Renamer improvements.
[official-gcc.git] / gcc / reload.c
blob54598343815673b5b4e9be638d6588a2d2ee9b54
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "function.h"
103 #include "expr.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
244 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
245 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
246 enum machine_mode, enum machine_mode,
247 int, int, int, enum reload_type));
248 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
249 static void combine_reloads PARAMS ((void));
250 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
251 enum reload_type, int, int));
252 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
253 enum machine_mode, enum machine_mode,
254 enum reg_class, int, int));
255 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
256 static struct decomposition decompose PARAMS ((rtx));
257 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
258 static int alternative_allows_memconst PARAMS ((const char *, int));
259 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
260 int, rtx, int *));
261 static rtx make_memloc PARAMS ((rtx, int));
262 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
263 int, enum reload_type, int, rtx));
264 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
265 static rtx subst_indexed_address PARAMS ((rtx));
266 static void update_auto_inc_notes PARAMS ((rtx, int, int));
267 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
268 int, enum reload_type,int, rtx));
269 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
270 enum machine_mode, int,
271 enum reload_type, int));
272 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
273 int, rtx));
274 static int find_inc_amount PARAMS ((rtx, rtx));
276 #ifdef HAVE_SECONDARY_RELOADS
278 /* Determine if any secondary reloads are needed for loading (if IN_P is
279 non-zero) or storing (if IN_P is zero) X to or from a reload register of
280 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
281 are needed, push them.
283 Return the reload number of the secondary reload we made, or -1 if
284 we didn't need one. *PICODE is set to the insn_code to use if we do
285 need a secondary reload. */
287 static int
288 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
289 type, picode)
290 int in_p;
291 rtx x;
292 int opnum;
293 int optional;
294 enum reg_class reload_class;
295 enum machine_mode reload_mode;
296 enum reload_type type;
297 enum insn_code *picode;
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
316 *picode = CODE_FOR_nothing;
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
369 if (icode != CODE_FOR_nothing)
371 /* If IN_P is non-zero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
376 char insn_letter
377 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
378 enum reg_class insn_class
379 = (insn_letter == 'r' ? GENERAL_REGS
380 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
382 if (insn_class == NO_REGS
383 || (in_p
384 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
385 /* The scratch register's constraint must start with "=&". */
386 || insn_data[(int) icode].operand[2].constraint[0] != '='
387 || insn_data[(int) icode].operand[2].constraint[1] != '&')
388 abort ();
390 if (reg_class_subset_p (reload_class, insn_class))
391 mode = insn_data[(int) icode].operand[2].mode;
392 else
394 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
395 class = insn_class;
396 t_mode = insn_data[(int) icode].operand[2].mode;
397 t_class = (t_letter == 'r' ? GENERAL_REGS
398 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
399 t_icode = icode;
400 icode = CODE_FOR_nothing;
404 /* This case isn't valid, so fail. Reload is allowed to use the same
405 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
406 in the case of a secondary register, we actually need two different
407 registers for correct code. We fail here to prevent the possibility of
408 silently generating incorrect code later.
410 The convention is that secondary input reloads are valid only if the
411 secondary_class is different from class. If you have such a case, you
412 can not use secondary reloads, you must work around the problem some
413 other way.
415 Allow this when a reload_in/out pattern is being used. I.e. assume
416 that the generated code handles this case. */
418 if (in_p && class == reload_class && icode == CODE_FOR_nothing
419 && t_icode == CODE_FOR_nothing)
420 abort ();
422 /* If we need a tertiary reload, see if we have one we can reuse or else
423 make a new one. */
425 if (t_class != NO_REGS)
427 for (t_reload = 0; t_reload < n_reloads; t_reload++)
428 if (rld[t_reload].secondary_p
429 && (reg_class_subset_p (t_class, rld[t_reload].class)
430 || reg_class_subset_p (rld[t_reload].class, t_class))
431 && ((in_p && rld[t_reload].inmode == t_mode)
432 || (! in_p && rld[t_reload].outmode == t_mode))
433 && ((in_p && (rld[t_reload].secondary_in_icode
434 == CODE_FOR_nothing))
435 || (! in_p &&(rld[t_reload].secondary_out_icode
436 == CODE_FOR_nothing)))
437 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
438 && MERGABLE_RELOADS (secondary_type,
439 rld[t_reload].when_needed,
440 opnum, rld[t_reload].opnum))
442 if (in_p)
443 rld[t_reload].inmode = t_mode;
444 if (! in_p)
445 rld[t_reload].outmode = t_mode;
447 if (reg_class_subset_p (t_class, rld[t_reload].class))
448 rld[t_reload].class = t_class;
450 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
451 rld[t_reload].optional &= optional;
452 rld[t_reload].secondary_p = 1;
453 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
454 opnum, rld[t_reload].opnum))
455 rld[t_reload].when_needed = RELOAD_OTHER;
458 if (t_reload == n_reloads)
460 /* We need to make a new tertiary reload for this register class. */
461 rld[t_reload].in = rld[t_reload].out = 0;
462 rld[t_reload].class = t_class;
463 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
464 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
465 rld[t_reload].reg_rtx = 0;
466 rld[t_reload].optional = optional;
467 rld[t_reload].inc = 0;
468 /* Maybe we could combine these, but it seems too tricky. */
469 rld[t_reload].nocombine = 1;
470 rld[t_reload].in_reg = 0;
471 rld[t_reload].out_reg = 0;
472 rld[t_reload].opnum = opnum;
473 rld[t_reload].when_needed = secondary_type;
474 rld[t_reload].secondary_in_reload = -1;
475 rld[t_reload].secondary_out_reload = -1;
476 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
477 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
478 rld[t_reload].secondary_p = 1;
480 n_reloads++;
484 /* See if we can reuse an existing secondary reload. */
485 for (s_reload = 0; s_reload < n_reloads; s_reload++)
486 if (rld[s_reload].secondary_p
487 && (reg_class_subset_p (class, rld[s_reload].class)
488 || reg_class_subset_p (rld[s_reload].class, class))
489 && ((in_p && rld[s_reload].inmode == mode)
490 || (! in_p && rld[s_reload].outmode == mode))
491 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
492 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
493 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
494 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
495 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
496 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
497 opnum, rld[s_reload].opnum))
499 if (in_p)
500 rld[s_reload].inmode = mode;
501 if (! in_p)
502 rld[s_reload].outmode = mode;
504 if (reg_class_subset_p (class, rld[s_reload].class))
505 rld[s_reload].class = class;
507 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
508 rld[s_reload].optional &= optional;
509 rld[s_reload].secondary_p = 1;
510 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
511 opnum, rld[s_reload].opnum))
512 rld[s_reload].when_needed = RELOAD_OTHER;
515 if (s_reload == n_reloads)
517 #ifdef SECONDARY_MEMORY_NEEDED
518 /* If we need a memory location to copy between the two reload regs,
519 set it up now. Note that we do the input case before making
520 the reload and the output case after. This is due to the
521 way reloads are output. */
523 if (in_p && icode == CODE_FOR_nothing
524 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
526 get_secondary_mem (x, reload_mode, opnum, type);
528 /* We may have just added new reloads. Make sure we add
529 the new reload at the end. */
530 s_reload = n_reloads;
532 #endif
534 /* We need to make a new secondary reload for this register class. */
535 rld[s_reload].in = rld[s_reload].out = 0;
536 rld[s_reload].class = class;
538 rld[s_reload].inmode = in_p ? mode : VOIDmode;
539 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
540 rld[s_reload].reg_rtx = 0;
541 rld[s_reload].optional = optional;
542 rld[s_reload].inc = 0;
543 /* Maybe we could combine these, but it seems too tricky. */
544 rld[s_reload].nocombine = 1;
545 rld[s_reload].in_reg = 0;
546 rld[s_reload].out_reg = 0;
547 rld[s_reload].opnum = opnum;
548 rld[s_reload].when_needed = secondary_type;
549 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
550 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
551 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
552 rld[s_reload].secondary_out_icode
553 = ! in_p ? t_icode : CODE_FOR_nothing;
554 rld[s_reload].secondary_p = 1;
556 n_reloads++;
558 #ifdef SECONDARY_MEMORY_NEEDED
559 if (! in_p && icode == CODE_FOR_nothing
560 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
561 get_secondary_mem (x, mode, opnum, type);
562 #endif
565 *picode = icode;
566 return s_reload;
568 #endif /* HAVE_SECONDARY_RELOADS */
570 #ifdef SECONDARY_MEMORY_NEEDED
572 /* Return a memory location that will be used to copy X in mode MODE.
573 If we haven't already made a location for this mode in this insn,
574 call find_reloads_address on the location being returned. */
577 get_secondary_mem (x, mode, opnum, type)
578 rtx x ATTRIBUTE_UNUSED;
579 enum machine_mode mode;
580 int opnum;
581 enum reload_type type;
583 rtx loc;
584 int mem_valid;
586 /* By default, if MODE is narrower than a word, widen it to a word.
587 This is required because most machines that require these memory
588 locations do not support short load and stores from all registers
589 (e.g., FP registers). */
591 #ifdef SECONDARY_MEMORY_NEEDED_MODE
592 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
593 #else
594 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
595 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
596 #endif
598 /* If we already have made a MEM for this operand in MODE, return it. */
599 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
600 return secondary_memlocs_elim[(int) mode][opnum];
602 /* If this is the first time we've tried to get a MEM for this mode,
603 allocate a new one. `something_changed' in reload will get set
604 by noticing that the frame size has changed. */
606 if (secondary_memlocs[(int) mode] == 0)
608 #ifdef SECONDARY_MEMORY_NEEDED_RTX
609 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
610 #else
611 secondary_memlocs[(int) mode]
612 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
613 #endif
616 /* Get a version of the address doing any eliminations needed. If that
617 didn't give us a new MEM, make a new one if it isn't valid. */
619 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
620 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
622 if (! mem_valid && loc == secondary_memlocs[(int) mode])
623 loc = copy_rtx (loc);
625 /* The only time the call below will do anything is if the stack
626 offset is too large. In that case IND_LEVELS doesn't matter, so we
627 can just pass a zero. Adjust the type to be the address of the
628 corresponding object. If the address was valid, save the eliminated
629 address. If it wasn't valid, we need to make a reload each time, so
630 don't save it. */
632 if (! mem_valid)
634 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
635 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
636 : RELOAD_OTHER);
638 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
639 opnum, type, 0, 0);
642 secondary_memlocs_elim[(int) mode][opnum] = loc;
643 return loc;
646 /* Clear any secondary memory locations we've made. */
648 void
649 clear_secondary_mem ()
651 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
653 #endif /* SECONDARY_MEMORY_NEEDED */
655 /* Find the largest class for which every register number plus N is valid in
656 M1 (if in range). Abort if no such class exists. */
658 static enum reg_class
659 find_valid_class (m1, n)
660 enum machine_mode m1 ATTRIBUTE_UNUSED;
661 int n;
663 int class;
664 int regno;
665 enum reg_class best_class = NO_REGS;
666 unsigned int best_size = 0;
668 for (class = 1; class < N_REG_CLASSES; class++)
670 int bad = 0;
671 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
672 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
673 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
674 && ! HARD_REGNO_MODE_OK (regno + n, m1))
675 bad = 1;
677 if (! bad && reg_class_size[class] > best_size)
678 best_class = class, best_size = reg_class_size[class];
681 if (best_size == 0)
682 abort ();
684 return best_class;
687 /* Return the number of a previously made reload that can be combined with
688 a new one, or n_reloads if none of the existing reloads can be used.
689 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
690 push_reload, they determine the kind of the new reload that we try to
691 combine. P_IN points to the corresponding value of IN, which can be
692 modified by this function.
693 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
694 static int
695 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
696 rtx *p_in, out;
697 enum reg_class class;
698 enum reload_type type;
699 int opnum, dont_share;
701 rtx in = *p_in;
702 int i;
703 /* We can't merge two reloads if the output of either one is
704 earlyclobbered. */
706 if (earlyclobber_operand_p (out))
707 return n_reloads;
709 /* We can use an existing reload if the class is right
710 and at least one of IN and OUT is a match
711 and the other is at worst neutral.
712 (A zero compared against anything is neutral.)
714 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
715 for the same thing since that can cause us to need more reload registers
716 than we otherwise would. */
718 for (i = 0; i < n_reloads; i++)
719 if ((reg_class_subset_p (class, rld[i].class)
720 || reg_class_subset_p (rld[i].class, class))
721 /* If the existing reload has a register, it must fit our class. */
722 && (rld[i].reg_rtx == 0
723 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
724 true_regnum (rld[i].reg_rtx)))
725 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
726 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
727 || (out != 0 && MATCHES (rld[i].out, out)
728 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
729 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
730 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
731 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
732 return i;
734 /* Reloading a plain reg for input can match a reload to postincrement
735 that reg, since the postincrement's value is the right value.
736 Likewise, it can match a preincrement reload, since we regard
737 the preincrementation as happening before any ref in this insn
738 to that register. */
739 for (i = 0; i < n_reloads; i++)
740 if ((reg_class_subset_p (class, rld[i].class)
741 || reg_class_subset_p (rld[i].class, class))
742 /* If the existing reload has a register, it must fit our
743 class. */
744 && (rld[i].reg_rtx == 0
745 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
746 true_regnum (rld[i].reg_rtx)))
747 && out == 0 && rld[i].out == 0 && rld[i].in != 0
748 && ((GET_CODE (in) == REG
749 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
750 && MATCHES (XEXP (rld[i].in, 0), in))
751 || (GET_CODE (rld[i].in) == REG
752 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
753 && MATCHES (XEXP (in, 0), rld[i].in)))
754 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
755 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
756 && MERGABLE_RELOADS (type, rld[i].when_needed,
757 opnum, rld[i].opnum))
759 /* Make sure reload_in ultimately has the increment,
760 not the plain register. */
761 if (GET_CODE (in) == REG)
762 *p_in = rld[i].in;
763 return i;
765 return n_reloads;
768 /* Return nonzero if X is a SUBREG which will require reloading of its
769 SUBREG_REG expression. */
771 static int
772 reload_inner_reg_of_subreg (x, mode)
773 rtx x;
774 enum machine_mode mode;
776 rtx inner;
778 /* Only SUBREGs are problematical. */
779 if (GET_CODE (x) != SUBREG)
780 return 0;
782 inner = SUBREG_REG (x);
784 /* If INNER is a constant, then INNER must be reloaded. */
785 if (CONSTANT_P (inner))
786 return 1;
788 /* If INNER is not a hard register, then INNER will not need to
789 be reloaded. */
790 if (GET_CODE (inner) != REG
791 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
792 return 0;
794 /* If INNER is not ok for MODE, then INNER will need reloading. */
795 if (! HARD_REGNO_MODE_OK (REGNO (inner) + SUBREG_WORD (x), mode))
796 return 1;
798 /* If the outer part is a word or smaller, INNER larger than a
799 word and the number of regs for INNER is not the same as the
800 number of words in INNER, then INNER will need reloading. */
801 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
802 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
803 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
804 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
807 /* Record one reload that needs to be performed.
808 IN is an rtx saying where the data are to be found before this instruction.
809 OUT says where they must be stored after the instruction.
810 (IN is zero for data not read, and OUT is zero for data not written.)
811 INLOC and OUTLOC point to the places in the instructions where
812 IN and OUT were found.
813 If IN and OUT are both non-zero, it means the same register must be used
814 to reload both IN and OUT.
816 CLASS is a register class required for the reloaded data.
817 INMODE is the machine mode that the instruction requires
818 for the reg that replaces IN and OUTMODE is likewise for OUT.
820 If IN is zero, then OUT's location and mode should be passed as
821 INLOC and INMODE.
823 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
825 OPTIONAL nonzero means this reload does not need to be performed:
826 it can be discarded if that is more convenient.
828 OPNUM and TYPE say what the purpose of this reload is.
830 The return value is the reload-number for this reload.
832 If both IN and OUT are nonzero, in some rare cases we might
833 want to make two separate reloads. (Actually we never do this now.)
834 Therefore, the reload-number for OUT is stored in
835 output_reloadnum when we return; the return value applies to IN.
836 Usually (presently always), when IN and OUT are nonzero,
837 the two reload-numbers are equal, but the caller should be careful to
838 distinguish them. */
840 static int
841 push_reload (in, out, inloc, outloc, class,
842 inmode, outmode, strict_low, optional, opnum, type)
843 rtx in, out;
844 rtx *inloc, *outloc;
845 enum reg_class class;
846 enum machine_mode inmode, outmode;
847 int strict_low;
848 int optional;
849 int opnum;
850 enum reload_type type;
852 register int i;
853 int dont_share = 0;
854 int dont_remove_subreg = 0;
855 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
856 int secondary_in_reload = -1, secondary_out_reload = -1;
857 enum insn_code secondary_in_icode = CODE_FOR_nothing;
858 enum insn_code secondary_out_icode = CODE_FOR_nothing;
860 /* INMODE and/or OUTMODE could be VOIDmode if no mode
861 has been specified for the operand. In that case,
862 use the operand's mode as the mode to reload. */
863 if (inmode == VOIDmode && in != 0)
864 inmode = GET_MODE (in);
865 if (outmode == VOIDmode && out != 0)
866 outmode = GET_MODE (out);
868 /* If IN is a pseudo register everywhere-equivalent to a constant, and
869 it is not in a hard register, reload straight from the constant,
870 since we want to get rid of such pseudo registers.
871 Often this is done earlier, but not always in find_reloads_address. */
872 if (in != 0 && GET_CODE (in) == REG)
874 register int regno = REGNO (in);
876 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
877 && reg_equiv_constant[regno] != 0)
878 in = reg_equiv_constant[regno];
881 /* Likewise for OUT. Of course, OUT will never be equivalent to
882 an actual constant, but it might be equivalent to a memory location
883 (in the case of a parameter). */
884 if (out != 0 && GET_CODE (out) == REG)
886 register int regno = REGNO (out);
888 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
889 && reg_equiv_constant[regno] != 0)
890 out = reg_equiv_constant[regno];
893 /* If we have a read-write operand with an address side-effect,
894 change either IN or OUT so the side-effect happens only once. */
895 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
897 if (GET_CODE (XEXP (in, 0)) == POST_INC
898 || GET_CODE (XEXP (in, 0)) == POST_DEC
899 || GET_CODE (XEXP (in, 0)) == POST_MODIFY)
901 rtx new = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
903 MEM_COPY_ATTRIBUTES (new, in);
904 in = new;
906 if (GET_CODE (XEXP (in, 0)) == PRE_INC
907 || GET_CODE (XEXP (in, 0)) == PRE_DEC
908 || GET_CODE (XEXP (in, 0)) == PRE_MODIFY)
910 rtx new = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
912 MEM_COPY_ATTRIBUTES (new, out);
913 out = new;
917 /* If we are reloading a (SUBREG constant ...), really reload just the
918 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
919 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
920 a pseudo and hence will become a MEM) with M1 wider than M2 and the
921 register is a pseudo, also reload the inside expression.
922 For machines that extend byte loads, do this for any SUBREG of a pseudo
923 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
924 M2 is an integral mode that gets extended when loaded.
925 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
926 either M1 is not valid for R or M2 is wider than a word but we only
927 need one word to store an M2-sized quantity in R.
928 (However, if OUT is nonzero, we need to reload the reg *and*
929 the subreg, so do nothing here, and let following statement handle it.)
931 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
932 we can't handle it here because CONST_INT does not indicate a mode.
934 Similarly, we must reload the inside expression if we have a
935 STRICT_LOW_PART (presumably, in == out in the cas).
937 Also reload the inner expression if it does not require a secondary
938 reload but the SUBREG does.
940 Finally, reload the inner expression if it is a register that is in
941 the class whose registers cannot be referenced in a different size
942 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
943 cannot reload just the inside since we might end up with the wrong
944 register class. But if it is inside a STRICT_LOW_PART, we have
945 no choice, so we hope we do get the right register class there. */
947 if (in != 0 && GET_CODE (in) == SUBREG
948 && (SUBREG_WORD (in) == 0 || strict_low)
949 #ifdef CLASS_CANNOT_CHANGE_MODE
950 && (class != CLASS_CANNOT_CHANGE_MODE
951 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
952 #endif
953 && (CONSTANT_P (SUBREG_REG (in))
954 || GET_CODE (SUBREG_REG (in)) == PLUS
955 || strict_low
956 || (((GET_CODE (SUBREG_REG (in)) == REG
957 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
958 || GET_CODE (SUBREG_REG (in)) == MEM)
959 && ((GET_MODE_SIZE (inmode)
960 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
961 #ifdef LOAD_EXTEND_OP
962 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
963 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
964 <= UNITS_PER_WORD)
965 && (GET_MODE_SIZE (inmode)
966 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
967 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
968 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
969 #endif
970 #ifdef WORD_REGISTER_OPERATIONS
971 || ((GET_MODE_SIZE (inmode)
972 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
973 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
974 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
975 / UNITS_PER_WORD)))
976 #endif
978 || (GET_CODE (SUBREG_REG (in)) == REG
979 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
980 /* The case where out is nonzero
981 is handled differently in the following statement. */
982 && (out == 0 || SUBREG_WORD (in) == 0)
983 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
984 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
985 > UNITS_PER_WORD)
986 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
987 / UNITS_PER_WORD)
988 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
989 GET_MODE (SUBREG_REG (in)))))
990 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
991 + SUBREG_WORD (in)),
992 inmode)))
993 #ifdef SECONDARY_INPUT_RELOAD_CLASS
994 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
995 && (SECONDARY_INPUT_RELOAD_CLASS (class,
996 GET_MODE (SUBREG_REG (in)),
997 SUBREG_REG (in))
998 == NO_REGS))
999 #endif
1000 #ifdef CLASS_CANNOT_CHANGE_MODE
1001 || (GET_CODE (SUBREG_REG (in)) == REG
1002 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1003 && (TEST_HARD_REG_BIT
1004 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1005 REGNO (SUBREG_REG (in))))
1006 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1007 inmode))
1008 #endif
1011 in_subreg_loc = inloc;
1012 inloc = &SUBREG_REG (in);
1013 in = *inloc;
1014 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1015 if (GET_CODE (in) == MEM)
1016 /* This is supposed to happen only for paradoxical subregs made by
1017 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1018 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1019 abort ();
1020 #endif
1021 inmode = GET_MODE (in);
1024 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1025 either M1 is not valid for R or M2 is wider than a word but we only
1026 need one word to store an M2-sized quantity in R.
1028 However, we must reload the inner reg *as well as* the subreg in
1029 that case. */
1031 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1032 code above. This can happen if SUBREG_WORD != 0. */
1034 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1036 /* This relies on the fact that emit_reload_insns outputs the
1037 instructions for input reloads of type RELOAD_OTHER in the same
1038 order as the reloads. Thus if the outer reload is also of type
1039 RELOAD_OTHER, we are guaranteed that this inner reload will be
1040 output before the outer reload. */
1041 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1042 find_valid_class (inmode, SUBREG_WORD (in)),
1043 VOIDmode, VOIDmode, 0, 0, opnum, type);
1044 dont_remove_subreg = 1;
1047 /* Similarly for paradoxical and problematical SUBREGs on the output.
