1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
28 #include "insn-config.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx
, const_rtx
, void *);
43 static bool covers_regno_p (const_rtx
, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
45 static int rtx_referenced_p_1 (rtx
*, void *);
46 static int computed_jump_p_1 (const_rtx
);
47 static void parms_set (rtx
, const_rtx
, void *);
49 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
50 const_rtx
, enum machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
53 const_rtx
, enum machine_mode
,
54 unsigned HOST_WIDE_INT
);
55 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
58 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
59 enum machine_mode
, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
79 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
87 rtx_unstable_p (const_rtx x
)
89 const RTX_CODE code
= GET_CODE (x
);
96 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
118 if (MEM_VOLATILE_P (x
))
127 fmt
= GET_RTX_FORMAT (code
);
128 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
131 if (rtx_unstable_p (XEXP (x
, i
)))
134 else if (fmt
[i
] == 'E')
137 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
138 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
153 rtx_varies_p (const_rtx x
, bool for_alias
)
166 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
179 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
183 if (x
== pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
197 || rtx_varies_p (XEXP (x
, 1), for_alias
);
200 if (MEM_VOLATILE_P (x
))
209 fmt
= GET_RTX_FORMAT (code
);
210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
213 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
216 else if (fmt
[i
] == 'E')
219 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
220 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
233 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
234 enum machine_mode mode
, bool unaligned_mems
)
236 enum rtx_code code
= GET_CODE (x
);
240 && GET_MODE_SIZE (mode
) != 0)
242 HOST_WIDE_INT actual_offset
= offset
;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
249 actual_offset
-= STACK_POINTER_OFFSET
;
252 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
259 if (SYMBOL_REF_WEAK (x
))
261 if (!CONSTANT_POOL_ADDRESS_P (x
))
264 HOST_WIDE_INT decl_size
;
269 size
= GET_MODE_SIZE (mode
);
273 /* If the size of the access or of the symbol is unknown,
275 decl
= SYMBOL_REF_DECL (x
);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
281 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
282 decl_size
= (tree_fits_shwi_p (DECL_SIZE_UNIT (decl
))
283 ? tree_to_shwi (DECL_SIZE_UNIT (decl
))
285 else if (TREE_CODE (decl
) == STRING_CST
)
286 decl_size
= TREE_STRING_LENGTH (decl
);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
288 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
292 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
303 || x
== stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
314 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
315 mode
, unaligned_mems
);
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x
, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
328 size
, mode
, unaligned_mems
))
335 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
336 mode
, unaligned_mems
);
343 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
344 mode
, unaligned_mems
);
350 /* If it isn't one of the case above, it can cause a trap. */
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x
)
359 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
362 /* Return true if X is an address that is known to not be zero. */
365 nonzero_address_p (const_rtx x
)
367 const enum rtx_code code
= GET_CODE (x
);
372 return !SYMBOL_REF_WEAK (x
);
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
380 || x
== stack_pointer_rtx
381 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
390 return nonzero_address_p (XEXP (x
, 0));
393 /* Handle PIC references. */
394 if (XEXP (x
, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x
, 1)))
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
403 if (CONST_INT_P (XEXP (x
, 1))
404 && INTVAL (XEXP (x
, 1)) > 0)
406 return nonzero_address_p (XEXP (x
, 0));
409 /* Similarly. Further, the offset is always positive. */
416 return nonzero_address_p (XEXP (x
, 0));
419 return nonzero_address_p (XEXP (x
, 1));
425 /* If it isn't one of the case above, might be zero. */
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
436 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
447 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
449 fmt
= GET_RTX_FORMAT (code
);
450 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
453 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
456 else if (fmt
[i
] == 'E')
459 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
460 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x
)
473 if (GET_CODE (x
) == PARALLEL
)
474 x
= XVECEXP (x
, 0, 0);
475 if (GET_CODE (x
) == SET
)
477 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
482 /* Return the value of the integer term in X, if one is apparent;
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
488 get_integer_term (const_rtx x
)
490 if (GET_CODE (x
) == CONST
)
493 if (GET_CODE (x
) == MINUS
494 && CONST_INT_P (XEXP (x
, 1)))
495 return - INTVAL (XEXP (x
, 1));
496 if (GET_CODE (x
) == PLUS
497 && CONST_INT_P (XEXP (x
, 1)))
498 return INTVAL (XEXP (x
, 1));
502 /* If X is a constant, return the value sans apparent integer term;
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x
)
509 if (GET_CODE (x
) != CONST
)
512 if (GET_CODE (x
) == PLUS
513 && CONST_INT_P (XEXP (x
, 1)))
515 else if (GET_CODE (x
) == MINUS
516 && CONST_INT_P (XEXP (x
, 1)))
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
525 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
529 if (GET_CODE (symbol
) != SYMBOL_REF
)
537 if (CONSTANT_POOL_ADDRESS_P (symbol
)
538 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
541 decl
= SYMBOL_REF_DECL (symbol
);
542 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
547 && SYMBOL_REF_BLOCK (symbol
)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
549 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
550 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
560 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
562 if (GET_CODE (x
) == CONST
)
565 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
567 *base_out
= XEXP (x
, 0);
568 *offset_out
= XEXP (x
, 1);
573 *offset_out
= const0_rtx
;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
584 const char *format_ptr
;
603 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
605 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
609 if (MEM_P (find
) && rtx_equal_p (x
, find
))
614 if (SET_DEST (x
) == find
&& ! count_dest
)
615 return count_occurrences (SET_SRC (x
), find
, count_dest
);
622 format_ptr
= GET_RTX_FORMAT (code
);
625 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
627 switch (*format_ptr
++)
630 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
634 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
635 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
647 unsigned_reg_p (rtx op
)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
654 if (GET_CODE (op
) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op
))
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg
, const_rtx in
)
679 if (GET_CODE (in
) == LABEL_REF
)
680 return reg
== XEXP (in
, 0);
682 code
= GET_CODE (in
);
686 /* Compare registers by number. */
688 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
690 /* These codes have no constituent expressions
698 /* These are kept unique for a given value. */
705 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
708 fmt
= GET_RTX_FORMAT (code
);
710 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
715 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
716 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
719 else if (fmt
[i
] == 'e'
720 && reg_mentioned_p (reg
, XEXP (in
, i
)))
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg
, const_rtx end
)
735 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
749 if (from_insn
== to_insn
)
752 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
753 if (NONDEBUG_INSN_P (insn
)
754 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
755 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x
, const_rtx body
)
769 switch (GET_CODE (body
))
772 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body
)) != CC0
779 && GET_CODE (SET_DEST (body
)) != PC
780 && !REG_P (SET_DEST (body
))
781 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body
)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
784 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
786 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
787 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
792 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
793 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
800 return reg_overlap_mentioned_p (x
, body
);
803 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
806 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
809 case UNSPEC_VOLATILE
:
810 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
811 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
816 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
817 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
822 if (MEM_P (XEXP (body
, 0)))
823 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
828 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
830 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
845 if (from_insn
== to_insn
)
848 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
849 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg
, const_rtx insn
)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
861 && (FIND_REG_INC_NOTE (insn
, reg
)
864 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
866 GET_MODE (reg
), REGNO (reg
)))
868 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
871 return set_of (reg
, insn
) != NULL_RTX
;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
881 const enum rtx_code code
= GET_CODE (x
);
902 if (modified_between_p (XEXP (x
, 0), start
, end
))
904 if (MEM_READONLY_P (x
))
906 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
907 if (memory_modified_in_insn_p (x
, insn
))
913 return reg_set_between_p (x
, start
, end
);
919 fmt
= GET_RTX_FORMAT (code
);
920 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
922 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
925 else if (fmt
[i
] == 'E')
926 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
927 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x
, const_rtx insn
)
941 const enum rtx_code code
= GET_CODE (x
);
958 if (modified_in_p (XEXP (x
, 0), insn
))
960 if (MEM_READONLY_P (x
))
962 if (memory_modified_in_insn_p (x
, insn
))
968 return reg_set_p (x
, insn
);
974 fmt
= GET_RTX_FORMAT (code
);
975 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
977 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
980 else if (fmt
[i
] == 'E')
981 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
982 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
989 /* Helper function for set_of. */
997 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
999 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1000 if (rtx_equal_p (x
, data
->pat
)
1001 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1008 set_of (const_rtx pat
, const_rtx insn
)
1010 struct set_of_data data
;
1011 data
.found
= NULL_RTX
;
1013 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1021 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1023 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1024 if (REG_P (x
) && HARD_REGISTER_P (x
))
1025 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1031 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
)
1035 CLEAR_HARD_REG_SET (*pset
);
1036 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1038 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1039 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1040 if (REG_NOTE_KIND (link
) == REG_INC
)
1041 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1046 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1049 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1051 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1053 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1055 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1062 record_hard_reg_uses (rtx
*px
, void *data
)
1064 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn
, const_rtx pat
)
1075 int set_verified
= 1;
1078 if (GET_CODE (pat
) == PARALLEL
)
1080 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1082 rtx sub
= XVECEXP (pat
, 0, i
);
1083 switch (GET_CODE (sub
))
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1100 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1101 && !side_effects_p (set
))
1107 set
= sub
, set_verified
= 0;
1108 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1109 || side_effects_p (sub
))
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1125 multiple_sets (const_rtx insn
)
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn
))
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1137 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1140 /* If we have already found a SET, then return now. */
1148 /* Either zero or one SET. */
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set
)
1158 rtx src
= SET_SRC (set
);
1159 rtx dst
= SET_DEST (set
);
1161 if (dst
== pc_rtx
&& src
== pc_rtx
)
1164 if (MEM_P (dst
) && MEM_P (src
))
1165 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1167 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1168 return rtx_equal_p (XEXP (dst
, 0), src
)
1169 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1170 && !side_effects_p (src
);
1172 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1173 dst
= XEXP (dst
, 0);
1175 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1177 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1179 src
= SUBREG_REG (src
);
1180 dst
= SUBREG_REG (dst
);
1183 /* It is a NOOP if destination overlaps with selected src vector
1185 if (GET_CODE (src
) == VEC_SELECT
1186 && REG_P (XEXP (src
, 0)) && REG_P (dst
)
1187 && HARD_REGISTER_P (XEXP (src
, 0))
1188 && HARD_REGISTER_P (dst
))
1191 rtx par
= XEXP (src
, 1);
1192 rtx src0
= XEXP (src
, 0);
1193 int c0
= INTVAL (XVECEXP (par
, 0, 0));
1194 HOST_WIDE_INT offset
= GET_MODE_UNIT_SIZE (GET_MODE (src0
)) * c0
;
1196 for (i
= 1; i
< XVECLEN (par
, 0); i
++)
1197 if (INTVAL (XVECEXP (par
, 0, i
)) != c0
+ i
)
1200 simplify_subreg_regno (REGNO (src0
), GET_MODE (src0
),
1201 offset
, GET_MODE (dst
)) == (int) REGNO (dst
);
1204 return (REG_P (src
) && REG_P (dst
)
1205 && REGNO (src
) == REGNO (dst
));
1208 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1212 noop_move_p (const_rtx insn
)
1214 rtx pat
= PATTERN (insn
);
1216 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1219 /* Insns carrying these notes are useful later on. */
1220 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1223 /* Check the code to be executed for COND_EXEC. */
1224 if (GET_CODE (pat
) == COND_EXEC
)
1225 pat
= COND_EXEC_CODE (pat
);
1227 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1230 if (GET_CODE (pat
) == PARALLEL
)
1233 /* If nothing but SETs of registers to themselves,
1234 this insn can also be deleted. */
1235 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1237 rtx tem
= XVECEXP (pat
, 0, i
);
1239 if (GET_CODE (tem
) == USE
1240 || GET_CODE (tem
) == CLOBBER
)
1243 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1253 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1254 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1255 If the object was modified, if we hit a partial assignment to X, or hit a
1256 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1257 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1261 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1265 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1269 rtx set
= single_set (p
);
1270 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1272 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1274 rtx src
= SET_SRC (set
);
1276 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1277 src
= XEXP (note
, 0);
1279 if ((valid_to
== NULL_RTX
1280 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1281 /* Reject hard registers because we don't usually want
1282 to use them; we'd rather use a pseudo. */
1284 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1291 /* If set in non-simple way, we don't have a value. */
1292 if (reg_set_p (x
, p
))
1299 /* Return nonzero if register in range [REGNO, ENDREGNO)
1300 appears either explicitly or implicitly in X
1301 other than being stored into.
