d: Fix #error You must define PREFERRED_DEBUGGING_TYPE if DWARF is not supported
[official-gcc.git] / gcc / config / i386 / i386.h
blob716bacef5f9f15c6e37a7786cae138ef54fff784
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
40 /* Redefines for option macros. */
42 #define TARGET_CMPXCHG16B TARGET_CX16
43 #define TARGET_CMPXCHG16B_P(x) TARGET_CX16_P(x)
45 #define TARGET_LP64 TARGET_ABI_64
46 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
47 #define TARGET_X32 TARGET_ABI_X32
48 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
49 #define TARGET_16BIT TARGET_CODE16
50 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
52 #define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
54 #include "config/vxworks-dummy.h"
56 #include "config/i386/i386-opts.h"
58 #define MAX_STRINGOP_ALGS 4
60 /* Specify what algorithm to use for stringops on known size.
61 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
62 known at compile time or estimated via feedback, the SIZE array
63 is walked in order until MAX is greater then the estimate (or -1
64 means infinity). Corresponding ALG is used then.
65 When NOALIGN is true the code guaranting the alignment of the memory
66 block is skipped.
68 For example initializer:
69 {{256, loop}, {-1, rep_prefix_4_byte}}
70 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
71 be used otherwise. */
72 struct stringop_algs
74 const enum stringop_alg unknown_size;
75 const struct stringop_strategy {
76 /* Several older compilers delete the default constructor because of the
77 const entries (see PR100246). Manually specifying a CTOR works around
78 this issue. Since this header is used by code compiled with the C
79 compiler we must guard the addition. */
80 #ifdef __cplusplus
81 constexpr
82 stringop_strategy (int _max = -1, enum stringop_alg _alg = libcall,
83 int _noalign = false)
84 : max (_max), alg (_alg), noalign (_noalign) {}
85 #endif
86 const int max;
87 const enum stringop_alg alg;
88 int noalign;
89 } size [MAX_STRINGOP_ALGS];
92 /* Analog of COSTS_N_INSNS when optimizing for size. */
93 #ifndef COSTS_N_BYTES
94 #define COSTS_N_BYTES(N) ((N) * 2)
95 #endif
97 /* Define the specific costs for a given cpu. NB: hard_register is used
98 by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
99 hard register move costs by register allocator. Relative costs of
100 pseudo register load and store versus pseudo register moves in RTL
101 expressions for TARGET_RTX_COSTS can be different from relative
102 costs of hard registers to get the most efficient operations with
103 pseudo registers. */
105 struct processor_costs {
106 /* Costs used by register allocator. integer->integer register move
107 cost is 2. */
108 struct
110 const int movzbl_load; /* cost of loading using movzbl */
111 const int int_load[3]; /* cost of loading integer registers
112 in QImode, HImode and SImode relative
113 to reg-reg move (2). */
114 const int int_store[3]; /* cost of storing integer register
115 in QImode, HImode and SImode */
116 const int fp_move; /* cost of reg,reg fld/fst */
117 const int fp_load[3]; /* cost of loading FP register
118 in SFmode, DFmode and XFmode */
119 const int fp_store[3]; /* cost of storing FP register
120 in SFmode, DFmode and XFmode */
121 const int mmx_move; /* cost of moving MMX register. */
122 const int mmx_load[2]; /* cost of loading MMX register
123 in SImode and DImode */
124 const int mmx_store[2]; /* cost of storing MMX register
125 in SImode and DImode */
126 const int xmm_move; /* cost of moving XMM register. */
127 const int ymm_move; /* cost of moving XMM register. */
128 const int zmm_move; /* cost of moving XMM register. */
129 const int sse_load[5]; /* cost of loading SSE register
130 in 32bit, 64bit, 128bit, 256bit and 512bit */
131 const int sse_store[5]; /* cost of storing SSE register
132 in SImode, DImode and TImode. */
133 const int sse_to_integer; /* cost of moving SSE register to integer. */
134 const int integer_to_sse; /* cost of moving integer register to SSE. */
135 const int mask_to_integer; /* cost of moving mask register to integer. */
136 const int integer_to_mask; /* cost of moving integer register to mask. */
137 const int mask_load[3]; /* cost of loading mask registers
138 in QImode, HImode and SImode. */
139 const int mask_store[3]; /* cost of storing mask register
140 in QImode, HImode and SImode. */
141 const int mask_move; /* cost of moving mask register. */
142 } hard_register;
144 const int add; /* cost of an add instruction */
145 const int lea; /* cost of a lea instruction */
146 const int shift_var; /* variable shift costs */
147 const int shift_const; /* constant shift costs */
148 const int mult_init[5]; /* cost of starting a multiply
149 in QImode, HImode, SImode, DImode, TImode*/
150 const int mult_bit; /* cost of multiply per each bit set */
151 const int divide[5]; /* cost of a divide/mod
152 in QImode, HImode, SImode, DImode, TImode*/
153 int movsx; /* The cost of movsx operation. */
154 int movzx; /* The cost of movzx operation. */
155 const int large_insn; /* insns larger than this cost more */
156 const int move_ratio; /* The threshold of number of scalar
157 memory-to-memory move insns. */
158 const int clear_ratio; /* The threshold of number of scalar
159 memory clearing insns. */
160 const int int_load[3]; /* cost of loading integer registers
161 in QImode, HImode and SImode relative
162 to reg-reg move (2). */
163 const int int_store[3]; /* cost of storing integer register
164 in QImode, HImode and SImode */
165 const int sse_load[5]; /* cost of loading SSE register
166 in 32bit, 64bit, 128bit, 256bit and 512bit */
167 const int sse_store[5]; /* cost of storing SSE register
168 in 32bit, 64bit, 128bit, 256bit and 512bit */
169 const int sse_unaligned_load[5];/* cost of unaligned load. */
170 const int sse_unaligned_store[5];/* cost of unaligned store. */
171 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
172 zmm_move;
173 const int sse_to_integer; /* cost of moving SSE register to integer. */
174 const int gather_static, gather_per_elt; /* Cost of gather load is computed
175 as static + per_item * nelts. */
176 const int scatter_static, scatter_per_elt; /* Cost of gather store is
177 computed as static + per_item * nelts. */
178 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
179 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
180 const int prefetch_block; /* bytes moved to cache for prefetch. */
181 const int simultaneous_prefetches; /* number of parallel prefetch
182 operations. */
183 const int branch_cost; /* Default value for BRANCH_COST. */
184 const int fadd; /* cost of FADD and FSUB instructions. */
185 const int fmul; /* cost of FMUL instruction. */
186 const int fdiv; /* cost of FDIV instruction. */
187 const int fabs; /* cost of FABS instruction. */
188 const int fchs; /* cost of FCHS instruction. */
189 const int fsqrt; /* cost of FSQRT instruction. */
190 /* Specify what algorithm
191 to use for stringops on unknown size. */
192 const int sse_op; /* cost of cheap SSE instruction. */
193 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
194 const int mulss; /* cost of MULSS instructions. */
195 const int mulsd; /* cost of MULSD instructions. */
196 const int fmass; /* cost of FMASS instructions. */
197 const int fmasd; /* cost of FMASD instructions. */
198 const int divss; /* cost of DIVSS instructions. */
199 const int divsd; /* cost of DIVSD instructions. */
200 const int sqrtss; /* cost of SQRTSS instructions. */
201 const int sqrtsd; /* cost of SQRTSD instructions. */
202 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
203 /* Specify reassociation width for integer,
204 fp, vector integer and vector fp
205 operations. Generally should correspond
206 to number of instructions executed in
207 parallel. See also
208 ix86_reassociation_width. */
209 struct stringop_algs *memcpy, *memset;
210 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
211 cost model. */
212 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
213 vectorizer cost model. */
215 /* The "0:0:8" label alignment specified for some processors generates
216 secondary 8-byte alignment only for those label/jump/loop targets
217 which have primary alignment. */
218 const char *const align_loop; /* Loop alignment. */
219 const char *const align_jump; /* Jump alignment. */
220 const char *const align_label; /* Label alignment. */
221 const char *const align_func; /* Function alignment. */
224 extern const struct processor_costs *ix86_cost;
225 extern const struct processor_costs ix86_size_cost;
227 #define ix86_cur_cost() \
228 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
230 /* Macros used in the machine description to test the flags. */
232 /* configure can arrange to change it. */
234 #ifndef TARGET_CPU_DEFAULT
235 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
236 #endif
238 #ifndef TARGET_FPMATH_DEFAULT
239 #define TARGET_FPMATH_DEFAULT \
240 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
241 #endif
243 #ifndef TARGET_FPMATH_DEFAULT_P
244 #define TARGET_FPMATH_DEFAULT_P(x) \
245 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
246 #endif
248 /* If the i387 is disabled or -miamcu is used , then do not return
249 values in it. */
250 #define TARGET_FLOAT_RETURNS_IN_80387 \
251 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
252 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
253 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
255 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
256 compile-time constant. */
257 #ifdef IN_LIBGCC2
258 #undef TARGET_64BIT
259 #ifdef __x86_64__
260 #define TARGET_64BIT 1
261 #else
262 #define TARGET_64BIT 0
263 #endif
264 #else
265 #ifndef TARGET_BI_ARCH
266 #undef TARGET_64BIT
267 #undef TARGET_64BIT_P
268 #if TARGET_64BIT_DEFAULT
269 #define TARGET_64BIT 1
270 #define TARGET_64BIT_P(x) 1
271 #else
272 #define TARGET_64BIT 0
273 #define TARGET_64BIT_P(x) 0
274 #endif
275 #endif
276 #endif
278 #define HAS_LONG_COND_BRANCH 1
279 #define HAS_LONG_UNCOND_BRANCH 1
281 #define TARGET_CPU_P(CPU) (ix86_tune == PROCESSOR_ ## CPU)
283 /* Feature tests against the various tunings. */
284 enum ix86_tune_indices {
285 #undef DEF_TUNE
286 #define DEF_TUNE(tune, name, selector) tune,
287 #include "x86-tune.def"
288 #undef DEF_TUNE
289 X86_TUNE_LAST
292 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
294 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
295 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
296 #define TARGET_ZERO_EXTEND_WITH_AND \
297 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
298 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
299 #define TARGET_BRANCH_PREDICTION_HINTS \
300 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
301 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
302 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
303 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
304 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
305 #define TARGET_PARTIAL_FLAG_REG_STALL \
306 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
307 #define TARGET_LCP_STALL \
308 ix86_tune_features[X86_TUNE_LCP_STALL]
309 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
310 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
311 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
312 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
313 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
314 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
315 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
316 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
317 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
318 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
319 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
320 #define TARGET_PREFER_KNOWN_REP_MOVSB_STOSB \
321 ix86_tune_features[X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB]
322 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
323 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
324 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
325 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
326 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
327 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
328 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
329 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
330 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
331 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
332 #define TARGET_INTEGER_DFMODE_MOVES \
333 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
334 #define TARGET_PARTIAL_REG_DEPENDENCY \
335 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
336 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
337 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
338 #define TARGET_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY \
339 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY]
340 #define TARGET_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY \
341 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY]
342 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
343 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
344 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
345 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
346 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
347 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
348 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
349 #define TARGET_SSE_TYPELESS_STORES \
350 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
351 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
352 #define TARGET_MEMORY_MISMATCH_STALL \
353 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
354 #define TARGET_PROLOGUE_USING_MOVE \
355 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
356 #define TARGET_EPILOGUE_USING_MOVE \
357 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
358 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
359 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
360 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
361 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
362 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
363 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
364 #define TARGET_INTER_UNIT_CONVERSIONS \
365 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
366 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
367 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
368 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
369 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
370 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
371 #define TARGET_PAD_SHORT_FUNCTION \
372 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
373 #define TARGET_EXT_80387_CONSTANTS \
374 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
375 #define TARGET_AVOID_VECTOR_DECODE \
376 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
377 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
378 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
379 #define TARGET_SLOW_IMUL_IMM32_MEM \
380 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
381 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
382 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
383 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
384 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
385 #define TARGET_USE_VECTOR_FP_CONVERTS \
386 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
387 #define TARGET_USE_VECTOR_CONVERTS \
388 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
389 #define TARGET_SLOW_PSHUFB \
390 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
391 #define TARGET_AVOID_4BYTE_PREFIXES \
392 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
393 #define TARGET_USE_GATHER_2PARTS \
394 ix86_tune_features[X86_TUNE_USE_GATHER_2PARTS]
395 #define TARGET_USE_GATHER_4PARTS \
396 ix86_tune_features[X86_TUNE_USE_GATHER_4PARTS]
397 #define TARGET_USE_GATHER \
398 ix86_tune_features[X86_TUNE_USE_GATHER]
399 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
400 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
401 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
402 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
403 #define TARGET_FUSE_CMP_AND_BRANCH \
404 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
405 : TARGET_FUSE_CMP_AND_BRANCH_32)
406 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
407 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
408 #define TARGET_FUSE_ALU_AND_BRANCH \
409 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
410 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
411 #define TARGET_AVOID_LEA_FOR_ADDR \
412 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
413 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
414 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
415 #define TARGET_AVX256_SPLIT_REGS \
416 ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
417 #define TARGET_GENERAL_REGS_SSE_SPILL \
418 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
419 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
420 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
421 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
422 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
423 #define TARGET_ADJUST_UNROLL \
424 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
425 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
426 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
427 #define TARGET_ONE_IF_CONV_INSN \
428 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
429 #define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
430 #define TARGET_EMIT_VZEROUPPER \
431 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
432 #define TARGET_EXPAND_ABS \
433 ix86_tune_features[X86_TUNE_EXPAND_ABS]
434 #define TARGET_V2DF_REDUCTION_PREFER_HADDPD \
435 ix86_tune_features[X86_TUNE_V2DF_REDUCTION_PREFER_HADDPD]
436 #define TARGET_DEST_FALSE_DEP_FOR_GLC \
437 ix86_tune_features[X86_TUNE_DEST_FALSE_DEP_FOR_GLC]
439 /* Feature tests against the various architecture variations. */
440 enum ix86_arch_indices {
441 X86_ARCH_CMOV,
442 X86_ARCH_CMPXCHG,
443 X86_ARCH_CMPXCHG8B,
444 X86_ARCH_XADD,
445 X86_ARCH_BSWAP,
447 X86_ARCH_LAST
450 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
452 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
453 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
454 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
455 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
456 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
458 /* For sane SSE instruction set generation we need fcomi instruction.
