referring to the REG it is in for
1061 a pseudo but not for hard registers since we can
1062 treat each word individually. */
1063 && ((GET_CODE (SET_DEST (x)) == SUBREG
1064 && loc != &SUBREG_REG (SET_DEST (x))
1065 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
1066 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1067 && refers_to_regno_p (regno, endregno,
1068 SUBREG_REG (SET_DEST (x)), loc))
1069 || (GET_CODE (SET_DEST (x)) != REG
1070 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1071 return 1;
1073 if (code == CLOBBER || loc == &SET_SRC (x))
1074 return 0;
1075 x = SET_SRC (x);
1076 goto repeat;
1078 default:
1079 break;
1082 /* X does not match, so try its subexpressions. */
1084 fmt = GET_RTX_FORMAT (code);
1085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1087 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1089 if (i == 0)
1091 x = XEXP (x, 0);
1092 goto repeat;
1094 else
1095 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1096 return 1;
1098 else if (fmt[i] == 'E')
1100 register int j;
1101 for (j = XVECLEN (x, i) - 1; j >=0; j--)
1102 if (loc != &XVECEXP (x, i, j)
1103 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1104 return 1;
1107 return 0;
1110 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1111 we check if any register number in X conflicts with the relevant register
1112 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1113 contains a MEM (we don't bother checking for memory addresses that can't
1114 conflict because we expect this to be a rare case. */
1117 reg_overlap_mentioned_p (x, in)
1118 rtx x, in;
1120 unsigned int regno, endregno;
1122 /* Overly conservative. */
1123 if (GET_CODE (x) == STRICT_LOW_PART)
1124 x = XEXP (x, 0);
1126 /* If either argument is a constant, then modifying X can not affect IN. */
1127 if (CONSTANT_P (x) || CONSTANT_P (in))
1128 return 0;
1130 switch (GET_CODE (x))
1132 case SUBREG:
1133 regno = REGNO (SUBREG_REG (x));
1134 if (regno < FIRST_PSEUDO_REGISTER)
1135 regno += SUBREG_WORD (x);
1136 goto do_reg;
1138 case REG:
1139 regno = REGNO (x);
1140 do_reg:
1141 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1142 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
1143 return refers_to_regno_p (regno, endregno, in, NULL_PTR);
1145 case MEM:
1147 const char *fmt;
1148 int i;
1150 if (GET_CODE (in) == MEM)
1151 return 1;
1153 fmt = GET_RTX_FORMAT (GET_CODE (in));
1154 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1155 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1156 return 1;
1158 return 0;
1161 case SCRATCH:
1162 case PC:
1163 case CC0:
1164 return reg_mentioned_p (x, in);
1166 case PARALLEL:
1168 int i, n;
1170 /* Check for a NULL entry, used to indicate that the parameter goes
1171 both on the stack and in registers. */
1172 if (XEXP (XVECEXP (x, 0, 0), 0))
1173 i = 0;
1174 else
1175 i = 1;
1177 /* If any register in here refers to it we return true. */
1178 for (n = XVECLEN (x, 0); i < n; ++i)
1179 if (reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1180 return 1;
1181 return 0;
1184 default:
1185 break;
1188 abort ();
1191 /* Used for communications between the next few functions. */
1193 static int reg_set_last_unknown;
1194 static rtx reg_set_last_value;
1195 static unsigned int reg_set_last_first_regno, reg_set_last_last_regno;
1197 /* Called via note_stores from reg_set_last. */
1199 static void
1200 reg_set_last_1 (x, pat, data)
1201 rtx x;
1202 rtx pat;
1203 void *data ATTRIBUTE_UNUSED;
1205 unsigned int first, last;
1207 /* If X is not a register, or is not one in the range we care
1208 about, ignore. */
1209 if (GET_CODE (x) != REG)
1210 return;
1212 first = REGNO (x);
1213 last = first + (first < FIRST_PSEUDO_REGISTER
1214 ? HARD_REGNO_NREGS (first, GET_MODE (x)) : 1);
1216 if (first >= reg_set_last_last_regno
1217 || last <= reg_set_last_first_regno)
1218 return;
1220 /* If this is a CLOBBER or is some complex LHS, or doesn't modify
1221 exactly the registers we care about, show we don't know the value. */
1222 if (GET_CODE (pat) == CLOBBER || SET_DEST (pat) != x
1223 || first != reg_set_last_first_regno
1224 || last != reg_set_last_last_regno)
1225 reg_set_last_unknown = 1;
1226 else
1227 reg_set_last_value = SET_SRC (pat);
1230 /* Return the last value to which REG was set prior to INSN. If we can't
1231 find it easily, return 0.
