1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
24 #include "hash-table.h"
28 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity
= 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t
*edge_to_cases
;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
92 /* Hashtable helpers. */
94 struct locus_discrim_hasher
: typed_free_remove
<locus_discrim_map
>
96 typedef locus_discrim_map value_type
;
97 typedef locus_discrim_map compare_type
;
98 static inline hashval_t
hash (const value_type
*);
99 static inline bool equal (const value_type
*, const compare_type
*);
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
106 locus_discrim_hasher::hash (const value_type
*item
)
108 return LOCATION_LINE (item
->locus
);
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
115 locus_discrim_hasher::equal (const value_type
*a
, const compare_type
*b
)
117 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
120 static hash_table
<locus_discrim_hasher
> discriminator_per_locus
;
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq
);
124 static void factor_computed_gotos (void);
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block
);
130 static void make_gimple_switch_edges (basic_block
);
131 static void make_goto_expr_edges (basic_block
);
132 static void make_gimple_asm_edges (basic_block
);
133 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
134 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
135 static unsigned int split_critical_edges (void);
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple
, gimple
);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge
);
141 static gimple
first_non_label_stmt (basic_block
);
142 static bool verify_gimple_transaction (gimple
);
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block
, basic_block
);
146 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
147 static void remove_bb (basic_block
);
148 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
149 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
150 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
151 static tree
find_case_label_for_value (gimple
, tree
);
154 init_empty_tree_cfg_for_function (struct function
*fn
)
156 /* Initialize the basic block array. */
158 profile_status_for_function (fn
) = PROFILE_ABSENT
;
159 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
160 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
161 vec_alloc (basic_block_info_for_function (fn
), initial_cfg_capacity
);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn
),
163 initial_cfg_capacity
);
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn
), initial_cfg_capacity
);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn
),
168 initial_cfg_capacity
);
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
182 init_empty_tree_cfg (void)
184 init_empty_tree_cfg_for_function (cfun
);
187 /*---------------------------------------------------------------------------
189 ---------------------------------------------------------------------------*/
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
195 build_gimple_cfg (gimple_seq seq
)
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
200 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
202 init_empty_tree_cfg ();
204 found_computed_goto
= 0;
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto
)
213 factor_computed_gotos ();
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
217 create_empty_bb (ENTRY_BLOCK_PTR
);
219 /* Adjust the size of the array. */
220 if (basic_block_info
->length () < (size_t) n_basic_blocks
)
221 vec_safe_grow_cleared (basic_block_info
, n_basic_blocks
);
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus
.create (13);
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus
.dispose ();
240 execute_build_cfg (void)
242 gimple_seq body
= gimple_body (current_function_decl
);
244 build_gimple_cfg (body
);
245 gimple_set_body (current_function_decl
, NULL
);
246 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
248 fprintf (dump_file
, "Scope blocks:\n");
249 dump_scope_blocks (dump_file
, dump_flags
);
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
258 const pass_data pass_data_build_cfg
=
260 GIMPLE_PASS
, /* type */
262 OPTGROUP_NONE
, /* optinfo_flags */
263 false, /* has_gate */
264 true, /* has_execute */
265 TV_TREE_CFG
, /* tv_id */
266 PROP_gimple_leh
, /* properties_required */
267 ( PROP_cfg
| PROP_loops
), /* properties_provided */
268 0, /* properties_destroyed */
269 0, /* todo_flags_start */
270 TODO_verify_stmts
, /* todo_flags_finish */
273 class pass_build_cfg
: public gimple_opt_pass
276 pass_build_cfg(gcc::context
*ctxt
)
277 : gimple_opt_pass(pass_data_build_cfg
, ctxt
)
280 /* opt_pass methods: */
281 unsigned int execute () { return execute_build_cfg (); }
283 }; // class pass_build_cfg
288 make_pass_build_cfg (gcc::context
*ctxt
)
290 return new pass_build_cfg (ctxt
);
294 /* Return true if T is a computed goto. */
297 computed_goto_p (gimple t
)
299 return (gimple_code (t
) == GIMPLE_GOTO
300 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
304 /* Search the CFG for any computed gotos. If found, factor them to a
305 common computed goto site. Also record the location of that site so
306 that we can un-factor the gotos after we have converted back to
310 factor_computed_gotos (void)
313 tree factored_label_decl
= NULL
;
315 gimple factored_computed_goto_label
= NULL
;
316 gimple factored_computed_goto
= NULL
;
318 /* We know there are one or more computed gotos in this function.
319 Examine the last statement in each basic block to see if the block
320 ends with a computed goto. */
324 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
330 last
= gsi_stmt (gsi
);
332 /* Ignore the computed goto we create when we factor the original
334 if (last
== factored_computed_goto
)
337 /* If the last statement is a computed goto, factor it. */
338 if (computed_goto_p (last
))
342 /* The first time we find a computed goto we need to create
343 the factored goto block and the variable each original
344 computed goto will use for their goto destination. */
345 if (!factored_computed_goto
)
347 basic_block new_bb
= create_empty_bb (bb
);
348 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
350 /* Create the destination of the factored goto. Each original
351 computed goto will put its desired destination into this
352 variable and jump to the label we create immediately
354 var
= create_tmp_var (ptr_type_node
, "gotovar");
356 /* Build a label for the new block which will contain the
357 factored computed goto. */
358 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
359 factored_computed_goto_label
360 = gimple_build_label (factored_label_decl
);
361 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
364 /* Build our new computed goto. */
365 factored_computed_goto
= gimple_build_goto (var
);
366 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
369 /* Copy the original computed goto's destination into VAR. */
370 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
371 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
373 /* And re-vector the computed goto to the new destination. */
374 gimple_goto_set_dest (last
, factored_label_decl
);
380 /* Build a flowgraph for the sequence of stmts SEQ. */
383 make_blocks (gimple_seq seq
)
385 gimple_stmt_iterator i
= gsi_start (seq
);
387 bool start_new_block
= true;
388 bool first_stmt_of_seq
= true;
389 basic_block bb
= ENTRY_BLOCK_PTR
;
391 while (!gsi_end_p (i
))
398 /* If the statement starts a new basic block or if we have determined
399 in a previous pass that we need to create a new block for STMT, do
401 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
403 if (!first_stmt_of_seq
)
404 gsi_split_seq_before (&i
, &seq
);
405 bb
= create_basic_block (seq
, NULL
, bb
);
406 start_new_block
= false;
409 /* Now add STMT to BB and create the subgraphs for special statement
411 gimple_set_bb (stmt
, bb
);
413 if (computed_goto_p (stmt
))
414 found_computed_goto
= true;
416 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
418 if (stmt_ends_bb_p (stmt
))
420 /* If the stmt can make abnormal goto use a new temporary
421 for the assignment to the LHS. This makes sure the old value
422 of the LHS is available on the abnormal edge. Otherwise
423 we will end up with overlapping life-ranges for abnormal
425 if (gimple_has_lhs (stmt
)
426 && stmt_can_make_abnormal_goto (stmt
)
427 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
429 tree lhs
= gimple_get_lhs (stmt
);
430 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
431 gimple s
= gimple_build_assign (lhs
, tmp
);
432 gimple_set_location (s
, gimple_location (stmt
));
433 gimple_set_block (s
, gimple_block (stmt
));
434 gimple_set_lhs (stmt
, tmp
);
435 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
436 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
437 DECL_GIMPLE_REG_P (tmp
) = 1;
438 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
440 start_new_block
= true;
444 first_stmt_of_seq
= false;
449 /* Create and return a new empty basic block after bb AFTER. */
452 create_bb (void *h
, void *e
, basic_block after
)
458 /* Create and initialize a new basic block. Since alloc_block uses
459 GC allocation that clears memory to allocate a basic block, we do
460 not have to clear the newly allocated basic block here. */
463 bb
->index
= last_basic_block
;
465 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
467 /* Add the new block to the linked list of blocks. */
468 link_block (bb
, after
);
470 /* Grow the basic block array if needed. */
471 if ((size_t) last_basic_block
== basic_block_info
->length ())
473 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
474 vec_safe_grow_cleared (basic_block_info
, new_size
);
477 /* Add the newly created block to the array. */
478 SET_BASIC_BLOCK (last_basic_block
, bb
);
487 /*---------------------------------------------------------------------------
489 ---------------------------------------------------------------------------*/
491 /* Fold COND_EXPR_COND of each COND_EXPR. */
494 fold_cond_expr_cond (void)
500 gimple stmt
= last_stmt (bb
);
502 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
504 location_t loc
= gimple_location (stmt
);
508 fold_defer_overflow_warnings ();
509 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
510 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
513 zerop
= integer_zerop (cond
);
514 onep
= integer_onep (cond
);
517 zerop
= onep
= false;
519 fold_undefer_overflow_warnings (zerop
|| onep
,
521 WARN_STRICT_OVERFLOW_CONDITIONAL
);
523 gimple_cond_make_false (stmt
);
525 gimple_cond_make_true (stmt
);
530 /* Join all the blocks in the flowgraph. */
536 struct omp_region
*cur_region
= NULL
;
538 /* Create an edge from entry to the first block with executable
540 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
542 /* Traverse the basic block array placing edges. */
545 gimple last
= last_stmt (bb
);
550 enum gimple_code code
= gimple_code (last
);
554 make_goto_expr_edges (bb
);
558 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
562 make_cond_expr_edges (bb
);
566 make_gimple_switch_edges (bb
);
570 make_eh_edges (last
);
573 case GIMPLE_EH_DISPATCH
:
574 fallthru
= make_eh_dispatch_edges (last
);
578 /* If this function receives a nonlocal goto, then we need to
579 make edges from this call site to all the nonlocal goto
581 if (stmt_can_make_abnormal_goto (last
))
582 make_abnormal_goto_edges (bb
, true);
584 /* If this statement has reachable exception handlers, then
585 create abnormal edges to them. */
586 make_eh_edges (last
);
588 /* BUILTIN_RETURN is really a return statement. */
589 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
590 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
591 /* Some calls are known not to return. */
593 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
597 /* A GIMPLE_ASSIGN may throw internally and thus be considered
599 if (is_ctrl_altering_stmt (last
))
600 make_eh_edges (last
);
605 make_gimple_asm_edges (bb
);
609 case GIMPLE_OMP_PARALLEL
:
610 case GIMPLE_OMP_TASK
:
612 case GIMPLE_OMP_SINGLE
:
613 case GIMPLE_OMP_MASTER
:
614 case GIMPLE_OMP_ORDERED
:
615 case GIMPLE_OMP_CRITICAL
:
616 case GIMPLE_OMP_SECTION
:
617 cur_region
= new_omp_region (bb
, code
, cur_region
);
621 case GIMPLE_OMP_SECTIONS
:
622 cur_region
= new_omp_region (bb
, code
, cur_region
);
626 case GIMPLE_OMP_SECTIONS_SWITCH
:
630 case GIMPLE_OMP_ATOMIC_LOAD
:
631 case GIMPLE_OMP_ATOMIC_STORE
:
635 case GIMPLE_OMP_RETURN
:
636 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
637 somewhere other than the next block. This will be
639 cur_region
->exit
= bb
;
640 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
641 cur_region
= cur_region
->outer
;
644 case GIMPLE_OMP_CONTINUE
:
645 cur_region
->cont
= bb
;
646 switch (cur_region
->type
)
649 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
650 succs edges as abnormal to prevent splitting
652 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
653 /* Make the loopback edge. */
654 make_edge (bb
, single_succ (cur_region
->entry
),
657 /* Create an edge from GIMPLE_OMP_FOR to exit, which
658 corresponds to the case that the body of the loop
659 is not executed at all. */
660 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
661 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
665 case GIMPLE_OMP_SECTIONS
:
666 /* Wire up the edges into and out of the nested sections. */
668 basic_block switch_bb
= single_succ (cur_region
->entry
);
670 struct omp_region
*i
;
671 for (i
= cur_region
->inner
; i
; i
= i
->next
)
673 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
674 make_edge (switch_bb
, i
->entry
, 0);
675 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
678 /* Make the loopback edge to the block with
679 GIMPLE_OMP_SECTIONS_SWITCH. */
680 make_edge (bb
, switch_bb
, 0);
682 /* Make the edge from the switch to exit. */
683 make_edge (switch_bb
, bb
->next_bb
, 0);
693 case GIMPLE_TRANSACTION
:
695 tree abort_label
= gimple_transaction_label (last
);
697 make_edge (bb
, label_to_block (abort_label
), EDGE_TM_ABORT
);
703 gcc_assert (!stmt_ends_bb_p (last
));
711 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
717 /* Fold COND_EXPR_COND of each COND_EXPR. */
718 fold_cond_expr_cond ();
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
727 next_discriminator_for_locus (location_t locus
)
729 struct locus_discrim_map item
;
730 struct locus_discrim_map
**slot
;
733 item
.discriminator
= 0;
734 slot
= discriminator_per_locus
.find_slot_with_hash (
735 &item
, LOCATION_LINE (locus
), INSERT
);
737 if (*slot
== HTAB_EMPTY_ENTRY
)
739 *slot
= XNEW (struct locus_discrim_map
);
741 (*slot
)->locus
= locus
;
742 (*slot
)->discriminator
= 0;
744 (*slot
)->discriminator
++;
745 return (*slot
)->discriminator
;
748 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751 same_line_p (location_t locus1
, location_t locus2
)
753 expanded_location from
, to
;
755 if (locus1
== locus2
)
758 from
= expand_location (locus1
);
759 to
= expand_location (locus2
);
761 if (from
.line
!= to
.line
)
763 if (from
.file
== to
.file
)
765 return (from
.file
!= NULL
767 && filename_cmp (from
.file
, to
.file
) == 0);
770 /* Assign discriminators to each basic block. */
773 assign_discriminators (void)
781 gimple last
= last_stmt (bb
);
782 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
784 if (locus
== UNKNOWN_LOCATION
)
787 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
789 gimple first
= first_non_label_stmt (e
->dest
);
790 gimple last
= last_stmt (e
->dest
);
791 if ((first
&& same_line_p (locus
, gimple_location (first
)))
792 || (last
&& same_line_p (locus
, gimple_location (last
))))
794 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
795 bb
->discriminator
= next_discriminator_for_locus (locus
);
797 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
803 /* Create the edges for a GIMPLE_COND starting at block BB. */
806 make_cond_expr_edges (basic_block bb
)
808 gimple entry
= last_stmt (bb
);
809 gimple then_stmt
, else_stmt
;
810 basic_block then_bb
, else_bb
;
811 tree then_label
, else_label
;
815 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
817 /* Entry basic blocks for each component. */
818 then_label
= gimple_cond_true_label (entry
);
819 else_label
= gimple_cond_false_label (entry
);
820 then_bb
= label_to_block (then_label
);
821 else_bb
= label_to_block (else_label
);
822 then_stmt
= first_stmt (then_bb
);
823 else_stmt
= first_stmt (else_bb
);
825 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
826 e
->goto_locus
= gimple_location (then_stmt
);
827 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
829 e
->goto_locus
= gimple_location (else_stmt
);
831 /* We do not need the labels anymore. */
832 gimple_cond_set_true_label (entry
, NULL_TREE
);
833 gimple_cond_set_false_label (entry
, NULL_TREE
);
837 /* Called for each element in the hash table (P) as we delete the
838 edge to cases hash table.
840 Clear all the TREE_CHAINs to prevent problems with copying of
841 SWITCH_EXPRs and structure sharing rules, then free the hash table
845 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
846 void *data ATTRIBUTE_UNUSED
)
850 for (t
= (tree
) *value
; t
; t
= next
)
852 next
= CASE_CHAIN (t
);
853 CASE_CHAIN (t
) = NULL
;
860 /* Start recording information mapping edges to case labels. */
863 start_recording_case_labels (void)
865 gcc_assert (edge_to_cases
== NULL
);
866 edge_to_cases
= pointer_map_create ();
867 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
870 /* Return nonzero if we are recording information for case labels. */
873 recording_case_labels_p (void)
875 return (edge_to_cases
!= NULL
);
878 /* Stop recording information mapping edges to case labels and
879 remove any information we have recorded. */
881 end_recording_case_labels (void)
885 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
886 pointer_map_destroy (edge_to_cases
);
887 edge_to_cases
= NULL
;
888 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
890 basic_block bb
= BASIC_BLOCK (i
);
893 gimple stmt
= last_stmt (bb
);
894 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
895 group_case_labels_stmt (stmt
);
898 BITMAP_FREE (touched_switch_bbs
);
901 /* If we are inside a {start,end}_recording_cases block, then return
902 a chain of CASE_LABEL_EXPRs from T which reference E.
904 Otherwise return NULL. */
907 get_cases_for_edge (edge e
, gimple t
)
912 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
913 chains available. Return NULL so the caller can detect this case. */
914 if (!recording_case_labels_p ())
917 slot
= pointer_map_contains (edge_to_cases
, e
);
921 /* If we did not find E in the hash table, then this must be the first
922 time we have been queried for information about E & T. Add all the
923 elements from T to the hash table then perform the query again. */
925 n
= gimple_switch_num_labels (t
);
926 for (i
= 0; i
< n
; i
++)
928 tree elt
= gimple_switch_label (t
, i
);
929 tree lab
= CASE_LABEL (elt
);
930 basic_block label_bb
= label_to_block (lab
);
931 edge this_edge
= find_edge (e
->src
, label_bb
);
933 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
935 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
936 CASE_CHAIN (elt
) = (tree
) *slot
;
940 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
943 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
946 make_gimple_switch_edges (basic_block bb
)
948 gimple entry
= last_stmt (bb
);
951 n
= gimple_switch_num_labels (entry
);
953 for (i
= 0; i
< n
; ++i
)
955 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
956 basic_block label_bb
= label_to_block (lab
);
957 make_edge (bb
, label_bb
, 0);
962 /* Return the basic block holding label DEST. */
965 label_to_block_fn (struct function
*ifun
, tree dest
)
967 int uid
= LABEL_DECL_UID (dest
);
969 /* We would die hard when faced by an undefined label. Emit a label to
970 the very first basic block. This will hopefully make even the dataflow
971 and undefined variable warnings quite right. */
972 if (seen_error () && uid
< 0)
974 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
977 stmt
= gimple_build_label (dest
);
978 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
979 uid
= LABEL_DECL_UID (dest
);
981 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
983 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
986 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
987 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
990 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
992 basic_block target_bb
;
993 gimple_stmt_iterator gsi
;
995 FOR_EACH_BB (target_bb
)
997 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
999 gimple label_stmt
= gsi_stmt (gsi
);
1002 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
1005 target
= gimple_label_label (label_stmt
);
1007 /* Make an edge to every label block that has been marked as a
1008 potential target for a computed goto or a non-local goto. */
1009 if ((FORCED_LABEL (target
) && !for_call
)
1010 || (DECL_NONLOCAL (target
) && for_call
))
1012 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1016 if (!gsi_end_p (gsi
))
1018 /* Make an edge to every setjmp-like call. */
1019 gimple call_stmt
= gsi_stmt (gsi
);
1020 if (is_gimple_call (call_stmt
)
1021 && (gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
))
1022 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1027 /* Create edges for a goto statement at block BB. */
1030 make_goto_expr_edges (basic_block bb
)
1032 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1033 gimple goto_t
= gsi_stmt (last
);
1035 /* A simple GOTO creates normal edges. */
1036 if (simple_goto_p (goto_t
))
1038 tree dest
= gimple_goto_dest (goto_t
);
1039 basic_block label_bb
= label_to_block (dest
);
1040 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1041 e
->goto_locus
= gimple_location (goto_t
);
1042 gsi_remove (&last
, true);
1046 /* A computed GOTO creates abnormal edges. */
1047 make_abnormal_goto_edges (bb
, false);
1050 /* Create edges for an asm statement with labels at block BB. */
1053 make_gimple_asm_edges (basic_block bb
)
1055 gimple stmt
= last_stmt (bb
);
1056 int i
, n
= gimple_asm_nlabels (stmt
);
1058 for (i
= 0; i
< n
; ++i
)
1060 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1061 basic_block label_bb
= label_to_block (label
);
1062 make_edge (bb
, label_bb
, 0);
1066 /*---------------------------------------------------------------------------
1068 ---------------------------------------------------------------------------*/
1070 /* Cleanup useless labels in basic blocks. This is something we wish
1071 to do early because it allows us to group case labels before creating
1072 the edges for the CFG, and it speeds up block statement iterators in
1073 all passes later on.
1074 We rerun this pass after CFG is created, to get rid of the labels that
1075 are no longer referenced. After then we do not run it any more, since
1076 (almost) no new labels should be created. */
1078 /* A map from basic block index to the leading label of that block. */
1079 static struct label_record
1084 /* True if the label is referenced from somewhere. */
1088 /* Given LABEL return the first label in the same basic block. */
1091 main_block_label (tree label
)
1093 basic_block bb
= label_to_block (label
);
1094 tree main_label
= label_for_bb
[bb
->index
].label
;
1096 /* label_to_block possibly inserted undefined label into the chain. */
1099 label_for_bb
[bb
->index
].label
= label
;
1103 label_for_bb
[bb
->index
].used
= true;
1107 /* Clean up redundant labels within the exception tree. */
1110 cleanup_dead_labels_eh (void)
1117 if (cfun
->eh
== NULL
)
1120 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1121 if (lp
&& lp
->post_landing_pad
)
1123 lab
= main_block_label (lp
->post_landing_pad
);
1124 if (lab
!= lp
->post_landing_pad
)
1126 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1127 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1131 FOR_ALL_EH_REGION (r
)
1135 case ERT_MUST_NOT_THROW
:
1141 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1145 c
->label
= main_block_label (lab
);
1150 case ERT_ALLOWED_EXCEPTIONS
:
1151 lab
= r
->u
.allowed
.label
;
1153 r
->u
.allowed
.label
= main_block_label (lab
);
1159 /* Cleanup redundant labels. This is a three-step process:
1160 1) Find the leading label for each block.