459 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
460 expands to a sequence that includes conditional move. */
461 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
463 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
465 extern unsigned char ix86_prefetch_sse;
466 #define TARGET_PREFETCH_SSE ix86_prefetch_sse
468 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
470 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
471 #define TARGET_MIX_SSE_I387 \
472 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
474 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
475 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
476 #define TARGET_HARD_XF_REGS (TARGET_80387)
478 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
479 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
480 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
481 #define TARGET_SUN_TLS 0
483 #ifndef TARGET_64BIT_DEFAULT
484 #define TARGET_64BIT_DEFAULT 0
485 #endif
486 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
487 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
488 #endif
490 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
491 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
493 /* Fence to use after loop using storent. */
495 extern GTY(()) tree x86_mfence;
496 #define FENCE_FOLLOWING_MOVNT x86_mfence
498 /* Once GDB has been enhanced to deal with functions without frame
499 pointers, we can change this to allow for elimination of
500 the frame pointer in leaf functions. */
501 #define TARGET_DEFAULT 0
503 /* Extra bits to force. */
504 #define TARGET_SUBTARGET_DEFAULT 0
505 #define TARGET_SUBTARGET_ISA_DEFAULT 0
507 /* Extra bits to force on w/ 32-bit mode. */
508 #define TARGET_SUBTARGET32_DEFAULT 0
509 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
511 /* Extra bits to force on w/ 64-bit mode. */
512 #define TARGET_SUBTARGET64_DEFAULT 0
513 /* Enable MMX, SSE and SSE2 by default. */
514 #define TARGET_SUBTARGET64_ISA_DEFAULT \
515 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
517 /* Replace MACH-O, ifdefs by in-line tests, where possible.
518 (a) Macros defined in config/i386/darwin.h */
519 #define TARGET_MACHO 0
520 #define TARGET_MACHO_SYMBOL_STUBS 0
521 #define MACHOPIC_ATT_STUB 0
522 /* (b) Macros defined in config/darwin.h */
523 #define MACHO_DYNAMIC_NO_PIC_P 0
524 #define MACHOPIC_INDIRECT 0
525 #define MACHOPIC_PURE 0
527 /* For the RDOS */
528 #define TARGET_RDOS 0
530 /* For the Windows 64-bit ABI. */
531 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
533 /* For the Windows 32-bit ABI. */
534 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
536 /* This is re-defined by cygming.h. */
537 #define TARGET_SEH 0
539 /* The default abi used by target. */
540 #define DEFAULT_ABI SYSV_ABI
542 /* The default TLS segment register used by target. */
543 #define DEFAULT_TLS_SEG_REG \
544 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
546 /* Subtargets may reset this to 1 in order to enable 96-bit long double
547 with the rounding mode forced to 53 bits. */
548 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
550 #ifndef SUBTARGET_DRIVER_SELF_SPECS
551 # define SUBTARGET_DRIVER_SELF_SPECS ""
552 #endif
554 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
556 /* -march=native handling only makes sense with compiler running on
557 an x86 or x86_64 chip. If changing this condition, also change
558 the condition in driver-i386.cc. */
559 #if defined(__i386__) || defined(__x86_64__)
560 /* In driver-i386.cc. */
561 extern const char *host_detect_local_cpu (int argc, const char **argv);
562 #define EXTRA_SPEC_FUNCTIONS \
563 { "local_cpu_detect", host_detect_local_cpu },
564 #define HAVE_LOCAL_CPU_DETECT
565 #endif
567 #if TARGET_64BIT_DEFAULT
568 #define OPT_ARCH64 "!m32"
569 #define OPT_ARCH32 "m32"
570 #else
571 #define OPT_ARCH64 "m64|mx32"
572 #define OPT_ARCH32 "m64|mx32:;"
573 #endif
575 /* Support for configure-time defaults of some command line options.
576 The order here is important so that -march doesn't squash the
577 tune or cpu values. */
578 #define OPTION_DEFAULT_SPECS \
579 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
580 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
581 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
582 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
583 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
584 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
585 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
586 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
587 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
589 /* Specs for the compiler proper */
591 #ifndef CC1_CPU_SPEC
592 #define CC1_CPU_SPEC_1 ""
594 #ifndef HAVE_LOCAL_CPU_DETECT
595 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
596 #else
597 #define ARCH_ARG "%{" OPT_ARCH64 ":64;:32}"
598 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
599 "%{march=native:%>march=native %:local_cpu_detect(arch " ARCH_ARG ") \
600 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}} \
601 %{mtune=native:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}"
602 #endif
603 #endif
605 /* Target CPU builtins. */
606 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
608 /* Target Pragmas. */
609 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
611 #ifndef CC1_SPEC
612 #define CC1_SPEC "%(cc1_cpu) "
613 #endif
615 /* This macro defines names of additional specifications to put in the
616 specs that can be used in various specifications like CC1_SPEC. Its
617 definition is an initializer with a subgrouping for each command option.
619 Each subgrouping contains a string constant, that defines the
620 specification name, and a string constant that used by the GCC driver
621 program.
623 Do not define this macro if it does not need to do anything. */
625 #ifndef SUBTARGET_EXTRA_SPECS
626 #define SUBTARGET_EXTRA_SPECS
627 #endif
629 #define EXTRA_SPECS \
630 { "cc1_cpu", CC1_CPU_SPEC }, \
631 SUBTARGET_EXTRA_SPECS
634 /* Whether to allow x87 floating-point arithmetic on MODE (one of
635 SFmode, DFmode and XFmode) in the current excess precision
636 configuration. */
637 #define X87_ENABLE_ARITH(MODE) \
638 (ix86_unsafe_math_optimizations \
639 || ix86_excess_precision == EXCESS_PRECISION_FAST \
640 || (MODE) == XFmode)
642 /* Likewise, whether to allow direct conversions from integer mode
643 IMODE (HImode, SImode or DImode) to MODE. */
644 #define X87_ENABLE_FLOAT(MODE, IMODE) \
645 (ix86_unsafe_math_optimizations \
646 || ix86_excess_precision == EXCESS_PRECISION_FAST \
647 || (MODE) == XFmode \
648 || ((MODE) == DFmode && (IMODE) == SImode) \
649 || (IMODE) == HImode)
651 /* target machine storage layout */
653 #define SHORT_TYPE_SIZE 16
654 #define INT_TYPE_SIZE 32
655 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
656 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
657 #define LONG_LONG_TYPE_SIZE 64
658 #define FLOAT_TYPE_SIZE 32
659 #define DOUBLE_TYPE_SIZE 64
660 #define LONG_DOUBLE_TYPE_SIZE \
661 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
663 #define WIDEST_HARDWARE_FP_SIZE 80
665 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
666 #define MAX_BITS_PER_WORD 64
667 #else
668 #define MAX_BITS_PER_WORD 32
669 #endif
671 /* Define this if most significant byte of a word is the lowest numbered. */
672 /* That is true on the 80386. */
674 #define BITS_BIG_ENDIAN 0
676 /* Define this if most significant byte of a word is the lowest numbered. */
677 /* That is not true on the 80386. */
678 #define BYTES_BIG_ENDIAN 0
680 /* Define this if most significant word of a multiword number is the lowest
681 numbered. */
682 /* Not true for 80386 */
683 #define WORDS_BIG_ENDIAN 0
685 /* Width of a word, in units (bytes). */
686 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
688 #ifndef IN_LIBGCC2
689 #define MIN_UNITS_PER_WORD 4
690 #endif
692 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
693 #define PARM_BOUNDARY BITS_PER_WORD
695 /* Boundary (in *bits*) on which stack pointer should be aligned. */
696 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
698 /* Stack boundary of the main function guaranteed by OS. */
699 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
701 /* Minimum stack boundary. */
702 #define MIN_STACK_BOUNDARY BITS_PER_WORD
704 /* Boundary (in *bits*) on which the stack pointer prefers to be
705 aligned; the compiler cannot rely on having this alignment. */
706 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
708 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
709 both 32bit and 64bit, to support codes that need 128 bit stack
710 alignment for SSE instructions, but can't realign the stack. */
711 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
712 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
714 /* 1 if -mstackrealign should be turned on by default. It will
715 generate an alternate prologue and epilogue that realigns the
716 runtime stack if nessary. This supports mixing codes that keep a
717 4-byte aligned stack, as specified by i386 psABI, with codes that
718 need a 16-byte aligned stack, as required by SSE instructions. */
719 #define STACK_REALIGN_DEFAULT 0
721 /* Boundary (in *bits*) on which the incoming stack is aligned. */
722 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
724 /* According to Windows x64 software convention, the maximum stack allocatable
725 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
726 instructions allowed to adjust the stack pointer in the epilog, forcing the
727 use of frame pointer for frames larger than 2 GB. This theorical limit
728 is reduced by 256, an over-estimated upper bound for the stack use by the
729 prologue.
730 We define only one threshold for both the prolog and the epilog. When the
731 frame size is larger than this threshold, we allocate the area to save SSE
732 regs, then save them, and then allocate the remaining. There is no SEH
733 unwind info for this later allocation. */
734 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
736 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
737 mandatory for the 64-bit ABI, and may or may not be true for other
738 operating systems. */
739 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
741 /* Minimum allocation boundary for the code of a function. */
742 #define FUNCTION_BOUNDARY 8
744 /* C++ stores the virtual bit in the lowest bit of function pointers. */
745 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
747 /* Minimum size in bits of the largest boundary to which any
748 and all fundamental data types supported by the hardware
749 might need to be aligned. No data type wants to be aligned
750 rounder than this.