1048 Note that there is no reason we need worry about the previous value
1049 of SUBREG_REG (out); even if wider than out,
1050 storing in a subreg is entitled to clobber it all
1051 (except in the case of STRICT_LOW_PART,
1052 and in that case the constraint should label it input-output.) */
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && (SUBREG_WORD (out) == 0 || strict_low)
1055 #ifdef CLASS_CANNOT_CHANGE_MODE
1056 && (class != CLASS_CANNOT_CHANGE_MODE
1057 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1058 outmode))
1059 #endif
1060 && (CONSTANT_P (SUBREG_REG (out))
1061 || strict_low
1062 || (((GET_CODE (SUBREG_REG (out)) == REG
1063 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1064 || GET_CODE (SUBREG_REG (out)) == MEM)
1065 && ((GET_MODE_SIZE (outmode)
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1067 #ifdef WORD_REGISTER_OPERATIONS
1068 || ((GET_MODE_SIZE (outmode)
1069 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1070 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1071 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1072 / UNITS_PER_WORD)))
1073 #endif
1075 || (GET_CODE (SUBREG_REG (out)) == REG
1076 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1077 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1078 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1079 > UNITS_PER_WORD)
1080 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1081 / UNITS_PER_WORD)
1082 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1083 GET_MODE (SUBREG_REG (out)))))
1084 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1085 + SUBREG_WORD (out)),
1086 outmode)))
1087 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1088 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1089 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1090 GET_MODE (SUBREG_REG (out)),
1091 SUBREG_REG (out))
1092 == NO_REGS))
1093 #endif
1094 #ifdef CLASS_CANNOT_CHANGE_MODE
1095 || (GET_CODE (SUBREG_REG (out)) == REG
1096 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1097 && (TEST_HARD_REG_BIT
1098 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1099 REGNO (SUBREG_REG (out))))
1100 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1101 outmode))
1102 #endif
1105 out_subreg_loc = outloc;
1106 outloc = &SUBREG_REG (out);
1107 out = *outloc;
1108 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1109 if (GET_CODE (out) == MEM
1110 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1111 abort ();
1112 #endif
1113 outmode = GET_MODE (out);
1116 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1117 either M1 is not valid for R or M2 is wider than a word but we only
1118 need one word to store an M2-sized quantity in R.
1120 However, we must reload the inner reg *as well as* the subreg in
1121 that case. In this case, the inner reg is an in-out reload. */
1123 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1125 /* This relies on the fact that emit_reload_insns outputs the
1126 instructions for output reloads of type RELOAD_OTHER in reverse
1127 order of the reloads. Thus if the outer reload is also of type
1128 RELOAD_OTHER, we are guaranteed that this inner reload will be
1129 output after the outer reload. */
1130 dont_remove_subreg = 1;
1131 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1132 &SUBREG_REG (out),
1133 find_valid_class (outmode, SUBREG_WORD (out)),
1134 VOIDmode, VOIDmode, 0, 0,
1135 opnum, RELOAD_OTHER);
1138 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1139 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1140 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1141 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1142 dont_share = 1;
1144 /* If IN is a SUBREG of a hard register, make a new REG. This
1145 simplifies some of the cases below. */
1147 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1148 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1149 && ! dont_remove_subreg)
1150 in = gen_rtx_REG (GET_MODE (in),
1151 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1153 /* Similarly for OUT. */
1154 if (out != 0 && GET_CODE (out) == SUBREG
1155 && GET_CODE (SUBREG_REG (out)) == REG
1156 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1157 && ! dont_remove_subreg)
1158 out = gen_rtx_REG (GET_MODE (out),
1159 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1161 /* Narrow down the class of register wanted if that is
1162 desirable on this machine for efficiency. */
1163 if (in != 0)
1164 class = PREFERRED_RELOAD_CLASS (in, class);
1166 /* Output reloads may need analogous treatment, different in detail. */
1167 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1168 if (out != 0)
1169 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1170 #endif
1172 /* Make sure we use a class that can handle the actual pseudo
1173 inside any subreg. For example, on the 386, QImode regs
1174 can appear within SImode subregs. Although GENERAL_REGS
1175 can handle SImode, QImode needs a smaller class. */
1176 #ifdef LIMIT_RELOAD_CLASS
1177 if (in_subreg_loc)
1178 class = LIMIT_RELOAD_CLASS (inmode, class);
1179 else if (in != 0 && GET_CODE (in) == SUBREG)
1180 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1182 if (out_subreg_loc)
1183 class = LIMIT_RELOAD_CLASS (outmode, class);
1184 if (out != 0 && GET_CODE (out) == SUBREG)
1185 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1186 #endif
1188 /* Verify that this class is at least possible for the mode that
1189 is specified. */
1190 if (this_insn_is_asm)
1192 enum machine_mode mode;
1193 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1194 mode = inmode;
1195 else
1196 mode = outmode;
1197 if (mode == VOIDmode)
1199 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1200 mode = word_mode;
1201 if (in != 0)
1202 inmode = word_mode;
1203 if (out != 0)
1204 outmode = word_mode;
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (HARD_REGNO_MODE_OK (i, mode)
1208 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1210 int nregs = HARD_REGNO_NREGS (i, mode);
1212 int j;
1213 for (j = 1; j < nregs; j++)
1214 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1215 break;
1216 if (j == nregs)
1217 break;
1219 if (i == FIRST_PSEUDO_REGISTER)
1221 error_for_asm (this_insn, "impossible register constraint in `asm'");
1222 class = ALL_REGS;
1226 /* Optional output reloads are always OK even if we have no register class,
1227 since the function of these reloads is only to have spill_reg_store etc.
1228 set, so that the storing insn can be deleted later. */
1229 if (class == NO_REGS
1230 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1231 abort ();
1233 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1235 if (i == n_reloads)
1237 /* See if we need a secondary reload register to move between CLASS
1238 and IN or CLASS and OUT. Get the icode and push any required reloads
1239 needed for each of them if so. */
1241 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1242 if (in != 0)
1243 secondary_in_reload
1244 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1245 &secondary_in_icode);
1246 #endif
1248 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1249 if (out != 0 && GET_CODE (out) != SCRATCH)
1250 secondary_out_reload
1251 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1252 type, &secondary_out_icode);
1253 #endif
1255 /* We found no existing reload suitable for re-use.
1256 So add an additional reload. */
1258 #ifdef SECONDARY_MEMORY_NEEDED
1259 /* If a memory location is needed for the copy, make one. */
1260 if (in != 0 && GET_CODE (in) == REG
1261 && REGNO (in) < FIRST_PSEUDO_REGISTER
1262 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1263 class, inmode))
1264 get_secondary_mem (in, inmode, opnum, type);
1265 #endif
1267 i = n_reloads;
1268 rld[i].in = in;
1269 rld[i].out = out;
1270 rld[i].class = class;
1271 rld[i].inmode = inmode;
1272 rld[i].outmode = outmode;
1273 rld[i].reg_rtx = 0;
1274 rld[i].optional = optional;
1275 rld[i].inc = 0;
1276 rld[i].nocombine = 0;
1277 rld[i].in_reg = inloc ? *inloc : 0;
1278 rld[i].out_reg = outloc ? *outloc : 0;
1279 rld[i].opnum = opnum;
1280 rld[i].when_needed = type;
1281 rld[i].secondary_in_reload = secondary_in_reload;
1282 rld[i].secondary_out_reload = secondary_out_reload;
1283 rld[i].secondary_in_icode = secondary_in_icode;
1284 rld[i].secondary_out_icode = secondary_out_icode;
1285 rld[i].secondary_p = 0;
1287 n_reloads++;
1289 #ifdef SECONDARY_MEMORY_NEEDED
1290 if (out != 0 && GET_CODE (out) == REG
1291 && REGNO (out) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1293 outmode))
1294 get_secondary_mem (out, outmode, opnum, type);
1295 #endif
1297 else
1299 /* We are reusing an existing reload,
1300 but we may have additional information for it.
1301 For example, we may now have both IN and OUT
1302 while the old one may have just one of them. */
1304 /* The modes can be different. If they are, we want to reload in
1305 the larger mode, so that the value is valid for both modes. */
1306 if (inmode != VOIDmode
1307 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1308 rld[i].inmode = inmode;
1309 if (outmode != VOIDmode
1310 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1311 rld[i].outmode = outmode;
1312 if (in != 0)
1314 rtx in_reg = inloc ? *inloc : 0;
1315 /* If we merge reloads for two distinct rtl expressions that
1316 are identical in content, there might be duplicate address
1317 reloads. Remove the extra set now, so that if we later find
1318 that we can inherit this reload, we can get rid of the
1319 address reloads altogether.
1321 Do not do this if both reloads are optional since the result
1322 would be an optional reload which could potentially leave
1323 unresolved address replacements.
1325 It is not sufficient to call transfer_replacements since
1326 choose_reload_regs will remove the replacements for address
1327 reloads of inherited reloads which results in the same
1328 problem. */
1329 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1330 && ! (rld[i].optional && optional))
1332 /* We must keep the address reload with the lower operand
1333 number alive. */
1334 if (opnum > rld[i].opnum)
1336 remove_address_replacements (in);
1337 in = rld[i].in;
1338 in_reg = rld[i].in_reg;
1340 else
1341 remove_address_replacements (rld[i].in);
1343 rld[i].in = in;
1344 rld[i].in_reg = in_reg;
1346 if (out != 0)
1348 rld[i].out = out;
1349 rld[i].out_reg = outloc ? *outloc : 0;
1351 if (reg_class_subset_p (class, rld[i].class))
1352 rld[i].class = class;
1353 rld[i].optional &= optional;
1354 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1355 opnum, rld[i].opnum))
1356 rld[i].when_needed = RELOAD_OTHER;
1357 rld[i].opnum = MIN (rld[i].opnum, opnum);
1360 /* If the ostensible rtx being reload differs from the rtx found
1361 in the location to substitute, this reload is not safe to combine
1362 because we cannot reliably tell whether it appears in the insn. */
1364 if (in != 0 && in != *inloc)
1365 rld[i].nocombine = 1;
1367 #if 0
1368 /* This was replaced by changes in find_reloads_address_1 and the new
1369 function inc_for_reload, which go with a new meaning of reload_inc. */
1371 /* If this is an IN/OUT reload in an insn that sets the CC,
1372 it must be for an autoincrement. It doesn't work to store
1373 the incremented value after the insn because that would clobber the CC.
1374 So we must do the increment of the value reloaded from,
1375 increment it, store it back, then decrement again. */
1376 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1378 out = 0;
1379 rld[i].out = 0;
1380 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1381 /* If we did not find a nonzero amount-to-increment-by,
1382 that contradicts the belief that IN is being incremented
1383 in an address in this insn. */
1384 if (rld[i].inc == 0)
1385 abort ();
1387 #endif
1389 /* If we will replace IN and OUT with the reload-reg,
1390 record where they are located so that substitution need
1391 not do a tree walk. */
1393 if (replace_reloads)
1395 if (inloc != 0)
1397 register struct replacement *r = &replacements[n_replacements++];
1398 r->what = i;
1399 r->subreg_loc = in_subreg_loc;
1400 r->where = inloc;
1401 r->mode = inmode;
1403 if (outloc != 0 && outloc != inloc)
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->where = outloc;
1408 r->subreg_loc = out_subreg_loc;
1409 r->mode = outmode;
1413 /* If this reload is just being introduced and it has both
1414 an incoming quantity and an outgoing quantity that are
1415 supposed to be made to match, see if either one of the two
1416 can serve as the place to reload into.
1418 If one of them is acceptable, set rld[i].reg_rtx
1419 to that one. */
1421 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1423 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1424 inmode, outmode,
1425 rld[i].class, i,
1426 earlyclobber_operand_p (out));
1428 /* If the outgoing register already contains the same value
1429 as the incoming one, we can dispense with loading it.
1430 The easiest way to tell the caller that is to give a phony
1431 value for the incoming operand (same as outgoing one). */
1432 if (rld[i].reg_rtx == out
1433 && (GET_CODE (in) == REG || CONSTANT_P (in))
1434 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1435 static_reload_reg_p, i, inmode))
1436 rld[i].in = out;
1439 /* If this is an input reload and the operand contains a register that
1440 dies in this insn and is used nowhere else, see if it is the right class
1441 to be used for this reload. Use it if so. (This occurs most commonly
1442 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1443 this if it is also an output reload that mentions the register unless
1444 the output is a SUBREG that clobbers an entire register.
1446 Note that the operand might be one of the spill regs, if it is a
1447 pseudo reg and we are in a block where spilling has not taken place.
1448 But if there is no spilling in this block, that is OK.
1449 An explicitly used hard reg cannot be a spill reg. */
1451 if (rld[i].reg_rtx == 0 && in != 0)
1453 rtx note;
1454 int regno;
1455 enum machine_mode rel_mode = inmode;
1457 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1458 rel_mode = outmode;
1460 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1461 if (REG_NOTE_KIND (note) == REG_DEAD
1462 && GET_CODE (XEXP (note, 0)) == REG
1463 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1464 && reg_mentioned_p (XEXP (note, 0), in)
1465 && ! refers_to_regno_for_reload_p (regno,
1466 (regno
1467 + HARD_REGNO_NREGS (regno,
1468 rel_mode)),
1469 PATTERN (this_insn), inloc)
1470 /* If this is also an output reload, IN cannot be used as
1471 the reload register if it is set in this insn unless IN
1472 is also OUT. */
1473 && (out == 0 || in == out
1474 || ! hard_reg_set_here_p (regno,
1475 (regno
1476 + HARD_REGNO_NREGS (regno,
1477 rel_mode)),
1478 PATTERN (this_insn)))
1479 /* ??? Why is this code so different from the previous?
1480 Is there any simple coherent way to describe the two together?
1481 What's going on here. */
1482 && (in != out
1483 || (GET_CODE (in) == SUBREG
1484 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1485 / UNITS_PER_WORD)
1486 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1487 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1488 /* Make sure the operand fits in the reg that dies. */
1489 && (GET_MODE_SIZE (rel_mode)
1490 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1491 && HARD_REGNO_MODE_OK (regno, inmode)
1492 && HARD_REGNO_MODE_OK (regno, outmode))
1494 unsigned int offs;
1495 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1496 HARD_REGNO_NREGS (regno, outmode));
1498 for (offs = 0; offs < nregs; offs++)
1499 if (fixed_regs[regno + offs]
1500 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1501 regno + offs))
1502 break;
1504 if (offs == nregs)
1506 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1507 break;
1512 if (out)
1513 output_reloadnum = i;
1515 return i;
1518 /* Record an additional place we must replace a value
1519 for which we have already recorded a reload.
1520 RELOADNUM is the value returned by push_reload
1521 when the reload was recorded.
1522 This is used in insn patterns that use match_dup. */
1524 static void
1525 push_replacement (loc, reloadnum, mode)
1526 rtx *loc;
1527 int reloadnum;
1528 enum machine_mode mode;
1530 if (replace_reloads)
1532 register struct replacement *r = &replacements[n_replacements++];
1533 r->what = reloadnum;
1534 r->where = loc;
1535 r->subreg_loc = 0;
1536 r->mode = mode;
1540 /* Transfer all replacements that used to be in reload FROM to be in
1541 reload TO. */
1543 void
1544 transfer_replacements (to, from)
1545 int to, from;
1547 int i;
1549 for (i = 0; i < n_replacements; i++)
1550 if (replacements[i].what == from)
1551 replacements[i].what = to;
1554 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1555 or a subpart of it. If we have any replacements registered for IN_RTX,
1556 cancel the reloads that were supposed to load them.
1557 Return non-zero if we canceled any reloads. */
1559 remove_address_replacements (in_rtx)
1560 rtx in_rtx;
1562 int i, j;
1563 char reload_flags[MAX_RELOADS];
1564 int something_changed = 0;
1566 memset (reload_flags, 0, sizeof reload_flags);
1567 for (i = 0, j = 0; i < n_replacements; i++)
1569 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1570 reload_flags[replacements[i].what] |= 1;
1571 else
1573 replacements[j++] = replacements[i];
1574 reload_flags[replacements[i].what] |= 2;
1577 /* Note that the following store must be done before the recursive calls. */
1578 n_replacements = j;
1580 for (i = n_reloads - 1; i >= 0; i--)
1582 if (reload_flags[i] == 1)
1584 deallocate_reload_reg (i);
1585 remove_address_replacements (rld[i].in);
1586 rld[i].in = 0;
1587 something_changed = 1;
1590 return something_changed;
1593 /* If there is only one output reload, and it is not for an earlyclobber
1594 operand, try to combine it with a (logically unrelated) input reload
1595 to reduce the number of reload registers needed.
1597 This is safe if the input reload does not appear in
1598 the value being output-reloaded, because this implies
1599 it is not needed any more once the original insn completes.
1601 If that doesn't work, see we can use any of the registers that
1602 die in this insn as a reload register. We can if it is of the right
1603 class and does not appear in the value being output-reloaded. */
1605 static void
1606 combine_reloads ()
1608 int i;
1609 int output_reload = -1;
1610 int secondary_out = -1;
1611 rtx note;
1613 /* Find the output reload; return unless there is exactly one
1614 and that one is mandatory. */
1616 for (i = 0; i < n_reloads; i++)
1617 if (rld[i].out != 0)
1619 if (output_reload >= 0)
1620 return;
1621 output_reload = i;
1624 if (output_reload < 0 || rld[output_reload].optional)
1625 return;
1627 /* An input-output reload isn't combinable. */
1629 if (rld[output_reload].in != 0)
1630 return;
1632 /* If this reload is for an earlyclobber operand, we can't do anything. */
1633 if (earlyclobber_operand_p (rld[output_reload].out))
1634 return;
1636 /* Check each input reload; can we combine it? */
1638 for (i = 0; i < n_reloads; i++)
1639 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1640 /* Life span of this reload must not extend past main insn. */
1641 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1642 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1643 && rld[i].when_needed != RELOAD_OTHER
1644 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1645 == CLASS_MAX_NREGS (rld[output_reload].class,
1646 rld[output_reload].outmode))
1647 && rld[i].inc == 0
1648 && rld[i].reg_rtx == 0
1649 #ifdef SECONDARY_MEMORY_NEEDED
1650 /* Don't combine two reloads with different secondary
1651 memory locations. */
1652 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1653 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1654 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1655 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1656 #endif
1657 && (SMALL_REGISTER_CLASSES
1658 ? (rld[i].class == rld[output_reload].class)
1659 : (reg_class_subset_p (rld[i].class,
1660 rld[output_reload].class)
1661 || reg_class_subset_p (rld[output_reload].class,
1662 rld[i].class)))
1663 && (MATCHES (rld[i].in, rld[output_reload].out)
1664 /* Args reversed because the first arg seems to be
1665 the one that we imagine being modified
1666 while the second is the one that might be affected. */
1667 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1668 rld[i].in)
1669 /* However, if the input is a register that appears inside
1670 the output, then we also can't share.
1671 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1672 If the same reload reg is used for both reg 69 and the
1673 result to be stored in memory, then that result
1674 will clobber the address of the memory ref. */
1675 && ! (GET_CODE (rld[i].in) == REG
1676 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1677 rld[output_reload].out))))
1678 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1679 && (reg_class_size[(int) rld[i].class]
1680 || SMALL_REGISTER_CLASSES)
1681 /* We will allow making things slightly worse by combining an
1682 input and an output, but no worse than that. */
1683 && (rld[i].when_needed == RELOAD_FOR_INPUT
1684 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1686 int j;
1688 /* We have found a reload to combine with! */
1689 rld[i].out = rld[output_reload].out;
1690 rld[i].out_reg = rld[output_reload].out_reg;
1691 rld[i].outmode = rld[output_reload].outmode;
1692 /* Mark the old output reload as inoperative. */
1693 rld[output_reload].out = 0;
1694 /* The combined reload is needed for the entire insn. */
1695 rld[i].when_needed = RELOAD_OTHER;
1696 /* If the output reload had a secondary reload, copy it. */
1697 if (rld[output_reload].secondary_out_reload != -1)
1699 rld[i].secondary_out_reload
1700 = rld[output_reload].secondary_out_reload;
1701 rld[i].secondary_out_icode
1702 = rld[output_reload].secondary_out_icode;
1705 #ifdef SECONDARY_MEMORY_NEEDED
1706 /* Copy any secondary MEM. */
1707 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1708 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1709 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1710 #endif
1711 /* If required, minimize the register class. */
1712 if (reg_class_subset_p (rld[output_reload].class,
1713 rld[i].class))
1714 rld[i].class = rld[output_reload].class;
1716 /* Transfer all replacements from the old reload to the combined. */
1717 for (j = 0; j < n_replacements; j++)
1718 if (replacements[j].what == output_reload)
1719 replacements[j].what = i;
1721 return;
1724 /* If this insn has only one operand that is modified or written (assumed
1725 to be the first), it must be the one corresponding to this reload. It
1726 is safe to use anything that dies in this insn for that output provided
1727 that it does not occur in the output (we already know it isn't an
1728 earlyclobber. If this is an asm insn, give up. */
1730 if (INSN_CODE (this_insn) == -1)
1731 return;
1733 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1734 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1735 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1736 return;
1738 /* See if some hard register that dies in this insn and is not used in
1739 the output is the right class. Only works if the register we pick
1740 up can fully hold our output reload. */
1741 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1742 if (REG_NOTE_KIND (note) == REG_DEAD
1743 && GET_CODE (XEXP (note, 0)) == REG
1744 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1745 rld[output_reload].out)
1746 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1747 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1748 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1749 REGNO (XEXP (note, 0)))
1750 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1751 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1752 /* Ensure that a secondary or tertiary reload for this output
1753 won't want this register. */
1754 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1755 || (! (TEST_HARD_REG_BIT
1756 (reg_class_contents[(int) rld[secondary_out].class],
1757 REGNO (XEXP (note, 0))))
1758 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1759 || ! (TEST_HARD_REG_BIT
1760 (reg_class_contents[(int) rld[secondary_out].class],
1761 REGNO (XEXP (note, 0)))))))
1762 && ! fixed_regs[REGNO (XEXP (note, 0))])
1764 rld[output_reload].reg_rtx
1765 = gen_rtx_REG (rld[output_reload].outmode,
1766 REGNO (XEXP (note, 0)));
1767 return;
1771 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1772 See if one of IN and OUT is a register that may be used;
1773 this is desirable since a spill-register won't be needed.
1774 If so, return the register rtx that proves acceptable.
1776 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1777 CLASS is the register class required for the reload.
1779 If FOR_REAL is >= 0, it is the number of the reload,
1780 and in some cases when it can be discovered that OUT doesn't need
1781 to be computed, clear out rld[FOR_REAL].out.
1783 If FOR_REAL is -1, this should not be done, because this call
1784 is just to see if a register can be found, not to find and install it.
1786 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1787 puts an additional constraint on being able to use IN for OUT since
1788 IN must not appear elsewhere in the insn (it is assumed that IN itself
1789 is safe from the earlyclobber). */
1791 static rtx
1792 find_dummy_reload (real_in, real_out, inloc, outloc,
1793 inmode, outmode, class, for_real, earlyclobber)
1794 rtx real_in, real_out;
1795 rtx *inloc, *outloc;
1796 enum machine_mode inmode, outmode;
1797 enum reg_class class;
1798 int for_real;
1799 int earlyclobber;
1801 rtx in = real_in;
1802 rtx out = real_out;
1803 int in_offset = 0;
1804 int out_offset = 0;
1805 rtx value = 0;
1807 /* If operands exceed a word, we can't use either of them
1808 unless they have the same size. */
1809 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1810 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1811 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1812 return 0;
1814 /* Find the inside of any subregs. */
1815 while (GET_CODE (out) == SUBREG)
1817 out_offset = SUBREG_WORD (out);
1818 out = SUBREG_REG (out);
1820 while (GET_CODE (in) == SUBREG)
1822 in_offset = SUBREG_WORD (in);
1823 in = SUBREG_REG (in);
1826 /* Narrow down the reg class, the same way push_reload will;
1827 otherwise we might find a dummy now, but push_reload won't. */
1828 class = PREFERRED_RELOAD_CLASS (in, class);
1830 /* See if OUT will do. */
1831 if (GET_CODE (out) == REG
1832 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1834 unsigned int regno = REGNO (out) + out_offset;
1835 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1836 rtx saved_rtx;
1838 /* When we consider whether the insn uses OUT,
1839 ignore references within IN. They don't prevent us
1840 from copying IN into OUT, because those refs would
1841 move into the insn that reloads IN.
