* gcc.dg/single-precision-constant.c: Tweak for non-C99 runtimes.
[official-gcc.git] / gcc / rtlanal.c
blobbbf7e71bf736349f9dc4812a0675eee14a703913
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
69 int target_flags;
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
76 int
77 rtx_unstable_p (rtx x)
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
83 switch (code)
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
115 /* Fall through. */
117 default:
118 break;
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
128 else if (fmt[i] == 'E')
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
136 return 0;
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
147 rtx_varies_p (rtx x, int for_alias)
149 RTX_CODE code;
150 int i;
151 const char *fmt;
153 if (!x)
154 return 0;
156 code = GET_CODE (x);
157 switch (code)
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
188 return 0;
189 return 1;
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
202 /* Fall through. */
204 default:
205 break;
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
215 else if (fmt[i] == 'E')
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
223 return 0;
226 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
227 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228 whether nonzero is returned for unaligned memory accesses on strict
229 alignment machines. */
231 static int
232 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
234 enum rtx_code code = GET_CODE (x);
236 switch (code)
238 case SYMBOL_REF:
239 return SYMBOL_REF_WEAK (x);
241 case LABEL_REF:
242 return 0;
244 case REG:
245 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
246 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247 || x == stack_pointer_rtx
248 /* The arg pointer varies if it is not a fixed register. */
249 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250 return 0;
251 /* All of the virtual frame registers are stack references. */
252 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254 return 0;
255 return 1;
257 case CONST:
258 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
260 case PLUS:
261 /* An address is assumed not to trap if:
262 - it is an address that can't trap plus a constant integer,
263 with the proper remainder modulo the mode size if we are
264 considering unaligned memory references. */
265 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266 && GET_CODE (XEXP (x, 1)) == CONST_INT)
268 HOST_WIDE_INT offset;
270 if (!STRICT_ALIGNMENT
271 || !unaligned_mems
272 || GET_MODE_SIZE (mode) == 0)
273 return 0;
275 offset = INTVAL (XEXP (x, 1));
277 #ifdef SPARC_STACK_BOUNDARY_HACK
278 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279 the real alignment of %sp. However, when it does this, the
280 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
281 if (SPARC_STACK_BOUNDARY_HACK
282 && (XEXP (x, 0) == stack_pointer_rtx
283 || XEXP (x, 0) == hard_frame_pointer_rtx))
284 offset -= STACK_POINTER_OFFSET;
285 #endif
287 return offset % GET_MODE_SIZE (mode) != 0;
290 /* - or it is the pic register plus a constant. */
291 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292 return 0;
294 return 1;
296 case LO_SUM:
297 case PRE_MODIFY:
298 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
300 case PRE_DEC:
301 case PRE_INC:
302 case POST_DEC:
303 case POST_INC:
304 case POST_MODIFY:
305 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
307 default:
308 break;
311 /* If it isn't one of the case above, it can cause a trap. */
312 return 1;
315 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
318 rtx_addr_can_trap_p (rtx x)
320 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
323 /* Return true if X is an address that is known to not be zero. */
325 bool
326 nonzero_address_p (rtx x)
328 enum rtx_code code = GET_CODE (x);
330 switch (code)
332 case SYMBOL_REF:
333 return !SYMBOL_REF_WEAK (x);
335 case LABEL_REF:
336 return true;
338 case REG:
339 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
340 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341 || x == stack_pointer_rtx
342 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343 return true;
344 /* All of the virtual frame registers are stack references. */
345 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347 return true;
348 return false;
350 case CONST:
351 return nonzero_address_p (XEXP (x, 0));
353 case PLUS:
354 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
356 /* Pointers aren't allowed to wrap. If we've got a register
357 that is known to be a pointer, and a positive offset, then
358 the composite can't be zero. */
359 if (INTVAL (XEXP (x, 1)) > 0
360 && REG_P (XEXP (x, 0))
361 && REG_POINTER (XEXP (x, 0)))
362 return true;
364 return nonzero_address_p (XEXP (x, 0));
366 /* Handle PIC references. */
367 else if (XEXP (x, 0) == pic_offset_table_rtx
368 && CONSTANT_P (XEXP (x, 1)))
369 return true;
370 return false;
372 case PRE_MODIFY:
373 /* Similar to the above; allow positive offsets. Further, since
374 auto-inc is only allowed in memories, the register must be a
375 pointer. */
376 if (GET_CODE (XEXP (x, 1)) == CONST_INT
377 && INTVAL (XEXP (x, 1)) > 0)
378 return true;
379 return nonzero_address_p (XEXP (x, 0));
381 case PRE_INC:
382 /* Similarly. Further, the offset is always positive. */
383 return true;
385 case PRE_DEC:
386 case POST_DEC:
387 case POST_INC:
388 case POST_MODIFY:
389 return nonzero_address_p (XEXP (x, 0));
391 case LO_SUM:
392 return nonzero_address_p (XEXP (x, 1));
394 default:
395 break;
398 /* If it isn't one of the case above, might be zero. */
399 return false;
402 /* Return 1 if X refers to a memory location whose address
403 cannot be compared reliably with constant addresses,
404 or if X refers to a BLKmode memory object.
405 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406 zero, we are slightly more conservative. */
409 rtx_addr_varies_p (rtx x, int for_alias)
411 enum rtx_code code;
412 int i;
413 const char *fmt;
415 if (x == 0)
416 return 0;
418 code = GET_CODE (x);
419 if (code == MEM)
420 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
422 fmt = GET_RTX_FORMAT (code);
423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424 if (fmt[i] == 'e')
426 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427 return 1;
429 else if (fmt[i] == 'E')
431 int j;
432 for (j = 0; j < XVECLEN (x, i); j++)
433 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434 return 1;
436 return 0;
439 /* Return the value of the integer term in X, if one is apparent;
440 otherwise return 0.
441 Only obvious integer terms are detected.
442 This is used in cse.c with the `related_value' field. */
444 HOST_WIDE_INT
445 get_integer_term (rtx x)
447 if (GET_CODE (x) == CONST)
448 x = XEXP (x, 0);
450 if (GET_CODE (x) == MINUS
451 && GET_CODE (XEXP (x, 1)) == CONST_INT)
452 return - INTVAL (XEXP (x, 1));
453 if (GET_CODE (x) == PLUS
454 && GET_CODE (XEXP (x, 1)) == CONST_INT)
455 return INTVAL (XEXP (x, 1));
456 return 0;
459 /* If X is a constant, return the value sans apparent integer term;
460 otherwise return 0.
461 Only obvious integer terms are detected. */
464 get_related_value (rtx x)
466 if (GET_CODE (x) != CONST)
467 return 0;
468 x = XEXP (x, 0);
469 if (GET_CODE (x) == PLUS
470 && GET_CODE (XEXP (x, 1)) == CONST_INT)
471 return XEXP (x, 0);
472 else if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return XEXP (x, 0);
475 return 0;
478 /* Return the number of places FIND appears within X. If COUNT_DEST is
479 zero, we do not count occurrences inside the destination of a SET. */
482 count_occurrences (rtx x, rtx find, int count_dest)
484 int i, j;
485 enum rtx_code code;
486 const char *format_ptr;
487 int count;
489 if (x == find)
490 return 1;
492 code = GET_CODE (x);
494 switch (code)
496 case REG:
497 case CONST_INT:
498 case CONST_DOUBLE:
499 case CONST_VECTOR:
500 case SYMBOL_REF:
501 case CODE_LABEL:
502 case PC:
503 case CC0:
504 return 0;
506 case MEM:
507 if (MEM_P (find) && rtx_equal_p (x, find))
508 return 1;
509 break;
511 case SET:
512 if (SET_DEST (x) == find && ! count_dest)
513 return count_occurrences (SET_SRC (x), find, count_dest);
514 break;
516 default:
517 break;
520 format_ptr = GET_RTX_FORMAT (code);
521 count = 0;
523 for (i = 0; i < GET_RTX_LENGTH (code); i++)
525 switch (*format_ptr++)
527 case 'e':
528 count += count_occurrences (XEXP (x, i), find, count_dest);
529 break;
531 case 'E':
532 for (j = 0; j < XVECLEN (x, i); j++)
533 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
534 break;
537 return count;
540 /* Nonzero if register REG appears somewhere within IN.
541 Also works if REG is not a register; in this case it checks
542 for a subexpression of IN that is Lisp "equal" to REG. */
545 reg_mentioned_p (rtx reg, rtx in)
547 const char *fmt;
548 int i;
549 enum rtx_code code;
551 if (in == 0)
552 return 0;
554 if (reg == in)
555 return 1;
557 if (GET_CODE (in) == LABEL_REF)
558 return reg == XEXP (in, 0);
560 code = GET_CODE (in);
562 switch (code)
564 /* Compare registers by number. */
565 case REG:
566 return REG_P (reg) && REGNO (in) == REGNO (reg);
568 /* These codes have no constituent expressions
569 and are unique. */
570 case SCRATCH:
571 case CC0:
572 case PC:
573 return 0;
575 case CONST_INT:
576 case CONST_VECTOR:
577 case CONST_DOUBLE:
578 /* These are kept unique for a given value. */
579 return 0;
581 default:
582 break;
585 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
586 return 1;
588 fmt = GET_RTX_FORMAT (code);
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
592 if (fmt[i] == 'E')
594 int j;
595 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
596 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
597 return 1;
599 else if (fmt[i] == 'e'
600 && reg_mentioned_p (reg, XEXP (in, i)))
601 return 1;
603 return 0;
606 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
607 no CODE_LABEL insn. */
610 no_labels_between_p (rtx beg, rtx end)
612 rtx p;
613 if (beg == end)
614 return 0;
615 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
616 if (LABEL_P (p))
617 return 0;
618 return 1;
621 /* Nonzero if register REG is used in an insn between
622 FROM_INSN and TO_INSN (exclusive of those two). */
625 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
627 rtx insn;
629 if (from_insn == to_insn)
630 return 0;
632 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
633 if (INSN_P (insn)
634 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
635 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
636 return 1;
637 return 0;
640 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
641 is entirely replaced by a new value and the only use is as a SET_DEST,
642 we do not consider it a reference. */
645 reg_referenced_p (rtx x, rtx body)
647 int i;
649 switch (GET_CODE (body))
651 case SET:
652 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
653 return 1;
655 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
656 of a REG that occupies all of the REG, the insn references X if
657 it is mentioned in the destination. */
658 if (GET_CODE (SET_DEST (body)) != CC0
659 && GET_CODE (SET_DEST (body)) != PC
660 && !REG_P (SET_DEST (body))
661 && ! (GET_CODE (SET_DEST (body)) == SUBREG
662 && REG_P (SUBREG_REG (SET_DEST (body)))
663 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
664 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
665 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
666 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
667 && reg_overlap_mentioned_p (x, SET_DEST (body)))
668 return 1;
669 return 0;
671 case ASM_OPERANDS:
672 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
673 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
674 return 1;
675 return 0;
677 case CALL:
678 case USE:
679 case IF_THEN_ELSE:
680 return reg_overlap_mentioned_p (x, body);
682 case TRAP_IF:
683 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
685 case PREFETCH:
686 return reg_overlap_mentioned_p (x, XEXP (body, 0));
688 case UNSPEC:
689 case UNSPEC_VOLATILE:
690 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
691 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
692 return 1;
693 return 0;
695 case PARALLEL:
696 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
698 return 1;
699 return 0;
701 case CLOBBER:
702 if (MEM_P (XEXP (body, 0)))
703 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
704 return 1;
705 return 0;
707 case COND_EXEC:
708 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
709 return 1;
710 return reg_referenced_p (x, COND_EXEC_CODE (body));
712 default:
713 return 0;
717 /* Nonzero if register REG is set or clobbered in an insn between
718 FROM_INSN and TO_INSN (exclusive of those two). */
721 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
723 rtx insn;
725 if (from_insn == to_insn)
726 return 0;
728 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
729 if (INSN_P (insn) && reg_set_p (reg, insn))
730 return 1;
731 return 0;
734 /* Internals of reg_set_between_p. */
736 reg_set_p (rtx reg, rtx insn)
738 /* We can be passed an insn or part of one. If we are passed an insn,
739 check if a side-effect of the insn clobbers REG. */
740 if (INSN_P (insn)
741 && (FIND_REG_INC_NOTE (insn, reg)
742 || (CALL_P (insn)
743 && ((REG_P (reg)
744 && REGNO (reg) < FIRST_PSEUDO_REGISTER
745 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
746 REGNO (reg)))
747 || MEM_P (reg)
748 || find_reg_fusage (insn, CLOBBER, reg)))))
749 return 1;
751 return set_of (reg, insn) != NULL_RTX;
754 /* Similar to reg_set_between_p, but check all registers in X. Return 0
755 only if none of them are modified between START and END. Return 1 if
756 X contains a MEM; this routine does usememory aliasing. */
759 modified_between_p (rtx x, rtx start, rtx end)
761 enum rtx_code code = GET_CODE (x);
762 const char *fmt;
763 int i, j;
764 rtx insn;
766 if (start == end)
767 return 0;
769 switch (code)
771 case CONST_INT:
772 case CONST_DOUBLE:
773 case CONST_VECTOR:
774 case CONST:
775 case SYMBOL_REF:
776 case LABEL_REF:
777 return 0;
779 case PC:
780 case CC0:
781 return 1;
783 case MEM:
784 if (modified_between_p (XEXP (x, 0), start, end))
785 return 1;
786 if (MEM_READONLY_P (x))
787 return 0;
788 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
789 if (memory_modified_in_insn_p (x, insn))
790 return 1;
791 return 0;
792 break;
794 case REG:
795 return reg_set_between_p (x, start, end);
797 default:
798 break;
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
804 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
805 return 1;
807 else if (fmt[i] == 'E')
808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
809 if (modified_between_p (XVECEXP (x, i, j), start, end))
810 return 1;
813 return 0;
816 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
817 of them are modified in INSN. Return 1 if X contains a MEM; this routine
818 does use memory aliasing. */
821 modified_in_p (rtx x, rtx insn)
823 enum rtx_code code = GET_CODE (x);
824 const char *fmt;
825 int i, j;
827 switch (code)
829 case CONST_INT:
830 case CONST_DOUBLE:
831 case CONST_VECTOR:
832 case CONST:
833 case SYMBOL_REF:
834 case LABEL_REF:
835 return 0;
837 case PC:
838 case CC0:
839 return 1;
841 case MEM:
842 if (modified_in_p (XEXP (x, 0), insn))
843 return 1;
844 if (MEM_READONLY_P (x))
845 return 0;
846 if (memory_modified_in_insn_p (x, insn))
847 return 1;
848 return 0;
849 break;
851 case REG:
852 return reg_set_p (x, insn);
854 default:
855 break;
858 fmt = GET_RTX_FORMAT (code);
859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
861 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
862 return 1;
864 else if (fmt[i] == 'E')
865 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
866 if (modified_in_p (XVECEXP (x, i, j), insn))
867 return 1;
870 return 0;
873 /* Helper function for set_of. */
874 struct set_of_data
876 rtx found;
877 rtx pat;
880 static void
881 set_of_1 (rtx x, rtx pat, void *data1)
883 struct set_of_data *data = (struct set_of_data *) (data1);
884 if (rtx_equal_p (x, data->pat)
885 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
886 data->found = pat;
889 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
890 (either directly or via STRICT_LOW_PART and similar modifiers). */
892 set_of (rtx pat, rtx insn)
894 struct set_of_data data;
895 data.found = NULL_RTX;
896 data.pat = pat;
897 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
898 return data.found;
901 /* Given an INSN, return a SET expression if this insn has only a single SET.