1303 References contained within the substructure at LOC do not count.
1304 LOC may be zero, meaning don't ignore anything. */
1307 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1311 unsigned int x_regno
;
1316 /* The contents of a REG_NONNEG note is always zero, so we must come here
1317 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1321 code
= GET_CODE (x
);
1326 x_regno
= REGNO (x
);
1328 /* If we modifying the stack, frame, or argument pointer, it will
1329 clobber a virtual register. In fact, we could be more precise,
1330 but it isn't worth it. */
1331 if ((x_regno
== STACK_POINTER_REGNUM
1332 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1333 || x_regno
== ARG_POINTER_REGNUM
1335 || x_regno
== FRAME_POINTER_REGNUM
)
1336 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1339 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1342 /* If this is a SUBREG of a hard reg, we can see exactly which
1343 registers are being modified. Otherwise, handle normally. */
1344 if (REG_P (SUBREG_REG (x
))
1345 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1347 unsigned int inner_regno
= subreg_regno (x
);
1348 unsigned int inner_endregno
1349 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1350 ? subreg_nregs (x
) : 1);
1352 return endregno
> inner_regno
&& regno
< inner_endregno
;
1358 if (&SET_DEST (x
) != loc
1359 /* Note setting a SUBREG counts as referring to the REG it is in for
1360 a pseudo but not for hard registers since we can
1361 treat each word individually. */
1362 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1363 && loc
!= &SUBREG_REG (SET_DEST (x
))
1364 && REG_P (SUBREG_REG (SET_DEST (x
)))
1365 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1366 && refers_to_regno_p (regno
, endregno
,
1367 SUBREG_REG (SET_DEST (x
)), loc
))
1368 || (!REG_P (SET_DEST (x
))
1369 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1372 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1381 /* X does not match, so try its subexpressions. */
1383 fmt
= GET_RTX_FORMAT (code
);
1384 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1386 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1394 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1397 else if (fmt
[i
] == 'E')
1400 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1401 if (loc
!= &XVECEXP (x
, i
, j
)
1402 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1409 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1410 we check if any register number in X conflicts with the relevant register
1411 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1412 contains a MEM (we don't bother checking for memory addresses that can't
1413 conflict because we expect this to be a rare case. */
1416 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1418 unsigned int regno
, endregno
;
1420 /* If either argument is a constant, then modifying X can not
1421 affect IN. Here we look at IN, we can profitably combine
1422 CONSTANT_P (x) with the switch statement below. */
1423 if (CONSTANT_P (in
))
1427 switch (GET_CODE (x
))
1429 case STRICT_LOW_PART
:
1432 /* Overly conservative. */
1437 regno
= REGNO (SUBREG_REG (x
));
1438 if (regno
< FIRST_PSEUDO_REGISTER
)
1439 regno
= subreg_regno (x
);
1440 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1441 ? subreg_nregs (x
) : 1);
1446 endregno
= END_REGNO (x
);
1448 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1458 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1459 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1462 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1465 else if (fmt
[i
] == 'E')
1468 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1469 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1479 return reg_mentioned_p (x
, in
);
1485 /* If any register in here refers to it we return true. */
1486 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1487 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1488 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1494 gcc_assert (CONSTANT_P (x
));
1499 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1500 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1501 ignored by note_stores, but passed to FUN.
1503 FUN receives three arguments:
1504 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1505 2. the SET or CLOBBER rtx that does the store,
1506 3. the pointer DATA provided to note_stores.
1508 If the item being stored in or clobbered is a SUBREG of a hard register,
1509 the SUBREG will be passed. */
1512 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1516 if (GET_CODE (x
) == COND_EXEC
)
1517 x
= COND_EXEC_CODE (x
);
1519 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1521 rtx dest
= SET_DEST (x
);
1523 while ((GET_CODE (dest
) == SUBREG
1524 && (!REG_P (SUBREG_REG (dest
))
1525 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1526 || GET_CODE (dest
) == ZERO_EXTRACT
1527 || GET_CODE (dest
) == STRICT_LOW_PART
)
1528 dest
= XEXP (dest
, 0);
1530 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1531 each of whose first operand is a register. */
1532 if (GET_CODE (dest
) == PARALLEL
)
1534 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1535 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1536 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1539 (*fun
) (dest
, x
, data
);
1542 else if (GET_CODE (x
) == PARALLEL
)
1543 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1544 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1547 /* Like notes_stores, but call FUN for each expression that is being
1548 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1549 FUN for each expression, not any interior subexpressions. FUN receives a
1550 pointer to the expression and the DATA passed to this function.
1552 Note that this is not quite the same test as that done in reg_referenced_p
1553 since that considers something as being referenced if it is being
1554 partially set, while we do not. */
1557 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1562 switch (GET_CODE (body
))
1565 (*fun
) (&COND_EXEC_TEST (body
), data
);
1566 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1570 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1571 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1575 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1576 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1580 (*fun
) (&XEXP (body
, 0), data
);
1584 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1585 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1589 (*fun
) (&TRAP_CONDITION (body
), data
);
1593 (*fun
) (&XEXP (body
, 0), data
);
1597 case UNSPEC_VOLATILE
:
1598 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1599 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1603 if (MEM_P (XEXP (body
, 0)))
1604 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1609 rtx dest
= SET_DEST (body
);
1611 /* For sets we replace everything in source plus registers in memory
1612 expression in store and operands of a ZERO_EXTRACT. */
1613 (*fun
) (&SET_SRC (body
), data
);
1615 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1617 (*fun
) (&XEXP (dest
, 1), data
);
1618 (*fun
) (&XEXP (dest
, 2), data
);
1621 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1622 dest
= XEXP (dest
, 0);
1625 (*fun
) (&XEXP (dest
, 0), data
);
1630 /* All the other possibilities never store. */
1631 (*fun
) (pbody
, data
);
1636 /* Return nonzero if X's old contents don't survive after INSN.
1637 This will be true if X is (cc0) or if X is a register and
1638 X dies in INSN or because INSN entirely sets X.
1640 "Entirely set" means set directly and not through a SUBREG, or
1641 ZERO_EXTRACT, so no trace of the old contents remains.
1642 Likewise, REG_INC does not count.
1644 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1645 but for this use that makes no difference, since regs don't overlap
1646 during their lifetimes. Therefore, this function may be used
1647 at any time after deaths have been computed.
1649 If REG is a hard reg that occupies multiple machine registers, this
1650 function will only return 1 if each of those registers will be replaced
1654 dead_or_set_p (const_rtx insn
, const_rtx x
)
1656 unsigned int regno
, end_regno
;
1659 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1660 if (GET_CODE (x
) == CC0
)
1663 gcc_assert (REG_P (x
));
1666 end_regno
= END_REGNO (x
);
1667 for (i
= regno
; i
< end_regno
; i
++)
1668 if (! dead_or_set_regno_p (insn
, i
))
1674 /* Return TRUE iff DEST is a register or subreg of a register and
1675 doesn't change the number of words of the inner register, and any
1676 part of the register is TEST_REGNO. */
1679 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1681 unsigned int regno
, endregno
;
1683 if (GET_CODE (dest
) == SUBREG
1684 && (((GET_MODE_SIZE (GET_MODE (dest
))
1685 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1686 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1687 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1688 dest
= SUBREG_REG (dest
);
1693 regno
= REGNO (dest
);
1694 endregno
= END_REGNO (dest
);
1695 return (test_regno
>= regno
&& test_regno
< endregno
);
1698 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1699 any member matches the covers_regno_no_parallel_p criteria. */
1702 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1704 if (GET_CODE (dest
) == PARALLEL
)
1706 /* Some targets place small structures in registers for return
1707 values of functions, and those registers are wrapped in
1708 PARALLELs that we may see as the destination of a SET. */
1711 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1713 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1714 if (inner
!= NULL_RTX
1715 && covers_regno_no_parallel_p (inner
, test_regno
))
1722 return covers_regno_no_parallel_p (dest
, test_regno
);
1725 /* Utility function for dead_or_set_p to check an individual register. */
1728 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1732 /* See if there is a death note for something that includes TEST_REGNO. */
1733 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1737 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1740 pattern
= PATTERN (insn
);
1742 /* If a COND_EXEC is not executed, the value survives. */
1743 if (GET_CODE (pattern
) == COND_EXEC
)
1746 if (GET_CODE (pattern
) == SET
)
1747 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1748 else if (GET_CODE (pattern
) == PARALLEL
)
1752 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1754 rtx body
= XVECEXP (pattern
, 0, i
);
1756 if (GET_CODE (body
) == COND_EXEC
)
1757 body
= COND_EXEC_CODE (body
);
1759 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1760 && covers_regno_p (SET_DEST (body
), test_regno
))
1768 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1769 If DATUM is nonzero, look for one whose datum is DATUM. */
1772 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1776 gcc_checking_assert (insn
);
1778 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1779 if (! INSN_P (insn
))
1783 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1784 if (REG_NOTE_KIND (link
) == kind
)
1789 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1790 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1795 /* Return the reg-note of kind KIND in insn INSN which applies to register
1796 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1797 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1798 it might be the case that the note overlaps REGNO. */
1801 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1805 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1806 if (! INSN_P (insn
))
1809 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1810 if (REG_NOTE_KIND (link
) == kind
1811 /* Verify that it is a register, so that scratch and MEM won't cause a
1813 && REG_P (XEXP (link
, 0))
1814 && REGNO (XEXP (link
, 0)) <= regno
1815 && END_REGNO (XEXP (link
, 0)) > regno
)
1820 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1824 find_reg_equal_equiv_note (const_rtx insn
)
1831 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1832 if (REG_NOTE_KIND (link
) == REG_EQUAL
1833 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1835 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1836 insns that have multiple sets. Checking single_set to
1837 make sure of this is not the proper check, as explained
1838 in the comment in set_unique_reg_note.
1840 This should be changed into an assert. */
1841 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1848 /* Check whether INSN is a single_set whose source is known to be
1849 equivalent to a constant. Return that constant if so, otherwise
1853 find_constant_src (const_rtx insn
)
1857 set
= single_set (insn
);
1860 x
= avoid_constant_pool_reference (SET_SRC (set
));
1865 note
= find_reg_equal_equiv_note (insn
);
1866 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1867 return XEXP (note
, 0);
1872 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1873 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1876 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1878 /* If it's not a CALL_INSN, it can't possibly have a
1879 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1889 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1891 link
= XEXP (link
, 1))
1892 if (GET_CODE (XEXP (link
, 0)) == code
1893 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1898 unsigned int regno
= REGNO (datum
);
1900 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1901 to pseudo registers, so don't bother checking. */
1903 if (regno
< FIRST_PSEUDO_REGISTER
)
1905 unsigned int end_regno
= END_HARD_REGNO (datum
);
1908 for (i
= regno
; i
< end_regno
; i
++)
1909 if (find_regno_fusage (insn
, code
, i
))
1917 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1918 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1921 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1925 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1926 to pseudo registers, so don't bother checking. */
1928 if (regno
>= FIRST_PSEUDO_REGISTER
1932 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1936 if (GET_CODE (op
= XEXP (link
, 0)) == code
1937 && REG_P (reg
= XEXP (op
, 0))
1938 && REGNO (reg
) <= regno
1939 && END_HARD_REGNO (reg
) > regno
)
1947 /* Return true if KIND is an integer REG_NOTE. */
1950 int_reg_note_p (enum reg_note kind
)
1952 return kind
== REG_BR_PROB
;
1955 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1956 stored as the pointer to the next register note. */
1959 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1963 gcc_checking_assert (!int_reg_note_p (kind
));
1968 case REG_LABEL_TARGET
:
1969 case REG_LABEL_OPERAND
:
1971 /* These types of register notes use an INSN_LIST rather than an
1972 EXPR_LIST, so that copying is done right and dumps look
1974 note
= alloc_INSN_LIST (datum
, list
);
1975 PUT_REG_NOTE_KIND (note
, kind
);
1979 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1986 /* Add register note with kind KIND and datum DATUM to INSN. */
1989 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1991 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1994 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
1997 add_int_reg_note (rtx insn
, enum reg_note kind
, int datum
)
1999 gcc_checking_assert (int_reg_note_p (kind
));
2000 REG_NOTES (insn
) = gen_rtx_INT_LIST ((enum machine_mode
) kind
,
2001 datum
, REG_NOTES (insn
));
2004 /* Add a register note like NOTE to INSN. */
2007 add_shallow_copy_of_reg_note (rtx insn
, rtx note
)
2009 if (GET_CODE (note
) == INT_LIST
)
2010 add_int_reg_note (insn
, REG_NOTE_KIND (note
), XINT (note
, 0));
2012 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
2015 /* Remove register note NOTE from the REG_NOTES of INSN. */
2018 remove_note (rtx insn
, const_rtx note
)
2022 if (note
== NULL_RTX
)
2025 if (REG_NOTES (insn
) == note
)
2026 REG_NOTES (insn
) = XEXP (note
, 1);
2028 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2029 if (XEXP (link
, 1) == note
)
2031 XEXP (link
, 1) = XEXP (note
, 1);
2035 switch (REG_NOTE_KIND (note
))
2039 df_notes_rescan (insn
);
2046 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2049 remove_reg_equal_equiv_notes (rtx insn
)
2053 loc
= ®_NOTES (insn
);
2056 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2057 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2058 *loc
= XEXP (*loc
, 1);
2060 loc
= &XEXP (*loc
, 1);
2064 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2067 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2074 /* This loop is a little tricky. We cannot just go down the chain because
2075 it is being modified by some actions in the loop. So we just iterate
2076 over the head. We plan to drain the list anyway. */
2077 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2079 rtx insn
= DF_REF_INSN (eq_use
);
2080 rtx note
= find_reg_equal_equiv_note (insn
);
2082 /* This assert is generally triggered when someone deletes a REG_EQUAL
2083 or REG_EQUIV note by hacking the list manually rather than calling
2087 remove_note (insn
, note
);
2091 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2092 return 1 if it is found. A simple equality test is used to determine if
2096 in_expr_list_p (const_rtx listp
, const_rtx node
)
2100 for (x
= listp
; x
; x
= XEXP (x
, 1))
2101 if (node
== XEXP (x
, 0))
2107 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2108 remove that entry from the list if it is found.
