2017-09-21 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vectorizer.h
blobd6753ff4eeaa550fb1555a9459b81552256e215e
1 /* Vectorizer
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION
73 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
74 || ((D) == vect_double_reduction_def) \
75 || ((D) == vect_nested_cycle))
77 /* Structure to encapsulate information about a group of like
78 instructions to be presented to the target cost model. */
79 struct stmt_info_for_cost {
80 int count;
81 enum vect_cost_for_stmt kind;
82 gimple *stmt;
83 int misalign;
86 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
88 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
89 known alignment for that base. */
90 typedef hash_map<tree_operand_hash,
91 innermost_loop_behavior *> vec_base_alignments;
93 /************************************************************************
94 SLP
95 ************************************************************************/
96 typedef struct _slp_tree *slp_tree;
98 /* A computation tree of an SLP instance. Each node corresponds to a group of
99 stmts to be packed in a SIMD stmt. */
100 struct _slp_tree {
101 /* Nodes that contain def-stmts of this node statements operands. */
102 vec<slp_tree> children;
103 /* A group of scalar stmts to be vectorized together. */
104 vec<gimple *> stmts;
105 /* Load permutation relative to the stores, NULL if there is no
106 permutation. */
107 vec<unsigned> load_permutation;
108 /* Vectorized stmt/s. */
109 vec<gimple *> vec_stmts;
110 /* Number of vector stmts that are created to replace the group of scalar
111 stmts. It is calculated during the transformation phase as the number of
112 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
113 divided by vector size. */
114 unsigned int vec_stmts_size;
115 /* Whether the scalar computations use two different operators. */
116 bool two_operators;
117 /* The DEF type of this node. */
118 enum vect_def_type def_type;
122 /* SLP instance is a sequence of stmts in a loop that can be packed into
123 SIMD stmts. */
124 typedef struct _slp_instance {
125 /* The root of SLP tree. */
126 slp_tree root;
128 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
129 unsigned int group_size;
131 /* The unrolling factor required to vectorized this SLP instance. */
132 unsigned int unrolling_factor;
134 /* The group of nodes that contain loads of this SLP instance. */
135 vec<slp_tree> loads;
137 /* The SLP node containing the reduction PHIs. */
138 slp_tree reduc_phis;
139 } *slp_instance;
142 /* Access Functions. */
143 #define SLP_INSTANCE_TREE(S) (S)->root
144 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
145 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
146 #define SLP_INSTANCE_LOADS(S) (S)->loads
148 #define SLP_TREE_CHILDREN(S) (S)->children
149 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
150 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
151 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
152 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
153 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
154 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
158 /* Describes two objects whose addresses must be unequal for the vectorized
159 loop to be valid. */
160 typedef std::pair<tree, tree> vec_object_pair;
162 /* Vectorizer state common between loop and basic-block vectorization. */
163 struct vec_info {
164 enum vec_kind { bb, loop };
166 vec_info (vec_kind, void *);
167 ~vec_info ();
169 /* The type of vectorization. */
170 vec_kind kind;
172 /* All SLP instances. */
173 auto_vec<slp_instance> slp_instances;
175 /* All data references. Freed by free_data_refs, so not an auto_vec. */
176 vec<data_reference_p> datarefs;
178 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
179 known alignment for that base. */
180 vec_base_alignments base_alignments;
182 /* All data dependences. Freed by free_dependence_relations, so not
183 an auto_vec. */
184 vec<ddr_p> ddrs;
186 /* All interleaving chains of stores, represented by the first
187 stmt in the chain. */
188 auto_vec<gimple *> grouped_stores;
190 /* Cost data used by the target cost model. */
191 void *target_cost_data;
194 struct _loop_vec_info;
195 struct _bb_vec_info;
197 template<>
198 template<>
199 inline bool
200 is_a_helper <_loop_vec_info *>::test (vec_info *i)
202 return i->kind == vec_info::loop;
205 template<>
206 template<>
207 inline bool
208 is_a_helper <_bb_vec_info *>::test (vec_info *i)
210 return i->kind == vec_info::bb;
214 /*-----------------------------------------------------------------*/
215 /* Info on vectorized loops. */
216 /*-----------------------------------------------------------------*/
217 typedef struct _loop_vec_info : public vec_info {
218 _loop_vec_info (struct loop *);
219 ~_loop_vec_info ();
221 /* The loop to which this info struct refers to. */
222 struct loop *loop;
224 /* The loop basic blocks. */
225 basic_block *bbs;
227 /* Number of latch executions. */
228 tree num_itersm1;
229 /* Number of iterations. */
230 tree num_iters;
231 /* Number of iterations of the original loop. */
232 tree num_iters_unchanged;
233 /* Condition under which this loop is analyzed and versioned. */
234 tree num_iters_assumptions;
236 /* Threshold of number of iterations below which vectorzation will not be
237 performed. It is calculated from MIN_PROFITABLE_ITERS and
238 PARAM_MIN_VECT_LOOP_BOUND. */
239 unsigned int th;
241 /* Unrolling factor */
242 int vectorization_factor;
244 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
245 if there is no particular limit. */
246 unsigned HOST_WIDE_INT max_vectorization_factor;
248 /* Unknown DRs according to which loop was peeled. */
249 struct data_reference *unaligned_dr;
251 /* peeling_for_alignment indicates whether peeling for alignment will take
252 place, and what the peeling factor should be:
253 peeling_for_alignment = X means:
254 If X=0: Peeling for alignment will not be applied.
255 If X>0: Peel first X iterations.
256 If X=-1: Generate a runtime test to calculate the number of iterations
257 to be peeled, using the dataref recorded in the field
258 unaligned_dr. */
259 int peeling_for_alignment;
261 /* The mask used to check the alignment of pointers or arrays. */
262 int ptr_mask;
264 /* The loop nest in which the data dependences are computed. */
265 auto_vec<loop_p> loop_nest;
267 /* Data Dependence Relations defining address ranges that are candidates
268 for a run-time aliasing check. */
269 auto_vec<ddr_p> may_alias_ddrs;
271 /* Data Dependence Relations defining address ranges together with segment
272 lengths from which the run-time aliasing check is built. */
273 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
275 /* Check that the addresses of each pair of objects is unequal. */
276 auto_vec<vec_object_pair> check_unequal_addrs;
278 /* Statements in the loop that have data references that are candidates for a
279 runtime (loop versioning) misalignment check. */
280 auto_vec<gimple *> may_misalign_stmts;
282 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
283 auto_vec<gimple *> reductions;
285 /* All reduction chains in the loop, represented by the first
286 stmt in the chain. */
287 auto_vec<gimple *> reduction_chains;
289 /* Cost vector for a single scalar iteration. */
290 auto_vec<stmt_info_for_cost> scalar_cost_vec;
292 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
293 applied to the loop, i.e., no unrolling is needed, this is 1. */
294 unsigned slp_unrolling_factor;
296 /* Cost of a single scalar iteration. */
297 int single_scalar_iteration_cost;
299 /* Is the loop vectorizable? */
300 bool vectorizable;
302 /* When we have grouped data accesses with gaps, we may introduce invalid
303 memory accesses. We peel the last iteration of the loop to prevent
304 this. */
305 bool peeling_for_gaps;
307 /* When the number of iterations is not a multiple of the vector size
308 we need to peel off iterations at the end to form an epilogue loop. */
309 bool peeling_for_niter;
311 /* Reductions are canonicalized so that the last operand is the reduction
312 operand. If this places a constant into RHS1, this decanonicalizes
313 GIMPLE for other phases, so we must track when this has occurred and
314 fix it up. */
315 bool operands_swapped;
317 /* True if there are no loop carried data dependencies in the loop.
318 If loop->safelen <= 1, then this is always true, either the loop
319 didn't have any loop carried data dependencies, or the loop is being
320 vectorized guarded with some runtime alias checks, or couldn't
321 be vectorized at all, but then this field shouldn't be used.