752 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
753 and Pentium Pro XFmode values at 128 bit boundaries.
755 When increasing the maximum, also update
756 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
758 #define BIGGEST_ALIGNMENT \
759 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
761 /* Maximum stack alignment. */
762 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
764 /* Alignment value for attribute ((aligned)). It is a constant since
765 it is the part of the ABI. We shouldn't change it with -mavx. */
766 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
768 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
769 #define ALIGN_MODE_128(MODE) \
770 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
772 /* The published ABIs say that doubles should be aligned on word
773 boundaries, so lower the alignment for structure fields unless
774 -malign-double is set. */
776 /* ??? Blah -- this macro is used directly by libobjc. Since it
777 supports no vector modes, cut out the complexity and fall back
778 on BIGGEST_FIELD_ALIGNMENT. */
779 #ifdef IN_TARGET_LIBS
780 #ifdef __x86_64__
781 #define BIGGEST_FIELD_ALIGNMENT 128
782 #else
783 #define BIGGEST_FIELD_ALIGNMENT 32
784 #endif
785 #else
786 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
787 x86_field_alignment ((TYPE), (COMPUTED))
788 #endif
790 /* If defined, a C expression to compute the alignment for a static
791 variable. TYPE is the data type, and ALIGN is the alignment that
792 the object would ordinarily have. The value of this macro is used
793 instead of that alignment to align the object.
795 If this macro is not defined, then ALIGN is used.
797 One use of this macro is to increase alignment of medium-size
798 data to make it all fit in fewer cache lines. Another is to
799 cause character arrays to be word-aligned so that `strcpy' calls
800 that copy constants to character arrays can be done inline. */
802 #define DATA_ALIGNMENT(TYPE, ALIGN) \
803 ix86_data_alignment ((TYPE), (ALIGN), true)
805 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
806 some alignment increase, instead of optimization only purposes. E.g.
807 AMD x86-64 psABI says that variables with array type larger than 15 bytes
808 must be aligned to 16 byte boundaries.
810 If this macro is not defined, then ALIGN is used. */
812 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
813 ix86_data_alignment ((TYPE), (ALIGN), false)
815 /* If defined, a C expression to compute the alignment for a local
816 variable. TYPE is the data type, and ALIGN is the alignment that
817 the object would ordinarily have. The value of this macro is used
818 instead of that alignment to align the object.
820 If this macro is not defined, then ALIGN is used.
822 One use of this macro is to increase alignment of medium-size
823 data to make it all fit in fewer cache lines. */
825 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
826 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
828 /* If defined, a C expression to compute the alignment for stack slot.
829 TYPE is the data type, MODE is the widest mode available, and ALIGN
830 is the alignment that the slot would ordinarily have. The value of
831 this macro is used instead of that alignment to align the slot.
833 If this macro is not defined, then ALIGN is used when TYPE is NULL,
834 Otherwise, LOCAL_ALIGNMENT will be used.
836 One use of this macro is to set alignment of stack slot to the
837 maximum alignment of all possible modes which the slot may have. */
839 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
840 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
842 /* If defined, a C expression to compute the alignment for a local
843 variable DECL.
845 If this macro is not defined, then
846 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
848 One use of this macro is to increase alignment of medium-size
849 data to make it all fit in fewer cache lines. */
851 #define LOCAL_DECL_ALIGNMENT(DECL) \
852 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
854 /* If defined, a C expression to compute the minimum required alignment
855 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
856 MODE, assuming normal alignment ALIGN.
858 If this macro is not defined, then (ALIGN) will be used. */
860 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
861 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
864 /* Set this nonzero if move instructions will actually fail to work
865 when given unaligned data. */
866 #define STRICT_ALIGNMENT 0
868 /* If bit field type is int, don't let it cross an int,
869 and give entire struct the alignment of an int. */
870 /* Required on the 386 since it doesn't have bit-field insns. */
871 #define PCC_BITFIELD_TYPE_MATTERS 1
873 /* Standard register usage. */
875 /* This processor has special stack-like registers. See reg-stack.cc
876 for details. */
878 #define STACK_REGS
880 #define IS_STACK_MODE(MODE) \
881 (X87_FLOAT_MODE_P (MODE) \
882 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
883 || TARGET_MIX_SSE_I387))
885 /* Number of actual hardware registers.
886 The hardware registers are assigned numbers for the compiler
887 from 0 to just below FIRST_PSEUDO_REGISTER.
888 All registers that the compiler knows about must be given numbers,
889 even those that are not normally considered general registers.
891 In the 80386 we give the 8 general purpose registers the numbers 0-7.
892 We number the floating point registers 8-15.
893 Note that registers 0-7 can be accessed as a short or int,
894 while only 0-3 may be used with byte `mov' instructions.
896 Reg 16 does not correspond to any hardware register, but instead
897 appears in the RTL as an argument pointer prior to reload, and is
898 eliminated during reloading in favor of either the stack or frame
899 pointer. */
901 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
903 /* Number of hardware registers that go into the DWARF-2 unwind info.
904 If not defined, equals FIRST_PSEUDO_REGISTER. */
906 #define DWARF_FRAME_REGISTERS 17
908 /* 1 for registers that have pervasive standard uses
909 and are not available for the register allocator.
910 On the 80386, the stack pointer is such, as is the arg pointer.
912 REX registers are disabled for 32bit targets in
913 TARGET_CONDITIONAL_REGISTER_USAGE. */
915 #define FIXED_REGISTERS \
916 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
917 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
918 /*arg,flags,fpsr,frame*/ \
919 1, 1, 1, 1, \
920 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
921 0, 0, 0, 0, 0, 0, 0, 0, \
922 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
923 0, 0, 0, 0, 0, 0, 0, 0, \
924 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
925 0, 0, 0, 0, 0, 0, 0, 0, \
926 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
927 0, 0, 0, 0, 0, 0, 0, 0, \
928 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
929 0, 0, 0, 0, 0, 0, 0, 0, \
930 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
933 0, 0, 0, 0, 0, 0, 0, 0 }
935 /* 1 for registers not available across function calls.
936 These must include the FIXED_REGISTERS and also any
937 registers that can be used without being saved.
938 The latter must include the registers where values are returned
939 and the register where structure-value addresses are passed.
940 Aside from that, you can include as many other registers as you like.
942 Value is set to 1 if the register is call used unconditionally.
943 Bit one is set if the register is call used on TARGET_32BIT ABI.
944 Bit two is set if the register is call used on TARGET_64BIT ABI.
945 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
947 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
949 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
950 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
952 #define CALL_USED_REGISTERS \
953 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
954 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
955 /*arg,flags,fpsr,frame*/ \
956 1, 1, 1, 1, \
957 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
958 1, 1, 1, 1, 1, 1, 6, 6, \
959 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
960 1, 1, 1, 1, 1, 1, 1, 1, \
961 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
962 1, 1, 1, 1, 2, 2, 2, 2, \
963 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
964 6, 6, 6, 6, 6, 6, 6, 6, \
965 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
966 1, 1, 1, 1, 1, 1, 1, 1, \
967 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
968 1, 1, 1, 1, 1, 1, 1, 1, \
969 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
970 1, 1, 1, 1, 1, 1, 1, 1 }
972 /* Order in which to allocate registers. Each register must be
973 listed once, even those in FIXED_REGISTERS. List frame pointer
974 late and fixed registers last. Note that, in general, we prefer
975 registers listed in CALL_USED_REGISTERS, keeping the others
976 available for storage of persistent values.
978 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
979 so this is just empty initializer for array. */
981 #define REG_ALLOC_ORDER \
982 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
983 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
984 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
985 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
986 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
988 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
989 to be rearranged based on a particular function. When using sse math,
990 we want to allocate SSE before x87 registers and vice versa. */
992 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
995 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
997 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
998 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
999 && GENERAL_REGNO_P (REGNO) \
1000 && ((MODE) == XFmode || (MODE) == XCmode))
1002 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1004 #define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1006 #define VALID_AVX256_REG_MODE(MODE) \
1007 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1008 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1009 || (MODE) == V4DFmode || (MODE) == V16HFmode || (MODE) == V16BFmode)
1011 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1012 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1014 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1015 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1016 || (MODE) == SFmode)
1018 #define VALID_AVX512FP16_SCALAR_MODE(MODE) \
1019 ((MODE) == HImode || (MODE) == HFmode)
1021 #define VALID_AVX512F_REG_MODE(MODE) \
1022 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1023 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1024 || (MODE) == V4TImode || (MODE) == V32HFmode || (MODE) == V32BFmode)
1026 #define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1027 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1029 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1030 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1031 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1032 || (MODE) == TFmode || (MODE) == V1TImode || (MODE) == V8HFmode \
1033 || (MODE) == V8BFmode || (MODE) == TImode)
1035 #define VALID_AVX512FP16_REG_MODE(MODE) \
1036 ((MODE) == V8HFmode || (MODE) == V16HFmode || (MODE) == V32HFmode \
1037 || (MODE) == V2HFmode)
1039 #define VALID_SSE2_REG_MODE(MODE) \
1040 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1041 || (MODE) == V8HFmode || (MODE) == V4HFmode || (MODE) == V2HFmode \
1042 || (MODE) == V8BFmode \
1043 || (MODE) == V4QImode || (MODE) == V2HImode || (MODE) == V1SImode \
1044 || (MODE) == V2DImode || (MODE) == V2QImode || (MODE) == DFmode \
1045 || (MODE) == HFmode || (MODE) == BFmode)
1047 #define VALID_SSE_REG_MODE(MODE) \
1048 ((MODE) == V1TImode || (MODE) == TImode \
1049 || (MODE) == V4SFmode || (MODE) == V4SImode \
1050 || (MODE) == SFmode || (MODE) == TFmode || (MODE) == TDmode)
1052 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1053 ((MODE) == V2SFmode || (MODE) == SFmode)
1055 /* To match ia32 psABI, V4HFmode should be added here. */
1056 #define VALID_MMX_REG_MODE(MODE) \
1057 ((MODE) == V1DImode || (MODE) == DImode \
1058 || (MODE) == V2SImode || (MODE) == SImode \
1059 || (MODE) == V4HImode || (MODE) == V8QImode \
1060 || (MODE) == V4HFmode)
1062 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1064 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1066 #define VALID_FP_MODE_P(MODE) \
1067 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1068 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)
1070 #define VALID_INT_MODE_P(MODE) \
1071 ((MODE) == QImode || (MODE) == HImode \
1072 || (MODE) == SImode || (MODE) == DImode \
1073 || (MODE) == CQImode || (MODE) == CHImode \
1074 || (MODE) == CSImode || (MODE) == CDImode \
1075 || (MODE) == SDmode || (MODE) == DDmode \
1076 || (MODE) == HFmode || (MODE) == HCmode || (MODE) == BFmode \
1077 || (MODE) == V2HImode || (MODE) == V2HFmode \
1078 || (MODE) == V1SImode || (MODE) == V4QImode || (MODE) == V2QImode \
1079 || (TARGET_64BIT \
1080 && ((MODE) == TImode || (MODE) == CTImode \
1081 || (MODE) == TFmode || (MODE) == TCmode \
1082 || (MODE) == V8QImode || (MODE) == V4HImode \
1083 || (MODE) == V2SImode || (MODE) == TDmode)))
1085 /* Return true for modes passed in SSE registers. */
1086 #define SSE_REG_MODE_P(MODE) \
1087 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1088 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1089 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1090 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1091 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1092 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1093 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1094 || (MODE) == V16SFmode \
1095 || (MODE) == V32HFmode || (MODE) == V16HFmode || (MODE) == V8HFmode \
1096 || (MODE) == V32BFmode || (MODE) == V16BFmode || (MODE) == V8BFmode)
1098 #define X87_FLOAT_MODE_P(MODE) \
1099 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1101 #define SSE_FLOAT_MODE_P(MODE) \
1102 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1104 #define SSE_FLOAT_MODE_SSEMATH_OR_HF_P(MODE) \
1105 ((SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1106 || (TARGET_AVX512FP16 && (MODE) == HFmode))
1108 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1109 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1110 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1112 #define VALID_BCST_MODE_P(MODE) \
1113 ((MODE) == SFmode || (MODE) == DFmode \
1114 || (MODE) == SImode || (MODE) == DImode \
1115 || (MODE) == HFmode)
1117 /* It is possible to write patterns to move flags; but until someone
1118 does it, */
1119 #define AVOID_CCMODE_COPIES
1121 /* Specify the modes required to caller save a given hard regno.