902 It may also have CLOBBERs, USEs, or SET whose output
903 will not be used, which we ignore. */
906 single_set_2 (rtx insn, rtx pat)
908 rtx set = NULL;
909 int set_verified = 1;
910 int i;
912 if (GET_CODE (pat) == PARALLEL)
914 for (i = 0; i < XVECLEN (pat, 0); i++)
916 rtx sub = XVECEXP (pat, 0, i);
917 switch (GET_CODE (sub))
919 case USE:
920 case CLOBBER:
921 break;
923 case SET:
924 /* We can consider insns having multiple sets, where all
925 but one are dead as single set insns. In common case
926 only single set is present in the pattern so we want
927 to avoid checking for REG_UNUSED notes unless necessary.
929 When we reach set first time, we just expect this is
930 the single set we are looking for and only when more
931 sets are found in the insn, we check them. */
932 if (!set_verified)
934 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
935 && !side_effects_p (set))
936 set = NULL;
937 else
938 set_verified = 1;
940 if (!set)
941 set = sub, set_verified = 0;
942 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
943 || side_effects_p (sub))
944 return NULL_RTX;
945 break;
947 default:
948 return NULL_RTX;
952 return set;
955 /* Given an INSN, return nonzero if it has more than one SET, else return
956 zero. */
959 multiple_sets (rtx insn)
961 int found;
962 int i;
964 /* INSN must be an insn. */
965 if (! INSN_P (insn))
966 return 0;
968 /* Only a PARALLEL can have multiple SETs. */
969 if (GET_CODE (PATTERN (insn)) == PARALLEL)
971 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
972 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
974 /* If we have already found a SET, then return now. */
975 if (found)
976 return 1;
977 else
978 found = 1;
982 /* Either zero or one SET. */
983 return 0;
986 /* Return nonzero if the destination of SET equals the source
987 and there are no side effects. */
990 set_noop_p (rtx set)
992 rtx src = SET_SRC (set);
993 rtx dst = SET_DEST (set);
995 if (dst == pc_rtx && src == pc_rtx)
996 return 1;
998 if (MEM_P (dst) && MEM_P (src))
999 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1001 if (GET_CODE (dst) == ZERO_EXTRACT)
1002 return rtx_equal_p (XEXP (dst, 0), src)
1003 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1004 && !side_effects_p (src);
1006 if (GET_CODE (dst) == STRICT_LOW_PART)
1007 dst = XEXP (dst, 0);
1009 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1011 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1012 return 0;
1013 src = SUBREG_REG (src);
1014 dst = SUBREG_REG (dst);
1017 return (REG_P (src) && REG_P (dst)
1018 && REGNO (src) == REGNO (dst));
1021 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1022 value to itself. */
1025 noop_move_p (rtx insn)
1027 rtx pat = PATTERN (insn);
1029 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1030 return 1;
1032 /* Insns carrying these notes are useful later on. */
1033 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1034 return 0;
1036 /* For now treat an insn with a REG_RETVAL note as a
1037 a special insn which should not be considered a no-op. */
1038 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1039 return 0;
1041 if (GET_CODE (pat) == SET && set_noop_p (pat))
1042 return 1;
1044 if (GET_CODE (pat) == PARALLEL)
1046 int i;
1047 /* If nothing but SETs of registers to themselves,
1048 this insn can also be deleted. */
1049 for (i = 0; i < XVECLEN (pat, 0); i++)
1051 rtx tem = XVECEXP (pat, 0, i);
1053 if (GET_CODE (tem) == USE
1054 || GET_CODE (tem) == CLOBBER)
1055 continue;
1057 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1058 return 0;
1061 return 1;
1063 return 0;
1067 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1068 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1069 If the object was modified, if we hit a partial assignment to X, or hit a
1070 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1071 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1072 be the src. */
1075 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1077 rtx p;
1079 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1080 p = PREV_INSN (p))
1081 if (INSN_P (p))
1083 rtx set = single_set (p);
1084 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1086 if (set && rtx_equal_p (x, SET_DEST (set)))
1088 rtx src = SET_SRC (set);
1090 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1091 src = XEXP (note, 0);
1093 if ((valid_to == NULL_RTX
1094 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1095 /* Reject hard registers because we don't usually want
1096 to use them; we'd rather use a pseudo. */
1097 && (! (REG_P (src)
1098 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1100 *pinsn = p;
1101 return src;
1105 /* If set in non-simple way, we don't have a value. */
1106 if (reg_set_p (x, p))
1107 break;
1110 return x;
1113 /* Return nonzero if register in range [REGNO, ENDREGNO)
1114 appears either explicitly or implicitly in X
1115 other than being stored into.
1117 References contained within the substructure at LOC do not count.
1118 LOC may be zero, meaning don't ignore anything. */
1121 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1122 rtx *loc)
1124 int i;
1125 unsigned int x_regno;
1126 RTX_CODE code;
1127 const char *fmt;
1129 repeat:
1130 /* The contents of a REG_NONNEG note is always zero, so we must come here
1131 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1132 if (x == 0)
1133 return 0;
1135 code = GET_CODE (x);
1137 switch (code)
1139 case REG:
1140 x_regno = REGNO (x);
1142 /* If we modifying the stack, frame, or argument pointer, it will
1143 clobber a virtual register. In fact, we could be more precise,
1144 but it isn't worth it. */
1145 if ((x_regno == STACK_POINTER_REGNUM
1146 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1147 || x_regno == ARG_POINTER_REGNUM
1148 #endif
1149 || x_regno == FRAME_POINTER_REGNUM)
1150 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1151 return 1;
1153 return (endregno > x_regno
1154 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1155 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1156 : 1));
1158 case SUBREG:
1159 /* If this is a SUBREG of a hard reg, we can see exactly which
1160 registers are being modified. Otherwise, handle normally. */
1161 if (REG_P (SUBREG_REG (x))
1162 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1164 unsigned int inner_regno = subreg_regno (x);
1165 unsigned int inner_endregno
1166 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1167 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1169 return endregno > inner_regno && regno < inner_endregno;
1171 break;
1173 case CLOBBER:
1174 case SET:
1175 if (&SET_DEST (x) != loc
1176 /* Note setting a SUBREG counts as referring to the REG it is in for
1177 a pseudo but not for hard registers since we can
1178 treat each word individually. */
1179 && ((GET_CODE (SET_DEST (x)) == SUBREG
1180 && loc != &SUBREG_REG (SET_DEST (x))
1181 && REG_P (SUBREG_REG (SET_DEST (x)))
1182 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1183 && refers_to_regno_p (regno, endregno,
1184 SUBREG_REG (SET_DEST (x)), loc))
1185 || (!REG_P (SET_DEST (x))
1186 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1187 return 1;
1189 if (code == CLOBBER || loc == &SET_SRC (x))
1190 return 0;
1191 x = SET_SRC (x);
1192 goto repeat;
1194 default:
1195 break;
1198 /* X does not match, so try its subexpressions. */
1200 fmt = GET_RTX_FORMAT (code);
1201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1203 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1205 if (i == 0)
1207 x = XEXP (x, 0);
1208 goto repeat;
1210 else
1211 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1212 return 1;
1214 else if (fmt[i] == 'E')
1216 int j;
1217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 if (loc != &XVECEXP (x, i, j)
1219 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1220 return 1;
1223 return 0;
1226 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1227 we check if any register number in X conflicts with the relevant register
1228 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1229 contains a MEM (we don't bother checking for memory addresses that can't
1230 conflict because we expect this to be a rare case. */
1233 reg_overlap_mentioned_p (rtx x, rtx in)
1235 unsigned int regno, endregno;
1237 /* If either argument is a constant, then modifying X can not
1238 affect IN. Here we look at IN, we can profitably combine
1239 CONSTANT_P (x) with the switch statement below. */
1240 if (CONSTANT_P (in))
1241 return 0;
1243 recurse:
1244 switch (GET_CODE (x))
1246 case STRICT_LOW_PART:
1247 case ZERO_EXTRACT:
1248 case SIGN_EXTRACT:
1249 /* Overly conservative. */
1250 x = XEXP (x, 0);
1251 goto recurse;
1253 case SUBREG:
1254 regno = REGNO (SUBREG_REG (x));
1255 if (regno < FIRST_PSEUDO_REGISTER)
1256 regno = subreg_regno (x);
1257 goto do_reg;
1259 case REG:
1260 regno = REGNO (x);
1261 do_reg:
1262 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1263 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1264 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1266 case MEM:
1268 const char *fmt;
1269 int i;
1271 if (MEM_P (in))
1272 return 1;
1274 fmt = GET_RTX_FORMAT (GET_CODE (in));
1275 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1278 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1279 return 1;
1281 else if (fmt[i] == 'E')
1283 int j;
1284 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1285 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1286 return 1;
1289 return 0;
1292 case SCRATCH:
1293 case PC:
1294 case CC0:
1295 return reg_mentioned_p (x, in);
1297 case PARALLEL:
1299 int i;
1301 /* If any register in here refers to it we return true. */
1302 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1303 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1304 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1305 return 1;
1306 return 0;
1309 default:
1310 gcc_assert (CONSTANT_P (x));
1311 return 0;
1315 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1316 (X would be the pattern of an insn).
1317 FUN receives two arguments:
1318 the REG, MEM, CC0 or PC being stored in or clobbered,
1319 the SET or CLOBBER rtx that does the store.
1321 If the item being stored in or clobbered is a SUBREG of a hard register,
1322 the SUBREG will be passed. */
1324 void
1325 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1327 int i;
1329 if (GET_CODE (x) == COND_EXEC)
1330 x = COND_EXEC_CODE (x);
1332 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1334 rtx dest = SET_DEST (x);
1336 while ((GET_CODE (dest) == SUBREG
1337 && (!REG_P (SUBREG_REG (dest))
1338 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1339 || GET_CODE (dest) == ZERO_EXTRACT
1340 || GET_CODE (dest) == STRICT_LOW_PART)
1341 dest = XEXP (dest, 0);
1343 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1344 each of whose first operand is a register. */
1345 if (GET_CODE (dest) == PARALLEL)
1347 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1348 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1349 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1351 else
1352 (*fun) (dest, x, data);
1355 else if (GET_CODE (x) == PARALLEL)
1356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1357 note_stores (XVECEXP (x, 0, i), fun, data);
1360 /* Like notes_stores, but call FUN for each expression that is being
1361 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1362 FUN for each expression, not any interior subexpressions. FUN receives a
1363 pointer to the expression and the DATA passed to this function.
1365 Note that this is not quite the same test as that done in reg_referenced_p
1366 since that considers something as being referenced if it is being
1367 partially set, while we do not. */
1369 void
1370 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1372 rtx body = *pbody;
1373 int i;
1375 switch (GET_CODE (body))
1377 case COND_EXEC:
1378 (*fun) (&COND_EXEC_TEST (body), data);
1379 note_uses (&COND_EXEC_CODE (body), fun, data);
1380 return;
1382 case PARALLEL:
1383 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1384 note_uses (&XVECEXP (body, 0, i), fun, data);
1385 return;
1387 case USE:
1388 (*fun) (&XEXP (body, 0), data);
1389 return;
1391 case ASM_OPERANDS:
1392 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1393 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1394 return;
1396 case TRAP_IF:
1397 (*fun) (&TRAP_CONDITION (body), data);
1398 return;
1400 case PREFETCH:
1401 (*fun) (&XEXP (body, 0), data);
1402 return;
1404 case UNSPEC:
1405 case UNSPEC_VOLATILE:
1406 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1407 (*fun) (&XVECEXP (body, 0, i), data);
1408 return;
1410 case CLOBBER:
1411 if (MEM_P (XEXP (body, 0)))
1412 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1413 return;
1415 case SET:
1417 rtx dest = SET_DEST (body);
1419 /* For sets we replace everything in source plus registers in memory
1420 expression in store and operands of a ZERO_EXTRACT. */
1421 (*fun) (&SET_SRC (body), data);
1423 if (GET_CODE (dest) == ZERO_EXTRACT)
1425 (*fun) (&XEXP (dest, 1), data);
1426 (*fun) (&XEXP (dest, 2), data);
1429 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1430 dest = XEXP (dest, 0);
1432 if (MEM_P (dest))
1433 (*fun) (&XEXP (dest, 0), data);
1435 return;
1437 default:
1438 /* All the other possibilities never store. */
1439 (*fun) (pbody, data);
1440 return;
1444 /* Return nonzero if X's old contents don't survive after INSN.
1445 This will be true if X is (cc0) or if X is a register and
1446 X dies in INSN or because INSN entirely sets X.
1448 "Entirely set" means set directly and not through a SUBREG, or
1449 ZERO_EXTRACT, so no trace of the old contents remains.
1450 Likewise, REG_INC does not count.
1452 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1453 but for this use that makes no difference, since regs don't overlap
1454 during their lifetimes. Therefore, this function may be used
1455 at any time after deaths have been computed (in flow.c).