2110 A simple equality test is used to determine if NODE matches. */
2113 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2116 rtx prev
= NULL_RTX
;
2120 if (node
== XEXP (temp
, 0))
2122 /* Splice the node out of the list. */
2124 XEXP (prev
, 1) = XEXP (temp
, 1);
2126 *listp
= XEXP (temp
, 1);
2132 temp
= XEXP (temp
, 1);
2136 /* Nonzero if X contains any volatile instructions. These are instructions
2137 which may cause unpredictable machine state instructions, and thus no
2138 instructions or register uses should be moved or combined across them.
2139 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2142 volatile_insn_p (const_rtx x
)
2144 const RTX_CODE code
= GET_CODE (x
);
2162 case UNSPEC_VOLATILE
:
2167 if (MEM_VOLATILE_P (x
))
2174 /* Recursively scan the operands of this expression. */
2177 const char *const fmt
= GET_RTX_FORMAT (code
);
2180 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2184 if (volatile_insn_p (XEXP (x
, i
)))
2187 else if (fmt
[i
] == 'E')
2190 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2191 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2199 /* Nonzero if X contains any volatile memory references
2200 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2203 volatile_refs_p (const_rtx x
)
2205 const RTX_CODE code
= GET_CODE (x
);
2221 case UNSPEC_VOLATILE
:
2227 if (MEM_VOLATILE_P (x
))
2234 /* Recursively scan the operands of this expression. */
2237 const char *const fmt
= GET_RTX_FORMAT (code
);
2240 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2244 if (volatile_refs_p (XEXP (x
, i
)))
2247 else if (fmt
[i
] == 'E')
2250 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2251 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2259 /* Similar to above, except that it also rejects register pre- and post-
2263 side_effects_p (const_rtx x
)
2265 const RTX_CODE code
= GET_CODE (x
);
2282 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2283 when some combination can't be done. If we see one, don't think
2284 that we can simplify the expression. */
2285 return (GET_MODE (x
) != VOIDmode
);
2294 case UNSPEC_VOLATILE
:
2300 if (MEM_VOLATILE_P (x
))
2307 /* Recursively scan the operands of this expression. */
2310 const char *fmt
= GET_RTX_FORMAT (code
);
2313 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2317 if (side_effects_p (XEXP (x
, i
)))
2320 else if (fmt
[i
] == 'E')
2323 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2324 if (side_effects_p (XVECEXP (x
, i
, j
)))
2332 /* Return nonzero if evaluating rtx X might cause a trap.
2333 FLAGS controls how to consider MEMs. A nonzero means the context
2334 of the access may have changed from the original, such that the
2335 address may have become invalid. */
2338 may_trap_p_1 (const_rtx x
, unsigned flags
)
2344 /* We make no distinction currently, but this function is part of
2345 the internal target-hooks ABI so we keep the parameter as
2346 "unsigned flags". */
2347 bool code_changed
= flags
!= 0;
2351 code
= GET_CODE (x
);
2354 /* Handle these cases quickly. */
2366 return targetm
.unspec_may_trap_p (x
, flags
);
2368 case UNSPEC_VOLATILE
:
2374 return MEM_VOLATILE_P (x
);
2376 /* Memory ref can trap unless it's a static var or a stack slot. */
2378 /* Recognize specific pattern of stack checking probes. */
2379 if (flag_stack_check
2380 && MEM_VOLATILE_P (x
)
2381 && XEXP (x
, 0) == stack_pointer_rtx
)
2383 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2384 reference; moving it out of context such as when moving code
2385 when optimizing, might cause its address to become invalid. */
2387 || !MEM_NOTRAP_P (x
))
2389 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2390 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2391 GET_MODE (x
), code_changed
);
2396 /* Division by a non-constant might trap. */
2401 if (HONOR_SNANS (GET_MODE (x
)))
2403 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2404 return flag_trapping_math
;
2405 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2410 /* An EXPR_LIST is used to represent a function call. This
2411 certainly may trap. */
2420 /* Some floating point comparisons may trap. */
2421 if (!flag_trapping_math
)
2423 /* ??? There is no machine independent way to check for tests that trap
2424 when COMPARE is used, though many targets do make this distinction.
2425 For instance, sparc uses CCFPE for compares which generate exceptions
2426 and CCFP for compares which do not generate exceptions. */
2427 if (HONOR_NANS (GET_MODE (x
)))
2429 /* But often the compare has some CC mode, so check operand
2431 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2432 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2438 if (HONOR_SNANS (GET_MODE (x
)))
2440 /* Often comparison is CC mode, so check operand modes. */
2441 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2442 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2447 /* Conversion of floating point might trap. */
2448 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2455 /* These operations don't trap even with floating point. */
2459 /* Any floating arithmetic may trap. */
2460 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2464 fmt
= GET_RTX_FORMAT (code
);
2465 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2469 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2472 else if (fmt
[i
] == 'E')
2475 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2476 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2483 /* Return nonzero if evaluating rtx X might cause a trap. */
2486 may_trap_p (const_rtx x
)
2488 return may_trap_p_1 (x
, 0);
2491 /* Same as above, but additionally return nonzero if evaluating rtx X might
2492 cause a fault. We define a fault for the purpose of this function as a
2493 erroneous execution condition that cannot be encountered during the normal
2494 execution of a valid program; the typical example is an unaligned memory
2495 access on a strict alignment machine. The compiler guarantees that it
2496 doesn't generate code that will fault from a valid program, but this
2497 guarantee doesn't mean anything for individual instructions. Consider
2498 the following example:
2500 struct S { int d; union { char *cp; int *ip; }; };
2502 int foo(struct S *s)
2510 on a strict alignment machine. In a valid program, foo will never be
2511 invoked on a structure for which d is equal to 1 and the underlying
2512 unique field of the union not aligned on a 4-byte boundary, but the
2513 expression *s->ip might cause a fault if considered individually.
2515 At the RTL level, potentially problematic expressions will almost always
2516 verify may_trap_p; for example, the above dereference can be emitted as
2517 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2518 However, suppose that foo is inlined in a caller that causes s->cp to
2519 point to a local character variable and guarantees that s->d is not set
2520 to 1; foo may have been effectively translated into pseudo-RTL as:
2523 (set (reg:SI) (mem:SI (%fp - 7)))
2525 (set (reg:QI) (mem:QI (%fp - 7)))
2527 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2528 memory reference to a stack slot, but it will certainly cause a fault
2529 on a strict alignment machine. */
2532 may_trap_or_fault_p (const_rtx x
)
2534 return may_trap_p_1 (x
, 1);
2537 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2538 i.e., an inequality. */
2541 inequality_comparisons_p (const_rtx x
)
2545 const enum rtx_code code
= GET_CODE (x
);
2573 len
= GET_RTX_LENGTH (code
);
2574 fmt
= GET_RTX_FORMAT (code
);
2576 for (i
= 0; i
< len
; i
++)
2580 if (inequality_comparisons_p (XEXP (x
, i
)))
2583 else if (fmt
[i
] == 'E')
2586 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2587 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2595 /* Replace any occurrence of FROM in X with TO. The function does
2596 not enter into CONST_DOUBLE for the replace.
2598 Note that copying is not done so X must not be shared unless all copies
2599 are to be modified. */
2602 replace_rtx (rtx x
, rtx from
, rtx to
)
2610 /* Allow this function to make replacements in EXPR_LISTs. */
2614 if (GET_CODE (x
) == SUBREG
)
2616 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2618 if (CONST_INT_P (new_rtx
))
2620 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2621 GET_MODE (SUBREG_REG (x
)),
2626 SUBREG_REG (x
) = new_rtx
;
2630 else if (GET_CODE (x
) == ZERO_EXTEND
)
2632 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2634 if (CONST_INT_P (new_rtx
))
2636 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2637 new_rtx
, GET_MODE (XEXP (x
, 0)));
2641 XEXP (x
, 0) = new_rtx
;
2646 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2647 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2650 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2651 else if (fmt
[i
] == 'E')
2652 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2653 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2659 /* Replace occurrences of the old label in *X with the new one.
2660 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2663 replace_label (rtx
*x
, void *data
)
2666 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2667 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2668 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2673 if (GET_CODE (l
) == SYMBOL_REF
2674 && CONSTANT_POOL_ADDRESS_P (l
))
2676 rtx c
= get_pool_constant (l
);
2677 if (rtx_referenced_p (old_label
, c
))
2680 replace_label_data
*d
= (replace_label_data
*) data
;
2682 /* Create a copy of constant C; replace the label inside
2683 but do not update LABEL_NUSES because uses in constant pool
2685 new_c
= copy_rtx (c
);
2686 d
->update_label_nuses
= false;
2687 for_each_rtx (&new_c
, replace_label
, data
);
2688 d
->update_label_nuses
= update_label_nuses
;
2690 /* Add the new constant NEW_C to constant pool and replace
2691 the old reference to constant by new reference. */
2692 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2693 *x
= replace_rtx (l
, l
, new_l
);
2698 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2699 field. This is not handled by for_each_rtx because it doesn't
2700 handle unprinted ('0') fields. */
2701 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2702 JUMP_LABEL (l
) = new_label
;
2704 if ((GET_CODE (l
) == LABEL_REF
2705 || GET_CODE (l
) == INSN_LIST
)
2706 && XEXP (l
, 0) == old_label
)
2708 XEXP (l
, 0) = new_label
;
2709 if (update_label_nuses
)
2711 ++LABEL_NUSES (new_label
);
2712 --LABEL_NUSES (old_label
);
2720 /* When *BODY is equal to X or X is directly referenced by *BODY
2721 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2722 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2725 rtx_referenced_p_1 (rtx
*body
, void *x
)
2729 if (*body
== NULL_RTX
)
2730 return y
== NULL_RTX
;
2732 /* Return true if a label_ref *BODY refers to label Y. */
2733 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2734 return XEXP (*body
, 0) == y
;
2736 /* If *BODY is a reference to pool constant traverse the constant. */
2737 if (GET_CODE (*body
) == SYMBOL_REF
2738 && CONSTANT_POOL_ADDRESS_P (*body
))
2739 return rtx_referenced_p (y
, get_pool_constant (*body
));
2741 /* By default, compare the RTL expressions. */
2742 return rtx_equal_p (*body
, y
);
2745 /* Return true if X is referenced in BODY. */
2748 rtx_referenced_p (rtx x
, rtx body
)
2750 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2753 /* If INSN is a tablejump return true and store the label (before jump table) to
2754 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2757 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2764 label
= JUMP_LABEL (insn
);
2765 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2766 && (table
= NEXT_INSN (label
)) != NULL_RTX
2767 && JUMP_TABLE_DATA_P (table
))
2778 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2779 constant that is not in the constant pool and not in the condition
2780 of an IF_THEN_ELSE. */
2783 computed_jump_p_1 (const_rtx x
)
2785 const enum rtx_code code
= GET_CODE (x
);
2802 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2803 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2806 return (computed_jump_p_1 (XEXP (x
, 1))
2807 || computed_jump_p_1 (XEXP (x
, 2)));
2813 fmt
= GET_RTX_FORMAT (code
);
2814 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2817 && computed_jump_p_1 (XEXP (x
, i
)))
2820 else if (fmt
[i
] == 'E')
2821 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2822 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2829 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2831 Tablejumps and casesi insns are not considered indirect jumps;
2832 we can recognize them by a (use (label_ref)). */
2835 computed_jump_p (const_rtx insn
)
2840 rtx pat
= PATTERN (insn
);
2842 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2843 if (JUMP_LABEL (insn
) != NULL
)
2846 if (GET_CODE (pat
) == PARALLEL
)
2848 int len
= XVECLEN (pat
, 0);
2849 int has_use_labelref
= 0;
2851 for (i
= len
- 1; i
>= 0; i
--)
2852 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2853 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2856 has_use_labelref
= 1;
2860 if (! has_use_labelref
)
2861 for (i
= len
- 1; i
>= 0; i
--)
2862 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2863 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2864 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2867 else if (GET_CODE (pat
) == SET
2868 && SET_DEST (pat
) == pc_rtx
2869 && computed_jump_p_1 (SET_SRC (pat
)))
2875 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2876 calls. Processes the subexpressions of EXP and passes them to F. */
2878 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2881 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2884 for (; format
[n
] != '\0'; n
++)
2891 result
= (*f
) (x
, data
);
2893 /* Do not traverse sub-expressions. */
2895 else if (result
!= 0)
2896 /* Stop the traversal. */
2900 /* There are no sub-expressions. */
2903 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2906 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2914 if (XVEC (exp
, n
) == 0)
2916 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2919 x
= &XVECEXP (exp
, n
, j
);
2920 result
= (*f
) (x
, data
);
2922 /* Do not traverse sub-expressions. */
2924 else if (result
!= 0)
2925 /* Stop the traversal. */
2929 /* There are no sub-expressions. */
2932 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2935 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2943 /* Nothing to do. */
2951 /* Traverse X via depth-first search, calling F for each
2952 sub-expression (including X itself). F is also passed the DATA.