1122 We do this on i386 to prevent flags from being saved at all.
1124 Kill any attempts to combine saving of modes. */
1126 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1127 (CC_REGNO_P (REGNO) ? VOIDmode \
1128 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1129 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL) \
1130 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1131 && TARGET_PARTIAL_REG_STALL) \
1132 || MASK_REGNO_P (REGNO)) ? SImode \
1133 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1134 || MASK_REGNO_P (REGNO)) ? SImode \
1135 : (MODE))
1137 /* Specify the registers used for certain standard purposes.
1138 The values of these macros are register numbers. */
1140 /* on the 386 the pc register is %eip, and is not usable as a general
1141 register. The ordinary mov instructions won't work */
1142 /* #define PC_REGNUM */
1144 /* Base register for access to arguments of the function. */
1145 #define ARG_POINTER_REGNUM ARGP_REG
1147 /* Register to use for pushing function arguments. */
1148 #define STACK_POINTER_REGNUM SP_REG
1150 /* Base register for access to local variables of the function. */
1151 #define FRAME_POINTER_REGNUM FRAME_REG
1152 #define HARD_FRAME_POINTER_REGNUM BP_REG
1154 #define FIRST_INT_REG AX_REG
1155 #define LAST_INT_REG SP_REG
1157 #define FIRST_QI_REG AX_REG
1158 #define LAST_QI_REG BX_REG
1160 /* First & last stack-like regs */
1161 #define FIRST_STACK_REG ST0_REG
1162 #define LAST_STACK_REG ST7_REG
1164 #define FIRST_SSE_REG XMM0_REG
1165 #define LAST_SSE_REG XMM7_REG
1167 #define FIRST_MMX_REG MM0_REG
1168 #define LAST_MMX_REG MM7_REG
1170 #define FIRST_REX_INT_REG R8_REG
1171 #define LAST_REX_INT_REG R15_REG
1173 #define FIRST_REX_SSE_REG XMM8_REG
1174 #define LAST_REX_SSE_REG XMM15_REG
1176 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1177 #define LAST_EXT_REX_SSE_REG XMM31_REG
1179 #define FIRST_MASK_REG MASK0_REG
1180 #define LAST_MASK_REG MASK7_REG
1182 /* Override this in other tm.h files to cope with various OS lossage
1183 requiring a frame pointer. */
1184 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1185 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1186 #endif
1188 /* Define the shadow offset for asan. Other OS's can override in the
1189 respective tm.h files. */
1190 #ifndef SUBTARGET_SHADOW_OFFSET
1191 #define SUBTARGET_SHADOW_OFFSET \
1192 (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
1193 #endif
1195 /* Make sure we can access arbitrary call frames. */
1196 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1198 /* Register to hold the addressing base for position independent
1199 code access to data items. We don't use PIC pointer for 64bit
1200 mode. Define the regnum to dummy value to prevent gcc from
1201 pessimizing code dealing with EBX.
1203 To avoid clobbering a call-saved register unnecessarily, we renumber
1204 the pic register when possible. The change is visible after the
1205 prologue has been emitted. */
1207 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1209 #define PIC_OFFSET_TABLE_REGNUM \
1210 (ix86_use_pseudo_pic_reg () \
1211 ? (pic_offset_table_rtx \
1212 ? INVALID_REGNUM \
1213 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1214 : INVALID_REGNUM)
1216 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1218 /* This is overridden by <cygwin.h>. */
1219 #define MS_AGGREGATE_RETURN 0
1221 #define KEEP_AGGREGATE_RETURN_POINTER 0
1223 /* Define the classes of registers for register constraints in the
1224 machine description. Also define ranges of constants.
1226 One of the classes must always be named ALL_REGS and include all hard regs.
1227 If there is more than one class, another class must be named NO_REGS
1228 and contain no registers.
1230 The name GENERAL_REGS must be the name of a class (or an alias for
1231 another name such as ALL_REGS). This is the class of registers
1232 that is allowed by "g" or "r" in a register constraint.
1233 Also, registers outside this class are allocated only when
1234 instructions express preferences for them.
1236 The classes must be numbered in nondecreasing order; that is,
1237 a larger-numbered class must never be contained completely
1238 in a smaller-numbered class. This is why CLOBBERED_REGS class
1239 is listed early, even though in 64-bit mode it contains more
1240 registers than just %eax, %ecx, %edx.
1242 For any two classes, it is very desirable that there be another
1243 class that represents their union.
1245 The flags and fpsr registers are in no class. */
1247 enum reg_class
1249 NO_REGS,
1250 AREG, DREG, CREG, BREG, SIREG, DIREG,
1251 AD_REGS, /* %eax/%edx for DImode */
1252 CLOBBERED_REGS, /* call-clobbered integer registers */
1253 Q_REGS, /* %eax %ebx %ecx %edx */
1254 NON_Q_REGS, /* %esi %edi %ebp %esp */
1255 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1256 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1257 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1258 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1259 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1260 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1261 FLOAT_REGS,
1262 SSE_FIRST_REG,
1263 NO_REX_SSE_REGS,
1264 SSE_REGS,
1265 ALL_SSE_REGS,
1266 MMX_REGS,
1267 FLOAT_SSE_REGS,
1268 FLOAT_INT_REGS,
1269 INT_SSE_REGS,
1270 FLOAT_INT_SSE_REGS,
1271 MASK_REGS,
1272 ALL_MASK_REGS,
1273 INT_MASK_REGS,
1274 ALL_REGS,
1275 LIM_REG_CLASSES
1278 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1280 #define INTEGER_CLASS_P(CLASS) \
1281 reg_class_subset_p ((CLASS), GENERAL_REGS)
1282 #define FLOAT_CLASS_P(CLASS) \
1283 reg_class_subset_p ((CLASS), FLOAT_REGS)
1284 #define SSE_CLASS_P(CLASS) \
1285 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1286 #define INT_SSE_CLASS_P(CLASS) \
1287 reg_class_subset_p ((CLASS), INT_SSE_REGS)
1288 #define MMX_CLASS_P(CLASS) \
1289 ((CLASS) == MMX_REGS)
1290 #define MASK_CLASS_P(CLASS) \
1291 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
1292 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1293 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1294 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1295 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1296 #define MAYBE_SSE_CLASS_P(CLASS) \
1297 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1298 #define MAYBE_MMX_CLASS_P(CLASS) \
1299 reg_classes_intersect_p ((CLASS), MMX_REGS)
1300 #define MAYBE_MASK_CLASS_P(CLASS) \
1301 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
1303 #define Q_CLASS_P(CLASS) \
1304 reg_class_subset_p ((CLASS), Q_REGS)
1306 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1307 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1309 /* Give names of register classes as strings for dump file. */
1311 #define REG_CLASS_NAMES \
1312 { "NO_REGS", \
1313 "AREG", "DREG", "CREG", "BREG", \
1314 "SIREG", "DIREG", \
1315 "AD_REGS", \
1316 "CLOBBERED_REGS", \
1317 "Q_REGS", "NON_Q_REGS", \
1318 "TLS_GOTBASE_REGS", \
1319 "INDEX_REGS", \
1320 "LEGACY_REGS", \
1321 "GENERAL_REGS", \
1322 "FP_TOP_REG", "FP_SECOND_REG", \
1323 "FLOAT_REGS", \
1324 "SSE_FIRST_REG", \
1325 "NO_REX_SSE_REGS", \
1326 "SSE_REGS", \
1327 "ALL_SSE_REGS", \
1328 "MMX_REGS", \
1329 "FLOAT_SSE_REGS", \
1330 "FLOAT_INT_REGS", \
1331 "INT_SSE_REGS", \
1332 "FLOAT_INT_SSE_REGS", \
1333 "MASK_REGS", \
1334 "ALL_MASK_REGS", \
1335 "INT_MASK_REGS", \
1336 "ALL_REGS" }
1338 /* Define which registers fit in which classes. This is an initializer
1339 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1341 Note that CLOBBERED_REGS are calculated by
1342 TARGET_CONDITIONAL_REGISTER_USAGE. */
1344 #define REG_CLASS_CONTENTS \
1345 { { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1346 { 0x01, 0x0, 0x0 }, /* AREG */ \
1347 { 0x02, 0x0, 0x0 }, /* DREG */ \
1348 { 0x04, 0x0, 0x0 }, /* CREG */ \
1349 { 0x08, 0x0, 0x0 }, /* BREG */ \
1350 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1351 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1352 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1353 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1354 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1355 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1356 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1357 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1358 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1359 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1360 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1361 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1362 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1363 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1364 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1365 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1366 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1367 { 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1368 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1369 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1370 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1371 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1372 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1373 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1374 { 0x900ff, 0xff0, 0xff0 }, /* INT_MASK_REGS */ \
1375 { 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
1378 /* The same information, inverted:
1379 Return the class number of the smallest class containing
1380 reg number REGNO. This could be a conditional expression
1381 or could index an array. */
1383 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1385 /* When this hook returns true for MODE, the compiler allows
1386 registers explicitly used in the rtl to be used as spill registers
1387 but prevents the compiler from extending the lifetime of these
1388 registers. */
1389 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1391 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1392 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1394 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1395 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1397 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1398 #define REX_INT_REGNO_P(N) \
1399 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1401 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1402 #define GENERAL_REGNO_P(N) \
1403 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1405 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1406 #define ANY_QI_REGNO_P(N) \
1407 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1409 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1410 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1412 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1413 #define SSE_REGNO_P(N) \
1414 (LEGACY_SSE_REGNO_P (N) \
1415 || REX_SSE_REGNO_P (N) \
1416 || EXT_REX_SSE_REGNO_P (N))
1418 #define LEGACY_SSE_REGNO_P(N) \
1419 IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)
1421 #define REX_SSE_REGNO_P(N) \
1422 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1424 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1426 #define EXT_REX_SSE_REGNO_P(N) \
1427 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1429 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1430 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1432 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1433 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1434 #define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
1436 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1437 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1439 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1440 #define CC_REGNO_P(X) ((X) == FLAGS_REG)
1442 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1443 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1444 || (N) == XMM4_REG \
1445 || (N) == XMM8_REG \
1446 || (N) == XMM12_REG \
1447 || (N) == XMM16_REG \
1448 || (N) == XMM20_REG \
1449 || (N) == XMM24_REG \
1450 || (N) == XMM28_REG)
1452 /* First floating point reg */
1453 #define FIRST_FLOAT_REG FIRST_STACK_REG
1454 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1456 #define GET_SSE_REGNO(N) \
1457 ((N) < 8 ? FIRST_SSE_REG + (N) \
1458 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1459 : FIRST_EXT_REX_SSE_REG + (N) - 16)
1461 /* The class value for index registers, and the one for base regs. */
1463 #define INDEX_REG_CLASS INDEX_REGS
1464 #define BASE_REG_CLASS GENERAL_REGS
1466 /* Stack layout; function entry, exit and calling. */
1468 /* Define this if pushing a word on the stack
1469 makes the stack pointer a smaller address. */
1470 #define STACK_GROWS_DOWNWARD 1
1472 /* Define this to nonzero if the nominal address of the stack frame
1473 is at the high-address end of the local variables;
1474 that is, each additional local variable allocated
1475 goes at a more negative offset in the frame. */
1476 #define FRAME_GROWS_DOWNWARD 1
1478 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1480 /* If defined, the maximum amount of space required for outgoing arguments
1481 will be computed and placed into the variable `crtl->outgoing_args_size'.