1233 We only return a REG, SUBREG, or constant because it is too hard to
1234 check if a MEM remains unchanged. */
1237 reg_set_last (x, insn)
1238 rtx x;
1239 rtx insn;
1241 rtx orig_insn = insn;
1243 reg_set_last_first_regno = REGNO (x);
1245 reg_set_last_last_regno
1246 = reg_set_last_first_regno
1247 + (reg_set_last_first_regno < FIRST_PSEUDO_REGISTER
1248 ? HARD_REGNO_NREGS (reg_set_last_first_regno, GET_MODE (x)) : 1);
1250 reg_set_last_unknown = 0;
1251 reg_set_last_value = 0;
1253 /* Scan backwards until reg_set_last_1 changed one of the above flags.
1254 Stop when we reach a label or X is a hard reg and we reach a
1255 CALL_INSN (if reg_set_last_last_regno is a hard reg).
1257 If we find a set of X, ensure that its SET_SRC remains unchanged. */
1259 /* We compare with <= here, because reg_set_last_last_regno
1260 is actually the number of the first reg *not* in X. */
1261 for (;
1262 insn && GET_CODE (insn) != CODE_LABEL
1263 && ! (GET_CODE (insn) == CALL_INSN
1264 && reg_set_last_last_regno <= FIRST_PSEUDO_REGISTER);
1265 insn = PREV_INSN (insn))
1266 if (INSN_P (insn))
1268 note_stores (PATTERN (insn), reg_set_last_1, NULL);
1269 if (reg_set_last_unknown)
1270 return 0;
1271 else if (reg_set_last_value)
1273 if (CONSTANT_P (reg_set_last_value)
1274 || ((GET_CODE (reg_set_last_value) == REG
1275 || GET_CODE (reg_set_last_value) == SUBREG)
1276 && ! reg_set_between_p (reg_set_last_value,
1277 insn, orig_insn)))
1278 return reg_set_last_value;
1279 else
1280 return 0;
1284 return 0;
1287 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1288 (X would be the pattern of an insn).
1289 FUN receives two arguments:
1290 the REG, MEM, CC0 or PC being stored in or clobbered,
1291 the SET or CLOBBER rtx that does the store.
1293 If the item being stored in or clobbered is a SUBREG of a hard register,
1294 the SUBREG will be passed. */
1296 void
1297 note_stores (x, fun, data)
1298 register rtx x;
1299 void (*fun) PARAMS ((rtx, rtx, void *));
1300 void *data;
1302 if (GET_CODE (x) == COND_EXEC)
1303 x = COND_EXEC_CODE (x);
1304 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1306 register rtx dest = SET_DEST (x);
1307 while ((GET_CODE (dest) == SUBREG
1308 && (GET_CODE (SUBREG_REG (dest)) != REG
1309 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1310 || GET_CODE (dest) == ZERO_EXTRACT
1311 || GET_CODE (dest) == SIGN_EXTRACT
1312 || GET_CODE (dest) == STRICT_LOW_PART)
1313 dest = XEXP (dest, 0);
1315 if (GET_CODE (dest) == PARALLEL
1316 && GET_MODE (dest) == BLKmode)
1318 register int i;
1319 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1320 (*fun) (SET_DEST (XVECEXP (dest, 0, i)), x, data);
1322 else
1323 (*fun) (dest, x, data);
1325 else if (GET_CODE (x) == PARALLEL)
1327 register int i;
1328 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1330 register rtx y = XVECEXP (x, 0, i);
1331 if (GET_CODE (y) == COND_EXEC)
1332 y = COND_EXEC_CODE (y);
1333 if (GET_CODE (y) == SET || GET_CODE (y) == CLOBBER)
1335 register rtx dest = SET_DEST (y);
1336 while ((GET_CODE (dest) == SUBREG
1337 && (GET_CODE (SUBREG_REG (dest)) != REG
1338 || (REGNO (SUBREG_REG (dest))
1339 >= FIRST_PSEUDO_REGISTER)))
1340 || GET_CODE (dest) == ZERO_EXTRACT
1341 || GET_CODE (dest) == SIGN_EXTRACT
1342 || GET_CODE (dest) == STRICT_LOW_PART)
1343 dest = XEXP (dest, 0);
1344 if (GET_CODE (dest) == PARALLEL
1345 && GET_MODE (dest) == BLKmode)
1347 register int i;
1349 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1350 (*fun) (SET_DEST (XVECEXP (dest, 0, i)), y, data);
1352 else
1353 (*fun) (dest, y, data);
1359 /* Return nonzero if X's old contents don't survive after INSN.
1360 This will be true if X is (cc0) or if X is a register and
1361 X dies in INSN or because INSN entirely sets X.
1363 "Entirely set" means set directly and not through a SUBREG,
1364 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1365 Likewise, REG_INC does not count.
1367 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1368 but for this use that makes no difference, since regs don't overlap
1369 during their lifetimes. Therefore, this function may be used
1370 at any time after deaths have been computed (in flow.c).