1161 2) Redirect all references to labels to the leading labels.
1162 3) Cleanup all useless labels. */
1165 cleanup_dead_labels (void)
1168 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1170 /* Find a suitable label for each block. We use the first user-defined
1171 label if there is one, or otherwise just the first label we see. */
1174 gimple_stmt_iterator i
;
1176 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1179 gimple stmt
= gsi_stmt (i
);
1181 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1184 label
= gimple_label_label (stmt
);
1186 /* If we have not yet seen a label for the current block,
1187 remember this one and see if there are more labels. */
1188 if (!label_for_bb
[bb
->index
].label
)
1190 label_for_bb
[bb
->index
].label
= label
;
1194 /* If we did see a label for the current block already, but it
1195 is an artificially created label, replace it if the current
1196 label is a user defined label. */
1197 if (!DECL_ARTIFICIAL (label
)
1198 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1200 label_for_bb
[bb
->index
].label
= label
;
1206 /* Now redirect all jumps/branches to the selected label.
1207 First do so for each block ending in a control statement. */
1210 gimple stmt
= last_stmt (bb
);
1211 tree label
, new_label
;
1216 switch (gimple_code (stmt
))
1219 label
= gimple_cond_true_label (stmt
);
1222 new_label
= main_block_label (label
);
1223 if (new_label
!= label
)
1224 gimple_cond_set_true_label (stmt
, new_label
);
1227 label
= gimple_cond_false_label (stmt
);
1230 new_label
= main_block_label (label
);
1231 if (new_label
!= label
)
1232 gimple_cond_set_false_label (stmt
, new_label
);
1238 size_t i
, n
= gimple_switch_num_labels (stmt
);
1240 /* Replace all destination labels. */
1241 for (i
= 0; i
< n
; ++i
)
1243 tree case_label
= gimple_switch_label (stmt
, i
);
1244 label
= CASE_LABEL (case_label
);
1245 new_label
= main_block_label (label
);
1246 if (new_label
!= label
)
1247 CASE_LABEL (case_label
) = new_label
;
1254 int i
, n
= gimple_asm_nlabels (stmt
);
1256 for (i
= 0; i
< n
; ++i
)
1258 tree cons
= gimple_asm_label_op (stmt
, i
);
1259 tree label
= main_block_label (TREE_VALUE (cons
));
1260 TREE_VALUE (cons
) = label
;
1265 /* We have to handle gotos until they're removed, and we don't
1266 remove them until after we've created the CFG edges. */
1268 if (!computed_goto_p (stmt
))
1270 label
= gimple_goto_dest (stmt
);
1271 new_label
= main_block_label (label
);
1272 if (new_label
!= label
)
1273 gimple_goto_set_dest (stmt
, new_label
);
1277 case GIMPLE_TRANSACTION
:
1279 tree label
= gimple_transaction_label (stmt
);
1282 tree new_label
= main_block_label (label
);
1283 if (new_label
!= label
)
1284 gimple_transaction_set_label (stmt
, new_label
);
1294 /* Do the same for the exception region tree labels. */
1295 cleanup_dead_labels_eh ();
1297 /* Finally, purge dead labels. All user-defined labels and labels that
1298 can be the target of non-local gotos and labels which have their
1299 address taken are preserved. */
1302 gimple_stmt_iterator i
;
1303 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1305 if (!label_for_this_bb
)
1308 /* If the main label of the block is unused, we may still remove it. */
1309 if (!label_for_bb
[bb
->index
].used
)
1310 label_for_this_bb
= NULL
;
1312 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1315 gimple stmt
= gsi_stmt (i
);
1317 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1320 label
= gimple_label_label (stmt
);
1322 if (label
== label_for_this_bb
1323 || !DECL_ARTIFICIAL (label
)
1324 || DECL_NONLOCAL (label
)
1325 || FORCED_LABEL (label
))
1328 gsi_remove (&i
, true);
1332 free (label_for_bb
);
1335 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1336 the ones jumping to the same label.
1337 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1340 group_case_labels_stmt (gimple stmt
)
1342 int old_size
= gimple_switch_num_labels (stmt
);
1343 int i
, j
, new_size
= old_size
;
1344 basic_block default_bb
= NULL
;
1346 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1348 /* Look for possible opportunities to merge cases. */
1350 while (i
< old_size
)
1352 tree base_case
, base_high
;
1353 basic_block base_bb
;
1355 base_case
= gimple_switch_label (stmt
, i
);
1357 gcc_assert (base_case
);
1358 base_bb
= label_to_block (CASE_LABEL (base_case
));
1360 /* Discard cases that have the same destination as the
1362 if (base_bb
== default_bb
)
1364 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1370 base_high
= CASE_HIGH (base_case
)
1371 ? CASE_HIGH (base_case
)
1372 : CASE_LOW (base_case
);
1375 /* Try to merge case labels. Break out when we reach the end
1376 of the label vector or when we cannot merge the next case
1377 label with the current one. */
1378 while (i
< old_size
)
1380 tree merge_case
= gimple_switch_label (stmt
, i
);
1381 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1382 double_int bhp1
= tree_to_double_int (base_high
) + double_int_one
;
1384 /* Merge the cases if they jump to the same place,
1385 and their ranges are consecutive. */
1386 if (merge_bb
== base_bb
1387 && tree_to_double_int (CASE_LOW (merge_case
)) == bhp1
)
1389 base_high
= CASE_HIGH (merge_case
) ?
1390 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1391 CASE_HIGH (base_case
) = base_high
;
1392 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1401 /* Compress the case labels in the label vector, and adjust the
1402 length of the vector. */
1403 for (i
= 0, j
= 0; i
< new_size
; i
++)
1405 while (! gimple_switch_label (stmt
, j
))
1407 gimple_switch_set_label (stmt
, i
,
1408 gimple_switch_label (stmt
, j
++));
1411 gcc_assert (new_size
<= old_size
);
1412 gimple_switch_set_num_labels (stmt
, new_size
);
1415 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1416 and scan the sorted vector of cases. Combine the ones jumping to the
1420 group_case_labels (void)
1426 gimple stmt
= last_stmt (bb
);
1427 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1428 group_case_labels_stmt (stmt
);
1432 /* Checks whether we can merge block B into block A. */
1435 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1438 gimple_stmt_iterator gsi
;
1440 if (!single_succ_p (a
))
1443 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1446 if (single_succ (a
) != b
)
1449 if (!single_pred_p (b
))
1452 if (b
== EXIT_BLOCK_PTR
)
1455 /* If A ends by a statement causing exceptions or something similar, we
1456 cannot merge the blocks. */
1457 stmt
= last_stmt (a
);
1458 if (stmt
&& stmt_ends_bb_p (stmt
))
1461 /* Do not allow a block with only a non-local label to be merged. */
1463 && gimple_code (stmt
) == GIMPLE_LABEL
1464 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1467 /* Examine the labels at the beginning of B. */
1468 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1471 stmt
= gsi_stmt (gsi
);
1472 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1474 lab
= gimple_label_label (stmt
);
1476 /* Do not remove user forced labels or for -O0 any user labels. */
1477 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1481 /* Protect the loop latches. */
1482 if (current_loops
&& b
->loop_father
->latch
== b
)
1485 /* It must be possible to eliminate all phi nodes in B. If ssa form
1486 is not up-to-date and a name-mapping is registered, we cannot eliminate
1487 any phis. Symbols marked for renaming are never a problem though. */
1488 for (gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1490 gimple phi
= gsi_stmt (gsi
);
1491 /* Technically only new names matter. */
1492 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1496 /* When not optimizing, don't merge if we'd lose goto_locus. */
1498 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1500 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1501 gimple_stmt_iterator prev
, next
;
1502 prev
= gsi_last_nondebug_bb (a
);
1503 next
= gsi_after_labels (b
);
1504 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1505 gsi_next_nondebug (&next
);
1506 if ((gsi_end_p (prev
)
1507 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1508 && (gsi_end_p (next
)
1509 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1516 /* Return true if the var whose chain of uses starts at PTR has no
1519 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1521 const ssa_use_operand_t
*ptr
;
1523 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1524 if (!is_gimple_debug (USE_STMT (ptr
)))
1530 /* Return true if the var whose chain of uses starts at PTR has a
1531 single nondebug use. Set USE_P and STMT to that single nondebug
1532 use, if so, or to NULL otherwise. */
1534 single_imm_use_1 (const ssa_use_operand_t
*head
,
1535 use_operand_p
*use_p
, gimple
*stmt
)
1537 ssa_use_operand_t
*ptr
, *single_use
= 0;
1539 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1540 if (!is_gimple_debug (USE_STMT (ptr
)))
1551 *use_p
= single_use
;
1554 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1556 return !!single_use
;
1559 /* Replaces all uses of NAME by VAL. */
1562 replace_uses_by (tree name
, tree val
)
1564 imm_use_iterator imm_iter
;
1569 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1571 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1573 replace_exp (use
, val
);
1575 if (gimple_code (stmt
) == GIMPLE_PHI
)
1577 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1578 if (e
->flags
& EDGE_ABNORMAL
)
1580 /* This can only occur for virtual operands, since
1581 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1582 would prevent replacement. */
1583 gcc_checking_assert (virtual_operand_p (name
));
1584 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1589 if (gimple_code (stmt
) != GIMPLE_PHI
)
1591 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1592 gimple orig_stmt
= stmt
;
1595 /* Mark the block if we changed the last stmt in it. */
1596 if (cfgcleanup_altered_bbs
1597 && stmt_ends_bb_p (stmt
))
1598 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1600 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1601 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1602 only change sth from non-invariant to invariant, and only
1603 when propagating constants. */
1604 if (is_gimple_min_invariant (val
))
1605 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1607 tree op
= gimple_op (stmt
, i
);
1608 /* Operands may be empty here. For example, the labels
1609 of a GIMPLE_COND are nulled out following the creation
1610 of the corresponding CFG edges. */
1611 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1612 recompute_tree_invariant_for_addr_expr (op
);
1615 if (fold_stmt (&gsi
))
1616 stmt
= gsi_stmt (gsi
);
1618 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1619 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1625 gcc_checking_assert (has_zero_uses (name
));
1627 /* Also update the trees stored in loop structures. */
1633 FOR_EACH_LOOP (li
, loop
, 0)
1635 substitute_in_loop_info (loop
, name
, val
);
1640 /* Merge block B into block A. */
1643 gimple_merge_blocks (basic_block a
, basic_block b
)
1645 gimple_stmt_iterator last
, gsi
, psi
;
1648 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1650 /* Remove all single-valued PHI nodes from block B of the form
1651 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1652 gsi
= gsi_last_bb (a
);
1653 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1655 gimple phi
= gsi_stmt (psi
);
1656 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1658 bool may_replace_uses
= (virtual_operand_p (def
)
1659 || may_propagate_copy (def
, use
));
1661 /* In case we maintain loop closed ssa form, do not propagate arguments
1662 of loop exit phi nodes. */
1664 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1665 && !virtual_operand_p (def
)
1666 && TREE_CODE (use
) == SSA_NAME
1667 && a
->loop_father
!= b
->loop_father
)
1668 may_replace_uses
= false;
1670 if (!may_replace_uses
)
1672 gcc_assert (!virtual_operand_p (def
));
1674 /* Note that just emitting the copies is fine -- there is no problem
1675 with ordering of phi nodes. This is because A is the single
1676 predecessor of B, therefore results of the phi nodes cannot
1677 appear as arguments of the phi nodes. */
1678 copy
= gimple_build_assign (def
, use
);
1679 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1680 remove_phi_node (&psi
, false);
1684 /* If we deal with a PHI for virtual operands, we can simply
1685 propagate these without fussing with folding or updating
1687 if (virtual_operand_p (def
))
1689 imm_use_iterator iter
;
1690 use_operand_p use_p
;
1693 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1694 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1695 SET_USE (use_p
, use
);
1697 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1698 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1701 replace_uses_by (def
, use
);
1703 remove_phi_node (&psi
, true);
1707 /* Ensure that B follows A. */
1708 move_block_after (b
, a
);
1710 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1711 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1713 /* Remove labels from B and set gimple_bb to A for other statements. */
1714 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1716 gimple stmt
= gsi_stmt (gsi
);
1717 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1719 tree label
= gimple_label_label (stmt
);
1722 gsi_remove (&gsi
, false);
1724 /* Now that we can thread computed gotos, we might have
1725 a situation where we have a forced label in block B
1726 However, the label at the start of block B might still be
1727 used in other ways (think about the runtime checking for
1728 Fortran assigned gotos). So we can not just delete the
1729 label. Instead we move the label to the start of block A. */
1730 if (FORCED_LABEL (label
))
1732 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1733 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1735 /* Other user labels keep around in a form of a debug stmt. */
1736 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1738 gimple dbg
= gimple_build_debug_bind (label
,
1741 gimple_debug_bind_reset_value (dbg
);
1742 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1745 lp_nr
= EH_LANDING_PAD_NR (label
);
1748 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1749 lp
->post_landing_pad
= NULL
;
1754 gimple_set_bb (stmt
, a
);
1759 /* Merge the sequences. */
1760 last
= gsi_last_bb (a
);
1761 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1762 set_bb_seq (b
, NULL
);
1764 if (cfgcleanup_altered_bbs
)
1765 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1769 /* Return the one of two successors of BB that is not reachable by a
1770 complex edge, if there is one. Else, return BB. We use
1771 this in optimizations that use post-dominators for their heuristics,
1772 to catch the cases in C++ where function calls are involved. */
1775 single_noncomplex_succ (basic_block bb
)
1778 if (EDGE_COUNT (bb
->succs
) != 2)
1781 e0
= EDGE_SUCC (bb
, 0);
1782 e1
= EDGE_SUCC (bb
, 1);
1783 if (e0
->flags
& EDGE_COMPLEX
)
1785 if (e1
->flags
& EDGE_COMPLEX
)
1791 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1794 notice_special_calls (gimple call
)
1796 int flags
= gimple_call_flags (call
);
1798 if (flags
& ECF_MAY_BE_ALLOCA
)
1799 cfun
->calls_alloca
= true;
1800 if (flags
& ECF_RETURNS_TWICE
)
1801 cfun
->calls_setjmp
= true;
1805 /* Clear flags set by notice_special_calls. Used by dead code removal
1806 to update the flags. */
1809 clear_special_calls (void)
1811 cfun
->calls_alloca
= false;
1812 cfun
->calls_setjmp
= false;
1815 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1818 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1820 /* Since this block is no longer reachable, we can just delete all
1821 of its PHI nodes. */
1822 remove_phi_nodes (bb
);
1824 /* Remove edges to BB's successors. */
1825 while (EDGE_COUNT (bb
->succs
) > 0)
1826 remove_edge (EDGE_SUCC (bb
, 0));
1830 /* Remove statements of basic block BB. */
1833 remove_bb (basic_block bb
)
1835 gimple_stmt_iterator i
;
1839 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1840 if (dump_flags
& TDF_DETAILS
)
1842 dump_bb (dump_file
, bb
, 0, dump_flags
);
1843 fprintf (dump_file
, "\n");
1849 struct loop
*loop
= bb
->loop_father
;
1851 /* If a loop gets removed, clean up the information associated
1853 if (loop
->latch
== bb
1854 || loop
->header
== bb
)
1855 free_numbers_of_iterations_estimates_loop (loop
);
1858 /* Remove all the instructions in the block. */
1859 if (bb_seq (bb
) != NULL
)
1861 /* Walk backwards so as to get a chance to substitute all
1862 released DEFs into debug stmts. See
1863 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1865 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1867 gimple stmt
= gsi_stmt (i
);
1868 if (gimple_code (stmt
) == GIMPLE_LABEL
1869 && (FORCED_LABEL (gimple_label_label (stmt
))
1870 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1873 gimple_stmt_iterator new_gsi
;
1875 /* A non-reachable non-local label may still be referenced.
1876 But it no longer needs to carry the extra semantics of
1878 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1880 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1881 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1884 new_bb
= bb
->prev_bb
;
1885 new_gsi
= gsi_start_bb (new_bb
);
1886 gsi_remove (&i
, false);
1887 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1891 /* Release SSA definitions if we are in SSA. Note that we
1892 may be called when not in SSA. For example,
1893 final_cleanup calls this function via
1894 cleanup_tree_cfg. */
1895 if (gimple_in_ssa_p (cfun
))
1896 release_defs (stmt
);
1898 gsi_remove (&i
, true);
1902 i
= gsi_last_bb (bb
);
1908 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1909 bb
->il
.gimple
.seq
= NULL
;
1910 bb
->il
.gimple
.phi_nodes
= NULL
;
1914 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1915 predicate VAL, return the edge that will be taken out of the block.
1916 If VAL does not match a unique edge, NULL is returned. */
1919 find_taken_edge (basic_block bb
, tree val
)
1923 stmt
= last_stmt (bb
);
1926 gcc_assert (is_ctrl_stmt (stmt
));
1931 if (!is_gimple_min_invariant (val
))
1934 if (gimple_code (stmt
) == GIMPLE_COND
)
1935 return find_taken_edge_cond_expr (bb
, val
);
1937 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1938 return find_taken_edge_switch_expr (bb
, val
);
1940 if (computed_goto_p (stmt
))
1942 /* Only optimize if the argument is a label, if the argument is
1943 not a label then we can not construct a proper CFG.
1945 It may be the case that we only need to allow the LABEL_REF to
1946 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1947 appear inside a LABEL_EXPR just to be safe. */
1948 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1949 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1950 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1957 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1958 statement, determine which of the outgoing edges will be taken out of the
1959 block. Return NULL if either edge may be taken. */
1962 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1967 dest
= label_to_block (val
);
1970 e
= find_edge (bb
, dest
);
1971 gcc_assert (e
!= NULL
);
1977 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1978 statement, determine which of the two edges will be taken out of the
1979 block. Return NULL if either edge may be taken. */
1982 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1984 edge true_edge
, false_edge
;
1986 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1988 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1989 return (integer_zerop (val
) ? false_edge
: true_edge
);
1992 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1993 statement, determine which edge will be taken out of the block. Return
1994 NULL if any edge may be taken. */
1997 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1999 basic_block dest_bb
;
2004 switch_stmt
= last_stmt (bb
);
2005 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2006 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2008 e
= find_edge (bb
, dest_bb
);
2014 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2015 We can make optimal use here of the fact that the case labels are
2016 sorted: We can do a binary search for a case matching VAL. */
2019 find_case_label_for_value (gimple switch_stmt
, tree val
)
2021 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2022 tree default_case
= gimple_switch_default_label (switch_stmt
);
2024 for (low
= 0, high
= n
; high
- low
> 1; )
2026 size_t i
= (high
+ low
) / 2;
2027 tree t
= gimple_switch_label (switch_stmt
, i
);
2030 /* Cache the result of comparing CASE_LOW and val. */
2031 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2038 if (CASE_HIGH (t
) == NULL
)
2040 /* A singe-valued case label. */
2046 /* A case range. We can only handle integer ranges. */
2047 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2052 return default_case
;
2056 /* Dump a basic block on stderr. */
2059 gimple_debug_bb (basic_block bb
)
2061 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2065 /* Dump basic block with index N on stderr. */
2068 gimple_debug_bb_n (int n
)
2070 gimple_debug_bb (BASIC_BLOCK (n
));
2071 return BASIC_BLOCK (n
);
2075 /* Dump the CFG on stderr.
2077 FLAGS are the same used by the tree dumping functions
2078 (see TDF_* in dumpfile.h). */
2081 gimple_debug_cfg (int flags
)
2083 gimple_dump_cfg (stderr
, flags
);
2087 /* Dump the program showing basic block boundaries on the given FILE.