1843 However, we only ignore IN in its role as this reload.
1844 If the insn uses IN elsewhere and it contains OUT,
1845 that counts. We can't be sure it's the "same" operand
1846 so it might not go through this reload. */
1847 saved_rtx = *inloc;
1848 *inloc = const0_rtx;
1850 if (regno < FIRST_PSEUDO_REGISTER
1851 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1852 PATTERN (this_insn), outloc))
1854 unsigned int i;
1856 for (i = 0; i < nwords; i++)
1857 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1858 regno + i))
1859 break;
1861 if (i == nwords)
1863 if (GET_CODE (real_out) == REG)
1864 value = real_out;
1865 else
1866 value = gen_rtx_REG (outmode, regno);
1870 *inloc = saved_rtx;
1873 /* Consider using IN if OUT was not acceptable
1874 or if OUT dies in this insn (like the quotient in a divmod insn).
1875 We can't use IN unless it is dies in this insn,
1876 which means we must know accurately which hard regs are live.
1877 Also, the result can't go in IN if IN is used within OUT,
1878 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1879 if (hard_regs_live_known
1880 && GET_CODE (in) == REG
1881 && REGNO (in) < FIRST_PSEUDO_REGISTER
1882 && (value == 0
1883 || find_reg_note (this_insn, REG_UNUSED, real_out))
1884 && find_reg_note (this_insn, REG_DEAD, real_in)
1885 && !fixed_regs[REGNO (in)]
1886 && HARD_REGNO_MODE_OK (REGNO (in),
1887 /* The only case where out and real_out might
1888 have different modes is where real_out
1889 is a subreg, and in that case, out
1890 has a real mode. */
1891 (GET_MODE (out) != VOIDmode
1892 ? GET_MODE (out) : outmode)))
1894 unsigned int regno = REGNO (in) + in_offset;
1895 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1897 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1898 && ! hard_reg_set_here_p (regno, regno + nwords,
1899 PATTERN (this_insn))
1900 && (! earlyclobber
1901 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1902 PATTERN (this_insn), inloc)))
1904 unsigned int i;
1906 for (i = 0; i < nwords; i++)
1907 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1908 regno + i))
1909 break;
1911 if (i == nwords)
1913 /* If we were going to use OUT as the reload reg
1914 and changed our mind, it means OUT is a dummy that
1915 dies here. So don't bother copying value to it. */
1916 if (for_real >= 0 && value == real_out)
1917 rld[for_real].out = 0;
1918 if (GET_CODE (real_in) == REG)
1919 value = real_in;
1920 else
1921 value = gen_rtx_REG (inmode, regno);
1926 return value;
1929 /* This page contains subroutines used mainly for determining
1930 whether the IN or an OUT of a reload can serve as the
1931 reload register. */
1933 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1936 earlyclobber_operand_p (x)
1937 rtx x;
1939 int i;
1941 for (i = 0; i < n_earlyclobbers; i++)
1942 if (reload_earlyclobbers[i] == x)
1943 return 1;
1945 return 0;
1948 /* Return 1 if expression X alters a hard reg in the range
1949 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1950 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1951 X should be the body of an instruction. */
1953 static int
1954 hard_reg_set_here_p (beg_regno, end_regno, x)
1955 unsigned int beg_regno, end_regno;
1956 rtx x;
1958 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1960 register rtx op0 = SET_DEST (x);
1962 while (GET_CODE (op0) == SUBREG)
1963 op0 = SUBREG_REG (op0);
1964 if (GET_CODE (op0) == REG)
1966 unsigned int r = REGNO (op0);
1968 /* See if this reg overlaps range under consideration. */
1969 if (r < end_regno
1970 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1971 return 1;
1974 else if (GET_CODE (x) == PARALLEL)
1976 register int i = XVECLEN (x, 0) - 1;
1978 for (; i >= 0; i--)
1979 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1980 return 1;
1983 return 0;
1986 /* Return 1 if ADDR is a valid memory address for mode MODE,
1987 and check that each pseudo reg has the proper kind of
1988 hard reg. */
1991 strict_memory_address_p (mode, addr)
1992 enum machine_mode mode ATTRIBUTE_UNUSED;
1993 register rtx addr;
1995 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1996 return 0;
1998 win:
1999 return 1;
2002 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2003 if they are the same hard reg, and has special hacks for
2004 autoincrement and autodecrement.
2005 This is specifically intended for find_reloads to use
2006 in determining whether two operands match.
2007 X is the operand whose number is the lower of the two.
2009 The value is 2 if Y contains a pre-increment that matches
2010 a non-incrementing address in X. */
2012 /* ??? To be completely correct, we should arrange to pass
2013 for X the output operand and for Y the input operand.
2014 For now, we assume that the output operand has the lower number
2015 because that is natural in (SET output (... input ...)). */
2018 operands_match_p (x, y)
2019 register rtx x, y;
2021 register int i;
2022 register RTX_CODE code = GET_CODE (x);
2023 register const char *fmt;
2024 int success_2;
2026 if (x == y)
2027 return 1;
2028 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2029 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2030 && GET_CODE (SUBREG_REG (y)) == REG)))
2032 register int j;
2034 if (code == SUBREG)
2036 i = REGNO (SUBREG_REG (x));
2037 if (i >= FIRST_PSEUDO_REGISTER)
2038 goto slow;
2039 i += SUBREG_WORD (x);
2041 else
2042 i = REGNO (x);
2044 if (GET_CODE (y) == SUBREG)
2046 j = REGNO (SUBREG_REG (y));
2047 if (j >= FIRST_PSEUDO_REGISTER)
2048 goto slow;
2049 j += SUBREG_WORD (y);
2051 else
2052 j = REGNO (y);
2054 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2055 multiple hard register group, so that for example (reg:DI 0) and
2056 (reg:SI 1) will be considered the same register. */
2057 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2058 && i < FIRST_PSEUDO_REGISTER)
2059 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2060 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2061 && j < FIRST_PSEUDO_REGISTER)
2062 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2064 return i == j;
2066 /* If two operands must match, because they are really a single
2067 operand of an assembler insn, then two postincrements are invalid
2068 because the assembler insn would increment only once.
2069 On the other hand, an postincrement matches ordinary indexing
2070 if the postincrement is the output operand. */
2071 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2072 return operands_match_p (XEXP (x, 0), y);
2073 /* Two preincrements are invalid
2074 because the assembler insn would increment only once.
2075 On the other hand, an preincrement matches ordinary indexing
2076 if the preincrement is the input operand.
2077 In this case, return 2, since some callers need to do special
2078 things when this happens. */
2079 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2080 || GET_CODE (y) == PRE_MODIFY)
2081 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2083 slow:
2085 /* Now we have disposed of all the cases
2086 in which different rtx codes can match. */
2087 if (code != GET_CODE (y))
2088 return 0;
2089 if (code == LABEL_REF)
2090 return XEXP (x, 0) == XEXP (y, 0);
2091 if (code == SYMBOL_REF)
2092 return XSTR (x, 0) == XSTR (y, 0);
2094 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2096 if (GET_MODE (x) != GET_MODE (y))
2097 return 0;
2099 /* Compare the elements. If any pair of corresponding elements
2100 fail to match, return 0 for the whole things. */
2102 success_2 = 0;
2103 fmt = GET_RTX_FORMAT (code);
2104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2106 int val, j;
2107 switch (fmt[i])
2109 case 'w':
2110 if (XWINT (x, i) != XWINT (y, i))
2111 return 0;
2112 break;
2114 case 'i':
2115 if (XINT (x, i) != XINT (y, i))
2116 return 0;
2117 break;
2119 case 'e':
2120 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2121 if (val == 0)
2122 return 0;
2123 /* If any subexpression returns 2,
2124 we should return 2 if we are successful. */
2125 if (val == 2)
2126 success_2 = 1;
2127 break;
2129 case '0':
2130 break;
2132 case 'E':
2133 if (XVECLEN (x, i) != XVECLEN (y, i))
2134 return 0;
2135 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2137 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2138 if (val == 0)
2139 return 0;
2140 if (val == 2)
2141 success_2 = 1;
2143 break;
2145 /* It is believed that rtx's at this level will never
2146 contain anything but integers and other rtx's,
2147 except for within LABEL_REFs and SYMBOL_REFs. */
2148 default:
2149 abort ();
2152 return 1 + success_2;
2155 /* Describe the range of registers or memory referenced by X.
2156 If X is a register, set REG_FLAG and put the first register
2157 number into START and the last plus one into END.
2158 If X is a memory reference, put a base address into BASE
2159 and a range of integer offsets into START and END.
2160 If X is pushing on the stack, we can assume it causes no trouble,
2161 so we set the SAFE field. */
2163 static struct decomposition
2164 decompose (x)
2165 rtx x;
2167 struct decomposition val;
2168 int all_const = 0;
2170 val.reg_flag = 0;
2171 val.safe = 0;
2172 val.base = 0;
2173 if (GET_CODE (x) == MEM)
2175 rtx base = NULL_RTX, offset = 0;
2176 rtx addr = XEXP (x, 0);
2178 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2179 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2181 val.base = XEXP (addr, 0);
2182 val.start = -GET_MODE_SIZE (GET_MODE (x));
2183 val.end = GET_MODE_SIZE (GET_MODE (x));
2184 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2185 return val;
2188 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2190 if (GET_CODE (XEXP (addr, 1)) == PLUS
2191 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2192 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2194 val.base = XEXP (addr, 0);
2195 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2196 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2197 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2198 return val;
2202 if (GET_CODE (addr) == CONST)
2204 addr = XEXP (addr, 0);
2205 all_const = 1;
2207 if (GET_CODE (addr) == PLUS)
2209 if (CONSTANT_P (XEXP (addr, 0)))
2211 base = XEXP (addr, 1);
2212 offset = XEXP (addr, 0);
2214 else if (CONSTANT_P (XEXP (addr, 1)))
2216 base = XEXP (addr, 0);
2217 offset = XEXP (addr, 1);
2221 if (offset == 0)
2223 base = addr;
2224 offset = const0_rtx;
2226 if (GET_CODE (offset) == CONST)
2227 offset = XEXP (offset, 0);
2228 if (GET_CODE (offset) == PLUS)
2230 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2232 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2233 offset = XEXP (offset, 0);
2235 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2237 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2238 offset = XEXP (offset, 1);
2240 else
2242 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2243 offset = const0_rtx;
2246 else if (GET_CODE (offset) != CONST_INT)
2248 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2249 offset = const0_rtx;
2252 if (all_const && GET_CODE (base) == PLUS)
2253 base = gen_rtx_CONST (GET_MODE (base), base);
2255 if (GET_CODE (offset) != CONST_INT)
2256 abort ();
2258 val.start = INTVAL (offset);
2259 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2260 val.base = base;
2261 return val;
2263 else if (GET_CODE (x) == REG)
2265 val.reg_flag = 1;
2266 val.start = true_regnum (x);
2267 if (val.start < 0)
2269 /* A pseudo with no hard reg. */
2270 val.start = REGNO (x);
2271 val.end = val.start + 1;
2273 else
2274 /* A hard reg. */
2275 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2277 else if (GET_CODE (x) == SUBREG)
2279 if (GET_CODE (SUBREG_REG (x)) != REG)
2280 /* This could be more precise, but it's good enough. */
2281 return decompose (SUBREG_REG (x));
2282 val.reg_flag = 1;
2283 val.start = true_regnum (x);
2284 if (val.start < 0)
2285 return decompose (SUBREG_REG (x));
2286 else
2287 /* A hard reg. */
2288 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2290 else if (CONSTANT_P (x)
2291 /* This hasn't been assigned yet, so it can't conflict yet. */
2292 || GET_CODE (x) == SCRATCH)
2293 val.safe = 1;
2294 else
2295 abort ();
2296 return val;
2299 /* Return 1 if altering Y will not modify the value of X.
2300 Y is also described by YDATA, which should be decompose (Y). */
2302 static int
2303 immune_p (x, y, ydata)
2304 rtx x, y;
2305 struct decomposition ydata;
2307 struct decomposition xdata;
2309 if (ydata.reg_flag)
2310 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2311 if (ydata.safe)
2312 return 1;
2314 if (GET_CODE (y) != MEM)
2315 abort ();
2316 /* If Y is memory and X is not, Y can't affect X. */
2317 if (GET_CODE (x) != MEM)
2318 return 1;
2320 xdata = decompose (x);
2322 if (! rtx_equal_p (xdata.base, ydata.base))
2324 /* If bases are distinct symbolic constants, there is no overlap. */
2325 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2326 return 1;
2327 /* Constants and stack slots never overlap. */
2328 if (CONSTANT_P (xdata.base)
2329 && (ydata.base == frame_pointer_rtx
2330 || ydata.base == hard_frame_pointer_rtx
2331 || ydata.base == stack_pointer_rtx))
2332 return 1;
2333 if (CONSTANT_P (ydata.base)
2334 && (xdata.base == frame_pointer_rtx
2335 || xdata.base == hard_frame_pointer_rtx
2336 || xdata.base == stack_pointer_rtx))
2337 return 1;
2338 /* If either base is variable, we don't know anything. */
2339 return 0;
2342 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2345 /* Similar, but calls decompose. */
2348 safe_from_earlyclobber (op, clobber)
2349 rtx op, clobber;
2351 struct decomposition early_data;
2353 early_data = decompose (clobber);
2354 return immune_p (op, clobber, early_data);
2357 /* Main entry point of this file: search the body of INSN
2358 for values that need reloading and record them with push_reload.
2359 REPLACE nonzero means record also where the values occur
2360 so that subst_reloads can be used.
2362 IND_LEVELS says how many levels of indirection are supported by this
2363 machine; a value of zero means that a memory reference is not a valid
2364 memory address.
2366 LIVE_KNOWN says we have valid information about which hard
2367 regs are live at each point in the program; this is true when
2368 we are called from global_alloc but false when stupid register
2369 allocation has been done.
2371 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2372 which is nonnegative if the reg has been commandeered for reloading into.
2373 It is copied into STATIC_RELOAD_REG_P and referenced from there
2374 by various subroutines.
2376 Return TRUE if some operands need to be changed, because of swapping
2377 commutative operands, reg_equiv_address substitution, or whatever. */
2380 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2381 rtx insn;
2382 int replace, ind_levels;
2383 int live_known;
2384 short *reload_reg_p;
2386 register int insn_code_number;
2387 register int i, j;
2388 int noperands;
2389 /* These start out as the constraints for the insn
2390 and they are chewed up as we consider alternatives. */
2391 char *constraints[MAX_RECOG_OPERANDS];
2392 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2393 a register. */
2394 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2395 char pref_or_nothing[MAX_RECOG_OPERANDS];
2396 /* Nonzero for a MEM operand whose entire address needs a reload. */
2397 int address_reloaded[MAX_RECOG_OPERANDS];
2398 /* Value of enum reload_type to use for operand. */
2399 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2400 /* Value of enum reload_type to use within address of operand. */
2401 enum reload_type address_type[MAX_RECOG_OPERANDS];
2402 /* Save the usage of each operand. */
2403 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2404 int no_input_reloads = 0, no_output_reloads = 0;
2405 int n_alternatives;
2406 int this_alternative[MAX_RECOG_OPERANDS];
2407 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2408 char this_alternative_win[MAX_RECOG_OPERANDS];
2409 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2410 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2411 int this_alternative_matches[MAX_RECOG_OPERANDS];
2412 int swapped;
2413 int goal_alternative[MAX_RECOG_OPERANDS];
2414 int this_alternative_number;
2415 int goal_alternative_number = 0;
2416 int operand_reloadnum[MAX_RECOG_OPERANDS];
2417 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2418 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2419 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2420 char goal_alternative_win[MAX_RECOG_OPERANDS];
2421 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2422 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2423 int goal_alternative_swapped;
2424 int best;
2425 int commutative;
2426 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2427 rtx substed_operand[MAX_RECOG_OPERANDS];
2428 rtx body = PATTERN (insn);
2429 rtx set = single_set (insn);
2430 int goal_earlyclobber = 0, this_earlyclobber;
2431 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2432 int retval = 0;
2434 this_insn = insn;
2435 n_reloads = 0;
2436 n_replacements = 0;
2437 n_earlyclobbers = 0;
2438 replace_reloads = replace;
2439 hard_regs_live_known = live_known;
2440 static_reload_reg_p = reload_reg_p;
2442 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2443 neither are insns that SET cc0. Insns that use CC0 are not allowed
2444 to have any input reloads. */
2445 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2446 no_output_reloads = 1;
2448 #ifdef HAVE_cc0
2449 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2450 no_input_reloads = 1;
2451 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2452 no_output_reloads = 1;
2453 #endif
2455 #ifdef SECONDARY_MEMORY_NEEDED
2456 /* The eliminated forms of any secondary memory locations are per-insn, so
2457 clear them out here. */
2459 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2460 #endif
2462 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2463 is cheap to move between them. If it is not, there may not be an insn
2464 to do the copy, so we may need a reload. */
2465 if (GET_CODE (body) == SET
2466 && GET_CODE (SET_DEST (body)) == REG
2467 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2468 && GET_CODE (SET_SRC (body)) == REG
2469 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2470 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2471 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2472 return 0;
2474 extract_insn (insn);
2476 noperands = reload_n_operands = recog_data.n_operands;
2477 n_alternatives = recog_data.n_alternatives;
2479 /* Just return "no reloads" if insn has no operands with constraints. */
2480 if (noperands == 0 || n_alternatives == 0)
2481 return 0;
2483 insn_code_number = INSN_CODE (insn);
2484 this_insn_is_asm = insn_code_number < 0;
2486 memcpy (operand_mode, recog_data.operand_mode,
2487 noperands * sizeof (enum machine_mode));
2488 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2490 commutative = -1;
2492 /* If we will need to know, later, whether some pair of operands
2493 are the same, we must compare them now and save the result.
2494 Reloading the base and index registers will clobber them
2495 and afterward they will fail to match. */
2497 for (i = 0; i < noperands; i++)
2499 register char *p;
2500 register int c;
2502 substed_operand[i] = recog_data.operand[i];
2503 p = constraints[i];
2505 modified[i] = RELOAD_READ;
2507 /* Scan this operand's constraint to see if it is an output operand,
2508 an in-out operand, is commutative, or should match another. */
2510 while ((c = *p++))
2512 if (c == '=')
2513 modified[i] = RELOAD_WRITE;
2514 else if (c == '+')
2515 modified[i] = RELOAD_READ_WRITE;
2516 else if (c == '%')
2518 /* The last operand should not be marked commutative. */
2519 if (i == noperands - 1)
2520 abort ();
2522 commutative = i;
2524 else if (c >= '0' && c <= '9')
2526 c -= '0';
2527 operands_match[c][i]
2528 = operands_match_p (recog_data.operand[c],
2529 recog_data.operand[i]);
2531 /* An operand may not match itself. */
2532 if (c == i)
2533 abort ();
2535 /* If C can be commuted with C+1, and C might need to match I,
2536 then C+1 might also need to match I. */
2537 if (commutative >= 0)
2539 if (c == commutative || c == commutative + 1)
2541 int other = c + (c == commutative ? 1 : -1);
2542 operands_match[other][i]
2543 = operands_match_p (recog_data.operand[other],
2544 recog_data.operand[i]);
2546 if (i == commutative || i == commutative + 1)
2548 int other = i + (i == commutative ? 1 : -1);
2549 operands_match[c][other]
2550 = operands_match_p (recog_data.operand[c],
2551 recog_data.operand[other]);
2553 /* Note that C is supposed to be less than I.
2554 No need to consider altering both C and I because in
2555 that case we would alter one into the other. */
2561 /* Examine each operand that is a memory reference or memory address
2562 and reload parts of the addresses into index registers.
2563 Also here any references to pseudo regs that didn't get hard regs
2564 but are equivalent to constants get replaced in the insn itself
2565 with those constants. Nobody will ever see them again.
2567 Finally, set up the preferred classes of each operand. */
2569 for (i = 0; i < noperands; i++)
2571 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2573 address_reloaded[i] = 0;
2574 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2575 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2576 : RELOAD_OTHER);
2577 address_type[i]
2578 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2579 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2580 : RELOAD_OTHER);
2582 if (*constraints[i] == 0)
2583 /* Ignore things like match_operator operands. */
2585 else if (constraints[i][0] == 'p')
2587 find_reloads_address (VOIDmode, NULL_PTR,
2588 recog_data.operand[i],
2589 recog_data.operand_loc[i],
2590 i, operand_type[i], ind_levels, insn);
2592 /* If we now have a simple operand where we used to have a
2593 PLUS or MULT, re-recognize and try again. */
2594 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2595 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2596 && (GET_CODE (recog_data.operand[i]) == MULT
2597 || GET_CODE (recog_data.operand[i]) == PLUS))
2599 INSN_CODE (insn) = -1;
2600 retval = find_reloads (insn, replace, ind_levels, live_known,
2601 reload_reg_p);
2602 return retval;
2605 recog_data.operand[i] = *recog_data.operand_loc[i];
2606 substed_operand[i] = recog_data.operand[i];
2608 else if (code == MEM)
2610 address_reloaded[i]
2611 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2612 recog_data.operand_loc[i],
2613 XEXP (recog_data.operand[i], 0),
2614 &XEXP (recog_data.operand[i], 0),
2615 i, address_type[i], ind_levels, insn);
2616 recog_data.operand[i] = *recog_data.operand_loc[i];
2617 substed_operand[i] = recog_data.operand[i];
2619 else if (code == SUBREG)
2621 rtx reg = SUBREG_REG (recog_data.operand[i]);
2622 rtx op
2623 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2624 ind_levels,
2625 set != 0
2626 && &SET_DEST (set) == recog_data.operand_loc[i],
2627 insn,
2628 &address_reloaded[i]);
2630 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2631 that didn't get a hard register, emit a USE with a REG_EQUAL
2632 note in front so that we might inherit a previous, possibly
2633 wider reload. */
2635 if (replace
2636 && GET_CODE (op) == MEM
2637 && GET_CODE (reg) == REG
2638 && (GET_MODE_SIZE (GET_MODE (reg))
2639 >= GET_MODE_SIZE (GET_MODE (op))))
2640 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2641 = gen_rtx_EXPR_LIST (REG_EQUAL,
2642 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2644 substed_operand[i] = recog_data.operand[i] = op;
2646 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2647 /* We can get a PLUS as an "operand" as a result of register
2648 elimination. See eliminate_regs and gen_reload. We handle
2649 a unary operator by reloading the operand. */
2650 substed_operand[i] = recog_data.operand[i]
2651 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2652 ind_levels, 0, insn,
2653 &address_reloaded[i]);
2654 else if (code == REG)
2656 /* This is equivalent to calling find_reloads_toplev.
2657 The code is duplicated for speed.
2658 When we find a pseudo always equivalent to a constant,
2659 we replace it by the constant. We must be sure, however,
2660 that we don't try to replace it in the insn in which it
2661 is being set. */
2662 register int regno = REGNO (recog_data.operand[i]);
2663 if (reg_equiv_constant[regno] != 0
2664 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2666 /* Record the existing mode so that the check if constants are
2667 allowed will work when operand_mode isn't specified. */
2669 if (operand_mode[i] == VOIDmode)
2670 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2672 substed_operand[i] = recog_data.operand[i]
2673 = reg_equiv_constant[regno];
2675 if (reg_equiv_memory_loc[regno] != 0
2676 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2677 /* We need not give a valid is_set_dest argument since the case
2678 of a constant equivalence was checked above. */
2679 substed_operand[i] = recog_data.operand[i]
2680 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2681 ind_levels, 0, insn,
2682 &address_reloaded[i]);
2684 /* If the operand is still a register (we didn't replace it with an
2685 equivalent), get the preferred class to reload it into. */
2686 code = GET_CODE (recog_data.operand[i]);
2687 preferred_class[i]
2688 = ((code == REG && REGNO (recog_data.operand[i])
2689 >= FIRST_PSEUDO_REGISTER)
2690 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2691 : NO_REGS);
2692 pref_or_nothing[i]
2693 = (code == REG
2694 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2695 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2698 /* If this is simply a copy from operand 1 to operand 0, merge the
2699 preferred classes for the operands. */
2700 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2701 && recog_data.operand[1] == SET_SRC (set))
2703 preferred_class[0] = preferred_class[1]
2704 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2705 pref_or_nothing[0] |= pref_or_nothing[1];
2706 pref_or_nothing[1] |= pref_or_nothing[0];
2709 /* Now see what we need for pseudo-regs that didn't get hard regs
2710 or got the wrong kind of hard reg. For this, we must consider
2711 all the operands together against the register constraints. */
2713 best = MAX_RECOG_OPERANDS * 2 + 600;
2715 swapped = 0;
2716 goal_alternative_swapped = 0;
2717 try_swapped:
2719 /* The constraints are made of several alternatives.
