cgraph.c (cgraph_turn_edge_to_speculative): Fix debug output.
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob78687f7fac8e8aea1038fef4050a511f5c65d13a
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 References:
103 Constant propagation with conditional branches,
104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
106 Building an Optimizing Compiler,
107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
109 Advanced Compiler Design and Implementation,
110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
112 #include "config.h"
113 #include "system.h"
114 #include "coretypes.h"
115 #include "tm.h"
116 #include "tree.h"
117 #include "flags.h"
118 #include "tm_p.h"
119 #include "basic-block.h"
120 #include "function.h"
121 #include "gimple-pretty-print.h"
122 #include "tree-flow.h"
123 #include "tree-pass.h"
124 #include "tree-ssa-propagate.h"
125 #include "value-prof.h"
126 #include "langhooks.h"
127 #include "target.h"
128 #include "diagnostic-core.h"
129 #include "dbgcnt.h"
130 #include "gimple-fold.h"
131 #include "params.h"
132 #include "hash-table.h"
135 /* Possible lattice values. */
136 typedef enum
138 UNINITIALIZED,
139 UNDEFINED,
140 CONSTANT,
141 VARYING
142 } ccp_lattice_t;
144 struct prop_value_d {
145 /* Lattice value. */
146 ccp_lattice_t lattice_val;
148 /* Propagated value. */
149 tree value;
151 /* Mask that applies to the propagated value during CCP. For
152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
153 double_int mask;
156 typedef struct prop_value_d prop_value_t;
158 /* Array of propagated constant values. After propagation,
159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
160 the constant is held in an SSA name representing a memory store
161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
162 memory reference used to store (i.e., the LHS of the assignment
163 doing the store). */
164 static prop_value_t *const_val;
165 static unsigned n_const_val;
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
175 switch (val.lattice_val)
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 if (TREE_CODE (val.value) != INTEGER_CST
188 || val.mask.is_zero ())
190 fprintf (outf, "%sCONSTANT ", prefix);
191 print_generic_expr (outf, val.value, dump_flags);
193 else
195 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
197 prefix, cval.high, cval.low);
198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
199 val.mask.high, val.mask.low);
201 break;
202 default:
203 gcc_unreachable ();
208 /* Print lattice value VAL to stderr. */
210 void debug_lattice_value (prop_value_t val);
212 DEBUG_FUNCTION void
213 debug_lattice_value (prop_value_t val)
215 dump_lattice_value (stderr, "", val);
216 fprintf (stderr, "\n");
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
222 values:
224 1- Global and static variables that are declared constant are
225 considered CONSTANT.
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
238 static prop_value_t
239 get_default_value (tree var)
241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
242 gimple stmt;
244 stmt = SSA_NAME_DEF_STMT (var);
246 if (gimple_nop_p (stmt))
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var)
253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
254 val.lattice_val = UNDEFINED;
255 else
257 val.lattice_val = VARYING;
258 val.mask = double_int_minus_one;
261 else if (is_gimple_assign (stmt))
263 tree cst;
264 if (gimple_assign_single_p (stmt)
265 && DECL_P (gimple_assign_rhs1 (stmt))
266 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
268 val.lattice_val = CONSTANT;
269 val.value = cst;
271 else
273 /* Any other variable defined by an assignment is considered
274 UNDEFINED. */
275 val.lattice_val = UNDEFINED;
278 else if ((is_gimple_call (stmt)
279 && gimple_call_lhs (stmt) != NULL_TREE)
280 || gimple_code (stmt) == GIMPLE_PHI)
282 /* A variable defined by a call or a PHI node is considered
283 UNDEFINED. */
284 val.lattice_val = UNDEFINED;
286 else
288 /* Otherwise, VAR will never take on a constant value. */
289 val.lattice_val = VARYING;
290 val.mask = double_int_minus_one;
293 return val;
297 /* Get the constant value associated with variable VAR. */
299 static inline prop_value_t *
300 get_value (tree var)
302 prop_value_t *val;
304 if (const_val == NULL
305 || SSA_NAME_VERSION (var) >= n_const_val)
306 return NULL;
308 val = &const_val[SSA_NAME_VERSION (var)];
309 if (val->lattice_val == UNINITIALIZED)
310 *val = get_default_value (var);
312 canonicalize_float_value (val);
314 return val;
317 /* Return the constant tree value associated with VAR. */
319 static inline tree
320 get_constant_value (tree var)
322 prop_value_t *val;
323 if (TREE_CODE (var) != SSA_NAME)
325 if (is_gimple_min_invariant (var))
326 return var;
327 return NULL_TREE;
329 val = get_value (var);
330 if (val
331 && val->lattice_val == CONSTANT
332 && (TREE_CODE (val->value) != INTEGER_CST
333 || val->mask.is_zero ()))
334 return val->value;
335 return NULL_TREE;
338 /* Sets the value associated with VAR to VARYING. */
340 static inline void
341 set_value_varying (tree var)
343 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
345 val->lattice_val = VARYING;
346 val->value = NULL_TREE;
347 val->mask = double_int_minus_one;
350 /* For float types, modify the value of VAL to make ccp work correctly
351 for non-standard values (-0, NaN):
353 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
354 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
355 This is to fix the following problem (see PR 29921): Suppose we have
357 x = 0.0 * y
359 and we set value of y to NaN. This causes value of x to be set to NaN.
360 When we later determine that y is in fact VARYING, fold uses the fact
361 that HONOR_NANS is false, and we try to change the value of x to 0,
362 causing an ICE. With HONOR_NANS being false, the real appearance of
363 NaN would cause undefined behavior, though, so claiming that y (and x)
364 are UNDEFINED initially is correct. */
366 static void
367 canonicalize_float_value (prop_value_t *val)
369 enum machine_mode mode;
370 tree type;
371 REAL_VALUE_TYPE d;
373 if (val->lattice_val != CONSTANT
374 || TREE_CODE (val->value) != REAL_CST)
375 return;
377 d = TREE_REAL_CST (val->value);
378 type = TREE_TYPE (val->value);
379 mode = TYPE_MODE (type);
381 if (!HONOR_SIGNED_ZEROS (mode)
382 && REAL_VALUE_MINUS_ZERO (d))
384 val->value = build_real (type, dconst0);
385 return;
388 if (!HONOR_NANS (mode)
389 && REAL_VALUE_ISNAN (d))
391 val->lattice_val = UNDEFINED;
392 val->value = NULL;
393 return;
397 /* Return whether the lattice transition is valid. */
399 static bool
400 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
402 /* Lattice transitions must always be monotonically increasing in
403 value. */
404 if (old_val.lattice_val < new_val.lattice_val)
405 return true;
407 if (old_val.lattice_val != new_val.lattice_val)
408 return false;
410 if (!old_val.value && !new_val.value)
411 return true;
413 /* Now both lattice values are CONSTANT. */
415 /* Allow transitioning from PHI <&x, not executable> == &x
416 to PHI <&x, &y> == common alignment. */
417 if (TREE_CODE (old_val.value) != INTEGER_CST
418 && TREE_CODE (new_val.value) == INTEGER_CST)
419 return true;
421 /* Bit-lattices have to agree in the still valid bits. */
422 if (TREE_CODE (old_val.value) == INTEGER_CST
423 && TREE_CODE (new_val.value) == INTEGER_CST)
424 return tree_to_double_int (old_val.value).and_not (new_val.mask)
425 == tree_to_double_int (new_val.value).and_not (new_val.mask);
427 /* Otherwise constant values have to agree. */
428 return operand_equal_p (old_val.value, new_val.value, 0);
431 /* Set the value for variable VAR to NEW_VAL. Return true if the new
432 value is different from VAR's previous value. */
434 static bool
435 set_lattice_value (tree var, prop_value_t new_val)
437 /* We can deal with old UNINITIALIZED values just fine here. */
438 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
440 canonicalize_float_value (&new_val);
442 /* We have to be careful to not go up the bitwise lattice
443 represented by the mask.