2953 If F returns -1, do not traverse sub-expressions, but continue
2954 traversing the rest of the tree. If F ever returns any other
2955 nonzero value, stop the traversal, and return the value returned
2956 by F. Otherwise, return 0. This function does not traverse inside
2957 tree structure that contains RTX_EXPRs, or into sub-expressions
2958 whose format code is `0' since it is not known whether or not those
2959 codes are actually RTL.
2961 This routine is very general, and could (should?) be used to
2962 implement many of the other routines in this file. */
2965 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2971 result
= (*f
) (x
, data
);
2973 /* Do not traverse sub-expressions. */
2975 else if (result
!= 0)
2976 /* Stop the traversal. */
2980 /* There are no sub-expressions. */
2983 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2987 return for_each_rtx_1 (*x
, i
, f
, data
);
2992 /* Data structure that holds the internal state communicated between
2993 for_each_inc_dec, for_each_inc_dec_find_mem and
2994 for_each_inc_dec_find_inc_dec. */
2996 struct for_each_inc_dec_ops
{
2997 /* The function to be called for each autoinc operation found. */
2998 for_each_inc_dec_fn fn
;
2999 /* The opaque argument to be passed to it. */
3001 /* The MEM we're visiting, if any. */
3005 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
3007 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
3008 operands of the equivalent add insn and pass the result to the
3009 operator specified by *D. */
3012 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
3015 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
3017 switch (GET_CODE (x
))
3022 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
3023 rtx r1
= XEXP (x
, 0);
3024 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
3025 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
3031 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
3032 rtx r1
= XEXP (x
, 0);
3033 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
3034 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
3040 rtx r1
= XEXP (x
, 0);
3041 rtx add
= XEXP (x
, 1);
3042 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
3047 rtx save
= data
->mem
;
3048 int ret
= for_each_inc_dec_find_mem (r
, d
);
3058 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3059 address, extract the operands of the equivalent add insn and pass
3060 the result to the operator specified by *D. */
3063 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3066 if (x
!= NULL_RTX
&& MEM_P (x
))
3068 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3073 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3083 /* Traverse *X looking for MEMs, and for autoinc operations within
3084 them. For each such autoinc operation found, call FN, passing it
3085 the innermost enclosing MEM, the operation itself, the RTX modified
3086 by the operation, two RTXs (the second may be NULL) that, once
3087 added, represent the value to be held by the modified RTX
3088 afterwards, and ARG. FN is to return -1 to skip looking for other
3089 autoinc operations within the visited operation, 0 to continue the
3090 traversal, or any other value to have it returned to the caller of
3091 for_each_inc_dec. */
3094 for_each_inc_dec (rtx
*x
,
3095 for_each_inc_dec_fn fn
,
3098 struct for_each_inc_dec_ops data
;
3104 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3108 /* Searches X for any reference to REGNO, returning the rtx of the
3109 reference found if any. Otherwise, returns NULL_RTX. */
3112 regno_use_in (unsigned int regno
, rtx x
)
3118 if (REG_P (x
) && REGNO (x
) == regno
)
3121 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3122 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3126 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3129 else if (fmt
[i
] == 'E')
3130 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3131 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3138 /* Return a value indicating whether OP, an operand of a commutative
3139 operation, is preferred as the first or second operand. The higher
3140 the value, the stronger the preference for being the first operand.
3141 We use negative values to indicate a preference for the first operand
3142 and positive values for the second operand. */
3145 commutative_operand_precedence (rtx op
)
3147 enum rtx_code code
= GET_CODE (op
);
3149 /* Constants always come the second operand. Prefer "nice" constants. */
3150 if (code
== CONST_INT
)
3152 if (code
== CONST_DOUBLE
)
3154 if (code
== CONST_FIXED
)
3156 op
= avoid_constant_pool_reference (op
);
3157 code
= GET_CODE (op
);
3159 switch (GET_RTX_CLASS (code
))
3162 if (code
== CONST_INT
)
3164 if (code
== CONST_DOUBLE
)
3166 if (code
== CONST_FIXED
)
3171 /* SUBREGs of objects should come second. */
3172 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3177 /* Complex expressions should be the first, so decrease priority
3178 of objects. Prefer pointer objects over non pointer objects. */
3179 if ((REG_P (op
) && REG_POINTER (op
))
3180 || (MEM_P (op
) && MEM_POINTER (op
)))
3184 case RTX_COMM_ARITH
:
3185 /* Prefer operands that are themselves commutative to be first.
3186 This helps to make things linear. In particular,
3187 (and (and (reg) (reg)) (not (reg))) is canonical. */
3191 /* If only one operand is a binary expression, it will be the first
3192 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3193 is canonical, although it will usually be further simplified. */
3197 /* Then prefer NEG and NOT. */
3198 if (code
== NEG
|| code
== NOT
)
3206 /* Return 1 iff it is necessary to swap operands of commutative operation
3207 in order to canonicalize expression. */
3210 swap_commutative_operands_p (rtx x
, rtx y
)
3212 return (commutative_operand_precedence (x
)
3213 < commutative_operand_precedence (y
));
3216 /* Return 1 if X is an autoincrement side effect and the register is
3217 not the stack pointer. */
3219 auto_inc_p (const_rtx x
)
3221 switch (GET_CODE (x
))
3229 /* There are no REG_INC notes for SP. */
3230 if (XEXP (x
, 0) != stack_pointer_rtx
)
3238 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3240 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3249 code
= GET_CODE (in
);
3250 fmt
= GET_RTX_FORMAT (code
);
3251 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3255 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3258 else if (fmt
[i
] == 'E')
3259 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3260 if (loc
== &XVECEXP (in
, i
, j
)
3261 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3267 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3268 and SUBREG_BYTE, return the bit offset where the subreg begins
3269 (counting from the least significant bit of the operand). */
3272 subreg_lsb_1 (enum machine_mode outer_mode
,
3273 enum machine_mode inner_mode
,
3274 unsigned int subreg_byte
)
3276 unsigned int bitpos
;
3280 /* A paradoxical subreg begins at bit position 0. */
3281 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3284 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3285 /* If the subreg crosses a word boundary ensure that
3286 it also begins and ends on a word boundary. */
3287 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3288 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3289 && (subreg_byte
% UNITS_PER_WORD
3290 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3292 if (WORDS_BIG_ENDIAN
)
3293 word
= (GET_MODE_SIZE (inner_mode
)
3294 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3296 word
= subreg_byte
/ UNITS_PER_WORD
;
3297 bitpos
= word
* BITS_PER_WORD
;
3299 if (BYTES_BIG_ENDIAN
)
3300 byte
= (GET_MODE_SIZE (inner_mode
)
3301 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3303 byte
= subreg_byte
% UNITS_PER_WORD
;
3304 bitpos
+= byte
* BITS_PER_UNIT
;
3309 /* Given a subreg X, return the bit offset where the subreg begins
3310 (counting from the least significant bit of the reg). */
3313 subreg_lsb (const_rtx x
)
3315 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3319 /* Fill in information about a subreg of a hard register.
3320 xregno - A regno of an inner hard subreg_reg (or what will become one).
3321 xmode - The mode of xregno.
3322 offset - The byte offset.
3323 ymode - The mode of a top level SUBREG (or what may become one).
3324 info - Pointer to structure to fill in. */
3326 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3327 unsigned int offset
, enum machine_mode ymode
,
3328 struct subreg_info
*info
)
3330 int nregs_xmode
, nregs_ymode
;
3331 int mode_multiple
, nregs_multiple
;
3332 int offset_adj
, y_offset
, y_offset_adj
;
3333 int regsize_xmode
, regsize_ymode
;
3336 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3340 /* If there are holes in a non-scalar mode in registers, we expect
3341 that it is made up of its units concatenated together. */
3342 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3344 enum machine_mode xmode_unit
;
3346 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3347 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3350 xmode_unit
= GET_MODE_INNER (xmode
);
3351 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3352 gcc_assert (nregs_xmode
3353 == (GET_MODE_NUNITS (xmode
)
3354 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3355 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3356 == (hard_regno_nregs
[xregno
][xmode_unit
]
3357 * GET_MODE_NUNITS (xmode
)));
3359 /* You can only ask for a SUBREG of a value with holes in the middle
3360 if you don't cross the holes. (Such a SUBREG should be done by
3361 picking a different register class, or doing it in memory if
3362 necessary.) An example of a value with holes is XCmode on 32-bit
3363 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3364 3 for each part, but in memory it's two 128-bit parts.
3365 Padding is assumed to be at the end (not necessarily the 'high part')
3367 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3368 < GET_MODE_NUNITS (xmode
))
3369 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3370 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3371 / GET_MODE_SIZE (xmode_unit
))))
3373 info
->representable_p
= false;
3378 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3380 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3382 /* Paradoxical subregs are otherwise valid. */
3385 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3387 info
->representable_p
= true;
3388 /* If this is a big endian paradoxical subreg, which uses more
3389 actual hard registers than the original register, we must
3390 return a negative offset so that we find the proper highpart
3392 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3393 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3394 info
->offset
= nregs_xmode
- nregs_ymode
;
3397 info
->nregs
= nregs_ymode
;
3401 /* If registers store different numbers of bits in the different
3402 modes, we cannot generally form this subreg. */
3403 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3404 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3405 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3406 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3408 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3409 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3410 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3412 info
->representable_p
= false;
3414 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3415 info
->offset
= offset
/ regsize_xmode
;
3418 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3420 info
->representable_p
= false;
3422 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3423 info
->offset
= offset
/ regsize_xmode
;
3428 /* Lowpart subregs are otherwise valid. */
3429 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3431 info
->representable_p
= true;
3434 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3437 info
->nregs
= nregs_ymode
;
3442 /* This should always pass, otherwise we don't know how to verify
3443 the constraint. These conditions may be relaxed but
3444 subreg_regno_offset would need to be redesigned. */
3445 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3446 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3448 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3449 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3451 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3452 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3453 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3454 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3455 offset
= (xsize
- ysize
- off_high
) | off_low
;
3457 /* The XMODE value can be seen as a vector of NREGS_XMODE
3458 values. The subreg must represent a lowpart of given field.
3459 Compute what field it is. */
3460 offset_adj
= offset
;
3461 offset_adj
-= subreg_lowpart_offset (ymode
,
3462 mode_for_size (GET_MODE_BITSIZE (xmode
)
3466 /* Size of ymode must not be greater than the size of xmode. */
3467 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3468 gcc_assert (mode_multiple
!= 0);
3470 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3471 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3472 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3474 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3475 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3479 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3482 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3483 info
->nregs
= nregs_ymode
;
3486 /* This function returns the regno offset of a subreg expression.
3487 xregno - A regno of an inner hard subreg_reg (or what will become one).
3488 xmode - The mode of xregno.
3489 offset - The byte offset.
3490 ymode - The mode of a top level SUBREG (or what may become one).
3491 RETURN - The regno offset which would be used. */
3493 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3494 unsigned int offset
, enum machine_mode ymode
)
3496 struct subreg_info info
;
3497 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3501 /* This function returns true when the offset is representable via
3502 subreg_offset in the given regno.
3503 xregno - A regno of an inner hard subreg_reg (or what will become one).
3504 xmode - The mode of xregno.
3505 offset - The byte offset.
3506 ymode - The mode of a top level SUBREG (or what may become one).
3507 RETURN - Whether the offset is representable. */
3509 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3510 unsigned int offset
, enum machine_mode ymode
)
3512 struct subreg_info info
;
3513 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3514 return info
.representable_p
;
3517 /* Return the number of a YMODE register to which
3519 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3521 can be simplified. Return -1 if the subreg can't be simplified.
3523 XREGNO is a hard register number. */
3526 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3527 unsigned int offset
, enum machine_mode ymode
)
3529 struct subreg_info info
;
3530 unsigned int yregno
;
3532 #ifdef CANNOT_CHANGE_MODE_CLASS
3533 /* Give the backend a chance to disallow the mode change. */
3534 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3535 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3536 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3537 /* We can use mode change in LRA for some transformations. */
3538 && ! lra_in_progress
)
3542 /* We shouldn't simplify stack-related registers. */
3543 if ((!reload_completed
|| frame_pointer_needed
)
3544 && xregno
== FRAME_POINTER_REGNUM
)
3547 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3548 && xregno
== ARG_POINTER_REGNUM
)
3551 if (xregno
== STACK_POINTER_REGNUM
3552 /* We should convert hard stack register in LRA if it is
3554 && ! lra_in_progress
)
3557 /* Try to get the register offset. */
3558 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3559 if (!info
.representable_p
)
3562 /* Make sure that the offsetted register value is in range. */
3563 yregno
= xregno
+ info
.offset
;
3564 if (!HARD_REGISTER_NUM_P (yregno
))
3567 /* See whether (reg:YMODE YREGNO) is valid.