1482 No space will be pushed onto the stack for each call; instead, the
1483 function prologue should increase the stack frame size by this amount.
1485 In 32bit mode enabling argument accumulation results in about 5% code size
1486 growth because move instructions are less compact than push. In 64bit
1487 mode the difference is less drastic but visible.
1489 FIXME: Unlike earlier implementations, the size of unwind info seems to
1490 actually grow with accumulation. Is that because accumulated args
1491 unwind info became unnecesarily bloated?
1493 With the 64-bit MS ABI, we can generate correct code with or without
1494 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1495 generated without accumulated args is terrible.
1497 If stack probes are required, the space used for large function
1498 arguments on the stack must also be probed, so enable
1499 -maccumulate-outgoing-args so this happens in the prologue.
1501 We must use argument accumulation in interrupt function if stack
1502 may be realigned to avoid DRAP. */
1504 #define ACCUMULATE_OUTGOING_ARGS \
1505 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1506 && optimize_function_for_speed_p (cfun)) \
1507 || (cfun->machine->func_type != TYPE_NORMAL \
1508 && crtl->stack_realign_needed) \
1509 || TARGET_STACK_PROBE \
1510 || TARGET_64BIT_MS_ABI \
1511 || (TARGET_MACHO && crtl->profile))
1513 /* We want the stack and args grow in opposite directions, even if
1514 targetm.calls.push_argument returns false. */
1515 #define PUSH_ARGS_REVERSED 1
1517 /* Offset of first parameter from the argument pointer register value. */
1518 #define FIRST_PARM_OFFSET(FNDECL) 0
1520 /* Define this macro if functions should assume that stack space has been
1521 allocated for arguments even when their values are passed in registers.
1523 The value of this macro is the size, in bytes, of the area reserved for
1524 arguments passed in registers for the function represented by FNDECL.
1526 This space can be allocated by the caller, or be a part of the
1527 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1528 which. */
1529 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1531 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1532 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1534 /* Define how to find the value returned by a library function
1535 assuming the value has mode MODE. */
1537 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1539 /* Define the size of the result block used for communication between
1540 untyped_call and untyped_return. The block contains a DImode value
1541 followed by the block used by fnsave and frstor. */
1543 #define APPLY_RESULT_SIZE (8+108)
1545 /* 1 if N is a possible register number for function argument passing. */
1546 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1548 /* Define a data type for recording info about an argument list
1549 during the scan of that argument list. This data type should
1550 hold all necessary information about the function itself
1551 and about the args processed so far, enough to enable macros
1552 such as FUNCTION_ARG to determine where the next arg should go. */
1554 typedef struct ix86_args {
1555 int words; /* # words passed so far */
1556 int nregs; /* # registers available for passing */
1557 int regno; /* next available register number */
1558 int fastcall; /* fastcall or thiscall calling convention
1559 is used */
1560 int sse_words; /* # sse words passed so far */
1561 int sse_nregs; /* # sse registers available for passing */
1562 int warn_avx512f; /* True when we want to warn
1563 about AVX512F ABI. */
1564 int warn_avx; /* True when we want to warn about AVX ABI. */
1565 int warn_sse; /* True when we want to warn about SSE ABI. */
1566 int warn_mmx; /* True when we want to warn about MMX ABI. */
1567 int warn_empty; /* True when we want to warn about empty classes
1568 passing ABI change. */
1569 int sse_regno; /* next available sse register number */
1570 int mmx_words; /* # mmx words passed so far */
1571 int mmx_nregs; /* # mmx registers available for passing */
1572 int mmx_regno; /* next available mmx register number */
1573 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1574 int caller; /* true if it is caller. */
1575 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1576 SFmode/DFmode arguments should be passed
1577 in SSE registers. Otherwise 0. */
1578 int stdarg; /* Set to 1 if function is stdarg. */
1579 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1580 MS_ABI for ms abi. */
1581 tree decl; /* Callee decl. */
1582 } CUMULATIVE_ARGS;
1584 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1585 for a call to a function whose data type is FNTYPE.
1586 For a library call, FNTYPE is 0. */
1588 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1589 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1590 (N_NAMED_ARGS) != -1)
1592 /* Output assembler code to FILE to increment profiler label # LABELNO
1593 for profiling a function entry. */
1595 #define FUNCTION_PROFILER(FILE, LABELNO) \
1596 x86_function_profiler ((FILE), (LABELNO))
1598 #define MCOUNT_NAME "_mcount"
1600 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1602 #define PROFILE_COUNT_REGISTER "edx"
1604 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1605 the stack pointer does not matter. The value is tested only in
1606 functions that have frame pointers.
1607 No definition is equivalent to always zero. */
1608 /* Note on the 386 it might be more efficient not to define this since
1609 we have to restore it ourselves from the frame pointer, in order to
1610 use pop */
1612 #define EXIT_IGNORE_STACK 1
1614 /* Define this macro as a C expression that is nonzero for registers
1615 used by the epilogue or the `return' pattern. */
1617 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1619 /* Output assembler code for a block containing the constant parts
1620 of a trampoline, leaving space for the variable parts. */
1622 /* On the 386, the trampoline contains two instructions:
1623 mov #STATIC,ecx
1624 jmp FUNCTION
1625 The trampoline is generated entirely at runtime. The operand of JMP
1626 is the address of FUNCTION relative to the instruction following the
1627 JMP (which is 5 bytes long). */
1629 /* Length in units of the trampoline for entering a nested function. */
1631 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1633 /* Definitions for register eliminations.
1635 This is an array of structures. Each structure initializes one pair
1636 of eliminable registers. The "from" register number is given first,
1637 followed by "to". Eliminations of the same "from" register are listed
1638 in order of preference.
1640 There are two registers that can always be eliminated on the i386.
1641 The frame pointer and the arg pointer can be replaced by either the
1642 hard frame pointer or to the stack pointer, depending upon the
1643 circumstances. The hard frame pointer is not used before reload and
1644 so it is not eligible for elimination. */
1646 #define ELIMINABLE_REGS \
1647 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1648 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1649 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1650 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1652 /* Define the offset between two registers, one to be eliminated, and the other
1653 its replacement, at the start of a routine. */
1655 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1656 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1658 /* Addressing modes, and classification of registers for them. */
1660 /* Macros to check register numbers against specific register classes. */
1662 /* These assume that REGNO is a hard or pseudo reg number.
1663 They give nonzero only if REGNO is a hard reg of the suitable class
1664 or a pseudo reg currently allocated to a suitable hard reg.
1665 Since they use reg_renumber, they are safe only once reg_renumber
1666 has been allocated, which happens in reginfo.cc during register
1667 allocation. */
1669 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1670 ((REGNO) < STACK_POINTER_REGNUM \
1671 || REX_INT_REGNO_P (REGNO) \
1672 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1673 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1675 #define REGNO_OK_FOR_BASE_P(REGNO) \
1676 (GENERAL_REGNO_P (REGNO) \
1677 || (REGNO) == ARG_POINTER_REGNUM \
1678 || (REGNO) == FRAME_POINTER_REGNUM \
1679 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1681 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1682 and check its validity for a certain class.
1683 We have two alternate definitions for each of them.
1684 The usual definition accepts all pseudo regs; the other rejects
1685 them unless they have been allocated suitable hard regs.
1686 The symbol REG_OK_STRICT causes the latter definition to be used.
1688 Most source files want to accept pseudo regs in the hope that
1689 they will get allocated to the class that the insn wants them to be in.
1690 Source files for reload pass need to be strict.
1691 After reload, it makes no difference, since pseudo regs have
1692 been eliminated by then. */
1695 /* Non strict versions, pseudos are ok. */
1696 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1697 (REGNO (X) < STACK_POINTER_REGNUM \
1698 || REX_INT_REGNO_P (REGNO (X)) \
1699 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1701 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1702 (GENERAL_REGNO_P (REGNO (X)) \
1703 || REGNO (X) == ARG_POINTER_REGNUM \
1704 || REGNO (X) == FRAME_POINTER_REGNUM \
1705 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1707 /* Strict versions, hard registers only */
1708 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1709 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1711 #ifndef REG_OK_STRICT
1712 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1713 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1715 #else
1716 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1717 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1718 #endif
1720 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1721 that is a valid memory address for an instruction.
1722 The MODE argument is the machine mode for the MEM expression
1723 that wants to use this address.
1725 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1726 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1728 See legitimize_pic_address in i386.cc for details as to what
1729 constitutes a legitimate address when -fpic is used. */
1731 #define MAX_REGS_PER_ADDRESS 2
1733 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1735 /* If defined, a C expression to determine the base term of address X.
1736 This macro is used in only one place: `find_base_term' in alias.cc.
1738 It is always safe for this macro to not be defined. It exists so
1739 that alias analysis can understand machine-dependent addresses.
1741 The typical use of this macro is to handle addresses containing
1742 a label_ref or symbol_ref within an UNSPEC. */
1744 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1746 /* Nonzero if the constant value X is a legitimate general operand
1747 when generating PIC code. It is given that flag_pic is on and
1748 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1750 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1752 #define STRIP_UNARY(X) (UNARY_P (X) ? XEXP (X, 0) : X)
1754 #define SYMBOLIC_CONST(X) \
1755 (GET_CODE (X) == SYMBOL_REF \
1756 || GET_CODE (X) == LABEL_REF \
1757 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1759 /* Max number of args passed in registers. If this is more than 3, we will
1760 have problems with ebx (register #4), since it is a caller save register and
1761 is also used as the pic register in ELF. So for now, don't allow more than
1762 3 registers to be passed in registers. */
1764 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1765 #define X86_64_REGPARM_MAX 6
1766 #define X86_64_MS_REGPARM_MAX 4
1768 #define X86_32_REGPARM_MAX 3
1770 #define REGPARM_MAX \
1771 (TARGET_64BIT \
1772 ? (TARGET_64BIT_MS_ABI \
1773 ? X86_64_MS_REGPARM_MAX \
1774 : X86_64_REGPARM_MAX) \
1775 : X86_32_REGPARM_MAX)
1777 #define X86_64_SSE_REGPARM_MAX 8
1778 #define X86_64_MS_SSE_REGPARM_MAX 4
1780 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1782 #define SSE_REGPARM_MAX \
1783 (TARGET_64BIT \
1784 ? (TARGET_64BIT_MS_ABI \
1785 ? X86_64_MS_SSE_REGPARM_MAX \
1786 : X86_64_SSE_REGPARM_MAX) \
1787 : X86_32_SSE_REGPARM_MAX)
1789 #define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
1791 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
1793 /* Specify the machine mode that this machine uses
1794 for the index in the tablejump instruction. */
1795 #define CASE_VECTOR_MODE \
1796 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1798 /* Define this as 1 if `char' should by default be signed; else as 0. */
1799 #define DEFAULT_SIGNED_CHAR 1
1801 /* The constant maximum number of bytes that a single instruction can
1802 move quickly between memory and registers or between two memory
1803 locations. */
1804 #define MAX_MOVE_MAX 64
1806 /* Max number of bytes we can move from memory to memory in one
1807 reasonably fast instruction, as opposed to MOVE_MAX_PIECES which
1808 is the number of bytes at a time which we can move efficiently.