2720 Each operand's constraint looks like foo,bar,... with commas
2721 separating the alternatives. The first alternatives for all
2722 operands go together, the second alternatives go together, etc.
2724 First loop over alternatives. */
2726 for (this_alternative_number = 0;
2727 this_alternative_number < n_alternatives;
2728 this_alternative_number++)
2730 /* Loop over operands for one constraint alternative. */
2731 /* LOSERS counts those that don't fit this alternative
2732 and would require loading. */
2733 int losers = 0;
2734 /* BAD is set to 1 if it some operand can't fit this alternative
2735 even after reloading. */
2736 int bad = 0;
2737 /* REJECT is a count of how undesirable this alternative says it is
2738 if any reloading is required. If the alternative matches exactly
2739 then REJECT is ignored, but otherwise it gets this much
2740 counted against it in addition to the reloading needed. Each
2741 ? counts three times here since we want the disparaging caused by
2742 a bad register class to only count 1/3 as much. */
2743 int reject = 0;
2745 this_earlyclobber = 0;
2747 for (i = 0; i < noperands; i++)
2749 register char *p = constraints[i];
2750 register int win = 0;
2751 int did_match = 0;
2752 /* 0 => this operand can be reloaded somehow for this alternative */
2753 int badop = 1;
2754 /* 0 => this operand can be reloaded if the alternative allows regs. */
2755 int winreg = 0;
2756 int c;
2757 register rtx operand = recog_data.operand[i];
2758 int offset = 0;
2759 /* Nonzero means this is a MEM that must be reloaded into a reg
2760 regardless of what the constraint says. */
2761 int force_reload = 0;
2762 int offmemok = 0;
2763 /* Nonzero if a constant forced into memory would be OK for this
2764 operand. */
2765 int constmemok = 0;
2766 int earlyclobber = 0;
2768 /* If the predicate accepts a unary operator, it means that
2769 we need to reload the operand, but do not do this for
2770 match_operator and friends. */
2771 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2772 operand = XEXP (operand, 0);
2774 /* If the operand is a SUBREG, extract
2775 the REG or MEM (or maybe even a constant) within.
2776 (Constants can occur as a result of reg_equiv_constant.) */
2778 while (GET_CODE (operand) == SUBREG)
2780 offset += SUBREG_WORD (operand);
2781 operand = SUBREG_REG (operand);
2782 /* Force reload if this is a constant or PLUS or if there may
2783 be a problem accessing OPERAND in the outer mode. */
2784 if (CONSTANT_P (operand)
2785 || GET_CODE (operand) == PLUS
2786 /* We must force a reload of paradoxical SUBREGs
2787 of a MEM because the alignment of the inner value
2788 may not be enough to do the outer reference. On
2789 big-endian machines, it may also reference outside
2790 the object.
2792 On machines that extend byte operations and we have a
2793 SUBREG where both the inner and outer modes are no wider
2794 than a word and the inner mode is narrower, is integral,
2795 and gets extended when loaded from memory, combine.c has
2796 made assumptions about the behavior of the machine in such
2797 register access. If the data is, in fact, in memory we
2798 must always load using the size assumed to be in the
2799 register and let the insn do the different-sized
2800 accesses.
2802 This is doubly true if WORD_REGISTER_OPERATIONS. In
2803 this case eliminate_regs has left non-paradoxical
2804 subregs for push_reloads to see. Make sure it does
2805 by forcing the reload.
2807 ??? When is it right at this stage to have a subreg
2808 of a mem that is _not_ to be handled specialy? IMO
2809 those should have been reduced to just a mem. */
2810 || ((GET_CODE (operand) == MEM
2811 || (GET_CODE (operand)== REG
2812 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2813 #ifndef WORD_REGISTER_OPERATIONS
2814 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2815 < BIGGEST_ALIGNMENT)
2816 && (GET_MODE_SIZE (operand_mode[i])
2817 > GET_MODE_SIZE (GET_MODE (operand))))
2818 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2819 #ifdef LOAD_EXTEND_OP
2820 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2821 && (GET_MODE_SIZE (GET_MODE (operand))
2822 <= UNITS_PER_WORD)
2823 && (GET_MODE_SIZE (operand_mode[i])
2824 > GET_MODE_SIZE (GET_MODE (operand)))
2825 && INTEGRAL_MODE_P (GET_MODE (operand))
2826 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2827 #endif
2829 #endif
2831 /* Subreg of a hard reg which can't handle the subreg's mode
2832 or which would handle that mode in the wrong number of
2833 registers for subregging to work. */
2834 || (GET_CODE (operand) == REG
2835 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2836 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2837 && (GET_MODE_SIZE (GET_MODE (operand))
2838 > UNITS_PER_WORD)
2839 && ((GET_MODE_SIZE (GET_MODE (operand))
2840 / UNITS_PER_WORD)
2841 != HARD_REGNO_NREGS (REGNO (operand),
2842 GET_MODE (operand))))
2843 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2844 operand_mode[i]))))
2845 force_reload = 1;
2848 this_alternative[i] = (int) NO_REGS;
2849 this_alternative_win[i] = 0;
2850 this_alternative_match_win[i] = 0;
2851 this_alternative_offmemok[i] = 0;
2852 this_alternative_earlyclobber[i] = 0;
2853 this_alternative_matches[i] = -1;
2855 /* An empty constraint or empty alternative
2856 allows anything which matched the pattern. */
2857 if (*p == 0 || *p == ',')
2858 win = 1, badop = 0;
2860 /* Scan this alternative's specs for this operand;
2861 set WIN if the operand fits any letter in this alternative.
2862 Otherwise, clear BADOP if this operand could
2863 fit some letter after reloads,
2864 or set WINREG if this operand could fit after reloads
2865 provided the constraint allows some registers. */
2867 while (*p && (c = *p++) != ',')
2868 switch (c)
2870 case '=': case '+': case '*':
2871 break;
2873 case '%':
2874 /* The last operand should not be marked commutative. */
2875 if (i != noperands - 1)
2876 commutative = i;
2877 break;
2879 case '?':
2880 reject += 6;
2881 break;
2883 case '!':
2884 reject = 600;
2885 break;
2887 case '#':
2888 /* Ignore rest of this alternative as far as
2889 reloading is concerned. */
2890 while (*p && *p != ',')
2891 p++;
2892 break;
2894 case '0': case '1': case '2': case '3': case '4':
2895 case '5': case '6': case '7': case '8': case '9':
2897 c -= '0';
2898 this_alternative_matches[i] = c;
2899 /* We are supposed to match a previous operand.
2900 If we do, we win if that one did.
2901 If we do not, count both of the operands as losers.
2902 (This is too conservative, since most of the time
2903 only a single reload insn will be needed to make
2904 the two operands win. As a result, this alternative
2905 may be rejected when it is actually desirable.) */
2906 if ((swapped && (c != commutative || i != commutative + 1))
2907 /* If we are matching as if two operands were swapped,
2908 also pretend that operands_match had been computed
2909 with swapped.
2910 But if I is the second of those and C is the first,
2911 don't exchange them, because operands_match is valid
2912 only on one side of its diagonal. */
2913 ? (operands_match
2914 [(c == commutative || c == commutative + 1)
2915 ? 2 * commutative + 1 - c : c]
2916 [(i == commutative || i == commutative + 1)
2917 ? 2 * commutative + 1 - i : i])
2918 : operands_match[c][i])
2920 /* If we are matching a non-offsettable address where an
2921 offsettable address was expected, then we must reject
2922 this combination, because we can't reload it. */
2923 if (this_alternative_offmemok[c]
2924 && GET_CODE (recog_data.operand[c]) == MEM
2925 && this_alternative[c] == (int) NO_REGS
2926 && ! this_alternative_win[c])
2927 bad = 1;
2929 did_match = this_alternative_win[c];
2931 else
2933 /* Operands don't match. */
2934 rtx value;
2935 /* Retroactively mark the operand we had to match
2936 as a loser, if it wasn't already. */
2937 if (this_alternative_win[c])
2938 losers++;
2939 this_alternative_win[c] = 0;
2940 if (this_alternative[c] == (int) NO_REGS)
2941 bad = 1;
2942 /* But count the pair only once in the total badness of
2943 this alternative, if the pair can be a dummy reload. */
2944 value
2945 = find_dummy_reload (recog_data.operand[i],
2946 recog_data.operand[c],
2947 recog_data.operand_loc[i],
2948 recog_data.operand_loc[c],
2949 operand_mode[i], operand_mode[c],
2950 this_alternative[c], -1,
2951 this_alternative_earlyclobber[c]);
2953 if (value != 0)
2954 losers--;
2956 /* This can be fixed with reloads if the operand
2957 we are supposed to match can be fixed with reloads. */
2958 badop = 0;
2959 this_alternative[i] = this_alternative[c];
2961 /* If we have to reload this operand and some previous
2962 operand also had to match the same thing as this
2963 operand, we don't know how to do that. So reject this
2964 alternative. */
2965 if (! did_match || force_reload)
2966 for (j = 0; j < i; j++)
2967 if (this_alternative_matches[j]
2968 == this_alternative_matches[i])
2969 badop = 1;
2970 break;
2972 case 'p':
2973 /* All necessary reloads for an address_operand
2974 were handled in find_reloads_address. */
2975 this_alternative[i] = (int) BASE_REG_CLASS;
2976 win = 1;
2977 break;
2979 case 'm':
2980 if (force_reload)
2981 break;
2982 if (GET_CODE (operand) == MEM
2983 || (GET_CODE (operand) == REG
2984 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2985 && reg_renumber[REGNO (operand)] < 0))
2986 win = 1;
2987 if (CONSTANT_P (operand)
2988 /* force_const_mem does not accept HIGH. */
2989 && GET_CODE (operand) != HIGH)
2990 badop = 0;
2991 constmemok = 1;
2992 break;
2994 case '<':
2995 if (GET_CODE (operand) == MEM
2996 && ! address_reloaded[i]
2997 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2998 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2999 win = 1;
3000 break;
3002 case '>':
3003 if (GET_CODE (operand) == MEM
3004 && ! address_reloaded[i]
3005 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3006 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3007 win = 1;
3008 break;
3010 /* Memory operand whose address is not offsettable. */
3011 case 'V':
3012 if (force_reload)
3013 break;
3014 if (GET_CODE (operand) == MEM
3015 && ! (ind_levels ? offsettable_memref_p (operand)
3016 : offsettable_nonstrict_memref_p (operand))
3017 /* Certain mem addresses will become offsettable
3018 after they themselves are reloaded. This is important;
3019 we don't want our own handling of unoffsettables
3020 to override the handling of reg_equiv_address. */
3021 && !(GET_CODE (XEXP (operand, 0)) == REG
3022 && (ind_levels == 0
3023 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3024 win = 1;
3025 break;
3027 /* Memory operand whose address is offsettable. */
3028 case 'o':
3029 if (force_reload)
3030 break;
3031 if ((GET_CODE (operand) == MEM
3032 /* If IND_LEVELS, find_reloads_address won't reload a
3033 pseudo that didn't get a hard reg, so we have to
3034 reject that case. */
3035 && ((ind_levels ? offsettable_memref_p (operand)
3036 : offsettable_nonstrict_memref_p (operand))
3037 /* A reloaded address is offsettable because it is now
3038 just a simple register indirect. */
3039 || address_reloaded[i]))
3040 || (GET_CODE (operand) == REG
3041 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3042 && reg_renumber[REGNO (operand)] < 0
3043 /* If reg_equiv_address is nonzero, we will be
3044 loading it into a register; hence it will be
3045 offsettable, but we cannot say that reg_equiv_mem
3046 is offsettable without checking. */
3047 && ((reg_equiv_mem[REGNO (operand)] != 0
3048 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3049 || (reg_equiv_address[REGNO (operand)] != 0))))
3050 win = 1;
3051 /* force_const_mem does not accept HIGH. */
3052 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3053 || GET_CODE (operand) == MEM)
3054 badop = 0;
3055 constmemok = 1;
3056 offmemok = 1;
3057 break;
3059 case '&':
3060 /* Output operand that is stored before the need for the
3061 input operands (and their index registers) is over. */
3062 earlyclobber = 1, this_earlyclobber = 1;
3063 break;
3065 case 'E':
3066 #ifndef REAL_ARITHMETIC
3067 /* Match any floating double constant, but only if
3068 we can examine the bits of it reliably. */
3069 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3070 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3071 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3072 break;
3073 #endif
3074 if (GET_CODE (operand) == CONST_DOUBLE)
3075 win = 1;
3076 break;
3078 case 'F':
3079 if (GET_CODE (operand) == CONST_DOUBLE)
3080 win = 1;
3081 break;
3083 case 'G':
3084 case 'H':
3085 if (GET_CODE (operand) == CONST_DOUBLE
3086 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3087 win = 1;
3088 break;
3090 case 's':
3091 if (GET_CODE (operand) == CONST_INT
3092 || (GET_CODE (operand) == CONST_DOUBLE
3093 && GET_MODE (operand) == VOIDmode))
3094 break;
3095 case 'i':
3096 if (CONSTANT_P (operand)
3097 #ifdef LEGITIMATE_PIC_OPERAND_P
3098 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3099 #endif
3101 win = 1;
3102 break;
3104 case 'n':
3105 if (GET_CODE (operand) == CONST_INT
3106 || (GET_CODE (operand) == CONST_DOUBLE
3107 && GET_MODE (operand) == VOIDmode))
3108 win = 1;
3109 break;
3111 case 'I':
3112 case 'J':
3113 case 'K':
3114 case 'L':
3115 case 'M':
3116 case 'N':
3117 case 'O':
3118 case 'P':
3119 if (GET_CODE (operand) == CONST_INT
3120 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3121 win = 1;
3122 break;
3124 case 'X':
3125 win = 1;
3126 break;
3128 case 'g':
3129 if (! force_reload
3130 /* A PLUS is never a valid operand, but reload can make
3131 it from a register when eliminating registers. */
3132 && GET_CODE (operand) != PLUS
3133 /* A SCRATCH is not a valid operand. */
3134 && GET_CODE (operand) != SCRATCH
3135 #ifdef LEGITIMATE_PIC_OPERAND_P
3136 && (! CONSTANT_P (operand)
3137 || ! flag_pic
3138 || LEGITIMATE_PIC_OPERAND_P (operand))
3139 #endif
3140 && (GENERAL_REGS == ALL_REGS
3141 || GET_CODE (operand) != REG
3142 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3143 && reg_renumber[REGNO (operand)] < 0)))
3144 win = 1;
3145 /* Drop through into 'r' case */
3147 case 'r':
3148 this_alternative[i]
3149 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3150 goto reg;
3152 default:
3153 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3155 #ifdef EXTRA_CONSTRAINT
3156 if (EXTRA_CONSTRAINT (operand, c))
3157 win = 1;
3158 #endif
3159 break;
3162 this_alternative[i]
3163 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3164 reg:
3165 if (GET_MODE (operand) == BLKmode)
3166 break;
3167 winreg = 1;
3168 if (GET_CODE (operand) == REG
3169 && reg_fits_class_p (operand, this_alternative[i],
3170 offset, GET_MODE (recog_data.operand[i])))
3171 win = 1;
3172 break;
3175 constraints[i] = p;
3177 /* If this operand could be handled with a reg,
3178 and some reg is allowed, then this operand can be handled. */
3179 if (winreg && this_alternative[i] != (int) NO_REGS)
3180 badop = 0;
3182 /* Record which operands fit this alternative. */
3183 this_alternative_earlyclobber[i] = earlyclobber;
3184 if (win && ! force_reload)
3185 this_alternative_win[i] = 1;
3186 else if (did_match && ! force_reload)
3187 this_alternative_match_win[i] = 1;
3188 else
3190 int const_to_mem = 0;
3192 this_alternative_offmemok[i] = offmemok;
3193 losers++;
3194 if (badop)
3195 bad = 1;
3196 /* Alternative loses if it has no regs for a reg operand. */
3197 if (GET_CODE (operand) == REG
3198 && this_alternative[i] == (int) NO_REGS
3199 && this_alternative_matches[i] < 0)
3200 bad = 1;
3202 /* If this is a constant that is reloaded into the desired
3203 class by copying it to memory first, count that as another
3204 reload. This is consistent with other code and is
3205 required to avoid choosing another alternative when
3206 the constant is moved into memory by this function on
3207 an early reload pass. Note that the test here is
3208 precisely the same as in the code below that calls
3209 force_const_mem. */
3210 if (CONSTANT_P (operand)
3211 /* force_const_mem does not accept HIGH. */
3212 && GET_CODE (operand) != HIGH
3213 && ((PREFERRED_RELOAD_CLASS (operand,
3214 (enum reg_class) this_alternative[i])
3215 == NO_REGS)
3216 || no_input_reloads)
3217 && operand_mode[i] != VOIDmode)
3219 const_to_mem = 1;
3220 if (this_alternative[i] != (int) NO_REGS)
3221 losers++;
3224 /* If we can't reload this value at all, reject this
3225 alternative. Note that we could also lose due to
3226 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3227 here. */
3229 if (! CONSTANT_P (operand)
3230 && (enum reg_class) this_alternative[i] != NO_REGS
3231 && (PREFERRED_RELOAD_CLASS (operand,
3232 (enum reg_class) this_alternative[i])
3233 == NO_REGS))
3234 bad = 1;
3236 /* Alternative loses if it requires a type of reload not
3237 permitted for this insn. We can always reload SCRATCH
3238 and objects with a REG_UNUSED note. */
3239 else if (GET_CODE (operand) != SCRATCH
3240 && modified[i] != RELOAD_READ && no_output_reloads
3241 && ! find_reg_note (insn, REG_UNUSED, operand))
3242 bad = 1;
3243 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3244 && ! const_to_mem)
3245 bad = 1;
3247 /* We prefer to reload pseudos over reloading other things,
3248 since such reloads may be able to be eliminated later.
3249 If we are reloading a SCRATCH, we won't be generating any
3250 insns, just using a register, so it is also preferred.
3251 So bump REJECT in other cases. Don't do this in the
3252 case where we are forcing a constant into memory and
3253 it will then win since we don't want to have a different
3254 alternative match then. */
3255 if (! (GET_CODE (operand) == REG
3256 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3257 && GET_CODE (operand) != SCRATCH
3258 && ! (const_to_mem && constmemok))
3259 reject += 2;
3261 /* Input reloads can be inherited more often than output
3262 reloads can be removed, so penalize output reloads. */
3263 if (operand_type[i] != RELOAD_FOR_INPUT
3264 && GET_CODE (operand) != SCRATCH)
3265 reject++;
3268 /* If this operand is a pseudo register that didn't get a hard
3269 reg and this alternative accepts some register, see if the
3270 class that we want is a subset of the preferred class for this
3271 register. If not, but it intersects that class, use the
3272 preferred class instead. If it does not intersect the preferred
3273 class, show that usage of this alternative should be discouraged;
3274 it will be discouraged more still if the register is `preferred
3275 or nothing'. We do this because it increases the chance of
3276 reusing our spill register in a later insn and avoiding a pair
3277 of memory stores and loads.
3279 Don't bother with this if this alternative will accept this
3280 operand.
3282 Don't do this for a multiword operand, since it is only a
3283 small win and has the risk of requiring more spill registers,
3284 which could cause a large loss.
3286 Don't do this if the preferred class has only one register
3287 because we might otherwise exhaust the class. */
3289 if (! win && ! did_match
3290 && this_alternative[i] != (int) NO_REGS
3291 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3292 && reg_class_size[(int) preferred_class[i]] > 1)
3294 if (! reg_class_subset_p (this_alternative[i],
3295 preferred_class[i]))
3297 /* Since we don't have a way of forming the intersection,
3298 we just do something special if the preferred class
3299 is a subset of the class we have; that's the most
3300 common case anyway. */
3301 if (reg_class_subset_p (preferred_class[i],
3302 this_alternative[i]))
3303 this_alternative[i] = (int) preferred_class[i];
3304 else
3305 reject += (2 + 2 * pref_or_nothing[i]);
3310 /* Now see if any output operands that are marked "earlyclobber"
3311 in this alternative conflict with any input operands
3312 or any memory addresses. */
3314 for (i = 0; i < noperands; i++)
3315 if (this_alternative_earlyclobber[i]
3316 && (this_alternative_win[i] || this_alternative_match_win[i]))
3318 struct decomposition early_data;
3320 early_data = decompose (recog_data.operand[i]);
3322 if (modified[i] == RELOAD_READ)
3323 abort ();
3325 if (this_alternative[i] == NO_REGS)
3327 this_alternative_earlyclobber[i] = 0;
3328 if (this_insn_is_asm)
3329 error_for_asm (this_insn,
3330 "`&' constraint used with no register class");
3331 else
3332 abort ();
3335 for (j = 0; j < noperands; j++)
3336 /* Is this an input operand or a memory ref? */
3337 if ((GET_CODE (recog_data.operand[j]) == MEM
3338 || modified[j] != RELOAD_WRITE)
3339 && j != i
3340 /* Ignore things like match_operator operands. */
3341 && *recog_data.constraints[j] != 0
3342 /* Don't count an input operand that is constrained to match
3343 the early clobber operand. */
3344 && ! (this_alternative_matches[j] == i
3345 && rtx_equal_p (recog_data.operand[i],
3346 recog_data.operand[j]))
3347 /* Is it altered by storing the earlyclobber operand? */
3348 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3349 early_data))
3351 /* If the output is in a single-reg class,
3352 it's costly to reload it, so reload the input instead. */
3353 if (reg_class_size[this_alternative[i]] == 1
3354 && (GET_CODE (recog_data.operand[j]) == REG
3355 || GET_CODE (recog_data.operand[j]) == SUBREG))
3357 losers++;
3358 this_alternative_win[j] = 0;
3359 this_alternative_match_win[j] = 0;
3361 else
3362 break;
3364 /* If an earlyclobber operand conflicts with something,
3365 it must be reloaded, so request this and count the cost. */
3366 if (j != noperands)
3368 losers++;
3369 this_alternative_win[i] = 0;
3370 this_alternative_match_win[j] = 0;
3371 for (j = 0; j < noperands; j++)
3372 if (this_alternative_matches[j] == i
3373 && this_alternative_match_win[j])
3375 this_alternative_win[j] = 0;
3376 this_alternative_match_win[j] = 0;
3377 losers++;
3382 /* If one alternative accepts all the operands, no reload required,
3383 choose that alternative; don't consider the remaining ones. */
3384 if (losers == 0)
3386 /* Unswap these so that they are never swapped at `finish'. */
3387 if (commutative >= 0)
3389 recog_data.operand[commutative] = substed_operand[commutative];
3390 recog_data.operand[commutative + 1]
3391 = substed_operand[commutative + 1];
3393 for (i = 0; i < noperands; i++)
3395 goal_alternative_win[i] = this_alternative_win[i];
3396 goal_alternative_match_win[i] = this_alternative_match_win[i];
3397 goal_alternative[i] = this_alternative[i];
3398 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3399 goal_alternative_matches[i] = this_alternative_matches[i];
3400 goal_alternative_earlyclobber[i]
3401 = this_alternative_earlyclobber[i];
3403 goal_alternative_number = this_alternative_number;
3404 goal_alternative_swapped = swapped;
3405 goal_earlyclobber = this_earlyclobber;
3406 goto finish;
3409 /* REJECT, set by the ! and ? constraint characters and when a register
3410 would be reloaded into a non-preferred class, discourages the use of
3411 this alternative for a reload goal. REJECT is incremented by six
3412 for each ? and two for each non-preferred class. */
3413 losers = losers * 6 + reject;
3415 /* If this alternative can be made to work by reloading,
3416 and it needs less reloading than the others checked so far,
3417 record it as the chosen goal for reloading. */
3418 if (! bad && best > losers)
3420 for (i = 0; i < noperands; i++)
3422 goal_alternative[i] = this_alternative[i];
3423 goal_alternative_win[i] = this_alternative_win[i];
3424 goal_alternative_match_win[i] = this_alternative_match_win[i];
3425 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3426 goal_alternative_matches[i] = this_alternative_matches[i];
3427 goal_alternative_earlyclobber[i]
3428 = this_alternative_earlyclobber[i];
3430 goal_alternative_swapped = swapped;
3431 best = losers;
3432 goal_alternative_number = this_alternative_number;
3433 goal_earlyclobber = this_earlyclobber;
3437 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3438 then we need to try each alternative twice,
3439 the second time matching those two operands
3440 as if we had exchanged them.