322 For loop->safelen >= 2, the user has asserted that there are no
323 backward dependencies, but there still could be loop carried forward
324 dependencies in such loops. This flag will be false if normal
325 vectorizer data dependency analysis would fail or require versioning
326 for alias, but because of loop->safelen >= 2 it has been vectorized
327 even without versioning for alias. E.g. in:
328 #pragma omp simd
329 for (int i = 0; i < m; i++)
330 a[i] = a[i + k] * c;
331 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
332 DTRT even for k > 0 && k < m, but without safelen we would not
333 vectorize this, so this field would be false. */
334 bool no_data_dependencies;
336 /* Mark loops having masked stores. */
337 bool has_mask_store;
339 /* If if-conversion versioned this loop before conversion, this is the
340 loop version without if-conversion. */
341 struct loop *scalar_loop;
343 /* For loops being epilogues of already vectorized loops
344 this points to the original vectorized loop. Otherwise NULL. */
345 _loop_vec_info *orig_loop_info;
347 } *loop_vec_info;
349 /* Access Functions. */
350 #define LOOP_VINFO_LOOP(L) (L)->loop
351 #define LOOP_VINFO_BBS(L) (L)->bbs
352 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
353 #define LOOP_VINFO_NITERS(L) (L)->num_iters
354 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
355 prologue peeling retain total unchanged scalar loop iterations for
356 cost model. */
357 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
358 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
359 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
360 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
361 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
362 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
363 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
364 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
365 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
366 #define LOOP_VINFO_DDRS(L) (L)->ddrs
367 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
368 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
369 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
370 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
371 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
372 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
373 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
374 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
375 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
376 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
377 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
378 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
379 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
380 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
381 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
382 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
383 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
384 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
385 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
386 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
387 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
388 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
390 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
391 ((L)->may_misalign_stmts.length () > 0)
392 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
393 ((L)->comp_alias_ddrs.length () > 0 \
394 || (L)->check_unequal_addrs.length () > 0)
395 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
396 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
397 #define LOOP_REQUIRES_VERSIONING(L) \
398 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
399 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
400 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
402 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
403 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
405 #define LOOP_VINFO_EPILOGUE_P(L) \
406 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
408 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
409 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
411 static inline loop_vec_info
412 loop_vec_info_for_loop (struct loop *loop)
414 return (loop_vec_info) loop->aux;
417 static inline bool
418 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
420 return (loop->inner
421 && (loop->inner == (gimple_bb (stmt))->loop_father));
424 typedef struct _bb_vec_info : public vec_info
426 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
427 ~_bb_vec_info ();
429 basic_block bb;
430 gimple_stmt_iterator region_begin;
431 gimple_stmt_iterator region_end;
432 } *bb_vec_info;
434 #define BB_VINFO_BB(B) (B)->bb
435 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
436 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
437 #define BB_VINFO_DATAREFS(B) (B)->datarefs
438 #define BB_VINFO_DDRS(B) (B)->ddrs
439 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
441 static inline bb_vec_info
442 vec_info_for_bb (basic_block bb)
444 return (bb_vec_info) bb->aux;
447 /*-----------------------------------------------------------------*/
448 /* Info on vectorized defs. */
449 /*-----------------------------------------------------------------*/
450 enum stmt_vec_info_type {
451 undef_vec_info_type = 0,
452 load_vec_info_type,
453 store_vec_info_type,
454 shift_vec_info_type,
455 op_vec_info_type,
456 call_vec_info_type,
457 call_simd_clone_vec_info_type,
458 assignment_vec_info_type,
459 condition_vec_info_type,
460 comparison_vec_info_type,
461 reduc_vec_info_type,
462 induc_vec_info_type,
463 type_promotion_vec_info_type,
464 type_demotion_vec_info_type,
465 type_conversion_vec_info_type,
466 loop_exit_ctrl_vec_info_type
469 /* Indicates whether/how a variable is used in the scope of loop/basic
470 block. */
471 enum vect_relevant {
472 vect_unused_in_scope = 0,
474 /* The def is only used outside the loop. */
475 vect_used_only_live,
476 /* The def is in the inner loop, and the use is in the outer loop, and the
477 use is a reduction stmt. */
478 vect_used_in_outer_by_reduction,
479 /* The def is in the inner loop, and the use is in the outer loop (and is
480 not part of reduction). */
481 vect_used_in_outer,
483 /* defs that feed computations that end up (only) in a reduction. These
484 defs may be used by non-reduction stmts, but eventually, any
485 computations/values that are affected by these defs are used to compute
486 a reduction (i.e. don't get stored to memory, for example). We use this
487 to identify computations that we can change the order in which they are
488 computed. */
489 vect_used_by_reduction,
491 vect_used_in_scope
494 /* The type of vectorization that can be applied to the stmt: regular loop-based
495 vectorization; pure SLP - the stmt is a part of SLP instances and does not
496 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
497 a part of SLP instance and also must be loop-based vectorized, since it has
498 uses outside SLP sequences.
500 In the loop context the meanings of pure and hybrid SLP are slightly
501 different. By saying that pure SLP is applied to the loop, we mean that we
502 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
503 vectorized without doing any conceptual unrolling, cause we don't pack
504 together stmts from different iterations, only within a single iteration.