1809 MOVE_MAX_PIECES defaults to MOVE_MAX. */
1811 #define MOVE_MAX \
1812 ((TARGET_AVX512F \
1813 && (ix86_move_max == PVW_AVX512 \
1814 || ix86_store_max == PVW_AVX512)) \
1815 ? 64 \
1816 : ((TARGET_AVX \
1817 && (ix86_move_max >= PVW_AVX256 \
1818 || ix86_store_max >= PVW_AVX256)) \
1819 ? 32 \
1820 : ((TARGET_SSE2 \
1821 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1822 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1823 ? 16 : UNITS_PER_WORD)))
1825 /* STORE_MAX_PIECES is the number of bytes at a time that we can store
1826 efficiently. Allow 16/32/64 bytes only if inter-unit move is enabled
1827 since vec_duplicate enabled by inter-unit move is used to implement
1828 store_by_pieces of 16/32/64 bytes. */
1829 #define STORE_MAX_PIECES \
1830 (TARGET_INTER_UNIT_MOVES_TO_VEC \
1831 ? ((TARGET_AVX512F && ix86_store_max == PVW_AVX512) \
1832 ? 64 \
1833 : ((TARGET_AVX \
1834 && ix86_store_max >= PVW_AVX256) \
1835 ? 32 \
1836 : ((TARGET_SSE2 \
1837 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1838 ? 16 : UNITS_PER_WORD))) \
1839 : UNITS_PER_WORD)
1841 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1842 move-instruction pairs, we will do a cpymem or libcall instead.
1843 Increasing the value will always make code faster, but eventually
1844 incurs high cost in increased code size.
1846 If you don't define this, a reasonable default is used. */
1848 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1850 /* If a clear memory operation would take CLEAR_RATIO or more simple
1851 move-instruction sequences, we will do a clrmem or libcall instead. */
1853 #define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
1855 /* Define if shifts truncate the shift count which implies one can
1856 omit a sign-extension or zero-extension of a shift count.
1858 On i386, shifts do truncate the count. But bit test instructions
1859 take the modulo of the bit offset operand. */
1861 /* #define SHIFT_COUNT_TRUNCATED */
1863 /* A macro to update M and UNSIGNEDP when an object whose type is
1864 TYPE and which has the specified mode and signedness is to be
1865 stored in a register. This macro is only called when TYPE is a
1866 scalar type.
1868 On i386 it is sometimes useful to promote HImode and QImode
1869 quantities to SImode. The choice depends on target type. */
1871 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1872 do { \
1873 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1874 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1875 (MODE) = SImode; \
1876 } while (0)
1878 /* Specify the machine mode that pointers have.
1879 After generation of rtl, the compiler makes no further distinction
1880 between pointers and any other objects of this machine mode. */
1881 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1883 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1884 NONLOCAL needs space to save both shadow stack and stack pointers.
1886 FIXME: We only need to save and restore stack pointer in ptr_mode.
1887 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1888 to save and restore stack pointer. See
1889 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1891 #define STACK_SAVEAREA_MODE(LEVEL) \
1892 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1894 /* Specify the machine_mode of the size increment
1895 operand of an 'allocate_stack' named pattern. */
1896 #define STACK_SIZE_MODE Pmode
1898 /* A C expression whose value is zero if pointers that need to be extended
1899 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1900 greater then zero if they are zero-extended and less then zero if the
1901 ptr_extend instruction should be used. */
1903 #define POINTERS_EXTEND_UNSIGNED 1
1905 /* A function address in a call instruction
1906 is a byte address (for indexing purposes)
1907 so give the MEM rtx a byte's mode. */
1908 #define FUNCTION_MODE QImode
1911 /* A C expression for the cost of a branch instruction. A value of 1
1912 is the default; other values are interpreted relative to that. */
1914 #define BRANCH_COST(speed_p, predictable_p) \
1915 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1917 /* An integer expression for the size in bits of the largest integer machine
1918 mode that should actually be used. We allow pairs of registers. */
1919 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1921 /* Define this macro as a C expression which is nonzero if accessing
1922 less than a word of memory (i.e. a `char' or a `short') is no
1923 faster than accessing a word of memory, i.e., if such access
1924 require more than one instruction or if there is no difference in
1925 cost between byte and (aligned) word loads.
1927 When this macro is not defined, the compiler will access a field by
1928 finding the smallest containing object; when it is defined, a
1929 fullword load will be used if alignment permits. Unless bytes
1930 accesses are faster than word accesses, using word accesses is
1931 preferable since it may eliminate subsequent memory access if
1932 subsequent accesses occur to other fields in the same word of the
1933 structure, but to different bytes. */
1935 #define SLOW_BYTE_ACCESS 0
1937 /* Nonzero if access to memory by shorts is slow and undesirable. */
1938 #define SLOW_SHORT_ACCESS 0
1940 /* Define this macro if it is as good or better to call a constant
1941 function address than to call an address kept in a register.
1943 Desirable on the 386 because a CALL with a constant address is
1944 faster than one with a register address. */
1946 #define NO_FUNCTION_CSE 1
1948 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1949 return the mode to be used for the comparison.
1951 For floating-point equality comparisons, CCFPEQmode should be used.
1952 VOIDmode should be used in all other cases.
1954 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1955 possible, to allow for more combinations. */
1957 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1959 /* Return nonzero if MODE implies a floating point inequality can be
1960 reversed. */
1962 #define REVERSIBLE_CC_MODE(MODE) 1
1964 /* A C expression whose value is reversed condition code of the CODE for
1965 comparison done in CC_MODE mode. */
1966 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1969 /* Control the assembler format that we output, to the extent
1970 this does not vary between assemblers. */
1972 /* How to refer to registers in assembler output.
1973 This sequence is indexed by compiler's hard-register-number (see above). */
1975 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1976 For non floating point regs, the following are the HImode names.
1978 For float regs, the stack top is sometimes referred to as "%st(0)"
1979 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1980 "y" code. */
1982 #define HI_REGISTER_NAMES \
1983 {"ax","dx","cx","bx","si","di","bp","sp", \
1984 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1985 "argp", "flags", "fpsr", "frame", \
1986 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1987 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1988 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1989 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
1990 "xmm16", "xmm17", "xmm18", "xmm19", \
1991 "xmm20", "xmm21", "xmm22", "xmm23", \
1992 "xmm24", "xmm25", "xmm26", "xmm27", \
1993 "xmm28", "xmm29", "xmm30", "xmm31", \
1994 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
1996 #define REGISTER_NAMES HI_REGISTER_NAMES
1998 #define QI_REGISTER_NAMES \
1999 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2001 #define QI_HIGH_REGISTER_NAMES \
2002 {"ah", "dh", "ch", "bh"}
2004 /* Table of additional register names to use in user input. */
2006 #define ADDITIONAL_REGISTER_NAMES \
2008 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2009 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2010 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2011 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2012 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
2013 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
2014 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2015 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2016 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2017 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2018 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2019 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2020 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2021 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2022 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2023 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2024 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2025 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2026 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2027 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2028 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2029 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2030 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2033 /* How to renumber registers for dbx and gdb. */
2035 #define DBX_REGISTER_NUMBER(N) \
2036 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2038 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2039 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2040 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2042 /* Before the prologue, RA is at 0(%esp). */
2043 #define INCOMING_RETURN_ADDR_RTX \
2044 gen_rtx_MEM (Pmode, stack_pointer_rtx)
2046 /* After the prologue, RA is at -4(AP) in the current frame. */
2047 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2048 ((COUNT) == 0 \
2049 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2050 -UNITS_PER_WORD)) \
2051 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2053 /* PC is dbx register 8; let's use that column for RA. */
2054 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2056 /* Before the prologue, there are return address and error code for
2057 exception handler on the top of the frame. */
2058 #define INCOMING_FRAME_SP_OFFSET \
2059 (cfun->machine->func_type == TYPE_EXCEPTION \
2060 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2062 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2063 .cfi_startproc. */
2064 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2066 /* Describe how we implement __builtin_eh_return. */
2067 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2068 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2071 /* Select a format to encode pointers in exception handling data. CODE
2072 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2073 true if the symbol may be affected by dynamic relocations.
2075 ??? All x86 object file formats are capable of representing this.
2076 After all, the relocation needed is the same as for the call insn.
2077 Whether or not a particular assembler allows us to enter such, I
2078 guess we'll have to see. */
2079 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2080 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2082 /* These are a couple of extensions to the formats accepted
2083 by asm_fprintf:
2084 %z prints out opcode suffix for word-mode instruction
2085 %r prints out word-mode name for reg_names[arg] */
2086 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2087 case 'z': \
2088 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2089 break; \
2091 case 'r': \
2093 unsigned int regno = va_arg ((ARGS), int); \
2094 if (LEGACY_INT_REGNO_P (regno)) \
2095 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2096 fputs (reg_names[regno], (FILE)); \
2097 break; \
2100 /* This is how to output an insn to push a register on the stack. */
2102 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2103 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2105 /* This is how to output an insn to pop a register from the stack. */
2107 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2108 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2110 /* This is how to output an element of a case-vector that is absolute. */
2112 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2113 ix86_output_addr_vec_elt ((FILE), (VALUE))
2115 /* This is how to output an element of a case-vector that is relative. */
2117 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2118 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2120 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2122 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2124 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2125 (PTR) += TARGET_AVX ? 1 : 2; \
2128 /* A C statement or statements which output an assembler instruction
2129 opcode to the stdio stream STREAM. The macro-operand PTR is a
2130 variable of type `char *' which points to the opcode name in
2131 its "internal" form--the form that is written in the machine
2132 description. */
2134 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2135 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2137 /* A C statement to output to the stdio stream FILE an assembler
2138 command to pad the location counter to a multiple of 1<<LOG
2139 bytes if it is within MAX_SKIP bytes. */
2141 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2142 # define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
2143 do { \
2144 if ((LOG) != 0) { \
2145 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
2146 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2147 else \
2148 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2150 } while (0)
2151 #endif
2153 /* Write the extra assembler code needed to declare a function
2154 properly. */
2156 #undef ASM_OUTPUT_FUNCTION_LABEL
2157 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2158 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2160 /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