2089 FLAGS are the same used by the tree dumping functions (see TDF_* in
2093 gimple_dump_cfg (FILE *file
, int flags
)
2095 if (flags
& TDF_DETAILS
)
2097 dump_function_header (file
, current_function_decl
, flags
);
2098 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2099 n_basic_blocks
, n_edges
, last_basic_block
);
2101 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2102 fprintf (file
, "\n");
2105 if (flags
& TDF_STATS
)
2106 dump_cfg_stats (file
);
2108 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2112 /* Dump CFG statistics on FILE. */
2115 dump_cfg_stats (FILE *file
)
2117 static long max_num_merged_labels
= 0;
2118 unsigned long size
, total
= 0;
2121 const char * const fmt_str
= "%-30s%-13s%12s\n";
2122 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2123 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2124 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2125 const char *funcname
= current_function_name ();
2127 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2129 fprintf (file
, "---------------------------------------------------------\n");
2130 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2131 fprintf (file
, fmt_str
, "", " instances ", "used ");
2132 fprintf (file
, "---------------------------------------------------------\n");
2134 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2136 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2137 SCALE (size
), LABEL (size
));
2141 num_edges
+= EDGE_COUNT (bb
->succs
);
2142 size
= num_edges
* sizeof (struct edge_def
);
2144 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2146 fprintf (file
, "---------------------------------------------------------\n");
2147 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2149 fprintf (file
, "---------------------------------------------------------\n");
2150 fprintf (file
, "\n");
2152 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2153 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2155 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2156 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2158 fprintf (file
, "\n");
2162 /* Dump CFG statistics on stderr. Keep extern so that it's always
2163 linked in the final executable. */
2166 debug_cfg_stats (void)
2168 dump_cfg_stats (stderr
);
2171 /*---------------------------------------------------------------------------
2172 Miscellaneous helpers
2173 ---------------------------------------------------------------------------*/
2175 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2176 flow. Transfers of control flow associated with EH are excluded. */
2179 call_can_make_abnormal_goto (gimple t
)
2181 /* If the function has no non-local labels, then a call cannot make an
2182 abnormal transfer of control. */
2183 if (!cfun
->has_nonlocal_label
2184 && !cfun
->calls_setjmp
)
2187 /* Likewise if the call has no side effects. */
2188 if (!gimple_has_side_effects (t
))
2191 /* Likewise if the called function is leaf. */
2192 if (gimple_call_flags (t
) & ECF_LEAF
)
2199 /* Return true if T can make an abnormal transfer of control flow.
2200 Transfers of control flow associated with EH are excluded. */
2203 stmt_can_make_abnormal_goto (gimple t
)
2205 if (computed_goto_p (t
))
2207 if (is_gimple_call (t
))
2208 return call_can_make_abnormal_goto (t
);
2213 /* Return true if T represents a stmt that always transfers control. */
2216 is_ctrl_stmt (gimple t
)
2218 switch (gimple_code (t
))
2232 /* Return true if T is a statement that may alter the flow of control
2233 (e.g., a call to a non-returning function). */
2236 is_ctrl_altering_stmt (gimple t
)
2240 switch (gimple_code (t
))
2244 int flags
= gimple_call_flags (t
);
2246 /* A call alters control flow if it can make an abnormal goto. */
2247 if (call_can_make_abnormal_goto (t
))
2250 /* A call also alters control flow if it does not return. */
2251 if (flags
& ECF_NORETURN
)
2254 /* TM ending statements have backedges out of the transaction.
2255 Return true so we split the basic block containing them.
2256 Note that the TM_BUILTIN test is merely an optimization. */
2257 if ((flags
& ECF_TM_BUILTIN
)
2258 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2261 /* BUILT_IN_RETURN call is same as return statement. */
2262 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2267 case GIMPLE_EH_DISPATCH
:
2268 /* EH_DISPATCH branches to the individual catch handlers at
2269 this level of a try or allowed-exceptions region. It can
2270 fallthru to the next statement as well. */
2274 if (gimple_asm_nlabels (t
) > 0)
2279 /* OpenMP directives alter control flow. */
2282 case GIMPLE_TRANSACTION
:
2283 /* A transaction start alters control flow. */
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t
);
2295 /* Return true if T is a simple local goto. */
2298 simple_goto_p (gimple t
)
2300 return (gimple_code (t
) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2305 /* Return true if STMT should start a new basic block. PREV_STMT is
2306 the statement preceding STMT. It is used when STMT is a label or a
2307 case label. Labels should only start a new basic block if their
2308 previous statement wasn't a label. Otherwise, sequence of labels
2309 would generate unnecessary basic blocks that only contain a single
2313 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2318 /* Labels start a new basic block only if the preceding statement
2319 wasn't a label of the same type. This prevents the creation of
2320 consecutive blocks that have nothing but a single label. */
2321 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2323 /* Nonlocal and computed GOTO targets always start a new block. */
2324 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2325 || FORCED_LABEL (gimple_label_label (stmt
)))
2328 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2330 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2333 cfg_stats
.num_merged_labels
++;
2339 else if (gimple_code (stmt
) == GIMPLE_CALL
2340 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2341 /* setjmp acts similar to a nonlocal GOTO target and thus should
2342 start a new block. */
2349 /* Return true if T should end a basic block. */
2352 stmt_ends_bb_p (gimple t
)
2354 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2357 /* Remove block annotations and other data structures. */
2360 delete_tree_cfg_annotations (void)
2362 vec_free (label_to_block_map
);
2366 /* Return the first statement in basic block BB. */
2369 first_stmt (basic_block bb
)
2371 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2374 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2382 /* Return the first non-label statement in basic block BB. */
2385 first_non_label_stmt (basic_block bb
)
2387 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2388 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2390 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2393 /* Return the last statement in basic block BB. */
2396 last_stmt (basic_block bb
)
2398 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2401 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2409 /* Return the last statement of an otherwise empty block. Return NULL
2410 if the block is totally empty, or if it contains more than one
2414 last_and_only_stmt (basic_block bb
)
2416 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2422 last
= gsi_stmt (i
);
2423 gsi_prev_nondebug (&i
);
2427 /* Empty statements should no longer appear in the instruction stream.
2428 Everything that might have appeared before should be deleted by
2429 remove_useless_stmts, and the optimizers should just gsi_remove
2430 instead of smashing with build_empty_stmt.
2432 Thus the only thing that should appear here in a block containing
2433 one executable statement is a label. */
2434 prev
= gsi_stmt (i
);
2435 if (gimple_code (prev
) == GIMPLE_LABEL
)
2441 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2444 reinstall_phi_args (edge new_edge
, edge old_edge
)
2446 edge_var_map_vector
*v
;
2449 gimple_stmt_iterator phis
;
2451 v
= redirect_edge_var_map_vector (old_edge
);
2455 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2456 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2457 i
++, gsi_next (&phis
))
2459 gimple phi
= gsi_stmt (phis
);
2460 tree result
= redirect_edge_var_map_result (vm
);
2461 tree arg
= redirect_edge_var_map_def (vm
);
2463 gcc_assert (result
== gimple_phi_result (phi
));
2465 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2468 redirect_edge_var_map_clear (old_edge
);
2471 /* Returns the basic block after which the new basic block created
2472 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2473 near its "logical" location. This is of most help to humans looking
2474 at debugging dumps. */
2477 split_edge_bb_loc (edge edge_in
)
2479 basic_block dest
= edge_in
->dest
;
2480 basic_block dest_prev
= dest
->prev_bb
;
2484 edge e
= find_edge (dest_prev
, dest
);
2485 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2486 return edge_in
->src
;
2491 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2492 Abort on abnormal edges. */
2495 gimple_split_edge (edge edge_in
)
2497 basic_block new_bb
, after_bb
, dest
;
2500 /* Abnormal edges cannot be split. */
2501 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2503 dest
= edge_in
->dest
;
2505 after_bb
= split_edge_bb_loc (edge_in
);
2507 new_bb
= create_empty_bb (after_bb
);
2508 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2509 new_bb
->count
= edge_in
->count
;
2510 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2511 new_edge
->probability
= REG_BR_PROB_BASE
;
2512 new_edge
->count
= edge_in
->count
;
2514 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2515 gcc_assert (e
== edge_in
);
2516 reinstall_phi_args (new_edge
, e
);
2522 /* Verify properties of the address expression T with base object BASE. */
2525 verify_address (tree t
, tree base
)
2528 bool old_side_effects
;
2530 bool new_side_effects
;
2532 old_constant
= TREE_CONSTANT (t
);
2533 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2535 recompute_tree_invariant_for_addr_expr (t
);
2536 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2537 new_constant
= TREE_CONSTANT (t
);
2539 if (old_constant
!= new_constant
)
2541 error ("constant not recomputed when ADDR_EXPR changed");
2544 if (old_side_effects
!= new_side_effects
)
2546 error ("side effects not recomputed when ADDR_EXPR changed");
2550 if (!(TREE_CODE (base
) == VAR_DECL
2551 || TREE_CODE (base
) == PARM_DECL
2552 || TREE_CODE (base
) == RESULT_DECL
))
2555 if (DECL_GIMPLE_REG_P (base
))
2557 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2564 /* Callback for walk_tree, check that all elements with address taken are
2565 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2566 inside a PHI node. */
2569 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2576 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2577 #define CHECK_OP(N, MSG) \
2578 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2579 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2581 switch (TREE_CODE (t
))
2584 if (SSA_NAME_IN_FREE_LIST (t
))
2586 error ("SSA name in freelist but still referenced");
2592 error ("INDIRECT_REF in gimple IL");
2596 x
= TREE_OPERAND (t
, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2598 || !is_gimple_mem_ref_addr (x
))
2600 error ("invalid first operand of MEM_REF");
2603 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2604 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2606 error ("invalid offset operand of MEM_REF");
2607 return TREE_OPERAND (t
, 1);
2609 if (TREE_CODE (x
) == ADDR_EXPR
2610 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2616 x
= fold (ASSERT_EXPR_COND (t
));
2617 if (x
== boolean_false_node
)
2619 error ("ASSERT_EXPR with an always-false condition");
2625 error ("MODIFY_EXPR not expected while having tuples");
2632 gcc_assert (is_gimple_address (t
));
2634 /* Skip any references (they will be checked when we recurse down the
2635 tree) and ensure that any variable used as a prefix is marked
2637 for (x
= TREE_OPERAND (t
, 0);
2638 handled_component_p (x
);
2639 x
= TREE_OPERAND (x
, 0))
2642 if ((tem
= verify_address (t
, x
)))
2645 if (!(TREE_CODE (x
) == VAR_DECL
2646 || TREE_CODE (x
) == PARM_DECL
2647 || TREE_CODE (x
) == RESULT_DECL
))
2650 if (!TREE_ADDRESSABLE (x
))
2652 error ("address taken, but ADDRESSABLE bit not set");
2660 x
= COND_EXPR_COND (t
);
2661 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2663 error ("non-integral used in condition");
2666 if (!is_gimple_condexpr (x
))
2668 error ("invalid conditional operand");
2673 case NON_LVALUE_EXPR
:
2674 case TRUTH_NOT_EXPR
:
2678 case FIX_TRUNC_EXPR
:
2683 CHECK_OP (0, "invalid operand to unary operator");
2689 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2691 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2695 if (TREE_CODE (t
) == BIT_FIELD_REF
)
2697 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2698 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2700 error ("invalid position or size operand to BIT_FIELD_REF");
2703 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2704 && (TYPE_PRECISION (TREE_TYPE (t
))
2705 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2707 error ("integral result type precision does not match "
2708 "field size of BIT_FIELD_REF");
2711 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2712 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2721 t
= TREE_OPERAND (t
, 0);
2726 case ARRAY_RANGE_REF
:
2727 case VIEW_CONVERT_EXPR
:
2728 /* We have a nest of references. Verify that each of the operands
2729 that determine where to reference is either a constant or a variable,
2730 verify that the base is valid, and then show we've already checked
2732 while (handled_component_p (t
))
2734 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2735 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2736 else if (TREE_CODE (t
) == ARRAY_REF
2737 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2739 CHECK_OP (1, "invalid array index");
2740 if (TREE_OPERAND (t
, 2))
2741 CHECK_OP (2, "invalid array lower bound");
2742 if (TREE_OPERAND (t
, 3))
2743 CHECK_OP (3, "invalid array stride");
2745 else if (TREE_CODE (t
) == BIT_FIELD_REF
2746 || TREE_CODE (t
) == REALPART_EXPR
2747 || TREE_CODE (t
) == IMAGPART_EXPR
)
2749 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2754 t
= TREE_OPERAND (t
, 0);
2757 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2759 error ("invalid reference prefix");
2766 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2767 POINTER_PLUS_EXPR. */
2768 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2770 error ("invalid operand to plus/minus, type is a pointer");
2773 CHECK_OP (0, "invalid operand to binary operator");
2774 CHECK_OP (1, "invalid operand to binary operator");
2777 case POINTER_PLUS_EXPR
:
2778 /* Check to make sure the first operand is a pointer or reference type. */
2779 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2781 error ("invalid operand to pointer plus, first operand is not a pointer");
2784 /* Check to make sure the second operand is a ptrofftype. */
2785 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2787 error ("invalid operand to pointer plus, second operand is not an "
2788 "integer type of appropriate width");
2798 case UNORDERED_EXPR
:
2807 case TRUNC_DIV_EXPR
:
2809 case FLOOR_DIV_EXPR
:
2810 case ROUND_DIV_EXPR
:
2811 case TRUNC_MOD_EXPR
:
2813 case FLOOR_MOD_EXPR
:
2814 case ROUND_MOD_EXPR
:
2816 case EXACT_DIV_EXPR
:
2826 CHECK_OP (0, "invalid operand to binary operator");
2827 CHECK_OP (1, "invalid operand to binary operator");
2831 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2835 case CASE_LABEL_EXPR
:
2838 error ("invalid CASE_CHAIN");
2852 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2853 Returns true if there is an error, otherwise false. */
2856 verify_types_in_gimple_min_lval (tree expr
)
2860 if (is_gimple_id (expr
))
2863 if (TREE_CODE (expr
) != TARGET_MEM_REF
2864 && TREE_CODE (expr
) != MEM_REF
)
2866 error ("invalid expression for min lvalue");
2870 /* TARGET_MEM_REFs are strange beasts. */
2871 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2874 op
= TREE_OPERAND (expr
, 0);
2875 if (!is_gimple_val (op
))
2877 error ("invalid operand in indirect reference");
2878 debug_generic_stmt (op
);
2881 /* Memory references now generally can involve a value conversion. */
2886 /* Verify if EXPR is a valid GIMPLE reference expression. If
2887 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2888 if there is an error, otherwise false. */
2891 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2893 while (handled_component_p (expr
))
2895 tree op
= TREE_OPERAND (expr
, 0);
2897 if (TREE_CODE (expr
) == ARRAY_REF
2898 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2900 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2901 || (TREE_OPERAND (expr
, 2)
2902 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2903 || (TREE_OPERAND (expr
, 3)
2904 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2906 error ("invalid operands to array reference");
2907 debug_generic_stmt (expr
);
2912 /* Verify if the reference array element types are compatible. */
2913 if (TREE_CODE (expr
) == ARRAY_REF
2914 && !useless_type_conversion_p (TREE_TYPE (expr
),
2915 TREE_TYPE (TREE_TYPE (op
))))
2917 error ("type mismatch in array reference");
2918 debug_generic_stmt (TREE_TYPE (expr
));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2922 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2923 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2924 TREE_TYPE (TREE_TYPE (op
))))
2926 error ("type mismatch in array range reference");
2927 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2932 if ((TREE_CODE (expr
) == REALPART_EXPR
2933 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2934 && !useless_type_conversion_p (TREE_TYPE (expr
),
2935 TREE_TYPE (TREE_TYPE (op
))))
2937 error ("type mismatch in real/imagpart reference");
2938 debug_generic_stmt (TREE_TYPE (expr
));
2939 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2943 if (TREE_CODE (expr
) == COMPONENT_REF
2944 && !useless_type_conversion_p (TREE_TYPE (expr
),
2945 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2947 error ("type mismatch in component reference");
2948 debug_generic_stmt (TREE_TYPE (expr
));
2949 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2953 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2955 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2956 that their operand is not an SSA name or an invariant when
2957 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2958 bug). Otherwise there is nothing to verify, gross mismatches at
2959 most invoke undefined behavior. */
2961 && (TREE_CODE (op
) == SSA_NAME
2962 || is_gimple_min_invariant (op
)))
2964 error ("conversion of an SSA_NAME on the left hand side");
2965 debug_generic_stmt (expr
);
2968 else if (TREE_CODE (op
) == SSA_NAME
2969 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2971 error ("conversion of register to a different size");
2972 debug_generic_stmt (expr
);
2975 else if (!handled_component_p (op
))
2982 if (TREE_CODE (expr
) == MEM_REF
)
2984 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2986 error ("invalid address operand in MEM_REF");
2987 debug_generic_stmt (expr
);
2990 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2991 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2993 error ("invalid offset operand in MEM_REF");
2994 debug_generic_stmt (expr
);
2998 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3000 if (!TMR_BASE (expr
)
3001 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3003 error ("invalid address operand in TARGET_MEM_REF");
3006 if (!TMR_OFFSET (expr
)
3007 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3008 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3010 error ("invalid offset operand in TARGET_MEM_REF");
3011 debug_generic_stmt (expr
);
3016 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3017 && verify_types_in_gimple_min_lval (expr
));
3020 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3021 list of pointer-to types that is trivially convertible to DEST. */
3024 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3028 if (!TYPE_POINTER_TO (src_obj
))
3031 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3032 if (useless_type_conversion_p (dest
, src
))
3038 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3039 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3042 valid_fixed_convert_types_p (tree type1
, tree type2
)
3044 return (FIXED_POINT_TYPE_P (type1
)
3045 && (INTEGRAL_TYPE_P (type2
)
3046 || SCALAR_FLOAT_TYPE_P (type2
)
3047 || FIXED_POINT_TYPE_P (type2
)));
3050 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3051 is a problem, otherwise false. */
3054 verify_gimple_call (gimple stmt
)
3056 tree fn
= gimple_call_fn (stmt
);
3057 tree fntype
, fndecl
;
3060 if (gimple_call_internal_p (stmt
))
3064 error ("gimple call has two targets");
3065 debug_generic_stmt (fn
);
3073 error ("gimple call has no target");
3078 if (fn
&& !is_gimple_call_addr (fn
))
3080 error ("invalid function in gimple call");
3081 debug_generic_stmt (fn
);
3086 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3087 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3088 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3090 error ("non-function in gimple call");
3094 fndecl
= gimple_call_fndecl (stmt
);
3096 && TREE_CODE (fndecl
) == FUNCTION_DECL
3097 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3098 && !DECL_PURE_P (fndecl
)
3099 && !TREE_READONLY (fndecl
))
3101 error ("invalid pure const state for function");
3105 if (gimple_call_lhs (stmt
)
3106 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3107 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3109 error ("invalid LHS in gimple call");
3113 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3115 error ("LHS in noreturn call");
3119 fntype
= gimple_call_fntype (stmt
);
3121 && gimple_call_lhs (stmt
)
3122 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3124 /* ??? At least C++ misses conversions at assignments from
3125 void * call results.
3126 ??? Java is completely off. Especially with functions
3127 returning java.lang.Object.
3128 For now simply allow arbitrary pointer type conversions. */
3129 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3130 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3132 error ("invalid conversion in gimple call");
3133 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3134 debug_generic_stmt (TREE_TYPE (fntype
));
3138 if (gimple_call_chain (stmt
)
3139 && !is_gimple_val (gimple_call_chain (stmt
)))
3141 error ("invalid static chain in gimple call");
3142 debug_generic_stmt (gimple_call_chain (stmt
));
3146 /* If there is a static chain argument, this should not be an indirect
3147 call, and the decl should have DECL_STATIC_CHAIN set. */
3148 if (gimple_call_chain (stmt
))
3150 if (!gimple_call_fndecl (stmt
))
3152 error ("static chain in indirect gimple call");
3155 fn
= TREE_OPERAND (fn
, 0);
3157 if (!DECL_STATIC_CHAIN (fn
))
3159 error ("static chain with function that doesn%'t use one");
3164 /* ??? The C frontend passes unpromoted arguments in case it
3165 didn't see a function declaration before the call. So for now
3166 leave the call arguments mostly unverified. Once we gimplify
3167 unit-at-a-time we have a chance to fix this. */
3169 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3171 tree arg
= gimple_call_arg (stmt
, i
);
3172 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3173 && !is_gimple_val (arg
))
3174 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3175 && !is_gimple_lvalue (arg
)))
3177 error ("invalid argument to gimple call");
3178 debug_generic_expr (arg
);
3186 /* Verifies the gimple comparison with the result type TYPE and
3187 the operands OP0 and OP1. */
3190 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3192 tree op0_type
= TREE_TYPE (op0
);
3193 tree op1_type
= TREE_TYPE (op1
);
3195 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3197 error ("invalid operands in gimple comparison");
3201 /* For comparisons we do not have the operations type as the
3202 effective type the comparison is carried out in. Instead
3203 we require that either the first operand is trivially
3204 convertible into the second, or the other way around.
3205 Because we special-case pointers to void we allow
3206 comparisons of pointers with the same mode as well. */
3207 if (!useless_type_conversion_p (op0_type
, op1_type
)
3208 && !useless_type_conversion_p (op1_type
, op0_type
)
3209 && (!POINTER_TYPE_P (op0_type
)
3210 || !POINTER_TYPE_P (op1_type
)
3211 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3213 error ("mismatching comparison operand types");
3214 debug_generic_expr (op0_type
);
3215 debug_generic_expr (op1_type
);
3219 /* The resulting type of a comparison may be an effective boolean type. */
3220 if (INTEGRAL_TYPE_P (type
)
3221 && (TREE_CODE (type
) == BOOLEAN_TYPE
3222 || TYPE_PRECISION (type
) == 1))
3224 if (TREE_CODE (op0_type
) == VECTOR_TYPE
3225 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3227 error ("vector comparison returning a boolean");
3228 debug_generic_expr (op0_type
);
3229 debug_generic_expr (op1_type
);
3233 /* Or an integer vector type with the same size and element count
3234 as the comparison operand types. */
3235 else if (TREE_CODE (type
) == VECTOR_TYPE
3236 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3238 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3239 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3241 error ("non-vector operands in vector comparison");
3242 debug_generic_expr (op0_type
);
3243 debug_generic_expr (op1_type
);
3247 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3248 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3249 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
))))
3250 /* The result of a vector comparison is of signed
3252 || TYPE_UNSIGNED (TREE_TYPE (type
)))
3254 error ("invalid vector comparison resulting type");
3255 debug_generic_expr (type
);
3261 error ("bogus comparison result type");
3262 debug_generic_expr (type
);
3269 /* Verify a gimple assignment statement STMT with an unary rhs.