1372 If REG is a hard reg that occupies multiple machine registers, this
1373 function will only return 1 if each of those registers will be replaced
1374 by INSN. */
1377 dead_or_set_p (insn, x)
1378 rtx insn;
1379 rtx x;
1381 unsigned int regno, last_regno;
1382 unsigned int i;
1384 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1385 if (GET_CODE (x) == CC0)
1386 return 1;
1388 if (GET_CODE (x) != REG)
1389 abort ();
1391 regno = REGNO (x);
1392 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1393 : regno + HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1);
1395 for (i = regno; i <= last_regno; i++)
1396 if (! dead_or_set_regno_p (insn, i))
1397 return 0;
1399 return 1;
1402 /* Utility function for dead_or_set_p to check an individual register. Also
1403 called from flow.c. */
1406 dead_or_set_regno_p (insn, test_regno)
1407 rtx insn;
1408 unsigned int test_regno;
1410 unsigned int regno, endregno;
1411 rtx pattern;
1413 /* See if there is a death note for something that includes TEST_REGNO. */
1414 if (find_regno_note (insn, REG_DEAD, test_regno))
1415 return 1;
1417 if (GET_CODE (insn) == CALL_INSN
1418 && find_regno_fusage (insn, CLOBBER, test_regno))
1419 return 1;
1421 pattern = PATTERN (insn);
1423 if (GET_CODE (pattern) == COND_EXEC)
1424 pattern = COND_EXEC_CODE (pattern);
1426 if (GET_CODE (pattern) == SET)
1428 rtx dest = SET_DEST (PATTERN (insn));
1430 /* A value is totally replaced if it is the destination or the
1431 destination is a SUBREG of REGNO that does not change the number of
1432 words in it. */
1433 if (GET_CODE (dest) == SUBREG
1434 && (((GET_MODE_SIZE (GET_MODE (dest))
1435 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1436 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1437 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1438 dest = SUBREG_REG (dest);
1440 if (GET_CODE (dest) != REG)
1441 return 0;
1443 regno = REGNO (dest);
1444 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1445 : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));
1447 return (test_regno >= regno && test_regno < endregno);
1449 else if (GET_CODE (pattern) == PARALLEL)
1451 register int i;
1453 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1455 rtx body = XVECEXP (pattern, 0, i);
1457 if (GET_CODE (body) == COND_EXEC)
1458 body = COND_EXEC_CODE (body);
1460 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1462 rtx dest = SET_DEST (body);
1464 if (GET_CODE (dest) == SUBREG
1465 && (((GET_MODE_SIZE (GET_MODE (dest))
1466 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1467 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1468 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1469 dest = SUBREG_REG (dest);
1471 if (GET_CODE (dest) != REG)
1472 continue;
1474 regno = REGNO (dest);
1475 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1476 : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));
1478 if (test_regno >= regno && test_regno < endregno)
1479 return 1;
1484 return 0;
1487 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1488 If DATUM is nonzero, look for one whose datum is DATUM. */
1491 find_reg_note (insn, kind, datum)
1492 rtx insn;
1493 enum reg_note kind;
1494 rtx datum;
1496 register rtx link;
1498 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1499 if (! INSN_P (insn))
1500 return 0;
1502 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1503 if (REG_NOTE_KIND (link) == kind
1504 && (datum == 0 || datum == XEXP (link, 0)))
1505 return link;
1506 return 0;
1509 /* Return the reg-note of kind KIND in insn INSN which applies to register
1510 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1511 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1512 it might be the case that the note overlaps REGNO. */
1515 find_regno_note (insn, kind, regno)
1516 rtx insn;
1517 enum reg_note kind;
1518 unsigned int regno;
1520 register rtx link;
1522 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1523 if (! INSN_P (insn))
1524 return 0;
1526 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1527 if (REG_NOTE_KIND (link) == kind
1528 /* Verify that it is a register, so that scratch and MEM won't cause a
1529 problem here. */
1530 && GET_CODE (XEXP (link, 0)) == REG
1531 && REGNO (XEXP (link, 0)) <= regno
1532 && ((REGNO (XEXP (link, 0))