444 ??? This doesn't seem to be the best place to enforce this. */
445 if (new_val.lattice_val == CONSTANT
446 && old_val->lattice_val == CONSTANT
447 && TREE_CODE (new_val.value) == INTEGER_CST
448 && TREE_CODE (old_val->value) == INTEGER_CST)
450 double_int diff;
451 diff = tree_to_double_int (new_val.value)
452 ^ tree_to_double_int (old_val->value);
453 new_val.mask = new_val.mask | old_val->mask | diff;
456 gcc_assert (valid_lattice_transition (*old_val, new_val));
458 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
459 caller that this was a non-transition. */
460 if (old_val->lattice_val != new_val.lattice_val
461 || (new_val.lattice_val == CONSTANT
462 && TREE_CODE (new_val.value) == INTEGER_CST
463 && (TREE_CODE (old_val->value) != INTEGER_CST
464 || new_val.mask != old_val->mask)))
466 /* ??? We would like to delay creation of INTEGER_CSTs from
467 partially constants here. */
469 if (dump_file && (dump_flags & TDF_DETAILS))
471 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
472 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
475 *old_val = new_val;
477 gcc_assert (new_val.lattice_val != UNINITIALIZED);
478 return true;
481 return false;
484 static prop_value_t get_value_for_expr (tree, bool);
485 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
486 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
487 tree, double_int, double_int,
488 tree, double_int, double_int);
490 /* Return a double_int that can be used for bitwise simplifications
491 from VAL. */
493 static double_int
494 value_to_double_int (prop_value_t val)
496 if (val.value
497 && TREE_CODE (val.value) == INTEGER_CST)
498 return tree_to_double_int (val.value);
499 else
500 return double_int_zero;
503 /* Return the value for the address expression EXPR based on alignment
504 information. */
506 static prop_value_t
507 get_value_from_alignment (tree expr)
509 tree type = TREE_TYPE (expr);
510 prop_value_t val;
511 unsigned HOST_WIDE_INT bitpos;
512 unsigned int align;
514 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
516 get_pointer_alignment_1 (expr, &align, &bitpos);
517 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
518 ? double_int::mask (TYPE_PRECISION (type))
519 : double_int_minus_one)
520 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
521 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
522 if (val.lattice_val == CONSTANT)
523 val.value
524 = double_int_to_tree (type,
525 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
526 else
527 val.value = NULL_TREE;
529 return val;
532 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
533 return constant bits extracted from alignment information for
534 invariant addresses. */
536 static prop_value_t
537 get_value_for_expr (tree expr, bool for_bits_p)
539 prop_value_t val;
541 if (TREE_CODE (expr) == SSA_NAME)
543 val = *get_value (expr);
544 if (for_bits_p
545 && val.lattice_val == CONSTANT
546 && TREE_CODE (val.value) == ADDR_EXPR)
547 val = get_value_from_alignment (val.value);
549 else if (is_gimple_min_invariant (expr)
550 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
552 val.lattice_val = CONSTANT;
553 val.value = expr;
554 val.mask = double_int_zero;
555 canonicalize_float_value (&val);
557 else if (TREE_CODE (expr) == ADDR_EXPR)
558 val = get_value_from_alignment (expr);
559 else
561 val.lattice_val = VARYING;
562 val.mask = double_int_minus_one;
563 val.value = NULL_TREE;
565 return val;
568 /* Return the likely CCP lattice value for STMT.
570 If STMT has no operands, then return CONSTANT.
572 Else if undefinedness of operands of STMT cause its value to be
573 undefined, then return UNDEFINED.
575 Else if any operands of STMT are constants, then return CONSTANT.
577 Else return VARYING. */
579 static ccp_lattice_t
580 likely_value (gimple stmt)
582 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
583 tree use;
584 ssa_op_iter iter;
585 unsigned i;
587 enum gimple_code code = gimple_code (stmt);
589 /* This function appears to be called only for assignments, calls,
590 conditionals, and switches, due to the logic in visit_stmt. */
591 gcc_assert (code == GIMPLE_ASSIGN
592 || code == GIMPLE_CALL
593 || code == GIMPLE_COND
594 || code == GIMPLE_SWITCH);
596 /* If the statement has volatile operands, it won't fold to a
597 constant value. */
598 if (gimple_has_volatile_ops (stmt))
599 return VARYING;
601 /* Arrive here for more complex cases. */
602 has_constant_operand = false;
603 has_undefined_operand = false;
604 all_undefined_operands = true;
605 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
607 prop_value_t *val = get_value (use);
609 if (val->lattice_val == UNDEFINED)
610 has_undefined_operand = true;
611 else
612 all_undefined_operands = false;
614 if (val->lattice_val == CONSTANT)
615 has_constant_operand = true;
618 /* There may be constants in regular rhs operands. For calls we
619 have to ignore lhs, fndecl and static chain, otherwise only
620 the lhs. */
621 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
622 i < gimple_num_ops (stmt); ++i)
624 tree op = gimple_op (stmt, i);
625 if (!op || TREE_CODE (op) == SSA_NAME)
626 continue;
627 if (is_gimple_min_invariant (op))
628 has_constant_operand = true;
631 if (has_constant_operand)
632 all_undefined_operands = false;
634 /* If the operation combines operands like COMPLEX_EXPR make sure to
635 not mark the result UNDEFINED if only one part of the result is
636 undefined. */
637 if (has_undefined_operand && all_undefined_operands)
638 return UNDEFINED;
639 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
641 switch (gimple_assign_rhs_code (stmt))
643 /* Unary operators are handled with all_undefined_operands. */
644 case PLUS_EXPR:
645 case MINUS_EXPR:
646 case POINTER_PLUS_EXPR:
647 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
648 Not bitwise operators, one VARYING operand may specify the
649 result completely. Not logical operators for the same reason.
650 Not COMPLEX_EXPR as one VARYING operand makes the result partly
651 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
652 the undefined operand may be promoted. */
653 return UNDEFINED;
655 case ADDR_EXPR:
656 /* If any part of an address is UNDEFINED, like the index
657 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
658 return UNDEFINED;
660 default:
664 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
665 fall back to CONSTANT. During iteration UNDEFINED may still drop
666 to CONSTANT. */
667 if (has_undefined_operand)
668 return CONSTANT;
670 /* We do not consider virtual operands here -- load from read-only
671 memory may have only VARYING virtual operands, but still be
672 constant. */
673 if (has_constant_operand
674 || gimple_references_memory_p (stmt))
675 return CONSTANT;
677 return VARYING;
680 /* Returns true if STMT cannot be constant. */
682 static bool
683 surely_varying_stmt_p (gimple stmt)
685 /* If the statement has operands that we cannot handle, it cannot be
686 constant. */
687 if (gimple_has_volatile_ops (stmt))
688 return true;
690 /* If it is a call and does not return a value or is not a
691 builtin and not an indirect call, it is varying. */
692 if (is_gimple_call (stmt))
694 tree fndecl;
695 if (!gimple_call_lhs (stmt)
696 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
697 && !DECL_BUILT_IN (fndecl)))
698 return true;
701 /* Any other store operation is not interesting. */
702 else if (gimple_vdef (stmt))
703 return true;
705 /* Anything other than assignments and conditional jumps are not
706 interesting for CCP. */
707 if (gimple_code (stmt) != GIMPLE_ASSIGN
708 && gimple_code (stmt) != GIMPLE_COND
709 && gimple_code (stmt) != GIMPLE_SWITCH
710 && gimple_code (stmt) != GIMPLE_CALL)
711 return true;
713 return false;
716 /* Initialize local data structures for CCP. */
718 static void
719 ccp_initialize (void)
721 basic_block bb;
723 n_const_val = num_ssa_names;
724 const_val = XCNEWVEC (prop_value_t, n_const_val);
726 /* Initialize simulation flags for PHI nodes and statements. */
727 FOR_EACH_BB (bb)
729 gimple_stmt_iterator i;
731 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
733 gimple stmt = gsi_stmt (i);
734 bool is_varying;
736 /* If the statement is a control insn, then we do not
737 want to avoid simulating the statement once. Failure
738 to do so means that those edges will never get added. */
739 if (stmt_ends_bb_p (stmt))
740 is_varying = false;
741 else
742 is_varying = surely_varying_stmt_p (stmt);
744 if (is_varying)
746 tree def;
747 ssa_op_iter iter;
749 /* If the statement will not produce a constant, mark
750 all its outputs VARYING. */
751 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
752 set_value_varying (def);
754 prop_set_simulate_again (stmt, !is_varying);
758 /* Now process PHI nodes. We never clear the simulate_again flag on
759 phi nodes, since we do not know which edges are executable yet,
760 except for phi nodes for virtual operands when we do not do store ccp. */
761 FOR_EACH_BB (bb)
763 gimple_stmt_iterator i;
765 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
767 gimple phi = gsi_stmt (i);
769 if (virtual_operand_p (gimple_phi_result (phi)))
770 prop_set_simulate_again (phi, false);
771 else
772 prop_set_simulate_again (phi, true);
777 /* Debug count support. Reset the values of ssa names
778 VARYING when the total number ssa names analyzed is
779 beyond the debug count specified. */
781 static void
782 do_dbg_cnt (void)
784 unsigned i;
785 for (i = 0; i < num_ssa_names; i++)
787 if (!dbg_cnt (ccp))
789 const_val[i].lattice_val = VARYING;
790 const_val[i].mask = double_int_minus_one;
791 const_val[i].value = NULL_TREE;
797 /* Do final substitution of propagated values, cleanup the flowgraph and
798 free allocated storage.