1457 If REG is a hard reg that occupies multiple machine registers, this
1458 function will only return 1 if each of those registers will be replaced
1459 by INSN. */
1462 dead_or_set_p (rtx insn, rtx x)
1464 unsigned int regno, last_regno;
1465 unsigned int i;
1467 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1468 if (GET_CODE (x) == CC0)
1469 return 1;
1471 gcc_assert (REG_P (x));
1473 regno = REGNO (x);
1474 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1475 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1477 for (i = regno; i <= last_regno; i++)
1478 if (! dead_or_set_regno_p (insn, i))
1479 return 0;
1481 return 1;
1484 /* Return TRUE iff DEST is a register or subreg of a register and
1485 doesn't change the number of words of the inner register, and any
1486 part of the register is TEST_REGNO. */
1488 static bool
1489 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1491 unsigned int regno, endregno;
1493 if (GET_CODE (dest) == SUBREG
1494 && (((GET_MODE_SIZE (GET_MODE (dest))
1495 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1496 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1497 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1498 dest = SUBREG_REG (dest);
1500 if (!REG_P (dest))
1501 return false;
1503 regno = REGNO (dest);
1504 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1505 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1506 return (test_regno >= regno && test_regno < endregno);
1509 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1510 any member matches the covers_regno_no_parallel_p criteria. */
1512 static bool
1513 covers_regno_p (rtx dest, unsigned int test_regno)
1515 if (GET_CODE (dest) == PARALLEL)
1517 /* Some targets place small structures in registers for return
1518 values of functions, and those registers are wrapped in
1519 PARALLELs that we may see as the destination of a SET. */
1520 int i;
1522 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1524 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1525 if (inner != NULL_RTX
1526 && covers_regno_no_parallel_p (inner, test_regno))
1527 return true;
1530 return false;
1532 else
1533 return covers_regno_no_parallel_p (dest, test_regno);
1536 /* Utility function for dead_or_set_p to check an individual register. Also
1537 called from flow.c. */
1540 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1542 rtx pattern;
1544 /* See if there is a death note for something that includes TEST_REGNO. */
1545 if (find_regno_note (insn, REG_DEAD, test_regno))
1546 return 1;
1548 if (CALL_P (insn)
1549 && find_regno_fusage (insn, CLOBBER, test_regno))
1550 return 1;
1552 pattern = PATTERN (insn);
1554 if (GET_CODE (pattern) == COND_EXEC)
1555 pattern = COND_EXEC_CODE (pattern);
1557 if (GET_CODE (pattern) == SET)
1558 return covers_regno_p (SET_DEST (pattern), test_regno);
1559 else if (GET_CODE (pattern) == PARALLEL)
1561 int i;
1563 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1565 rtx body = XVECEXP (pattern, 0, i);
1567 if (GET_CODE (body) == COND_EXEC)
1568 body = COND_EXEC_CODE (body);
1570 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1571 && covers_regno_p (SET_DEST (body), test_regno))
1572 return 1;
1576 return 0;
1579 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1580 If DATUM is nonzero, look for one whose datum is DATUM. */
1583 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1585 rtx link;
1587 gcc_assert (insn);
1589 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1590 if (! INSN_P (insn))
1591 return 0;
1592 if (datum == 0)
1594 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1595 if (REG_NOTE_KIND (link) == kind)
1596 return link;
1597 return 0;
1600 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1602 return link;
1603 return 0;
1606 /* Return the reg-note of kind KIND in insn INSN which applies to register
1607 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1608 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1609 it might be the case that the note overlaps REGNO. */
1612 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1614 rtx link;
1616 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1617 if (! INSN_P (insn))
1618 return 0;
1620 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1621 if (REG_NOTE_KIND (link) == kind
1622 /* Verify that it is a register, so that scratch and MEM won't cause a
1623 problem here. */
1624 && REG_P (XEXP (link, 0))
1625 && REGNO (XEXP (link, 0)) <= regno
1626 && ((REGNO (XEXP (link, 0))
1627 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1628 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1629 [GET_MODE (XEXP (link, 0))]))
1630 > regno))
1631 return link;
1632 return 0;
1635 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1636 has such a note. */
1639 find_reg_equal_equiv_note (rtx insn)
1641 rtx link;
1643 if (!INSN_P (insn))
1644 return 0;
1645 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1646 if (REG_NOTE_KIND (link) == REG_EQUAL
1647 || REG_NOTE_KIND (link) == REG_EQUIV)
1649 if (single_set (insn) == 0)
1650 return 0;
1651 return link;
1653 return NULL;
1656 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1657 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1660 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1662 /* If it's not a CALL_INSN, it can't possibly have a
1663 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1664 if (!CALL_P (insn))
1665 return 0;
1667 gcc_assert (datum);
1669 if (!REG_P (datum))
1671 rtx link;
1673 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1674 link;
1675 link = XEXP (link, 1))
1676 if (GET_CODE (XEXP (link, 0)) == code
1677 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1678 return 1;
1680 else
1682 unsigned int regno = REGNO (datum);
1684 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1685 to pseudo registers, so don't bother checking. */
1687 if (regno < FIRST_PSEUDO_REGISTER)
1689 unsigned int end_regno
1690 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1691 unsigned int i;
1693 for (i = regno; i < end_regno; i++)
1694 if (find_regno_fusage (insn, code, i))
1695 return 1;
1699 return 0;
1702 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1703 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1706 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1708 rtx link;
1710 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1711 to pseudo registers, so don't bother checking. */
1713 if (regno >= FIRST_PSEUDO_REGISTER
1714 || !CALL_P (insn) )
1715 return 0;
1717 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1719 unsigned int regnote;
1720 rtx op, reg;
1722 if (GET_CODE (op = XEXP (link, 0)) == code
1723 && REG_P (reg = XEXP (op, 0))
1724 && (regnote = REGNO (reg)) <= regno
1725 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1726 return 1;
1729 return 0;
1732 /* Return true if INSN is a call to a pure function. */
1735 pure_call_p (rtx insn)
1737 rtx link;
1739 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1740 return 0;
1742 /* Look for the note that differentiates const and pure functions. */
1743 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1745 rtx u, m;
1747 if (GET_CODE (u = XEXP (link, 0)) == USE
1748 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1749 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1750 return 1;
1753 return 0;
1756 /* Remove register note NOTE from the REG_NOTES of INSN. */
1758 void
1759 remove_note (rtx insn, rtx note)
1761 rtx link;
1763 if (note == NULL_RTX)
1764 return;
1766 if (REG_NOTES (insn) == note)
1768 REG_NOTES (insn) = XEXP (note, 1);
1769 return;
1772 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1773 if (XEXP (link, 1) == note)
1775 XEXP (link, 1) = XEXP (note, 1);
1776 return;
1779 gcc_unreachable ();
1782 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1783 return 1 if it is found. A simple equality test is used to determine if
1784 NODE matches. */
1787 in_expr_list_p (rtx listp, rtx node)
1789 rtx x;
1791 for (x = listp; x; x = XEXP (x, 1))
1792 if (node == XEXP (x, 0))
1793 return 1;
1795 return 0;
1798 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1799 remove that entry from the list if it is found.
1801 A simple equality test is used to determine if NODE matches. */
1803 void
1804 remove_node_from_expr_list (rtx node, rtx *listp)
1806 rtx temp = *listp;
1807 rtx prev = NULL_RTX;
1809 while (temp)
1811 if (node == XEXP (temp, 0))
1813 /* Splice the node out of the list. */
1814 if (prev)
1815 XEXP (prev, 1) = XEXP (temp, 1);
1816 else
1817 *listp = XEXP (temp, 1);
1819 return;
1822 prev = temp;
1823 temp = XEXP (temp, 1);
1827 /* Nonzero if X contains any volatile instructions. These are instructions
1828 which may cause unpredictable machine state instructions, and thus no
1829 instructions should be moved or combined across them. This includes
1830 only volatile asms and UNSPEC_VOLATILE instructions. */
1833 volatile_insn_p (rtx x)
1835 RTX_CODE code;
1837 code = GET_CODE (x);
1838 switch (code)
1840 case LABEL_REF:
1841 case SYMBOL_REF:
1842 case CONST_INT:
1843 case CONST:
1844 case CONST_DOUBLE:
1845 case CONST_VECTOR:
1846 case CC0:
1847 case PC:
1848 case REG:
1849 case SCRATCH:
1850 case CLOBBER:
1851 case ADDR_VEC:
1852 case ADDR_DIFF_VEC:
1853 case CALL:
1854 case MEM:
1855 return 0;
1857 case UNSPEC_VOLATILE:
1858 /* case TRAP_IF: This isn't clear yet. */
1859 return 1;
1861 case ASM_INPUT:
1862 case ASM_OPERANDS:
1863 if (MEM_VOLATILE_P (x))
1864 return 1;
1866 default:
1867 break;
1870 /* Recursively scan the operands of this expression. */
1873 const char *fmt = GET_RTX_FORMAT (code);
1874 int i;
1876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1878 if (fmt[i] == 'e')
1880 if (volatile_insn_p (XEXP (x, i)))
1881 return 1;
1883 else if (fmt[i] == 'E')
1885 int j;
1886 for (j = 0; j < XVECLEN (x, i); j++)
1887 if (volatile_insn_p (XVECEXP (x, i, j)))
1888 return 1;
1892 return 0;
1895 /* Nonzero if X contains any volatile memory references
1896 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1899 volatile_refs_p (rtx x)
1901 RTX_CODE code;
1903 code = GET_CODE (x);
1904 switch (code)
1906 case LABEL_REF:
1907 case SYMBOL_REF:
1908 case CONST_INT:
1909 case CONST:
1910 case CONST_DOUBLE:
1911 case CONST_VECTOR:
1912 case CC0:
1913 case PC:
1914 case REG:
1915 case SCRATCH:
1916 case CLOBBER:
1917 case ADDR_VEC:
1918 case ADDR_DIFF_VEC:
1919 return 0;
1921 case UNSPEC_VOLATILE:
1922 return 1;
1924 case MEM:
1925 case ASM_INPUT:
1926 case ASM_OPERANDS:
1927 if (MEM_VOLATILE_P (x))
1928 return 1;
1930 default:
1931 break;
1934 /* Recursively scan the operands of this expression. */
1937 const char *fmt = GET_RTX_FORMAT (code);
1938 int i;
1940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1942 if (fmt[i] == 'e')
1944 if (volatile_refs_p (XEXP (x, i)))
1945 return 1;
1947 else if (fmt[i] == 'E')
1949 int j;
1950 for (j = 0; j < XVECLEN (x, i); j++)
1951 if (volatile_refs_p (XVECEXP (x, i, j)))
1952 return 1;
1956 return 0;
1959 /* Similar to above, except that it also rejects register pre- and post-
1960 incrementing. */
1963 side_effects_p (rtx x)
1965 RTX_CODE code;
1967 code = GET_CODE (x);
1968 switch (code)
1970 case LABEL_REF:
1971 case SYMBOL_REF:
1972 case CONST_INT:
1973 case CONST:
1974 case CONST_DOUBLE:
1975 case CONST_VECTOR:
1976 case CC0:
1977 case PC:
1978 case REG:
1979 case SCRATCH:
1980 case ADDR_VEC:
1981 case ADDR_DIFF_VEC:
1982 return 0;
1984 case CLOBBER:
1985 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1986 when some combination can't be done. If we see one, don't think
1987 that we can simplify the expression. */
1988 return (GET_MODE (x) != VOIDmode);
1990 case PRE_INC:
1991 case PRE_DEC:
1992 case POST_INC:
1993 case POST_DEC:
1994 case PRE_MODIFY:
1995 case POST_MODIFY:
1996 case CALL:
1997 case UNSPEC_VOLATILE:
1998 /* case TRAP_IF: This isn't clear yet. */
1999 return 1;
2001 case MEM:
2002 case ASM_INPUT:
2003 case ASM_OPERANDS:
2004 if (MEM_VOLATILE_P (x))
2005 return 1;
2007 default:
2008 break;
2011 /* Recursively scan the operands of this expression. */
2014 const char *fmt = GET_RTX_FORMAT (code);
2015 int i;
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2019 if (fmt[i] == 'e')
2021 if (side_effects_p (XEXP (x, i)))
2022 return 1;
2024 else if (fmt[i] == 'E')
2026 int j;
2027 for (j = 0; j < XVECLEN (x, i); j++)
2028 if (side_effects_p (XVECEXP (x, i, j)))
2029 return 1;
2033 return 0;
2036 enum may_trap_p_flags
2038 MTP_UNALIGNED_MEMS = 1,
2039 MTP_AFTER_MOVE = 2
2041 /* Return nonzero if evaluating rtx X might cause a trap.
2042 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2043 unaligned memory accesses on strict alignment machines. If
2044 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2045 cannot trap at its current location, but it might become trapping if moved
2046 elsewhere. */
2048 static int
2049 may_trap_p_1 (rtx x, unsigned flags)
2051 int i;
2052 enum rtx_code code;
2053 const char *fmt;
2054 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2056 if (x == 0)
2057 return 0;
2058 code = GET_CODE (x);
2059 switch (code)
2061 /* Handle these cases quickly. */
2062 case CONST_INT:
2063 case CONST_DOUBLE:
2064 case CONST_VECTOR:
2065 case SYMBOL_REF:
2066 case LABEL_REF:
2067 case CONST:
2068 case PC:
2069 case CC0:
2070 case REG:
2071 case SCRATCH:
2072 return 0;
2074 case ASM_INPUT:
2075 case UNSPEC_VOLATILE:
2076 case TRAP_IF:
2077 return 1;
2079 case ASM_OPERANDS:
2080 return MEM_VOLATILE_P (x);
2082 /* Memory ref can trap unless it's a static var or a stack slot. */
2083 case MEM:
2084 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2085 reference; moving it out of condition might cause its address
2086 become invalid. */
2087 !(flags & MTP_AFTER_MOVE)
2088 && MEM_NOTRAP_P (x)
2089 && (!STRICT_ALIGNMENT || !unaligned_mems))
2090 return 0;
2091 return
2092 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2094 /* Division by a non-constant might trap. */
2095 case DIV:
2096 case MOD:
2097 case UDIV:
2098 case UMOD:
2099 if (HONOR_SNANS (GET_MODE (x)))
2100 return 1;
2101 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2102 return flag_trapping_math;
2103 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2104 return 1;
2105 break;
2107 case EXPR_LIST:
2108 /* An EXPR_LIST is used to represent a function call. This
2109 certainly may trap. */
2110 return 1;
2112 case GE:
2113 case GT:
2114 case LE:
2115 case LT:
2116 case LTGT:
2117 case COMPARE:
2118 /* Some floating point comparisons may trap. */
2119 if (!flag_trapping_math)
2120 break;
2121 /* ??? There is no machine independent way to check for tests that trap
2122 when COMPARE is used, though many targets do make this distinction.
2123 For instance, sparc uses CCFPE for compares which generate exceptions
2124 and CCFP for compares which do not generate exceptions. */
2125 if (HONOR_NANS (GET_MODE (x)))
2126 return 1;
2127 /* But often the compare has some CC mode, so check operand
2128 modes as well. */
2129 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2130 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2131 return 1;
2132 break;
2134 case EQ:
2135 case NE:
2136 if (HONOR_SNANS (GET_MODE (x)))
2137 return 1;
2138 /* Often comparison is CC mode, so check operand modes. */
2139 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2140 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2141 return 1;
2142 break;
2144 case FIX:
2145 /* Conversion of floating point might trap. */
2146 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2147 return 1;
2148 break;
2150 case NEG:
2151 case ABS:
2152 case SUBREG:
2153 /* These operations don't trap even with floating point. */
2154 break;
2156 default:
2157 /* Any floating arithmetic may trap. */
2158 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2159 && flag_trapping_math)
2160 return 1;
2163 fmt = GET_RTX_FORMAT (code);
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2166 if (fmt[i] == 'e')
2168 if (may_trap_p_1 (XEXP (x, i), flags))
2169 return 1;
2171 else if (fmt[i] == 'E')
2173 int j;
2174 for (j = 0; j < XVECLEN (x, i); j++)
2175 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2176 return 1;
2179 return 0;
2182 /* Return nonzero if evaluating rtx X might cause a trap. */
2185 may_trap_p (rtx x)
2187 return may_trap_p_1 (x, 0);
2190 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2191 is moved from its current location by some optimization. */
2194 may_trap_after_code_motion_p (rtx x)
2196 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2199 /* Same as above, but additionally return non-zero if evaluating rtx X might
2200 cause a fault. We define a fault for the purpose of this function as a
2201 erroneous execution condition that cannot be encountered during the normal
2202 execution of a valid program; the typical example is an unaligned memory
2203 access on a strict alignment machine. The compiler guarantees that it
2204 doesn't generate code that will fault from a valid program, but this
2205 guarantee doesn't mean anything for individual instructions. Consider
2206 the following example:
2208 struct S { int d; union { char *cp; int *ip; }; };
2210 int foo(struct S *s)
2212 if (s->d == 1)
2213 return *s->ip;
2214 else
2215 return *s->cp;
2218 on a strict alignment machine. In a valid program, foo will never be
2219 invoked on a structure for which d is equal to 1 and the underlying
2220 unique field of the union not aligned on a 4-byte boundary, but the
2221 expression *s->ip might cause a fault if considered individually.
2223 At the RTL level, potentially problematic expressions will almost always
2224 verify may_trap_p; for example, the above dereference can be emitted as
2225 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2226 However, suppose that foo is inlined in a caller that causes s->cp to
2227 point to a local character variable and guarantees that s->d is not set
2228 to 1; foo may have been effectively translated into pseudo-RTL as:
2230 if ((reg:SI) == 1)
2231 (set (reg:SI) (mem:SI (%fp - 7)))
2232 else
2233 (set (reg:QI) (mem:QI (%fp - 7)))
2235 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2236 memory reference to a stack slot, but it will certainly cause a fault
2237 on a strict alignment machine. */
2240 may_trap_or_fault_p (rtx x)
2242 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2245 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2246 i.e., an inequality. */
2249 inequality_comparisons_p (rtx x)
2251 const char *fmt;
2252 int len, i;
2253 enum rtx_code code = GET_CODE (x);
2255 switch (code)
2257 case REG:
2258 case SCRATCH:
2259 case PC:
2260 case CC0:
2261 case CONST_INT:
2262 case CONST_DOUBLE:
2263 case CONST_VECTOR:
2264 case CONST:
2265 case LABEL_REF:
2266 case SYMBOL_REF:
2267 return 0;
2269 case LT:
2270 case LTU:
2271 case GT:
2272 case GTU:
2273 case LE:
2274 case LEU:
2275 case GE:
2276 case GEU:
2277 return 1;
2279 default:
2280 break;
2283 len = GET_RTX_LENGTH (code);
2284 fmt = GET_RTX_FORMAT (code);
2286 for (i = 0; i < len; i++)
2288 if (fmt[i] == 'e')
2290 if (inequality_comparisons_p (XEXP (x, i)))
2291 return 1;
2293 else if (fmt[i] == 'E')
2295 int j;
2296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2297 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2298 return 1;
2302 return 0;
2305 /* Replace any occurrence of FROM in X with TO. The function does
2306 not enter into CONST_DOUBLE for the replace.
2308 Note that copying is not done so X must not be shared unless all copies
2309 are to be modified. */
2312 replace_rtx (rtx x, rtx from, rtx to)
2314 int i, j;
2315 const char *fmt;
2317 /* The following prevents loops occurrence when we change MEM in
2318 CONST_DOUBLE onto the same CONST_DOUBLE. */
2319 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2320 return x;
2322 if (x == from)
2323 return to;
2325 /* Allow this function to make replacements in EXPR_LISTs. */
2326 if (x == 0)
2327 return 0;
2329 if (GET_CODE (x) == SUBREG)
2331 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2333 if (GET_CODE (new) == CONST_INT)
2335 x = simplify_subreg (GET_MODE (x), new,
2336 GET_MODE (SUBREG_REG (x)),
2337 SUBREG_BYTE (x));
2338 gcc_assert (x);
2340 else
2341 SUBREG_REG (x) = new;
2343 return x;
2345 else if (GET_CODE (x) == ZERO_EXTEND)
2347 rtx new = replace_rtx (XEXP (x, 0), from, to);
2349 if (GET_CODE (new) == CONST_INT)
2351 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2352 new, GET_MODE (XEXP (x, 0)));
2353 gcc_assert (x);
2355 else
2356 XEXP (x, 0) = new;
2358 return x;
2361 fmt = GET_RTX_FORMAT (GET_CODE (x));
2362 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2364 if (fmt[i] == 'e')
2365 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2366 else if (fmt[i] == 'E')
2367 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2368 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2371 return x;
2374 /* Throughout the rtx X, replace many registers according to REG_MAP.
2375 Return the replacement for X (which may be X with altered contents).
2376 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2377 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2379 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2380 should not be mapped to pseudos or vice versa since validate_change
2381 is not called.
2383 If REPLACE_DEST is 1, replacements are also done in destinations;
2384 otherwise, only sources are replaced. */
2387 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2389 enum rtx_code code;
2390 int i;
2391 const char *fmt;
2393 if (x == 0)
2394 return x;
2396 code = GET_CODE (x);
2397 switch (code)
2399 case SCRATCH:
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_VECTOR:
2405 case CONST:
2406 case SYMBOL_REF:
2407 case LABEL_REF:
2408 return x;
2410 case REG:
2411 /* Verify that the register has an entry before trying to access it. */
2412 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2414 /* SUBREGs can't be shared. Always return a copy to ensure that if
2415 this replacement occurs more than once then each instance will
2416 get distinct rtx. */
2417 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2418 return copy_rtx (reg_map[REGNO (x)]);
2419 return reg_map[REGNO (x)];
2421 return x;
2423 case SUBREG:
2424 /* Prevent making nested SUBREGs. */
2425 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2426 && reg_map[REGNO (SUBREG_REG (x))] != 0
2427 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2429 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2430 return simplify_gen_subreg (GET_MODE (x), map_val,
2431 GET_MODE (SUBREG_REG (x)),
2432 SUBREG_BYTE (x));
2434 break;
2436 case SET:
2437 if (replace_dest)
2438 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2440 else if (MEM_P (SET_DEST (x))
2441 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2442 /* Even if we are not to replace destinations, replace register if it
2443 is CONTAINED in destination (destination is memory or
2444 STRICT_LOW_PART). */
2445 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2446 reg_map, nregs, 0);
2447 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2448 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2449 break;
2451 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2452 return x;
2454 default:
2455 break;
2458 fmt = GET_RTX_FORMAT (code);
2459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2461 if (fmt[i] == 'e')
2462 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2463 else if (fmt[i] == 'E')
2465 int j;
2466 for (j = 0; j < XVECLEN (x, i); j++)
2467 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2468 nregs, replace_dest);
2471 return x;
2474 /* Replace occurrences of the old label in *X with the new one.
2475 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2478 replace_label (rtx *x, void *data)
2480 rtx l = *x;
2481 rtx old_label = ((replace_label_data *) data)->r1;
2482 rtx new_label = ((replace_label_data *) data)->r2;
2483 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2485 if (l == NULL_RTX)
2486 return 0;
2488 if (GET_CODE (l) == SYMBOL_REF
2489 && CONSTANT_POOL_ADDRESS_P (l))
2491 rtx c = get_pool_constant (l);
2492 if (rtx_referenced_p (old_label, c))
2494 rtx new_c, new_l;
2495 replace_label_data *d = (replace_label_data *) data;
2497 /* Create a copy of constant C; replace the label inside
2498 but do not update LABEL_NUSES because uses in constant pool
2499 are not counted. */
2500 new_c = copy_rtx (c);
2501 d->update_label_nuses = false;
2502 for_each_rtx (&new_c, replace_label, data);
2503 d->update_label_nuses = update_label_nuses;
2505 /* Add the new constant NEW_C to constant pool and replace
2506 the old reference to constant by new reference. */
2507 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2508 *x = replace_rtx (l, l, new_l);
2510 return 0;
2513 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2514 field. This is not handled by for_each_rtx because it doesn't
2515 handle unprinted ('0') fields. */
2516 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2517 JUMP_LABEL (l) = new_label;
2519 if ((GET_CODE (l) == LABEL_REF
2520 || GET_CODE (l) == INSN_LIST)
2521 && XEXP (l, 0) == old_label)
2523 XEXP (l, 0) = new_label;
2524 if (update_label_nuses)
2526 ++LABEL_NUSES (new_label);
2527 --LABEL_NUSES (old_label);
2529 return 0;
2532 return 0;
2535 /* When *BODY is equal to X or X is directly referenced by *BODY
2536 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2537 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2539 static int
2540 rtx_referenced_p_1 (rtx *body, void *x)
2542 rtx y = (rtx) x;
2544 if (*body == NULL_RTX)
2545 return y == NULL_RTX;
2547 /* Return true if a label_ref *BODY refers to label Y. */
2548 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2549 return XEXP (*body, 0) == y;
2551 /* If *BODY is a reference to pool constant traverse the constant. */
2552 if (GET_CODE (*body) == SYMBOL_REF
2553 && CONSTANT_POOL_ADDRESS_P (*body))
2554 return rtx_referenced_p (y, get_pool_constant (*body));
2556 /* By default, compare the RTL expressions. */
2557 return rtx_equal_p (*body, y);
2560 /* Return true if X is referenced in BODY. */
2563 rtx_referenced_p (rtx x, rtx body)
2565 return for_each_rtx (&body, rtx_referenced_p_1, x);
2568 /* If INSN is a tablejump return true and store the label (before jump table) to
2569 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2571 bool
2572 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2574 rtx label, table;
2576 if (JUMP_P (insn)
2577 && (label = JUMP_LABEL (insn)) != NULL_RTX
2578 && (table = next_active_insn (label)) != NULL_RTX
2579 && JUMP_P (table)
2580 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2581 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2583 if (labelp)
2584 *labelp = label;
2585 if (tablep)
2586 *tablep = table;
2587 return true;
2589 return false;
2592 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2593 constant that is not in the constant pool and not in the condition
2594 of an IF_THEN_ELSE. */
2596 static int
2597 computed_jump_p_1 (rtx x)
2599 enum rtx_code code = GET_CODE (x);
2600 int i, j;
2601 const char *fmt;
2603 switch (code)
2605 case LABEL_REF:
2606 case PC:
2607 return 0;
2609 case CONST:
2610 case CONST_INT:
2611 case CONST_DOUBLE:
2612 case CONST_VECTOR:
2613 case SYMBOL_REF:
2614 case REG:
2615 return 1;
2617 case MEM:
2618 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2621 case IF_THEN_ELSE:
2622 return (computed_jump_p_1 (XEXP (x, 1))
2623 || computed_jump_p_1 (XEXP (x, 2)));
2625 default:
2626 break;
2629 fmt = GET_RTX_FORMAT (code);
2630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2632 if (fmt[i] == 'e'
2633 && computed_jump_p_1 (XEXP (x, i)))
2634 return 1;
2636 else if (fmt[i] == 'E')
2637 for (j = 0; j < XVECLEN (x, i); j++)
2638 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2639 return 1;
2642 return 0;
2645 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2647 Tablejumps and casesi insns are not considered indirect jumps;
2648 we can recognize them by a (use (label_ref)). */
2651 computed_jump_p (rtx insn)
2653 int i;
2654 if (JUMP_P (insn))
2656 rtx pat = PATTERN (insn);
2658 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2659 return 0;
2660 else if (GET_CODE (pat) == PARALLEL)
2662 int len = XVECLEN (pat, 0);
2663 int has_use_labelref = 0;
2665 for (i = len - 1; i >= 0; i--)
2666 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2667 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2668 == LABEL_REF))
2669 has_use_labelref = 1;
2671 if (! has_use_labelref)
2672 for (i = len - 1; i >= 0; i--)
2673 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2674 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2675 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2676 return 1;
2678 else if (GET_CODE (pat) == SET
2679 && SET_DEST (pat) == pc_rtx
2680 && computed_jump_p_1 (SET_SRC (pat)))
2681 return 1;
2683 return 0;
2686 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2687 calls. Processes the subexpressions of EXP and passes them to F. */
2688 static int
2689 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2691 int result, i, j;
2692 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2693 rtx *x;
2695 for (; format[n] != '\0'; n++)
2697 switch (format[n])
2699 case 'e':
2700 /* Call F on X. */
2701 x = &XEXP (exp, n);
2702 result = (*f) (x, data);
2703 if (result == -1)
2704 /* Do not traverse sub-expressions. */
2705 continue;
2706 else if (result != 0)
2707 /* Stop the traversal. */
2708 return result;
2710 if (*x == NULL_RTX)
2711 /* There are no sub-expressions. */
2712 continue;
2714 i = non_rtx_starting_operands[GET_CODE (*x)];
2715 if (i >= 0)
2717 result = for_each_rtx_1 (*x, i, f, data);
2718 if (result != 0)
2719 return result;
2721 break;
2723 case 'V':
2724 case 'E':
2725 if (XVEC (exp, n) == 0)
2726 continue;
2727 for (j = 0; j < XVECLEN (exp, n); ++j)
2729 /* Call F on X. */
2730 x = &XVECEXP (exp, n, j);
2731 result = (*f) (x, data);
2732 if (result == -1)
2733 /* Do not traverse sub-expressions. */
2734 continue;
2735 else if (result != 0)
2736 /* Stop the traversal. */
2737 return result;
2739 if (*x == NULL_RTX)
2740 /* There are no sub-expressions. */
2741 continue;
2743 i = non_rtx_starting_operands[GET_CODE (*x)];
2744 if (i >= 0)
2746 result = for_each_rtx_1 (*x, i, f, data);
2747 if (result != 0)
2748 return result;
2751 break;
2753 default:
2754 /* Nothing to do. */
2755 break;
2759 return 0;
2762 /* Traverse X via depth-first search, calling F for each
2763 sub-expression (including X itself). F is also passed the DATA.
2764 If F returns -1, do not traverse sub-expressions, but continue
2765 traversing the rest of the tree. If F ever returns any other
2766 nonzero value, stop the traversal, and return the value returned
2767 by F. Otherwise, return 0. This function does not traverse inside
2768 tree structure that contains RTX_EXPRs, or into sub-expressions
2769 whose format code is `0' since it is not known whether or not those
2770 codes are actually RTL.
2772 This routine is very general, and could (should?) be used to
2773 implement many of the other routines in this file. */
2776 for_each_rtx (rtx *x, rtx_function f, void *data)
2778 int result;
2779 int i;
2781 /* Call F on X. */
2782 result = (*f) (x, data);
2783 if (result == -1)
2784 /* Do not traverse sub-expressions. */
2785 return 0;
2786 else if (result != 0)
2787 /* Stop the traversal. */
2788 return result;
2790 if (*x == NULL_RTX)
2791 /* There are no sub-expressions. */
2792 return 0;
2794 i = non_rtx_starting_operands[GET_CODE (*x)];
2795 if (i < 0)
2796 return 0;
2798 return for_each_rtx_1 (*x, i, f, data);
2802 /* Searches X for any reference to REGNO, returning the rtx of the
2803 reference found if any. Otherwise, returns NULL_RTX. */
2806 regno_use_in (unsigned int regno, rtx x)
2808 const char *fmt;
2809 int i, j;
2810 rtx tem;
2812 if (REG_P (x) && REGNO (x) == regno)
2813 return x;
2815 fmt = GET_RTX_FORMAT (GET_CODE (x));
2816 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2818 if (fmt[i] == 'e')
2820 if ((tem = regno_use_in (regno, XEXP (x, i))))
2821 return tem;
2823 else if (fmt[i] == 'E')
2824 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2825 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2826 return tem;
2829 return NULL_RTX;
2832 /* Return a value indicating whether OP, an operand of a commutative
2833 operation, is preferred as the first or second operand. The higher
2834 the value, the stronger the preference for being the first operand.
2835 We use negative values to indicate a preference for the first operand
2836 and positive values for the second operand. */
2839 commutative_operand_precedence (rtx op)
2841 enum rtx_code code = GET_CODE (op);
2843 /* Constants always come the second operand. Prefer "nice" constants. */
2844 if (code == CONST_INT)
2845 return -7;
2846 if (code == CONST_DOUBLE)
2847 return -6;
2848 op = avoid_constant_pool_reference (op);
2849 code = GET_CODE (op);
2851 switch (GET_RTX_CLASS (code))
2853 case RTX_CONST_OBJ:
2854 if (code == CONST_INT)
2855 return -5;
2856 if (code == CONST_DOUBLE)
2857 return -4;
2858 return -3;
2860 case RTX_EXTRA:
2861 /* SUBREGs of objects should come second. */
2862 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2863 return -2;
2865 if (!CONSTANT_P (op))
2866 return 0;
2867 else
2868 /* As for RTX_CONST_OBJ. */
2869 return -3;
2871 case RTX_OBJ:
2872 /* Complex expressions should be the first, so decrease priority
2873 of objects. */
2874 return -1;
2876 case RTX_COMM_ARITH:
2877 /* Prefer operands that are themselves commutative to be first.
2878 This helps to make things linear. In particular,
2879 (and (and (reg) (reg)) (not (reg))) is canonical. */
2880 return 4;
2882 case RTX_BIN_ARITH:
2883 /* If only one operand is a binary expression, it will be the first
2884 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2885 is canonical, although it will usually be further simplified. */
2886 return 2;
2888 case RTX_UNARY:
2889 /* Then prefer NEG and NOT. */
2890 if (code == NEG || code == NOT)
2891 return 1;
2893 default:
2894 return 0;
2898 /* Return 1 iff it is necessary to swap operands of commutative operation
2899 in order to canonicalize expression. */
2902 swap_commutative_operands_p (rtx x, rtx y)
2904 return (commutative_operand_precedence (x)
2905 < commutative_operand_precedence (y));
2908 /* Return 1 if X is an autoincrement side effect and the register is
2909 not the stack pointer. */
2911 auto_inc_p (rtx x)
2913 switch (GET_CODE (x))
2915 case PRE_INC:
2916 case POST_INC:
2917 case PRE_DEC:
2918 case POST_DEC:
2919 case PRE_MODIFY:
2920 case POST_MODIFY:
2921 /* There are no REG_INC notes for SP. */
2922 if (XEXP (x, 0) != stack_pointer_rtx)
2923 return 1;
2924 default:
2925 break;
2927 return 0;
2930 /* Return 1 if the sequence of instructions beginning with FROM and up
2931 to and including TO is safe to move. If NEW_TO is non-NULL, and
2932 the sequence is not already safe to move, but can be easily
2933 extended to a sequence which is safe, then NEW_TO will point to the
2934 end of the extended sequence.
2936 For now, this function only checks that the region contains whole
2937 exception regions, but it could be extended to check additional
2938 conditions as well. */
2941 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2943 int eh_region_count = 0;
2944 int past_to_p = 0;
2945 rtx r = from;
2947 /* By default, assume the end of the region will be what was
2948 suggested. */
2949 if (new_to)
2950 *new_to = to;
2952 while (r)
2954 if (NOTE_P (r))
2956 switch (NOTE_LINE_NUMBER (r))
2958 case NOTE_INSN_EH_REGION_BEG:
2959 ++eh_region_count;
2960 break;
2962 case NOTE_INSN_EH_REGION_END:
2963 if (eh_region_count == 0)
2964 /* This sequence of instructions contains the end of
2965 an exception region, but not he beginning. Moving
2966 it will cause chaos. */
2967 return 0;
2969 --eh_region_count;
2970 break;
2972 default:
2973 break;
2976 else if (past_to_p)
2977 /* If we've passed TO, and we see a non-note instruction, we
2978 can't extend the sequence to a movable sequence. */
2979 return 0;
2981 if (r == to)
2983 if (!new_to)
2984 /* It's OK to move the sequence if there were matched sets of
2985 exception region notes. */
2986 return eh_region_count == 0;
2988 past_to_p = 1;
2991 /* It's OK to move the sequence if there were matched sets of
2992 exception region notes. */
2993 if (past_to_p && eh_region_count == 0)
2995 *new_to = r;
2996 return 1;
2999 /* Go to the next instruction. */
3000 r = NEXT_INSN (r);
3003 return 0;
3006 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3008 loc_mentioned_in_p (rtx *loc, rtx in)
3010 enum rtx_code code = GET_CODE (in);
3011 const char *fmt = GET_RTX_FORMAT (code);
3012 int i, j;
3014 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3016 if (loc == &in->u.fld[i].rt_rtx)
3017 return 1;
3018 if (fmt[i] == 'e')
3020 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3021 return 1;
3023 else if (fmt[i] == 'E')
3024 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3025 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3026 return 1;
3028 return 0;
3031 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3032 and SUBREG_BYTE, return the bit offset where the subreg begins
3033 (counting from the least significant bit of the operand). */
3035 unsigned int
3036 subreg_lsb_1 (enum machine_mode outer_mode,
3037 enum machine_mode inner_mode,
3038 unsigned int subreg_byte)
3040 unsigned int bitpos;
3041 unsigned int byte;
3042 unsigned int word;
3044 /* A paradoxical subreg begins at bit position 0. */
3045 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3046 return 0;
3048 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3049 /* If the subreg crosses a word boundary ensure that
3050 it also begins and ends on a word boundary. */
3051 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3052 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3053 && (subreg_byte % UNITS_PER_WORD
3054 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3056 if (WORDS_BIG_ENDIAN)
3057 word = (GET_MODE_SIZE (inner_mode)
3058 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3059 else
3060 word = subreg_byte / UNITS_PER_WORD;
3061 bitpos = word * BITS_PER_WORD;
3063 if (BYTES_BIG_ENDIAN)
3064 byte = (GET_MODE_SIZE (inner_mode)
3065 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3066 else
3067 byte = subreg_byte % UNITS_PER_WORD;
3068 bitpos += byte * BITS_PER_UNIT;
3070 return bitpos;
3073 /* Given a subreg X, return the bit offset where the subreg begins
3074 (counting from the least significant bit of the reg). */
3076 unsigned int
3077 subreg_lsb (rtx x)
3079 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3080 SUBREG_BYTE (x));
3083 /* This function returns the regno offset of a subreg expression.
3084 xregno - A regno of an inner hard subreg_reg (or what will become one).
3085 xmode - The mode of xregno.
3086 offset - The byte offset.
3087 ymode - The mode of a top level SUBREG (or what may become one).
3088 RETURN - The regno offset which would be used. */
3089 unsigned int
3090 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3091 unsigned int offset, enum machine_mode ymode)
3093 int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
3094 int mode_multiple, nregs_multiple;
3095 int y_offset;
3096 enum machine_mode xmode_unit, xmode_unit_int;
3098 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3100 if (GET_MODE_INNER (xmode) == VOIDmode)
3101 xmode_unit = xmode;
3102 else
3103 xmode_unit = GET_MODE_INNER (xmode);
3105 if (FLOAT_MODE_P (xmode_unit))
3107 xmode_unit_int = int_mode_for_mode (xmode_unit);
3108 if (xmode_unit_int == BLKmode)
3109 /* It's probably bad to be here; a port should have an integer mode
3110 that's the same size as anything of which it takes a SUBREG. */
3111 xmode_unit_int = xmode_unit;
3113 else
3114 xmode_unit_int = xmode_unit;
3116 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3118 /* Adjust nregs_xmode to allow for 'holes'. */
3119 if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
3120 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3121 else
3122 nregs_xmode = hard_regno_nregs[xregno][xmode];
3124 nregs_ymode = hard_regno_nregs[xregno][ymode];
3126 /* If this is a big endian paradoxical subreg, which uses more actual
3127 hard registers than the original register, we must return a negative
3128 offset so that we find the proper highpart of the register. */
3129 if (offset == 0
3130 && nregs_ymode > nregs_xmode
3131 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3132 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3133 return nregs_xmode - nregs_ymode;
3135 if (offset == 0 || nregs_xmode == nregs_ymode)
3136 return 0;
3138 /* Size of ymode must not be greater than the size of xmode. */
3139 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3140 gcc_assert (mode_multiple != 0);
3142 y_offset = offset / GET_MODE_SIZE (ymode);
3143 nregs_multiple = nregs_xmode / nregs_ymode;
3144 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3147 /* This function returns true when the offset is representable via
3148 subreg_offset in the given regno.
3149 xregno - A regno of an inner hard subreg_reg (or what will become one).
3150 xmode - The mode of xregno.
3151 offset - The byte offset.
3152 ymode - The mode of a top level SUBREG (or what may become one).
3153 RETURN - Whether the offset is representable. */
3154 bool
3155 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3156 unsigned int offset, enum machine_mode ymode)
3158 int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
3159 int mode_multiple, nregs_multiple;
3160 int y_offset;
3161 enum machine_mode xmode_unit, xmode_unit_int;
3163 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3165 if (GET_MODE_INNER (xmode) == VOIDmode)
3166 xmode_unit = xmode;
3167 else
3168 xmode_unit = GET_MODE_INNER (xmode);
3170 if (FLOAT_MODE_P (xmode_unit))
3172 xmode_unit_int = int_mode_for_mode (xmode_unit);
3173 if (xmode_unit_int == BLKmode)
3174 /* It's probably bad to be here; a port should have an integer mode
3175 that's the same size as anything of which it takes a SUBREG. */
3176 xmode_unit_int = xmode_unit;
3178 else
3179 xmode_unit_int = xmode_unit;
3181 nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3182 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3184 /* If there are holes in a non-scalar mode in registers, we expect
3185 that it is made up of its units concatenated together. */
3186 if (nregs_xmode_unit != nregs_xmode_unit_int)
3188 gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3189 == hard_regno_nregs[xregno][xmode]);
3191 /* You can only ask for a SUBREG of a value with holes in the middle
3192 if you don't cross the holes. (Such a SUBREG should be done by
3193 picking a different register class, or doing it in memory if
3194 necessary.) An example of a value with holes is XCmode on 32-bit
3195 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3196 3 for each part, but in memory it's two 128-bit parts.
3197 Padding is assumed to be at the end (not necessarily the 'high part')
3198 of each unit. */
3199 if (nregs_xmode_unit != nregs_xmode_unit_int
3200 && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3201 < GET_MODE_NUNITS (xmode))
3202 && (offset / GET_MODE_SIZE (xmode_unit_int)
3203 != ((offset + GET_MODE_SIZE (ymode) - 1)
3204 / GET_MODE_SIZE (xmode_unit_int))))
3205 return false;
3207 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3209 else
3210 nregs_xmode = hard_regno_nregs[xregno][xmode];
3212 nregs_ymode = hard_regno_nregs[xregno][ymode];
3214 /* Paradoxical subregs are otherwise valid. */
3215 if (offset == 0
3216 && nregs_ymode > nregs_xmode
3217 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3218 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3219 return true;
3221 /* Lowpart subregs are otherwise valid. */
3222 if (offset == subreg_lowpart_offset (ymode, xmode))
3223 return true;
3225 /* This should always pass, otherwise we don't know how to verify
3226 the constraint. These conditions may be relaxed but
3227 subreg_regno_offset would need to be redesigned. */
3228 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3229 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3231 /* The XMODE value can be seen as a vector of NREGS_XMODE
3232 values. The subreg must represent a lowpart of given field.
3233 Compute what field it is. */
3234 offset -= subreg_lowpart_offset (ymode,
3235 mode_for_size (GET_MODE_BITSIZE (xmode)
3236 / nregs_xmode,
3237 MODE_INT, 0));
3239 /* Size of ymode must not be greater than the size of xmode. */
3240 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3241 gcc_assert (mode_multiple != 0);
3243 y_offset = offset / GET_MODE_SIZE (ymode);
3244 nregs_multiple = nregs_xmode / nregs_ymode;
3246 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3247 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3249 return (!(y_offset % (mode_multiple / nregs_multiple)));
3252 /* Return the final regno that a subreg expression refers to. */
3253 unsigned int
3254 subreg_regno (rtx x)
3256 unsigned int ret;
3257 rtx subreg = SUBREG_REG (x);
3258 int regno = REGNO (subreg);
3260 ret = regno + subreg_regno_offset (regno,
3261 GET_MODE (subreg),
3262 SUBREG_BYTE (x),
3263 GET_MODE (x));
3264 return ret;
3267 struct parms_set_data
3269 int nregs;
3270 HARD_REG_SET regs;
3273 /* Helper function for noticing stores to parameter registers. */
3274 static void
3275 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3277 struct parms_set_data *d = data;
3278 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3279 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3281 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3282 d->nregs--;
3286 /* Look backward for first parameter to be loaded.
3287 Note that loads of all parameters will not necessarily be
3288 found if CSE has eliminated some of them (e.g., an argument
3289 to the outer function is passed down as a parameter).
3290 Do not skip BOUNDARY. */
3292 find_first_parameter_load (rtx call_insn, rtx boundary)
3294 struct parms_set_data parm;
3295 rtx p, before, first_set;
3297 /* Since different machines initialize their parameter registers
3298 in different orders, assume nothing. Collect the set of all
3299 parameter registers. */
3300 CLEAR_HARD_REG_SET (parm.regs);
3301 parm.nregs = 0;
3302 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3303 if (GET_CODE (XEXP (p, 0)) == USE
3304 && REG_P (XEXP (XEXP (p, 0), 0)))
3306 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3308 /* We only care about registers which can hold function
3309 arguments. */
3310 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3311 continue;
3313 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3314 parm.nregs++;
3316 before = call_insn;
3317 first_set = call_insn;
3319 /* Search backward for the first set of a register in this set. */
3320 while (parm.nregs && before != boundary)
3322 before = PREV_INSN (before);
3324 /* It is possible that some loads got CSEed from one call to
3325 another. Stop in that case. */
3326 if (CALL_P (before))
3327 break;
3329 /* Our caller needs either ensure that we will find all sets
3330 (in case code has not been optimized yet), or take care
3331 for possible labels in a way by setting boundary to preceding
3332 CODE_LABEL. */
3333 if (LABEL_P (before))
3335 gcc_assert (before == boundary);
3336 break;
3339 if (INSN_P (before))
3341 int nregs_old = parm.nregs;
3342 note_stores (PATTERN (before), parms_set, &parm);
3343 /* If we found something that did not set a parameter reg,
3344 we're done. Do not keep going, as that might result
3345 in hoisting an insn before the setting of a pseudo
3346 that is used by the hoisted insn. */
3347 if (nregs_old != parm.nregs)
3348 first_set = before;
3349 else
3350 break;
3353 return first_set;
3356 /* Return true if we should avoid inserting code between INSN and preceding
3357 call instruction. */
3359 bool
3360 keep_with_call_p (rtx insn)
3362 rtx set;
3364 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3366 if (REG_P (SET_DEST (set))
3367 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3368 && fixed_regs[REGNO (SET_DEST (set))]
3369 && general_operand (SET_SRC (set), VOIDmode))
3370 return true;
3371 if (REG_P (SET_SRC (set))
3372 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3373 && REG_P (SET_DEST (set))
3374 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3375 return true;
3376 /* There may be a stack pop just after the call and before the store
3377 of the return register. Search for the actual store when deciding
3378 if we can break or not. */
3379 if (SET_DEST (set) == stack_pointer_rtx)
3381 rtx i2 = next_nonnote_insn (insn);
3382 if (i2 && keep_with_call_p (i2))
3383 return true;
3386 return false;
3389 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3390 to non-complex jumps. That is, direct unconditional, conditional,
3391 and tablejumps, but not computed jumps or returns. It also does
3392 not apply to the fallthru case of a conditional jump. */
3394 bool
3395 label_is_jump_target_p (rtx label, rtx jump_insn)
3397 rtx tmp = JUMP_LABEL (jump_insn);
3399 if (label == tmp)
3400 return true;
3402 if (tablejump_p (jump_insn, NULL, &tmp))
3404 rtvec vec = XVEC (PATTERN (tmp),
3405 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3406 int i, veclen = GET_NUM_ELEM (vec);
3408 for (i = 0; i < veclen; ++i)
3409 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3410 return true;
3413 return false;
3417 /* Return an estimate of the cost of computing rtx X.
3418 One use is in cse, to decide which expression to keep in the hash table.
3419 Another is in rtl generation, to pick the cheapest way to multiply.
3420 Other uses like the latter are expected in the future. */
3423 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3425 int i, j;
3426 enum rtx_code code;
3427 const char *fmt;
3428 int total;
3430 if (x == 0)
3431 return 0;
3433 /* Compute the default costs of certain things.
3434 Note that targetm.rtx_costs can override the defaults. */
3436 code = GET_CODE (x);
3437 switch (code)
3439 case MULT:
3440 total = COSTS_N_INSNS (5);
3441 break;
3442 case DIV:
3443 case UDIV:
3444 case MOD:
3445 case UMOD:
3446 total = COSTS_N_INSNS (7);
3447 break;
3448 case USE:
3449 /* Used in loop.c and combine.c as a marker. */
3450 total = 0;
3451 break;
3452 default:
3453 total = COSTS_N_INSNS (1);
3456 switch (code)
3458 case REG:
3459 return 0;
3461 case SUBREG:
3462 total = 0;
3463 /* If we can't tie these modes, make this expensive. The larger
3464 the mode, the more expensive it is. */
3465 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3466 return COSTS_N_INSNS (2
3467 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3468 break;
3470 default:
3471 if (targetm.rtx_costs (x, code, outer_code, &total))
3472 return total;
3473 break;
3476 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3477 which is already in total. */
3479 fmt = GET_RTX_FORMAT (code);
3480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3481 if (fmt[i] == 'e')
3482 total += rtx_cost (XEXP (x, i), code);
3483 else if (fmt[i] == 'E')
3484 for (j = 0; j < XVECLEN (x, i); j++)
3485 total += rtx_cost (XVECEXP (x, i, j), code);
3487 return total;
3490 /* Return cost of address expression X.
3491 Expect that X is properly formed address reference. */
3494 address_cost (rtx x, enum machine_mode mode)
3496 /* We may be asked for cost of various unusual addresses, such as operands
3497 of push instruction. It is not worthwhile to complicate writing
3498 of the target hook by such cases. */
3500 if (!memory_address_p (mode, x))
3501 return 1000;
3503 return targetm.address_cost (x);
3506 /* If the target doesn't override, compute the cost as with arithmetic. */
3509 default_address_cost (rtx x)
3511 return rtx_cost (x, MEM);
3515 unsigned HOST_WIDE_INT
3516 nonzero_bits (rtx x, enum machine_mode mode)
3518 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3521 unsigned int
3522 num_sign_bit_copies (rtx x, enum machine_mode mode)
3524 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3527 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3528 It avoids exponential behavior in nonzero_bits1 when X has
3529 identical subexpressions on the first or the second level. */
3531 static unsigned HOST_WIDE_INT
3532 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3533 enum machine_mode known_mode,
3534 unsigned HOST_WIDE_INT known_ret)
3536 if (x == known_x && mode == known_mode)
3537 return known_ret;
3539 /* Try to find identical subexpressions. If found call
3540 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3541 precomputed value for the subexpression as KNOWN_RET. */
3543 if (ARITHMETIC_P (x))
3545 rtx x0 = XEXP (x, 0);
3546 rtx x1 = XEXP (x, 1);
3548 /* Check the first level. */
3549 if (x0 == x1)
3550 return nonzero_bits1 (x, mode, x0, mode,
3551 cached_nonzero_bits (x0, mode, known_x,
3552 known_mode, known_ret));
3554 /* Check the second level. */
3555 if (ARITHMETIC_P (x0)
3556 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3557 return nonzero_bits1 (x, mode, x1, mode,
3558 cached_nonzero_bits (x1, mode, known_x,
3559 known_mode, known_ret));
3561 if (ARITHMETIC_P (x1)
3562 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3563 return nonzero_bits1 (x, mode, x0, mode,
3564 cached_nonzero_bits (x0, mode, known_x,
3565 known_mode, known_ret));
3568 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3571 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3572 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3573 is less useful. We can't allow both, because that results in exponential
3574 run time recursion. There is a nullstone testcase that triggered
3575 this. This macro avoids accidental uses of num_sign_bit_copies. */
3576 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3578 /* Given an expression, X, compute which bits in X can be nonzero.
3579 We don't care about bits outside of those defined in MODE.
3581 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3582 an arithmetic operation, we can do better. */
3584 static unsigned HOST_WIDE_INT
3585 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3586 enum machine_mode known_mode,
3587 unsigned HOST_WIDE_INT known_ret)
3589 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3590 unsigned HOST_WIDE_INT inner_nz;
3591 enum rtx_code code;
3592 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3594 /* For floating-point values, assume all bits are needed. */
3595 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3596 return nonzero;
3598 /* If X is wider than MODE, use its mode instead. */
3599 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3601 mode = GET_MODE (x);
3602 nonzero = GET_MODE_MASK (mode);
3603 mode_width = GET_MODE_BITSIZE (mode);
3606 if (mode_width > HOST_BITS_PER_WIDE_INT)
3607 /* Our only callers in this case look for single bit values. So
3608 just return the mode mask. Those tests will then be false. */
3609 return nonzero;
3611 #ifndef WORD_REGISTER_OPERATIONS
3612 /* If MODE is wider than X, but both are a single word for both the host
3613 and target machines, we can compute this from which bits of the
3614 object might be nonzero in its own mode, taking into account the fact
3615 that on many CISC machines, accessing an object in a wider mode
3616 causes the high-order bits to become undefined. So they are
3617 not known to be zero. */
3619 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3620 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3621 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3622 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3624 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3625 known_x, known_mode, known_ret);
3626 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3627 return nonzero;
3629 #endif
3631 code = GET_CODE (x);
3632 switch (code)
3634 case REG:
3635 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3636 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3637 all the bits above ptr_mode are known to be zero. */
3638 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3639 && REG_POINTER (x))
3640 nonzero &= GET_MODE_MASK (ptr_mode);
3641 #endif
3643 /* Include declared information about alignment of pointers. */
3644 /* ??? We don't properly preserve REG_POINTER changes across
3645 pointer-to-integer casts, so we can't trust it except for
3646 things that we know must be pointers. See execute/960116-1.c. */
3647 if ((x == stack_pointer_rtx
3648 || x == frame_pointer_rtx
3649 || x == arg_pointer_rtx)
3650 && REGNO_POINTER_ALIGN (REGNO (x)))
3652 unsigned HOST_WIDE_INT alignment
3653 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3655 #ifdef PUSH_ROUNDING
3656 /* If PUSH_ROUNDING is defined, it is possible for the
3657 stack to be momentarily aligned only to that amount,
3658 so we pick the least alignment. */
3659 if (x == stack_pointer_rtx && PUSH_ARGS)
3660 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3661 alignment);
3662 #endif
3664 nonzero &= ~(alignment - 1);
3668 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3669 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3670 known_mode, known_ret,
3671 &nonzero_for_hook);
3673 if (new)
3674 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3675 known_mode, known_ret);
3677 return nonzero_for_hook;
3680 case CONST_INT:
3681 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3682 /* If X is negative in MODE, sign-extend the value. */
3683 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3684 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3685 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3686 #endif
3688 return INTVAL (x);
3690 case MEM:
3691 #ifdef LOAD_EXTEND_OP
3692 /* In many, if not most, RISC machines, reading a byte from memory
3693 zeros the rest of the register. Noticing that fact saves a lot
3694 of extra zero-extends. */
3695 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3696 nonzero &= GET_MODE_MASK (GET_MODE (x));
3697 #endif
3698 break;
3700 case EQ: case NE:
3701 case UNEQ: case LTGT:
3702 case GT: case GTU: case UNGT:
3703 case LT: case LTU: case UNLT:
3704 case GE: case GEU: case UNGE:
3705 case LE: case LEU: case UNLE:
3706 case UNORDERED: case ORDERED:
3707 /* If this produces an integer result, we know which bits are set.