505 Loop hybrid SLP means that we exploit both intra-iteration and
506 inter-iteration parallelism (e.g., number of elements in the vector is 4
507 and the slp-group-size is 2, in which case we don't have enough parallelism
508 within an iteration, so we obtain the rest of the parallelism from subsequent
509 iterations by unrolling the loop by 2). */
510 enum slp_vect_type {
511 loop_vect = 0,
512 pure_slp,
513 hybrid
516 /* Describes how we're going to vectorize an individual load or store,
517 or a group of loads or stores. */
518 enum vect_memory_access_type {
519 /* An access to an invariant address. This is used only for loads. */
520 VMAT_INVARIANT,
522 /* A simple contiguous access. */
523 VMAT_CONTIGUOUS,
525 /* A contiguous access that goes down in memory rather than up,
526 with no additional permutation. This is used only for stores
527 of invariants. */
528 VMAT_CONTIGUOUS_DOWN,
530 /* A simple contiguous access in which the elements need to be permuted
531 after loading or before storing. Only used for loop vectorization;
532 SLP uses separate permutes. */
533 VMAT_CONTIGUOUS_PERMUTE,
535 /* A simple contiguous access in which the elements need to be reversed
536 after loading or before storing. */
537 VMAT_CONTIGUOUS_REVERSE,
539 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
540 VMAT_LOAD_STORE_LANES,
542 /* An access in which each scalar element is loaded or stored
543 individually. */
544 VMAT_ELEMENTWISE,
546 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
547 SLP accesses. Each unrolled iteration uses a contiguous load
548 or store for the whole group, but the groups from separate iterations
549 are combined in the same way as for VMAT_ELEMENTWISE. */
550 VMAT_STRIDED_SLP,
552 /* The access uses gather loads or scatter stores. */
553 VMAT_GATHER_SCATTER
556 typedef struct data_reference *dr_p;
558 typedef struct _stmt_vec_info {
560 enum stmt_vec_info_type type;
562 /* Indicates whether this stmts is part of a computation whose result is
563 used outside the loop. */
564 bool live;
566 /* Stmt is part of some pattern (computation idiom) */
567 bool in_pattern_p;
569 /* Is this statement vectorizable or should it be skipped in (partial)
570 vectorization. */
571 bool vectorizable;
573 /* The stmt to which this info struct refers to. */
574 gimple *stmt;
576 /* The vec_info with respect to which STMT is vectorized. */
577 vec_info *vinfo;
579 /* The vector type to be used for the LHS of this statement. */
580 tree vectype;
582 /* The vectorized version of the stmt. */
583 gimple *vectorized_stmt;
586 /* The following is relevant only for stmts that contain a non-scalar
587 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
588 at most one such data-ref. */
590 /* Information about the data-ref (access function, etc),
591 relative to the inner-most containing loop. */
592 struct data_reference *data_ref_info;
594 /* Information about the data-ref relative to this loop
595 nest (the loop that is being considered for vectorization). */
596 innermost_loop_behavior dr_wrt_vec_loop;
598 /* For loop PHI nodes, the base and evolution part of it. This makes sure
599 this information is still available in vect_update_ivs_after_vectorizer
600 where we may not be able to re-analyze the PHI nodes evolution as
601 peeling for the prologue loop can make it unanalyzable. The evolution
602 part is still correct after peeling, but the base may have changed from
603 the version here. */
604 tree loop_phi_evolution_base_unchanged;
605 tree loop_phi_evolution_part;
607 /* Used for various bookkeeping purposes, generally holding a pointer to
608 some other stmt S that is in some way "related" to this stmt.
609 Current use of this field is:
610 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
611 true): S is the "pattern stmt" that represents (and replaces) the
612 sequence of stmts that constitutes the pattern. Similarly, the
613 related_stmt of the "pattern stmt" points back to this stmt (which is
614 the last stmt in the original sequence of stmts that constitutes the
615 pattern). */
616 gimple *related_stmt;
618 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
619 gimple_seq pattern_def_seq;
621 /* List of datarefs that are known to have the same alignment as the dataref
622 of this stmt. */
623 vec<dr_p> same_align_refs;
625 /* Selected SIMD clone's function info. First vector element
626 is SIMD clone's function decl, followed by a pair of trees (base + step)
627 for linear arguments (pair of NULLs for other arguments). */
628 vec<tree> simd_clone_info;
630 /* Classify the def of this stmt. */
631 enum vect_def_type def_type;
633 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
634 enum slp_vect_type slp_type;
636 /* Interleaving and reduction chains info. */
637 /* First element in the group. */
638 gimple *first_element;
639 /* Pointer to the next element in the group. */
640 gimple *next_element;
641 /* For data-refs, in case that two or more stmts share data-ref, this is the
642 pointer to the previously detected stmt with the same dr. */
643 gimple *same_dr_stmt;
644 /* The size of the group. */
645 unsigned int size;
646 /* For stores, number of stores from this group seen. We vectorize the last
647 one. */
648 unsigned int store_count;
649 /* For loads only, the gap from the previous load. For consecutive loads, GAP
650 is 1. */
651 unsigned int gap;
653 /* The minimum negative dependence distance this stmt participates in
654 or zero if none. */
655 unsigned int min_neg_dist;
657 /* Not all stmts in the loop need to be vectorized. e.g, the increment
658 of the loop induction variable and computation of array indexes. relevant
659 indicates whether the stmt needs to be vectorized. */
660 enum vect_relevant relevant;
662 /* For loads if this is a gather, for stores if this is a scatter. */
663 bool gather_scatter_p;
665 /* True if this is an access with loop-invariant stride. */
666 bool strided_p;
668 /* For both loads and stores. */
669 bool simd_lane_access_p;
671 /* Classifies how the load or store is going to be implemented
672 for loop vectorization. */
673 vect_memory_access_type memory_access_type;
675 /* For reduction loops, this is the type of reduction. */
676 enum vect_reduction_type v_reduc_type;
678 /* For CONST_COND_REDUCTION, record the reduc code. */
679 enum tree_code const_cond_reduc_code;
681 /* On a reduction PHI the reduction type as detected by
682 vect_force_simple_reduction. */
683 enum vect_reduction_type reduc_type;
685 /* On a reduction PHI the def returned by vect_force_simple_reduction.
686 On the def returned by vect_force_simple_reduction the
687 corresponding PHI. */
688 gimple *reduc_def;
690 /* The number of scalar stmt references from active SLP instances. */
691 unsigned int num_slp_uses;
692 } *stmt_vec_info;
694 /* Information about a gather/scatter call. */
695 struct gather_scatter_info {
696 /* The FUNCTION_DECL for the built-in gather/scatter function. */
697 tree decl;
699 /* The loop-invariant base value. */
700 tree base;
702 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
703 tree offset;
705 /* Each offset element should be multiplied by this amount before
706 being added to the base. */
707 int scale;
709 /* The definition type for the vectorized offset. */
710 enum vect_def_type offset_dt;
712 /* The type of the vectorized offset. */
713 tree offset_vectype;
716 /* Access Functions. */
717 #define STMT_VINFO_TYPE(S) (S)->type
718 #define STMT_VINFO_STMT(S) (S)->stmt
719 inline loop_vec_info
720 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
722 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
723 return loop_vinfo;
724 return NULL;
726 inline bb_vec_info
727 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
729 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
730 return bb_vinfo;
731 return NULL;
733 #define STMT_VINFO_RELEVANT(S) (S)->relevant
734 #define STMT_VINFO_LIVE_P(S) (S)->live
735 #define STMT_VINFO_VECTYPE(S) (S)->vectype
736 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
737 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
738 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
739 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
740 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
741 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
742 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
743 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
744 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
746 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
747 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
748 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
749 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
750 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
751 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
752 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
753 (S)->dr_wrt_vec_loop.base_misalignment
754 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
755 (S)->dr_wrt_vec_loop.offset_alignment
756 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
757 (S)->dr_wrt_vec_loop.step_alignment
759 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
760 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
761 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
762 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
763 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
764 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
765 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
766 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
767 #define STMT_VINFO_GROUP_SIZE(S) (S)->size
768 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
769 #define STMT_VINFO_GROUP_GAP(S) (S)->gap
770 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
771 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
772 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
773 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
774 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
775 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
776 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
777 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
779 #define GROUP_FIRST_ELEMENT(S) (S)->first_element
780 #define GROUP_NEXT_ELEMENT(S) (S)->next_element
781 #define GROUP_SIZE(S) (S)->size
782 #define GROUP_STORE_COUNT(S) (S)->store_count
783 #define GROUP_GAP(S) (S)->gap
784 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
786 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
788 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
789 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
790 #define STMT_SLP_TYPE(S) (S)->slp_type
792 struct dataref_aux {
793 int misalignment;
794 /* If true the alignment of base_decl needs to be increased. */
795 bool base_misaligned;
796 tree base_decl;
799 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
801 #define VECT_MAX_COST 1000
803 /* The maximum number of intermediate steps required in multi-step type
804 conversion. */
805 #define MAX_INTERM_CVT_STEPS 3
807 /* The maximum vectorization factor supported by any target (V64QI). */
808 #define MAX_VECTORIZATION_FACTOR 64
810 /* Nonzero if TYPE represents a (scalar) boolean type or type
811 in the middle-end compatible with it (unsigned precision 1 integral
812 types). Used to determine which types should be vectorized as
813 VECTOR_BOOLEAN_TYPE_P. */
815 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
816 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
817 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
818 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
819 && TYPE_PRECISION (TYPE) == 1 \
820 && TYPE_UNSIGNED (TYPE)))
822 extern vec<stmt_vec_info> stmt_vec_info_vec;
824 void init_stmt_vec_info_vec (void);
825 void free_stmt_vec_info_vec (void);
827 /* Return a stmt_vec_info corresponding to STMT. */
829 static inline stmt_vec_info
830 vinfo_for_stmt (gimple *stmt)
832 int uid = gimple_uid (stmt);
833 if (uid <= 0)
834 return NULL;
836 return stmt_vec_info_vec[uid - 1];
839 /* Set vectorizer information INFO for STMT. */
841 static inline void
842 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
844 unsigned int uid = gimple_uid (stmt);
845 if (uid == 0)
847 gcc_checking_assert (info);
848 uid = stmt_vec_info_vec.length () + 1;
849 gimple_set_uid (stmt, uid);
850 stmt_vec_info_vec.safe_push (info);
852 else
854 gcc_checking_assert (info == NULL);
855 stmt_vec_info_vec[uid - 1] = info;
859 /* Return the earlier statement between STMT1 and STMT2. */
861 static inline gimple *
862 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
864 unsigned int uid1, uid2;
866 if (stmt1 == NULL)
867 return stmt2;
869 if (stmt2 == NULL)
870 return stmt1;
872 uid1 = gimple_uid (stmt1);
873 uid2 = gimple_uid (stmt2);
875 if (uid1 == 0 || uid2 == 0)
876 return NULL;
878 gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
879 && uid2 <= stmt_vec_info_vec.length ());
881 if (uid1 < uid2)
882 return stmt1;
883 else
884 return stmt2;
887 /* Return the later statement between STMT1 and STMT2. */
889 static inline gimple *
890 get_later_stmt (gimple *stmt1, gimple *stmt2)
892 unsigned int uid1, uid2;
894 if (stmt1 == NULL)
895 return stmt2;
897 if (stmt2 == NULL)
898 return stmt1;
900 uid1 = gimple_uid (stmt1);
901 uid2 = gimple_uid (stmt2);
903 if (uid1 == 0 || uid2 == 0)
904 return NULL;
906 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
907 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
909 if (uid1 > uid2)
910 return stmt1;
911 else
912 return stmt2;
915 /* Return TRUE if a statement represented by STMT_INFO is a part of a
916 pattern. */
918 static inline bool
919 is_pattern_stmt_p (stmt_vec_info stmt_info)
921 gimple *related_stmt;
922 stmt_vec_info related_stmt_info;
924 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
925 if (related_stmt
926 && (related_stmt_info = vinfo_for_stmt (related_stmt))
927 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
928 return true;
930 return false;
933 /* Return true if BB is a loop header. */
935 static inline bool
936 is_loop_header_bb_p (basic_block bb)
938 if (bb == (bb->loop_father)->header)
939 return true;
940 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
941 return false;
944 /* Return pow2 (X). */
946 static inline int
947 vect_pow2 (int x)
949 int i, res = 1;
951 for (i = 0; i < x; i++)
952 res *= 2;
954 return res;
957 /* Alias targetm.vectorize.builtin_vectorization_cost. */
959 static inline int
960 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
961 tree vectype, int misalign)
963 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
964 vectype, misalign);
967 /* Get cost by calling cost target builtin. */
969 static inline
970 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
972 return builtin_vectorization_cost (type_of_cost, NULL, 0);
975 /* Alias targetm.vectorize.init_cost. */
977 static inline void *
978 init_cost (struct loop *loop_info)
980 return targetm.vectorize.init_cost (loop_info);
983 /* Alias targetm.vectorize.add_stmt_cost. */