3569 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3570 This is a kludge to work around how complex FP arguments are passed
3571 on IA-64 and should be fixed. See PR target/49226. */
3572 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3573 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3576 return (int) yregno
;
3579 /* Return the final regno that a subreg expression refers to. */
3581 subreg_regno (const_rtx x
)
3584 rtx subreg
= SUBREG_REG (x
);
3585 int regno
= REGNO (subreg
);
3587 ret
= regno
+ subreg_regno_offset (regno
,
3595 /* Return the number of registers that a subreg expression refers
3598 subreg_nregs (const_rtx x
)
3600 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3603 /* Return the number of registers that a subreg REG with REGNO
3604 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3605 changed so that the regno can be passed in. */
3608 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3610 struct subreg_info info
;
3611 rtx subreg
= SUBREG_REG (x
);
3613 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3619 struct parms_set_data
3625 /* Helper function for noticing stores to parameter registers. */
3627 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3629 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3630 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3631 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3633 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3638 /* Look backward for first parameter to be loaded.
3639 Note that loads of all parameters will not necessarily be
3640 found if CSE has eliminated some of them (e.g., an argument
3641 to the outer function is passed down as a parameter).
3642 Do not skip BOUNDARY. */
3644 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3646 struct parms_set_data parm
;
3647 rtx p
, before
, first_set
;
3649 /* Since different machines initialize their parameter registers
3650 in different orders, assume nothing. Collect the set of all
3651 parameter registers. */
3652 CLEAR_HARD_REG_SET (parm
.regs
);
3654 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3655 if (GET_CODE (XEXP (p
, 0)) == USE
3656 && REG_P (XEXP (XEXP (p
, 0), 0)))
3658 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3660 /* We only care about registers which can hold function
3662 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3665 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3669 first_set
= call_insn
;
3671 /* Search backward for the first set of a register in this set. */
3672 while (parm
.nregs
&& before
!= boundary
)
3674 before
= PREV_INSN (before
);
3676 /* It is possible that some loads got CSEed from one call to
3677 another. Stop in that case. */
3678 if (CALL_P (before
))
3681 /* Our caller needs either ensure that we will find all sets
3682 (in case code has not been optimized yet), or take care
3683 for possible labels in a way by setting boundary to preceding
3685 if (LABEL_P (before
))
3687 gcc_assert (before
== boundary
);
3691 if (INSN_P (before
))
3693 int nregs_old
= parm
.nregs
;
3694 note_stores (PATTERN (before
), parms_set
, &parm
);
3695 /* If we found something that did not set a parameter reg,
3696 we're done. Do not keep going, as that might result
3697 in hoisting an insn before the setting of a pseudo
3698 that is used by the hoisted insn. */
3699 if (nregs_old
!= parm
.nregs
)
3708 /* Return true if we should avoid inserting code between INSN and preceding
3709 call instruction. */
3712 keep_with_call_p (const_rtx insn
)
3716 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3718 if (REG_P (SET_DEST (set
))
3719 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3720 && fixed_regs
[REGNO (SET_DEST (set
))]
3721 && general_operand (SET_SRC (set
), VOIDmode
))
3723 if (REG_P (SET_SRC (set
))
3724 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3725 && REG_P (SET_DEST (set
))
3726 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3728 /* There may be a stack pop just after the call and before the store
3729 of the return register. Search for the actual store when deciding
3730 if we can break or not. */
3731 if (SET_DEST (set
) == stack_pointer_rtx
)
3733 /* This CONST_CAST is okay because next_nonnote_insn just
3734 returns its argument and we assign it to a const_rtx
3736 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX (insn
));
3737 if (i2
&& keep_with_call_p (i2
))
3744 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3745 to non-complex jumps. That is, direct unconditional, conditional,
3746 and tablejumps, but not computed jumps or returns. It also does
3747 not apply to the fallthru case of a conditional jump. */
3750 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3752 rtx tmp
= JUMP_LABEL (jump_insn
);
3757 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3759 rtvec vec
= XVEC (PATTERN (tmp
),
3760 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3761 int i
, veclen
= GET_NUM_ELEM (vec
);
3763 for (i
= 0; i
< veclen
; ++i
)
3764 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3768 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3775 /* Return an estimate of the cost of computing rtx X.
3776 One use is in cse, to decide which expression to keep in the hash table.
3777 Another is in rtl generation, to pick the cheapest way to multiply.
3778 Other uses like the latter are expected in the future.
3780 X appears as operand OPNO in an expression with code OUTER_CODE.
3781 SPEED specifies whether costs optimized for speed or size should
3785 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3796 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3797 many insns, taking N times as long. */
3798 factor
= GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
;
3802 /* Compute the default costs of certain things.
3803 Note that targetm.rtx_costs can override the defaults. */
3805 code
= GET_CODE (x
);
3809 /* Multiplication has time-complexity O(N*N), where N is the
3810 number of units (translated from digits) when using
3811 schoolbook long multiplication. */
3812 total
= factor
* factor
* COSTS_N_INSNS (5);
3818 /* Similarly, complexity for schoolbook long division. */
3819 total
= factor
* factor
* COSTS_N_INSNS (7);
3822 /* Used in combine.c as a marker. */
3826 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3827 the mode for the factor. */
3828 factor
= GET_MODE_SIZE (GET_MODE (SET_DEST (x
))) / UNITS_PER_WORD
;
3833 total
= factor
* COSTS_N_INSNS (1);
3843 /* If we can't tie these modes, make this expensive. The larger
3844 the mode, the more expensive it is. */
3845 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3846 return COSTS_N_INSNS (2 + factor
);
3850 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3855 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3856 which is already in total. */
3858 fmt
= GET_RTX_FORMAT (code
);
3859 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3861 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3862 else if (fmt
[i
] == 'E')
3863 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3864 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3869 /* Fill in the structure C with information about both speed and size rtx
3870 costs for X, which is operand OPNO in an expression with code OUTER. */
3873 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3874 struct full_rtx_costs
*c
)
3876 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3877 c
->size
= rtx_cost (x
, outer
, opno
, false);
3881 /* Return cost of address expression X.
3882 Expect that X is properly formed address reference.
3884 SPEED parameter specify whether costs optimized for speed or size should
3888 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3890 /* We may be asked for cost of various unusual addresses, such as operands
3891 of push instruction. It is not worthwhile to complicate writing
3892 of the target hook by such cases. */
3894 if (!memory_address_addr_space_p (mode
, x
, as
))
3897 return targetm
.address_cost (x
, mode
, as
, speed
);
3900 /* If the target doesn't override, compute the cost as with arithmetic. */
3903 default_address_cost (rtx x
, enum machine_mode
, addr_space_t
, bool speed
)
3905 return rtx_cost (x
, MEM
, 0, speed
);
3909 unsigned HOST_WIDE_INT
3910 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3912 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3916 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3918 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3921 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3922 It avoids exponential behavior in nonzero_bits1 when X has
3923 identical subexpressions on the first or the second level. */
3925 static unsigned HOST_WIDE_INT
3926 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3927 enum machine_mode known_mode
,
3928 unsigned HOST_WIDE_INT known_ret
)
3930 if (x
== known_x
&& mode
== known_mode
)
3933 /* Try to find identical subexpressions. If found call
3934 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3935 precomputed value for the subexpression as KNOWN_RET. */
3937 if (ARITHMETIC_P (x
))
3939 rtx x0
= XEXP (x
, 0);
3940 rtx x1
= XEXP (x
, 1);
3942 /* Check the first level. */
3944 return nonzero_bits1 (x
, mode
, x0
, mode
,
3945 cached_nonzero_bits (x0
, mode
, known_x
,
3946 known_mode
, known_ret
));
3948 /* Check the second level. */
3949 if (ARITHMETIC_P (x0
)
3950 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3951 return nonzero_bits1 (x
, mode
, x1
, mode
,
3952 cached_nonzero_bits (x1
, mode
, known_x
,
3953 known_mode
, known_ret
));
3955 if (ARITHMETIC_P (x1
)
3956 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3957 return nonzero_bits1 (x
, mode
, x0
, mode
,
3958 cached_nonzero_bits (x0
, mode
, known_x
,
3959 known_mode
, known_ret
));
3962 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3965 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3966 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3967 is less useful. We can't allow both, because that results in exponential
3968 run time recursion. There is a nullstone testcase that triggered
3969 this. This macro avoids accidental uses of num_sign_bit_copies. */
3970 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3972 /* Given an expression, X, compute which bits in X can be nonzero.
3973 We don't care about bits outside of those defined in MODE.
3975 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3976 an arithmetic operation, we can do better. */
3978 static unsigned HOST_WIDE_INT
3979 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3980 enum machine_mode known_mode
,
3981 unsigned HOST_WIDE_INT known_ret
)
3983 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3984 unsigned HOST_WIDE_INT inner_nz
;
3986 enum machine_mode inner_mode
;
3987 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
3989 /* For floating-point and vector values, assume all bits are needed. */
3990 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3991 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3994 /* If X is wider than MODE, use its mode instead. */
3995 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
3997 mode
= GET_MODE (x
);
3998 nonzero
= GET_MODE_MASK (mode
);
3999 mode_width
= GET_MODE_PRECISION (mode
);
4002 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
4003 /* Our only callers in this case look for single bit values. So
4004 just return the mode mask. Those tests will then be false. */
4007 #ifndef WORD_REGISTER_OPERATIONS
4008 /* If MODE is wider than X, but both are a single word for both the host
4009 and target machines, we can compute this from which bits of the
4010 object might be nonzero in its own mode, taking into account the fact
4011 that on many CISC machines, accessing an object in a wider mode
4012 causes the high-order bits to become undefined. So they are
4013 not known to be zero. */
4015 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
4016 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
4017 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
4018 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
4020 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
4021 known_x
, known_mode
, known_ret
);
4022 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
4027 code
= GET_CODE (x
);
4031 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4032 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4033 all the bits above ptr_mode are known to be zero. */
4034 /* As we do not know which address space the pointer is referring to,
4035 we can do this only if the target does not support different pointer
4036 or address modes depending on the address space. */
4037 if (target_default_pointer_address_modes_p ()
4038 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4040 nonzero
&= GET_MODE_MASK (ptr_mode
);
4043 /* Include declared information about alignment of pointers. */
4044 /* ??? We don't properly preserve REG_POINTER changes across
4045 pointer-to-integer casts, so we can't trust it except for
4046 things that we know must be pointers. See execute/960116-1.c. */
4047 if ((x
== stack_pointer_rtx
4048 || x
== frame_pointer_rtx
4049 || x
== arg_pointer_rtx
)
4050 && REGNO_POINTER_ALIGN (REGNO (x
)))
4052 unsigned HOST_WIDE_INT alignment
4053 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4055 #ifdef PUSH_ROUNDING
4056 /* If PUSH_ROUNDING is defined, it is possible for the
4057 stack to be momentarily aligned only to that amount,
4058 so we pick the least alignment. */
4059 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4060 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4064 nonzero
&= ~(alignment
- 1);
4068 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4069 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4070 known_mode
, known_ret
,
4074 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4075 known_mode
, known_ret
);
4077 return nonzero_for_hook
;
4081 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4082 /* If X is negative in MODE, sign-extend the value. */
4084 && mode_width
< BITS_PER_WORD
4085 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4087 return UINTVAL (x
) | (HOST_WIDE_INT_M1U
<< mode_width
);
4093 #ifdef LOAD_EXTEND_OP
4094 /* In many, if not most, RISC machines, reading a byte from memory
4095 zeros the rest of the register. Noticing that fact saves a lot
4096 of extra zero-extends. */
4097 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4098 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4103 case UNEQ
: case LTGT
:
4104 case GT
: case GTU
: case UNGT
:
4105 case LT
: case LTU
: case UNLT
:
4106 case GE
: case GEU
: case UNGE
:
4107 case LE
: case LEU
: case UNLE
:
4108 case UNORDERED
: case ORDERED
:
4109 /* If this produces an integer result, we know which bits are set.