1533 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1534 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
1535 GET_MODE (XEXP (link, 0)))))
1536 > regno))
1537 return link;
1538 return 0;
1541 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1542 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1545 find_reg_fusage (insn, code, datum)
1546 rtx insn;
1547 enum rtx_code code;
1548 rtx datum;
1550 /* If it's not a CALL_INSN, it can't possibly have a
1551 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1552 if (GET_CODE (insn) != CALL_INSN)
1553 return 0;
1555 if (! datum)
1556 abort();
1558 if (GET_CODE (datum) != REG)
1560 register rtx link;
1562 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1563 link;
1564 link = XEXP (link, 1))
1565 if (GET_CODE (XEXP (link, 0)) == code
1566 && rtx_equal_p (datum, SET_DEST (XEXP (link, 0))))
1567 return 1;
1569 else
1571 unsigned int regno = REGNO (datum);
1573 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1574 to pseudo registers, so don't bother checking. */
1576 if (regno < FIRST_PSEUDO_REGISTER)
1578 unsigned int end_regno
1579 = regno + HARD_REGNO_NREGS (regno, GET_MODE (datum));
1580 unsigned int i;
1582 for (i = regno; i < end_regno; i++)
1583 if (find_regno_fusage (insn, code, i))
1584 return 1;
1588 return 0;
1591 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1592 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1595 find_regno_fusage (insn, code, regno)
1596 rtx insn;
1597 enum rtx_code code;
1598 unsigned int regno;
1600 register rtx link;
1602 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1603 to pseudo registers, so don't bother checking. */
1605 if (regno >= FIRST_PSEUDO_REGISTER
1606 || GET_CODE (insn) != CALL_INSN )
1607 return 0;
1609 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1611 unsigned int regnote;
1612 rtx op, reg;
1614 if (GET_CODE (op = XEXP (link, 0)) == code
1615 && GET_CODE (reg = XEXP (op, 0)) == REG
1616 && (regnote = REGNO (reg)) <= regno
1617 && regnote + HARD_REGNO_NREGS (regnote, GET_MODE (reg)) > regno)
1618 return 1;
1621 return 0;
1624 /* Remove register note NOTE from the REG_NOTES of INSN. */
1626 void
1627 remove_note (insn, note)
1628 register rtx insn;
1629 register rtx note;
1631 register rtx link;
1633 if (note == NULL_RTX)
1634 return;
1636 if (REG_NOTES (insn) == note)
1638 REG_NOTES (insn) = XEXP (note, 1);
1639 return;
1642 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1643 if (XEXP (link, 1) == note)
1645 XEXP (link, 1) = XEXP (note, 1);
1646 return;
1649 abort ();
1652 /* Search LISTP (an EXPR_LIST) for NODE and remove NODE from the list
1653 if it is found.
1655 A simple equality test is used to determine if NODE is on the
1656 EXPR_LIST. */
1658 void
1659 remove_node_from_expr_list (node, listp)
1660 rtx node;
1661 rtx *listp;
1663 rtx temp = *listp;
1664 rtx prev = NULL_RTX;
1666 while (temp)
1668 if (node == XEXP (temp, 0))
1670 /* Splice the node out of the list. */
1671 if (prev)
1672 XEXP (prev, 1) = XEXP (temp, 1);
1673 else
1674 *listp = XEXP (temp, 1);
1676 return;
1678 temp = XEXP (temp, 1);
1682 /* Nonzero if X contains any volatile instructions. These are instructions
1683 which may cause unpredictable machine state instructions, and thus no
1684 instructions should be moved or combined across them. This includes
1685 only volatile asms and UNSPEC_VOLATILE instructions. */
1688 volatile_insn_p (x)
1689 rtx x;
1691 register RTX_CODE code;
1693 code = GET_CODE (x);
1694 switch (code)
1696 case LABEL_REF:
1697 case SYMBOL_REF:
1698 case CONST_INT:
1699 case CONST:
1700 case CONST_DOUBLE:
1701 case CC0:
1702 case PC:
1703 case REG:
1704 case SCRATCH:
1705 case CLOBBER:
1706 case ASM_INPUT:
1707 case ADDR_VEC:
1708 case ADDR_DIFF_VEC:
1709 case CALL:
1710 case MEM:
1711 return 0;
1713 case UNSPEC_VOLATILE:
1714 /* case TRAP_IF: This isn't clear yet. */
1715 return 1;
1717 case ASM_OPERANDS:
1718 if (MEM_VOLATILE_P (x))
1719 return 1;
1721 default:
1722 break;
1725 /* Recursively scan the operands of this expression. */
1728 register const char *fmt = GET_RTX_FORMAT (code);
1729 register int i;
1731 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1733 if (fmt[i] == 'e')
1735 if (volatile_insn_p (XEXP (x, i)))
1736 return 1;
1738 else if (fmt[i] == 'E')