3441 To do this, really exchange them in operands.
3443 If we have just tried the alternatives the second time,
3444 return operands to normal and drop through. */
3446 if (commutative >= 0)
3448 swapped = !swapped;
3449 if (swapped)
3451 register enum reg_class tclass;
3452 register int t;
3454 recog_data.operand[commutative] = substed_operand[commutative + 1];
3455 recog_data.operand[commutative + 1] = substed_operand[commutative];
3457 tclass = preferred_class[commutative];
3458 preferred_class[commutative] = preferred_class[commutative + 1];
3459 preferred_class[commutative + 1] = tclass;
3461 t = pref_or_nothing[commutative];
3462 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3463 pref_or_nothing[commutative + 1] = t;
3465 memcpy (constraints, recog_data.constraints,
3466 noperands * sizeof (char *));
3467 goto try_swapped;
3469 else
3471 recog_data.operand[commutative] = substed_operand[commutative];
3472 recog_data.operand[commutative + 1]
3473 = substed_operand[commutative + 1];
3477 /* The operands don't meet the constraints.
3478 goal_alternative describes the alternative
3479 that we could reach by reloading the fewest operands.
3480 Reload so as to fit it. */
3482 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3484 /* No alternative works with reloads?? */
3485 if (insn_code_number >= 0)
3486 fatal_insn ("Unable to generate reloads for:", insn);
3487 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3488 /* Avoid further trouble with this insn. */
3489 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3490 n_reloads = 0;
3491 return 0;
3494 /* Jump to `finish' from above if all operands are valid already.
3495 In that case, goal_alternative_win is all 1. */
3496 finish:
3498 /* Right now, for any pair of operands I and J that are required to match,
3499 with I < J,
3500 goal_alternative_matches[J] is I.
3501 Set up goal_alternative_matched as the inverse function:
3502 goal_alternative_matched[I] = J. */
3504 for (i = 0; i < noperands; i++)
3505 goal_alternative_matched[i] = -1;
3507 for (i = 0; i < noperands; i++)
3508 if (! goal_alternative_win[i]
3509 && goal_alternative_matches[i] >= 0)
3510 goal_alternative_matched[goal_alternative_matches[i]] = i;
3512 for (i = 0; i < noperands; i++)
3513 goal_alternative_win[i] |= goal_alternative_match_win[i];
3515 /* If the best alternative is with operands 1 and 2 swapped,
3516 consider them swapped before reporting the reloads. Update the
3517 operand numbers of any reloads already pushed. */
3519 if (goal_alternative_swapped)
3521 register rtx tem;
3523 tem = substed_operand[commutative];
3524 substed_operand[commutative] = substed_operand[commutative + 1];
3525 substed_operand[commutative + 1] = tem;
3526 tem = recog_data.operand[commutative];
3527 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3528 recog_data.operand[commutative + 1] = tem;
3529 tem = *recog_data.operand_loc[commutative];
3530 *recog_data.operand_loc[commutative]
3531 = *recog_data.operand_loc[commutative + 1];
3532 *recog_data.operand_loc[commutative + 1] = tem;
3534 for (i = 0; i < n_reloads; i++)
3536 if (rld[i].opnum == commutative)
3537 rld[i].opnum = commutative + 1;
3538 else if (rld[i].opnum == commutative + 1)
3539 rld[i].opnum = commutative;
3543 for (i = 0; i < noperands; i++)
3545 operand_reloadnum[i] = -1;
3547 /* If this is an earlyclobber operand, we need to widen the scope.
3548 The reload must remain valid from the start of the insn being
3549 reloaded until after the operand is stored into its destination.
3550 We approximate this with RELOAD_OTHER even though we know that we
3551 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3553 One special case that is worth checking is when we have an
3554 output that is earlyclobber but isn't used past the insn (typically
3555 a SCRATCH). In this case, we only need have the reload live
3556 through the insn itself, but not for any of our input or output
3557 reloads.
3558 But we must not accidentally narrow the scope of an existing
3559 RELOAD_OTHER reload - leave these alone.
3561 In any case, anything needed to address this operand can remain
3562 however they were previously categorized. */
3564 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3565 operand_type[i]
3566 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3567 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3570 /* Any constants that aren't allowed and can't be reloaded
3571 into registers are here changed into memory references. */
3572 for (i = 0; i < noperands; i++)
3573 if (! goal_alternative_win[i]
3574 && CONSTANT_P (recog_data.operand[i])
3575 /* force_const_mem does not accept HIGH. */
3576 && GET_CODE (recog_data.operand[i]) != HIGH
3577 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3578 (enum reg_class) goal_alternative[i])
3579 == NO_REGS)
3580 || no_input_reloads)
3581 && operand_mode[i] != VOIDmode)
3583 substed_operand[i] = recog_data.operand[i]
3584 = find_reloads_toplev (force_const_mem (operand_mode[i],
3585 recog_data.operand[i]),
3586 i, address_type[i], ind_levels, 0, insn,
3587 NULL);
3588 if (alternative_allows_memconst (recog_data.constraints[i],
3589 goal_alternative_number))
3590 goal_alternative_win[i] = 1;
3593 /* Record the values of the earlyclobber operands for the caller. */
3594 if (goal_earlyclobber)
3595 for (i = 0; i < noperands; i++)
3596 if (goal_alternative_earlyclobber[i])
3597 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3599 /* Now record reloads for all the operands that need them. */
3600 for (i = 0; i < noperands; i++)
3601 if (! goal_alternative_win[i])
3603 /* Operands that match previous ones have already been handled. */
3604 if (goal_alternative_matches[i] >= 0)
3606 /* Handle an operand with a nonoffsettable address
3607 appearing where an offsettable address will do
3608 by reloading the address into a base register.
3610 ??? We can also do this when the operand is a register and
3611 reg_equiv_mem is not offsettable, but this is a bit tricky,
3612 so we don't bother with it. It may not be worth doing. */
3613 else if (goal_alternative_matched[i] == -1
3614 && goal_alternative_offmemok[i]
3615 && GET_CODE (recog_data.operand[i]) == MEM)
3617 operand_reloadnum[i]
3618 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3619 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3620 BASE_REG_CLASS,
3621 GET_MODE (XEXP (recog_data.operand[i], 0)),
3622 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3623 rld[operand_reloadnum[i]].inc
3624 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3626 /* If this operand is an output, we will have made any
3627 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3628 now we are treating part of the operand as an input, so
3629 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3631 if (modified[i] == RELOAD_WRITE)
3633 for (j = 0; j < n_reloads; j++)
3635 if (rld[j].opnum == i)
3637 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3638 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3639 else if (rld[j].when_needed
3640 == RELOAD_FOR_OUTADDR_ADDRESS)
3641 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3646 else if (goal_alternative_matched[i] == -1)
3648 operand_reloadnum[i]
3649 = push_reload ((modified[i] != RELOAD_WRITE
3650 ? recog_data.operand[i] : 0),
3651 (modified[i] != RELOAD_READ
3652 ? recog_data.operand[i] : 0),
3653 (modified[i] != RELOAD_WRITE
3654 ? recog_data.operand_loc[i] : 0),
3655 (modified[i] != RELOAD_READ
3656 ? recog_data.operand_loc[i] : 0),
3657 (enum reg_class) goal_alternative[i],
3658 (modified[i] == RELOAD_WRITE
3659 ? VOIDmode : operand_mode[i]),
3660 (modified[i] == RELOAD_READ
3661 ? VOIDmode : operand_mode[i]),
3662 (insn_code_number < 0 ? 0
3663 : insn_data[insn_code_number].operand[i].strict_low),
3664 0, i, operand_type[i]);
3666 /* In a matching pair of operands, one must be input only
3667 and the other must be output only.
3668 Pass the input operand as IN and the other as OUT. */
3669 else if (modified[i] == RELOAD_READ
3670 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3672 operand_reloadnum[i]
3673 = push_reload (recog_data.operand[i],
3674 recog_data.operand[goal_alternative_matched[i]],
3675 recog_data.operand_loc[i],
3676 recog_data.operand_loc[goal_alternative_matched[i]],
3677 (enum reg_class) goal_alternative[i],
3678 operand_mode[i],
3679 operand_mode[goal_alternative_matched[i]],
3680 0, 0, i, RELOAD_OTHER);
3681 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3683 else if (modified[i] == RELOAD_WRITE
3684 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3686 operand_reloadnum[goal_alternative_matched[i]]
3687 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3688 recog_data.operand[i],
3689 recog_data.operand_loc[goal_alternative_matched[i]],
3690 recog_data.operand_loc[i],
3691 (enum reg_class) goal_alternative[i],
3692 operand_mode[goal_alternative_matched[i]],
3693 operand_mode[i],
3694 0, 0, i, RELOAD_OTHER);
3695 operand_reloadnum[i] = output_reloadnum;
3697 else if (insn_code_number >= 0)
3698 abort ();
3699 else
3701 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3702 /* Avoid further trouble with this insn. */
3703 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3704 n_reloads = 0;
3705 return 0;
3708 else if (goal_alternative_matched[i] < 0
3709 && goal_alternative_matches[i] < 0
3710 && optimize)
3712 /* For each non-matching operand that's a MEM or a pseudo-register
3713 that didn't get a hard register, make an optional reload.
3714 This may get done even if the insn needs no reloads otherwise. */
3716 rtx operand = recog_data.operand[i];
3718 while (GET_CODE (operand) == SUBREG)
3719 operand = XEXP (operand, 0);
3720 if ((GET_CODE (operand) == MEM
3721 || (GET_CODE (operand) == REG
3722 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3723 /* If this is only for an output, the optional reload would not
3724 actually cause us to use a register now, just note that
3725 something is stored here. */
3726 && ((enum reg_class) goal_alternative[i] != NO_REGS
3727 || modified[i] == RELOAD_WRITE)
3728 && ! no_input_reloads
3729 /* An optional output reload might allow to delete INSN later.
3730 We mustn't make in-out reloads on insns that are not permitted
3731 output reloads.
3732 If this is an asm, we can't delete it; we must not even call
3733 push_reload for an optional output reload in this case,
3734 because we can't be sure that the constraint allows a register,
3735 and push_reload verifies the constraints for asms. */
3736 && (modified[i] == RELOAD_READ
3737 || (! no_output_reloads && ! this_insn_is_asm)))
3738 operand_reloadnum[i]
3739 = push_reload ((modified[i] != RELOAD_WRITE
3740 ? recog_data.operand[i] : 0),
3741 (modified[i] != RELOAD_READ
3742 ? recog_data.operand[i] : 0),
3743 (modified[i] != RELOAD_WRITE
3744 ? recog_data.operand_loc[i] : 0),
3745 (modified[i] != RELOAD_READ
3746 ? recog_data.operand_loc[i] : 0),
3747 (enum reg_class) goal_alternative[i],
3748 (modified[i] == RELOAD_WRITE
3749 ? VOIDmode : operand_mode[i]),
3750 (modified[i] == RELOAD_READ
3751 ? VOIDmode : operand_mode[i]),
3752 (insn_code_number < 0 ? 0
3753 : insn_data[insn_code_number].operand[i].strict_low),
3754 1, i, operand_type[i]);
3755 /* If a memory reference remains (either as a MEM or a pseudo that
3756 did not get a hard register), yet we can't make an optional
3757 reload, check if this is actually a pseudo register reference;
3758 we then need to emit a USE and/or a CLOBBER so that reload
3759 inheritance will do the right thing. */
3760 else if (replace
3761 && (GET_CODE (operand) == MEM
3762 || (GET_CODE (operand) == REG
3763 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3764 && reg_renumber [REGNO (operand)] < 0)))
3766 operand = *recog_data.operand_loc[i];
3768 while (GET_CODE (operand) == SUBREG)
3769 operand = XEXP (operand, 0);
3770 if (GET_CODE (operand) == REG)
3772 if (modified[i] != RELOAD_WRITE)
3773 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3774 if (modified[i] != RELOAD_READ)
3775 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3779 else if (goal_alternative_matches[i] >= 0
3780 && goal_alternative_win[goal_alternative_matches[i]]
3781 && modified[i] == RELOAD_READ
3782 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3783 && ! no_input_reloads && ! no_output_reloads
3784 && optimize)
3786 /* Similarly, make an optional reload for a pair of matching
3787 objects that are in MEM or a pseudo that didn't get a hard reg. */
3789 rtx operand = recog_data.operand[i];
3791 while (GET_CODE (operand) == SUBREG)
3792 operand = XEXP (operand, 0);
3793 if ((GET_CODE (operand) == MEM
3794 || (GET_CODE (operand) == REG
3795 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3796 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3797 != NO_REGS))
3798 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3799 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3800 recog_data.operand[i],
3801 recog_data.operand_loc[goal_alternative_matches[i]],
3802 recog_data.operand_loc[i],
3803 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3804 operand_mode[goal_alternative_matches[i]],
3805 operand_mode[i],
3806 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3809 /* Perform whatever substitutions on the operands we are supposed
3810 to make due to commutativity or replacement of registers
3811 with equivalent constants or memory slots. */
3813 for (i = 0; i < noperands; i++)
3815 /* We only do this on the last pass through reload, because it is
3816 possible for some data (like reg_equiv_address) to be changed during
3817 later passes. Moreover, we loose the opportunity to get a useful
3818 reload_{in,out}_reg when we do these replacements. */
3820 if (replace)
3822 rtx substitution = substed_operand[i];
3824 *recog_data.operand_loc[i] = substitution;
3826 /* If we're replacing an operand with a LABEL_REF, we need
3827 to make sure that there's a REG_LABEL note attached to
3828 this instruction. */
3829 if (GET_CODE (insn) != JUMP_INSN
3830 && GET_CODE (substitution) == LABEL_REF
3831 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3832 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3833 XEXP (substitution, 0),
3834 REG_NOTES (insn));
3836 else
3837 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3840 /* If this insn pattern contains any MATCH_DUP's, make sure that
3841 they will be substituted if the operands they match are substituted.
3842 Also do now any substitutions we already did on the operands.
3844 Don't do this if we aren't making replacements because we might be
3845 propagating things allocated by frame pointer elimination into places
3846 it doesn't expect. */
3848 if (insn_code_number >= 0 && replace)
3849 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3851 int opno = recog_data.dup_num[i];
3852 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3853 if (operand_reloadnum[opno] >= 0)
3854 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3855 insn_data[insn_code_number].operand[opno].mode);
3858 #if 0
3859 /* This loses because reloading of prior insns can invalidate the equivalence
3860 (or at least find_equiv_reg isn't smart enough to find it any more),
3861 causing this insn to need more reload regs than it needed before.
3862 It may be too late to make the reload regs available.
3863 Now this optimization is done safely in choose_reload_regs. */
3865 /* For each reload of a reg into some other class of reg,
3866 search for an existing equivalent reg (same value now) in the right class.
3867 We can use it as long as we don't need to change its contents. */
3868 for (i = 0; i < n_reloads; i++)
3869 if (rld[i].reg_rtx == 0
3870 && rld[i].in != 0
3871 && GET_CODE (rld[i].in) == REG
3872 && rld[i].out == 0)
3874 rld[i].reg_rtx
3875 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3876 static_reload_reg_p, 0, rld[i].inmode);
3877 /* Prevent generation of insn to load the value
3878 because the one we found already has the value. */
3879 if (rld[i].reg_rtx)
3880 rld[i].in = rld[i].reg_rtx;
3882 #endif
3884 /* Perhaps an output reload can be combined with another
3885 to reduce needs by one. */
3886 if (!goal_earlyclobber)
3887 combine_reloads ();
3889 /* If we have a pair of reloads for parts of an address, they are reloading
3890 the same object, the operands themselves were not reloaded, and they
3891 are for two operands that are supposed to match, merge the reloads and
3892 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3894 for (i = 0; i < n_reloads; i++)
3896 int k;
3898 for (j = i + 1; j < n_reloads; j++)
3899 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3900 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3901 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3902 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3903 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3904 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3905 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3906 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3907 && rtx_equal_p (rld[i].in, rld[j].in)
3908 && (operand_reloadnum[rld[i].opnum] < 0
3909 || rld[operand_reloadnum[rld[i].opnum]].optional)
3910 && (operand_reloadnum[rld[j].opnum] < 0
3911 || rld[operand_reloadnum[rld[j].opnum]].optional)
3912 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3913 || (goal_alternative_matches[rld[j].opnum]
3914 == rld[i].opnum)))
3916 for (k = 0; k < n_replacements; k++)
3917 if (replacements[k].what == j)
3918 replacements[k].what = i;
3920 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3921 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3922 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3923 else
3924 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3925 rld[j].in = 0;
3929 /* Scan all the reloads and update their type.
3930 If a reload is for the address of an operand and we didn't reload
3931 that operand, change the type. Similarly, change the operand number
3932 of a reload when two operands match. If a reload is optional, treat it
3933 as though the operand isn't reloaded.
3935 ??? This latter case is somewhat odd because if we do the optional
3936 reload, it means the object is hanging around. Thus we need only
3937 do the address reload if the optional reload was NOT done.
3939 Change secondary reloads to be the address type of their operand, not
3940 the normal type.
3942 If an operand's reload is now RELOAD_OTHER, change any
3943 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3944 RELOAD_FOR_OTHER_ADDRESS. */
3946 for (i = 0; i < n_reloads; i++)
3948 if (rld[i].secondary_p
3949 && rld[i].when_needed == operand_type[rld[i].opnum])
3950 rld[i].when_needed = address_type[rld[i].opnum];
3952 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3953 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3954 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3955 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3956 && (operand_reloadnum[rld[i].opnum] < 0
3957 || rld[operand_reloadnum[rld[i].opnum]].optional))
3959 /* If we have a secondary reload to go along with this reload,
3960 change its type to RELOAD_FOR_OPADDR_ADDR. */
3962 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3963 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3964 && rld[i].secondary_in_reload != -1)
3966 int secondary_in_reload = rld[i].secondary_in_reload;
3968 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
3970 /* If there's a tertiary reload we have to change it also. */
3971 if (secondary_in_reload > 0
3972 && rld[secondary_in_reload].secondary_in_reload != -1)
3973 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
3974 = RELOAD_FOR_OPADDR_ADDR;
3977 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3978 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3979 && rld[i].secondary_out_reload != -1)
3981 int secondary_out_reload = rld[i].secondary_out_reload;
3983 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
3985 /* If there's a tertiary reload we have to change it also. */
3986 if (secondary_out_reload
3987 && rld[secondary_out_reload].secondary_out_reload != -1)
3988 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
3989 = RELOAD_FOR_OPADDR_ADDR;
3992 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3993 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3994 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3995 else
3996 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3999 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4000 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4001 && operand_reloadnum[rld[i].opnum] >= 0
4002 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4003 == RELOAD_OTHER))
4004 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4006 if (goal_alternative_matches[rld[i].opnum] >= 0)
4007 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4010 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4011 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4012 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4014 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4015 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4016 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4017 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4018 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4019 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4020 This is complicated by the fact that a single operand can have more
4021 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4022 choose_reload_regs without affecting code quality, and cases that
4023 actually fail are extremely rare, so it turns out to be better to fix
4024 the problem here by not generating cases that choose_reload_regs will
4025 fail for. */
4026 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4027 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4028 a single operand.
4029 We can reduce the register pressure by exploiting that a
4030 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4031 does not conflict with any of them, if it is only used for the first of
4032 the RELOAD_FOR_X_ADDRESS reloads. */
4034 int first_op_addr_num = -2;
4035 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4036 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4037 int need_change = 0;
4038 /* We use last_op_addr_reload and the contents of the above arrays
4039 first as flags - -2 means no instance encountered, -1 means exactly
4040 one instance encountered.
4041 If more than one instance has been encountered, we store the reload
4042 number of the first reload of the kind in question; reload numbers
4043 are known to be non-negative. */
4044 for (i = 0; i < noperands; i++)
4045 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4046 for (i = n_reloads - 1; i >= 0; i--)
4048 switch (rld[i].when_needed)
4050 case RELOAD_FOR_OPERAND_ADDRESS:
4051 if (++first_op_addr_num >= 0)
4053 first_op_addr_num = i;
4054 need_change = 1;
4056 break;
4057 case RELOAD_FOR_INPUT_ADDRESS:
4058 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4060 first_inpaddr_num[rld[i].opnum] = i;
4061 need_change = 1;
4063 break;
4064 case RELOAD_FOR_OUTPUT_ADDRESS:
4065 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4067 first_outpaddr_num[rld[i].opnum] = i;
4068 need_change = 1;
4070 break;
4071 default:
4072 break;
4076 if (need_change)
4078 for (i = 0; i < n_reloads; i++)
4080 int first_num;
4081 enum reload_type type;
4083 switch (rld[i].when_needed)
4085 case RELOAD_FOR_OPADDR_ADDR:
4086 first_num = first_op_addr_num;
4087 type = RELOAD_FOR_OPERAND_ADDRESS;
4088 break;
4089 case RELOAD_FOR_INPADDR_ADDRESS:
4090 first_num = first_inpaddr_num[rld[i].opnum];
4091 type = RELOAD_FOR_INPUT_ADDRESS;
4092 break;
4093 case RELOAD_FOR_OUTADDR_ADDRESS:
4094 first_num = first_outpaddr_num[rld[i].opnum];
4095 type = RELOAD_FOR_OUTPUT_ADDRESS;
4096 break;
4097 default:
4098 continue;
4100 if (first_num < 0)
4101 continue;
4102 else if (i > first_num)
4103 rld[i].when_needed = type;
4104 else
4106 /* Check if the only TYPE reload that uses reload I is
4107 reload FIRST_NUM. */
4108 for (j = n_reloads - 1; j > first_num; j--)
4110 if (rld[j].when_needed == type
4111 && (rld[i].secondary_p
4112 ? rld[j].secondary_in_reload == i
4113 : reg_mentioned_p (rld[i].in, rld[j].in)))
4115 rld[i].when_needed = type;
4116 break;
4124 /* See if we have any reloads that are now allowed to be merged
4125 because we've changed when the reload is needed to
4126 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4127 check for the most common cases. */
4129 for (i = 0; i < n_reloads; i++)
4130 if (rld[i].in != 0 && rld[i].out == 0
4131 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4132 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4133 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4134 for (j = 0; j < n_reloads; j++)
4135 if (i != j && rld[j].in != 0 && rld[j].out == 0
4136 && rld[j].when_needed == rld[i].when_needed
4137 && MATCHES (rld[i].in, rld[j].in)
4138 && rld[i].class == rld[j].class
4139 && !rld[i].nocombine && !rld[j].nocombine
4140 && rld[i].reg_rtx == rld[j].reg_rtx)
4142 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4143 transfer_replacements (i, j);
4144 rld[j].in = 0;
4147 #ifdef HAVE_cc0
4148 /* If we made any reloads for addresses, see if they violate a
4149 "no input reloads" requirement for this insn. But loads that we
4150 do after the insn (such as for output addresses) are fine. */
4151 if (no_input_reloads)
4152 for (i = 0; i < n_reloads; i++)
4153 if (rld[i].in != 0
4154 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4155 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4156 abort ();
4157 #endif
4159 /* Compute reload_mode and reload_nregs. */
4160 for (i = 0; i < n_reloads; i++)
4162 rld[i].mode
4163 = (rld[i].inmode == VOIDmode
4164 || (GET_MODE_SIZE (rld[i].outmode)
4165 > GET_MODE_SIZE (rld[i].inmode)))
4166 ? rld[i].outmode : rld[i].inmode;
4168 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4171 return retval;
4174 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4175 accepts a memory operand with constant address. */
4177 static int
4178 alternative_allows_memconst (constraint, altnum)
4179 const char *constraint;
4180 int altnum;
4182 register int c;
4183 /* Skip alternatives before the one requested. */
4184 while (altnum > 0)
4186 while (*constraint++ != ',');
4187 altnum--;
4189 /* Scan the requested alternative for 'm' or 'o'.