4110 Code here used to clear bits outside the mode of X, but that is
4112 /* Mind that MODE is the mode the caller wants to look at this
4113 operation in, and not the actual operation mode. We can wind
4114 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4115 that describes the results of a vector compare. */
4116 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4117 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4118 nonzero
= STORE_FLAG_VALUE
;
4123 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4124 and num_sign_bit_copies. */
4125 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4126 == GET_MODE_PRECISION (GET_MODE (x
)))
4130 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4131 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4136 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4137 and num_sign_bit_copies. */
4138 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4139 == GET_MODE_PRECISION (GET_MODE (x
)))
4145 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4146 known_x
, known_mode
, known_ret
)
4147 & GET_MODE_MASK (mode
));
4151 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4152 known_x
, known_mode
, known_ret
);
4153 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4154 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4158 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4159 Otherwise, show all the bits in the outer mode but not the inner
4161 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4162 known_x
, known_mode
, known_ret
);
4163 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4165 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4166 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4167 inner_nz
|= (GET_MODE_MASK (mode
)
4168 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4171 nonzero
&= inner_nz
;
4175 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4176 known_x
, known_mode
, known_ret
)
4177 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4178 known_x
, known_mode
, known_ret
);
4182 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4184 unsigned HOST_WIDE_INT nonzero0
4185 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4186 known_x
, known_mode
, known_ret
);
4188 /* Don't call nonzero_bits for the second time if it cannot change
4190 if ((nonzero
& nonzero0
) != nonzero
)
4192 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4193 known_x
, known_mode
, known_ret
);
4197 case PLUS
: case MINUS
:
4199 case DIV
: case UDIV
:
4200 case MOD
: case UMOD
:
4201 /* We can apply the rules of arithmetic to compute the number of
4202 high- and low-order zero bits of these operations. We start by
4203 computing the width (position of the highest-order nonzero bit)
4204 and the number of low-order zero bits for each value. */
4206 unsigned HOST_WIDE_INT nz0
4207 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4208 known_x
, known_mode
, known_ret
);
4209 unsigned HOST_WIDE_INT nz1
4210 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4211 known_x
, known_mode
, known_ret
);
4212 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4213 int width0
= floor_log2 (nz0
) + 1;
4214 int width1
= floor_log2 (nz1
) + 1;
4215 int low0
= floor_log2 (nz0
& -nz0
);
4216 int low1
= floor_log2 (nz1
& -nz1
);
4217 unsigned HOST_WIDE_INT op0_maybe_minusp
4218 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4219 unsigned HOST_WIDE_INT op1_maybe_minusp
4220 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4221 unsigned int result_width
= mode_width
;
4227 result_width
= MAX (width0
, width1
) + 1;
4228 result_low
= MIN (low0
, low1
);
4231 result_low
= MIN (low0
, low1
);
4234 result_width
= width0
+ width1
;
4235 result_low
= low0
+ low1
;
4240 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4241 result_width
= width0
;
4246 result_width
= width0
;
4251 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4252 result_width
= MIN (width0
, width1
);
4253 result_low
= MIN (low0
, low1
);
4258 result_width
= MIN (width0
, width1
);
4259 result_low
= MIN (low0
, low1
);
4265 if (result_width
< mode_width
)
4266 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4269 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4274 if (CONST_INT_P (XEXP (x
, 1))
4275 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4276 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4280 /* If this is a SUBREG formed for a promoted variable that has
4281 been zero-extended, we know that at least the high-order bits
4282 are zero, though others might be too. */
4284 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4285 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4286 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4287 known_x
, known_mode
, known_ret
);
4289 inner_mode
= GET_MODE (SUBREG_REG (x
));
4290 /* If the inner mode is a single word for both the host and target
4291 machines, we can compute this from which bits of the inner
4292 object might be nonzero. */
4293 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4294 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4296 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4297 known_x
, known_mode
, known_ret
);
4299 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4300 /* If this is a typical RISC machine, we only have to worry
4301 about the way loads are extended. */
4302 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4303 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4304 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4305 || !MEM_P (SUBREG_REG (x
)))
4308 /* On many CISC machines, accessing an object in a wider mode
4309 causes the high-order bits to become undefined. So they are
4310 not known to be zero. */
4311 if (GET_MODE_PRECISION (GET_MODE (x
))
4312 > GET_MODE_PRECISION (inner_mode
))
4313 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4314 & ~GET_MODE_MASK (inner_mode
));
4323 /* The nonzero bits are in two classes: any bits within MODE
4324 that aren't in GET_MODE (x) are always significant. The rest of the
4325 nonzero bits are those that are significant in the operand of
4326 the shift when shifted the appropriate number of bits. This
4327 shows that high-order bits are cleared by the right shift and
4328 low-order bits by left shifts. */
4329 if (CONST_INT_P (XEXP (x
, 1))
4330 && INTVAL (XEXP (x
, 1)) >= 0
4331 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4332 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4334 enum machine_mode inner_mode
= GET_MODE (x
);
4335 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4336 int count
= INTVAL (XEXP (x
, 1));
4337 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4338 unsigned HOST_WIDE_INT op_nonzero
4339 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4340 known_x
, known_mode
, known_ret
);
4341 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4342 unsigned HOST_WIDE_INT outer
= 0;
4344 if (mode_width
> width
)
4345 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4347 if (code
== LSHIFTRT
)
4349 else if (code
== ASHIFTRT
)
4353 /* If the sign bit may have been nonzero before the shift, we
4354 need to mark all the places it could have been copied to
4355 by the shift as possibly nonzero. */
4356 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4357 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4360 else if (code
== ASHIFT
)
4363 inner
= ((inner
<< (count
% width
)
4364 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4366 nonzero
&= (outer
| inner
);
4372 /* This is at most the number of bits in the mode. */
4373 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4377 /* If CLZ has a known value at zero, then the nonzero bits are
4378 that value, plus the number of bits in the mode minus one. */
4379 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4381 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4387 /* If CTZ has a known value at zero, then the nonzero bits are
4388 that value, plus the number of bits in the mode minus one. */
4389 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4391 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4397 /* This is at most the number of bits in the mode minus 1. */
4398 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4407 unsigned HOST_WIDE_INT nonzero_true
4408 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4409 known_x
, known_mode
, known_ret
);
4411 /* Don't call nonzero_bits for the second time if it cannot change
4413 if ((nonzero
& nonzero_true
) != nonzero
)
4414 nonzero
&= nonzero_true
4415 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4416 known_x
, known_mode
, known_ret
);
4427 /* See the macro definition above. */
4428 #undef cached_num_sign_bit_copies
4431 /* The function cached_num_sign_bit_copies is a wrapper around
4432 num_sign_bit_copies1. It avoids exponential behavior in
4433 num_sign_bit_copies1 when X has identical subexpressions on the
4434 first or the second level. */
4437 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4438 enum machine_mode known_mode
,
4439 unsigned int known_ret
)
4441 if (x
== known_x
&& mode
== known_mode
)
4444 /* Try to find identical subexpressions. If found call
4445 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4446 the precomputed value for the subexpression as KNOWN_RET. */
4448 if (ARITHMETIC_P (x
))
4450 rtx x0
= XEXP (x
, 0);
4451 rtx x1
= XEXP (x
, 1);
4453 /* Check the first level. */
4456 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4457 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4461 /* Check the second level. */
4462 if (ARITHMETIC_P (x0
)
4463 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4465 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4466 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4470 if (ARITHMETIC_P (x1
)
4471 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4473 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4474 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4479 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4482 /* Return the number of bits at the high-order end of X that are known to
4483 be equal to the sign bit. X will be used in mode MODE; if MODE is
4484 VOIDmode, X will be used in its own mode. The returned value will always
4485 be between 1 and the number of bits in MODE. */
4488 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4489 enum machine_mode known_mode
,
4490 unsigned int known_ret
)
4492 enum rtx_code code
= GET_CODE (x
);
4493 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4494 int num0
, num1
, result
;
4495 unsigned HOST_WIDE_INT nonzero
;
4497 /* If we weren't given a mode, use the mode of X. If the mode is still
4498 VOIDmode, we don't know anything. Likewise if one of the modes is
4501 if (mode
== VOIDmode
)
4502 mode
= GET_MODE (x
);
4504 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4505 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4508 /* For a smaller object, just ignore the high bits. */
4509 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4511 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4512 known_x
, known_mode
, known_ret
);
4514 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4517 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4519 #ifndef WORD_REGISTER_OPERATIONS
4520 /* If this machine does not do all register operations on the entire
4521 register and MODE is wider than the mode of X, we can say nothing
4522 at all about the high-order bits. */
4525 /* Likewise on machines that do, if the mode of the object is smaller
4526 than a word and loads of that size don't sign extend, we can say
4527 nothing about the high order bits. */
4528 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4529 #ifdef LOAD_EXTEND_OP
4530 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4541 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4542 /* If pointers extend signed and this is a pointer in Pmode, say that
4543 all the bits above ptr_mode are known to be sign bit copies. */
4544 /* As we do not know which address space the pointer is referring to,
4545 we can do this only if the target does not support different pointer
4546 or address modes depending on the address space. */
4547 if (target_default_pointer_address_modes_p ()
4548 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4549 && mode
== Pmode
&& REG_POINTER (x
))
4550 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4554 unsigned int copies_for_hook
= 1, copies
= 1;
4555 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4556 known_mode
, known_ret
,
4560 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4561 known_mode
, known_ret
);
4563 if (copies
> 1 || copies_for_hook
> 1)
4564 return MAX (copies
, copies_for_hook
);
4566 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4571 #ifdef LOAD_EXTEND_OP
4572 /* Some RISC machines sign-extend all loads of smaller than a word. */
4573 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4574 return MAX (1, ((int) bitwidth
4575 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4580 /* If the constant is negative, take its 1's complement and remask.
4581 Then see how many zero bits we have. */
4582 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4583 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4584 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4585 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4587 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4590 /* If this is a SUBREG for a promoted object that is sign-extended
4591 and we are looking at it in a wider mode, we know that at least the
4592 high-order bits are known to be sign bit copies. */
4594 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4596 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4597 known_x
, known_mode
, known_ret
);
4598 return MAX ((int) bitwidth
4599 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4603 /* For a smaller object, just ignore the high bits. */
4604 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4606 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4607 known_x
, known_mode
, known_ret
);
4608 return MAX (1, (num0
4609 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4613 #ifdef WORD_REGISTER_OPERATIONS
4614 #ifdef LOAD_EXTEND_OP
4615 /* For paradoxical SUBREGs on machines where all register operations
4616 affect the entire register, just look inside. Note that we are
4617 passing MODE to the recursive call, so the number of sign bit copies
4618 will remain relative to that mode, not the inner mode. */
4620 /* This works only if loads sign extend. Otherwise, if we get a
4621 reload for the inner part, it may be loaded from the stack, and
4622 then we lose all sign bit copies that existed before the store
4625 if (paradoxical_subreg_p (x
)
4626 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4627 && MEM_P (SUBREG_REG (x
)))
4628 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4629 known_x
, known_mode
, known_ret
);
4635 if (CONST_INT_P (XEXP (x
, 1)))
4636 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4640 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4641 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4642 known_x
, known_mode
, known_ret
));
4645 /* For a smaller object, just ignore the high bits. */
4646 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4647 known_x
, known_mode
, known_ret
);
4648 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4652 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4653 known_x
, known_mode
, known_ret
);
4655 case ROTATE
: case ROTATERT
:
4656 /* If we are rotating left by a number of bits less than the number
4657 of sign bit copies, we can just subtract that amount from the
4659 if (CONST_INT_P (XEXP (x
, 1))
4660 && INTVAL (XEXP (x
, 1)) >= 0
4661 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4663 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4664 known_x
, known_mode
, known_ret
);
4665 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4666 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4671 /* In general, this subtracts one sign bit copy. But if the value
4672 is known to be positive, the number of sign bit copies is the
4673 same as that of the input. Finally, if the input has just one bit
4674 that might be nonzero, all the bits are copies of the sign bit. */
4675 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4676 known_x
, known_mode
, known_ret
);
4677 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4678 return num0
> 1 ? num0
- 1 : 1;
4680 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4685 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4690 case IOR
: case AND
: case XOR
:
4691 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4692 /* Logical operations will preserve the number of sign-bit copies.