800 Return TRUE when something was optimized. */
802 static bool
803 ccp_finalize (void)
805 bool something_changed;
806 unsigned i;
808 do_dbg_cnt ();
810 /* Derive alignment and misalignment information from partially
811 constant pointers in the lattice. */
812 for (i = 1; i < num_ssa_names; ++i)
814 tree name = ssa_name (i);
815 prop_value_t *val;
816 unsigned int tem, align;
818 if (!name
819 || !POINTER_TYPE_P (TREE_TYPE (name)))
820 continue;
822 val = get_value (name);
823 if (val->lattice_val != CONSTANT
824 || TREE_CODE (val->value) != INTEGER_CST)
825 continue;
827 /* Trailing constant bits specify the alignment, trailing value
828 bits the misalignment. */
829 tem = val->mask.low;
830 align = (tem & -tem);
831 if (align > 1)
832 set_ptr_info_alignment (get_ptr_info (name), align,
833 TREE_INT_CST_LOW (val->value) & (align - 1));
836 /* Perform substitutions based on the known constant values. */
837 something_changed = substitute_and_fold (get_constant_value,
838 ccp_fold_stmt, true);
840 free (const_val);
841 const_val = NULL;
842 return something_changed;;
846 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
847 in VAL1.
849 any M UNDEFINED = any
850 any M VARYING = VARYING
851 Ci M Cj = Ci if (i == j)
852 Ci M Cj = VARYING if (i != j)
855 static void
856 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
858 if (val1->lattice_val == UNDEFINED)
860 /* UNDEFINED M any = any */
861 *val1 = *val2;
863 else if (val2->lattice_val == UNDEFINED)
865 /* any M UNDEFINED = any
866 Nothing to do. VAL1 already contains the value we want. */
869 else if (val1->lattice_val == VARYING
870 || val2->lattice_val == VARYING)
872 /* any M VARYING = VARYING. */
873 val1->lattice_val = VARYING;
874 val1->mask = double_int_minus_one;
875 val1->value = NULL_TREE;
877 else if (val1->lattice_val == CONSTANT
878 && val2->lattice_val == CONSTANT
879 && TREE_CODE (val1->value) == INTEGER_CST
880 && TREE_CODE (val2->value) == INTEGER_CST)
882 /* Ci M Cj = Ci if (i == j)
883 Ci M Cj = VARYING if (i != j)
885 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
886 drop to varying. */
887 val1->mask = val1->mask | val2->mask
888 | (tree_to_double_int (val1->value)
889 ^ tree_to_double_int (val2->value));
890 if (val1->mask.is_minus_one ())
892 val1->lattice_val = VARYING;
893 val1->value = NULL_TREE;
896 else if (val1->lattice_val == CONSTANT
897 && val2->lattice_val == CONSTANT
898 && simple_cst_equal (val1->value, val2->value) == 1)
900 /* Ci M Cj = Ci if (i == j)
901 Ci M Cj = VARYING if (i != j)
903 VAL1 already contains the value we want for equivalent values. */
905 else if (val1->lattice_val == CONSTANT
906 && val2->lattice_val == CONSTANT
907 && (TREE_CODE (val1->value) == ADDR_EXPR
908 || TREE_CODE (val2->value) == ADDR_EXPR))
910 /* When not equal addresses are involved try meeting for
911 alignment. */
912 prop_value_t tem = *val2;
913 if (TREE_CODE (val1->value) == ADDR_EXPR)
914 *val1 = get_value_for_expr (val1->value, true);
915 if (TREE_CODE (val2->value) == ADDR_EXPR)
916 tem = get_value_for_expr (val2->value, true);
917 ccp_lattice_meet (val1, &tem);
919 else
921 /* Any other combination is VARYING. */
922 val1->lattice_val = VARYING;
923 val1->mask = double_int_minus_one;
924 val1->value = NULL_TREE;
929 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
930 lattice values to determine PHI_NODE's lattice value. The value of a
931 PHI node is determined calling ccp_lattice_meet with all the arguments
932 of the PHI node that are incoming via executable edges. */
934 static enum ssa_prop_result
935 ccp_visit_phi_node (gimple phi)
937 unsigned i;
938 prop_value_t *old_val, new_val;
940 if (dump_file && (dump_flags & TDF_DETAILS))
942 fprintf (dump_file, "\nVisiting PHI node: ");
943 print_gimple_stmt (dump_file, phi, 0, dump_flags);
946 old_val = get_value (gimple_phi_result (phi));
947 switch (old_val->lattice_val)
949 case VARYING:
950 return SSA_PROP_VARYING;
952 case CONSTANT:
953 new_val = *old_val;
954 break;
956 case UNDEFINED:
957 new_val.lattice_val = UNDEFINED;
958 new_val.value = NULL_TREE;
959 break;
961 default:
962 gcc_unreachable ();
965 for (i = 0; i < gimple_phi_num_args (phi); i++)
967 /* Compute the meet operator over all the PHI arguments flowing
968 through executable edges. */
969 edge e = gimple_phi_arg_edge (phi, i);
971 if (dump_file && (dump_flags & TDF_DETAILS))
973 fprintf (dump_file,
974 "\n Argument #%d (%d -> %d %sexecutable)\n",
975 i, e->src->index, e->dest->index,
976 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
979 /* If the incoming edge is executable, Compute the meet operator for
980 the existing value of the PHI node and the current PHI argument. */
981 if (e->flags & EDGE_EXECUTABLE)
983 tree arg = gimple_phi_arg (phi, i)->def;
984 prop_value_t arg_val = get_value_for_expr (arg, false);
986 ccp_lattice_meet (&new_val, &arg_val);
988 if (dump_file && (dump_flags & TDF_DETAILS))
990 fprintf (dump_file, "\t");
991 print_generic_expr (dump_file, arg, dump_flags);
992 dump_lattice_value (dump_file, "\tValue: ", arg_val);
993 fprintf (dump_file, "\n");
996 if (new_val.lattice_val == VARYING)
997 break;
1001 if (dump_file && (dump_flags & TDF_DETAILS))
1003 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1004 fprintf (dump_file, "\n\n");
1007 /* Make the transition to the new value. */
1008 if (set_lattice_value (gimple_phi_result (phi), new_val))
1010 if (new_val.lattice_val == VARYING)
1011 return SSA_PROP_VARYING;
1012 else
1013 return SSA_PROP_INTERESTING;
1015 else
1016 return SSA_PROP_NOT_INTERESTING;
1019 /* Return the constant value for OP or OP otherwise. */
1021 static tree
1022 valueize_op (tree op)
1024 if (TREE_CODE (op) == SSA_NAME)
1026 tree tem = get_constant_value (op);
1027 if (tem)
1028 return tem;
1030 return op;
1033 /* CCP specific front-end to the non-destructive constant folding
1034 routines.
1036 Attempt to simplify the RHS of STMT knowing that one or more
1037 operands are constants.