2161 If not defined, assemble_name will be used to output the name of the
2162 symbol. This macro may be used to modify the way a symbol is referenced
2163 depending on information encoded by TARGET_ENCODE_SECTION_INFO. */
2165 #ifndef ASM_OUTPUT_SYMBOL_REF
2166 #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
2167 do { \
2168 const char *name \
2169 = assemble_name_resolve (XSTR (x, 0)); \
2170 /* In -masm=att wrap identifiers that start with $ \
2171 into parens. */ \
2172 if (ASSEMBLER_DIALECT == ASM_ATT \
2173 && name[0] == '$' \
2174 && user_label_prefix[0] == '\0') \
2176 fputc ('(', (FILE)); \
2177 assemble_name_raw ((FILE), name); \
2178 fputc (')', (FILE)); \
2180 else \
2181 assemble_name_raw ((FILE), name); \
2182 } while (0)
2183 #endif
2185 /* Under some conditions we need jump tables in the text section,
2186 because the assembler cannot handle label differences between
2187 sections. */
2189 #define JUMP_TABLES_IN_TEXT_SECTION \
2190 (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
2192 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2193 and switch back. For x86 we do this only to save a few bytes that
2194 would otherwise be unused in the text section. */
2195 #define CRT_MKSTR2(VAL) #VAL
2196 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2198 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2199 asm (SECTION_OP "\n\t" \
2200 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2201 TEXT_SECTION_ASM_OP);
2203 /* Default threshold for putting data in large sections
2204 with x86-64 medium memory model */
2205 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2207 /* Which processor to tune code generation for. These must be in sync
2208 with processor_target_table in i386.cc. */
2210 enum processor_type
2212 PROCESSOR_GENERIC = 0,
2213 PROCESSOR_I386, /* 80386 */
2214 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2215 PROCESSOR_PENTIUM,
2216 PROCESSOR_LAKEMONT,
2217 PROCESSOR_PENTIUMPRO,
2218 PROCESSOR_PENTIUM4,
2219 PROCESSOR_NOCONA,
2220 PROCESSOR_CORE2,
2221 PROCESSOR_NEHALEM,
2222 PROCESSOR_SANDYBRIDGE,
2223 PROCESSOR_HASWELL,
2224 PROCESSOR_BONNELL,
2225 PROCESSOR_SILVERMONT,
2226 PROCESSOR_GOLDMONT,
2227 PROCESSOR_GOLDMONT_PLUS,
2228 PROCESSOR_TREMONT,
2229 PROCESSOR_KNL,
2230 PROCESSOR_KNM,
2231 PROCESSOR_SKYLAKE,
2232 PROCESSOR_SKYLAKE_AVX512,
2233 PROCESSOR_CANNONLAKE,
2234 PROCESSOR_ICELAKE_CLIENT,
2235 PROCESSOR_ICELAKE_SERVER,
2236 PROCESSOR_CASCADELAKE,
2237 PROCESSOR_TIGERLAKE,
2238 PROCESSOR_COOPERLAKE,
2239 PROCESSOR_SAPPHIRERAPIDS,
2240 PROCESSOR_ALDERLAKE,
2241 PROCESSOR_ROCKETLAKE,
2242 PROCESSOR_INTEL,
2243 PROCESSOR_LUJIAZUI,
2244 PROCESSOR_GEODE,
2245 PROCESSOR_K6,
2246 PROCESSOR_ATHLON,
2247 PROCESSOR_K8,
2248 PROCESSOR_AMDFAM10,
2249 PROCESSOR_BDVER1,
2250 PROCESSOR_BDVER2,
2251 PROCESSOR_BDVER3,
2252 PROCESSOR_BDVER4,
2253 PROCESSOR_BTVER1,
2254 PROCESSOR_BTVER2,
2255 PROCESSOR_ZNVER1,
2256 PROCESSOR_ZNVER2,
2257 PROCESSOR_ZNVER3,
2258 PROCESSOR_max
2261 #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2262 extern const char *const processor_names[];
2264 #include "wide-int-bitmask.h"
2266 enum pta_flag
2268 #define DEF_PTA(NAME) _ ## NAME,
2269 #include "i386-isa.def"
2270 #undef DEF_PTA
2271 END_PTA
2274 /* wide_int_bitmask can handle only 128 flags. */
2275 STATIC_ASSERT (END_PTA <= 128);
2277 #define WIDE_INT_BITMASK_FROM_NTH(N) (N < 64 ? wide_int_bitmask (0, 1ULL << N) \
2278 : wide_int_bitmask (1ULL << (N - 64), 0))
2280 #define DEF_PTA(NAME) constexpr wide_int_bitmask PTA_ ## NAME \
2281 = WIDE_INT_BITMASK_FROM_NTH ((pta_flag) _ ## NAME);
2282 #include "i386-isa.def"
2283 #undef DEF_PTA
2285 constexpr wide_int_bitmask PTA_X86_64_BASELINE = PTA_64BIT | PTA_MMX | PTA_SSE
2286 | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR;
2287 constexpr wide_int_bitmask PTA_X86_64_V2 = (PTA_X86_64_BASELINE
2288 & (~PTA_NO_SAHF))
2289 | PTA_CX16 | PTA_POPCNT | PTA_SSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_SSSE3;
2290 constexpr wide_int_bitmask PTA_X86_64_V3 = PTA_X86_64_V2
2291 | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2292 | PTA_MOVBE | PTA_XSAVE;
2293 constexpr wide_int_bitmask PTA_X86_64_V4 = PTA_X86_64_V3
2294 | PTA_AVX512F | PTA_AVX512BW | PTA_AVX512CD | PTA_AVX512DQ | PTA_AVX512VL;
2296 constexpr wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2297 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2298 constexpr wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2299 | PTA_POPCNT;
2300 constexpr wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
2301 constexpr wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2302 | PTA_XSAVEOPT;
2303 constexpr wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2304 | PTA_RDRND | PTA_F16C;
2305 constexpr wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2306 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2307 constexpr wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
2308 | PTA_PRFCHW;
2309 constexpr wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES
2310 | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2311 constexpr wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2312 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2313 | PTA_CLWB;
2314 constexpr wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512
2315 | PTA_AVX512VNNI;
2316 constexpr wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
2317 constexpr wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2318 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2319 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2320 constexpr wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2321 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2322 | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
2323 constexpr wide_int_bitmask PTA_ROCKETLAKE = PTA_ICELAKE_CLIENT & ~PTA_SGX;
2324 constexpr wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT
2325 | PTA_PCONFIG | PTA_WBNOINVD | PTA_CLWB;
2326 constexpr wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
2327 | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT | PTA_KL | PTA_WIDEKL;
2328 constexpr wide_int_bitmask PTA_SAPPHIRERAPIDS = PTA_ICELAKE_SERVER | PTA_MOVDIRI
2329 | PTA_MOVDIR64B | PTA_AVX512VP2INTERSECT | PTA_ENQCMD | PTA_CLDEMOTE
2330 | PTA_PTWRITE | PTA_WAITPKG | PTA_SERIALIZE | PTA_TSXLDTRK | PTA_AMX_TILE
2331 | PTA_AMX_INT8 | PTA_AMX_BF16 | PTA_UINTR | PTA_AVXVNNI | PTA_AVX512FP16
2332 | PTA_AVX512BF16;
2333 constexpr wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF
2334 | PTA_AVX512ER | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
2335 constexpr wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2336 constexpr wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE
2337 | PTA_RDRND | PTA_PRFCHW;
2338 constexpr wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA
2339 | PTA_XSAVE | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT
2340 | PTA_XSAVEOPT | PTA_FSGSBASE;
2341 constexpr wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2342 | PTA_SGX | PTA_PTWRITE;
2343 constexpr wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2344 | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
2345 constexpr wide_int_bitmask PTA_ALDERLAKE = PTA_TREMONT | PTA_ADX | PTA_AVX
2346 | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2347 | PTA_PCONFIG | PTA_PKU | PTA_VAES | PTA_VPCLMULQDQ | PTA_SERIALIZE
2348 | PTA_HRESET | PTA_KL | PTA_WIDEKL | PTA_AVXVNNI;
2349 constexpr wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2350 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2352 #ifndef GENERATOR_FILE
2354 #include "insn-attr-common.h"
2356 #include "common/config/i386/i386-cpuinfo.h"
2358 class pta
2360 public:
2361 const char *const name; /* processor name or nickname. */
2362 const enum processor_type processor;
2363 const enum attr_cpu schedule;
2364 const wide_int_bitmask flags;
2365 const int model;
2366 const enum feature_priority priority;
2369 extern const pta processor_alias_table[];
2370 extern unsigned int const pta_size;
2371 extern unsigned int const num_arch_names;
2372 #endif
2374 #endif
2376 extern enum processor_type ix86_tune;
2377 extern enum processor_type ix86_arch;
2379 /* Size of the RED_ZONE area. */
2380 #define RED_ZONE_SIZE 128
2381 /* Reserved area of the red zone for temporaries. */
2382 #define RED_ZONE_RESERVE 8
2384 extern unsigned int ix86_preferred_stack_boundary;
2385 extern unsigned int ix86_incoming_stack_boundary;
2387 /* Smallest class containing REGNO. */
2388 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2390 enum ix86_fpcmp_strategy {
2391 IX86_FPCMP_SAHF,
2392 IX86_FPCMP_COMI,
2393 IX86_FPCMP_ARITH
2396 /* To properly truncate FP values into integers, we need to set i387 control
2397 word. We can't emit proper mode switching code before reload, as spills
2398 generated by reload may truncate values incorrectly, but we still can avoid
2399 redundant computation of new control word by the mode switching pass.
2400 The fldcw instructions are still emitted redundantly, but this is probably
2401 not going to be noticeable problem, as most CPUs do have fast path for
2402 the sequence.
2404 The machinery is to emit simple truncation instructions and split them
2405 before reload to instructions having USEs of two memory locations that
2406 are filled by this code to old and new control word.
2408 Post-reload pass may be later used to eliminate the redundant fildcw if
2409 needed. */
2411 enum ix86_stack_slot
2413 SLOT_TEMP = 0,
2414 SLOT_CW_STORED,
2415 SLOT_CW_ROUNDEVEN,
2416 SLOT_CW_TRUNC,
2417 SLOT_CW_FLOOR,
2418 SLOT_CW_CEIL,
2419 SLOT_STV_TEMP,
2420 SLOT_FLOATxFDI_387,
2421 MAX_386_STACK_LOCALS
2424 enum ix86_entity
2426 X86_DIRFLAG = 0,
2427 AVX_U128,
2428 I387_ROUNDEVEN,
2429 I387_TRUNC,
2430 I387_FLOOR,
2431 I387_CEIL,
2432 MAX_386_ENTITIES
2435 enum x86_dirflag_state
2437 X86_DIRFLAG_RESET,
2438 X86_DIRFLAG_ANY
2441 enum avx_u128_state
2443 AVX_U128_CLEAN,
2444 AVX_U128_DIRTY,
2445 AVX_U128_ANY
2448 /* Define this macro if the port needs extra instructions inserted
2449 for mode switching in an optimizing compilation. */
2451 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2452 ix86_optimize_mode_switching[(ENTITY)]
2454 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2455 initializer for an array of integers. Each initializer element N
2456 refers to an entity that needs mode switching, and specifies the
2457 number of different modes that might need to be set for this
2458 entity. The position of the initializer in the initializer -
2459 starting counting at zero - determines the integer that is used to
2460 refer to the mode-switched entity in question. */
2462 #define NUM_MODES_FOR_MODE_SWITCHING \
2463 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2464 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2467 /* Avoid renaming of stack registers, as doing so in combination with
2468 scheduling just increases amount of live registers at time and in
2469 the turn amount of fxch instructions needed.
2471 ??? Maybe Pentium chips benefits from renaming, someone can try....
2473 Don't rename evex to non-evex sse registers. */
2475 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2476 (!STACK_REGNO_P (SRC) \
2477 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2480 #define FASTCALL_PREFIX '@'
2482 #ifndef USED_FOR_TARGET
2483 /* Structure describing stack frame layout.
2484 Stack grows downward:
2486 [arguments]
2487 <- ARG_POINTER
2488 saved pc
2490 saved static chain if ix86_static_chain_on_stack
2492 saved frame pointer if frame_pointer_needed
2493 <- HARD_FRAME_POINTER
2494 [saved regs]
2495 <- reg_save_offset
2496 [padding0]
2497 <- stack_realign_offset
2498 [saved SSE regs]
2500 [stub-saved registers for ms x64 --> sysv clobbers
2501 <- Start of out-of-line, stub-saved/restored regs
2502 (see libgcc/config/i386/(sav|res)ms64*.S)
2503 [XMM6-15]
2504 [RSI]
2505 [RDI]
2506 [?RBX] only if RBX is clobbered
2507 [?RBP] only if RBP and RBX are clobbered
2508 [?R12] only if R12 and all previous regs are clobbered
2509 [?R13] only if R13 and all previous regs are clobbered
2510 [?R14] only if R14 and all previous regs are clobbered
2511 [?R15] only if R15 and all previous regs are clobbered
2512 <- end of stub-saved/restored regs
2513 [padding1]
2515 <- sse_reg_save_offset
2516 [padding2]
2517 | <- FRAME_POINTER
2518 [va_arg registers] |
2520 [frame] |
2522 [padding2] | = to_allocate
2523 <- STACK_POINTER
2525 struct GTY(()) ix86_frame
2527 int nsseregs;
2528 int nregs;
2529 int va_arg_size;
2530 int red_zone_size;
2531 int outgoing_arguments_size;
2533 /* The offsets relative to ARG_POINTER. */
2534 HOST_WIDE_INT frame_pointer_offset;
2535 HOST_WIDE_INT hard_frame_pointer_offset;
2536 HOST_WIDE_INT stack_pointer_offset;
2537 HOST_WIDE_INT hfp_save_offset;
2538 HOST_WIDE_INT reg_save_offset;
2539 HOST_WIDE_INT stack_realign_allocate;
2540 HOST_WIDE_INT stack_realign_offset;
2541 HOST_WIDE_INT sse_reg_save_offset;
2543 /* When save_regs_using_mov is set, emit prologue using
2544 move instead of push instructions. */
2545 bool save_regs_using_mov;
2547 /* Assume without checking that:
2548 EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT). */
2549 bool expensive_p;
2550 int expensive_count;
2553 /* Machine specific frame tracking during prologue/epilogue generation. All
2554 values are positive, but since the x86 stack grows downward, are subtratced
2555 from the CFA to produce a valid address. */
2557 struct GTY(()) machine_frame_state
2559 /* This pair tracks the currently active CFA as reg+offset. When reg
2560 is drap_reg, we don't bother trying to record here the real CFA when
2561 it might really be a DW_CFA_def_cfa_expression. */
2562 rtx cfa_reg;
2563 HOST_WIDE_INT cfa_offset;
2565 /* The current offset (canonically from the CFA) of ESP and EBP.