4693 MIN and MAX operations always return one of the operands. */
4694 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4695 known_x
, known_mode
, known_ret
);
4696 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4697 known_x
, known_mode
, known_ret
);
4699 /* If num1 is clearing some of the top bits then regardless of
4700 the other term, we are guaranteed to have at least that many
4701 high-order zero bits. */
4704 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4705 && CONST_INT_P (XEXP (x
, 1))
4706 && (UINTVAL (XEXP (x
, 1))
4707 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4710 /* Similarly for IOR when setting high-order bits. */
4713 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4714 && CONST_INT_P (XEXP (x
, 1))
4715 && (UINTVAL (XEXP (x
, 1))
4716 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4719 return MIN (num0
, num1
);
4721 case PLUS
: case MINUS
:
4722 /* For addition and subtraction, we can have a 1-bit carry. However,
4723 if we are subtracting 1 from a positive number, there will not
4724 be such a carry. Furthermore, if the positive number is known to
4725 be 0 or 1, we know the result is either -1 or 0. */
4727 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4728 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4730 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4731 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4732 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4733 : bitwidth
- floor_log2 (nonzero
) - 1);
4736 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4737 known_x
, known_mode
, known_ret
);
4738 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4739 known_x
, known_mode
, known_ret
);
4740 result
= MAX (1, MIN (num0
, num1
) - 1);
4745 /* The number of bits of the product is the sum of the number of
4746 bits of both terms. However, unless one of the terms if known
4747 to be positive, we must allow for an additional bit since negating
4748 a negative number can remove one sign bit copy. */
4750 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4751 known_x
, known_mode
, known_ret
);
4752 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4753 known_x
, known_mode
, known_ret
);
4755 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4757 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4758 || (((nonzero_bits (XEXP (x
, 0), mode
)
4759 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4760 && ((nonzero_bits (XEXP (x
, 1), mode
)
4761 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4765 return MAX (1, result
);
4768 /* The result must be <= the first operand. If the first operand
4769 has the high bit set, we know nothing about the number of sign
4771 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4773 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4774 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4777 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4778 known_x
, known_mode
, known_ret
);
4781 /* The result must be <= the second operand. If the second operand
4782 has (or just might have) the high bit set, we know nothing about
4783 the number of sign bit copies. */
4784 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4786 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4787 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4790 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4791 known_x
, known_mode
, known_ret
);
4794 /* Similar to unsigned division, except that we have to worry about
4795 the case where the divisor is negative, in which case we have
4797 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4798 known_x
, known_mode
, known_ret
);
4800 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4801 || (nonzero_bits (XEXP (x
, 1), mode
)
4802 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4808 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4809 known_x
, known_mode
, known_ret
);
4811 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4812 || (nonzero_bits (XEXP (x
, 1), mode
)
4813 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4819 /* Shifts by a constant add to the number of bits equal to the
4821 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4822 known_x
, known_mode
, known_ret
);
4823 if (CONST_INT_P (XEXP (x
, 1))
4824 && INTVAL (XEXP (x
, 1)) > 0
4825 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4826 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4831 /* Left shifts destroy copies. */
4832 if (!CONST_INT_P (XEXP (x
, 1))
4833 || INTVAL (XEXP (x
, 1)) < 0
4834 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4835 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4838 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4839 known_x
, known_mode
, known_ret
);
4840 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4843 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4844 known_x
, known_mode
, known_ret
);
4845 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4846 known_x
, known_mode
, known_ret
);
4847 return MIN (num0
, num1
);
4849 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4850 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4851 case GEU
: case GTU
: case LEU
: case LTU
:
4852 case UNORDERED
: case ORDERED
:
4853 /* If the constant is negative, take its 1's complement and remask.
4854 Then see how many zero bits we have. */
4855 nonzero
= STORE_FLAG_VALUE
;
4856 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4857 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4858 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4860 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4866 /* If we haven't been able to figure it out by one of the above rules,
4867 see if some of the high-order bits are known to be zero. If so,
4868 count those bits and return one less than that amount. If we can't
4869 safely compute the mask for this mode, always return BITWIDTH. */
4871 bitwidth
= GET_MODE_PRECISION (mode
);
4872 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4875 nonzero
= nonzero_bits (x
, mode
);
4876 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4877 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4880 /* Calculate the rtx_cost of a single instruction. A return value of
4881 zero indicates an instruction pattern without a known cost. */
4884 insn_rtx_cost (rtx pat
, bool speed
)
4889 /* Extract the single set rtx from the instruction pattern.
4890 We can't use single_set since we only have the pattern. */
4891 if (GET_CODE (pat
) == SET
)
4893 else if (GET_CODE (pat
) == PARALLEL
)
4896 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4898 rtx x
= XVECEXP (pat
, 0, i
);
4899 if (GET_CODE (x
) == SET
)
4912 cost
= set_src_cost (SET_SRC (set
), speed
);
4913 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4916 /* Given an insn INSN and condition COND, return the condition in a
4917 canonical form to simplify testing by callers. Specifically:
4919 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4920 (2) Both operands will be machine operands; (cc0) will have been replaced.
4921 (3) If an operand is a constant, it will be the second operand.
4922 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4923 for GE, GEU, and LEU.
4925 If the condition cannot be understood, or is an inequality floating-point
4926 comparison which needs to be reversed, 0 will be returned.
4928 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4930 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4931 insn used in locating the condition was found. If a replacement test
4932 of the condition is desired, it should be placed in front of that
4933 insn and we will be sure that the inputs are still valid.
4935 If WANT_REG is nonzero, we wish the condition to be relative to that
4936 register, if possible. Therefore, do not canonicalize the condition
4937 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4938 to be a compare to a CC mode register.
4940 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4944 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4945 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4952 int reverse_code
= 0;
4953 enum machine_mode mode
;
4954 basic_block bb
= BLOCK_FOR_INSN (insn
);
4956 code
= GET_CODE (cond
);
4957 mode
= GET_MODE (cond
);
4958 op0
= XEXP (cond
, 0);
4959 op1
= XEXP (cond
, 1);
4962 code
= reversed_comparison_code (cond
, insn
);
4963 if (code
== UNKNOWN
)
4969 /* If we are comparing a register with zero, see if the register is set
4970 in the previous insn to a COMPARE or a comparison operation. Perform
4971 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4974 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4975 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4976 && op1
== CONST0_RTX (GET_MODE (op0
))
4979 /* Set nonzero when we find something of interest. */
4983 /* If comparison with cc0, import actual comparison from compare
4987 if ((prev
= prev_nonnote_insn (prev
)) == 0
4988 || !NONJUMP_INSN_P (prev
)
4989 || (set
= single_set (prev
)) == 0
4990 || SET_DEST (set
) != cc0_rtx
)
4993 op0
= SET_SRC (set
);
4994 op1
= CONST0_RTX (GET_MODE (op0
));
5000 /* If this is a COMPARE, pick up the two things being compared. */
5001 if (GET_CODE (op0
) == COMPARE
)
5003 op1
= XEXP (op0
, 1);
5004 op0
= XEXP (op0
, 0);
5007 else if (!REG_P (op0
))
5010 /* Go back to the previous insn. Stop if it is not an INSN. We also
5011 stop if it isn't a single set or if it has a REG_INC note because
5012 we don't want to bother dealing with it. */
5014 prev
= prev_nonnote_nondebug_insn (prev
);
5017 || !NONJUMP_INSN_P (prev
)
5018 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
5019 /* In cfglayout mode, there do not have to be labels at the
5020 beginning of a block, or jumps at the end, so the previous
5021 conditions would not stop us when we reach bb boundary. */
5022 || BLOCK_FOR_INSN (prev
) != bb
)
5025 set
= set_of (op0
, prev
);
5028 && (GET_CODE (set
) != SET
5029 || !rtx_equal_p (SET_DEST (set
), op0
)))
5032 /* If this is setting OP0, get what it sets it to if it looks
5036 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
5037 #ifdef FLOAT_STORE_FLAG_VALUE
5038 REAL_VALUE_TYPE fsfv
;
5041 /* ??? We may not combine comparisons done in a CCmode with
5042 comparisons not done in a CCmode. This is to aid targets
5043 like Alpha that have an IEEE compliant EQ instruction, and
5044 a non-IEEE compliant BEQ instruction. The use of CCmode is
5045 actually artificial, simply to prevent the combination, but
5046 should not affect other platforms.
5048 However, we must allow VOIDmode comparisons to match either
5049 CCmode or non-CCmode comparison, because some ports have
5050 modeless comparisons inside branch patterns.
5052 ??? This mode check should perhaps look more like the mode check
5053 in simplify_comparison in combine. */
5055 if ((GET_CODE (SET_SRC (set
)) == COMPARE
5058 && val_signbit_known_set_p (inner_mode
,
5060 #ifdef FLOAT_STORE_FLAG_VALUE
5062 && SCALAR_FLOAT_MODE_P (inner_mode
)
5063 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5064 REAL_VALUE_NEGATIVE (fsfv
)))
5067 && COMPARISON_P (SET_SRC (set
))))
5068 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5069 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5070 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5072 else if (((code
== EQ
5074 && val_signbit_known_set_p (inner_mode
,
5076 #ifdef FLOAT_STORE_FLAG_VALUE
5078 && SCALAR_FLOAT_MODE_P (inner_mode
)
5079 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5080 REAL_VALUE_NEGATIVE (fsfv
)))
5083 && COMPARISON_P (SET_SRC (set
))
5084 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5085 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5086 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5096 else if (reg_set_p (op0
, prev
))
5097 /* If this sets OP0, but not directly, we have to give up. */
5102 /* If the caller is expecting the condition to be valid at INSN,
5103 make sure X doesn't change before INSN. */
5104 if (valid_at_insn_p
)
5105 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5107 if (COMPARISON_P (x
))
5108 code
= GET_CODE (x
);
5111 code
= reversed_comparison_code (x
, prev
);
5112 if (code
== UNKNOWN
)
5117 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5123 /* If constant is first, put it last. */
5124 if (CONSTANT_P (op0
))
5125 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5127 /* If OP0 is the result of a comparison, we weren't able to find what
5128 was really being compared, so fail. */
5130 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5133 /* Canonicalize any ordered comparison with integers involving equality
5134 if we can do computations in the relevant mode and we do not
5137 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5138 && CONST_INT_P (op1
)
5139 && GET_MODE (op0
) != VOIDmode
5140 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5142 HOST_WIDE_INT const_val
= INTVAL (op1
);
5143 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5144 unsigned HOST_WIDE_INT max_val
5145 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5150 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5151 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5154 /* When cross-compiling, const_val might be sign-extended from
5155 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5157 if ((const_val
& max_val
)
5158 != ((unsigned HOST_WIDE_INT
) 1
5159 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5160 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5164 if (uconst_val
< max_val
)
5165 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5169 if (uconst_val
!= 0)
5170 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5178 /* Never return CC0; return zero instead. */
5182 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5185 /* Given a jump insn JUMP, return the condition that will cause it to branch
5186 to its JUMP_LABEL. If the condition cannot be understood, or is an
5187 inequality floating-point comparison which needs to be reversed, 0 will
5190 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5191 insn used in locating the condition was found. If a replacement test
5192 of the condition is desired, it should be placed in front of that
5193 insn and we will be sure that the inputs are still valid. If EARLIEST
5194 is null, the returned condition will be valid at INSN.
5196 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5197 compare CC mode register.
5199 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5202 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5208 /* If this is not a standard conditional jump, we can't parse it. */
5210 || ! any_condjump_p (jump
))
5212 set
= pc_set (jump
);
5214 cond
= XEXP (SET_SRC (set
), 0);
5216 /* If this branches to JUMP_LABEL when the condition is false, reverse
5219 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5220 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5222 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5223 allow_cc_mode
, valid_at_insn_p
);
5226 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5227 TARGET_MODE_REP_EXTENDED.
5229 Note that we assume that the property of
5230 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5231 narrower than mode B. I.e., if A is a mode narrower than B then in
5232 order to be able to operate on it in mode B, mode A needs to
5233 satisfy the requirements set by the representation of mode B. */
5236 init_num_sign_bit_copies_in_rep (void)
5238 enum machine_mode mode
, in_mode
;
5240 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5241 in_mode
= GET_MODE_WIDER_MODE (mode
))
5242 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5243 mode
= GET_MODE_WIDER_MODE (mode
))
5245 enum machine_mode i
;
5247 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5248 extends to the next widest mode. */
5249 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5250 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5252 /* We are in in_mode. Count how many bits outside of mode
5253 have to be copies of the sign-bit. */
5254 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5256 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5258 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5259 /* We can only check sign-bit copies starting from the
5260 top-bit. In order to be able to check the bits we
5261 have already seen we pretend that subsequent bits
5262 have to be sign-bit copies too. */
5263 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5264 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5265 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5270 /* Suppose that truncation from the machine mode of X to MODE is not a
5271 no-op. See if there is anything special about X so that we can
5272 assume it already contains a truncated value of MODE. */
5275 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5277 /* This register has already been used in MODE without explicit
5279 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5282 /* See if we already satisfy the requirements of MODE. If yes we
5283 can just switch to MODE. */
5284 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5285 && (num_sign_bit_copies (x
, GET_MODE (x
))
5286 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5292 /* Initialize non_rtx_starting_operands, which is used to speed up
5298 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5300 const char *format
= GET_RTX_FORMAT (i
);
5301 const char *first
= strpbrk (format
, "eEV");
5302 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5305 init_num_sign_bit_copies_in_rep ();
5308 /* Check whether this is a constant pool constant. */
5310 constant_pool_constant_p (rtx x
)
5312 x
= avoid_constant_pool_reference (x
);
5313 return CONST_DOUBLE_P (x
);
5316 /* If M is a bitmask that selects a field of low-order bits within an item but
5317 not the entire word, return the length of the field. Return -1 otherwise.
5318 M is used in machine mode MODE. */
5321 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5323 if (mode
!= VOIDmode
)
5325 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5327 m
&= GET_MODE_MASK (mode
);
5330 return exact_log2 (m
+ 1);
5333 /* Return the mode of MEM's address. */
5336 get_address_mode (rtx mem
)
5338 enum machine_mode mode
;
5340 gcc_assert (MEM_P (mem
));
5341 mode
= GET_MODE (XEXP (mem
, 0));
5342 if (mode
!= VOIDmode
)
5344 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5347 /* Split up a CONST_DOUBLE or integer constant rtx
5348 into two rtx's for single words,
5349 storing in *FIRST the word that comes first in memory in the target
5350 and in *SECOND the other. */
5353 split_double (rtx value
, rtx
*first
, rtx
*second
)
5355 if (CONST_INT_P (value
))
5357 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5359 /* In this case the CONST_INT holds both target words.