3708 Code here used to clear bits outside the mode of X, but that is
3709 now done above. */
3710 /* Mind that MODE is the mode the caller wants to look at this
3711 operation in, and not the actual operation mode. We can wind
3712 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3713 that describes the results of a vector compare. */
3714 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3715 && mode_width <= HOST_BITS_PER_WIDE_INT)
3716 nonzero = STORE_FLAG_VALUE;
3717 break;
3719 case NEG:
3720 #if 0
3721 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3722 and num_sign_bit_copies. */
3723 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3724 == GET_MODE_BITSIZE (GET_MODE (x)))
3725 nonzero = 1;
3726 #endif
3728 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3729 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3730 break;
3732 case ABS:
3733 #if 0
3734 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3735 and num_sign_bit_copies. */
3736 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3737 == GET_MODE_BITSIZE (GET_MODE (x)))
3738 nonzero = 1;
3739 #endif
3740 break;
3742 case TRUNCATE:
3743 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3744 known_x, known_mode, known_ret)
3745 & GET_MODE_MASK (mode));
3746 break;
3748 case ZERO_EXTEND:
3749 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3750 known_x, known_mode, known_ret);
3751 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3752 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3753 break;
3755 case SIGN_EXTEND:
3756 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3757 Otherwise, show all the bits in the outer mode but not the inner
3758 may be nonzero. */
3759 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3760 known_x, known_mode, known_ret);
3761 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3763 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3764 if (inner_nz
3765 & (((HOST_WIDE_INT) 1
3766 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3767 inner_nz |= (GET_MODE_MASK (mode)
3768 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3771 nonzero &= inner_nz;
3772 break;
3774 case AND:
3775 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3776 known_x, known_mode, known_ret)
3777 & cached_nonzero_bits (XEXP (x, 1), mode,
3778 known_x, known_mode, known_ret);
3779 break;
3781 case XOR: case IOR:
3782 case UMIN: case UMAX: case SMIN: case SMAX:
3784 unsigned HOST_WIDE_INT nonzero0 =
3785 cached_nonzero_bits (XEXP (x, 0), mode,
3786 known_x, known_mode, known_ret);
3788 /* Don't call nonzero_bits for the second time if it cannot change
3789 anything. */
3790 if ((nonzero & nonzero0) != nonzero)
3791 nonzero &= nonzero0
3792 | cached_nonzero_bits (XEXP (x, 1), mode,
3793 known_x, known_mode, known_ret);
3795 break;
3797 case PLUS: case MINUS:
3798 case MULT:
3799 case DIV: case UDIV:
3800 case MOD: case UMOD:
3801 /* We can apply the rules of arithmetic to compute the number of
3802 high- and low-order zero bits of these operations. We start by
3803 computing the width (position of the highest-order nonzero bit)
3804 and the number of low-order zero bits for each value. */
3806 unsigned HOST_WIDE_INT nz0 =
3807 cached_nonzero_bits (XEXP (x, 0), mode,
3808 known_x, known_mode, known_ret);
3809 unsigned HOST_WIDE_INT nz1 =
3810 cached_nonzero_bits (XEXP (x, 1), mode,
3811 known_x, known_mode, known_ret);
3812 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3813 int width0 = floor_log2 (nz0) + 1;
3814 int width1 = floor_log2 (nz1) + 1;
3815 int low0 = floor_log2 (nz0 & -nz0);
3816 int low1 = floor_log2 (nz1 & -nz1);
3817 HOST_WIDE_INT op0_maybe_minusp
3818 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3819 HOST_WIDE_INT op1_maybe_minusp
3820 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3821 unsigned int result_width = mode_width;
3822 int result_low = 0;
3824 switch (code)
3826 case PLUS:
3827 result_width = MAX (width0, width1) + 1;
3828 result_low = MIN (low0, low1);
3829 break;
3830 case MINUS:
3831 result_low = MIN (low0, low1);
3832 break;
3833 case MULT:
3834 result_width = width0 + width1;
3835 result_low = low0 + low1;
3836 break;
3837 case DIV:
3838 if (width1 == 0)
3839 break;
3840 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3841 result_width = width0;
3842 break;
3843 case UDIV:
3844 if (width1 == 0)
3845 break;
3846 result_width = width0;
3847 break;
3848 case MOD:
3849 if (width1 == 0)
3850 break;
3851 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3852 result_width = MIN (width0, width1);
3853 result_low = MIN (low0, low1);
3854 break;
3855 case UMOD:
3856 if (width1 == 0)
3857 break;
3858 result_width = MIN (width0, width1);
3859 result_low = MIN (low0, low1);
3860 break;
3861 default:
3862 gcc_unreachable ();
3865 if (result_width < mode_width)
3866 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3868 if (result_low > 0)
3869 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3871 #ifdef POINTERS_EXTEND_UNSIGNED
3872 /* If pointers extend unsigned and this is an addition or subtraction
3873 to a pointer in Pmode, all the bits above ptr_mode are known to be
3874 zero. */
3875 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3876 && (code == PLUS || code == MINUS)
3877 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3878 nonzero &= GET_MODE_MASK (ptr_mode);
3879 #endif
3881 break;
3883 case ZERO_EXTRACT:
3884 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3885 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3886 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3887 break;
3889 case SUBREG:
3890 /* If this is a SUBREG formed for a promoted variable that has
3891 been zero-extended, we know that at least the high-order bits
3892 are zero, though others might be too. */
3894 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3895 nonzero = GET_MODE_MASK (GET_MODE (x))
3896 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3897 known_x, known_mode, known_ret);
3899 /* If the inner mode is a single word for both the host and target
3900 machines, we can compute this from which bits of the inner
3901 object might be nonzero. */
3902 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3903 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3904 <= HOST_BITS_PER_WIDE_INT))
3906 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3907 known_x, known_mode, known_ret);
3909 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3910 /* If this is a typical RISC machine, we only have to worry
3911 about the way loads are extended. */
3912 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3913 ? (((nonzero
3914 & (((unsigned HOST_WIDE_INT) 1
3915 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3916 != 0))
3917 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3918 || !MEM_P (SUBREG_REG (x)))
3919 #endif
3921 /* On many CISC machines, accessing an object in a wider mode
3922 causes the high-order bits to become undefined. So they are
3923 not known to be zero. */
3924 if (GET_MODE_SIZE (GET_MODE (x))
3925 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3926 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3927 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3930 break;
3932 case ASHIFTRT:
3933 case LSHIFTRT:
3934 case ASHIFT:
3935 case ROTATE:
3936 /* The nonzero bits are in two classes: any bits within MODE
3937 that aren't in GET_MODE (x) are always significant. The rest of the
3938 nonzero bits are those that are significant in the operand of
3939 the shift when shifted the appropriate number of bits. This
3940 shows that high-order bits are cleared by the right shift and
3941 low-order bits by left shifts. */
3942 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3943 && INTVAL (XEXP (x, 1)) >= 0
3944 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3946 enum machine_mode inner_mode = GET_MODE (x);
3947 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3948 int count = INTVAL (XEXP (x, 1));
3949 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3950 unsigned HOST_WIDE_INT op_nonzero =
3951 cached_nonzero_bits (XEXP (x, 0), mode,
3952 known_x, known_mode, known_ret);
3953 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3954 unsigned HOST_WIDE_INT outer = 0;
3956 if (mode_width > width)
3957 outer = (op_nonzero & nonzero & ~mode_mask);
3959 if (code == LSHIFTRT)
3960 inner >>= count;
3961 else if (code == ASHIFTRT)
3963 inner >>= count;
3965 /* If the sign bit may have been nonzero before the shift, we
3966 need to mark all the places it could have been copied to
3967 by the shift as possibly nonzero. */
3968 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3969 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3971 else if (code == ASHIFT)
3972 inner <<= count;
3973 else
3974 inner = ((inner << (count % width)
3975 | (inner >> (width - (count % width)))) & mode_mask);
3977 nonzero &= (outer | inner);
3979 break;
3981 case FFS:
3982 case POPCOUNT:
3983 /* This is at most the number of bits in the mode. */
3984 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3985 break;
3987 case CLZ:
3988 /* If CLZ has a known value at zero, then the nonzero bits are
3989 that value, plus the number of bits in the mode minus one. */
3990 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3991 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3992 else
3993 nonzero = -1;
3994 break;
3996 case CTZ:
3997 /* If CTZ has a known value at zero, then the nonzero bits are
3998 that value, plus the number of bits in the mode minus one. */
3999 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4000 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4001 else
4002 nonzero = -1;
4003 break;
4005 case PARITY:
4006 nonzero = 1;
4007 break;
4009 case IF_THEN_ELSE:
4011 unsigned HOST_WIDE_INT nonzero_true =
4012 cached_nonzero_bits (XEXP (x, 1), mode,
4013 known_x, known_mode, known_ret);
4015 /* Don't call nonzero_bits for the second time if it cannot change
4016 anything. */
4017 if ((nonzero & nonzero_true) != nonzero)
4018 nonzero &= nonzero_true
4019 | cached_nonzero_bits (XEXP (x, 2), mode,
4020 known_x, known_mode, known_ret);
4022 break;
4024 default:
4025 break;
4028 return nonzero;
4031 /* See the macro definition above. */
4032 #undef cached_num_sign_bit_copies
4035 /* The function cached_num_sign_bit_copies is a wrapper around
4036 num_sign_bit_copies1. It avoids exponential behavior in
4037 num_sign_bit_copies1 when X has identical subexpressions on the
4038 first or the second level. */
4040 static unsigned int
4041 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4042 enum machine_mode known_mode,
4043 unsigned int known_ret)
4045 if (x == known_x && mode == known_mode)
4046 return known_ret;
4048 /* Try to find identical subexpressions. If found call
4049 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4050 the precomputed value for the subexpression as KNOWN_RET. */
4052 if (ARITHMETIC_P (x))
4054 rtx x0 = XEXP (x, 0);
4055 rtx x1 = XEXP (x, 1);
4057 /* Check the first level. */
4058 if (x0 == x1)
4059 return
4060 num_sign_bit_copies1 (x, mode, x0, mode,
4061 cached_num_sign_bit_copies (x0, mode, known_x,
4062 known_mode,
4063 known_ret));
4065 /* Check the second level. */
4066 if (ARITHMETIC_P (x0)
4067 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4068 return
4069 num_sign_bit_copies1 (x, mode, x1, mode,
4070 cached_num_sign_bit_copies (x1, mode, known_x,
4071 known_mode,
4072 known_ret));
4074 if (ARITHMETIC_P (x1)
4075 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4076 return
4077 num_sign_bit_copies1 (x, mode, x0, mode,
4078 cached_num_sign_bit_copies (x0, mode, known_x,
4079 known_mode,
4080 known_ret));
4083 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4086 /* Return the number of bits at the high-order end of X that are known to
4087 be equal to the sign bit. X will be used in mode MODE; if MODE is
4088 VOIDmode, X will be used in its own mode. The returned value will always
4089 be between 1 and the number of bits in MODE. */
4091 static unsigned int
4092 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4093 enum machine_mode known_mode,
4094 unsigned int known_ret)
4096 enum rtx_code code = GET_CODE (x);
4097 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4098 int num0, num1, result;
4099 unsigned HOST_WIDE_INT nonzero;
4101 /* If we weren't given a mode, use the mode of X. If the mode is still
4102 VOIDmode, we don't know anything. Likewise if one of the modes is
4103 floating-point. */
4105 if (mode == VOIDmode)
4106 mode = GET_MODE (x);
4108 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4109 return 1;
4111 /* For a smaller object, just ignore the high bits. */
4112 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4114 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4115 known_x, known_mode, known_ret);
4116 return MAX (1,
4117 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4120 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4122 #ifndef WORD_REGISTER_OPERATIONS
4123 /* If this machine does not do all register operations on the entire
4124 register and MODE is wider than the mode of X, we can say nothing
4125 at all about the high-order bits. */
4126 return 1;
4127 #else
4128 /* Likewise on machines that do, if the mode of the object is smaller
4129 than a word and loads of that size don't sign extend, we can say
4130 nothing about the high order bits. */
4131 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4132 #ifdef LOAD_EXTEND_OP
4133 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4134 #endif
4136 return 1;
4137 #endif
4140 switch (code)
4142 case REG:
4144 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4145 /* If pointers extend signed and this is a pointer in Pmode, say that
4146 all the bits above ptr_mode are known to be sign bit copies. */
4147 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4148 && REG_POINTER (x))
4149 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4150 #endif
4153 unsigned int copies_for_hook = 1, copies = 1;
4154 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4155 known_mode, known_ret,
4156 &copies_for_hook);
4158 if (new)
4159 copies = cached_num_sign_bit_copies (new, mode, known_x,
4160 known_mode, known_ret);
4162 if (copies > 1 || copies_for_hook > 1)
4163 return MAX (copies, copies_for_hook);
4165 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4167 break;
4169 case MEM:
4170 #ifdef LOAD_EXTEND_OP
4171 /* Some RISC machines sign-extend all loads of smaller than a word. */
4172 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4173 return MAX (1, ((int) bitwidth
4174 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4175 #endif
4176 break;
4178 case CONST_INT:
4179 /* If the constant is negative, take its 1's complement and remask.
4180 Then see how many zero bits we have. */
4181 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4182 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4183 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4184 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4186 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4188 case SUBREG:
4189 /* If this is a SUBREG for a promoted object that is sign-extended
4190 and we are looking at it in a wider mode, we know that at least the
4191 high-order bits are known to be sign bit copies. */
4193 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4195 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4196 known_x, known_mode, known_ret);
4197 return MAX ((int) bitwidth
4198 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4199 num0);
4202 /* For a smaller object, just ignore the high bits. */
4203 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4205 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4206 known_x, known_mode, known_ret);
4207 return MAX (1, (num0
4208 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4209 - bitwidth)));
4212 #ifdef WORD_REGISTER_OPERATIONS
4213 #ifdef LOAD_EXTEND_OP
4214 /* For paradoxical SUBREGs on machines where all register operations
4215 affect the entire register, just look inside. Note that we are
4216 passing MODE to the recursive call, so the number of sign bit copies
4217 will remain relative to that mode, not the inner mode. */
4219 /* This works only if loads sign extend. Otherwise, if we get a
4220 reload for the inner part, it may be loaded from the stack, and
4221 then we lose all sign bit copies that existed before the store
4222 to the stack. */
4224 if ((GET_MODE_SIZE (GET_MODE (x))
4225 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4226 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4227 && MEM_P (SUBREG_REG (x)))
4228 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4229 known_x, known_mode, known_ret);
4230 #endif
4231 #endif
4232 break;
4234 case SIGN_EXTRACT:
4235 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4236 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4237 break;
4239 case SIGN_EXTEND:
4240 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4241 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4242 known_x, known_mode, known_ret));
4244 case TRUNCATE:
4245 /* For a smaller object, just ignore the high bits. */
4246 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4247 known_x, known_mode, known_ret);
4248 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4249 - bitwidth)));
4251 case NOT:
4252 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4253 known_x, known_mode, known_ret);
4255 case ROTATE: case ROTATERT:
4256 /* If we are rotating left by a number of bits less than the number
4257 of sign bit copies, we can just subtract that amount from the
4258 number. */
4259 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4260 && INTVAL (XEXP (x, 1)) >= 0
4261 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4263 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4264 known_x, known_mode, known_ret);
4265 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4266 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4268 break;
4270 case NEG:
4271 /* In general, this subtracts one sign bit copy. But if the value
4272 is known to be positive, the number of sign bit copies is the
4273 same as that of the input. Finally, if the input has just one bit
4274 that might be nonzero, all the bits are copies of the sign bit. */
4275 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4276 known_x, known_mode, known_ret);
4277 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4278 return num0 > 1 ? num0 - 1 : 1;
4280 nonzero = nonzero_bits (XEXP (x, 0), mode);
4281 if (nonzero == 1)
4282 return bitwidth;
4284 if (num0 > 1
4285 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4286 num0--;
4288 return num0;
4290 case IOR: case AND: case XOR:
4291 case SMIN: case SMAX: case UMIN: case UMAX:
4292 /* Logical operations will preserve the number of sign-bit copies.