1740 register int j;
1741 for (j = 0; j < XVECLEN (x, i); j++)
1742 if (volatile_insn_p (XVECEXP (x, i, j)))
1743 return 1;
1747 return 0;
1750 /* Nonzero if X contains any volatile memory references
1751 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1754 volatile_refs_p (x)
1755 rtx x;
1757 register RTX_CODE code;
1759 code = GET_CODE (x);
1760 switch (code)
1762 case LABEL_REF:
1763 case SYMBOL_REF:
1764 case CONST_INT:
1765 case CONST:
1766 case CONST_DOUBLE:
1767 case CC0:
1768 case PC:
1769 case REG:
1770 case SCRATCH:
1771 case CLOBBER:
1772 case ASM_INPUT:
1773 case ADDR_VEC:
1774 case ADDR_DIFF_VEC:
1775 return 0;
1777 case CALL:
1778 case UNSPEC_VOLATILE:
1779 /* case TRAP_IF: This isn't clear yet. */
1780 return 1;
1782 case MEM:
1783 case ASM_OPERANDS:
1784 if (MEM_VOLATILE_P (x))
1785 return 1;
1787 default:
1788 break;
1791 /* Recursively scan the operands of this expression. */
1794 register const char *fmt = GET_RTX_FORMAT (code);
1795 register int i;
1797 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1799 if (fmt[i] == 'e')
1801 if (volatile_refs_p (XEXP (x, i)))
1802 return 1;
1804 else if (fmt[i] == 'E')
1806 register int j;
1807 for (j = 0; j < XVECLEN (x, i); j++)
1808 if (volatile_refs_p (XVECEXP (x, i, j)))
1809 return 1;
1813 return 0;
1816 /* Similar to above, except that it also rejects register pre- and post-
1817 incrementing. */
1820 side_effects_p (x)
1821 rtx x;
1823 register RTX_CODE code;
1825 code = GET_CODE (x);
1826 switch (code)
1828 case LABEL_REF:
1829 case SYMBOL_REF:
1830 case CONST_INT:
1831 case CONST:
1832 case CONST_DOUBLE:
1833 case CC0:
1834 case PC:
1835 case REG:
1836 case SCRATCH:
1837 case ASM_INPUT:
1838 case ADDR_VEC:
1839 case ADDR_DIFF_VEC:
1840 return 0;
1842 case CLOBBER:
1843 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1844 when some combination can't be done. If we see one, don't think
1845 that we can simplify the expression. */
1846 return (GET_MODE (x) != VOIDmode);
1848 case PRE_INC:
1849 case PRE_DEC:
1850 case POST_INC:
1851 case POST_DEC:
1852 case PRE_MODIFY:
1853 case POST_MODIFY:
1854 case CALL:
1855 case UNSPEC_VOLATILE:
1856 /* case TRAP_IF: This isn't clear yet. */
1857 return 1;
1859 case MEM:
1860 case ASM_OPERANDS:
1861 if (MEM_VOLATILE_P (x))
1862 return 1;
1864 default:
1865 break;
1868 /* Recursively scan the operands of this expression. */
1871 register const char *fmt = GET_RTX_FORMAT (code);
1872 register int i;
1874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1876 if (fmt[i] == 'e')
1878 if (side_effects_p (XEXP (x, i)))
1879 return 1;
1881 else if (fmt[i] == 'E')
1883 register int j;
1884 for (j = 0; j < XVECLEN (x, i); j++)
1885 if (side_effects_p (XVECEXP (x, i, j)))
1886 return 1;
1890 return 0;
1893 /* Return nonzero if evaluating rtx X might cause a trap. */
1896 may_trap_p (x)
1897 rtx x;
1899 int i;
1900 enum rtx_code code;
1901 const char *fmt;
1903 if (x == 0)
1904 return 0;
1905 code = GET_CODE (x);
1906 switch (code)
1908 /* Handle these cases quickly. */
1909 case CONST_INT:
1910 case CONST_DOUBLE:
1911 case SYMBOL_REF:
1912 case LABEL_REF:
1913 case CONST:
1914 case PC:
1915 case CC0:
1916 case REG:
1917 case SCRATCH:
1918 return 0;
1920 case ASM_INPUT:
1921 case UNSPEC_VOLATILE:
1922 case TRAP_IF:
1923 return 1;
1925 case ASM_OPERANDS:
1926 return MEM_VOLATILE_P (x);
1928 /* Memory ref can trap unless it's a static var or a stack slot. */
1929 case MEM:
1930 return rtx_addr_can_trap_p (XEXP (x, 0));
1932 /* Division by a non-constant might trap. */
1933 case DIV:
1934 case MOD:
1935 case UDIV:
1936 case UMOD:
1937 if (! CONSTANT_P (XEXP (x, 1))
1938 || GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1939 return 1;
1940 /* This was const0_rtx, but by not using that,
1941 we can link this file into other programs. */
1942 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
1943 return 1;
1944 break;
1946 case EXPR_LIST:
1947 /* An EXPR_LIST is used to represent a function call. This
1948 certainly may trap. */
1949 return 1;
1951 case GE:
1952 case GT:
1953 case LE:
1954 case LT:
1955 case COMPARE:
1956 /* Some floating point comparisons may trap. */
1957 /* ??? There is no machine independent way to check for tests that trap
1958 when COMPARE is used, though many targets do make this distinction.
1959 For instance, sparc uses CCFPE for compares which generate exceptions
1960 and CCFP for compares which do not generate exceptions. */
1961 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1962 return 1;
1963 /* But often the compare has some CC mode, so check operand
1964 modes as well. */
1965 if (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_FLOAT
1966 || GET_MODE_CLASS (GET_MODE (XEXP (x, 1))) == MODE_FLOAT)
1967 return 1;
1968 break;
1970 default:
1971 /* Any floating arithmetic may trap. */
1972 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1973 return 1;
1976 fmt = GET_RTX_FORMAT (code);
1977 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1979 if (fmt[i] == 'e')
1981 if (may_trap_p (XEXP (x, i)))
1982 return 1;
1984 else if (fmt[i] == 'E')
1986 register int j;
1987 for (j = 0; j < XVECLEN (x, i); j++)
1988 if (may_trap_p (XVECEXP (x, i, j)))
1989 return 1;
1992 return 0;
1995 /* Return nonzero if X contains a comparison that is not either EQ or NE,
1996 i.e., an inequality. */
1999 inequality_comparisons_p (x)
2000 rtx x;
2002 register const char *fmt;
2003 register int len, i;
2004 register enum rtx_code code = GET_CODE (x);
2006 switch (code)
2008 case REG:
2009 case SCRATCH:
2010 case PC:
2011 case CC0:
2012 case CONST_INT:
2013 case CONST_DOUBLE:
2014 case CONST:
2015 case LABEL_REF:
2016 case SYMBOL_REF:
2017 return 0;
2019 case LT:
2020 case LTU:
2021 case GT:
2022 case GTU:
2023 case LE:
2024 case LEU:
2025 case GE:
2026 case GEU:
2027 return 1;
2029 default:
2030 break;
2033 len = GET_RTX_LENGTH (code);
2034 fmt = GET_RTX_FORMAT (code);
2036 for (i = 0; i < len; i++)
2038 if (fmt[i] == 'e')
2040 if (inequality_comparisons_p (XEXP (x, i)))
2041 return 1;
2043 else if (fmt[i] == 'E')
2045 register int j;
2046 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2047 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2048 return 1;
2052 return 0;
2055 /* Replace any occurrence of FROM in X with TO. The function does
2056 not enter into CONST_DOUBLE for the replace.
2058 Note that copying is not done so X must not be shared unless all copies
2059 are to be modified. */
2062 replace_rtx (x, from, to)
2063 rtx x, from, to;
2065 register int i, j;
2066 register const char *fmt;
2068 /* The following prevents loops occurrence when we change MEM in
2069 CONST_DOUBLE onto the same CONST_DOUBLE. */
2070 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2071 return x;
2073 if (x == from)
2074 return to;
2076 /* Allow this function to make replacements in EXPR_LISTs. */
2077 if (x == 0)
2078 return 0;
2080 fmt = GET_RTX_FORMAT (GET_CODE (x));
2081 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2083 if (fmt[i] == 'e')
2084 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2085 else if (fmt[i] == 'E')
2086 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2087 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2090 return x;
2093 /* Throughout the rtx X, replace many registers according to REG_MAP.
2094 Return the replacement for X (which may be X with altered contents).
2095 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2096 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2098 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2099 should not be mapped to pseudos or vice versa since validate_change
2100 is not called.