5360 Extract the bits from it into two word-sized pieces.
5361 Sign extend each half to HOST_WIDE_INT. */
5362 unsigned HOST_WIDE_INT low
, high
;
5363 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5364 unsigned bits_per_word
= BITS_PER_WORD
;
5366 /* Set sign_bit to the most significant bit of a word. */
5368 sign_bit
<<= bits_per_word
- 1;
5370 /* Set mask so that all bits of the word are set. We could
5371 have used 1 << BITS_PER_WORD instead of basing the
5372 calculation on sign_bit. However, on machines where
5373 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5374 compiler warning, even though the code would never be
5376 mask
= sign_bit
<< 1;
5379 /* Set sign_extend as any remaining bits. */
5380 sign_extend
= ~mask
;
5382 /* Pick the lower word and sign-extend it. */
5383 low
= INTVAL (value
);
5388 /* Pick the higher word, shifted to the least significant
5389 bits, and sign-extend it. */
5390 high
= INTVAL (value
);
5391 high
>>= bits_per_word
- 1;
5394 if (high
& sign_bit
)
5395 high
|= sign_extend
;
5397 /* Store the words in the target machine order. */
5398 if (WORDS_BIG_ENDIAN
)
5400 *first
= GEN_INT (high
);
5401 *second
= GEN_INT (low
);
5405 *first
= GEN_INT (low
);
5406 *second
= GEN_INT (high
);
5411 /* The rule for using CONST_INT for a wider mode
5412 is that we regard the value as signed.
5413 So sign-extend it. */
5414 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5415 if (WORDS_BIG_ENDIAN
)
5427 else if (!CONST_DOUBLE_P (value
))
5429 if (WORDS_BIG_ENDIAN
)
5431 *first
= const0_rtx
;
5437 *second
= const0_rtx
;
5440 else if (GET_MODE (value
) == VOIDmode
5441 /* This is the old way we did CONST_DOUBLE integers. */
5442 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5444 /* In an integer, the words are defined as most and least significant.
5445 So order them by the target's convention. */
5446 if (WORDS_BIG_ENDIAN
)
5448 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5449 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5453 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5454 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5461 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
5463 /* Note, this converts the REAL_VALUE_TYPE to the target's
5464 format, splits up the floating point double and outputs
5465 exactly 32 bits of it into each of l[0] and l[1] --
5466 not necessarily BITS_PER_WORD bits. */
5467 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
5469 /* If 32 bits is an entire word for the target, but not for the host,
5470 then sign-extend on the host so that the number will look the same
5471 way on the host that it would on the target. See for instance
5472 simplify_unary_operation. The #if is needed to avoid compiler
5475 #if HOST_BITS_PER_LONG > 32
5476 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5478 if (l
[0] & ((long) 1 << 31))
5479 l
[0] |= ((long) (-1) << 32);
5480 if (l
[1] & ((long) 1 << 31))
5481 l
[1] |= ((long) (-1) << 32);
5485 *first
= GEN_INT (l
[0]);
5486 *second
= GEN_INT (l
[1]);
5490 /* Return true if X is a sign_extract or zero_extract from the least
5494 lsb_bitfield_op_p (rtx x
)
5496 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_BITFIELD_OPS
)
5498 enum machine_mode mode
= GET_MODE (XEXP (x
, 0));
5499 HOST_WIDE_INT len
= INTVAL (XEXP (x
, 1));
5500 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
5502 return (pos
== (BITS_BIG_ENDIAN
? GET_MODE_PRECISION (mode
) - len
: 0));
5507 /* Strip outer address "mutations" from LOC and return a pointer to the
5508 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5509 stripped expression there.
5511 "Mutations" either convert between modes or apply some kind of
5512 extension, truncation or alignment. */
5515 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5519 enum rtx_code code
= GET_CODE (*loc
);
5520 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5521 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5522 used to convert between pointer sizes. */
5523 loc
= &XEXP (*loc
, 0);
5524 else if (lsb_bitfield_op_p (*loc
))
5525 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5526 acts as a combined truncation and extension. */
5527 loc
= &XEXP (*loc
, 0);
5528 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5529 /* (and ... (const_int -X)) is used to align to X bytes. */
5530 loc
= &XEXP (*loc
, 0);
5531 else if (code
== SUBREG
5532 && !OBJECT_P (SUBREG_REG (*loc
))
5533 && subreg_lowpart_p (*loc
))
5534 /* (subreg (operator ...) ...) inside and is used for mode
5536 loc
= &SUBREG_REG (*loc
);
5544 /* Return true if CODE applies some kind of scale. The scaled value is
5545 is the first operand and the scale is the second. */
5548 binary_scale_code_p (enum rtx_code code
)
5550 return (code
== MULT
5552 /* Needed by ARM targets. */
5556 || code
== ROTATERT
);
5559 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5560 (see address_info). Return null otherwise. */
5563 get_base_term (rtx
*inner
)
5565 if (GET_CODE (*inner
) == LO_SUM
)
5566 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5569 || GET_CODE (*inner
) == SUBREG
)
5574 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5575 (see address_info). Return null otherwise. */
5578 get_index_term (rtx
*inner
)
5580 /* At present, only constant scales are allowed. */
5581 if (binary_scale_code_p (GET_CODE (*inner
)) && CONSTANT_P (XEXP (*inner
, 1)))
5582 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5585 || GET_CODE (*inner
) == SUBREG
)
5590 /* Set the segment part of address INFO to LOC, given that INNER is the
5594 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5596 gcc_assert (!info
->segment
);
5597 info
->segment
= loc
;
5598 info
->segment_term
= inner
;
5601 /* Set the base part of address INFO to LOC, given that INNER is the
5605 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5607 gcc_assert (!info
->base
);
5609 info
->base_term
= inner
;
5612 /* Set the index part of address INFO to LOC, given that INNER is the
5616 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5618 gcc_assert (!info
->index
);
5620 info
->index_term
= inner
;
5623 /* Set the displacement part of address INFO to LOC, given that INNER
5624 is the constant term. */
5627 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5629 gcc_assert (!info
->disp
);
5631 info
->disp_term
= inner
;
5634 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5635 rest of INFO accordingly. */
5638 decompose_incdec_address (struct address_info
*info
)
5640 info
->autoinc_p
= true;
5642 rtx
*base
= &XEXP (*info
->inner
, 0);
5643 set_address_base (info
, base
, base
);
5644 gcc_checking_assert (info
->base
== info
->base_term
);
5646 /* These addresses are only valid when the size of the addressed
5648 gcc_checking_assert (info
->mode
!= VOIDmode
);
5651 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5652 of INFO accordingly. */
5655 decompose_automod_address (struct address_info
*info
)
5657 info
->autoinc_p
= true;
5659 rtx
*base
= &XEXP (*info
->inner
, 0);
5660 set_address_base (info
, base
, base
);
5661 gcc_checking_assert (info
->base
== info
->base_term
);
5663 rtx plus
= XEXP (*info
->inner
, 1);
5664 gcc_assert (GET_CODE (plus
) == PLUS
);
5666 info
->base_term2
= &XEXP (plus
, 0);
5667 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
5669 rtx
*step
= &XEXP (plus
, 1);
5670 rtx
*inner_step
= strip_address_mutations (step
);
5671 if (CONSTANT_P (*inner_step
))
5672 set_address_disp (info
, step
, inner_step
);
5674 set_address_index (info
, step
, inner_step
);
5677 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5678 values in [PTR, END). Return a pointer to the end of the used array. */
5681 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
5684 if (GET_CODE (x
) == PLUS
)
5686 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
5687 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
5691 gcc_assert (ptr
!= end
);
5697 /* Evaluate the likelihood of X being a base or index value, returning
5698 positive if it is likely to be a base, negative if it is likely to be
5699 an index, and 0 if we can't tell. Make the magnitude of the return
5700 value reflect the amount of confidence we have in the answer.
5702 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5705 baseness (rtx x
, enum machine_mode mode
, addr_space_t as
,
5706 enum rtx_code outer_code
, enum rtx_code index_code
)
5708 /* Believe *_POINTER unless the address shape requires otherwise. */
5709 if (REG_P (x
) && REG_POINTER (x
))
5711 if (MEM_P (x
) && MEM_POINTER (x
))
5714 if (REG_P (x
) && HARD_REGISTER_P (x
))
5716 /* X is a hard register. If it only fits one of the base
5717 or index classes, choose that interpretation. */
5718 int regno
= REGNO (x
);
5719 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
5720 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
5721 if (base_p
!= index_p
)
5722 return base_p
? 1 : -1;
5727 /* INFO->INNER describes a normal, non-automodified address.
5728 Fill in the rest of INFO accordingly. */
5731 decompose_normal_address (struct address_info
*info
)
5733 /* Treat the address as the sum of up to four values. */
5735 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
5736 ops
+ ARRAY_SIZE (ops
)) - ops
;
5738 /* If there is more than one component, any base component is in a PLUS. */
5740 info
->base_outer_code
= PLUS
;
5742 /* Try to classify each sum operand now. Leave those that could be
5743 either a base or an index in OPS. */
5746 for (size_t in
= 0; in
< n_ops
; ++in
)
5749 rtx
*inner
= strip_address_mutations (loc
);
5750 if (CONSTANT_P (*inner
))
5751 set_address_disp (info
, loc
, inner
);
5752 else if (GET_CODE (*inner
) == UNSPEC
)
5753 set_address_segment (info
, loc
, inner
);
5756 /* The only other possibilities are a base or an index. */
5757 rtx
*base_term
= get_base_term (inner
);
5758 rtx
*index_term
= get_index_term (inner
);
5759 gcc_assert (base_term
|| index_term
);
5761 set_address_index (info
, loc
, index_term
);
5762 else if (!index_term
)
5763 set_address_base (info
, loc
, base_term
);
5766 gcc_assert (base_term
== index_term
);
5768 inner_ops
[out
] = base_term
;
5774 /* Classify the remaining OPS members as bases and indexes. */
5777 /* If we haven't seen a base or an index yet, assume that this is
5778 the base. If we were confident that another term was the base
5779 or index, treat the remaining operand as the other kind. */
5781 set_address_base (info
, ops
[0], inner_ops
[0]);
5783 set_address_index (info
, ops
[0], inner_ops
[0]);
5787 /* In the event of a tie, assume the base comes first. */
5788 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
5790 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
5791 GET_CODE (*ops
[0])))
5793 set_address_base (info
, ops
[0], inner_ops
[0]);
5794 set_address_index (info
, ops
[1], inner_ops
[1]);
5798 set_address_base (info
, ops
[1], inner_ops
[1]);
5799 set_address_index (info
, ops
[0], inner_ops
[0]);
5803 gcc_assert (out
== 0);
5806 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5807 or VOIDmode if not known. AS is the address space associated with LOC.
5808 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5811 decompose_address (struct address_info
*info
, rtx
*loc
, enum machine_mode mode
,
5812 addr_space_t as
, enum rtx_code outer_code
)
5814 memset (info
, 0, sizeof (*info
));
5817 info
->addr_outer_code
= outer_code
;
5819 info
->inner
= strip_address_mutations (loc
, &outer_code
);
5820 info
->base_outer_code
= outer_code
;
5821 switch (GET_CODE (*info
->inner
))
5827 decompose_incdec_address (info
);
5832 decompose_automod_address (info
);
5836 decompose_normal_address (info
);
5841 /* Describe address operand LOC in INFO. */
5844 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
5846 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
5849 /* Describe the address of MEM X in INFO. */
5852 decompose_mem_address (struct address_info
*info
, rtx x
)
5854 gcc_assert (MEM_P (x
));
5855 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
5856 MEM_ADDR_SPACE (x
), MEM
);
5859 /* Update INFO after a change to the address it describes. */
5862 update_address (struct address_info
*info
)
5864 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
5865 info
->addr_outer_code
);
5868 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5869 more complicated than that. */
5872 get_index_scale (const struct address_info
*info
)
5874 rtx index
= *info
->index
;
5875 if (GET_CODE (index
) == MULT
5876 && CONST_INT_P (XEXP (index
, 1))
5877 && info
->index_term
== &XEXP (index
, 0))
5878 return INTVAL (XEXP (index
, 1));
5880 if (GET_CODE (index
) == ASHIFT
5881 && CONST_INT_P (XEXP (index
, 1))
5882 && info
->index_term
== &XEXP (index
, 0))
5883 return (HOST_WIDE_INT
) 1 << INTVAL (XEXP (index
, 1));
5885 if (info
->index
== info
->index_term
)
5891 /* Return the "index code" of INFO, in the form required by
5895 get_index_code (const struct address_info
*info
)
5898 return GET_CODE (*info
->index
);
5901 return GET_CODE (*info
->disp
);