4190 If one of them is present, this alternative accepts memory constants. */
4191 while ((c = *constraint++) && c != ',' && c != '#')
4192 if (c == 'm' || c == 'o')
4193 return 1;
4194 return 0;
4197 /* Scan X for memory references and scan the addresses for reloading.
4198 Also checks for references to "constant" regs that we want to eliminate
4199 and replaces them with the values they stand for.
4200 We may alter X destructively if it contains a reference to such.
4201 If X is just a constant reg, we return the equivalent value
4202 instead of X.
4204 IND_LEVELS says how many levels of indirect addressing this machine
4205 supports.
4207 OPNUM and TYPE identify the purpose of the reload.
4209 IS_SET_DEST is true if X is the destination of a SET, which is not
4210 appropriate to be replaced by a constant.
4212 INSN, if nonzero, is the insn in which we do the reload. It is used
4213 to determine if we may generate output reloads, and where to put USEs
4214 for pseudos that we have to replace with stack slots.
4216 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4217 result of find_reloads_address. */
4219 static rtx
4220 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4221 address_reloaded)
4222 rtx x;
4223 int opnum;
4224 enum reload_type type;
4225 int ind_levels;
4226 int is_set_dest;
4227 rtx insn;
4228 int *address_reloaded;
4230 register RTX_CODE code = GET_CODE (x);
4232 register const char *fmt = GET_RTX_FORMAT (code);
4233 register int i;
4234 int copied;
4236 if (code == REG)
4238 /* This code is duplicated for speed in find_reloads. */
4239 register int regno = REGNO (x);
4240 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4241 x = reg_equiv_constant[regno];
4242 #if 0
4243 /* This creates (subreg (mem...)) which would cause an unnecessary
4244 reload of the mem. */
4245 else if (reg_equiv_mem[regno] != 0)
4246 x = reg_equiv_mem[regno];
4247 #endif
4248 else if (reg_equiv_memory_loc[regno]
4249 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4251 rtx mem = make_memloc (x, regno);
4252 if (reg_equiv_address[regno]
4253 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4255 /* If this is not a toplevel operand, find_reloads doesn't see
4256 this substitution. We have to emit a USE of the pseudo so
4257 that delete_output_reload can see it. */
4258 if (replace_reloads && recog_data.operand[opnum] != x)
4259 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4260 x = mem;
4261 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4262 opnum, type, ind_levels, insn);
4263 if (address_reloaded)
4264 *address_reloaded = i;
4267 return x;
4269 if (code == MEM)
4271 rtx tem = x;
4273 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4274 opnum, type, ind_levels, insn);
4275 if (address_reloaded)
4276 *address_reloaded = i;
4278 return tem;
4281 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4283 /* Check for SUBREG containing a REG that's equivalent to a constant.
4284 If the constant has a known value, truncate it right now.
4285 Similarly if we are extracting a single-word of a multi-word
4286 constant. If the constant is symbolic, allow it to be substituted
4287 normally. push_reload will strip the subreg later. If the
4288 constant is VOIDmode, abort because we will lose the mode of
4289 the register (this should never happen because one of the cases
4290 above should handle it). */
4292 register int regno = REGNO (SUBREG_REG (x));
4293 rtx tem;
4295 if (subreg_lowpart_p (x)
4296 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4297 && reg_equiv_constant[regno] != 0
4298 && (tem = gen_lowpart_common (GET_MODE (x),
4299 reg_equiv_constant[regno])) != 0)
4300 return tem;
4302 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4303 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4304 && reg_equiv_constant[regno] != 0
4305 && (tem = operand_subword (reg_equiv_constant[regno],
4306 SUBREG_WORD (x), 0,
4307 GET_MODE (SUBREG_REG (x)))) != 0)
4309 /* TEM is now a word sized constant for the bits from X that
4310 we wanted. However, TEM may be the wrong representation.
4312 Use gen_lowpart_common to convert a CONST_INT into a
4313 CONST_DOUBLE and vice versa as needed according to by the mode
4314 of the SUBREG. */
4315 tem = gen_lowpart_common (GET_MODE (x), tem);
4316 if (!tem)
4317 abort ();
4318 return tem;
4321 /* If the SUBREG is wider than a word, the above test will fail.
4322 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4323 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4324 a 32 bit target. We still can - and have to - handle this
4325 for non-paradoxical subregs of CONST_INTs. */
4326 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4327 && reg_equiv_constant[regno] != 0
4328 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4329 && (GET_MODE_SIZE (GET_MODE (x))
4330 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4332 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4333 if (WORDS_BIG_ENDIAN)
4334 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4335 - GET_MODE_BITSIZE (GET_MODE (x))
4336 - shift);
4337 /* Here we use the knowledge that CONST_INTs have a
4338 HOST_WIDE_INT field. */
4339 if (shift >= HOST_BITS_PER_WIDE_INT)
4340 shift = HOST_BITS_PER_WIDE_INT - 1;
4341 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4344 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4345 && reg_equiv_constant[regno] != 0
4346 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4347 abort ();
4349 /* If the subreg contains a reg that will be converted to a mem,
4350 convert the subreg to a narrower memref now.
4351 Otherwise, we would get (subreg (mem ...) ...),
4352 which would force reload of the mem.
4354 We also need to do this if there is an equivalent MEM that is
4355 not offsettable. In that case, alter_subreg would produce an
4356 invalid address on big-endian machines.
4358 For machines that extend byte loads, we must not reload using
4359 a wider mode if we have a paradoxical SUBREG. find_reloads will
4360 force a reload in that case. So we should not do anything here. */
4362 else if (regno >= FIRST_PSEUDO_REGISTER
4363 #ifdef LOAD_EXTEND_OP
4364 && (GET_MODE_SIZE (GET_MODE (x))
4365 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4366 #endif
4367 && (reg_equiv_address[regno] != 0
4368 || (reg_equiv_mem[regno] != 0
4369 && (! strict_memory_address_p (GET_MODE (x),
4370 XEXP (reg_equiv_mem[regno], 0))
4371 || ! offsettable_memref_p (reg_equiv_mem[regno])
4372 || num_not_at_initial_offset))))
4373 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4374 insn);
4376 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4377 && (GET_MODE_SIZE (GET_MODE (x))
4378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4379 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4381 /* A paradoxical subreg will simply have the mode of the access
4382 changed, so we need to reload such a memory operand to stabilize
4383 the meaning of the memory access. */
4384 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4386 if (is_set_dest)
4387 push_reload (NULL_RTX, SUBREG_REG (x), NULL_PTR, &SUBREG_REG (x),
4388 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4389 VOIDmode, subreg_mode, 0, 0, opnum, type);
4390 else
4391 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), NULL_PTR,
4392 find_valid_class (subreg_mode, SUBREG_WORD (x)),
4393 subreg_mode, VOIDmode, 0, 0, opnum, type);
4396 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4398 if (fmt[i] == 'e')
4400 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4401 ind_levels, is_set_dest, insn,
4402 address_reloaded);
4403 /* If we have replaced a reg with it's equivalent memory loc -
4404 that can still be handled here e.g. if it's in a paradoxical
4405 subreg - we must make the change in a copy, rather than using
4406 a destructive change. This way, find_reloads can still elect
4407 not to do the change. */
4408 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4410 x = shallow_copy_rtx (x);
4411 copied = 1;
4413 XEXP (x, i) = new_part;
4416 return x;
4419 /* Return a mem ref for the memory equivalent of reg REGNO.
4420 This mem ref is not shared with anything. */
4422 static rtx
4423 make_memloc (ad, regno)
4424 rtx ad;
4425 int regno;
4427 /* We must rerun eliminate_regs, in case the elimination
4428 offsets have changed. */
4429 rtx tem
4430 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4432 /* If TEM might contain a pseudo, we must copy it to avoid
4433 modifying it when we do the substitution for the reload. */
4434 if (rtx_varies_p (tem))
4435 tem = copy_rtx (tem);
4437 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4438 MEM_COPY_ATTRIBUTES (tem, reg_equiv_memory_loc[regno]);
4439 return tem;
4442 /* Record all reloads needed for handling memory address AD
4443 which appears in *LOC in a memory reference to mode MODE
4444 which itself is found in location *MEMREFLOC.
4445 Note that we take shortcuts assuming that no multi-reg machine mode
4446 occurs as part of an address.
4448 OPNUM and TYPE specify the purpose of this reload.
4450 IND_LEVELS says how many levels of indirect addressing this machine
4451 supports.
4453 INSN, if nonzero, is the insn in which we do the reload. It is used
4454 to determine if we may generate output reloads, and where to put USEs
4455 for pseudos that we have to replace with stack slots.
4457 Value is nonzero if this address is reloaded or replaced as a whole.
4458 This is interesting to the caller if the address is an autoincrement.
4460 Note that there is no verification that the address will be valid after
4461 this routine does its work. Instead, we rely on the fact that the address
4462 was valid when reload started. So we need only undo things that reload
4463 could have broken. These are wrong register types, pseudos not allocated
4464 to a hard register, and frame pointer elimination. */
4466 static int
4467 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4468 enum machine_mode mode;
4469 rtx *memrefloc;
4470 rtx ad;
4471 rtx *loc;
4472 int opnum;
4473 enum reload_type type;
4474 int ind_levels;
4475 rtx insn;
4477 register int regno;
4478 int removed_and = 0;
4479 rtx tem;
4481 /* If the address is a register, see if it is a legitimate address and
4482 reload if not. We first handle the cases where we need not reload
4483 or where we must reload in a non-standard way. */
4485 if (GET_CODE (ad) == REG)
4487 regno = REGNO (ad);
4489 if (reg_equiv_constant[regno] != 0
4490 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4492 *loc = ad = reg_equiv_constant[regno];
4493 return 0;
4496 tem = reg_equiv_memory_loc[regno];
4497 if (tem != 0)
4499 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4501 tem = make_memloc (ad, regno);
4502 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4504 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4505 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4506 ind_levels, insn);
4508 /* We can avoid a reload if the register's equivalent memory
4509 expression is valid as an indirect memory address.
4510 But not all addresses are valid in a mem used as an indirect
4511 address: only reg or reg+constant. */
4513 if (ind_levels > 0
4514 && strict_memory_address_p (mode, tem)
4515 && (GET_CODE (XEXP (tem, 0)) == REG
4516 || (GET_CODE (XEXP (tem, 0)) == PLUS
4517 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4518 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4520 /* TEM is not the same as what we'll be replacing the
4521 pseudo with after reload, put a USE in front of INSN
4522 in the final reload pass. */
4523 if (replace_reloads
4524 && num_not_at_initial_offset
4525 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4527 *loc = tem;
4528 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4529 /* This doesn't really count as replacing the address
4530 as a whole, since it is still a memory access. */
4532 return 0;
4534 ad = tem;
4538 /* The only remaining case where we can avoid a reload is if this is a
4539 hard register that is valid as a base register and which is not the
4540 subject of a CLOBBER in this insn. */
4542 else if (regno < FIRST_PSEUDO_REGISTER
4543 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4544 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4545 return 0;
4547 /* If we do not have one of the cases above, we must do the reload. */
4548 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4549 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4550 return 1;
4553 if (strict_memory_address_p (mode, ad))
4555 /* The address appears valid, so reloads are not needed.
4556 But the address may contain an eliminable register.
4557 This can happen because a machine with indirect addressing
4558 may consider a pseudo register by itself a valid address even when
4559 it has failed to get a hard reg.
4560 So do a tree-walk to find and eliminate all such regs. */
4562 /* But first quickly dispose of a common case. */
4563 if (GET_CODE (ad) == PLUS
4564 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4565 && GET_CODE (XEXP (ad, 0)) == REG
4566 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4567 return 0;
4569 subst_reg_equivs_changed = 0;
4570 *loc = subst_reg_equivs (ad, insn);
4572 if (! subst_reg_equivs_changed)
4573 return 0;
4575 /* Check result for validity after substitution. */
4576 if (strict_memory_address_p (mode, ad))
4577 return 0;
4580 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4583 if (memrefloc)
4585 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4586 ind_levels, win);
4588 break;
4589 win:
4590 *memrefloc = copy_rtx (*memrefloc);
4591 XEXP (*memrefloc, 0) = ad;
4592 move_replacements (&ad, &XEXP (*memrefloc, 0));
4593 return 1;
4595 while (0);
4596 #endif
4598 /* The address is not valid. We have to figure out why. First see if
4599 we have an outer AND and remove it if so. Then analyze what's inside. */
4601 if (GET_CODE (ad) == AND)
4603 removed_and = 1;
4604 loc = &XEXP (ad, 0);
4605 ad = *loc;
4608 /* One possibility for why the address is invalid is that it is itself
4609 a MEM. This can happen when the frame pointer is being eliminated, a
4610 pseudo is not allocated to a hard register, and the offset between the
4611 frame and stack pointers is not its initial value. In that case the
4612 pseudo will have been replaced by a MEM referring to the
4613 stack pointer. */
4614 if (GET_CODE (ad) == MEM)
4616 /* First ensure that the address in this MEM is valid. Then, unless
4617 indirect addresses are valid, reload the MEM into a register. */
4618 tem = ad;
4619 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4620 opnum, ADDR_TYPE (type),
4621 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4623 /* If tem was changed, then we must create a new memory reference to
4624 hold it and store it back into memrefloc. */
4625 if (tem != ad && memrefloc)
4627 *memrefloc = copy_rtx (*memrefloc);
4628 copy_replacements (tem, XEXP (*memrefloc, 0));
4629 loc = &XEXP (*memrefloc, 0);
4630 if (removed_and)
4631 loc = &XEXP (*loc, 0);
4634 /* Check similar cases as for indirect addresses as above except
4635 that we can allow pseudos and a MEM since they should have been
4636 taken care of above. */
4638 if (ind_levels == 0
4639 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4640 || GET_CODE (XEXP (tem, 0)) == MEM
4641 || ! (GET_CODE (XEXP (tem, 0)) == REG
4642 || (GET_CODE (XEXP (tem, 0)) == PLUS
4643 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4644 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4646 /* Must use TEM here, not AD, since it is the one that will
4647 have any subexpressions reloaded, if needed. */
4648 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4649 BASE_REG_CLASS, GET_MODE (tem),
4650 VOIDmode, 0,
4651 0, opnum, type);
4652 return ! removed_and;
4654 else
4655 return 0;
4658 /* If we have address of a stack slot but it's not valid because the
4659 displacement is too large, compute the sum in a register.
4660 Handle all base registers here, not just fp/ap/sp, because on some
4661 targets (namely SH) we can also get too large displacements from
4662 big-endian corrections. */
4663 else if (GET_CODE (ad) == PLUS
4664 && GET_CODE (XEXP (ad, 0)) == REG
4665 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4666 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4667 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4669 /* Unshare the MEM rtx so we can safely alter it. */
4670 if (memrefloc)
4672 *memrefloc = copy_rtx (*memrefloc);
4673 loc = &XEXP (*memrefloc, 0);
4674 if (removed_and)
4675 loc = &XEXP (*loc, 0);
4678 if (double_reg_address_ok)
4680 /* Unshare the sum as well. */
4681 *loc = ad = copy_rtx (ad);
4683 /* Reload the displacement into an index reg.
4684 We assume the frame pointer or arg pointer is a base reg. */
4685 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4686 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4687 type, ind_levels);
4688 return 0;
4690 else
4692 /* If the sum of two regs is not necessarily valid,
4693 reload the sum into a base reg.
4694 That will at least work. */
4695 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4696 Pmode, opnum, type, ind_levels);
4698 return ! removed_and;
4701 /* If we have an indexed stack slot, there are three possible reasons why
4702 it might be invalid: The index might need to be reloaded, the address
4703 might have been made by frame pointer elimination and hence have a
4704 constant out of range, or both reasons might apply.
4706 We can easily check for an index needing reload, but even if that is the
4707 case, we might also have an invalid constant. To avoid making the
4708 conservative assumption and requiring two reloads, we see if this address
4709 is valid when not interpreted strictly. If it is, the only problem is
4710 that the index needs a reload and find_reloads_address_1 will take care
4711 of it.
4713 If we decide to do something here, it must be that
4714 `double_reg_address_ok' is true and that this address rtl was made by
4715 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4716 rework the sum so that the reload register will be added to the index.
4717 This is safe because we know the address isn't shared.
4719 We check for fp/ap/sp as both the first and second operand of the
4720 innermost PLUS. */
4722 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4723 && GET_CODE (XEXP (ad, 0)) == PLUS
4724 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4725 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4726 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4727 #endif
4728 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4729 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4730 #endif
4731 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4732 && ! memory_address_p (mode, ad))
4734 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4735 plus_constant (XEXP (XEXP (ad, 0), 0),
4736 INTVAL (XEXP (ad, 1))),
4737 XEXP (XEXP (ad, 0), 1));
4738 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4739 GET_MODE (ad), opnum, type, ind_levels);
4740 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4741 type, 0, insn);
4743 return 0;
4746 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4747 && GET_CODE (XEXP (ad, 0)) == PLUS
4748 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4749 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4750 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4751 #endif
4752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4753 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4754 #endif
4755 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4756 && ! memory_address_p (mode, ad))
4758 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4759 XEXP (XEXP (ad, 0), 0),
4760 plus_constant (XEXP (XEXP (ad, 0), 1),
4761 INTVAL (XEXP (ad, 1))));
4762 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4763 GET_MODE (ad), opnum, type, ind_levels);
4764 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4765 type, 0, insn);
4767 return 0;
4770 /* See if address becomes valid when an eliminable register
4771 in a sum is replaced. */
4773 tem = ad;
4774 if (GET_CODE (ad) == PLUS)
4775 tem = subst_indexed_address (ad);
4776 if (tem != ad && strict_memory_address_p (mode, tem))
4778 /* Ok, we win that way. Replace any additional eliminable
4779 registers. */
4781 subst_reg_equivs_changed = 0;
4782 tem = subst_reg_equivs (tem, insn);
4784 /* Make sure that didn't make the address invalid again. */
4786 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4788 *loc = tem;
4789 return 0;
4793 /* If constants aren't valid addresses, reload the constant address
4794 into a register. */
4795 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4797 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4798 Unshare it so we can safely alter it. */
4799 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4800 && CONSTANT_POOL_ADDRESS_P (ad))
4802 *memrefloc = copy_rtx (*memrefloc);
4803 loc = &XEXP (*memrefloc, 0);
4804 if (removed_and)
4805 loc = &XEXP (*loc, 0);
4808 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4809 ind_levels);
4810 return ! removed_and;
4813 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4814 insn);
4817 /* Find all pseudo regs appearing in AD
4818 that are eliminable in favor of equivalent values
4819 and do not have hard regs; replace them by their equivalents.
4820 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4821 front of it for pseudos that we have to replace with stack slots. */
4823 static rtx
4824 subst_reg_equivs (ad, insn)
4825 rtx ad;
4826 rtx insn;
4828 register RTX_CODE code = GET_CODE (ad);
4829 register int i;
4830 register const char *fmt;
4832 switch (code)
4834 case HIGH:
4835 case CONST_INT:
4836 case CONST:
4837 case CONST_DOUBLE:
4838 case SYMBOL_REF:
4839 case LABEL_REF:
4840 case PC:
4841 case CC0:
4842 return ad;
4844 case REG:
4846 register int regno = REGNO (ad);
4848 if (reg_equiv_constant[regno] != 0)
4850 subst_reg_equivs_changed = 1;
4851 return reg_equiv_constant[regno];
4853 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4855 rtx mem = make_memloc (ad, regno);
4856 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4858 subst_reg_equivs_changed = 1;
4859 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4860 return mem;
4864 return ad;
4866 case PLUS:
4867 /* Quickly dispose of a common case. */
4868 if (XEXP (ad, 0) == frame_pointer_rtx
4869 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4870 return ad;
4871 break;
4873 default:
4874 break;
4877 fmt = GET_RTX_FORMAT (code);
4878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4879 if (fmt[i] == 'e')
4880 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4881 return ad;
4884 /* Compute the sum of X and Y, making canonicalizations assumed in an
4885 address, namely: sum constant integers, surround the sum of two
4886 constants with a CONST, put the constant as the second operand, and
4887 group the constant on the outermost sum.
4889 This routine assumes both inputs are already in canonical form. */
4892 form_sum (x, y)
4893 rtx x, y;
4895 rtx tem;
4896 enum machine_mode mode = GET_MODE (x);
4898 if (mode == VOIDmode)
4899 mode = GET_MODE (y);
4901 if (mode == VOIDmode)
4902 mode = Pmode;
4904 if (GET_CODE (x) == CONST_INT)
4905 return plus_constant (y, INTVAL (x));
4906 else if (GET_CODE (y) == CONST_INT)
4907 return plus_constant (x, INTVAL (y));
4908 else if (CONSTANT_P (x))
4909 tem = x, x = y, y = tem;
4911 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4912 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4914 /* Note that if the operands of Y are specified in the opposite
4915 order in the recursive calls below, infinite recursion will occur. */
4916 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4917 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4919 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4920 constant will have been placed second. */
4921 if (CONSTANT_P (x) && CONSTANT_P (y))
4923 if (GET_CODE (x) == CONST)
4924 x = XEXP (x, 0);
4925 if (GET_CODE (y) == CONST)
4926 y = XEXP (y, 0);
4928 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4931 return gen_rtx_PLUS (mode, x, y);
4934 /* If ADDR is a sum containing a pseudo register that should be
4935 replaced with a constant (from reg_equiv_constant),
4936 return the result of doing so, and also apply the associative
4937 law so that the result is more likely to be a valid address.
4938 (But it is not guaranteed to be one.)
4940 Note that at most one register is replaced, even if more are
4941 replaceable. Also, we try to put the result into a canonical form
4942 so it is more likely to be a valid address.
4944 In all other cases, return ADDR. */
4946 static rtx
4947 subst_indexed_address (addr)
4948 rtx addr;
4950 rtx op0 = 0, op1 = 0, op2 = 0;
4951 rtx tem;
4952 int regno;
4954 if (GET_CODE (addr) == PLUS)
4956 /* Try to find a register to replace. */
4957 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4958 if (GET_CODE (op0) == REG
4959 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4960 && reg_renumber[regno] < 0
4961 && reg_equiv_constant[regno] != 0)
4962 op0 = reg_equiv_constant[regno];
4963 else if (GET_CODE (op1) == REG
4964 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4965 && reg_renumber[regno] < 0
4966 && reg_equiv_constant[regno] != 0)
4967 op1 = reg_equiv_constant[regno];
4968 else if (GET_CODE (op0) == PLUS
4969 && (tem = subst_indexed_address (op0)) != op0)
4970 op0 = tem;
4971 else if (GET_CODE (op1) == PLUS
4972 && (tem = subst_indexed_address (op1)) != op1)
4973 op1 = tem;
4974 else
4975 return addr;
4977 /* Pick out up to three things to add. */
4978 if (GET_CODE (op1) == PLUS)
4979 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4980 else if (GET_CODE (op0) == PLUS)
4981 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4983 /* Compute the sum. */
4984 if (op2 != 0)
4985 op1 = form_sum (op1, op2);
4986 if (op1 != 0)
4987 op0 = form_sum (op0, op1);
4989 return op0;
4991 return addr;
4994 /* Update the REG_INC notes for an insn. It updates all REG_INC
4995 notes for the instruction which refer to REGNO the to refer
4996 to the reload number.
4998 INSN is the insn for which any REG_INC notes need updating.
5000 REGNO is the register number which has been reloaded.
5002 RELOADNUM is the reload number. */
5004 static void
5005 update_auto_inc_notes (insn, regno, reloadnum)
5006 rtx insn ATTRIBUTE_UNUSED;
5007 int regno ATTRIBUTE_UNUSED;
5008 int reloadnum ATTRIBUTE_UNUSED;
5010 #ifdef AUTO_INC_DEC
5011 rtx link;
5013 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5014 if (REG_NOTE_KIND (link) == REG_INC
5015 && REGNO (XEXP (link, 0)) == regno)
5016 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5017 #endif
5020 /* Record the pseudo registers we must reload into hard registers in a
5021 subexpression of a would-be memory address, X referring to a value
5022 in mode MODE. (This function is not called if the address we find
5023 is strictly valid.)
5025 CONTEXT = 1 means we are considering regs as index regs,
5026 = 0 means we are considering them as base regs.
5028 OPNUM and TYPE specify the purpose of any reloads made.
5030 IND_LEVELS says how many levels of indirect addressing are
5031 supported at this point in the address.
5033 INSN, if nonzero, is the insn in which we do the reload. It is used
5034 to determine if we may generate output reloads.
5036 We return nonzero if X, as a whole, is reloaded or replaced. */
5038 /* Note that we take shortcuts assuming that no multi-reg machine mode
5039 occurs as part of an address.
5040 Also, this is not fully machine-customizable; it works for machines
5041 such as vaxes and 68000's and 32000's, but other possible machines
5042 could have addressing modes that this does not handle right. */
5044 static int
5045 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5046 enum machine_mode mode;
5047 rtx x;
5048 int context;
5049 rtx *loc;
5050 int opnum;
5051 enum reload_type type;
5052 int ind_levels;
5053 rtx insn;
5055 register RTX_CODE code = GET_CODE (x);
5057 switch (code)
5059 case PLUS:
5061 register rtx orig_op0 = XEXP (x, 0);
5062 register rtx orig_op1 = XEXP (x, 1);
5063 register RTX_CODE code0 = GET_CODE (orig_op0);
5064 register RTX_CODE code1 = GET_CODE (orig_op1);
5065 register rtx op0 = orig_op0;
5066 register rtx op1 = orig_op1;
5068 if (GET_CODE (op0) == SUBREG)
5070 op0 = SUBREG_REG (op0);
5071 code0 = GET_CODE (op0);
5072 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5073 op0 = gen_rtx_REG (word_mode,
5074 REGNO (op0) + SUBREG_WORD (orig_op0));
5077 if (GET_CODE (op1) == SUBREG)
5079 op1 = SUBREG_REG (op1);
5080 code1 = GET_CODE (op1);
5081 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5082 op1 = gen_rtx_REG (GET_MODE (op1),
5083 REGNO (op1) + SUBREG_WORD (orig_op1));
5086 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5087 || code0 == ZERO_EXTEND || code1 == MEM)
5089 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5090 type, ind_levels, insn);
5091 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5092 type, ind_levels, insn);
5095 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5096 || code1 == ZERO_EXTEND || code0 == MEM)
5098 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5099 type, ind_levels, insn);
5100 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5101 type, ind_levels, insn);
5104 else if (code0 == CONST_INT || code0 == CONST
5105 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5106 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5107 type, ind_levels, insn);
5109 else if (code1 == CONST_INT || code1 == CONST
5110 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5111 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5112 type, ind_levels, insn);
5114 else if (code0 == REG && code1 == REG)
5116 if (REG_OK_FOR_INDEX_P (op0)
5117 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5118 return 0;
5119 else if (REG_OK_FOR_INDEX_P (op1)
5120 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5121 return 0;
5122 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5123 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5124 type, ind_levels, insn);
5125 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5126 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5127 type, ind_levels, insn);
5128 else if (REG_OK_FOR_INDEX_P (op1))
5129 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5130 type, ind_levels, insn);
5131 else if (REG_OK_FOR_INDEX_P (op0))
5132 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5133 type, ind_levels, insn);
5134 else
5136 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5137 type, ind_levels, insn);
5138 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5139 type, ind_levels, insn);
5143 else if (code0 == REG)
5145 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5146 type, ind_levels, insn);
5147 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5148 type, ind_levels, insn);
5151 else if (code1 == REG)
5153 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5154 type, ind_levels, insn);
5155 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5156 type, ind_levels, insn);
5160 return 0;
5162 case POST_MODIFY:
5163 case PRE_MODIFY:
5165 rtx op0 = XEXP (x, 0);
5166 rtx op1 = XEXP (x, 1);
5168 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5169 return 0;
5171 /* Currently, we only support {PRE,POST}_MODIFY constructs
5172 where a base register is {inc,dec}remented by the contents
5173 of another register or by a constant value. Thus, these
5174 operands must match. */
5175 if (op0 != XEXP (op1, 0))
5176 abort ();
5178 /* Require index register (or constant). Let's just handle the
5179 register case in the meantime... If the target allows
5180 auto-modify by a constant then we could try replacing a pseudo
5181 register with its equivalent constant where applicable. */
5182 if (REG_P (XEXP (op1, 1)))
5183 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5184 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5185 opnum, type, ind_levels, insn);
5187 if (REG_P (XEXP (op1, 0)))
5189 int regno = REGNO (XEXP (op1, 0));
5190 int reloadnum;
5192 /* A register that is incremented cannot be constant! */
5193 if (regno >= FIRST_PSEUDO_REGISTER
5194 && reg_equiv_constant[regno] != 0)
5195 abort ();
5197 /* Handle a register that is equivalent to a memory location
5198 which cannot be addressed directly. */
5199 if (reg_equiv_memory_loc[regno] != 0
5200 && (reg_equiv_address[regno] != 0
5201 || num_not_at_initial_offset))
5203 rtx tem = make_memloc (XEXP (x, 0), regno);
5205 if (reg_equiv_address[regno]
5206 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5208 /* First reload the memory location's address.
5209 We can't use ADDR_TYPE (type) here, because we need to
5210 write back the value after reading it, hence we actually
5211 need two registers. */
5212 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5213 &XEXP (tem, 0), opnum,
5214 RELOAD_OTHER,
5215 ind_levels, insn);
5217 /* Then reload the memory location into a base
5218 register. */
5219 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5220 &XEXP (op1, 0), BASE_REG_CLASS,
5221 GET_MODE (x), GET_MODE (x), 0,
5222 0, opnum, RELOAD_OTHER);
5224 update_auto_inc_notes (this_insn, regno, reloadnum);
5225 return 0;
5229 if (reg_renumber[regno] >= 0)
5230 regno = reg_renumber[regno];
5232 /* We require a base register here... */
5233 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5235 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5236 &XEXP (op1, 0), &XEXP (x, 0),
5237 BASE_REG_CLASS,
5238 GET_MODE (x), GET_MODE (x), 0, 0,
5239 opnum, RELOAD_OTHER);
5241 update_auto_inc_notes (this_insn, regno, reloadnum);
5242 return 0;
5245 else
5246 abort ();
5248 return 0;
5250 case POST_INC:
5251 case POST_DEC:
5252 case PRE_INC:
5253 case PRE_DEC:
5254 if (GET_CODE (XEXP (x, 0)) == REG)
5256 register int regno = REGNO (XEXP (x, 0));
5257 int value = 0;
5258 rtx x_orig = x;
5260 /* A register that is incremented cannot be constant! */
5261 if (regno >= FIRST_PSEUDO_REGISTER
5262 && reg_equiv_constant[regno] != 0)
5263 abort ();
5265 /* Handle a register that is equivalent to a memory location
5266 which cannot be addressed directly. */
5267 if (reg_equiv_memory_loc[regno] != 0
5268 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5270 rtx tem = make_memloc (XEXP (x, 0), regno);
5271 if (reg_equiv_address[regno]
5272 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5274 /* First reload the memory location's address.
5275 We can't use ADDR_TYPE (type) here, because we need to
5276 write back the value after reading it, hence we actually
5277 need two registers. */
5278 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5279 &XEXP (tem, 0), opnum, type,
5280 ind_levels, insn);
5281 /* Put this inside a new increment-expression. */
5282 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5283 /* Proceed to reload that, as if it contained a register. */
5287 /* If we have a hard register that is ok as an index,
5288 don't make a reload. If an autoincrement of a nice register
5289 isn't "valid", it must be that no autoincrement is "valid".
5290 If that is true and something made an autoincrement anyway,
5291 this must be a special context where one is allowed.
5292 (For example, a "push" instruction.)
5293 We can't improve this address, so leave it alone. */
5295 /* Otherwise, reload the autoincrement into a suitable hard reg
5296 and record how much to increment by. */
5298 if (reg_renumber[regno] >= 0)
5299 regno = reg_renumber[regno];
5300 if ((regno >= FIRST_PSEUDO_REGISTER
5301 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5302 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5304 int reloadnum;
5306 /* If we can output the register afterwards, do so, this
5307 saves the extra update.
5308 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5309 CALL_INSN - and it does not set CC0.
5310 But don't do this if we cannot directly address the
5311 memory location, since this will make it harder to
5312 reuse address reloads, and increases register pressure.
5313 Also don't do this if we can probably update x directly. */
5314 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5315 ? XEXP (x, 0)
5316 : reg_equiv_mem[regno]);
5317 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5318 if (insn && GET_CODE (insn) == INSN && equiv
5319 && memory_operand (equiv, GET_MODE (equiv))
5320 #ifdef HAVE_cc0
5321 && ! sets_cc0_p (PATTERN (insn))
5322 #endif
5323 && ! (icode != CODE_FOR_nothing
5324 && ((*insn_data[icode].operand[0].predicate)
5325 (equiv, Pmode))
5326 && ((*insn_data[icode].operand[1].predicate)
5327 (equiv, Pmode))))
5329 /* We use the original pseudo for loc, so that
5330 emit_reload_insns() knows which pseudo this
5331 reload refers to and updates the pseudo rtx, not
5332 its equivalent memory location, as well as the
5333 corresponding entry in reg_last_reload_reg. */
5334 loc = &XEXP (x_orig, 0);
5335 x = XEXP (x, 0);
5336 reloadnum
5337 = push_reload (x, x, loc, loc,
5338 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5339 GET_MODE (x), GET_MODE (x), 0, 0,
5340 opnum, RELOAD_OTHER);
5342 else
5344 reloadnum
5345 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5346 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5347 GET_MODE (x), GET_MODE (x), 0, 0,
5348 opnum, type);
5349 rld[reloadnum].inc
5350 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5352 value = 1;
5355 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5356 reloadnum);
5358 return value;
5361 else if (GET_CODE (XEXP (x, 0)) == MEM)
5363 /* This is probably the result of a substitution, by eliminate_regs,
5364 of an equivalent address for a pseudo that was not allocated to a
5365 hard register. Verify that the specified address is valid and
5366 reload it into a register. */
5367 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5368 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5369 register rtx link;
5370 int reloadnum;
5372 /* Since we know we are going to reload this item, don't decrement
5373 for the indirection level.
5375 Note that this is actually conservative: it would be slightly
5376 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5377 reload1.c here. */
5378 /* We can't use ADDR_TYPE (type) here, because we need to
5379 write back the value after reading it, hence we actually
5380 need two registers. */
5381 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5382 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5383 opnum, type, ind_levels, insn);
5385 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5386 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5387 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5388 rld[reloadnum].inc
5389 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5391 link = FIND_REG_INC_NOTE (this_insn, tem);
5392 if (link != 0)
5393 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5395 return 1;
5397 return 0;
5399 case MEM:
5400 /* This is probably the result of a substitution, by eliminate_regs, of
5401 an equivalent address for a pseudo that was not allocated to a hard
5402 register. Verify that the specified address is valid and reload it
5403 into a register.
5405 Since we know we are going to reload this item, don't decrement for
5406 the indirection level.
5408 Note that this is actually conservative: it would be slightly more
5409 efficient to use the value of SPILL_INDIRECT_LEVELS from
5410 reload1.c here. */
5412 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5413 opnum, ADDR_TYPE (type), ind_levels, insn);
5414 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5415 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5416 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5417 return 1;
5419 case REG:
5421 register int regno = REGNO (x);
5423 if (reg_equiv_constant[regno] != 0)
5425 find_reloads_address_part (reg_equiv_constant[regno], loc,
5426 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5427 GET_MODE (x), opnum, type, ind_levels);
5428 return 1;
5431 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5432 that feeds this insn. */
5433 if (reg_equiv_mem[regno] != 0)
5435 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5436 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5437 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5438 return 1;
5440 #endif
5442 if (reg_equiv_memory_loc[regno]
5443 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5445 rtx tem = make_memloc (x, regno);
5446 if (reg_equiv_address[regno] != 0
5447 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5449 x = tem;
5450 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5451 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5452 ind_levels, insn);
5456 if (reg_renumber[regno] >= 0)
5457 regno = reg_renumber[regno];
5459 if ((regno >= FIRST_PSEUDO_REGISTER
5460 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5461 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5463 push_reload (x, NULL_RTX, loc, NULL_PTR,
5464 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5465 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5466 return 1;
5469 /* If a register appearing in an address is the subject of a CLOBBER
5470 in this insn, reload it into some other register to be safe.
5471 The CLOBBER is supposed to make the register unavailable
5472 from before this insn to after it. */
5473 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5475 push_reload (x, NULL_RTX, loc, NULL_PTR,
5476 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5477 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5478 return 1;
5481 return 0;
5483 case SUBREG:
5484 if (GET_CODE (SUBREG_REG (x)) == REG)
5486 /* If this is a SUBREG of a hard register and the resulting register
5487 is of the wrong class, reload the whole SUBREG. This avoids
5488 needless copies if SUBREG_REG is multi-word. */
5489 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5491 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5493 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5494 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5496 push_reload (x, NULL_RTX, loc, NULL_PTR,
5497 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5498 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5499 return 1;
5502 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5503 is larger than the class size, then reload the whole SUBREG. */
5504 else
5506 enum reg_class class = (context ? INDEX_REG_CLASS
5507 : BASE_REG_CLASS);
5508 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5509 > reg_class_size[class])
5511 x = find_reloads_subreg_address (x, 0, opnum, type,
5512 ind_levels, insn);
5513 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5514 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5515 return 1;
5519 break;
5521 default:
5522 break;
5526 register const char *fmt = GET_RTX_FORMAT (code);
5527 register int i;
5529 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5531 if (fmt[i] == 'e')
5532 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5533 opnum, type, ind_levels, insn);
5537 return 0;
5540 /* X, which is found at *LOC, is a part of an address that needs to be
5541 reloaded into a register of class CLASS. If X is a constant, or if
5542 X is a PLUS that contains a constant, check that the constant is a
5543 legitimate operand and that we are supposed to be able to load
5544 it into the register.
5546 If not, force the constant into memory and reload the MEM instead.
5548 MODE is the mode to use, in case X is an integer constant.
5550 OPNUM and TYPE describe the purpose of any reloads made.
5552 IND_LEVELS says how many levels of indirect addressing this machine
5553 supports. */
5555 static void
5556 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5557 rtx x;
5558 rtx *loc;
5559 enum reg_class class;
5560 enum machine_mode mode;
5561 int opnum;
5562 enum reload_type type;
5563 int ind_levels;
5565 if (CONSTANT_P (x)
5566 && (! LEGITIMATE_CONSTANT_P (x)
5567 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5569 rtx tem;
5571 tem = x = force_const_mem (mode, x);
5572 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5573 opnum, type, ind_levels, 0);
5576 else if (GET_CODE (x) == PLUS
5577 && CONSTANT_P (XEXP (x, 1))
5578 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5579 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5581 rtx tem;
5583 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5584 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5585 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5586 opnum, type, ind_levels, 0);
5589 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5590 mode, VOIDmode, 0, 0, opnum, type);
5593 /* X, a subreg of a pseudo, is a part of an address that needs to be
5594 reloaded.
5596 If the pseudo is equivalent to a memory location that cannot be directly
5597 addressed, make the necessary address reloads.
5599 If address reloads have been necessary, or if the address is changed
5600 by register elimination, return the rtx of the memory location;
5601 otherwise, return X.
5603 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5604 memory location.
5606 OPNUM and TYPE identify the purpose of the reload.
5608 IND_LEVELS says how many levels of indirect addressing are
5609 supported at this point in the address.
5611 INSN, if nonzero, is the insn in which we do the reload. It is used
5612 to determine where to put USEs for pseudos that we have to replace with
5613 stack slots. */
5615 static rtx
5616 find_reloads_subreg_address (x, force_replace, opnum, type,
5617 ind_levels, insn)
5618 rtx x;
5619 int force_replace;
5620 int opnum;
5621 enum reload_type type;
5622 int ind_levels;
5623 rtx insn;
5625 int regno = REGNO (SUBREG_REG (x));
5627 if (reg_equiv_memory_loc[regno])
5629 /* If the address is not directly addressable, or if the address is not
5630 offsettable, then it must be replaced. */
5631 if (! force_replace
5632 && (reg_equiv_address[regno]
5633 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5634 force_replace = 1;
5636 if (force_replace || num_not_at_initial_offset)
5638 rtx tem = make_memloc (SUBREG_REG (x), regno);
5640 /* If the address changes because of register elimination, then
5641 it must be replaced. */
5642 if (force_replace
5643 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5645 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
5647 if (BYTES_BIG_ENDIAN)
5649 int size;
5651 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5652 offset += MIN (size, UNITS_PER_WORD);
5653 size = GET_MODE_SIZE (GET_MODE (x));
5654 offset -= MIN (size, UNITS_PER_WORD);
5656 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5657 PUT_MODE (tem, GET_MODE (x));
5658 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5659 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5660 ind_levels, insn);
5661 /* If this is not a toplevel operand, find_reloads doesn't see
5662 this substitution. We have to emit a USE of the pseudo so
5663 that delete_output_reload can see it. */
5664 if (replace_reloads && recog_data.operand[opnum] != x)
5665 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5666 x = tem;
5670 return x;
5673 /* Substitute into the current INSN the registers into which we have reloaded
5674 the things that need reloading. The array `replacements'
5675 contains the locations of all pointers that must be changed
5676 and says what to replace them with.
5678 Return the rtx that X translates into; usually X, but modified. */
5680 void
5681 subst_reloads ()
5683 register int i;
5685 for (i = 0; i < n_replacements; i++)
5687 register struct replacement *r = &replacements[i];
5688 register rtx reloadreg = rld[r->what].reg_rtx;
5689 if (reloadreg)
5691 /* Encapsulate RELOADREG so its machine mode matches what
5692 used to be there. Note that gen_lowpart_common will
5693 do the wrong thing if RELOADREG is multi-word. RELOADREG
5694 will always be a REG here. */
5695 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5696 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5698 /* If we are putting this into a SUBREG and RELOADREG is a
5699 SUBREG, we would be making nested SUBREGs, so we have to fix
5700 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5702 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5704 if (GET_MODE (*r->subreg_loc)
5705 == GET_MODE (SUBREG_REG (reloadreg)))
5706 *r->subreg_loc = SUBREG_REG (reloadreg);
5707 else
5709 *r->where = SUBREG_REG (reloadreg);
5710 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5713 else
5714 *r->where = reloadreg;
5716 /* If reload got no reg and isn't optional, something's wrong. */
5717 else if (! rld[r->what].optional)
5718 abort ();
5722 /* Make a copy of any replacements being done into X and move those copies
5723 to locations in Y, a copy of X. We only look at the highest level of
5724 the RTL. */
5726 void
5727 copy_replacements (x, y)
5728 rtx x;
5729 rtx y;
5731 int i, j;
5732 enum rtx_code code = GET_CODE (x);
5733 const char *fmt = GET_RTX_FORMAT (code);
5734 struct replacement *r;
5736 /* We can't support X being a SUBREG because we might then need to know its
5737 location if something inside it was replaced. */
5738 if (code == SUBREG)
5739 abort ();
5741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5742 if (fmt[i] == 'e')
5743 for (j = 0; j < n_replacements; j++)
5745 if (replacements[j].subreg_loc == &XEXP (x, i))
5747 r = &replacements[n_replacements++];
5748 r->where = replacements[j].where;
5749 r->subreg_loc = &XEXP (y, i);
5750 r->what = replacements[j].what;
5751 r->mode = replacements[j].mode;
5753 else if (replacements[j].where == &XEXP (x, i))
5755 r = &replacements[n_replacements++];
5756 r->where = &XEXP (y, i);
5757 r->subreg_loc = 0;
5758 r->what = replacements[j].what;
5759 r->mode = replacements[j].mode;
5764 /* Change any replacements being done to *X to be done to *Y */
5766 void
5767 move_replacements (x, y)
5768 rtx *x;
5769 rtx *y;
5771 int i;
5773 for (i = 0; i < n_replacements; i++)
5774 if (replacements[i].subreg_loc == x)
5775 replacements[i].subreg_loc = y;
5776 else if (replacements[i].where == x)
5778 replacements[i].where = y;
5779 replacements[i].subreg_loc = 0;
5783 /* If LOC was scheduled to be replaced by something, return the replacement.
5784 Otherwise, return *LOC. */
5787 find_replacement (loc)
5788 rtx *loc;
5790 struct replacement *r;
5792 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5794 rtx reloadreg = rld[r->what].reg_rtx;
5796 if (reloadreg && r->where == loc)
5798 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5799 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5801 return reloadreg;
5803 else if (reloadreg && r->subreg_loc == loc)
5805 /* RELOADREG must be either a REG or a SUBREG.
5807 ??? Is it actually still ever a SUBREG? If so, why? */
5809 if (GET_CODE (reloadreg) == REG)
5810 return gen_rtx_REG (GET_MODE (*loc),
5811 REGNO (reloadreg) + SUBREG_WORD (*loc));
5812 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5813 return reloadreg;
5814 else
5815 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5816 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5820 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5821 what's inside and make a new rtl if so. */
5822 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5823 || GET_CODE (*loc) == MULT)
5825 rtx x = find_replacement (&XEXP (*loc, 0));
5826 rtx y = find_replacement (&XEXP (*loc, 1));
5828 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5829 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5832 return *loc;
5835 /* Return nonzero if register in range [REGNO, ENDREGNO)
5836 appears either explicitly or implicitly in X
5837 other than being stored into (except for earlyclobber operands).
5839 References contained within the substructure at LOC do not count.
5840 LOC may be zero, meaning don't ignore anything.
5842 This is similar to refers_to_regno_p in rtlanal.c except that we
5843 look at equivalences for pseudos that didn't get hard registers. */
5846 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5847 unsigned int regno, endregno;
5848 rtx x;
5849 rtx *loc;
5851 int i;
5852 unsigned int r;
5853 RTX_CODE code;
5854 const char *fmt;
5856 if (x == 0)
5857 return 0;
5859 repeat:
5860 code = GET_CODE (x);
5862 switch (code)
5864 case REG:
5865 r = REGNO (x);
5867 /* If this is a pseudo, a hard register must not have been allocated.