2102 If REPLACE_DEST is 1, replacements are also done in destinations;
2103 otherwise, only sources are replaced. */
2106 replace_regs (x, reg_map, nregs, replace_dest)
2107 rtx x;
2108 rtx *reg_map;
2109 unsigned int nregs;
2110 int replace_dest;
2112 register enum rtx_code code;
2113 register int i;
2114 register const char *fmt;
2116 if (x == 0)
2117 return x;
2119 code = GET_CODE (x);
2120 switch (code)
2122 case SCRATCH:
2123 case PC:
2124 case CC0:
2125 case CONST_INT:
2126 case CONST_DOUBLE:
2127 case CONST:
2128 case SYMBOL_REF:
2129 case LABEL_REF:
2130 return x;
2132 case REG:
2133 /* Verify that the register has an entry before trying to access it. */
2134 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2136 /* SUBREGs can't be shared. Always return a copy to ensure that if
2137 this replacement occurs more than once then each instance will
2138 get distinct rtx. */
2139 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2140 return copy_rtx (reg_map[REGNO (x)]);
2141 return reg_map[REGNO (x)];
2143 return x;
2145 case SUBREG:
2146 /* Prevent making nested SUBREGs. */
2147 if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < nregs
2148 && reg_map[REGNO (SUBREG_REG (x))] != 0
2149 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2151 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2152 rtx map_inner = SUBREG_REG (map_val);
2154 if (GET_MODE (x) == GET_MODE (map_inner))
2155 return map_inner;
2156 else
2158 /* We cannot call gen_rtx here since we may be linked with
2159 genattrtab.c. */
2160 /* Let's try clobbering the incoming SUBREG and see
2161 if this is really safe. */
2162 SUBREG_REG (x) = map_inner;
2163 SUBREG_WORD (x) += SUBREG_WORD (map_val);
2164 return x;
2165 #if 0
2166 rtx new = rtx_alloc (SUBREG);
2167 PUT_MODE (new, GET_MODE (x));
2168 SUBREG_REG (new) = map_inner;
2169 SUBREG_WORD (new) = SUBREG_WORD (x) + SUBREG_WORD (map_val);
2170 #endif
2173 break;
2175 case SET:
2176 if (replace_dest)
2177 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2179 else if (GET_CODE (SET_DEST (x)) == MEM
2180 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2181 /* Even if we are not to replace destinations, replace register if it
2182 is CONTAINED in destination (destination is memory or
2183 STRICT_LOW_PART). */
2184 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2185 reg_map, nregs, 0);
2186 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2187 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2188 break;
2190 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2191 return x;
2193 default:
2194 break;
2197 fmt = GET_RTX_FORMAT (code);
2198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2200 if (fmt[i] == 'e')
2201 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2202 else if (fmt[i] == 'E')
2204 register int j;
2205 for (j = 0; j < XVECLEN (x, i); j++)
2206 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2207 nregs, replace_dest);
2210 return x;
2213 /* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
2214 not in the constant pool and not in the condition of an IF_THEN_ELSE. */
2216 static int
2217 jmp_uses_reg_or_mem (x)
2218 rtx x;
2220 enum rtx_code code = GET_CODE (x);
2221 int i, j;
2222 const char *fmt;
2224 switch (code)
2226 case CONST:
2227 case LABEL_REF:
2228 case PC:
2229 return 0;
2231 case REG:
2232 return 1;
2234 case MEM:
2235 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2236 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2238 case IF_THEN_ELSE:
2239 return (jmp_uses_reg_or_mem (XEXP (x, 1))
2240 || jmp_uses_reg_or_mem (XEXP (x, 2)));
2242 case PLUS: case MINUS: case MULT:
2243 return (jmp_uses_reg_or_mem (XEXP (x, 0))
2244 || jmp_uses_reg_or_mem (XEXP (x, 1)));
2246 default:
2247 break;
2250 fmt = GET_RTX_FORMAT (code);
2251 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2253 if (fmt[i] == 'e'
2254 && jmp_uses_reg_or_mem (XEXP (x, i)))
2255 return 1;
2257 else if (fmt[i] == 'E')
2258 for (j = 0; j < XVECLEN (x, i); j++)
2259 if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
2260 return 1;
2263 return 0;
2266 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2268 Tablejumps and casesi insns are not considered indirect jumps;
2269 we can recognize them by a (use (label_ref)). */
2272 computed_jump_p (insn)
2273 rtx insn;
2275 int i;
2276 if (GET_CODE (insn) == JUMP_INSN)
2278 rtx pat = PATTERN (insn);
2280 if (GET_CODE (pat) == PARALLEL)
2282 int len = XVECLEN (pat, 0);
2283 int has_use_labelref = 0;
2285 for (i = len - 1; i >= 0; i--)
2286 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2287 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2288 == LABEL_REF))
2289 has_use_labelref = 1;
2291 if (! has_use_labelref)
2292 for (i = len - 1; i >= 0; i--)
2293 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2294 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2295 && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
2296 return 1;
2298 else if (GET_CODE (pat) == SET
2299 && SET_DEST (pat) == pc_rtx
2300 && jmp_uses_reg_or_mem (SET_SRC (pat)))
2301 return 1;
2303 return 0;
2306 /* Traverse X via depth-first search, calling F for each
2307 sub-expression (including X itself). F is also passed the DATA.
2308 If F returns -1, do not traverse sub-expressions, but continue
2309 traversing the rest of the tree. If F ever returns any other
2310 non-zero value, stop the traversal, and return the value returned
2311 by F. Otherwise, return 0. This function does not traverse inside
2312 tree structure that contains RTX_EXPRs, or into sub-expressions
2313 whose format code is `0' since it is not known whether or not those
2314 codes are actually RTL.