985 static inline unsigned
986 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
987 stmt_vec_info stmt_info, int misalign,
988 enum vect_cost_model_location where)
990 return targetm.vectorize.add_stmt_cost (data, count, kind,
991 stmt_info, misalign, where);
994 /* Alias targetm.vectorize.finish_cost. */
996 static inline void
997 finish_cost (void *data, unsigned *prologue_cost,
998 unsigned *body_cost, unsigned *epilogue_cost)
1000 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1003 /* Alias targetm.vectorize.destroy_cost_data. */
1005 static inline void
1006 destroy_cost_data (void *data)
1008 targetm.vectorize.destroy_cost_data (data);
1011 /*-----------------------------------------------------------------*/
1012 /* Info on data references alignment. */
1013 /*-----------------------------------------------------------------*/
1014 inline void
1015 set_dr_misalignment (struct data_reference *dr, int val)
1017 dataref_aux *data_aux = DR_VECT_AUX (dr);
1019 if (!data_aux)
1021 data_aux = XCNEW (dataref_aux);
1022 dr->aux = data_aux;
1025 data_aux->misalignment = val;
1028 inline int
1029 dr_misalignment (struct data_reference *dr)
1031 return DR_VECT_AUX (dr)->misalignment;
1034 /* Reflects actual alignment of first access in the vectorized loop,
1035 taking into account peeling/versioning if applied. */
1036 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1037 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1038 #define DR_MISALIGNMENT_UNKNOWN (-1)
1040 /* Return TRUE if the data access is aligned, and FALSE otherwise. */
1042 static inline bool
1043 aligned_access_p (struct data_reference *data_ref_info)
1045 return (DR_MISALIGNMENT (data_ref_info) == 0);
1048 /* Return TRUE if the alignment of the data access is known, and FALSE
1049 otherwise. */
1051 static inline bool
1052 known_alignment_for_access_p (struct data_reference *data_ref_info)
1054 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1057 /* Return the behavior of DR with respect to the vectorization context
1058 (which for outer loop vectorization might not be the behavior recorded
1059 in DR itself). */
1061 static inline innermost_loop_behavior *
1062 vect_dr_behavior (data_reference *dr)
1064 gimple *stmt = DR_STMT (dr);
1065 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1066 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1067 if (loop_vinfo == NULL
1068 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1069 return &DR_INNERMOST (dr);
1070 else
1071 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1074 /* Return true if the vect cost model is unlimited. */
1075 static inline bool
1076 unlimited_cost_model (loop_p loop)
1078 if (loop != NULL && loop->force_vectorize
1079 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1080 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1081 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1084 /* Return the number of copies needed for loop vectorization when
1085 a statement operates on vectors of type VECTYPE. This is the
1086 vectorization factor divided by the number of elements in
1087 VECTYPE and is always known at compile time. */
1089 static inline unsigned int
1090 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1092 gcc_checking_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1093 % TYPE_VECTOR_SUBPARTS (vectype) == 0);
1094 return (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1095 / TYPE_VECTOR_SUBPARTS (vectype));
1098 /* Source location */
1099 extern source_location vect_location;
1101 /*-----------------------------------------------------------------*/
1102 /* Function prototypes. */
1103 /*-----------------------------------------------------------------*/
1105 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1106 in tree-vect-loop-manip.c. */
1107 extern void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
1108 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1109 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1110 struct loop *, edge);
1111 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool);
1112 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1113 tree *, int, bool, bool);
1114 extern source_location find_loop_location (struct loop *);
1115 extern bool vect_can_advance_ivs_p (loop_vec_info);
1117 /* In tree-vect-stmts.c. */
1118 extern unsigned int current_vector_size;
1119 extern tree get_vectype_for_scalar_type (tree);
1120 extern tree get_mask_type_for_scalar_type (tree);
1121 extern tree get_same_sized_vectype (tree, tree);
1122 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1123 enum vect_def_type *);
1124 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1125 enum vect_def_type *, tree *);
1126 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1127 tree, enum tree_code *,
1128 enum tree_code *, int *,
1129 vec<tree> *);
1130 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1131 enum tree_code *,
1132 int *, vec<tree> *);
1133 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1134 extern void free_stmt_vec_info (gimple *stmt);
1135 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1136 int, stmt_vector_for_cost *,
1137 stmt_vector_for_cost *);
1138 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
1139 enum vect_def_type, slp_tree,
1140 stmt_vector_for_cost *,
1141 stmt_vector_for_cost *);
1142 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
1143 slp_tree, stmt_vector_for_cost *,
1144 stmt_vector_for_cost *);
1145 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1146 enum vect_cost_for_stmt, stmt_vec_info,
1147 int, enum vect_cost_model_location);
1148 extern void vect_finish_stmt_generation (gimple *, gimple *,
1149 gimple_stmt_iterator *);