5868 X must therefore either be a constant or be in memory. */
5869 if (r >= FIRST_PSEUDO_REGISTER)
5871 if (reg_equiv_memory_loc[r])
5872 return refers_to_regno_for_reload_p (regno, endregno,
5873 reg_equiv_memory_loc[r],
5874 NULL_PTR);
5876 if (reg_equiv_constant[r])
5877 return 0;
5879 abort ();
5882 return (endregno > r
5883 && regno < r + (r < FIRST_PSEUDO_REGISTER
5884 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5885 : 1));
5887 case SUBREG:
5888 /* If this is a SUBREG of a hard reg, we can see exactly which
5889 registers are being modified. Otherwise, handle normally. */
5890 if (GET_CODE (SUBREG_REG (x)) == REG
5891 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5893 unsigned int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5894 unsigned int inner_endregno
5895 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5896 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5898 return endregno > inner_regno && regno < inner_endregno;
5900 break;
5902 case CLOBBER:
5903 case SET:
5904 if (&SET_DEST (x) != loc
5905 /* Note setting a SUBREG counts as referring to the REG it is in for
5906 a pseudo but not for hard registers since we can
5907 treat each word individually. */
5908 && ((GET_CODE (SET_DEST (x)) == SUBREG
5909 && loc != &SUBREG_REG (SET_DEST (x))
5910 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5911 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5912 && refers_to_regno_for_reload_p (regno, endregno,
5913 SUBREG_REG (SET_DEST (x)),
5914 loc))
5915 /* If the output is an earlyclobber operand, this is
5916 a conflict. */
5917 || ((GET_CODE (SET_DEST (x)) != REG
5918 || earlyclobber_operand_p (SET_DEST (x)))
5919 && refers_to_regno_for_reload_p (regno, endregno,
5920 SET_DEST (x), loc))))
5921 return 1;
5923 if (code == CLOBBER || loc == &SET_SRC (x))
5924 return 0;
5925 x = SET_SRC (x);
5926 goto repeat;
5928 default:
5929 break;
5932 /* X does not match, so try its subexpressions. */
5934 fmt = GET_RTX_FORMAT (code);
5935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5937 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5939 if (i == 0)
5941 x = XEXP (x, 0);
5942 goto repeat;
5944 else
5945 if (refers_to_regno_for_reload_p (regno, endregno,
5946 XEXP (x, i), loc))
5947 return 1;
5949 else if (fmt[i] == 'E')
5951 register int j;
5952 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5953 if (loc != &XVECEXP (x, i, j)
5954 && refers_to_regno_for_reload_p (regno, endregno,
5955 XVECEXP (x, i, j), loc))
5956 return 1;
5959 return 0;
5962 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5963 we check if any register number in X conflicts with the relevant register
5964 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5965 contains a MEM (we don't bother checking for memory addresses that can't
5966 conflict because we expect this to be a rare case.
5968 This function is similar to reg_overlap_mention_p in rtlanal.c except
5969 that we look at equivalences for pseudos that didn't get hard registers. */
5972 reg_overlap_mentioned_for_reload_p (x, in)
5973 rtx x, in;
5975 int regno, endregno;
5977 /* Overly conservative. */
5978 if (GET_CODE (x) == STRICT_LOW_PART)
5979 x = XEXP (x, 0);
5981 /* If either argument is a constant, then modifying X can not affect IN. */
5982 if (CONSTANT_P (x) || CONSTANT_P (in))
5983 return 0;
5984 else if (GET_CODE (x) == SUBREG)
5986 regno = REGNO (SUBREG_REG (x));
5987 if (regno < FIRST_PSEUDO_REGISTER)
5988 regno += SUBREG_WORD (x);
5990 else if (GET_CODE (x) == REG)
5992 regno = REGNO (x);
5994 /* If this is a pseudo, it must not have been assigned a hard register.
5995 Therefore, it must either be in memory or be a constant. */
5997 if (regno >= FIRST_PSEUDO_REGISTER)
5999 if (reg_equiv_memory_loc[regno])
6000 return refers_to_mem_for_reload_p (in);
6001 else if (reg_equiv_constant[regno])
6002 return 0;
6003 abort ();
6006 else if (GET_CODE (x) == MEM)
6007 return refers_to_mem_for_reload_p (in);
6008 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6009 || GET_CODE (x) == CC0)
6010 return reg_mentioned_p (x, in);
6011 else
6012 abort ();
6014 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6015 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6017 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
6020 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6021 registers. */
6024 refers_to_mem_for_reload_p (x)
6025 rtx x;
6027 const char *fmt;
6028 int i;
6030 if (GET_CODE (x) == MEM)
6031 return 1;
6033 if (GET_CODE (x) == REG)
6034 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6035 && reg_equiv_memory_loc[REGNO (x)]);
6037 fmt = GET_RTX_FORMAT (GET_CODE (x));
6038 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6039 if (fmt[i] == 'e'
6040 && (GET_CODE (XEXP (x, i)) == MEM
6041 || refers_to_mem_for_reload_p (XEXP (x, i))))
6042 return 1;
6044 return 0;
6047 /* Check the insns before INSN to see if there is a suitable register
6048 containing the same value as GOAL.
6049 If OTHER is -1, look for a register in class CLASS.
6050 Otherwise, just see if register number OTHER shares GOAL's value.
6052 Return an rtx for the register found, or zero if none is found.
6054 If RELOAD_REG_P is (short *)1,
6055 we reject any hard reg that appears in reload_reg_rtx
6056 because such a hard reg is also needed coming into this insn.
6058 If RELOAD_REG_P is any other nonzero value,
6059 it is a vector indexed by hard reg number
6060 and we reject any hard reg whose element in the vector is nonnegative
6061 as well as any that appears in reload_reg_rtx.
6063 If GOAL is zero, then GOALREG is a register number; we look
6064 for an equivalent for that register.
6066 MODE is the machine mode of the value we want an equivalence for.
6067 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6069 This function is used by jump.c as well as in the reload pass.
6071 If GOAL is the sum of the stack pointer and a constant, we treat it
6072 as if it were a constant except that sp is required to be unchanging. */
6075 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6076 register rtx goal;
6077 rtx insn;
6078 enum reg_class class;
6079 register int other;
6080 short *reload_reg_p;
6081 int goalreg;
6082 enum machine_mode mode;
6084 register rtx p = insn;
6085 rtx goaltry, valtry, value, where;
6086 register rtx pat;
6087 register int regno = -1;
6088 int valueno;
6089 int goal_mem = 0;
6090 int goal_const = 0;
6091 int goal_mem_addr_varies = 0;
6092 int need_stable_sp = 0;
6093 int nregs;
6094 int valuenregs;
6096 if (goal == 0)
6097 regno = goalreg;
6098 else if (GET_CODE (goal) == REG)
6099 regno = REGNO (goal);
6100 else if (GET_CODE (goal) == MEM)
6102 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6103 if (MEM_VOLATILE_P (goal))
6104 return 0;
6105 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6106 return 0;
6107 /* An address with side effects must be reexecuted. */
6108 switch (code)
6110 case POST_INC:
6111 case PRE_INC:
6112 case POST_DEC:
6113 case PRE_DEC:
6114 case POST_MODIFY:
6115 case PRE_MODIFY:
6116 return 0;
6117 default:
6118 break;
6120 goal_mem = 1;
6122 else if (CONSTANT_P (goal))
6123 goal_const = 1;
6124 else if (GET_CODE (goal) == PLUS
6125 && XEXP (goal, 0) == stack_pointer_rtx
6126 && CONSTANT_P (XEXP (goal, 1)))
6127 goal_const = need_stable_sp = 1;
6128 else if (GET_CODE (goal) == PLUS
6129 && XEXP (goal, 0) == frame_pointer_rtx
6130 && CONSTANT_P (XEXP (goal, 1)))
6131 goal_const = 1;
6132 else
6133 return 0;
6135 /* Scan insns back from INSN, looking for one that copies
6136 a value into or out of GOAL.
6137 Stop and give up if we reach a label. */
6139 while (1)
6141 p = PREV_INSN (p);
6142 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6143 return 0;
6145 if (GET_CODE (p) == INSN
6146 /* If we don't want spill regs ... */
6147 && (! (reload_reg_p != 0
6148 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6149 /* ... then ignore insns introduced by reload; they aren't
6150 useful and can cause results in reload_as_needed to be
6151 different from what they were when calculating the need for
6152 spills. If we notice an input-reload insn here, we will
6153 reject it below, but it might hide a usable equivalent.
6154 That makes bad code. It may even abort: perhaps no reg was
6155 spilled for this insn because it was assumed we would find
6156 that equivalent. */
6157 || INSN_UID (p) < reload_first_uid))
6159 rtx tem;
6160 pat = single_set (p);
6162 /* First check for something that sets some reg equal to GOAL. */
6163 if (pat != 0
6164 && ((regno >= 0
6165 && true_regnum (SET_SRC (pat)) == regno
6166 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6168 (regno >= 0
6169 && true_regnum (SET_DEST (pat)) == regno
6170 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6172 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6173 /* When looking for stack pointer + const,
6174 make sure we don't use a stack adjust. */
6175 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6176 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6177 || (goal_mem
6178 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6179 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6180 || (goal_mem
6181 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6182 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6183 /* If we are looking for a constant,
6184 and something equivalent to that constant was copied
6185 into a reg, we can use that reg. */
6186 || (goal_const && REG_NOTES (p) != 0
6187 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6188 && ((rtx_equal_p (XEXP (tem, 0), goal)
6189 && (valueno
6190 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6191 || (GET_CODE (SET_DEST (pat)) == REG
6192 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6193 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6194 == MODE_FLOAT)
6195 && GET_CODE (goal) == CONST_INT
6196 && 0 != (goaltry
6197 = operand_subword (XEXP (tem, 0), 0, 0,
6198 VOIDmode))
6199 && rtx_equal_p (goal, goaltry)
6200 && (valtry
6201 = operand_subword (SET_DEST (pat), 0, 0,
6202 VOIDmode))
6203 && (valueno = true_regnum (valtry)) >= 0)))
6204 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6205 NULL_RTX))
6206 && GET_CODE (SET_DEST (pat)) == REG
6207 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6208 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6209 == MODE_FLOAT)
6210 && GET_CODE (goal) == CONST_INT
6211 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6212 VOIDmode))
6213 && rtx_equal_p (goal, goaltry)
6214 && (valtry
6215 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6216 && (valueno = true_regnum (valtry)) >= 0)))
6218 if (other >= 0)
6220 if (valueno != other)
6221 continue;
6223 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6224 continue;
6225 else
6227 int i;
6229 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6230 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6231 valueno + i))
6232 break;
6233 if (i >= 0)
6234 continue;
6236 value = valtry;
6237 where = p;
6238 break;
6243 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6244 (or copying VALUE into GOAL, if GOAL is also a register).
6245 Now verify that VALUE is really valid. */
6247 /* VALUENO is the register number of VALUE; a hard register. */
6249 /* Don't try to re-use something that is killed in this insn. We want
6250 to be able to trust REG_UNUSED notes. */
6251 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6252 return 0;
6254 /* If we propose to get the value from the stack pointer or if GOAL is
6255 a MEM based on the stack pointer, we need a stable SP. */
6256 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6257 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6258 goal)))
6259 need_stable_sp = 1;
6261 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6262 if (GET_MODE (value) != mode)
6263 return 0;
6265 /* Reject VALUE if it was loaded from GOAL
6266 and is also a register that appears in the address of GOAL. */
6268 if (goal_mem && value == SET_DEST (single_set (where))
6269 && refers_to_regno_for_reload_p (valueno,
6270 (valueno
6271 + HARD_REGNO_NREGS (valueno, mode)),
6272 goal, NULL_PTR))
6273 return 0;
6275 /* Reject registers that overlap GOAL. */
6277 if (!goal_mem && !goal_const
6278 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6279 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6280 return 0;
6282 nregs = HARD_REGNO_NREGS (regno, mode);
6283 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6285 /* Reject VALUE if it is one of the regs reserved for reloads.
6286 Reload1 knows how to reuse them anyway, and it would get
6287 confused if we allocated one without its knowledge.
6288 (Now that insns introduced by reload are ignored above,
6289 this case shouldn't happen, but I'm not positive.) */
6291 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6293 int i;
6294 for (i = 0; i < valuenregs; ++i)
6295 if (reload_reg_p[valueno + i] >= 0)
6296 return 0;
6299 /* Reject VALUE if it is a register being used for an input reload
6300 even if it is not one of those reserved. */
6302 if (reload_reg_p != 0)
6304 int i;
6305 for (i = 0; i < n_reloads; i++)
6306 if (rld[i].reg_rtx != 0 && rld[i].in)
6308 int regno1 = REGNO (rld[i].reg_rtx);
6309 int nregs1 = HARD_REGNO_NREGS (regno1,
6310 GET_MODE (rld[i].reg_rtx));
6311 if (regno1 < valueno + valuenregs
6312 && regno1 + nregs1 > valueno)
6313 return 0;
6317 if (goal_mem)
6318 /* We must treat frame pointer as varying here,
6319 since it can vary--in a nonlocal goto as generated by expand_goto. */
6320 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6322 /* Now verify that the values of GOAL and VALUE remain unaltered
6323 until INSN is reached. */
6325 p = insn;
6326 while (1)
6328 p = PREV_INSN (p);
6329 if (p == where)
6330 return value;
6332 /* Don't trust the conversion past a function call
6333 if either of the two is in a call-clobbered register, or memory. */
6334 if (GET_CODE (p) == CALL_INSN)
6336 int i;
6338 if (goal_mem || need_stable_sp)
6339 return 0;
6341 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6342 for (i = 0; i < nregs; ++i)
6343 if (call_used_regs[regno + i])
6344 return 0;
6346 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6347 for (i = 0; i < valuenregs; ++i)
6348 if (call_used_regs[valueno + i])
6349 return 0;
6352 #ifdef NON_SAVING_SETJMP
6353 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6354 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6355 return 0;
6356 #endif
6358 if (INSN_P (p))
6360 pat = PATTERN (p);
6362 /* Watch out for unspec_volatile, and volatile asms. */
6363 if (volatile_insn_p (pat))
6364 return 0;
6366 /* If this insn P stores in either GOAL or VALUE, return 0.
6367 If GOAL is a memory ref and this insn writes memory, return 0.
6368 If GOAL is a memory ref and its address is not constant,
6369 and this insn P changes a register used in GOAL, return 0. */
6371 if (GET_CODE (pat) == COND_EXEC)
6372 pat = COND_EXEC_CODE (pat);
6373 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6375 register rtx dest = SET_DEST (pat);
6376 while (GET_CODE (dest) == SUBREG
6377 || GET_CODE (dest) == ZERO_EXTRACT
6378 || GET_CODE (dest) == SIGN_EXTRACT
6379 || GET_CODE (dest) == STRICT_LOW_PART)
6380 dest = XEXP (dest, 0);
6381 if (GET_CODE (dest) == REG)
6383 register int xregno = REGNO (dest);
6384 int xnregs;
6385 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6386 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6387 else
6388 xnregs = 1;
6389 if (xregno < regno + nregs && xregno + xnregs > regno)
6390 return 0;
6391 if (xregno < valueno + valuenregs
6392 && xregno + xnregs > valueno)
6393 return 0;
6394 if (goal_mem_addr_varies
6395 && reg_overlap_mentioned_for_reload_p (dest, goal))
6396 return 0;
6397 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6398 return 0;
6400 else if (goal_mem && GET_CODE (dest) == MEM
6401 && ! push_operand (dest, GET_MODE (dest)))
6402 return 0;
6403 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6404 && reg_equiv_memory_loc[regno] != 0)
6405 return 0;
6406 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6407 return 0;
6409 else if (GET_CODE (pat) == PARALLEL)
6411 register int i;
6412 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6414 register rtx v1 = XVECEXP (pat, 0, i);
6415 if (GET_CODE (v1) == COND_EXEC)
6416 v1 = COND_EXEC_CODE (v1);
6417 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6419 register rtx dest = SET_DEST (v1);
6420 while (GET_CODE (dest) == SUBREG
6421 || GET_CODE (dest) == ZERO_EXTRACT
6422 || GET_CODE (dest) == SIGN_EXTRACT
6423 || GET_CODE (dest) == STRICT_LOW_PART)
6424 dest = XEXP (dest, 0);
6425 if (GET_CODE (dest) == REG)
6427 register int xregno = REGNO (dest);
6428 int xnregs;
6429 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6430 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6431 else
6432 xnregs = 1;
6433 if (xregno < regno + nregs
6434 && xregno + xnregs > regno)
6435 return 0;
6436 if (xregno < valueno + valuenregs
6437 && xregno + xnregs > valueno)
6438 return 0;
6439 if (goal_mem_addr_varies
6440 && reg_overlap_mentioned_for_reload_p (dest,
6441 goal))
6442 return 0;
6443 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6444 return 0;
6446 else if (goal_mem && GET_CODE (dest) == MEM
6447 && ! push_operand (dest, GET_MODE (dest)))
6448 return 0;
6449 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6450 && reg_equiv_memory_loc[regno] != 0)
6451 return 0;
6452 else if (need_stable_sp
6453 && push_operand (dest, GET_MODE (dest)))
6454 return 0;
6459 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6461 rtx link;
6463 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6464 link = XEXP (link, 1))
6466 pat = XEXP (link, 0);
6467 if (GET_CODE (pat) == CLOBBER)
6469 register rtx dest = SET_DEST (pat);
6471 if (GET_CODE (dest) == REG)
6473 register int xregno = REGNO (dest);
6474 int xnregs
6475 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6477 if (xregno < regno + nregs
6478 && xregno + xnregs > regno)
6479 return 0;
6480 else if (xregno < valueno + valuenregs
6481 && xregno + xnregs > valueno)
6482 return 0;
6483 else if (goal_mem_addr_varies
6484 && reg_overlap_mentioned_for_reload_p (dest,
6485 goal))
6486 return 0;
6489 else if (goal_mem && GET_CODE (dest) == MEM
6490 && ! push_operand (dest, GET_MODE (dest)))
6491 return 0;
6492 else if (need_stable_sp
6493 && push_operand (dest, GET_MODE (dest)))
6494 return 0;
6499 #ifdef AUTO_INC_DEC
6500 /* If this insn auto-increments or auto-decrements
6501 either regno or valueno, return 0 now.
6502 If GOAL is a memory ref and its address is not constant,
6503 and this insn P increments a register used in GOAL, return 0. */
6505 register rtx link;
6507 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6508 if (REG_NOTE_KIND (link) == REG_INC
6509 && GET_CODE (XEXP (link, 0)) == REG)
6511 register int incno = REGNO (XEXP (link, 0));
6512 if (incno < regno + nregs && incno >= regno)
6513 return 0;
6514 if (incno < valueno + valuenregs && incno >= valueno)
6515 return 0;
6516 if (goal_mem_addr_varies
6517 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6518 goal))
6519 return 0;
6522 #endif
6527 /* Find a place where INCED appears in an increment or decrement operator
6528 within X, and return the amount INCED is incremented or decremented by.
6529 The value is always positive. */
6531 static int
6532 find_inc_amount (x, inced)
6533 rtx x, inced;
6535 register enum rtx_code code = GET_CODE (x);
6536 register const char *fmt;
6537 register int i;
6539 if (code == MEM)
6541 register rtx addr = XEXP (x, 0);
6542 if ((GET_CODE (addr) == PRE_DEC
6543 || GET_CODE (addr) == POST_DEC
6544 || GET_CODE (addr) == PRE_INC
6545 || GET_CODE (addr) == POST_INC)
6546 && XEXP (addr, 0) == inced)
6547 return GET_MODE_SIZE (GET_MODE (x));
6548 else if ((GET_CODE (addr) == PRE_MODIFY
6549 || GET_CODE (addr) == POST_MODIFY)
6550 && GET_CODE (XEXP (addr, 1)) == PLUS
6551 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6552 && XEXP (addr, 0) == inced
6553 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6555 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6556 return i < 0 ? -i : i;
6560 fmt = GET_RTX_FORMAT (code);
6561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6563 if (fmt[i] == 'e')
6565 register int tem = find_inc_amount (XEXP (x, i), inced);
6566 if (tem != 0)
6567 return tem;
6569 if (fmt[i] == 'E')
6571 register int j;
6572 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6574 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6575 if (tem != 0)
6576 return tem;
6581 return 0;
6584 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6585 If SETS is nonzero, also consider SETs. */
6588 regno_clobbered_p (regno, insn, mode, sets)
6589 unsigned int regno;
6590 rtx insn;
6591 enum machine_mode mode;
6592 int sets;
6594 int nregs = HARD_REGNO_NREGS (regno, mode);
6595 int endregno = regno + nregs;
6597 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6598 || (sets && GET_CODE (PATTERN (insn)) == SET))
6599 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6601 int test = REGNO (XEXP (PATTERN (insn), 0));
6603 return test >= regno && test < endregno;
6606 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6608 int i = XVECLEN (PATTERN (insn), 0) - 1;
6610 for (; i >= 0; i--)
6612 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6613 if ((GET_CODE (elt) == CLOBBER
6614 || (sets && GET_CODE (PATTERN (insn)) == SET))
6615 && GET_CODE (XEXP (elt, 0)) == REG)
6617 int test = REGNO (XEXP (elt, 0));
6619 if (test >= regno && test < endregno)
6620 return 1;
6625 return 0;
6628 static const char *reload_when_needed_name[] =
6630 "RELOAD_FOR_INPUT",
6631 "RELOAD_FOR_OUTPUT",
6632 "RELOAD_FOR_INSN",
6633 "RELOAD_FOR_INPUT_ADDRESS",
6634 "RELOAD_FOR_INPADDR_ADDRESS",
6635 "RELOAD_FOR_OUTPUT_ADDRESS",
6636 "RELOAD_FOR_OUTADDR_ADDRESS",
6637 "RELOAD_FOR_OPERAND_ADDRESS",
6638 "RELOAD_FOR_OPADDR_ADDR",
6639 "RELOAD_OTHER",
6640 "RELOAD_FOR_OTHER_ADDRESS"
6643 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6645 /* These functions are used to print the variables set by 'find_reloads' */
6647 void
6648 debug_reload_to_stream (f)
6649 FILE *f;
6651 int r;
6652 const char *prefix;
6654 if (! f)
6655 f = stderr;
6656 for (r = 0; r < n_reloads; r++)
6658 fprintf (f, "Reload %d: ", r);
6660 if (rld[r].in != 0)
6662 fprintf (f, "reload_in (%s) = ",
6663 GET_MODE_NAME (rld[r].inmode));
6664 print_inline_rtx (f, rld[r].in, 24);
6665 fprintf (f, "\n\t");
6668 if (rld[r].out != 0)
6670 fprintf (f, "reload_out (%s) = ",
6671 GET_MODE_NAME (rld[r].outmode));
6672 print_inline_rtx (f, rld[r].out, 24);
6673 fprintf (f, "\n\t");
6676 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6678 fprintf (f, "%s (opnum = %d)",
6679 reload_when_needed_name[(int) rld[r].when_needed],
6680 rld[r].opnum);
6682 if (rld[r].optional)
6683 fprintf (f, ", optional");
6685 if (rld[r].nongroup)
6686 fprintf (f, ", nongroup");
6688 if (rld[r].inc != 0)
6689 fprintf (f, ", inc by %d", rld[r].inc);
6691 if (rld[r].nocombine)
6692 fprintf (f, ", can't combine");
6694 if (rld[r].secondary_p)
6695 fprintf (f, ", secondary_reload_p");
6697 if (rld[r].in_reg != 0)
6699 fprintf (f, "\n\treload_in_reg: ");
6700 print_inline_rtx (f, rld[r].in_reg, 24);
6703 if (rld[r].out_reg != 0)
6705 fprintf (f, "\n\treload_out_reg: ");
6706 print_inline_rtx (f, rld[r].out_reg, 24);
6709 if (rld[r].reg_rtx != 0)
6711 fprintf (f, "\n\treload_reg_rtx: ");
6712 print_inline_rtx (f, rld[r].reg_rtx, 24);
6715 prefix = "\n\t";
6716 if (rld[r].secondary_in_reload != -1)
6718 fprintf (f, "%ssecondary_in_reload = %d",
6719 prefix, rld[r].secondary_in_reload);
6720 prefix = ", ";
6723 if (rld[r].secondary_out_reload != -1)
6724 fprintf (f, "%ssecondary_out_reload = %d\n",
6725 prefix, rld[r].secondary_out_reload);
6727 prefix = "\n\t";
6728 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6730 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6731 insn_data[rld[r].secondary_in_icode].name);
6732 prefix = ", ";
6735 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6736 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6737 insn_data[rld[r].secondary_out_icode].name);
6739 fprintf (f, "\n");
6743 void
6744 debug_reload ()
6746 debug_reload_to_stream (stderr);