4293 MIN and MAX operations always return one of the operands. */
4294 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4295 known_x, known_mode, known_ret);
4296 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4298 return MIN (num0, num1);
4300 case PLUS: case MINUS:
4301 /* For addition and subtraction, we can have a 1-bit carry. However,
4302 if we are subtracting 1 from a positive number, there will not
4303 be such a carry. Furthermore, if the positive number is known to
4304 be 0 or 1, we know the result is either -1 or 0. */
4306 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4307 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4309 nonzero = nonzero_bits (XEXP (x, 0), mode);
4310 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4311 return (nonzero == 1 || nonzero == 0 ? bitwidth
4312 : bitwidth - floor_log2 (nonzero) - 1);
4315 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4316 known_x, known_mode, known_ret);
4317 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4318 known_x, known_mode, known_ret);
4319 result = MAX (1, MIN (num0, num1) - 1);
4321 #ifdef POINTERS_EXTEND_UNSIGNED
4322 /* If pointers extend signed and this is an addition or subtraction
4323 to a pointer in Pmode, all the bits above ptr_mode are known to be
4324 sign bit copies. */
4325 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4326 && (code == PLUS || code == MINUS)
4327 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4328 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4329 - GET_MODE_BITSIZE (ptr_mode) + 1),
4330 result);
4331 #endif
4332 return result;
4334 case MULT:
4335 /* The number of bits of the product is the sum of the number of
4336 bits of both terms. However, unless one of the terms if known
4337 to be positive, we must allow for an additional bit since negating
4338 a negative number can remove one sign bit copy. */
4340 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4341 known_x, known_mode, known_ret);
4342 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4343 known_x, known_mode, known_ret);
4345 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4346 if (result > 0
4347 && (bitwidth > HOST_BITS_PER_WIDE_INT
4348 || (((nonzero_bits (XEXP (x, 0), mode)
4349 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4350 && ((nonzero_bits (XEXP (x, 1), mode)
4351 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4352 result--;
4354 return MAX (1, result);
4356 case UDIV:
4357 /* The result must be <= the first operand. If the first operand
4358 has the high bit set, we know nothing about the number of sign
4359 bit copies. */
4360 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4361 return 1;
4362 else if ((nonzero_bits (XEXP (x, 0), mode)
4363 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4364 return 1;
4365 else
4366 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4367 known_x, known_mode, known_ret);
4369 case UMOD:
4370 /* The result must be <= the second operand. */
4371 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4372 known_x, known_mode, known_ret);
4374 case DIV:
4375 /* Similar to unsigned division, except that we have to worry about
4376 the case where the divisor is negative, in which case we have
4377 to add 1. */
4378 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4379 known_x, known_mode, known_ret);
4380 if (result > 1
4381 && (bitwidth > HOST_BITS_PER_WIDE_INT
4382 || (nonzero_bits (XEXP (x, 1), mode)
4383 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4384 result--;
4386 return result;
4388 case MOD:
4389 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4390 known_x, known_mode, known_ret);
4391 if (result > 1
4392 && (bitwidth > HOST_BITS_PER_WIDE_INT
4393 || (nonzero_bits (XEXP (x, 1), mode)
4394 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4395 result--;
4397 return result;
4399 case ASHIFTRT:
4400 /* Shifts by a constant add to the number of bits equal to the
4401 sign bit. */
4402 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4403 known_x, known_mode, known_ret);
4404 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4405 && INTVAL (XEXP (x, 1)) > 0)
4406 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4408 return num0;
4410 case ASHIFT:
4411 /* Left shifts destroy copies. */
4412 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4413 || INTVAL (XEXP (x, 1)) < 0
4414 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4415 return 1;
4417 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4418 known_x, known_mode, known_ret);
4419 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4421 case IF_THEN_ELSE:
4422 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4423 known_x, known_mode, known_ret);
4424 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4425 known_x, known_mode, known_ret);
4426 return MIN (num0, num1);
4428 case EQ: case NE: case GE: case GT: case LE: case LT:
4429 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4430 case GEU: case GTU: case LEU: case LTU:
4431 case UNORDERED: case ORDERED:
4432 /* If the constant is negative, take its 1's complement and remask.
4433 Then see how many zero bits we have. */
4434 nonzero = STORE_FLAG_VALUE;
4435 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4436 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4437 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4439 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4441 default:
4442 break;
4445 /* If we haven't been able to figure it out by one of the above rules,
4446 see if some of the high-order bits are known to be zero. If so,
4447 count those bits and return one less than that amount. If we can't
4448 safely compute the mask for this mode, always return BITWIDTH. */
4450 bitwidth = GET_MODE_BITSIZE (mode);
4451 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4452 return 1;
4454 nonzero = nonzero_bits (x, mode);
4455 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4456 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4459 /* Calculate the rtx_cost of a single instruction. A return value of
4460 zero indicates an instruction pattern without a known cost. */
4463 insn_rtx_cost (rtx pat)
4465 int i, cost;
4466 rtx set;
4468 /* Extract the single set rtx from the instruction pattern.
4469 We can't use single_set since we only have the pattern. */
4470 if (GET_CODE (pat) == SET)
4471 set = pat;
4472 else if (GET_CODE (pat) == PARALLEL)
4474 set = NULL_RTX;
4475 for (i = 0; i < XVECLEN (pat, 0); i++)
4477 rtx x = XVECEXP (pat, 0, i);
4478 if (GET_CODE (x) == SET)
4480 if (set)
4481 return 0;
4482 set = x;
4485 if (!set)
4486 return 0;
4488 else
4489 return 0;
4491 cost = rtx_cost (SET_SRC (set), SET);
4492 return cost > 0 ? cost : COSTS_N_INSNS (1);
4495 /* Given an insn INSN and condition COND, return the condition in a
4496 canonical form to simplify testing by callers. Specifically:
4498 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4499 (2) Both operands will be machine operands; (cc0) will have been replaced.
4500 (3) If an operand is a constant, it will be the second operand.
4501 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4502 for GE, GEU, and LEU.
4504 If the condition cannot be understood, or is an inequality floating-point
4505 comparison which needs to be reversed, 0 will be returned.
4507 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4509 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4510 insn used in locating the condition was found. If a replacement test
4511 of the condition is desired, it should be placed in front of that
4512 insn and we will be sure that the inputs are still valid.
4514 If WANT_REG is nonzero, we wish the condition to be relative to that
4515 register, if possible. Therefore, do not canonicalize the condition
4516 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4517 to be a compare to a CC mode register.
4519 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4520 and at INSN. */
4523 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4524 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4526 enum rtx_code code;
4527 rtx prev = insn;
4528 rtx set;
4529 rtx tem;
4530 rtx op0, op1;
4531 int reverse_code = 0;
4532 enum machine_mode mode;
4533 basic_block bb = BLOCK_FOR_INSN (insn);
4535 code = GET_CODE (cond);
4536 mode = GET_MODE (cond);
4537 op0 = XEXP (cond, 0);
4538 op1 = XEXP (cond, 1);
4540 if (reverse)
4541 code = reversed_comparison_code (cond, insn);
4542 if (code == UNKNOWN)
4543 return 0;
4545 if (earliest)
4546 *earliest = insn;
4548 /* If we are comparing a register with zero, see if the register is set
4549 in the previous insn to a COMPARE or a comparison operation. Perform
4550 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4551 in cse.c */
4553 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4554 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4555 && op1 == CONST0_RTX (GET_MODE (op0))
4556 && op0 != want_reg)
4558 /* Set nonzero when we find something of interest. */
4559 rtx x = 0;
4561 #ifdef HAVE_cc0
4562 /* If comparison with cc0, import actual comparison from compare
4563 insn. */
4564 if (op0 == cc0_rtx)
4566 if ((prev = prev_nonnote_insn (prev)) == 0
4567 || !NONJUMP_INSN_P (prev)
4568 || (set = single_set (prev)) == 0
4569 || SET_DEST (set) != cc0_rtx)
4570 return 0;
4572 op0 = SET_SRC (set);
4573 op1 = CONST0_RTX (GET_MODE (op0));
4574 if (earliest)
4575 *earliest = prev;
4577 #endif
4579 /* If this is a COMPARE, pick up the two things being compared. */
4580 if (GET_CODE (op0) == COMPARE)
4582 op1 = XEXP (op0, 1);
4583 op0 = XEXP (op0, 0);
4584 continue;
4586 else if (!REG_P (op0))
4587 break;
4589 /* Go back to the previous insn. Stop if it is not an INSN. We also
4590 stop if it isn't a single set or if it has a REG_INC note because
4591 we don't want to bother dealing with it. */
4593 if ((prev = prev_nonnote_insn (prev)) == 0
4594 || !NONJUMP_INSN_P (prev)
4595 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4596 /* In cfglayout mode, there do not have to be labels at the
4597 beginning of a block, or jumps at the end, so the previous
4598 conditions would not stop us when we reach bb boundary. */
4599 || BLOCK_FOR_INSN (prev) != bb)
4600 break;
4602 set = set_of (op0, prev);
4604 if (set
4605 && (GET_CODE (set) != SET
4606 || !rtx_equal_p (SET_DEST (set), op0)))
4607 break;
4609 /* If this is setting OP0, get what it sets it to if it looks
4610 relevant. */
4611 if (set)
4613 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4614 #ifdef FLOAT_STORE_FLAG_VALUE
4615 REAL_VALUE_TYPE fsfv;
4616 #endif
4618 /* ??? We may not combine comparisons done in a CCmode with
4619 comparisons not done in a CCmode. This is to aid targets
4620 like Alpha that have an IEEE compliant EQ instruction, and
4621 a non-IEEE compliant BEQ instruction. The use of CCmode is
4622 actually artificial, simply to prevent the combination, but
4623 should not affect other platforms.
4625 However, we must allow VOIDmode comparisons to match either
4626 CCmode or non-CCmode comparison, because some ports have
4627 modeless comparisons inside branch patterns.
4629 ??? This mode check should perhaps look more like the mode check
4630 in simplify_comparison in combine. */
4632 if ((GET_CODE (SET_SRC (set)) == COMPARE
4633 || (((code == NE
4634 || (code == LT
4635 && GET_MODE_CLASS (inner_mode) == MODE_INT
4636 && (GET_MODE_BITSIZE (inner_mode)
4637 <= HOST_BITS_PER_WIDE_INT)
4638 && (STORE_FLAG_VALUE
4639 & ((HOST_WIDE_INT) 1
4640 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4641 #ifdef FLOAT_STORE_FLAG_VALUE
4642 || (code == LT
4643 && SCALAR_FLOAT_MODE_P (inner_mode)
4644 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4645 REAL_VALUE_NEGATIVE (fsfv)))
4646 #endif
4648 && COMPARISON_P (SET_SRC (set))))
4649 && (((GET_MODE_CLASS (mode) == MODE_CC)
4650 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4651 || mode == VOIDmode || inner_mode == VOIDmode))
4652 x = SET_SRC (set);
4653 else if (((code == EQ
4654 || (code == GE
4655 && (GET_MODE_BITSIZE (inner_mode)
4656 <= HOST_BITS_PER_WIDE_INT)
4657 && GET_MODE_CLASS (inner_mode) == MODE_INT
4658 && (STORE_FLAG_VALUE
4659 & ((HOST_WIDE_INT) 1
4660 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4661 #ifdef FLOAT_STORE_FLAG_VALUE
4662 || (code == GE
4663 && SCALAR_FLOAT_MODE_P (inner_mode)
4664 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4665 REAL_VALUE_NEGATIVE (fsfv)))
4666 #endif
4668 && COMPARISON_P (SET_SRC (set))
4669 && (((GET_MODE_CLASS (mode) == MODE_CC)
4670 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4671 || mode == VOIDmode || inner_mode == VOIDmode))
4674 reverse_code = 1;
4675 x = SET_SRC (set);
4677 else
4678 break;
4681 else if (reg_set_p (op0, prev))
4682 /* If this sets OP0, but not directly, we have to give up. */
4683 break;
4685 if (x)
4687 /* If the caller is expecting the condition to be valid at INSN,
4688 make sure X doesn't change before INSN. */
4689 if (valid_at_insn_p)
4690 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4691 break;
4692 if (COMPARISON_P (x))
4693 code = GET_CODE (x);
4694 if (reverse_code)
4696 code = reversed_comparison_code (x, prev);
4697 if (code == UNKNOWN)
4698 return 0;
4699 reverse_code = 0;
4702 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4703 if (earliest)
4704 *earliest = prev;
4708 /* If constant is first, put it last. */
4709 if (CONSTANT_P (op0))
4710 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4712 /* If OP0 is the result of a comparison, we weren't able to find what
4713 was really being compared, so fail. */
4714 if (!allow_cc_mode
4715 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4716 return 0;
4718 /* Canonicalize any ordered comparison with integers involving equality
4719 if we can do computations in the relevant mode and we do not
4720 overflow. */
4722 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4723 && GET_CODE (op1) == CONST_INT
4724 && GET_MODE (op0) != VOIDmode
4725 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4727 HOST_WIDE_INT const_val = INTVAL (op1);
4728 unsigned HOST_WIDE_INT uconst_val = const_val;
4729 unsigned HOST_WIDE_INT max_val
4730 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4732 switch (code)
4734 case LE:
4735 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4736 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4737 break;
4739 /* When cross-compiling, const_val might be sign-extended from
4740 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4741 case GE:
4742 if ((HOST_WIDE_INT) (const_val & max_val)
4743 != (((HOST_WIDE_INT) 1
4744 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4745 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4746 break;
4748 case LEU:
4749 if (uconst_val < max_val)
4750 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4751 break;
4753 case GEU:
4754 if (uconst_val != 0)
4755 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4756 break;
4758 default:
4759 break;
4763 /* Never return CC0; return zero instead. */
4764 if (CC0_P (op0))
4765 return 0;
4767 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4770 /* Given a jump insn JUMP, return the condition that will cause it to branch
4771 to its JUMP_LABEL. If the condition cannot be understood, or is an
4772 inequality floating-point comparison which needs to be reversed, 0 will
4773 be returned.
4775 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4776 insn used in locating the condition was found. If a replacement test
4777 of the condition is desired, it should be placed in front of that
4778 insn and we will be sure that the inputs are still valid. If EARLIEST
4779 is null, the returned condition will be valid at INSN.
4781 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4782 compare CC mode register.
4784 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4787 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4789 rtx cond;
4790 int reverse;
4791 rtx set;
4793 /* If this is not a standard conditional jump, we can't parse it. */
4794 if (!JUMP_P (jump)
4795 || ! any_condjump_p (jump))
4796 return 0;
4797 set = pc_set (jump);
4799 cond = XEXP (SET_SRC (set), 0);
4801 /* If this branches to JUMP_LABEL when the condition is false, reverse
4802 the condition. */
4803 reverse
4804 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4805 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4807 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4808 allow_cc_mode, valid_at_insn_p);
4811 /* Suppose that truncation from the machine mode of X to MODE is not a
4812 no-op. See if there is anything special about X so that we can
4813 assume it already contains a truncated value of MODE. */
4815 bool
4816 truncated_to_mode (enum machine_mode mode, rtx x)
4818 return REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x);
4822 /* Initialize non_rtx_starting_operands, which is used to speed up
4823 for_each_rtx. */
4824 void
4825 init_rtlanal (void)
4827 int i;
4828 for (i = 0; i < NUM_RTX_CODE; i++)
4830 const char *format = GET_RTX_FORMAT (i);
4831 const char *first = strpbrk (format, "eEV");
4832 non_rtx_starting_operands[i] = first ? first - format : -1;
4836 /* Check whether this is a constant pool constant. */
4837 bool
4838 constant_pool_constant_p (rtx x)
4840 x = avoid_constant_pool_reference (x);
4841 return GET_CODE (x) == CONST_DOUBLE;