3270 Returns true if anything is wrong. */
3273 verify_gimple_assign_unary (gimple stmt
)
3275 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3276 tree lhs
= gimple_assign_lhs (stmt
);
3277 tree lhs_type
= TREE_TYPE (lhs
);
3278 tree rhs1
= gimple_assign_rhs1 (stmt
);
3279 tree rhs1_type
= TREE_TYPE (rhs1
);
3281 if (!is_gimple_reg (lhs
))
3283 error ("non-register as LHS of unary operation");
3287 if (!is_gimple_val (rhs1
))
3289 error ("invalid operand in unary operation");
3293 /* First handle conversions. */
3298 /* Allow conversions from pointer type to integral type only if
3299 there is no sign or zero extension involved.
3300 For targets were the precision of ptrofftype doesn't match that
3301 of pointers we need to allow arbitrary conversions to ptrofftype. */
3302 if ((POINTER_TYPE_P (lhs_type
)
3303 && INTEGRAL_TYPE_P (rhs1_type
))
3304 || (POINTER_TYPE_P (rhs1_type
)
3305 && INTEGRAL_TYPE_P (lhs_type
)
3306 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3307 || ptrofftype_p (sizetype
))))
3310 /* Allow conversion from integral to offset type and vice versa. */
3311 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3312 && INTEGRAL_TYPE_P (rhs1_type
))
3313 || (INTEGRAL_TYPE_P (lhs_type
)
3314 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3317 /* Otherwise assert we are converting between types of the
3319 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3321 error ("invalid types in nop conversion");
3322 debug_generic_expr (lhs_type
);
3323 debug_generic_expr (rhs1_type
);
3330 case ADDR_SPACE_CONVERT_EXPR
:
3332 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3333 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3334 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3336 error ("invalid types in address space conversion");
3337 debug_generic_expr (lhs_type
);
3338 debug_generic_expr (rhs1_type
);
3345 case FIXED_CONVERT_EXPR
:
3347 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3348 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3350 error ("invalid types in fixed-point conversion");
3351 debug_generic_expr (lhs_type
);
3352 debug_generic_expr (rhs1_type
);
3361 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3362 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3363 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3365 error ("invalid types in conversion to floating point");
3366 debug_generic_expr (lhs_type
);
3367 debug_generic_expr (rhs1_type
);
3374 case FIX_TRUNC_EXPR
:
3376 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3377 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3378 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3380 error ("invalid types in conversion to integer");
3381 debug_generic_expr (lhs_type
);
3382 debug_generic_expr (rhs1_type
);
3389 case VEC_UNPACK_HI_EXPR
:
3390 case VEC_UNPACK_LO_EXPR
:
3391 case REDUC_MAX_EXPR
:
3392 case REDUC_MIN_EXPR
:
3393 case REDUC_PLUS_EXPR
:
3394 case VEC_UNPACK_FLOAT_HI_EXPR
:
3395 case VEC_UNPACK_FLOAT_LO_EXPR
:
3403 case NON_LVALUE_EXPR
:
3411 /* For the remaining codes assert there is no conversion involved. */
3412 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3414 error ("non-trivial conversion in unary operation");
3415 debug_generic_expr (lhs_type
);
3416 debug_generic_expr (rhs1_type
);
3423 /* Verify a gimple assignment statement STMT with a binary rhs.
3424 Returns true if anything is wrong. */
3427 verify_gimple_assign_binary (gimple stmt
)
3429 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3430 tree lhs
= gimple_assign_lhs (stmt
);
3431 tree lhs_type
= TREE_TYPE (lhs
);
3432 tree rhs1
= gimple_assign_rhs1 (stmt
);
3433 tree rhs1_type
= TREE_TYPE (rhs1
);
3434 tree rhs2
= gimple_assign_rhs2 (stmt
);
3435 tree rhs2_type
= TREE_TYPE (rhs2
);
3437 if (!is_gimple_reg (lhs
))
3439 error ("non-register as LHS of binary operation");
3443 if (!is_gimple_val (rhs1
)
3444 || !is_gimple_val (rhs2
))
3446 error ("invalid operands in binary operation");
3450 /* First handle operations that involve different types. */
3455 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3456 || !(INTEGRAL_TYPE_P (rhs1_type
)
3457 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3458 || !(INTEGRAL_TYPE_P (rhs2_type
)
3459 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3461 error ("type mismatch in complex expression");
3462 debug_generic_expr (lhs_type
);
3463 debug_generic_expr (rhs1_type
);
3464 debug_generic_expr (rhs2_type
);
3476 /* Shifts and rotates are ok on integral types, fixed point
3477 types and integer vector types. */
3478 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3479 && !FIXED_POINT_TYPE_P (rhs1_type
)
3480 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3481 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3482 || (!INTEGRAL_TYPE_P (rhs2_type
)
3483 /* Vector shifts of vectors are also ok. */
3484 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3486 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3488 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3490 error ("type mismatch in shift expression");
3491 debug_generic_expr (lhs_type
);
3492 debug_generic_expr (rhs1_type
);
3493 debug_generic_expr (rhs2_type
);
3500 case VEC_LSHIFT_EXPR
:
3501 case VEC_RSHIFT_EXPR
:
3503 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3504 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3505 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3506 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3507 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3508 || (!INTEGRAL_TYPE_P (rhs2_type
)
3509 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3510 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3511 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3513 error ("type mismatch in vector shift expression");
3514 debug_generic_expr (lhs_type
);
3515 debug_generic_expr (rhs1_type
);
3516 debug_generic_expr (rhs2_type
);
3519 /* For shifting a vector of non-integral components we
3520 only allow shifting by a constant multiple of the element size. */
3521 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3522 && (TREE_CODE (rhs2
) != INTEGER_CST
3523 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3524 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3526 error ("non-element sized vector shift of floating point vector");
3533 case WIDEN_LSHIFT_EXPR
:
3535 if (!INTEGRAL_TYPE_P (lhs_type
)
3536 || !INTEGRAL_TYPE_P (rhs1_type
)
3537 || TREE_CODE (rhs2
) != INTEGER_CST
3538 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3540 error ("type mismatch in widening vector shift expression");
3541 debug_generic_expr (lhs_type
);
3542 debug_generic_expr (rhs1_type
);
3543 debug_generic_expr (rhs2_type
);
3550 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3551 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3553 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3554 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3555 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3556 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3557 || TREE_CODE (rhs2
) != INTEGER_CST
3558 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3559 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3561 error ("type mismatch in widening vector shift expression");
3562 debug_generic_expr (lhs_type
);
3563 debug_generic_expr (rhs1_type
);
3564 debug_generic_expr (rhs2_type
);
3574 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3575 ??? This just makes the checker happy and may not be what is
3577 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3578 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3580 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3581 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3583 error ("invalid non-vector operands to vector valued plus");
3586 lhs_type
= TREE_TYPE (lhs_type
);
3587 rhs1_type
= TREE_TYPE (rhs1_type
);
3588 rhs2_type
= TREE_TYPE (rhs2_type
);
3589 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3590 the pointer to 2nd place. */
3591 if (POINTER_TYPE_P (rhs2_type
))
3593 tree tem
= rhs1_type
;
3594 rhs1_type
= rhs2_type
;
3597 goto do_pointer_plus_expr_check
;
3599 if (POINTER_TYPE_P (lhs_type
)
3600 || POINTER_TYPE_P (rhs1_type
)
3601 || POINTER_TYPE_P (rhs2_type
))
3603 error ("invalid (pointer) operands to plus/minus");
3607 /* Continue with generic binary expression handling. */
3611 case POINTER_PLUS_EXPR
:
3613 do_pointer_plus_expr_check
:
3614 if (!POINTER_TYPE_P (rhs1_type
)
3615 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3616 || !ptrofftype_p (rhs2_type
))
3618 error ("type mismatch in pointer plus expression");
3619 debug_generic_stmt (lhs_type
);
3620 debug_generic_stmt (rhs1_type
);
3621 debug_generic_stmt (rhs2_type
);
3628 case TRUTH_ANDIF_EXPR
:
3629 case TRUTH_ORIF_EXPR
:
3630 case TRUTH_AND_EXPR
:
3632 case TRUTH_XOR_EXPR
:
3642 case UNORDERED_EXPR
:
3650 /* Comparisons are also binary, but the result type is not
3651 connected to the operand types. */
3652 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3654 case WIDEN_MULT_EXPR
:
3655 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3657 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3658 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3660 case WIDEN_SUM_EXPR
:
3661 case VEC_WIDEN_MULT_HI_EXPR
:
3662 case VEC_WIDEN_MULT_LO_EXPR
:
3663 case VEC_WIDEN_MULT_EVEN_EXPR
:
3664 case VEC_WIDEN_MULT_ODD_EXPR
:
3665 case VEC_PACK_TRUNC_EXPR
:
3666 case VEC_PACK_SAT_EXPR
:
3667 case VEC_PACK_FIX_TRUNC_EXPR
:
3672 case MULT_HIGHPART_EXPR
:
3673 case TRUNC_DIV_EXPR
:
3675 case FLOOR_DIV_EXPR
:
3676 case ROUND_DIV_EXPR
:
3677 case TRUNC_MOD_EXPR
:
3679 case FLOOR_MOD_EXPR
:
3680 case ROUND_MOD_EXPR
:
3682 case EXACT_DIV_EXPR
:
3688 /* Continue with generic binary expression handling. */
3695 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3696 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3698 error ("type mismatch in binary expression");
3699 debug_generic_stmt (lhs_type
);
3700 debug_generic_stmt (rhs1_type
);
3701 debug_generic_stmt (rhs2_type
);
3708 /* Verify a gimple assignment statement STMT with a ternary rhs.
3709 Returns true if anything is wrong. */
3712 verify_gimple_assign_ternary (gimple stmt
)
3714 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3715 tree lhs
= gimple_assign_lhs (stmt
);
3716 tree lhs_type
= TREE_TYPE (lhs
);
3717 tree rhs1
= gimple_assign_rhs1 (stmt
);
3718 tree rhs1_type
= TREE_TYPE (rhs1
);
3719 tree rhs2
= gimple_assign_rhs2 (stmt
);
3720 tree rhs2_type
= TREE_TYPE (rhs2
);
3721 tree rhs3
= gimple_assign_rhs3 (stmt
);
3722 tree rhs3_type
= TREE_TYPE (rhs3
);
3724 if (!is_gimple_reg (lhs
))
3726 error ("non-register as LHS of ternary operation");
3730 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3731 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3732 || !is_gimple_val (rhs2
)
3733 || !is_gimple_val (rhs3
))
3735 error ("invalid operands in ternary operation");
3739 /* First handle operations that involve different types. */
3742 case WIDEN_MULT_PLUS_EXPR
:
3743 case WIDEN_MULT_MINUS_EXPR
:
3744 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3745 && !FIXED_POINT_TYPE_P (rhs1_type
))
3746 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3747 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3748 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3749 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3751 error ("type mismatch in widening multiply-accumulate expression");
3752 debug_generic_expr (lhs_type
);
3753 debug_generic_expr (rhs1_type
);
3754 debug_generic_expr (rhs2_type
);
3755 debug_generic_expr (rhs3_type
);
3761 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3762 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3763 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3765 error ("type mismatch in fused multiply-add expression");
3766 debug_generic_expr (lhs_type
);
3767 debug_generic_expr (rhs1_type
);
3768 debug_generic_expr (rhs2_type
);
3769 debug_generic_expr (rhs3_type
);
3776 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3777 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3779 error ("type mismatch in conditional expression");
3780 debug_generic_expr (lhs_type
);
3781 debug_generic_expr (rhs2_type
);
3782 debug_generic_expr (rhs3_type
);
3788 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3789 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3791 error ("type mismatch in vector permute expression");
3792 debug_generic_expr (lhs_type
);
3793 debug_generic_expr (rhs1_type
);
3794 debug_generic_expr (rhs2_type
);
3795 debug_generic_expr (rhs3_type
);
3799 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3800 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3801 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3803 error ("vector types expected in vector permute expression");
3804 debug_generic_expr (lhs_type
);
3805 debug_generic_expr (rhs1_type
);
3806 debug_generic_expr (rhs2_type
);
3807 debug_generic_expr (rhs3_type
);
3811 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3812 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3813 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3814 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3815 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3817 error ("vectors with different element number found "
3818 "in vector permute expression");
3819 debug_generic_expr (lhs_type
);
3820 debug_generic_expr (rhs1_type
);
3821 debug_generic_expr (rhs2_type
);
3822 debug_generic_expr (rhs3_type
);
3826 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3827 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3828 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3830 error ("invalid mask type in vector permute expression");
3831 debug_generic_expr (lhs_type
);
3832 debug_generic_expr (rhs1_type
);
3833 debug_generic_expr (rhs2_type
);
3834 debug_generic_expr (rhs3_type
);
3841 case REALIGN_LOAD_EXPR
:
3851 /* Verify a gimple assignment statement STMT with a single rhs.
3852 Returns true if anything is wrong. */
3855 verify_gimple_assign_single (gimple stmt
)
3857 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3858 tree lhs
= gimple_assign_lhs (stmt
);
3859 tree lhs_type
= TREE_TYPE (lhs
);
3860 tree rhs1
= gimple_assign_rhs1 (stmt
);
3861 tree rhs1_type
= TREE_TYPE (rhs1
);
3864 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3866 error ("non-trivial conversion at assignment");
3867 debug_generic_expr (lhs_type
);
3868 debug_generic_expr (rhs1_type
);
3872 if (gimple_clobber_p (stmt
)
3873 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
3875 error ("non-decl/MEM_REF LHS in clobber statement");
3876 debug_generic_expr (lhs
);
3880 if (handled_component_p (lhs
))
3881 res
|= verify_types_in_gimple_reference (lhs
, true);
3883 /* Special codes we cannot handle via their class. */
3888 tree op
= TREE_OPERAND (rhs1
, 0);
3889 if (!is_gimple_addressable (op
))
3891 error ("invalid operand in unary expression");
3895 /* Technically there is no longer a need for matching types, but
3896 gimple hygiene asks for this check. In LTO we can end up
3897 combining incompatible units and thus end up with addresses
3898 of globals that change their type to a common one. */
3900 && !types_compatible_p (TREE_TYPE (op
),
3901 TREE_TYPE (TREE_TYPE (rhs1
)))
3902 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3905 error ("type mismatch in address expression");
3906 debug_generic_stmt (TREE_TYPE (rhs1
));
3907 debug_generic_stmt (TREE_TYPE (op
));
3911 return verify_types_in_gimple_reference (op
, true);
3916 error ("INDIRECT_REF in gimple IL");
3922 case ARRAY_RANGE_REF
:
3923 case VIEW_CONVERT_EXPR
:
3926 case TARGET_MEM_REF
:
3928 if (!is_gimple_reg (lhs
)
3929 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3931 error ("invalid rhs for gimple memory store");
3932 debug_generic_stmt (lhs
);
3933 debug_generic_stmt (rhs1
);
3936 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3948 /* tcc_declaration */
3953 if (!is_gimple_reg (lhs
)
3954 && !is_gimple_reg (rhs1
)
3955 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3957 error ("invalid rhs for gimple memory store");
3958 debug_generic_stmt (lhs
);
3959 debug_generic_stmt (rhs1
);
3965 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
3968 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
3970 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
3972 /* For vector CONSTRUCTORs we require that either it is empty
3973 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3974 (then the element count must be correct to cover the whole
3975 outer vector and index must be NULL on all elements, or it is
3976 a CONSTRUCTOR of scalar elements, where we as an exception allow
3977 smaller number of elements (assuming zero filling) and
3978 consecutive indexes as compared to NULL indexes (such
3979 CONSTRUCTORs can appear in the IL from FEs). */
3980 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
3982 if (elt_t
== NULL_TREE
)
3984 elt_t
= TREE_TYPE (elt_v
);
3985 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
3987 tree elt_t
= TREE_TYPE (elt_v
);
3988 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
3991 error ("incorrect type of vector CONSTRUCTOR"
3993 debug_generic_stmt (rhs1
);
3996 else if (CONSTRUCTOR_NELTS (rhs1
)
3997 * TYPE_VECTOR_SUBPARTS (elt_t
)
3998 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4000 error ("incorrect number of vector CONSTRUCTOR"
4002 debug_generic_stmt (rhs1
);
4006 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4009 error ("incorrect type of vector CONSTRUCTOR elements");
4010 debug_generic_stmt (rhs1
);
4013 else if (CONSTRUCTOR_NELTS (rhs1
)
4014 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4016 error ("incorrect number of vector CONSTRUCTOR elements");
4017 debug_generic_stmt (rhs1
);
4021 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4023 error ("incorrect type of vector CONSTRUCTOR elements");
4024 debug_generic_stmt (rhs1
);
4027 if (elt_i
!= NULL_TREE
4028 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4029 || TREE_CODE (elt_i
) != INTEGER_CST
4030 || compare_tree_int (elt_i
, i
) != 0))
4032 error ("vector CONSTRUCTOR with non-NULL element index");
4033 debug_generic_stmt (rhs1
);
4041 case WITH_SIZE_EXPR
:
4051 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4052 is a problem, otherwise false. */
4055 verify_gimple_assign (gimple stmt
)
4057 switch (gimple_assign_rhs_class (stmt
))
4059 case GIMPLE_SINGLE_RHS
:
4060 return verify_gimple_assign_single (stmt
);
4062 case GIMPLE_UNARY_RHS
:
4063 return verify_gimple_assign_unary (stmt
);
4065 case GIMPLE_BINARY_RHS
:
4066 return verify_gimple_assign_binary (stmt
);
4068 case GIMPLE_TERNARY_RHS
:
4069 return verify_gimple_assign_ternary (stmt
);
4076 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4077 is a problem, otherwise false. */
4080 verify_gimple_return (gimple stmt
)
4082 tree op
= gimple_return_retval (stmt
);
4083 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4085 /* We cannot test for present return values as we do not fix up missing
4086 return values from the original source. */
4090 if (!is_gimple_val (op
)
4091 && TREE_CODE (op
) != RESULT_DECL
)
4093 error ("invalid operand in return statement");
4094 debug_generic_stmt (op
);
4098 if ((TREE_CODE (op
) == RESULT_DECL
4099 && DECL_BY_REFERENCE (op
))
4100 || (TREE_CODE (op
) == SSA_NAME
4101 && SSA_NAME_VAR (op
)
4102 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4103 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4104 op
= TREE_TYPE (op
);
4106 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4108 error ("invalid conversion in return statement");
4109 debug_generic_stmt (restype
);
4110 debug_generic_stmt (TREE_TYPE (op
));
4118 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4119 is a problem, otherwise false. */
4122 verify_gimple_goto (gimple stmt
)
4124 tree dest
= gimple_goto_dest (stmt
);
4126 /* ??? We have two canonical forms of direct goto destinations, a
4127 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4128 if (TREE_CODE (dest
) != LABEL_DECL
4129 && (!is_gimple_val (dest
)
4130 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4132 error ("goto destination is neither a label nor a pointer");
4139 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4140 is a problem, otherwise false. */
4143 verify_gimple_switch (gimple stmt
)
4146 tree elt
, prev_upper_bound
= NULL_TREE
;
4147 tree index_type
, elt_type
= NULL_TREE
;
4149 if (!is_gimple_val (gimple_switch_index (stmt
)))
4151 error ("invalid operand to switch statement");
4152 debug_generic_stmt (gimple_switch_index (stmt
));
4156 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4157 if (! INTEGRAL_TYPE_P (index_type
))
4159 error ("non-integral type switch statement");
4160 debug_generic_expr (index_type
);
4164 elt
= gimple_switch_label (stmt
, 0);
4165 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4167 error ("invalid default case label in switch statement");
4168 debug_generic_expr (elt
);
4172 n
= gimple_switch_num_labels (stmt
);
4173 for (i
= 1; i
< n
; i
++)
4175 elt
= gimple_switch_label (stmt
, i
);
4177 if (! CASE_LOW (elt
))
4179 error ("invalid case label in switch statement");
4180 debug_generic_expr (elt
);
4184 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4186 error ("invalid case range in switch statement");
4187 debug_generic_expr (elt
);
4193 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4194 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4196 error ("type mismatch for case label in switch statement");
4197 debug_generic_expr (elt
);
4203 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4204 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4206 error ("type precision mismatch in switch statement");
4211 if (prev_upper_bound
)
4213 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4215 error ("case labels not sorted in switch statement");
4220 prev_upper_bound
= CASE_HIGH (elt
);
4221 if (! prev_upper_bound
)
4222 prev_upper_bound
= CASE_LOW (elt
);
4228 /* Verify a gimple debug statement STMT.
4229 Returns true if anything is wrong. */
4232 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4234 /* There isn't much that could be wrong in a gimple debug stmt. A
4235 gimple debug bind stmt, for example, maps a tree, that's usually
4236 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4237 component or member of an aggregate type, to another tree, that
4238 can be an arbitrary expression. These stmts expand into debug
4239 insns, and are converted to debug notes by var-tracking.c. */
4243 /* Verify a gimple label statement STMT.