1039 If simplification is possible, return the simplified RHS,
1040 otherwise return the original RHS or NULL_TREE. */
1042 static tree
1043 ccp_fold (gimple stmt)
1045 location_t loc = gimple_location (stmt);
1046 switch (gimple_code (stmt))
1048 case GIMPLE_COND:
1050 /* Handle comparison operators that can appear in GIMPLE form. */
1051 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1052 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1053 enum tree_code code = gimple_cond_code (stmt);
1054 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1057 case GIMPLE_SWITCH:
1059 /* Return the constant switch index. */
1060 return valueize_op (gimple_switch_index (stmt));
1063 case GIMPLE_ASSIGN:
1064 case GIMPLE_CALL:
1065 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1067 default:
1068 gcc_unreachable ();
1072 /* Apply the operation CODE in type TYPE to the value, mask pair
1073 RVAL and RMASK representing a value of type RTYPE and set
1074 the value, mask pair *VAL and *MASK to the result. */
1076 static void
1077 bit_value_unop_1 (enum tree_code code, tree type,
1078 double_int *val, double_int *mask,
1079 tree rtype, double_int rval, double_int rmask)
1081 switch (code)
1083 case BIT_NOT_EXPR:
1084 *mask = rmask;
1085 *val = ~rval;
1086 break;
1088 case NEGATE_EXPR:
1090 double_int temv, temm;
1091 /* Return ~rval + 1. */
1092 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1093 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1094 type, temv, temm,
1095 type, double_int_one, double_int_zero);
1096 break;
1099 CASE_CONVERT:
1101 bool uns;
1103 /* First extend mask and value according to the original type. */
1104 uns = TYPE_UNSIGNED (rtype);
1105 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1106 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1108 /* Then extend mask and value according to the target type. */
1109 uns = TYPE_UNSIGNED (type);
1110 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1111 *val = (*val).ext (TYPE_PRECISION (type), uns);
1112 break;
1115 default:
1116 *mask = double_int_minus_one;
1117 break;
1121 /* Apply the operation CODE in type TYPE to the value, mask pairs
1122 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1123 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1125 static void
1126 bit_value_binop_1 (enum tree_code code, tree type,
1127 double_int *val, double_int *mask,
1128 tree r1type, double_int r1val, double_int r1mask,
1129 tree r2type, double_int r2val, double_int r2mask)
1131 bool uns = TYPE_UNSIGNED (type);
1132 /* Assume we'll get a constant result. Use an initial varying value,
1133 we fall back to varying in the end if necessary. */
1134 *mask = double_int_minus_one;
1135 switch (code)
1137 case BIT_AND_EXPR:
1138 /* The mask is constant where there is a known not
1139 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1140 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1141 *val = r1val & r2val;
1142 break;
1144 case BIT_IOR_EXPR:
1145 /* The mask is constant where there is a known
1146 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1147 *mask = (r1mask | r2mask)
1148 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1149 *val = r1val | r2val;
1150 break;
1152 case BIT_XOR_EXPR:
1153 /* m1 | m2 */
1154 *mask = r1mask | r2mask;
1155 *val = r1val ^ r2val;
1156 break;
1158 case LROTATE_EXPR:
1159 case RROTATE_EXPR:
1160 if (r2mask.is_zero ())
1162 HOST_WIDE_INT shift = r2val.low;
1163 if (code == RROTATE_EXPR)
1164 shift = -shift;
1165 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1166 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1168 break;
1170 case LSHIFT_EXPR:
1171 case RSHIFT_EXPR:
1172 /* ??? We can handle partially known shift counts if we know
1173 its sign. That way we can tell that (x << (y | 8)) & 255
1174 is zero. */
1175 if (r2mask.is_zero ())
1177 HOST_WIDE_INT shift = r2val.low;
1178 if (code == RSHIFT_EXPR)
1179 shift = -shift;
1180 /* We need to know if we are doing a left or a right shift
1181 to properly shift in zeros for left shift and unsigned
1182 right shifts and the sign bit for signed right shifts.
1183 For signed right shifts we shift in varying in case
1184 the sign bit was varying. */
1185 if (shift > 0)
1187 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1188 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1190 else if (shift < 0)
1192 shift = -shift;
1193 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1194 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1196 else
1198 *mask = r1mask;
1199 *val = r1val;
1202 break;
1204 case PLUS_EXPR:
1205 case POINTER_PLUS_EXPR:
1207 double_int lo, hi;
1208 /* Do the addition with unknown bits set to zero, to give carry-ins of
1209 zero wherever possible. */
1210 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1211 lo = lo.ext (TYPE_PRECISION (type), uns);
1212 /* Do the addition with unknown bits set to one, to give carry-ins of
1213 one wherever possible. */
1214 hi = (r1val | r1mask) + (r2val | r2mask);
1215 hi = hi.ext (TYPE_PRECISION (type), uns);
1216 /* Each bit in the result is known if (a) the corresponding bits in
1217 both inputs are known, and (b) the carry-in to that bit position
1218 is known. We can check condition (b) by seeing if we got the same
1219 result with minimised carries as with maximised carries. */
1220 *mask = r1mask | r2mask | (lo ^ hi);
1221 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1222 /* It shouldn't matter whether we choose lo or hi here. */
1223 *val = lo;
1224 break;
1227 case MINUS_EXPR:
1229 double_int temv, temm;
1230 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1231 r2type, r2val, r2mask);
1232 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1233 r1type, r1val, r1mask,
1234 r2type, temv, temm);
1235 break;
1238 case MULT_EXPR:
1240 /* Just track trailing zeros in both operands and transfer
1241 them to the other. */
1242 int r1tz = (r1val | r1mask).trailing_zeros ();
1243 int r2tz = (r2val | r2mask).trailing_zeros ();
1244 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1246 *mask = double_int_zero;
1247 *val = double_int_zero;
1249 else if (r1tz + r2tz > 0)
1251 *mask = ~double_int::mask (r1tz + r2tz);
1252 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1253 *val = double_int_zero;
1255 break;
1258 case EQ_EXPR:
1259 case NE_EXPR:
1261 double_int m = r1mask | r2mask;
1262 if (r1val.and_not (m) != r2val.and_not (m))
1264 *mask = double_int_zero;
1265 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1267 else
1269 /* We know the result of a comparison is always one or zero. */
1270 *mask = double_int_one;
1271 *val = double_int_zero;
1273 break;
1276 case GE_EXPR:
1277 case GT_EXPR:
1279 double_int tem = r1val;
1280 r1val = r2val;
1281 r2val = tem;
1282 tem = r1mask;
1283 r1mask = r2mask;
1284 r2mask = tem;
1285 code = swap_tree_comparison (code);
1287 /* Fallthru. */
1288 case LT_EXPR:
1289 case LE_EXPR:
1291 int minmax, maxmin;
1292 /* If the most significant bits are not known we know nothing. */
1293 if (r1mask.is_negative () || r2mask.is_negative ())
1294 break;
1296 /* For comparisons the signedness is in the comparison operands. */
1297 uns = TYPE_UNSIGNED (r1type);
1299 /* If we know the most significant bits we know the values
1300 value ranges by means of treating varying bits as zero
1301 or one. Do a cross comparison of the max/min pairs. */
1302 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1303 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1304 if (maxmin < 0) /* r1 is less than r2. */
1306 *mask = double_int_zero;
1307 *val = double_int_one;
1309 else if (minmax > 0) /* r1 is not less or equal to r2. */
1311 *mask = double_int_zero;
1312 *val = double_int_zero;
1314 else if (maxmin == minmax) /* r1 and r2 are equal. */
1316 /* This probably should never happen as we'd have
1317 folded the thing during fully constant value folding. */
1318 *mask = double_int_zero;
1319 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1321 else
1323 /* We know the result of a comparison is always one or zero. */
1324 *mask = double_int_one;
1325 *val = double_int_zero;
1327 break;
1330 default:;
1334 /* Return the propagation value when applying the operation CODE to
1335 the value RHS yielding type TYPE. */
1337 static prop_value_t
1338 bit_value_unop (enum tree_code code, tree type, tree rhs)
1340 prop_value_t rval = get_value_for_expr (rhs, true);
1341 double_int value, mask;
1342 prop_value_t val;
1344 if (rval.lattice_val == UNDEFINED)
1345 return rval;
1347 gcc_assert ((rval.lattice_val == CONSTANT
1348 && TREE_CODE (rval.value) == INTEGER_CST)
1349 || rval.mask.is_minus_one ());
1350 bit_value_unop_1 (code, type, &value, &mask,
1351 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1352 if (!mask.is_minus_one ())
1354 val.lattice_val = CONSTANT;
1355 val.mask = mask;
1356 /* ??? Delay building trees here. */
1357 val.value = double_int_to_tree (type, value);
1359 else
1361 val.lattice_val = VARYING;
1362 val.value = NULL_TREE;
1363 val.mask = double_int_minus_one;
1365 return val;
1368 /* Return the propagation value when applying the operation CODE to
1369 the values RHS1 and RHS2 yielding type TYPE. */
1371 static prop_value_t
1372 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1374 prop_value_t r1val = get_value_for_expr (rhs1, true);
1375 prop_value_t r2val = get_value_for_expr (rhs2, true);
1376 double_int value, mask;
1377 prop_value_t val;
1379 if (r1val.lattice_val == UNDEFINED
1380 || r2val.lattice_val == UNDEFINED)
1382 val.lattice_val = VARYING;
1383 val.value = NULL_TREE;
1384 val.mask = double_int_minus_one;
1385 return val;
1388 gcc_assert ((r1val.lattice_val == CONSTANT
1389 && TREE_CODE (r1val.value) == INTEGER_CST)
1390 || r1val.mask.is_minus_one ());
1391 gcc_assert ((r2val.lattice_val == CONSTANT
1392 && TREE_CODE (r2val.value) == INTEGER_CST)
1393 || r2val.mask.is_minus_one ());
1394 bit_value_binop_1 (code, type, &value, &mask,
1395 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1396 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1397 if (!mask.is_minus_one ())
1399 val.lattice_val = CONSTANT;
1400 val.mask = mask;
1401 /* ??? Delay building trees here. */
1402 val.value = double_int_to_tree (type, value);
1404 else
1406 val.lattice_val = VARYING;
1407 val.value = NULL_TREE;
1408 val.mask = double_int_minus_one;
1410 return val;
1413 /* Return the propagation value when applying __builtin_assume_aligned to
1414 its arguments. */
1416 static prop_value_t
1417 bit_value_assume_aligned (gimple stmt)
1419 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1420 tree type = TREE_TYPE (ptr);
1421 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1422 prop_value_t ptrval = get_value_for_expr (ptr, true);
1423 prop_value_t alignval;
1424 double_int value, mask;
1425 prop_value_t val;
1426 if (ptrval.lattice_val == UNDEFINED)
1427 return ptrval;
1428 gcc_assert ((ptrval.lattice_val == CONSTANT
1429 && TREE_CODE (ptrval.value) == INTEGER_CST)
1430 || ptrval.mask.is_minus_one ());
1431 align = gimple_call_arg (stmt, 1);
1432 if (!host_integerp (align, 1))
1433 return ptrval;
1434 aligni = tree_low_cst (align, 1);
1435 if (aligni <= 1
1436 || (aligni & (aligni - 1)) != 0)
1437 return ptrval;
1438 if (gimple_call_num_args (stmt) > 2)
1440 misalign = gimple_call_arg (stmt, 2);
1441 if (!host_integerp (misalign, 1))
1442 return ptrval;
1443 misaligni = tree_low_cst (misalign, 1);
1444 if (misaligni >= aligni)
1445 return ptrval;
1447 align = build_int_cst_type (type, -aligni);
1448 alignval = get_value_for_expr (align, true);
1449 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1450 type, value_to_double_int (ptrval), ptrval.mask,
1451 type, value_to_double_int (alignval), alignval.mask);
1452 if (!mask.is_minus_one ())
1454 val.lattice_val = CONSTANT;
1455 val.mask = mask;
1456 gcc_assert ((mask.low & (aligni - 1)) == 0);
1457 gcc_assert ((value.low & (aligni - 1)) == 0);
1458 value.low |= misaligni;
1459 /* ??? Delay building trees here. */
1460 val.value = double_int_to_tree (type, value);
1462 else
1464 val.lattice_val = VARYING;
1465 val.value = NULL_TREE;
1466 val.mask = double_int_minus_one;
1468 return val;
1471 /* Evaluate statement STMT.
1472 Valid only for assignments, calls, conditionals, and switches. */
1474 static prop_value_t
1475 evaluate_stmt (gimple stmt)
1477 prop_value_t val;
1478 tree simplified = NULL_TREE;
1479 ccp_lattice_t likelyvalue = likely_value (stmt);
1480 bool is_constant = false;
1481 unsigned int align;
1483 if (dump_file && (dump_flags & TDF_DETAILS))
1485 fprintf (dump_file, "which is likely ");
1486 switch (likelyvalue)
1488 case CONSTANT:
1489 fprintf (dump_file, "CONSTANT");
1490 break;
1491 case UNDEFINED:
1492 fprintf (dump_file, "UNDEFINED");
1493 break;
1494 case VARYING:
1495 fprintf (dump_file, "VARYING");
1496 break;
1497 default:;
1499 fprintf (dump_file, "\n");
1502 /* If the statement is likely to have a CONSTANT result, then try
1503 to fold the statement to determine the constant value. */
1504 /* FIXME. This is the only place that we call ccp_fold.
1505 Since likely_value never returns CONSTANT for calls, we will
1506 not attempt to fold them, including builtins that may profit. */
1507 if (likelyvalue == CONSTANT)
1509 fold_defer_overflow_warnings ();
1510 simplified = ccp_fold (stmt);
1511 is_constant = simplified && is_gimple_min_invariant (simplified);
1512 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1513 if (is_constant)
1515 /* The statement produced a constant value. */
1516 val.lattice_val = CONSTANT;
1517 val.value = simplified;
1518 val.mask = double_int_zero;
1521 /* If the statement is likely to have a VARYING result, then do not
1522 bother folding the statement. */
1523 else if (likelyvalue == VARYING)
1525 enum gimple_code code = gimple_code (stmt);
1526 if (code == GIMPLE_ASSIGN)
1528 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1530 /* Other cases cannot satisfy is_gimple_min_invariant
1531 without folding. */
1532 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1533 simplified = gimple_assign_rhs1 (stmt);
1535 else if (code == GIMPLE_SWITCH)
1536 simplified = gimple_switch_index (stmt);
1537 else
1538 /* These cannot satisfy is_gimple_min_invariant without folding. */
1539 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1540 is_constant = simplified && is_gimple_min_invariant (simplified);
1541 if (is_constant)
1543 /* The statement produced a constant value. */
1544 val.lattice_val = CONSTANT;
1545 val.value = simplified;
1546 val.mask = double_int_zero;
1550 /* Resort to simplification for bitwise tracking. */
1551 if (flag_tree_bit_ccp
1552 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1553 && !is_constant)
1555 enum gimple_code code = gimple_code (stmt);
1556 val.lattice_val = VARYING;
1557 val.value = NULL_TREE;
1558 val.mask = double_int_minus_one;
1559 if (code == GIMPLE_ASSIGN)
1561 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1562 tree rhs1 = gimple_assign_rhs1 (stmt);
1563 switch (get_gimple_rhs_class (subcode))
1565 case GIMPLE_SINGLE_RHS:
1566 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1567 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1568 val = get_value_for_expr (rhs1, true);
1569 break;
1571 case GIMPLE_UNARY_RHS:
1572 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1573 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1574 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1575 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1576 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1577 break;
1579 case GIMPLE_BINARY_RHS:
1580 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1581 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1583 tree lhs = gimple_assign_lhs (stmt);
1584 tree rhs2 = gimple_assign_rhs2 (stmt);
1585 val = bit_value_binop (subcode,
1586 TREE_TYPE (lhs), rhs1, rhs2);
1588 break;
1590 default:;
1593 else if (code == GIMPLE_COND)
1595 enum tree_code code = gimple_cond_code (stmt);
1596 tree rhs1 = gimple_cond_lhs (stmt);
1597 tree rhs2 = gimple_cond_rhs (stmt);
1598 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1599 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1600 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1602 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1604 tree fndecl = gimple_call_fndecl (stmt);
1605 switch (DECL_FUNCTION_CODE (fndecl))
1607 case BUILT_IN_MALLOC:
1608 case BUILT_IN_REALLOC:
1609 case BUILT_IN_CALLOC:
1610 case BUILT_IN_STRDUP:
1611 case BUILT_IN_STRNDUP:
1612 val.lattice_val = CONSTANT;
1613 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1614 val.mask = double_int::from_shwi
1615 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1616 / BITS_PER_UNIT - 1));
1617 break;
1619 case BUILT_IN_ALLOCA:
1620 case BUILT_IN_ALLOCA_WITH_ALIGN:
1621 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1622 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1623 : BIGGEST_ALIGNMENT);
1624 val.lattice_val = CONSTANT;
1625 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1626 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1627 / BITS_PER_UNIT - 1));
1628 break;
1630 /* These builtins return their first argument, unmodified. */
1631 case BUILT_IN_MEMCPY:
1632 case BUILT_IN_MEMMOVE:
1633 case BUILT_IN_MEMSET:
1634 case BUILT_IN_STRCPY:
1635 case BUILT_IN_STRNCPY:
1636 case BUILT_IN_MEMCPY_CHK:
1637 case BUILT_IN_MEMMOVE_CHK:
1638 case BUILT_IN_MEMSET_CHK:
1639 case BUILT_IN_STRCPY_CHK:
1640 case BUILT_IN_STRNCPY_CHK:
1641 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1642 break;
1644 case BUILT_IN_ASSUME_ALIGNED:
1645 val = bit_value_assume_aligned (stmt);
1646 break;
1648 default:;
1651 is_constant = (val.lattice_val == CONSTANT);
1654 if (!is_constant)
1656 /* The statement produced a nonconstant value. If the statement
1657 had UNDEFINED operands, then the result of the statement
1658 should be UNDEFINED. Otherwise, the statement is VARYING. */
1659 if (likelyvalue == UNDEFINED)
1661 val.lattice_val = likelyvalue;
1662 val.mask = double_int_zero;
1664 else
1666 val.lattice_val = VARYING;
1667 val.mask = double_int_minus_one;
1670 val.value = NULL_TREE;
1673 return val;
1676 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1678 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1679 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1681 static void
1682 insert_clobber_before_stack_restore (tree saved_val, tree var,
1683 gimple_htab *visited)
1685 gimple stmt, clobber_stmt;
1686 tree clobber;
1687 imm_use_iterator iter;
1688 gimple_stmt_iterator i;
1689 gimple *slot;
1691 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1692 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1694 clobber = build_constructor (TREE_TYPE (var),
1695 NULL);
1696 TREE_THIS_VOLATILE (clobber) = 1;
1697 clobber_stmt = gimple_build_assign (var, clobber);
1699 i = gsi_for_stmt (stmt);
1700 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1702 else if (gimple_code (stmt) == GIMPLE_PHI)
1704 if (!visited->is_created ())
1705 visited->create (10);
1707 slot = visited->find_slot (stmt, INSERT);
1708 if (*slot != NULL)
1709 continue;
1711 *slot = stmt;
1712 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1713 visited);
1715 else
1716 gcc_assert (is_gimple_debug (stmt));
1719 /* Advance the iterator to the previous non-debug gimple statement in the same
1720 or dominating basic block. */
1722 static inline void
1723 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1725 basic_block dom;
1727 gsi_prev_nondebug (i);
1728 while (gsi_end_p (*i))
1730 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1731 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1732 return;
1734 *i = gsi_last_bb (dom);
1738 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1739 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1741 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1742 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1743 that case the function gives up without inserting the clobbers. */
1745 static void
1746 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1748 gimple stmt;
1749 tree saved_val;
1750 gimple_htab visited;
1752 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1754 stmt = gsi_stmt (i);
1756 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1757 continue;
1759 saved_val = gimple_call_lhs (stmt);
1760 if (saved_val == NULL_TREE)
1761 continue;
1763 insert_clobber_before_stack_restore (saved_val, var, &visited);
1764 break;
1767 if (visited.is_created ())
1768 visited.dispose ();
1771 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1772 fixed-size array and returns the address, if found, otherwise returns
1773 NULL_TREE. */
1775 static tree
1776 fold_builtin_alloca_with_align (gimple stmt)
1778 unsigned HOST_WIDE_INT size, threshold, n_elem;
1779 tree lhs, arg, block, var, elem_type, array_type;
1781 /* Get lhs. */
1782 lhs = gimple_call_lhs (stmt);
1783 if (lhs == NULL_TREE)
1784 return NULL_TREE;
1786 /* Detect constant argument. */
1787 arg = get_constant_value (gimple_call_arg (stmt, 0));
1788 if (arg == NULL_TREE
1789 || TREE_CODE (arg) != INTEGER_CST
1790 || !host_integerp (arg, 1))
1791 return NULL_TREE;
1793 size = TREE_INT_CST_LOW (arg);
1795 /* Heuristic: don't fold large allocas. */
1796 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1797 /* In case the alloca is located at function entry, it has the same lifetime
1798 as a declared array, so we allow a larger size. */
1799 block = gimple_block (stmt);
1800 if (!(cfun->after_inlining
1801 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1802 threshold /= 10;
1803 if (size > threshold)
1804 return NULL_TREE;
1806 /* Declare array. */
1807 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1808 n_elem = size * 8 / BITS_PER_UNIT;
1809 array_type = build_array_type_nelts (elem_type, n_elem);
1810 var = create_tmp_var (array_type, NULL);
1811 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1813 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1814 if (pi != NULL && !pi->pt.anything)
1816 bool singleton_p;
1817 unsigned uid;
1818 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1819 gcc_assert (singleton_p);
1820 SET_DECL_PT_UID (var, uid);
1824 /* Fold alloca to the address of the array. */
1825 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1828 /* Fold the stmt at *GSI with CCP specific information that propagating
1829 and regular folding does not catch. */
1831 static bool
1832 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1834 gimple stmt = gsi_stmt (*gsi);
1836 switch (gimple_code (stmt))
1838 case GIMPLE_COND:
1840 prop_value_t val;
1841 /* Statement evaluation will handle type mismatches in constants
1842 more gracefully than the final propagation. This allows us to
1843 fold more conditionals here. */
1844 val = evaluate_stmt (stmt);
1845 if (val.lattice_val != CONSTANT
1846 || !val.mask.is_zero ())
1847 return false;
1849 if (dump_file)
1851 fprintf (dump_file, "Folding predicate ");
1852 print_gimple_expr (dump_file, stmt, 0, 0);
1853 fprintf (dump_file, " to ");
1854 print_generic_expr (dump_file, val.value, 0);
1855 fprintf (dump_file, "\n");
1858 if (integer_zerop (val.value))
1859 gimple_cond_make_false (stmt);
1860 else
1861 gimple_cond_make_true (stmt);
1863 return true;
1866 case GIMPLE_CALL:
1868 tree lhs = gimple_call_lhs (stmt);
1869 int flags = gimple_call_flags (stmt);
1870 tree val;
1871 tree argt;
1872 bool changed = false;
1873 unsigned i;
1875 /* If the call was folded into a constant make sure it goes
1876 away even if we cannot propagate into all uses because of
1877 type issues. */
1878 if (lhs
1879 && TREE_CODE (lhs) == SSA_NAME
1880 && (val = get_constant_value (lhs))
1881 /* Don't optimize away calls that have side-effects. */
1882 && (flags & (ECF_CONST|ECF_PURE)) != 0
1883 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1885 tree new_rhs = unshare_expr (val);
1886 bool res;
1887 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1888 TREE_TYPE (new_rhs)))
1889 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1890 res = update_call_from_tree (gsi, new_rhs);
1891 gcc_assert (res);
1892 return true;
1895 /* Internal calls provide no argument types, so the extra laxity
1896 for normal calls does not apply. */
1897 if (gimple_call_internal_p (stmt))
1898 return false;
1900 /* The heuristic of fold_builtin_alloca_with_align differs before and
1901 after inlining, so we don't require the arg to be changed into a
1902 constant for folding, but just to be constant. */
1903 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1905 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1906 if (new_rhs)
1908 bool res = update_call_from_tree (gsi, new_rhs);
1909 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1910 gcc_assert (res);
1911 insert_clobbers_for_var (*gsi, var);
1912 return true;
1916 /* Propagate into the call arguments. Compared to replace_uses_in
1917 this can use the argument slot types for type verification
1918 instead of the current argument type. We also can safely
1919 drop qualifiers here as we are dealing with constants anyway. */
1920 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1921 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1922 ++i, argt = TREE_CHAIN (argt))
1924 tree arg = gimple_call_arg (stmt, i);
1925 if (TREE_CODE (arg) == SSA_NAME
1926 && (val = get_constant_value (arg))
1927 && useless_type_conversion_p
1928 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1929 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1931 gimple_call_set_arg (stmt, i, unshare_expr (val));
1932 changed = true;
1936 return changed;
1939 case GIMPLE_ASSIGN:
1941 tree lhs = gimple_assign_lhs (stmt);
1942 tree val;
1944 /* If we have a load that turned out to be constant replace it
1945 as we cannot propagate into all uses in all cases. */
1946 if (gimple_assign_single_p (stmt)
1947 && TREE_CODE (lhs) == SSA_NAME
1948 && (val = get_constant_value (lhs)))
1950 tree rhs = unshare_expr (val);
1951 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1952 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1953 gimple_assign_set_rhs_from_tree (gsi, rhs);
1954 return true;
1957 return false;
1960 default:
1961 return false;
1965 /* Visit the assignment statement STMT. Set the value of its LHS to the
1966 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1967 creates virtual definitions, set the value of each new name to that
1968 of the RHS (if we can derive a constant out of the RHS).