2316 This routine is very general, and could (should?) be used to
2317 implement many of the other routines in this file. */
2320 for_each_rtx (x, f, data)
2321 rtx *x;
2322 rtx_function f;
2323 void *data;
2325 int result;
2326 int length;
2327 const char* format;
2328 int i;
2330 /* Call F on X. */
2331 result = (*f)(x, data);
2332 if (result == -1)
2333 /* Do not traverse sub-expressions. */
2334 return 0;
2335 else if (result != 0)
2336 /* Stop the traversal. */
2337 return result;
2339 if (*x == NULL_RTX)
2340 /* There are no sub-expressions. */
2341 return 0;
2343 length = GET_RTX_LENGTH (GET_CODE (*x));
2344 format = GET_RTX_FORMAT (GET_CODE (*x));
2346 for (i = 0; i < length; ++i)
2348 switch (format[i])
2350 case 'e':
2351 result = for_each_rtx (&XEXP (*x, i), f, data);
2352 if (result != 0)
2353 return result;
2354 break;
2356 case 'V':
2357 case 'E':
2358 if (XVEC (*x, i) != 0)
2360 int j;
2361 for (j = 0; j < XVECLEN (*x, i); ++j)
2363 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2364 if (result != 0)
2365 return result;
2368 break;
2370 default:
2371 /* Nothing to do. */
2372 break;
2377 return 0;
2380 /* Searches X for any reference to REGNO, returning the rtx of the
2381 reference found if any. Otherwise, returns NULL_RTX. */
2384 regno_use_in (regno, x)
2385 unsigned int regno;
2386 rtx x;
2388 register const char *fmt;
2389 int i, j;
2390 rtx tem;
2392 if (GET_CODE (x) == REG && REGNO (x) == regno)
2393 return x;
2395 fmt = GET_RTX_FORMAT (GET_CODE (x));
2396 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2398 if (fmt[i] == 'e')
2400 if ((tem = regno_use_in (regno, XEXP (x, i))))
2401 return tem;
2403 else if (fmt[i] == 'E')
2404 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2405 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2406 return tem;
2409 return NULL_RTX;
2413 /* Return 1 if X is an autoincrement side effect and the register is
2414 not the stack pointer. */
2416 auto_inc_p (x)
2417 rtx x;
2419 switch (GET_CODE (x))
2421 case PRE_INC:
2422 case POST_INC:
2423 case PRE_DEC:
2424 case POST_DEC:
2425 case PRE_MODIFY:
2426 case POST_MODIFY:
2427 /* There are no REG_INC notes for SP. */
2428 if (XEXP (x, 0) != stack_pointer_rtx)
2429 return 1;
2430 default:
2431 break;
2433 return 0;
2436 /* Return 1 if the sequence of instructions beginning with FROM and up
2437 to and including TO is safe to move. If NEW_TO is non-NULL, and
2438 the sequence is not already safe to move, but can be easily
2439 extended to a sequence which is safe, then NEW_TO will point to the
2440 end of the extended sequence.
2442 For now, this function only checks that the region contains whole
2443 exception regiongs, but it could be extended to check additional
2444 conditions as well. */
2447 insns_safe_to_move_p (from, to, new_to)
2448 rtx from;
2449 rtx to;
2450 rtx *new_to;
2452 int eh_region_count = 0;
2453 int past_to_p = 0;
2454 rtx r = from;
2456 /* By default, assume the end of the region will be what was
2457 suggested. */
2458 if (new_to)
2459 *new_to = to;
2461 while (r)
2463 if (GET_CODE (r) == NOTE)
2465 switch (NOTE_LINE_NUMBER (r))
2467 case NOTE_INSN_EH_REGION_BEG:
2468 ++eh_region_count;
2469 break;
2471 case NOTE_INSN_EH_REGION_END:
2472 if (eh_region_count == 0)
2473 /* This sequence of instructions contains the end of
2474 an exception region, but not he beginning. Moving
2475 it will cause chaos. */
2476 return 0;
2478 --eh_region_count;
2479 break;
2481 default:
2482 break;
2485 else if (past_to_p)
2486 /* If we've passed TO, and we see a non-note instruction, we
2487 can't extend the sequence to a movable sequence. */
2488 return 0;
2490 if (r == to)
2492 if (!new_to)
2493 /* It's OK to move the sequence if there were matched sets of
2494 exception region notes. */
2495 return eh_region_count == 0;
2497 past_to_p = 1;
2500 /* It's OK to move the sequence if there were matched sets of
2501 exception region notes. */
2502 if (past_to_p && eh_region_count == 0)
2504 *new_to = r;
2505 return 1;
2508 /* Go to the next instruction. */
2509 r = NEXT_INSN (r);
2512 return 0;
2515 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
2517 loc_mentioned_in_p (loc, in)
2518 rtx *loc, in;
2520 enum rtx_code code = GET_CODE (in);
2521 const char *fmt = GET_RTX_FORMAT (code);
2522 int i, j;
2524 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2526 if (loc == &in->fld[i].rtx)
2527 return 1;
2528 if (fmt[i] == 'e')
2530 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2531 return 1;
2533 else if (fmt[i] == 'E')
2534 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2535 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2536 return 1;
2538 return 0;