1150 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1151 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1152 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1153 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1154 vec<tree> *, slp_tree);
1155 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1156 vec<tree> *, vec<tree> *);
1157 extern tree vect_init_vector (gimple *, tree, tree,
1158 gimple_stmt_iterator *);
1159 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1160 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1161 bool *, slp_tree, slp_instance);
1162 extern void vect_remove_stores (gimple *);
1163 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
1164 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1165 gimple **, tree, int, slp_tree);
1166 extern void vect_get_load_cost (struct data_reference *, int, bool,
1167 unsigned int *, unsigned int *,
1168 stmt_vector_for_cost *,
1169 stmt_vector_for_cost *, bool);
1170 extern void vect_get_store_cost (struct data_reference *, int,
1171 unsigned int *, stmt_vector_for_cost *);
1172 extern bool vect_supportable_shift (enum tree_code, tree);
1173 extern tree vect_gen_perm_mask_any (tree, vec_perm_indices);
1174 extern tree vect_gen_perm_mask_checked (tree, vec_perm_indices);
1175 extern void optimize_mask_stores (struct loop*);
1177 /* In tree-vect-data-refs.c. */
1178 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1179 extern enum dr_alignment_support vect_supportable_dr_alignment
1180 (struct data_reference *, bool);
1181 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1182 HOST_WIDE_INT *);
1183 extern bool vect_analyze_data_ref_dependences (loop_vec_info, int *);
1184 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1185 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1186 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1187 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1188 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1189 extern bool vect_analyze_data_ref_accesses (vec_info *);
1190 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1191 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1192 gather_scatter_info *);
1193 extern bool vect_analyze_data_refs (vec_info *, int *);
1194 extern void vect_record_base_alignments (vec_info *);
1195 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1196 tree *, gimple_stmt_iterator *,
1197 gimple **, bool, bool *,
1198 tree = NULL_TREE);
1199 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1200 tree);
1201 extern tree vect_create_destination_var (tree, tree);
1202 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1203 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT);
1204 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1205 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT);
1206 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1207 gimple_stmt_iterator *, vec<tree> *);
1208 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1209 enum dr_alignment_support, tree,
1210 struct loop **);
1211 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1212 gimple_stmt_iterator *);
1213 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1214 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1215 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1216 const char * = NULL);
1217 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1218 tree, tree = NULL_TREE);
1220 /* In tree-vect-loop.c. */
1221 /* FORNOW: Used in tree-parloops.c. */
1222 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1223 bool *, bool);
1224 /* Drive for loop analysis stage. */
1225 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1226 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1227 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *, bool);
1228 /* Drive for loop transformation stage. */
1229 extern struct loop *vect_transform_loop (loop_vec_info);
1230 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1231 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1232 slp_tree, int, gimple **);
1233 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1234 gimple **, slp_tree, slp_instance);
1235 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1236 gimple **, slp_tree);
1237 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1238 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1239 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1240 stmt_vector_for_cost *,
1241 stmt_vector_for_cost *,
1242 stmt_vector_for_cost *);
1244 /* In tree-vect-slp.c. */
1245 extern void vect_free_slp_instance (slp_instance);
1246 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1247 gimple_stmt_iterator *, int,
1248 slp_instance, bool, unsigned *);
1249 extern bool vect_slp_analyze_operations (vec_info *);
1250 extern bool vect_schedule_slp (vec_info *);
1251 extern bool vect_analyze_slp (vec_info *, unsigned);
1252 extern bool vect_make_slp_decision (loop_vec_info);
1253 extern void vect_detect_hybrid_slp (loop_vec_info);
1254 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1255 extern bool vect_slp_bb (basic_block);
1256 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1257 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1259 /* In tree-vect-patterns.c. */
1260 /* Pattern recognition functions.
1261 Additional pattern recognition functions can (and will) be added
1262 in the future. */
1263 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1264 #define NUM_PATTERNS 14
1265 void vect_pattern_recog (vec_info *);
1267 /* In tree-vectorizer.c. */
1268 unsigned vectorize_loops (void);
1269 bool vect_stmt_in_region_p (vec_info *, gimple *);
1270 void vect_free_loop_info_assumptions (struct loop *);
1272 #endif /* GCC_TREE_VECTORIZER_H */