1969 Value-returning call statements also perform an assignment, and
1970 are handled here. */
1972 static enum ssa_prop_result
1973 visit_assignment (gimple stmt, tree *output_p)
1975 prop_value_t val;
1976 enum ssa_prop_result retval;
1978 tree lhs = gimple_get_lhs (stmt);
1980 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1981 || gimple_call_lhs (stmt) != NULL_TREE);
1983 if (gimple_assign_single_p (stmt)
1984 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1985 /* For a simple copy operation, we copy the lattice values. */
1986 val = *get_value (gimple_assign_rhs1 (stmt));
1987 else
1988 /* Evaluate the statement, which could be
1989 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1990 val = evaluate_stmt (stmt);
1992 retval = SSA_PROP_NOT_INTERESTING;
1994 /* Set the lattice value of the statement's output. */
1995 if (TREE_CODE (lhs) == SSA_NAME)
1997 /* If STMT is an assignment to an SSA_NAME, we only have one
1998 value to set. */
1999 if (set_lattice_value (lhs, val))
2001 *output_p = lhs;
2002 if (val.lattice_val == VARYING)
2003 retval = SSA_PROP_VARYING;
2004 else
2005 retval = SSA_PROP_INTERESTING;
2009 return retval;
2013 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2014 if it can determine which edge will be taken. Otherwise, return
2015 SSA_PROP_VARYING. */
2017 static enum ssa_prop_result
2018 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2020 prop_value_t val;
2021 basic_block block;
2023 block = gimple_bb (stmt);
2024 val = evaluate_stmt (stmt);
2025 if (val.lattice_val != CONSTANT
2026 || !val.mask.is_zero ())
2027 return SSA_PROP_VARYING;
2029 /* Find which edge out of the conditional block will be taken and add it
2030 to the worklist. If no single edge can be determined statically,
2031 return SSA_PROP_VARYING to feed all the outgoing edges to the
2032 propagation engine. */
2033 *taken_edge_p = find_taken_edge (block, val.value);
2034 if (*taken_edge_p)
2035 return SSA_PROP_INTERESTING;
2036 else
2037 return SSA_PROP_VARYING;
2041 /* Evaluate statement STMT. If the statement produces an output value and
2042 its evaluation changes the lattice value of its output, return
2043 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2044 output value.
2046 If STMT is a conditional branch and we can determine its truth
2047 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2048 value, return SSA_PROP_VARYING. */
2050 static enum ssa_prop_result
2051 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2053 tree def;
2054 ssa_op_iter iter;
2056 if (dump_file && (dump_flags & TDF_DETAILS))
2058 fprintf (dump_file, "\nVisiting statement:\n");
2059 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2062 switch (gimple_code (stmt))
2064 case GIMPLE_ASSIGN:
2065 /* If the statement is an assignment that produces a single
2066 output value, evaluate its RHS to see if the lattice value of
2067 its output has changed. */
2068 return visit_assignment (stmt, output_p);
2070 case GIMPLE_CALL:
2071 /* A value-returning call also performs an assignment. */
2072 if (gimple_call_lhs (stmt) != NULL_TREE)
2073 return visit_assignment (stmt, output_p);
2074 break;
2076 case GIMPLE_COND:
2077 case GIMPLE_SWITCH:
2078 /* If STMT is a conditional branch, see if we can determine
2079 which branch will be taken. */
2080 /* FIXME. It appears that we should be able to optimize
2081 computed GOTOs here as well. */
2082 return visit_cond_stmt (stmt, taken_edge_p);
2084 default:
2085 break;
2088 /* Any other kind of statement is not interesting for constant
2089 propagation and, therefore, not worth simulating. */
2090 if (dump_file && (dump_flags & TDF_DETAILS))
2091 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2093 /* Definitions made by statements other than assignments to
2094 SSA_NAMEs represent unknown modifications to their outputs.
2095 Mark them VARYING. */
2096 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2098 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2099 set_lattice_value (def, v);
2102 return SSA_PROP_VARYING;
2106 /* Main entry point for SSA Conditional Constant Propagation. */
2108 static unsigned int
2109 do_ssa_ccp (void)
2111 unsigned int todo = 0;
2112 calculate_dominance_info (CDI_DOMINATORS);
2113 ccp_initialize ();
2114 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2115 if (ccp_finalize ())
2116 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2117 free_dominance_info (CDI_DOMINATORS);
2118 return todo;
2122 static bool
2123 gate_ccp (void)
2125 return flag_tree_ccp != 0;
2129 namespace {
2131 const pass_data pass_data_ccp =
2133 GIMPLE_PASS, /* type */
2134 "ccp", /* name */
2135 OPTGROUP_NONE, /* optinfo_flags */
2136 true, /* has_gate */
2137 true, /* has_execute */
2138 TV_TREE_CCP, /* tv_id */
2139 ( PROP_cfg | PROP_ssa ), /* properties_required */
2140 0, /* properties_provided */
2141 0, /* properties_destroyed */
2142 0, /* todo_flags_start */
2143 ( TODO_verify_ssa | TODO_update_address_taken
2144 | TODO_verify_stmts ), /* todo_flags_finish */
2147 class pass_ccp : public gimple_opt_pass
2149 public:
2150 pass_ccp(gcc::context *ctxt)
2151 : gimple_opt_pass(pass_data_ccp, ctxt)
2154 /* opt_pass methods: */
2155 opt_pass * clone () { return new pass_ccp (ctxt_); }
2156 bool gate () { return gate_ccp (); }
2157 unsigned int execute () { return do_ssa_ccp (); }
2159 }; // class pass_ccp
2161 } // anon namespace
2163 gimple_opt_pass *
2164 make_pass_ccp (gcc::context *ctxt)
2166 return new pass_ccp (ctxt);
2171 /* Try to optimize out __builtin_stack_restore. Optimize it out
2172 if there is another __builtin_stack_restore in the same basic
2173 block and no calls or ASM_EXPRs are in between, or if this block's
2174 only outgoing edge is to EXIT_BLOCK and there are no calls or
2175 ASM_EXPRs after this __builtin_stack_restore. */
2177 static tree
2178 optimize_stack_restore (gimple_stmt_iterator i)
2180 tree callee;
2181 gimple stmt;
2183 basic_block bb = gsi_bb (i);
2184 gimple call = gsi_stmt (i);
2186 if (gimple_code (call) != GIMPLE_CALL
2187 || gimple_call_num_args (call) != 1
2188 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2189 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2190 return NULL_TREE;
2192 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2194 stmt = gsi_stmt (i);
2195 if (gimple_code (stmt) == GIMPLE_ASM)
2196 return NULL_TREE;
2197 if (gimple_code (stmt) != GIMPLE_CALL)
2198 continue;
2200 callee = gimple_call_fndecl (stmt);
2201 if (!callee
2202 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2203 /* All regular builtins are ok, just obviously not alloca. */
2204 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2205 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2206 return NULL_TREE;
2208 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2209 goto second_stack_restore;
2212 if (!gsi_end_p (i))
2213 return NULL_TREE;
2215 /* Allow one successor of the exit block, or zero successors. */
2216 switch (EDGE_COUNT (bb->succs))
2218 case 0:
2219 break;
2220 case 1:
2221 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2222 return NULL_TREE;
2223 break;
2224 default:
2225 return NULL_TREE;
2227 second_stack_restore:
2229 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2230 If there are multiple uses, then the last one should remove the call.
2231 In any case, whether the call to __builtin_stack_save can be removed
2232 or not is irrelevant to removing the call to __builtin_stack_restore. */
2233 if (has_single_use (gimple_call_arg (call, 0)))
2235 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2236 if (is_gimple_call (stack_save))
2238 callee = gimple_call_fndecl (stack_save);
2239 if (callee
2240 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2241 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2243 gimple_stmt_iterator stack_save_gsi;
2244 tree rhs;
2246 stack_save_gsi = gsi_for_stmt (stack_save);
2247 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2248 update_call_from_tree (&stack_save_gsi, rhs);
2253 /* No effect, so the statement will be deleted. */
2254 return integer_zero_node;
2257 /* If va_list type is a simple pointer and nothing special is needed,
2258 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2259 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2260 pointer assignment. */
2262 static tree
2263 optimize_stdarg_builtin (gimple call)
2265 tree callee, lhs, rhs, cfun_va_list;
2266 bool va_list_simple_ptr;
2267 location_t loc = gimple_location (call);
2269 if (gimple_code (call) != GIMPLE_CALL)
2270 return NULL_TREE;
2272 callee = gimple_call_fndecl (call);
2274 cfun_va_list = targetm.fn_abi_va_list (callee);
2275 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2276 && (TREE_TYPE (cfun_va_list) == void_type_node
2277 || TREE_TYPE (cfun_va_list) == char_type_node);
2279 switch (DECL_FUNCTION_CODE (callee))
2281 case BUILT_IN_VA_START:
2282 if (!va_list_simple_ptr
2283 || targetm.expand_builtin_va_start != NULL
2284 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2285 return NULL_TREE;
2287 if (gimple_call_num_args (call) != 2)
2288 return NULL_TREE;
2290 lhs = gimple_call_arg (call, 0);
2291 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2292 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2293 != TYPE_MAIN_VARIANT (cfun_va_list))
2294 return NULL_TREE;
2296 lhs = build_fold_indirect_ref_loc (loc, lhs);
2297 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2298 1, integer_zero_node);
2299 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2300 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2302 case BUILT_IN_VA_COPY:
2303 if (!va_list_simple_ptr)
2304 return NULL_TREE;
2306 if (gimple_call_num_args (call) != 2)
2307 return NULL_TREE;
2309 lhs = gimple_call_arg (call, 0);
2310 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2311 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2312 != TYPE_MAIN_VARIANT (cfun_va_list))
2313 return NULL_TREE;
2315 lhs = build_fold_indirect_ref_loc (loc, lhs);
2316 rhs = gimple_call_arg (call, 1);
2317 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2318 != TYPE_MAIN_VARIANT (cfun_va_list))
2319 return NULL_TREE;
2321 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2322 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2324 case BUILT_IN_VA_END:
2325 /* No effect, so the statement will be deleted. */
2326 return integer_zero_node;
2328 default:
2329 gcc_unreachable ();
2333 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2334 the incoming jumps. Return true if at least one jump was changed. */
2336 static bool
2337 optimize_unreachable (gimple_stmt_iterator i)
2339 basic_block bb = gsi_bb (i);
2340 gimple_stmt_iterator gsi;
2341 gimple stmt;
2342 edge_iterator ei;
2343 edge e;
2344 bool ret;
2346 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2348 stmt = gsi_stmt (gsi);
2350 if (is_gimple_debug (stmt))
2351 continue;
2353 if (gimple_code (stmt) == GIMPLE_LABEL)
2355 /* Verify we do not need to preserve the label. */
2356 if (FORCED_LABEL (gimple_label_label (stmt)))
2357 return false;
2359 continue;
2362 /* Only handle the case that __builtin_unreachable is the first statement
2363 in the block. We rely on DCE to remove stmts without side-effects
2364 before __builtin_unreachable. */
2365 if (gsi_stmt (gsi) != gsi_stmt (i))
2366 return false;
2369 ret = false;
2370 FOR_EACH_EDGE (e, ei, bb->preds)
2372 gsi = gsi_last_bb (e->src);
2373 if (gsi_end_p (gsi))
2374 continue;
2376 stmt = gsi_stmt (gsi);
2377 if (gimple_code (stmt) == GIMPLE_COND)
2379 if (e->flags & EDGE_TRUE_VALUE)
2380 gimple_cond_make_false (stmt);
2381 else if (e->flags & EDGE_FALSE_VALUE)
2382 gimple_cond_make_true (stmt);
2383 else
2384 gcc_unreachable ();
2385 update_stmt (stmt);
2387 else
2389 /* Todo: handle other cases, f.i. switch statement. */
2390 continue;
2393 ret = true;
2396 return ret;
2399 /* A simple pass that attempts to fold all builtin functions. This pass
2400 is run after we've propagated as many constants as we can. */
2402 static unsigned int
2403 execute_fold_all_builtins (void)
2405 bool cfg_changed = false;
2406 basic_block bb;
2407 unsigned int todoflags = 0;
2409 FOR_EACH_BB (bb)
2411 gimple_stmt_iterator i;
2412 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2414 gimple stmt, old_stmt;
2415 tree callee, result;
2416 enum built_in_function fcode;
2418 stmt = gsi_stmt (i);
2420 if (gimple_code (stmt) != GIMPLE_CALL)
2422 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2423 after the last GIMPLE DSE they aren't needed and might
2424 unnecessarily keep the SSA_NAMEs live. */
2425 if (gimple_clobber_p (stmt))
2427 tree lhs = gimple_assign_lhs (stmt);
2428 if (TREE_CODE (lhs) == MEM_REF
2429 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2431 unlink_stmt_vdef (stmt);
2432 gsi_remove (&i, true);
2433 release_defs (stmt);
2434 continue;
2437 gsi_next (&i);
2438 continue;
2440 callee = gimple_call_fndecl (stmt);
2441 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2443 gsi_next (&i);
2444 continue;
2446 fcode = DECL_FUNCTION_CODE (callee);
2448 result = gimple_fold_builtin (stmt);
2450 if (result)
2451 gimple_remove_stmt_histograms (cfun, stmt);
2453 if (!result)
2454 switch (DECL_FUNCTION_CODE (callee))
2456 case BUILT_IN_CONSTANT_P:
2457 /* Resolve __builtin_constant_p. If it hasn't been
2458 folded to integer_one_node by now, it's fairly
2459 certain that the value simply isn't constant. */
2460 result = integer_zero_node;
2461 break;
2463 case BUILT_IN_ASSUME_ALIGNED:
2464 /* Remove __builtin_assume_aligned. */
2465 result = gimple_call_arg (stmt, 0);
2466 break;
2468 case BUILT_IN_STACK_RESTORE:
2469 result = optimize_stack_restore (i);
2470 if (result)
2471 break;
2472 gsi_next (&i);
2473 continue;
2475 case BUILT_IN_UNREACHABLE:
2476 if (optimize_unreachable (i))
2477 cfg_changed = true;
2478 break;
2480 case BUILT_IN_VA_START:
2481 case BUILT_IN_VA_END:
2482 case BUILT_IN_VA_COPY:
2483 /* These shouldn't be folded before pass_stdarg. */
2484 result = optimize_stdarg_builtin (stmt);
2485 if (result)
2486 break;
2487 /* FALLTHRU */
2489 default:
2490 gsi_next (&i);
2491 continue;
2494 if (result == NULL_TREE)
2495 break;
2497 if (dump_file && (dump_flags & TDF_DETAILS))
2499 fprintf (dump_file, "Simplified\n ");
2500 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2503 old_stmt = stmt;
2504 if (!update_call_from_tree (&i, result))
2506 gimplify_and_update_call_from_tree (&i, result);
2507 todoflags |= TODO_update_address_taken;
2510 stmt = gsi_stmt (i);
2511 update_stmt (stmt);
2513 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2514 && gimple_purge_dead_eh_edges (bb))
2515 cfg_changed = true;
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2519 fprintf (dump_file, "to\n ");
2520 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2521 fprintf (dump_file, "\n");
2524 /* Retry the same statement if it changed into another
2525 builtin, there might be new opportunities now. */
2526 if (gimple_code (stmt) != GIMPLE_CALL)
2528 gsi_next (&i);
2529 continue;
2531 callee = gimple_call_fndecl (stmt);
2532 if (!callee
2533 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2534 || DECL_FUNCTION_CODE (callee) == fcode)
2535 gsi_next (&i);
2539 /* Delete unreachable blocks. */
2540 if (cfg_changed)
2541 todoflags |= TODO_cleanup_cfg;
2543 return todoflags;
2547 namespace {
2549 const pass_data pass_data_fold_builtins =
2551 GIMPLE_PASS, /* type */
2552 "fab", /* name */
2553 OPTGROUP_NONE, /* optinfo_flags */
2554 false, /* has_gate */
2555 true, /* has_execute */
2556 TV_NONE, /* tv_id */
2557 ( PROP_cfg | PROP_ssa ), /* properties_required */
2558 0, /* properties_provided */
2559 0, /* properties_destroyed */
2560 0, /* todo_flags_start */
2561 ( TODO_verify_ssa | TODO_update_ssa ), /* todo_flags_finish */
2564 class pass_fold_builtins : public gimple_opt_pass
2566 public:
2567 pass_fold_builtins(gcc::context *ctxt)
2568 : gimple_opt_pass(pass_data_fold_builtins, ctxt)
2571 /* opt_pass methods: */
2572 opt_pass * clone () { return new pass_fold_builtins (ctxt_); }
2573 unsigned int execute () { return execute_fold_all_builtins (); }
2575 }; // class pass_fold_builtins
2577 } // anon namespace
2579 gimple_opt_pass *
2580 make_pass_fold_builtins (gcc::context *ctxt)
2582 return new pass_fold_builtins (ctxt);