4244 Returns true if anything is wrong. */
4247 verify_gimple_label (gimple stmt
)
4249 tree decl
= gimple_label_label (stmt
);
4253 if (TREE_CODE (decl
) != LABEL_DECL
)
4256 uid
= LABEL_DECL_UID (decl
);
4258 && (uid
== -1 || (*label_to_block_map
)[uid
] != gimple_bb (stmt
)))
4260 error ("incorrect entry in label_to_block_map");
4264 uid
= EH_LANDING_PAD_NR (decl
);
4267 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4268 if (decl
!= lp
->post_landing_pad
)
4270 error ("incorrect setting of landing pad number");
4278 /* Verify the GIMPLE statement STMT. Returns true if there is an
4279 error, otherwise false. */
4282 verify_gimple_stmt (gimple stmt
)
4284 switch (gimple_code (stmt
))
4287 return verify_gimple_assign (stmt
);
4290 return verify_gimple_label (stmt
);
4293 return verify_gimple_call (stmt
);
4296 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4298 error ("invalid comparison code in gimple cond");
4301 if (!(!gimple_cond_true_label (stmt
)
4302 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4303 || !(!gimple_cond_false_label (stmt
)
4304 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4306 error ("invalid labels in gimple cond");
4310 return verify_gimple_comparison (boolean_type_node
,
4311 gimple_cond_lhs (stmt
),
4312 gimple_cond_rhs (stmt
));
4315 return verify_gimple_goto (stmt
);
4318 return verify_gimple_switch (stmt
);
4321 return verify_gimple_return (stmt
);
4326 case GIMPLE_TRANSACTION
:
4327 return verify_gimple_transaction (stmt
);
4329 /* Tuples that do not have tree operands. */
4331 case GIMPLE_PREDICT
:
4333 case GIMPLE_EH_DISPATCH
:
4334 case GIMPLE_EH_MUST_NOT_THROW
:
4338 /* OpenMP directives are validated by the FE and never operated
4339 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4340 non-gimple expressions when the main index variable has had
4341 its address taken. This does not affect the loop itself
4342 because the header of an GIMPLE_OMP_FOR is merely used to determine
4343 how to setup the parallel iteration. */
4347 return verify_gimple_debug (stmt
);
4354 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4355 and false otherwise. */
4358 verify_gimple_phi (gimple phi
)
4362 tree phi_result
= gimple_phi_result (phi
);
4367 error ("invalid PHI result");
4371 virtual_p
= virtual_operand_p (phi_result
);
4372 if (TREE_CODE (phi_result
) != SSA_NAME
4374 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4376 error ("invalid PHI result");
4380 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4382 tree t
= gimple_phi_arg_def (phi
, i
);
4386 error ("missing PHI def");
4390 /* Addressable variables do have SSA_NAMEs but they
4391 are not considered gimple values. */
4392 else if ((TREE_CODE (t
) == SSA_NAME
4393 && virtual_p
!= virtual_operand_p (t
))
4395 && (TREE_CODE (t
) != SSA_NAME
4396 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4398 && !is_gimple_val (t
)))
4400 error ("invalid PHI argument");
4401 debug_generic_expr (t
);
4404 #ifdef ENABLE_TYPES_CHECKING
4405 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4407 error ("incompatible types in PHI argument %u", i
);
4408 debug_generic_stmt (TREE_TYPE (phi_result
));
4409 debug_generic_stmt (TREE_TYPE (t
));
4418 /* Verify the GIMPLE statements inside the sequence STMTS. */
4421 verify_gimple_in_seq_2 (gimple_seq stmts
)
4423 gimple_stmt_iterator ittr
;
4426 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4428 gimple stmt
= gsi_stmt (ittr
);
4430 switch (gimple_code (stmt
))
4433 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4437 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4438 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4441 case GIMPLE_EH_FILTER
:
4442 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4445 case GIMPLE_EH_ELSE
:
4446 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4447 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4451 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4454 case GIMPLE_TRANSACTION
:
4455 err
|= verify_gimple_transaction (stmt
);
4460 bool err2
= verify_gimple_stmt (stmt
);
4462 debug_gimple_stmt (stmt
);
4471 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4472 is a problem, otherwise false. */
4475 verify_gimple_transaction (gimple stmt
)
4477 tree lab
= gimple_transaction_label (stmt
);
4478 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4480 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4484 /* Verify the GIMPLE statements inside the statement list STMTS. */
4487 verify_gimple_in_seq (gimple_seq stmts
)
4489 timevar_push (TV_TREE_STMT_VERIFY
);
4490 if (verify_gimple_in_seq_2 (stmts
))
4491 internal_error ("verify_gimple failed");
4492 timevar_pop (TV_TREE_STMT_VERIFY
);
4495 /* Return true when the T can be shared. */
4498 tree_node_can_be_shared (tree t
)
4500 if (IS_TYPE_OR_DECL_P (t
)
4501 || is_gimple_min_invariant (t
)
4502 || TREE_CODE (t
) == SSA_NAME
4503 || t
== error_mark_node
4504 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4507 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4516 /* Called via walk_tree. Verify tree sharing. */
4519 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4521 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4523 if (tree_node_can_be_shared (*tp
))
4525 *walk_subtrees
= false;
4529 if (pointer_set_insert (visited
, *tp
))
4535 /* Called via walk_gimple_stmt. Verify tree sharing. */
4538 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4540 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4541 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
4544 static bool eh_error_found
;
4546 verify_eh_throw_stmt_node (void **slot
, void *data
)
4548 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4549 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4551 if (!pointer_set_contains (visited
, node
->stmt
))
4553 error ("dead STMT in EH table");
4554 debug_gimple_stmt (node
->stmt
);
4555 eh_error_found
= true;
4560 /* Verify if the location LOCs block is in BLOCKS. */
4563 verify_location (pointer_set_t
*blocks
, location_t loc
)
4565 tree block
= LOCATION_BLOCK (loc
);
4566 if (block
!= NULL_TREE
4567 && !pointer_set_contains (blocks
, block
))
4569 error ("location references block not in block tree");
4572 if (block
!= NULL_TREE
)
4573 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
4577 /* Called via walk_tree. Verify that expressions have no blocks. */
4580 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
4584 *walk_subtrees
= false;
4588 location_t loc
= EXPR_LOCATION (*tp
);
4589 if (LOCATION_BLOCK (loc
) != NULL
)
4595 /* Called via walk_tree. Verify locations of expressions. */
4598 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4600 struct pointer_set_t
*blocks
= (struct pointer_set_t
*) data
;
4602 if (TREE_CODE (*tp
) == VAR_DECL
4603 && DECL_HAS_DEBUG_EXPR_P (*tp
))
4605 tree t
= DECL_DEBUG_EXPR (*tp
);
4606 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4610 if ((TREE_CODE (*tp
) == VAR_DECL
4611 || TREE_CODE (*tp
) == PARM_DECL
4612 || TREE_CODE (*tp
) == RESULT_DECL
)
4613 && DECL_HAS_VALUE_EXPR_P (*tp
))
4615 tree t
= DECL_VALUE_EXPR (*tp
);
4616 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4623 *walk_subtrees
= false;
4627 location_t loc
= EXPR_LOCATION (*tp
);
4628 if (verify_location (blocks
, loc
))
4634 /* Called via walk_gimple_op. Verify locations of expressions. */
4637 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
4639 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4640 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
4643 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4646 collect_subblocks (pointer_set_t
*blocks
, tree block
)
4649 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
4651 pointer_set_insert (blocks
, t
);
4652 collect_subblocks (blocks
, t
);
4656 /* Verify the GIMPLE statements in the CFG of FN. */
4659 verify_gimple_in_cfg (struct function
*fn
)
4663 struct pointer_set_t
*visited
, *visited_stmts
, *blocks
;
4665 timevar_push (TV_TREE_STMT_VERIFY
);
4666 visited
= pointer_set_create ();
4667 visited_stmts
= pointer_set_create ();
4669 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4670 blocks
= pointer_set_create ();
4671 if (DECL_INITIAL (fn
->decl
))
4673 pointer_set_insert (blocks
, DECL_INITIAL (fn
->decl
));
4674 collect_subblocks (blocks
, DECL_INITIAL (fn
->decl
));
4677 FOR_EACH_BB_FN (bb
, fn
)
4679 gimple_stmt_iterator gsi
;
4681 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4683 gimple phi
= gsi_stmt (gsi
);
4687 pointer_set_insert (visited_stmts
, phi
);
4689 if (gimple_bb (phi
) != bb
)
4691 error ("gimple_bb (phi) is set to a wrong basic block");
4695 err2
|= verify_gimple_phi (phi
);
4697 /* Only PHI arguments have locations. */
4698 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
4700 error ("PHI node with location");
4704 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4706 tree arg
= gimple_phi_arg_def (phi
, i
);
4707 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
4711 error ("incorrect sharing of tree nodes");
4712 debug_generic_expr (addr
);
4715 location_t loc
= gimple_phi_arg_location (phi
, i
);
4716 if (virtual_operand_p (gimple_phi_result (phi
))
4717 && loc
!= UNKNOWN_LOCATION
)
4719 error ("virtual PHI with argument locations");
4722 addr
= walk_tree (&arg
, verify_expr_location_1
, blocks
, NULL
);
4725 debug_generic_expr (addr
);
4728 err2
|= verify_location (blocks
, loc
);
4732 debug_gimple_stmt (phi
);
4736 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4738 gimple stmt
= gsi_stmt (gsi
);
4740 struct walk_stmt_info wi
;
4744 pointer_set_insert (visited_stmts
, stmt
);
4746 if (gimple_bb (stmt
) != bb
)
4748 error ("gimple_bb (stmt) is set to a wrong basic block");
4752 err2
|= verify_gimple_stmt (stmt
);
4753 err2
|= verify_location (blocks
, gimple_location (stmt
));
4755 memset (&wi
, 0, sizeof (wi
));
4756 wi
.info
= (void *) visited
;
4757 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4760 error ("incorrect sharing of tree nodes");
4761 debug_generic_expr (addr
);
4765 memset (&wi
, 0, sizeof (wi
));
4766 wi
.info
= (void *) blocks
;
4767 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
4770 debug_generic_expr (addr
);
4774 /* ??? Instead of not checking these stmts at all the walker
4775 should know its context via wi. */
4776 if (!is_gimple_debug (stmt
)
4777 && !is_gimple_omp (stmt
))
4779 memset (&wi
, 0, sizeof (wi
));
4780 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4783 debug_generic_expr (addr
);
4784 inform (gimple_location (stmt
), "in statement");
4789 /* If the statement is marked as part of an EH region, then it is
4790 expected that the statement could throw. Verify that when we
4791 have optimizations that simplify statements such that we prove
4792 that they cannot throw, that we update other data structures
4794 lp_nr
= lookup_stmt_eh_lp (stmt
);
4797 if (!stmt_could_throw_p (stmt
))
4799 error ("statement marked for throw, but doesn%'t");
4803 && !gsi_one_before_end_p (gsi
)
4804 && stmt_can_throw_internal (stmt
))
4806 error ("statement marked for throw in middle of block");
4812 debug_gimple_stmt (stmt
);
4817 eh_error_found
= false;
4818 if (get_eh_throw_stmt_table (cfun
))
4819 htab_traverse (get_eh_throw_stmt_table (cfun
),
4820 verify_eh_throw_stmt_node
,
4823 if (err
|| eh_error_found
)
4824 internal_error ("verify_gimple failed");
4826 pointer_set_destroy (visited
);
4827 pointer_set_destroy (visited_stmts
);
4828 pointer_set_destroy (blocks
);
4829 verify_histograms ();
4830 timevar_pop (TV_TREE_STMT_VERIFY
);
4834 /* Verifies that the flow information is OK. */
4837 gimple_verify_flow_info (void)
4841 gimple_stmt_iterator gsi
;
4846 if (ENTRY_BLOCK_PTR
->il
.gimple
.seq
|| ENTRY_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4848 error ("ENTRY_BLOCK has IL associated with it");
4852 if (EXIT_BLOCK_PTR
->il
.gimple
.seq
|| EXIT_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4854 error ("EXIT_BLOCK has IL associated with it");
4858 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4859 if (e
->flags
& EDGE_FALLTHRU
)
4861 error ("fallthru to exit from bb %d", e
->src
->index
);
4867 bool found_ctrl_stmt
= false;
4871 /* Skip labels on the start of basic block. */
4872 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4875 gimple prev_stmt
= stmt
;
4877 stmt
= gsi_stmt (gsi
);
4879 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4882 label
= gimple_label_label (stmt
);
4883 if (prev_stmt
&& DECL_NONLOCAL (label
))
4885 error ("nonlocal label ");
4886 print_generic_expr (stderr
, label
, 0);
4887 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4892 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4894 error ("EH landing pad label ");
4895 print_generic_expr (stderr
, label
, 0);
4896 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4901 if (label_to_block (label
) != bb
)
4904 print_generic_expr (stderr
, label
, 0);
4905 fprintf (stderr
, " to block does not match in bb %d",
4910 if (decl_function_context (label
) != current_function_decl
)
4913 print_generic_expr (stderr
, label
, 0);
4914 fprintf (stderr
, " has incorrect context in bb %d",
4920 /* Verify that body of basic block BB is free of control flow. */
4921 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4923 gimple stmt
= gsi_stmt (gsi
);
4925 if (found_ctrl_stmt
)
4927 error ("control flow in the middle of basic block %d",
4932 if (stmt_ends_bb_p (stmt
))
4933 found_ctrl_stmt
= true;
4935 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4938 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4939 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4944 gsi
= gsi_last_bb (bb
);
4945 if (gsi_end_p (gsi
))
4948 stmt
= gsi_stmt (gsi
);
4950 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4953 err
|= verify_eh_edges (stmt
);
4955 if (is_ctrl_stmt (stmt
))
4957 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4958 if (e
->flags
& EDGE_FALLTHRU
)
4960 error ("fallthru edge after a control statement in bb %d",
4966 if (gimple_code (stmt
) != GIMPLE_COND
)
4968 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4969 after anything else but if statement. */
4970 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4971 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4973 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4979 switch (gimple_code (stmt
))
4986 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4990 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4991 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4992 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4993 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4994 || EDGE_COUNT (bb
->succs
) >= 3)
4996 error ("wrong outgoing edge flags at end of bb %d",
5004 if (simple_goto_p (stmt
))
5006 error ("explicit goto at end of bb %d", bb
->index
);
5011 /* FIXME. We should double check that the labels in the
5012 destination blocks have their address taken. */
5013 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5014 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5015 | EDGE_FALSE_VALUE
))
5016 || !(e
->flags
& EDGE_ABNORMAL
))
5018 error ("wrong outgoing edge flags at end of bb %d",
5026 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5028 /* ... fallthru ... */
5030 if (!single_succ_p (bb
)
5031 || (single_succ_edge (bb
)->flags
5032 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5033 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5035 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5038 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
5040 error ("return edge does not point to exit in bb %d",
5052 n
= gimple_switch_num_labels (stmt
);
5054 /* Mark all the destination basic blocks. */
5055 for (i
= 0; i
< n
; ++i
)
5057 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5058 basic_block label_bb
= label_to_block (lab
);
5059 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5060 label_bb
->aux
= (void *)1;
5063 /* Verify that the case labels are sorted. */
5064 prev
= gimple_switch_label (stmt
, 0);
5065 for (i
= 1; i
< n
; ++i
)
5067 tree c
= gimple_switch_label (stmt
, i
);
5070 error ("found default case not at the start of "
5076 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5078 error ("case labels not sorted: ");
5079 print_generic_expr (stderr
, prev
, 0);
5080 fprintf (stderr
," is greater than ");
5081 print_generic_expr (stderr
, c
, 0);
5082 fprintf (stderr
," but comes before it.\n");
5087 /* VRP will remove the default case if it can prove it will
5088 never be executed. So do not verify there always exists
5089 a default case here. */
5091 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5095 error ("extra outgoing edge %d->%d",
5096 bb
->index
, e
->dest
->index
);
5100 e
->dest
->aux
= (void *)2;
5101 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5102 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5104 error ("wrong outgoing edge flags at end of bb %d",
5110 /* Check that we have all of them. */
5111 for (i
= 0; i
< n
; ++i
)
5113 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5114 basic_block label_bb
= label_to_block (lab
);
5116 if (label_bb
->aux
!= (void *)2)
5118 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5123 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5124 e
->dest
->aux
= (void *)0;
5128 case GIMPLE_EH_DISPATCH
:
5129 err
|= verify_eh_dispatch_edge (stmt
);
5137 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5138 verify_dominators (CDI_DOMINATORS
);
5144 /* Updates phi nodes after creating a forwarder block joined
5145 by edge FALLTHRU. */
5148 gimple_make_forwarder_block (edge fallthru
)
5152 basic_block dummy
, bb
;
5154 gimple_stmt_iterator gsi
;
5156 dummy
= fallthru
->src
;
5157 bb
= fallthru
->dest
;
5159 if (single_pred_p (bb
))
5162 /* If we redirected a branch we must create new PHI nodes at the
5164 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5166 gimple phi
, new_phi
;
5168 phi
= gsi_stmt (gsi
);
5169 var
= gimple_phi_result (phi
);
5170 new_phi
= create_phi_node (var
, bb
);
5171 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5172 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5176 /* Add the arguments we have stored on edges. */
5177 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5182 flush_pending_stmts (e
);
5187 /* Return a non-special label in the head of basic block BLOCK.
5188 Create one if it doesn't exist. */
5191 gimple_block_label (basic_block bb
)
5193 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5198 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5200 stmt
= gsi_stmt (i
);
5201 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5203 label
= gimple_label_label (stmt
);
5204 if (!DECL_NONLOCAL (label
))
5207 gsi_move_before (&i
, &s
);
5212 label
= create_artificial_label (UNKNOWN_LOCATION
);
5213 stmt
= gimple_build_label (label
);
5214 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5219 /* Attempt to perform edge redirection by replacing a possibly complex
5220 jump instruction by a goto or by removing the jump completely.
5221 This can apply only if all edges now point to the same block. The
5222 parameters and return values are equivalent to
5223 redirect_edge_and_branch. */
5226 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5228 basic_block src
= e
->src
;
5229 gimple_stmt_iterator i
;
5232 /* We can replace or remove a complex jump only when we have exactly
5234 if (EDGE_COUNT (src
->succs
) != 2
5235 /* Verify that all targets will be TARGET. Specifically, the
5236 edge that is not E must also go to TARGET. */
5237 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5240 i
= gsi_last_bb (src
);
5244 stmt
= gsi_stmt (i
);
5246 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5248 gsi_remove (&i
, true);
5249 e
= ssa_redirect_edge (e
, target
);
5250 e
->flags
= EDGE_FALLTHRU
;
5258 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5259 edge representing the redirected branch. */
5262 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5264 basic_block bb
= e
->src
;
5265 gimple_stmt_iterator gsi
;
5269 if (e
->flags
& EDGE_ABNORMAL
)
5272 if (e
->dest
== dest
)
5275 if (e
->flags
& EDGE_EH
)
5276 return redirect_eh_edge (e
, dest
);
5278 if (e
->src
!= ENTRY_BLOCK_PTR
)
5280 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5285 gsi
= gsi_last_bb (bb
);
5286 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5288 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5291 /* For COND_EXPR, we only need to redirect the edge. */
5295 /* No non-abnormal edges should lead from a non-simple goto, and
5296 simple ones should be represented implicitly. */
5301 tree label
= gimple_block_label (dest
);
5302 tree cases
= get_cases_for_edge (e
, stmt
);
5304 /* If we have a list of cases associated with E, then use it
5305 as it's a lot faster than walking the entire case vector. */
5308 edge e2
= find_edge (e
->src
, dest
);
5315 CASE_LABEL (cases
) = label
;
5316 cases
= CASE_CHAIN (cases
);
5319 /* If there was already an edge in the CFG, then we need
5320 to move all the cases associated with E to E2. */
5323 tree cases2
= get_cases_for_edge (e2
, stmt
);
5325 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5326 CASE_CHAIN (cases2
) = first
;
5328 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5332 size_t i
, n
= gimple_switch_num_labels (stmt
);
5334 for (i
= 0; i
< n
; i
++)
5336 tree elt
= gimple_switch_label (stmt
, i
);
5337 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5338 CASE_LABEL (elt
) = label
;
5346 int i
, n
= gimple_asm_nlabels (stmt
);
5349 for (i
= 0; i
< n
; ++i
)
5351 tree cons
= gimple_asm_label_op (stmt
, i
);
5352 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5355 label
= gimple_block_label (dest
);
5356 TREE_VALUE (cons
) = label
;
5360 /* If we didn't find any label matching the former edge in the
5361 asm labels, we must be redirecting the fallthrough
5363 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5368 gsi_remove (&gsi
, true);
5369 e
->flags
|= EDGE_FALLTHRU
;
5372 case GIMPLE_OMP_RETURN
:
5373 case GIMPLE_OMP_CONTINUE
:
5374 case GIMPLE_OMP_SECTIONS_SWITCH
:
5375 case GIMPLE_OMP_FOR
:
5376 /* The edges from OMP constructs can be simply redirected. */
5379 case GIMPLE_EH_DISPATCH
:
5380 if (!(e
->flags
& EDGE_FALLTHRU
))
5381 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5384 case GIMPLE_TRANSACTION
:
5385 /* The ABORT edge has a stored label associated with it, otherwise
5386 the edges are simply redirectable. */
5388 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5392 /* Otherwise it must be a fallthru edge, and we don't need to
5393 do anything besides redirecting it. */
5394 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5398 /* Update/insert PHI nodes as necessary. */
5400 /* Now update the edges in the CFG. */
5401 e
= ssa_redirect_edge (e
, dest
);
5406 /* Returns true if it is possible to remove edge E by redirecting
5407 it to the destination of the other edge from E->src. */
5410 gimple_can_remove_branch_p (const_edge e
)
5412 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5418 /* Simple wrapper, as we can always redirect fallthru edges. */
5421 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5423 e
= gimple_redirect_edge_and_branch (e
, dest
);
5430 /* Splits basic block BB after statement STMT (but at least after the
5431 labels). If STMT is NULL, BB is split just after the labels. */
5434 gimple_split_block (basic_block bb
, void *stmt
)
5436 gimple_stmt_iterator gsi
;
5437 gimple_stmt_iterator gsi_tgt
;
5444 new_bb
= create_empty_bb (bb
);
5446 /* Redirect the outgoing edges. */
5447 new_bb
->succs
= bb
->succs
;
5449 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5452 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5455 /* Move everything from GSI to the new basic block. */
5456 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5458 act
= gsi_stmt (gsi
);
5459 if (gimple_code (act
) == GIMPLE_LABEL
)
5472 if (gsi_end_p (gsi
))
5475 /* Split the statement list - avoid re-creating new containers as this
5476 brings ugly quadratic memory consumption in the inliner.
5477 (We are still quadratic since we need to update stmt BB pointers,
5479 gsi_split_seq_before (&gsi
, &list
);
5480 set_bb_seq (new_bb
, list
);
5481 for (gsi_tgt
= gsi_start (list
);
5482 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5483 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5489 /* Moves basic block BB after block AFTER. */
5492 gimple_move_block_after (basic_block bb
, basic_block after
)
5494 if (bb
->prev_bb
== after
)
5498 link_block (bb
, after
);
5504 /* Return TRUE if block BB has no executable statements, otherwise return
5508 gimple_empty_block_p (basic_block bb
)
5510 /* BB must have no executable statements. */
5511 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5514 if (gsi_end_p (gsi
))
5516 if (is_gimple_debug (gsi_stmt (gsi
)))
5517 gsi_next_nondebug (&gsi
);
5518 return gsi_end_p (gsi
);
5522 /* Split a basic block if it ends with a conditional branch and if the
5523 other part of the block is not empty. */
5526 gimple_split_block_before_cond_jump (basic_block bb
)
5528 gimple last
, split_point
;
5529 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5530 if (gsi_end_p (gsi
))
5532 last
= gsi_stmt (gsi
);
5533 if (gimple_code (last
) != GIMPLE_COND
5534 && gimple_code (last
) != GIMPLE_SWITCH
)
5536 gsi_prev_nondebug (&gsi
);
5537 split_point
= gsi_stmt (gsi
);
5538 return split_block (bb
, split_point
)->dest
;
5542 /* Return true if basic_block can be duplicated. */
5545 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5550 /* Create a duplicate of the basic block BB. NOTE: This does not
5551 preserve SSA form. */
5554 gimple_duplicate_bb (basic_block bb
)
5557 gimple_stmt_iterator gsi
, gsi_tgt
;
5558 gimple_seq phis
= phi_nodes (bb
);
5559 gimple phi
, stmt
, copy
;
5561 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5563 /* Copy the PHI nodes. We ignore PHI node arguments here because
5564 the incoming edges have not been setup yet. */
5565 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5567 phi
= gsi_stmt (gsi
);
5568 copy
= create_phi_node (NULL_TREE
, new_bb
);
5569 create_new_def_for (gimple_phi_result (phi
), copy
,
5570 gimple_phi_result_ptr (copy
));
5573 gsi_tgt
= gsi_start_bb (new_bb
);
5574 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5576 def_operand_p def_p
;
5577 ssa_op_iter op_iter
;
5580 stmt
= gsi_stmt (gsi
);
5581 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5584 /* Don't duplicate label debug stmts. */
5585 if (gimple_debug_bind_p (stmt
)
5586 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5590 /* Create a new copy of STMT and duplicate STMT's virtual
5592 copy
= gimple_copy (stmt
);
5593 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5595 maybe_duplicate_eh_stmt (copy
, stmt
);
5596 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5598 /* When copying around a stmt writing into a local non-user
5599 aggregate, make sure it won't share stack slot with other
5601 lhs
= gimple_get_lhs (stmt
);
5602 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5604 tree base
= get_base_address (lhs
);
5606 && (TREE_CODE (base
) == VAR_DECL
5607 || TREE_CODE (base
) == RESULT_DECL
)
5608 && DECL_IGNORED_P (base
)
5609 && !TREE_STATIC (base
)
5610 && !DECL_EXTERNAL (base
)
5611 && (TREE_CODE (base
) != VAR_DECL
5612 || !DECL_HAS_VALUE_EXPR_P (base
)))
5613 DECL_NONSHAREABLE (base
) = 1;
5616 /* Create new names for all the definitions created by COPY and
5617 add replacement mappings for each new name. */
5618 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5619 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5625 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5628 add_phi_args_after_copy_edge (edge e_copy
)
5630 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5633 gimple phi
, phi_copy
;
5635 gimple_stmt_iterator psi
, psi_copy
;
5637 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5640 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5642 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5643 dest
= get_bb_original (e_copy
->dest
);
5645 dest
= e_copy
->dest
;
5647 e
= find_edge (bb
, dest
);
5650 /* During loop unrolling the target of the latch edge is copied.
5651 In this case we are not looking for edge to dest, but to
5652 duplicated block whose original was dest. */
5653 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5655 if ((e
->dest
->flags
& BB_DUPLICATED
)
5656 && get_bb_original (e
->dest
) == dest
)
5660 gcc_assert (e
!= NULL
);
5663 for (psi
= gsi_start_phis (e
->dest
),
5664 psi_copy
= gsi_start_phis (e_copy
->dest
);
5666 gsi_next (&psi
), gsi_next (&psi_copy
))
5668 phi
= gsi_stmt (psi
);
5669 phi_copy
= gsi_stmt (psi_copy
);
5670 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5671 add_phi_arg (phi_copy
, def
, e_copy
,
5672 gimple_phi_arg_location_from_edge (phi
, e
));
5677 /* Basic block BB_COPY was created by code duplication. Add phi node
5678 arguments for edges going out of BB_COPY. The blocks that were
5679 duplicated have BB_DUPLICATED set. */
5682 add_phi_args_after_copy_bb (basic_block bb_copy
)
5687 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5689 add_phi_args_after_copy_edge (e_copy
);
5693 /* Blocks in REGION_COPY array of length N_REGION were created by
5694 duplication of basic blocks. Add phi node arguments for edges
5695 going from these blocks. If E_COPY is not NULL, also add
5696 phi node arguments for its destination.*/
5699 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5704 for (i
= 0; i
< n_region
; i
++)
5705 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5707 for (i
= 0; i
< n_region
; i
++)
5708 add_phi_args_after_copy_bb (region_copy
[i
]);
5710 add_phi_args_after_copy_edge (e_copy
);
5712 for (i
= 0; i
< n_region
; i
++)
5713 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5716 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5717 important exit edge EXIT. By important we mean that no SSA name defined
5718 inside region is live over the other exit edges of the region. All entry
5719 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5720 to the duplicate of the region. Dominance and loop information is
5721 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5722 UPDATE_DOMINANCE is false then we assume that the caller will update the
5723 dominance information after calling this function. The new basic
5724 blocks are stored to REGION_COPY in the same order as they had in REGION,
5725 provided that REGION_COPY is not NULL.
5726 The function returns false if it is unable to copy the region,
5730 gimple_duplicate_sese_region (edge entry
, edge exit
,
5731 basic_block
*region
, unsigned n_region
,
5732 basic_block
*region_copy
,
5733 bool update_dominance
)
5736 bool free_region_copy
= false, copying_header
= false;
5737 struct loop
*loop
= entry
->dest
->loop_father
;
5739 vec
<basic_block
> doms
;
5741 int total_freq
= 0, entry_freq
= 0;
5742 gcov_type total_count
= 0, entry_count
= 0;
5744 if (!can_copy_bbs_p (region
, n_region
))
5747 /* Some sanity checking. Note that we do not check for all possible
5748 missuses of the functions. I.e. if you ask to copy something weird,
5749 it will work, but the state of structures probably will not be
5751 for (i
= 0; i
< n_region
; i
++)
5753 /* We do not handle subloops, i.e. all the blocks must belong to the
5755 if (region
[i
]->loop_father
!= loop
)
5758 if (region
[i
] != entry
->dest
5759 && region
[i
] == loop
->header
)
5763 set_loop_copy (loop
, loop
);
5765 /* In case the function is used for loop header copying (which is the primary
5766 use), ensure that EXIT and its copy will be new latch and entry edges. */
5767 if (loop
->header
== entry
->dest
)
5769 copying_header
= true;
5770 set_loop_copy (loop
, loop_outer (loop
));
5772 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5775 for (i
= 0; i
< n_region
; i
++)
5776 if (region
[i
] != exit
->src
5777 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5783 region_copy
= XNEWVEC (basic_block
, n_region
);
5784 free_region_copy
= true;
5787 initialize_original_copy_tables ();
5789 /* Record blocks outside the region that are dominated by something
5791 if (update_dominance
)
5794 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5797 if (entry
->dest
->count
)
5799 total_count
= entry
->dest
->count
;
5800 entry_count
= entry
->count
;
5801 /* Fix up corner cases, to avoid division by zero or creation of negative
5803 if (entry_count
> total_count
)
5804 entry_count
= total_count
;
5808 total_freq
= entry
->dest
->frequency
;
5809 entry_freq
= EDGE_FREQUENCY (entry
);
5810 /* Fix up corner cases, to avoid division by zero or creation of negative
5812 if (total_freq
== 0)
5814 else if (entry_freq
> total_freq
)
5815 entry_freq
= total_freq
;
5818 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5819 split_edge_bb_loc (entry
), update_dominance
);
5822 scale_bbs_frequencies_gcov_type (region
, n_region
,
5823 total_count
- entry_count
,
5825 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5830 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5832 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5837 loop
->header
= exit
->dest
;
5838 loop
->latch
= exit
->src
;
5841 /* Redirect the entry and add the phi node arguments. */
5842 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5843 gcc_assert (redirected
!= NULL
);
5844 flush_pending_stmts (entry
);
5846 /* Concerning updating of dominators: We must recount dominators
5847 for entry block and its copy. Anything that is outside of the
5848 region, but was dominated by something inside needs recounting as
5850 if (update_dominance
)
5852 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5853 doms
.safe_push (get_bb_original (entry
->dest
));
5854 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5858 /* Add the other PHI node arguments. */
5859 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5861 if (free_region_copy
)
5864 free_original_copy_tables ();
5868 /* Checks if BB is part of the region defined by N_REGION BBS. */
5870 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
5874 for (n
= 0; n
< n_region
; n
++)
5882 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5883 are stored to REGION_COPY in the same order in that they appear
5884 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5885 the region, EXIT an exit from it. The condition guarding EXIT
5886 is moved to ENTRY. Returns true if duplication succeeds, false
5912 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5913 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5914 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5917 bool free_region_copy
= false;
5918 struct loop
*loop
= exit
->dest
->loop_father
;
5919 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5920 basic_block switch_bb
, entry_bb
, nentry_bb
;
5921 vec
<basic_block
> doms
;
5922 int total_freq
= 0, exit_freq
= 0;
5923 gcov_type total_count
= 0, exit_count
= 0;
5924 edge exits
[2], nexits
[2], e
;
5925 gimple_stmt_iterator gsi
;
5928 basic_block exit_bb
;
5929 gimple_stmt_iterator psi
;
5932 struct loop
*target
, *aloop
, *cloop
;
5934 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5936 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5938 if (!can_copy_bbs_p (region
, n_region
))
5941 initialize_original_copy_tables ();
5942 set_loop_copy (orig_loop
, loop
);
5945 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
5947 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
5949 cloop
= duplicate_loop (aloop
, target
);
5950 duplicate_subloops (aloop
, cloop
);
5956 region_copy
= XNEWVEC (basic_block
, n_region
);
5957 free_region_copy
= true;
5960 gcc_assert (!need_ssa_update_p (cfun
));
5962 /* Record blocks outside the region that are dominated by something
5964 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5966 if (exit
->src
->count
)
5968 total_count
= exit
->src
->count
;
5969 exit_count
= exit
->count
;
5970 /* Fix up corner cases, to avoid division by zero or creation of negative
5972 if (exit_count
> total_count
)
5973 exit_count
= total_count
;
5977 total_freq
= exit
->src
->frequency
;
5978 exit_freq
= EDGE_FREQUENCY (exit
);
5979 /* Fix up corner cases, to avoid division by zero or creation of negative
5981 if (total_freq
== 0)
5983 if (exit_freq
> total_freq
)
5984 exit_freq
= total_freq
;
5987 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5988 split_edge_bb_loc (exit
), true);
5991 scale_bbs_frequencies_gcov_type (region
, n_region
,
5992 total_count
- exit_count
,
5994 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5999 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
6001 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
6004 /* Create the switch block, and put the exit condition to it. */
6005 entry_bb
= entry
->dest
;
6006 nentry_bb
= get_bb_copy (entry_bb
);
6007 if (!last_stmt (entry
->src
)
6008 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6009 switch_bb
= entry
->src
;
6011 switch_bb
= split_edge (entry
);
6012 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6014 gsi
= gsi_last_bb (switch_bb
);
6015 cond_stmt
= last_stmt (exit
->src
);
6016 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6017 cond_stmt
= gimple_copy (cond_stmt
);
6019 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6021 sorig
= single_succ_edge (switch_bb
);
6022 sorig
->flags
= exits
[1]->flags
;
6023 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6025 /* Register the new edge from SWITCH_BB in loop exit lists. */
6026 rescan_loop_exit (snew
, true, false);
6028 /* Add the PHI node arguments. */
6029 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6031 /* Get rid of now superfluous conditions and associated edges (and phi node
6033 exit_bb
= exit
->dest
;
6035 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6036 PENDING_STMT (e
) = NULL
;
6038 /* The latch of ORIG_LOOP was copied, and so was the backedge
6039 to the original header. We redirect this backedge to EXIT_BB. */
6040 for (i
= 0; i
< n_region
; i
++)
6041 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6043 gcc_assert (single_succ_edge (region_copy
[i
]));
6044 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6045 PENDING_STMT (e
) = NULL
;
6046 for (psi
= gsi_start_phis (exit_bb
);
6050 phi
= gsi_stmt (psi
);
6051 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6052 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6055 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6056 PENDING_STMT (e
) = NULL
;
6058 /* Anything that is outside of the region, but was dominated by something
6059 inside needs to update dominance info. */
6060 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6062 /* Update the SSA web. */
6063 update_ssa (TODO_update_ssa
);
6065 if (free_region_copy
)
6068 free_original_copy_tables ();
6072 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6073 adding blocks when the dominator traversal reaches EXIT. This
6074 function silently assumes that ENTRY strictly dominates EXIT. */
6077 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6078 vec
<basic_block
> *bbs_p
)
6082 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6084 son
= next_dom_son (CDI_DOMINATORS
, son
))
6086 bbs_p
->safe_push (son
);
6088 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6092 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6093 The duplicates are recorded in VARS_MAP. */
6096 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
6099 tree t
= *tp
, new_t
;
6100 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6103 if (DECL_CONTEXT (t
) == to_context
)
6106 loc
= pointer_map_contains (vars_map
, t
);
6110 loc
= pointer_map_insert (vars_map
, t
);
6114 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6115 add_local_decl (f
, new_t
);
6119 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6120 new_t
= copy_node (t
);
6122 DECL_CONTEXT (new_t
) = to_context
;
6127 new_t
= (tree
) *loc
;
6133 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6134 VARS_MAP maps old ssa names and var_decls to the new ones. */
6137 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
6143 gcc_assert (!virtual_operand_p (name
));
6145 loc
= pointer_map_contains (vars_map
, name
);
6149 tree decl
= SSA_NAME_VAR (name
);
6152 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6153 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6154 decl
, SSA_NAME_DEF_STMT (name
));
6155 if (SSA_NAME_IS_DEFAULT_DEF (name
))
6156 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context
),
6160 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6161 name
, SSA_NAME_DEF_STMT (name
));
6163 loc
= pointer_map_insert (vars_map
, name
);
6167 new_name
= (tree
) *loc
;
6178 struct pointer_map_t
*vars_map
;
6179 htab_t new_label_map
;
6180 struct pointer_map_t
*eh_map
;
6184 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6185 contained in *TP if it has been ORIG_BLOCK previously and change the
6186 DECL_CONTEXT of every local variable referenced in *TP. */
6189 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6191 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6192 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6197 tree block
= TREE_BLOCK (t
);
6198 if (block
== p
->orig_block
6199 || (p
->orig_block
== NULL_TREE
6200 && block
!= NULL_TREE
))
6201 TREE_SET_BLOCK (t
, p
->new_block
);
6202 #ifdef ENABLE_CHECKING
6203 else if (block
!= NULL_TREE
)
6205 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6206 block
= BLOCK_SUPERCONTEXT (block
);
6207 gcc_assert (block
== p
->orig_block
);
6211 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6213 if (TREE_CODE (t
) == SSA_NAME
)
6214 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6215 else if (TREE_CODE (t
) == LABEL_DECL
)
6217 if (p
->new_label_map
)
6219 struct tree_map in
, *out
;
6221 out
= (struct tree_map
*)
6222 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6227 DECL_CONTEXT (t
) = p
->to_context
;
6229 else if (p
->remap_decls_p
)
6231 /* Replace T with its duplicate. T should no longer appear in the
6232 parent function, so this looks wasteful; however, it may appear
6233 in referenced_vars, and more importantly, as virtual operands of
6234 statements, and in alias lists of other variables. It would be
6235 quite difficult to expunge it from all those places. ??? It might
6236 suffice to do this for addressable variables. */
6237 if ((TREE_CODE (t
) == VAR_DECL
6238 && !is_global_var (t
))
6239 || TREE_CODE (t
) == CONST_DECL
)
6240 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6244 else if (TYPE_P (t
))
6250 /* Helper for move_stmt_r. Given an EH region number for the source
6251 function, map that to the duplicate EH regio number in the dest. */
6254 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6256 eh_region old_r
, new_r
;
6259 old_r
= get_eh_region_from_number (old_nr
);
6260 slot
= pointer_map_contains (p
->eh_map
, old_r
);
6261 new_r
= (eh_region
) *slot
;
6263 return new_r
->index
;
6266 /* Similar, but operate on INTEGER_CSTs. */
6269 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6273 old_nr
= tree_low_cst (old_t_nr
, 0);
6274 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6276 return build_int_cst (integer_type_node
, new_nr
);
6279 /* Like move_stmt_op, but for gimple statements.
6281 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6282 contained in the current statement in *GSI_P and change the
6283 DECL_CONTEXT of every local variable referenced in the current
6287 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6288 struct walk_stmt_info
*wi
)
6290 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6291 gimple stmt
= gsi_stmt (*gsi_p
);
6292 tree block
= gimple_block (stmt
);
6294 if (block
== p
->orig_block
6295 || (p
->orig_block
== NULL_TREE
6296 && block
!= NULL_TREE
))
6297 gimple_set_block (stmt
, p
->new_block
);
6299 switch (gimple_code (stmt
))
6302 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6304 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6305 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6306 switch (DECL_FUNCTION_CODE (fndecl
))
6308 case BUILT_IN_EH_COPY_VALUES
:
6309 r
= gimple_call_arg (stmt
, 1);
6310 r
= move_stmt_eh_region_tree_nr (r
, p
);
6311 gimple_call_set_arg (stmt
, 1, r
);
6314 case BUILT_IN_EH_POINTER
:
6315 case BUILT_IN_EH_FILTER
:
6316 r
= gimple_call_arg (stmt
, 0);
6317 r
= move_stmt_eh_region_tree_nr (r
, p
);
6318 gimple_call_set_arg (stmt
, 0, r
);
6329 int r
= gimple_resx_region (stmt
);
6330 r
= move_stmt_eh_region_nr (r
, p
);
6331 gimple_resx_set_region (stmt
, r
);
6335 case GIMPLE_EH_DISPATCH
:
6337 int r
= gimple_eh_dispatch_region (stmt
);
6338 r
= move_stmt_eh_region_nr (r
, p
);
6339 gimple_eh_dispatch_set_region (stmt
, r
);
6343 case GIMPLE_OMP_RETURN
:
6344 case GIMPLE_OMP_CONTINUE
:
6347 if (is_gimple_omp (stmt
))
6349 /* Do not remap variables inside OMP directives. Variables
6350 referenced in clauses and directive header belong to the
6351 parent function and should not be moved into the child
6353 bool save_remap_decls_p
= p
->remap_decls_p
;
6354 p
->remap_decls_p
= false;
6355 *handled_ops_p
= true;
6357 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6360 p
->remap_decls_p
= save_remap_decls_p
;
6368 /* Move basic block BB from function CFUN to function DEST_FN. The
6369 block is moved out of the original linked list and placed after
6370 block AFTER in the new list. Also, the block is removed from the
6371 original array of blocks and placed in DEST_FN's array of blocks.
6372 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6373 updated to reflect the moved edges.
6375 The local variables are remapped to new instances, VARS_MAP is used
6376 to record the mapping. */
6379 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6380 basic_block after
, bool update_edge_count_p
,
6381 struct move_stmt_d
*d
)
6383 struct control_flow_graph
*cfg
;
6386 gimple_stmt_iterator si
;
6387 unsigned old_len
, new_len
;
6389 /* Remove BB from dominance structures. */
6390 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6392 /* Move BB from its current loop to the copy in the new function. */
6395 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6397 bb
->loop_father
= new_loop
;
6400 /* Link BB to the new linked list. */
6401 move_block_after (bb
, after
);
6403 /* Update the edge count in the corresponding flowgraphs. */
6404 if (update_edge_count_p
)
6405 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6407 cfun
->cfg
->x_n_edges
--;
6408 dest_cfun
->cfg
->x_n_edges
++;
6411 /* Remove BB from the original basic block array. */
6412 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6413 cfun
->cfg
->x_n_basic_blocks
--;
6415 /* Grow DEST_CFUN's basic block array if needed. */
6416 cfg
= dest_cfun
->cfg
;
6417 cfg
->x_n_basic_blocks
++;
6418 if (bb
->index
>= cfg
->x_last_basic_block
)
6419 cfg
->x_last_basic_block
= bb
->index
+ 1;
6421 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6422 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6424 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6425 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6428 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6430 /* Remap the variables in phi nodes. */
6431 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6433 gimple phi
= gsi_stmt (si
);
6435 tree op
= PHI_RESULT (phi
);
6439 if (virtual_operand_p (op
))
6441 /* Remove the phi nodes for virtual operands (alias analysis will be
6442 run for the new function, anyway). */
6443 remove_phi_node (&si
, true);
6447 SET_PHI_RESULT (phi
,
6448 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6449 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6451 op
= USE_FROM_PTR (use
);
6452 if (TREE_CODE (op
) == SSA_NAME
)
6453 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6456 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6458 location_t locus
= gimple_phi_arg_location (phi
, i
);
6459 tree block
= LOCATION_BLOCK (locus
);
6461 if (locus
== UNKNOWN_LOCATION
)
6463 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6465 if (d
->new_block
== NULL_TREE
)
6466 locus
= LOCATION_LOCUS (locus
);
6468 locus
= COMBINE_LOCATION_DATA (line_table
, locus
, d
->new_block
);
6469 gimple_phi_arg_set_location (phi
, i
, locus
);
6476 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6478 gimple stmt
= gsi_stmt (si
);
6479 struct walk_stmt_info wi
;
6481 memset (&wi
, 0, sizeof (wi
));
6483 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6485 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6487 tree label
= gimple_label_label (stmt
);
6488 int uid
= LABEL_DECL_UID (label
);
6490 gcc_assert (uid
> -1);
6492 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6493 if (old_len
<= (unsigned) uid
)
6495 new_len
= 3 * uid
/ 2 + 1;
6496 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6499 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6500 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6502 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6504 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6505 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6508 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6509 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6511 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6512 gimple_remove_stmt_histograms (cfun
, stmt
);
6514 /* We cannot leave any operands allocated from the operand caches of
6515 the current function. */
6516 free_stmt_operands (stmt
);
6517 push_cfun (dest_cfun
);
6522 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6523 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6525 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6526 if (d
->orig_block
== NULL_TREE
6527 || block
== d
->orig_block
)
6528 e
->goto_locus
= d
->new_block
?
6529 COMBINE_LOCATION_DATA (line_table
, e
->goto_locus
, d
->new_block
) :
6530 LOCATION_LOCUS (e
->goto_locus
);
6534 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6535 the outermost EH region. Use REGION as the incoming base EH region. */
6538 find_outermost_region_in_block (struct function
*src_cfun
,
6539 basic_block bb
, eh_region region
)
6541 gimple_stmt_iterator si
;
6543 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6545 gimple stmt
= gsi_stmt (si
);
6546 eh_region stmt_region
;
6549 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6550 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6554 region
= stmt_region
;
6555 else if (stmt_region
!= region
)
6557 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6558 gcc_assert (region
!= NULL
);
6567 new_label_mapper (tree decl
, void *data
)
6569 htab_t hash
= (htab_t
) data
;
6573 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6575 m
= XNEW (struct tree_map
);
6576 m
->hash
= DECL_UID (decl
);
6577 m
->base
.from
= decl
;
6578 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6579 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6580 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6581 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6583 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6584 gcc_assert (*slot
== NULL
);
6591 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6595 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6600 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6603 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6605 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6608 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6610 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6611 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6613 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6618 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6619 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6622 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6626 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
6629 /* Discard it from the old loop array. */
6630 (*get_loops (fn1
))[loop
->num
] = NULL
;
6632 /* Place it in the new loop array, assigning it a new number. */
6633 loop
->num
= number_of_loops (fn2
);
6634 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
6636 /* Recurse to children. */
6637 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
6638 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
6641 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6642 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6643 single basic block in the original CFG and the new basic block is
6644 returned. DEST_CFUN must not have a CFG yet.
6646 Note that the region need not be a pure SESE region. Blocks inside
6647 the region may contain calls to abort/exit. The only restriction
6648 is that ENTRY_BB should be the only entry point and it must
6651 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6652 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6653 to the new function.
6655 All local variables referenced in the region are assumed to be in
6656 the corresponding BLOCK_VARS and unexpanded variable lists
6657 associated with DEST_CFUN. */
6660 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6661 basic_block exit_bb
, tree orig_block
)
6663 vec
<basic_block
> bbs
, dom_bbs
;
6664 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6665 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6666 struct function
*saved_cfun
= cfun
;
6667 int *entry_flag
, *exit_flag
;
6668 unsigned *entry_prob
, *exit_prob
;
6669 unsigned i
, num_entry_edges
, num_exit_edges
;
6672 htab_t new_label_map
;
6673 struct pointer_map_t
*vars_map
, *eh_map
;
6674 struct loop
*loop
= entry_bb
->loop_father
;
6675 struct move_stmt_d d
;
6677 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6679 gcc_assert (entry_bb
!= exit_bb
6681 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6683 /* Collect all the blocks in the region. Manually add ENTRY_BB
6684 because it won't be added by dfs_enumerate_from. */
6686 bbs
.safe_push (entry_bb
);
6687 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6689 /* The blocks that used to be dominated by something in BBS will now be
6690 dominated by the new block. */
6691 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6695 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6696 the predecessor edges to ENTRY_BB and the successor edges to
6697 EXIT_BB so that we can re-attach them to the new basic block that
6698 will replace the region. */
6699 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6700 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
6701 entry_flag
= XNEWVEC (int, num_entry_edges
);
6702 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6704 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6706 entry_prob
[i
] = e
->probability
;
6707 entry_flag
[i
] = e
->flags
;
6708 entry_pred
[i
++] = e
->src
;
6714 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6715 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
6716 exit_flag
= XNEWVEC (int, num_exit_edges
);
6717 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6719 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6721 exit_prob
[i
] = e
->probability
;
6722 exit_flag
[i
] = e
->flags
;
6723 exit_succ
[i
++] = e
->dest
;
6735 /* Switch context to the child function to initialize DEST_FN's CFG. */
6736 gcc_assert (dest_cfun
->cfg
== NULL
);
6737 push_cfun (dest_cfun
);
6739 init_empty_tree_cfg ();
6741 /* Initialize EH information for the new function. */
6743 new_label_map
= NULL
;
6746 eh_region region
= NULL
;
6748 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6749 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6751 init_eh_for_function ();
6754 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6755 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6756 new_label_mapper
, new_label_map
);
6760 /* Initialize an empty loop tree. */
6761 struct loops
*loops
= ggc_alloc_cleared_loops ();
6762 init_loops_structure (dest_cfun
, loops
, 1);
6763 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
6764 set_loops_for_fn (dest_cfun
, loops
);
6766 /* Move the outlined loop tree part. */
6767 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6769 if (bb
->loop_father
->header
== bb
6770 && loop_outer (bb
->loop_father
) == loop
)
6772 struct loop
*loop
= bb
->loop_father
;
6773 flow_loop_tree_node_remove (bb
->loop_father
);
6774 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), loop
);
6775 fixup_loop_arrays_after_move (saved_cfun
, cfun
, loop
);
6778 /* Remove loop exits from the outlined region. */
6779 if (loops_for_fn (saved_cfun
)->exits
)
6780 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6782 void **slot
= htab_find_slot_with_hash
6783 (loops_for_fn (saved_cfun
)->exits
, e
,
6784 htab_hash_pointer (e
), NO_INSERT
);
6786 htab_clear_slot (loops_for_fn (saved_cfun
)->exits
, slot
);
6791 /* Adjust the number of blocks in the tree root of the outlined part. */
6792 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
6794 /* Setup a mapping to be used by move_block_to_fn. */
6795 loop
->aux
= current_loops
->tree_root
;
6799 /* Move blocks from BBS into DEST_CFUN. */
6800 gcc_assert (bbs
.length () >= 2);
6801 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6802 vars_map
= pointer_map_create ();
6804 memset (&d
, 0, sizeof (d
));
6805 d
.orig_block
= orig_block
;
6806 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6807 d
.from_context
= cfun
->decl
;
6808 d
.to_context
= dest_cfun
->decl
;
6809 d
.vars_map
= vars_map
;
6810 d
.new_label_map
= new_label_map
;
6812 d
.remap_decls_p
= true;
6814 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6816 /* No need to update edge counts on the last block. It has
6817 already been updated earlier when we detached the region from
6818 the original CFG. */
6819 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6824 /* Loop sizes are no longer correct, fix them up. */
6825 loop
->num_nodes
-= bbs
.length ();
6826 for (struct loop
*outer
= loop_outer (loop
);
6827 outer
; outer
= loop_outer (outer
))
6828 outer
->num_nodes
-= bbs
.length ();
6830 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6834 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6836 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6837 = BLOCK_SUBBLOCKS (orig_block
);
6838 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6839 block
; block
= BLOCK_CHAIN (block
))
6840 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6841 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6844 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6845 vars_map
, dest_cfun
->decl
);
6848 htab_delete (new_label_map
);
6850 pointer_map_destroy (eh_map
);
6851 pointer_map_destroy (vars_map
);
6853 /* Rewire the entry and exit blocks. The successor to the entry
6854 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6855 the child function. Similarly, the predecessor of DEST_FN's
6856 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6857 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6858 various CFG manipulation function get to the right CFG.
6860 FIXME, this is silly. The CFG ought to become a parameter to
6862 push_cfun (dest_cfun
);
6863 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6865 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6868 /* Back in the original function, the SESE region has disappeared,
6869 create a new basic block in its place. */
6870 bb
= create_empty_bb (entry_pred
[0]);
6872 add_bb_to_loop (bb
, loop
);
6873 for (i
= 0; i
< num_entry_edges
; i
++)
6875 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6876 e
->probability
= entry_prob
[i
];
6879 for (i
= 0; i
< num_exit_edges
; i
++)
6881 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6882 e
->probability
= exit_prob
[i
];
6885 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6886 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
6887 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6905 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6909 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
6911 tree arg
, var
, old_current_fndecl
= current_function_decl
;
6912 struct function
*dsf
;
6913 bool ignore_topmost_bind
= false, any_var
= false;
6916 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
6917 && decl_is_tm_clone (fndecl
));
6918 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
6920 current_function_decl
= fndecl
;
6921 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
6923 arg
= DECL_ARGUMENTS (fndecl
);
6926 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6927 fprintf (file
, " ");
6928 print_generic_expr (file
, arg
, dump_flags
);
6929 if (flags
& TDF_VERBOSE
)
6930 print_node (file
, "", arg
, 4);
6931 if (DECL_CHAIN (arg
))
6932 fprintf (file
, ", ");
6933 arg
= DECL_CHAIN (arg
);
6935 fprintf (file
, ")\n");
6937 if (flags
& TDF_VERBOSE
)
6938 print_node (file
, "", fndecl
, 2);
6940 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
6941 if (dsf
&& (flags
& TDF_EH
))
6942 dump_eh_tree (file
, dsf
);
6944 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
6946 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
6947 current_function_decl
= old_current_fndecl
;
6951 /* When GIMPLE is lowered, the variables are no longer available in
6952 BIND_EXPRs, so display them separately. */
6953 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
6956 ignore_topmost_bind
= true;
6958 fprintf (file
, "{\n");
6959 if (!vec_safe_is_empty (fun
->local_decls
))
6960 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
6962 print_generic_decl (file
, var
, flags
);
6963 if (flags
& TDF_VERBOSE
)
6964 print_node (file
, "", var
, 4);
6965 fprintf (file
, "\n");
6969 if (gimple_in_ssa_p (cfun
))
6970 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
6972 tree name
= ssa_name (ix
);
6973 if (name
&& !SSA_NAME_VAR (name
))
6975 fprintf (file
, " ");
6976 print_generic_expr (file
, TREE_TYPE (name
), flags
);
6977 fprintf (file
, " ");
6978 print_generic_expr (file
, name
, flags
);
6979 fprintf (file
, ";\n");
6986 if (fun
&& fun
->decl
== fndecl
6988 && basic_block_info_for_function (fun
))
6990 /* If the CFG has been built, emit a CFG-based dump. */
6991 if (!ignore_topmost_bind
)
6992 fprintf (file
, "{\n");
6994 if (any_var
&& n_basic_blocks_for_function (fun
))
6995 fprintf (file
, "\n");
6997 FOR_EACH_BB_FN (bb
, fun
)
6998 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
7000 fprintf (file
, "}\n");
7002 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
7004 /* The function is now in GIMPLE form but the CFG has not been
7005 built yet. Emit the single sequence of GIMPLE statements
7006 that make up its body. */
7007 gimple_seq body
= gimple_body (fndecl
);
7009 if (gimple_seq_first_stmt (body
)
7010 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7011 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7012 print_gimple_seq (file
, body
, 0, flags
);
7015 if (!ignore_topmost_bind
)
7016 fprintf (file
, "{\n");
7019 fprintf (file
, "\n");
7021 print_gimple_seq (file
, body
, 2, flags
);
7022 fprintf (file
, "}\n");
7029 /* Make a tree based dump. */
7030 chain
= DECL_SAVED_TREE (fndecl
);
7031 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7033 if (ignore_topmost_bind
)
7035 chain
= BIND_EXPR_BODY (chain
);
7043 if (!ignore_topmost_bind
)
7044 fprintf (file
, "{\n");
7049 fprintf (file
, "\n");
7051 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7052 if (ignore_topmost_bind
)
7053 fprintf (file
, "}\n");
7056 if (flags
& TDF_ENUMERATE_LOCALS
)
7057 dump_enumerated_decls (file
, flags
);
7058 fprintf (file
, "\n\n");
7060 current_function_decl
= old_current_fndecl
;
7063 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7066 debug_function (tree fn
, int flags
)
7068 dump_function_to_file (fn
, stderr
, flags
);
7072 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7075 print_pred_bbs (FILE *file
, basic_block bb
)
7080 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7081 fprintf (file
, "bb_%d ", e
->src
->index
);
7085 /* Print on FILE the indexes for the successors of basic_block BB. */
7088 print_succ_bbs (FILE *file
, basic_block bb
)
7093 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7094 fprintf (file
, "bb_%d ", e
->dest
->index
);
7097 /* Print to FILE the basic block BB following the VERBOSITY level. */
7100 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7102 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7103 memset ((void *) s_indent
, ' ', (size_t) indent
);
7104 s_indent
[indent
] = '\0';
7106 /* Print basic_block's header. */
7109 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7110 print_pred_bbs (file
, bb
);
7111 fprintf (file
, "}, succs = {");
7112 print_succ_bbs (file
, bb
);
7113 fprintf (file
, "})\n");
7116 /* Print basic_block's body. */
7119 fprintf (file
, "%s {\n", s_indent
);
7120 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7121 fprintf (file
, "%s }\n", s_indent
);
7125 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7127 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7128 VERBOSITY level this outputs the contents of the loop, or just its
7132 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7140 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7141 memset ((void *) s_indent
, ' ', (size_t) indent
);
7142 s_indent
[indent
] = '\0';
7144 /* Print loop's header. */
7145 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7147 fprintf (file
, "header = %d", loop
->header
->index
);
7150 fprintf (file
, "deleted)\n");
7154 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7156 fprintf (file
, ", multiple latches");
7157 fprintf (file
, ", niter = ");
7158 print_generic_expr (file
, loop
->nb_iterations
, 0);
7160 if (loop
->any_upper_bound
)
7162 fprintf (file
, ", upper_bound = ");
7163 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
7166 if (loop
->any_estimate
)
7168 fprintf (file
, ", estimate = ");
7169 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
7171 fprintf (file
, ")\n");
7173 /* Print loop's body. */
7176 fprintf (file
, "%s{\n", s_indent
);
7178 if (bb
->loop_father
== loop
)
7179 print_loops_bb (file
, bb
, indent
, verbosity
);
7181 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7182 fprintf (file
, "%s}\n", s_indent
);
7186 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7187 spaces. Following VERBOSITY level this outputs the contents of the
7188 loop, or just its structure. */
7191 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7197 print_loop (file
, loop
, indent
, verbosity
);
7198 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7201 /* Follow a CFG edge from the entry point of the program, and on entry
7202 of a loop, pretty print the loop structure on FILE. */
7205 print_loops (FILE *file
, int verbosity
)
7209 bb
= ENTRY_BLOCK_PTR
;
7210 if (bb
&& bb
->loop_father
)
7211 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7217 debug (struct loop
&ref
)
7219 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7223 debug (struct loop
*ptr
)
7228 fprintf (stderr
, "<nil>\n");
7231 /* Dump a loop verbosely. */
7234 debug_verbose (struct loop
&ref
)
7236 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7240 debug_verbose (struct loop
*ptr
)
7245 fprintf (stderr
, "<nil>\n");
7249 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7252 debug_loops (int verbosity
)
7254 print_loops (stderr
, verbosity
);
7257 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7260 debug_loop (struct loop
*loop
, int verbosity
)
7262 print_loop (stderr
, loop
, 0, verbosity
);
7265 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7269 debug_loop_num (unsigned num
, int verbosity
)
7271 debug_loop (get_loop (cfun
, num
), verbosity
);
7274 /* Return true if BB ends with a call, possibly followed by some
7275 instructions that must stay with the call. Return false,
7279 gimple_block_ends_with_call_p (basic_block bb
)
7281 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7282 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7286 /* Return true if BB ends with a conditional branch. Return false,
7290 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7292 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
7293 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7297 /* Return true if we need to add fake edge to exit at statement T.
7298 Helper function for gimple_flow_call_edges_add. */
7301 need_fake_edge_p (gimple t
)
7303 tree fndecl
= NULL_TREE
;
7306 /* NORETURN and LONGJMP calls already have an edge to exit.
7307 CONST and PURE calls do not need one.
7308 We don't currently check for CONST and PURE here, although
7309 it would be a good idea, because those attributes are
7310 figured out from the RTL in mark_constant_function, and
7311 the counter incrementation code from -fprofile-arcs
7312 leads to different results from -fbranch-probabilities. */
7313 if (is_gimple_call (t
))
7315 fndecl
= gimple_call_fndecl (t
);
7316 call_flags
= gimple_call_flags (t
);
7319 if (is_gimple_call (t
)
7321 && DECL_BUILT_IN (fndecl
)
7322 && (call_flags
& ECF_NOTHROW
)
7323 && !(call_flags
& ECF_RETURNS_TWICE
)
7324 /* fork() doesn't really return twice, but the effect of
7325 wrapping it in __gcov_fork() which calls __gcov_flush()
7326 and clears the counters before forking has the same
7327 effect as returning twice. Force a fake edge. */
7328 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7329 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7332 if (is_gimple_call (t
))
7338 if (!(call_flags
& ECF_NORETURN
))
7342 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7343 if ((e
->flags
& EDGE_FAKE
) == 0)
7347 if (gimple_code (t
) == GIMPLE_ASM
7348 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
7355 /* Add fake edges to the function exit for any non constant and non
7356 noreturn calls (or noreturn calls with EH/abnormal edges),
7357 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7358 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7361 The goal is to expose cases in which entering a basic block does
7362 not imply that all subsequent instructions must be executed. */
7365 gimple_flow_call_edges_add (sbitmap blocks
)
7368 int blocks_split
= 0;
7369 int last_bb
= last_basic_block
;
7370 bool check_last_block
= false;
7372 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
7376 check_last_block
= true;
7378 check_last_block
= bitmap_bit_p (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
7380 /* In the last basic block, before epilogue generation, there will be
7381 a fallthru edge to EXIT. Special care is required if the last insn
7382 of the last basic block is a call because make_edge folds duplicate
7383 edges, which would result in the fallthru edge also being marked
7384 fake, which would result in the fallthru edge being removed by
7385 remove_fake_edges, which would result in an invalid CFG.
7387 Moreover, we can't elide the outgoing fake edge, since the block
7388 profiler needs to take this into account in order to solve the minimal
7389 spanning tree in the case that the call doesn't return.
7391 Handle this by adding a dummy instruction in a new last basic block. */
7392 if (check_last_block
)
7394 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
7395 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7398 if (!gsi_end_p (gsi
))
7401 if (t
&& need_fake_edge_p (t
))
7405 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7408 gsi_insert_on_edge (e
, gimple_build_nop ());
7409 gsi_commit_edge_inserts ();
7414 /* Now add fake edges to the function exit for any non constant
7415 calls since there is no way that we can determine if they will
7417 for (i
= 0; i
< last_bb
; i
++)
7419 basic_block bb
= BASIC_BLOCK (i
);
7420 gimple_stmt_iterator gsi
;
7421 gimple stmt
, last_stmt
;
7426 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7429 gsi
= gsi_last_nondebug_bb (bb
);
7430 if (!gsi_end_p (gsi
))
7432 last_stmt
= gsi_stmt (gsi
);
7435 stmt
= gsi_stmt (gsi
);
7436 if (need_fake_edge_p (stmt
))
7440 /* The handling above of the final block before the
7441 epilogue should be enough to verify that there is
7442 no edge to the exit block in CFG already.
7443 Calling make_edge in such case would cause us to
7444 mark that edge as fake and remove it later. */
7445 #ifdef ENABLE_CHECKING
7446 if (stmt
== last_stmt
)
7448 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7449 gcc_assert (e
== NULL
);
7453 /* Note that the following may create a new basic block
7454 and renumber the existing basic blocks. */
7455 if (stmt
!= last_stmt
)
7457 e
= split_block (bb
, stmt
);
7461 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7465 while (!gsi_end_p (gsi
));
7470 verify_flow_info ();
7472 return blocks_split
;
7475 /* Removes edge E and all the blocks dominated by it, and updates dominance
7476 information. The IL in E->src needs to be updated separately.
7477 If dominance info is not available, only the edge E is removed.*/
7480 remove_edge_and_dominated_blocks (edge e
)
7482 vec
<basic_block
> bbs_to_remove
= vNULL
;
7483 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
7487 bool none_removed
= false;
7489 basic_block bb
, dbb
;
7492 if (!dom_info_available_p (CDI_DOMINATORS
))
7498 /* No updating is needed for edges to exit. */
7499 if (e
->dest
== EXIT_BLOCK_PTR
)
7501 if (cfgcleanup_altered_bbs
)
7502 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7507 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7508 that is not dominated by E->dest, then this set is empty. Otherwise,
7509 all the basic blocks dominated by E->dest are removed.
7511 Also, to DF_IDOM we store the immediate dominators of the blocks in
7512 the dominance frontier of E (i.e., of the successors of the
7513 removed blocks, if there are any, and of E->dest otherwise). */
7514 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7519 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7521 none_removed
= true;
7526 df
= BITMAP_ALLOC (NULL
);
7527 df_idom
= BITMAP_ALLOC (NULL
);
7530 bitmap_set_bit (df_idom
,
7531 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7534 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7535 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7537 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7539 if (f
->dest
!= EXIT_BLOCK_PTR
)
7540 bitmap_set_bit (df
, f
->dest
->index
);
7543 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7544 bitmap_clear_bit (df
, bb
->index
);
7546 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7548 bb
= BASIC_BLOCK (i
);
7549 bitmap_set_bit (df_idom
,
7550 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7554 if (cfgcleanup_altered_bbs
)
7556 /* Record the set of the altered basic blocks. */
7557 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7558 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7561 /* Remove E and the cancelled blocks. */
7566 /* Walk backwards so as to get a chance to substitute all
7567 released DEFs into debug stmts. See
7568 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7570 for (i
= bbs_to_remove
.length (); i
-- > 0; )
7571 delete_basic_block (bbs_to_remove
[i
]);
7574 /* Update the dominance information. The immediate dominator may change only
7575 for blocks whose immediate dominator belongs to DF_IDOM:
7577 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7578 removal. Let Z the arbitrary block such that idom(Z) = Y and
7579 Z dominates X after the removal. Before removal, there exists a path P
7580 from Y to X that avoids Z. Let F be the last edge on P that is
7581 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7582 dominates W, and because of P, Z does not dominate W), and W belongs to
7583 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7584 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7586 bb
= BASIC_BLOCK (i
);
7587 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7589 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7590 bbs_to_fix_dom
.safe_push (dbb
);
7593 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7596 BITMAP_FREE (df_idom
);
7597 bbs_to_remove
.release ();
7598 bbs_to_fix_dom
.release ();
7601 /* Purge dead EH edges from basic block BB. */
7604 gimple_purge_dead_eh_edges (basic_block bb
)
7606 bool changed
= false;
7609 gimple stmt
= last_stmt (bb
);
7611 if (stmt
&& stmt_can_throw_internal (stmt
))
7614 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7616 if (e
->flags
& EDGE_EH
)
7618 remove_edge_and_dominated_blocks (e
);
7628 /* Purge dead EH edges from basic block listed in BLOCKS. */
7631 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7633 bool changed
= false;
7637 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7639 basic_block bb
= BASIC_BLOCK (i
);
7641 /* Earlier gimple_purge_dead_eh_edges could have removed
7642 this basic block already. */
7643 gcc_assert (bb
|| changed
);
7645 changed
|= gimple_purge_dead_eh_edges (bb
);
7651 /* Purge dead abnormal call edges from basic block BB. */
7654 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7656 bool changed
= false;
7659 gimple stmt
= last_stmt (bb
);
7661 if (!cfun
->has_nonlocal_label
7662 && !cfun
->calls_setjmp
)
7665 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7668 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7670 if (e
->flags
& EDGE_ABNORMAL
)
7672 if (e
->flags
& EDGE_FALLTHRU
)
7673 e
->flags
&= ~EDGE_ABNORMAL
;
7675 remove_edge_and_dominated_blocks (e
);
7685 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7688 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7690 bool changed
= false;
7694 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7696 basic_block bb
= BASIC_BLOCK (i
);
7698 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7699 this basic block already. */
7700 gcc_assert (bb
|| changed
);
7702 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7708 /* This function is called whenever a new edge is created or
7712 gimple_execute_on_growing_pred (edge e
)
7714 basic_block bb
= e
->dest
;
7716 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7717 reserve_phi_args_for_new_edge (bb
);
7720 /* This function is called immediately before edge E is removed from
7721 the edge vector E->dest->preds. */
7724 gimple_execute_on_shrinking_pred (edge e
)
7726 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7727 remove_phi_args (e
);
7730 /*---------------------------------------------------------------------------
7731 Helper functions for Loop versioning
7732 ---------------------------------------------------------------------------*/
7734 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7735 of 'first'. Both of them are dominated by 'new_head' basic block. When
7736 'new_head' was created by 'second's incoming edge it received phi arguments
7737 on the edge by split_edge(). Later, additional edge 'e' was created to
7738 connect 'new_head' and 'first'. Now this routine adds phi args on this
7739 additional edge 'e' that new_head to second edge received as part of edge
7743 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7744 basic_block new_head
, edge e
)
7747 gimple_stmt_iterator psi1
, psi2
;
7749 edge e2
= find_edge (new_head
, second
);
7751 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7752 edge, we should always have an edge from NEW_HEAD to SECOND. */
7753 gcc_assert (e2
!= NULL
);
7755 /* Browse all 'second' basic block phi nodes and add phi args to
7756 edge 'e' for 'first' head. PHI args are always in correct order. */
7758 for (psi2
= gsi_start_phis (second
),
7759 psi1
= gsi_start_phis (first
);
7760 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7761 gsi_next (&psi2
), gsi_next (&psi1
))
7763 phi1
= gsi_stmt (psi1
);
7764 phi2
= gsi_stmt (psi2
);
7765 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7766 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7771 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7772 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7773 the destination of the ELSE part. */
7776 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7777 basic_block second_head ATTRIBUTE_UNUSED
,
7778 basic_block cond_bb
, void *cond_e
)
7780 gimple_stmt_iterator gsi
;
7781 gimple new_cond_expr
;
7782 tree cond_expr
= (tree
) cond_e
;
7785 /* Build new conditional expr */
7786 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7787 NULL_TREE
, NULL_TREE
);
7789 /* Add new cond in cond_bb. */
7790 gsi
= gsi_last_bb (cond_bb
);
7791 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7793 /* Adjust edges appropriately to connect new head with first head
7794 as well as second head. */
7795 e0
= single_succ_edge (cond_bb
);
7796 e0
->flags
&= ~EDGE_FALLTHRU
;
7797 e0
->flags
|= EDGE_FALSE_VALUE
;
7801 /* Do book-keeping of basic block BB for the profile consistency checker.
7802 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7803 then do post-pass accounting. Store the counting in RECORD. */
7805 gimple_account_profile_record (basic_block bb
, int after_pass
,
7806 struct profile_record
*record
)
7808 gimple_stmt_iterator i
;
7809 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
7811 record
->size
[after_pass
]
7812 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
7813 if (profile_status
== PROFILE_READ
)
7814 record
->time
[after_pass
]
7815 += estimate_num_insns (gsi_stmt (i
),
7816 &eni_time_weights
) * bb
->count
;
7817 else if (profile_status
== PROFILE_GUESSED
)
7818 record
->time
[after_pass
]
7819 += estimate_num_insns (gsi_stmt (i
),
7820 &eni_time_weights
) * bb
->frequency
;
7824 struct cfg_hooks gimple_cfg_hooks
= {
7826 gimple_verify_flow_info
,
7827 gimple_dump_bb
, /* dump_bb */
7828 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
7829 create_bb
, /* create_basic_block */
7830 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7831 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7832 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7833 remove_bb
, /* delete_basic_block */
7834 gimple_split_block
, /* split_block */
7835 gimple_move_block_after
, /* move_block_after */
7836 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7837 gimple_merge_blocks
, /* merge_blocks */
7838 gimple_predict_edge
, /* predict_edge */
7839 gimple_predicted_by_p
, /* predicted_by_p */
7840 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7841 gimple_duplicate_bb
, /* duplicate_block */
7842 gimple_split_edge
, /* split_edge */
7843 gimple_make_forwarder_block
, /* make_forward_block */
7844 NULL
, /* tidy_fallthru_edge */
7845 NULL
, /* force_nonfallthru */
7846 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7847 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7848 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7849 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7850 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7851 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7852 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7853 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7854 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7855 flush_pending_stmts
, /* flush_pending_stmts */
7856 gimple_empty_block_p
, /* block_empty_p */
7857 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
7858 gimple_account_profile_record
,
7862 /* Split all critical edges. */
7865 split_critical_edges (void)
7871 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7872 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7873 mappings around the calls to split_edge. */
7874 start_recording_case_labels ();
7877 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7879 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7881 /* PRE inserts statements to edges and expects that
7882 since split_critical_edges was done beforehand, committing edge
7883 insertions will not split more edges. In addition to critical
7884 edges we must split edges that have multiple successors and
7885 end by control flow statements, such as RESX.
7886 Go ahead and split them too. This matches the logic in
7887 gimple_find_edge_insert_loc. */
7888 else if ((!single_pred_p (e
->dest
)
7889 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7890 || e
->dest
== EXIT_BLOCK_PTR
)
7891 && e
->src
!= ENTRY_BLOCK_PTR
7892 && !(e
->flags
& EDGE_ABNORMAL
))
7894 gimple_stmt_iterator gsi
;
7896 gsi
= gsi_last_bb (e
->src
);
7897 if (!gsi_end_p (gsi
)
7898 && stmt_ends_bb_p (gsi_stmt (gsi
))
7899 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7900 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7906 end_recording_case_labels ();
7912 const pass_data pass_data_split_crit_edges
=
7914 GIMPLE_PASS
, /* type */
7915 "crited", /* name */
7916 OPTGROUP_NONE
, /* optinfo_flags */
7917 false, /* has_gate */
7918 true, /* has_execute */
7919 TV_TREE_SPLIT_EDGES
, /* tv_id */
7920 PROP_cfg
, /* properties_required */
7921 PROP_no_crit_edges
, /* properties_provided */
7922 0, /* properties_destroyed */
7923 0, /* todo_flags_start */
7924 TODO_verify_flow
, /* todo_flags_finish */
7927 class pass_split_crit_edges
: public gimple_opt_pass
7930 pass_split_crit_edges(gcc::context
*ctxt
)
7931 : gimple_opt_pass(pass_data_split_crit_edges
, ctxt
)
7934 /* opt_pass methods: */
7935 unsigned int execute () { return split_critical_edges (); }
7937 }; // class pass_split_crit_edges
7942 make_pass_split_crit_edges (gcc::context
*ctxt
)
7944 return new pass_split_crit_edges (ctxt
);
7948 /* Build a ternary operation and gimplify it. Emit code before GSI.
7949 Return the gimple_val holding the result. */
7952 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7953 tree type
, tree a
, tree b
, tree c
)
7956 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7958 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7961 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7965 /* Build a binary operation and gimplify it. Emit code before GSI.
7966 Return the gimple_val holding the result. */
7969 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7970 tree type
, tree a
, tree b
)
7974 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7977 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7981 /* Build a unary operation and gimplify it. Emit code before GSI.
7982 Return the gimple_val holding the result. */
7985 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7990 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7993 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7999 /* Emit return warnings. */
8002 execute_warn_function_return (void)
8004 source_location location
;
8009 if (!targetm
.warn_func_return (cfun
->decl
))
8012 /* If we have a path to EXIT, then we do return. */
8013 if (TREE_THIS_VOLATILE (cfun
->decl
)
8014 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
8016 location
= UNKNOWN_LOCATION
;
8017 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
8019 last
= last_stmt (e
->src
);
8020 if ((gimple_code (last
) == GIMPLE_RETURN
8021 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
8022 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
8025 if (location
== UNKNOWN_LOCATION
)
8026 location
= cfun
->function_end_locus
;
8027 warning_at (location
, 0, "%<noreturn%> function does return");
8030 /* If we see "return;" in some basic block, then we do reach the end
8031 without returning a value. */
8032 else if (warn_return_type
8033 && !TREE_NO_WARNING (cfun
->decl
)
8034 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
8035 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
8037 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
8039 gimple last
= last_stmt (e
->src
);
8040 if (gimple_code (last
) == GIMPLE_RETURN
8041 && gimple_return_retval (last
) == NULL
8042 && !gimple_no_warning_p (last
))
8044 location
= gimple_location (last
);
8045 if (location
== UNKNOWN_LOCATION
)
8046 location
= cfun
->function_end_locus
;
8047 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
8048 TREE_NO_WARNING (cfun
->decl
) = 1;
8057 /* Given a basic block B which ends with a conditional and has
8058 precisely two successors, determine which of the edges is taken if
8059 the conditional is true and which is taken if the conditional is
8060 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8063 extract_true_false_edges_from_block (basic_block b
,
8067 edge e
= EDGE_SUCC (b
, 0);
8069 if (e
->flags
& EDGE_TRUE_VALUE
)
8072 *false_edge
= EDGE_SUCC (b
, 1);
8077 *true_edge
= EDGE_SUCC (b
, 1);
8083 const pass_data pass_data_warn_function_return
=
8085 GIMPLE_PASS
, /* type */
8086 "*warn_function_return", /* name */
8087 OPTGROUP_NONE
, /* optinfo_flags */
8088 false, /* has_gate */
8089 true, /* has_execute */
8090 TV_NONE
, /* tv_id */
8091 PROP_cfg
, /* properties_required */
8092 0, /* properties_provided */
8093 0, /* properties_destroyed */
8094 0, /* todo_flags_start */
8095 0, /* todo_flags_finish */
8098 class pass_warn_function_return
: public gimple_opt_pass
8101 pass_warn_function_return(gcc::context
*ctxt
)
8102 : gimple_opt_pass(pass_data_warn_function_return
, ctxt
)
8105 /* opt_pass methods: */
8106 unsigned int execute () { return execute_warn_function_return (); }
8108 }; // class pass_warn_function_return
8113 make_pass_warn_function_return (gcc::context
*ctxt
)
8115 return new pass_warn_function_return (ctxt
);
8118 /* Emit noreturn warnings. */
8121 execute_warn_function_noreturn (void)
8123 if (!TREE_THIS_VOLATILE (current_function_decl
)
8124 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
8125 warn_function_noreturn (current_function_decl
);
8130 gate_warn_function_noreturn (void)
8132 return warn_suggest_attribute_noreturn
;
8137 const pass_data pass_data_warn_function_noreturn
=
8139 GIMPLE_PASS
, /* type */
8140 "*warn_function_noreturn", /* name */
8141 OPTGROUP_NONE
, /* optinfo_flags */
8142 true, /* has_gate */
8143 true, /* has_execute */
8144 TV_NONE
, /* tv_id */
8145 PROP_cfg
, /* properties_required */
8146 0, /* properties_provided */
8147 0, /* properties_destroyed */
8148 0, /* todo_flags_start */
8149 0, /* todo_flags_finish */
8152 class pass_warn_function_noreturn
: public gimple_opt_pass
8155 pass_warn_function_noreturn(gcc::context
*ctxt
)
8156 : gimple_opt_pass(pass_data_warn_function_noreturn
, ctxt
)
8159 /* opt_pass methods: */
8160 bool gate () { return gate_warn_function_noreturn (); }
8161 unsigned int execute () { return execute_warn_function_noreturn (); }
8163 }; // class pass_warn_function_noreturn
8168 make_pass_warn_function_noreturn (gcc::context
*ctxt
)
8170 return new pass_warn_function_noreturn (ctxt
);
8174 /* Walk a gimplified function and warn for functions whose return value is
8175 ignored and attribute((warn_unused_result)) is set. This is done before
8176 inlining, so we don't have to worry about that. */
8179 do_warn_unused_result (gimple_seq seq
)
8182 gimple_stmt_iterator i
;
8184 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
8186 gimple g
= gsi_stmt (i
);
8188 switch (gimple_code (g
))
8191 do_warn_unused_result (gimple_bind_body (g
));
8194 do_warn_unused_result (gimple_try_eval (g
));
8195 do_warn_unused_result (gimple_try_cleanup (g
));
8198 do_warn_unused_result (gimple_catch_handler (g
));
8200 case GIMPLE_EH_FILTER
:
8201 do_warn_unused_result (gimple_eh_filter_failure (g
));
8205 if (gimple_call_lhs (g
))
8207 if (gimple_call_internal_p (g
))
8210 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8211 LHS. All calls whose value is ignored should be
8212 represented like this. Look for the attribute. */
8213 fdecl
= gimple_call_fndecl (g
);
8214 ftype
= gimple_call_fntype (g
);
8216 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
8218 location_t loc
= gimple_location (g
);
8221 warning_at (loc
, OPT_Wunused_result
,
8222 "ignoring return value of %qD, "
8223 "declared with attribute warn_unused_result",
8226 warning_at (loc
, OPT_Wunused_result
,
8227 "ignoring return value of function "
8228 "declared with attribute warn_unused_result");
8233 /* Not a container, not a call, or a call whose value is used. */
8240 run_warn_unused_result (void)
8242 do_warn_unused_result (gimple_body (current_function_decl
));
8247 gate_warn_unused_result (void)
8249 return flag_warn_unused_result
;
8254 const pass_data pass_data_warn_unused_result
=
8256 GIMPLE_PASS
, /* type */
8257 "*warn_unused_result", /* name */
8258 OPTGROUP_NONE
, /* optinfo_flags */
8259 true, /* has_gate */
8260 true, /* has_execute */
8261 TV_NONE
, /* tv_id */
8262 PROP_gimple_any
, /* properties_required */
8263 0, /* properties_provided */
8264 0, /* properties_destroyed */
8265 0, /* todo_flags_start */
8266 0, /* todo_flags_finish */
8269 class pass_warn_unused_result
: public gimple_opt_pass
8272 pass_warn_unused_result(gcc::context
*ctxt
)
8273 : gimple_opt_pass(pass_data_warn_unused_result
, ctxt
)
8276 /* opt_pass methods: */
8277 bool gate () { return gate_warn_unused_result (); }
8278 unsigned int execute () { return run_warn_unused_result (); }
8280 }; // class pass_warn_unused_result
8285 make_pass_warn_unused_result (gcc::context
*ctxt
)
8287 return new pass_warn_unused_result (ctxt
);
8291 /* Garbage collection support for edge_def. */
8293 extern void gt_ggc_mx (tree
&);
8294 extern void gt_ggc_mx (gimple
&);
8295 extern void gt_ggc_mx (rtx
&);
8296 extern void gt_ggc_mx (basic_block
&);
8299 gt_ggc_mx (edge_def
*e
)
8301 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8303 gt_ggc_mx (e
->dest
);
8304 if (current_ir_type () == IR_GIMPLE
)
8305 gt_ggc_mx (e
->insns
.g
);
8307 gt_ggc_mx (e
->insns
.r
);
8311 /* PCH support for edge_def. */
8313 extern void gt_pch_nx (tree
&);
8314 extern void gt_pch_nx (gimple
&);
8315 extern void gt_pch_nx (rtx
&);
8316 extern void gt_pch_nx (basic_block
&);
8319 gt_pch_nx (edge_def
*e
)
8321 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8323 gt_pch_nx (e
->dest
);
8324 if (current_ir_type () == IR_GIMPLE
)
8325 gt_pch_nx (e
->insns
.g
);
8327 gt_pch_nx (e
->insns
.r
);
8332 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
8334 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8335 op (&(e
->src
), cookie
);
8336 op (&(e
->dest
), cookie
);
8337 if (current_ir_type () == IR_GIMPLE
)
8338 op (&(e
->insns
.g
), cookie
);
8340 op (&(e
->insns
.r
), cookie
);
8341 op (&(block
), cookie
);