2566 When stack frame re-alignment is active, these may not be relative
2567 to the CFA. However, in all cases they are relative to the offsets
2568 of the saved registers stored in ix86_frame. */
2569 HOST_WIDE_INT sp_offset;
2570 HOST_WIDE_INT fp_offset;
2572 /* The size of the red-zone that may be assumed for the purposes of
2573 eliding register restore notes in the epilogue. This may be zero
2574 if no red-zone is in effect, or may be reduced from the real
2575 red-zone value by a maximum runtime stack re-alignment value. */
2576 int red_zone_offset;
2578 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2579 value within the frame. If false then the offset above should be
2580 ignored. Note that DRAP, if valid, *always* points to the CFA and
2581 thus has an offset of zero. */
2582 BOOL_BITFIELD sp_valid : 1;
2583 BOOL_BITFIELD fp_valid : 1;
2584 BOOL_BITFIELD drap_valid : 1;
2586 /* Indicate whether the local stack frame has been re-aligned. When
2587 set, the SP/FP offsets above are relative to the aligned frame
2588 and not the CFA. */
2589 BOOL_BITFIELD realigned : 1;
2591 /* Indicates whether the stack pointer has been re-aligned. When set,
2592 SP/FP continue to be relative to the CFA, but the stack pointer
2593 should only be used for offsets > sp_realigned_offset, while
2594 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2595 The flags realigned and sp_realigned are mutually exclusive. */
2596 BOOL_BITFIELD sp_realigned : 1;
2598 /* If sp_realigned is set, this is the last valid offset from the CFA
2599 that can be used for access with the frame pointer. */
2600 HOST_WIDE_INT sp_realigned_fp_last;
2602 /* If sp_realigned is set, this is the offset from the CFA that the stack
2603 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2604 Access via the stack pointer is only valid for offsets that are greater than
2605 this value. */
2606 HOST_WIDE_INT sp_realigned_offset;
2609 /* Private to winnt.cc. */
2610 struct seh_frame_state;
2612 enum function_type
2614 TYPE_UNKNOWN = 0,
2615 TYPE_NORMAL,
2616 /* The current function is an interrupt service routine with a
2617 pointer argument as specified by the "interrupt" attribute. */
2618 TYPE_INTERRUPT,
2619 /* The current function is an interrupt service routine with a
2620 pointer argument and an integer argument as specified by the
2621 "interrupt" attribute. */
2622 TYPE_EXCEPTION
2625 enum queued_insn_type
2627 TYPE_NONE = 0,
2628 TYPE_ENDBR,
2629 TYPE_PATCHABLE_AREA
2632 struct GTY(()) machine_function {
2633 struct stack_local_entry *stack_locals;
2634 int varargs_gpr_size;
2635 int varargs_fpr_size;
2636 int optimize_mode_switching[MAX_386_ENTITIES];
2638 /* Cached initial frame layout for the current function. */
2639 struct ix86_frame frame;
2641 /* For -fsplit-stack support: A stack local which holds a pointer to
2642 the stack arguments for a function with a variable number of
2643 arguments. This is set at the start of the function and is used
2644 to initialize the overflow_arg_area field of the va_list
2645 structure. */
2646 rtx split_stack_varargs_pointer;
2648 /* This value is used for amd64 targets and specifies the current abi
2649 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2650 ENUM_BITFIELD(calling_abi) call_abi : 8;
2652 /* Nonzero if the function accesses a previous frame. */
2653 BOOL_BITFIELD accesses_prev_frame : 1;
2655 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2656 expander to determine the style used. */
2657 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2659 /* Nonzero if the current function calls pc thunk and
2660 must not use the red zone. */
2661 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2663 /* If true, the current function needs the default PIC register, not
2664 an alternate register (on x86) and must not use the red zone (on
2665 x86_64), even if it's a leaf function. We don't want the
2666 function to be regarded as non-leaf because TLS calls need not
2667 affect register allocation. This flag is set when a TLS call
2668 instruction is expanded within a function, and never reset, even
2669 if all such instructions are optimized away. Use the
2670 ix86_current_function_calls_tls_descriptor macro for a better
2671 approximation. */
2672 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2674 /* If true, the current function has a STATIC_CHAIN is placed on the
2675 stack below the return address. */
2676 BOOL_BITFIELD static_chain_on_stack : 1;
2678 /* If true, it is safe to not save/restore DRAP register. */
2679 BOOL_BITFIELD no_drap_save_restore : 1;
2681 /* Function type. */
2682 ENUM_BITFIELD(function_type) func_type : 2;
2684 /* How to generate indirec branch. */
2685 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2687 /* If true, the current function has local indirect jumps, like
2688 "indirect_jump" or "tablejump". */
2689 BOOL_BITFIELD has_local_indirect_jump : 1;
2691 /* How to generate function return. */
2692 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2694 /* If true, the current function is a function specified with
2695 the "interrupt" or "no_caller_saved_registers" attribute. */
2696 BOOL_BITFIELD no_caller_saved_registers : 1;
2698 /* If true, there is register available for argument passing. This
2699 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2700 if there is scratch register available for indirect sibcall. In
2701 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2702 pass arguments and can be used for indirect sibcall. */
2703 BOOL_BITFIELD arg_reg_available : 1;
2705 /* If true, we're out-of-lining reg save/restore for regs clobbered
2706 by 64-bit ms_abi functions calling a sysv_abi function. */
2707 BOOL_BITFIELD call_ms2sysv : 1;
2709 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2710 needs padding prior to out-of-line stub save/restore area. */
2711 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2713 /* This is the number of extra registers saved by stub (valid range is
2714 0-6). Each additional register is only saved/restored by the stubs
2715 if all successive ones are. (Will always be zero when using a hard
2716 frame pointer.) */
2717 unsigned int call_ms2sysv_extra_regs:3;
2719 /* Nonzero if the function places outgoing arguments on stack. */
2720 BOOL_BITFIELD outgoing_args_on_stack : 1;
2722 /* If true, ENDBR or patchable area is queued at function entrance. */
2723 ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
2725 /* If true, the function label has been emitted. */
2726 BOOL_BITFIELD function_label_emitted : 1;
2728 /* True if the function needs a stack frame. */
2729 BOOL_BITFIELD stack_frame_required : 1;
2731 /* True if we should act silently, rather than raise an error for
2732 invalid calls. */
2733 BOOL_BITFIELD silent_p : 1;
2735 /* True if red zone is used. */
2736 BOOL_BITFIELD red_zone_used : 1;
2738 /* The largest alignment, in bytes, of stack slot actually used. */
2739 unsigned int max_used_stack_alignment;
2741 /* During prologue/epilogue generation, the current frame state.
2742 Otherwise, the frame state at the end of the prologue. */
2743 struct machine_frame_state fs;
2745 /* During SEH output, this is non-null. */
2746 struct seh_frame_state * GTY((skip(""))) seh;
2749 extern GTY(()) tree sysv_va_list_type_node;
2750 extern GTY(()) tree ms_va_list_type_node;
2751 #endif
2753 #define ix86_stack_locals (cfun->machine->stack_locals)
2754 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2755 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2756 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2757 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2758 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2759 (cfun->machine->tls_descriptor_call_expanded_p)
2760 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2761 calls are optimized away, we try to detect cases in which it was
2762 optimized away. Since such instructions (use (reg REG_SP)), we can
2763 verify whether there's any such instruction live by testing that
2764 REG_SP is live. */
2765 #define ix86_current_function_calls_tls_descriptor \
2766 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2767 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2768 #define ix86_red_zone_used (cfun->machine->red_zone_used)
2770 /* Control behavior of x86_file_start. */
2771 #define X86_FILE_START_VERSION_DIRECTIVE false
2772 #define X86_FILE_START_FLTUSED false
2774 /* Flag to mark data that is in the large address area. */
2775 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2776 #define SYMBOL_REF_FAR_ADDR_P(X) \
2777 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2779 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2780 have defined always, to avoid ifdefing. */
2781 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2782 #define SYMBOL_REF_DLLIMPORT_P(X) \
2783 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2785 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2786 #define SYMBOL_REF_DLLEXPORT_P(X) \
2787 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2789 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2790 #define SYMBOL_REF_STUBVAR_P(X) \
2791 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2793 extern void debug_ready_dispatch (void);
2794 extern void debug_dispatch_window (int);
2796 /* The value at zero is only defined for the BMI instructions
2797 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2798 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2799 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
2800 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2801 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
2804 /* Flags returned by ix86_get_callcvt (). */
2805 #define IX86_CALLCVT_CDECL 0x1
2806 #define IX86_CALLCVT_STDCALL 0x2
2807 #define IX86_CALLCVT_FASTCALL 0x4
2808 #define IX86_CALLCVT_THISCALL 0x8
2809 #define IX86_CALLCVT_REGPARM 0x10
2810 #define IX86_CALLCVT_SSEREGPARM 0x20
2812 #define IX86_BASE_CALLCVT(FLAGS) \
2813 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2814 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2816 #define RECIP_MASK_NONE 0x00
2817 #define RECIP_MASK_DIV 0x01
2818 #define RECIP_MASK_SQRT 0x02
2819 #define RECIP_MASK_VEC_DIV 0x04
2820 #define RECIP_MASK_VEC_SQRT 0x08
2821 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2822 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2823 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2825 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2826 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2827 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2828 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2830 /* Use 128-bit AVX instructions in the auto-vectorizer. */
2831 #define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2832 /* Use 256-bit AVX instructions in the auto-vectorizer. */
2833 #define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2834 || prefer_vector_width_type == PVW_AVX256)
2836 #define TARGET_INDIRECT_BRANCH_REGISTER \
2837 (ix86_indirect_branch_register \
2838 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2840 #define IX86_HLE_ACQUIRE (1 << 16)
2841 #define IX86_HLE_RELEASE (1 << 17)
2843 /* For switching between functions with different target attributes. */
2844 #define SWITCHABLE_TARGET 1
2846 #define TARGET_SUPPORTS_WIDE_INT 1
2848 #if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2849 extern enum attr_cpu ix86_schedule;
2851 #define NUM_X86_64_MS_CLOBBERED_REGS 12
2852 #endif
2854 /* __builtin_eh_return can't handle stack realignment, so disable MMX/SSE
2855 in 32-bit libgcc functions that call it. */
2856 #ifndef __x86_64__
2857 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((target ("no-mmx,no-sse")))
2858 #endif
2861 Local variables:
2862 version-control: t
2863 End: