Print cgraph_uid in function header
[official-gcc.git] / gcc-4_6-mobile-vtable-security / gcc / ada / sem_eval.adb
blobcaa0f704ffce2656fc6d5b265d4f968a606dd155
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Cat; use Sem_Cat;
43 with Sem_Ch6; use Sem_Ch6;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Res; use Sem_Res;
46 with Sem_Util; use Sem_Util;
47 with Sem_Type; use Sem_Type;
48 with Sem_Warn; use Sem_Warn;
49 with Sinfo; use Sinfo;
50 with Snames; use Snames;
51 with Stand; use Stand;
52 with Stringt; use Stringt;
53 with Tbuild; use Tbuild;
55 package body Sem_Eval is
57 -----------------------------------------
58 -- Handling of Compile Time Evaluation --
59 -----------------------------------------
61 -- The compile time evaluation of expressions is distributed over several
62 -- Eval_xxx procedures. These procedures are called immediately after
63 -- a subexpression is resolved and is therefore accomplished in a bottom
64 -- up fashion. The flags are synthesized using the following approach.
66 -- Is_Static_Expression is determined by following the detailed rules
67 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
68 -- flag of the operands in many cases.
70 -- Raises_Constraint_Error is set if any of the operands have the flag
71 -- set or if an attempt to compute the value of the current expression
72 -- results in detection of a runtime constraint error.
74 -- As described in the spec, the requirement is that Is_Static_Expression
75 -- be accurately set, and in addition for nodes for which this flag is set,
76 -- Raises_Constraint_Error must also be set. Furthermore a node which has
77 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
78 -- requirement is that the expression value must be precomputed, and the
79 -- node is either a literal, or the name of a constant entity whose value
80 -- is a static expression.
82 -- The general approach is as follows. First compute Is_Static_Expression.
83 -- If the node is not static, then the flag is left off in the node and
84 -- we are all done. Otherwise for a static node, we test if any of the
85 -- operands will raise constraint error, and if so, propagate the flag
86 -- Raises_Constraint_Error to the result node and we are done (since the
87 -- error was already posted at a lower level).
89 -- For the case of a static node whose operands do not raise constraint
90 -- error, we attempt to evaluate the node. If this evaluation succeeds,
91 -- then the node is replaced by the result of this computation. If the
92 -- evaluation raises constraint error, then we rewrite the node with
93 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
94 -- to post appropriate error messages.
96 ----------------
97 -- Local Data --
98 ----------------
100 type Bits is array (Nat range <>) of Boolean;
101 -- Used to convert unsigned (modular) values for folding logical ops
103 -- The following definitions are used to maintain a cache of nodes that
104 -- have compile time known values. The cache is maintained only for
105 -- discrete types (the most common case), and is populated by calls to
106 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
107 -- since it is possible for the status to change (in particular it is
108 -- possible for a node to get replaced by a constraint error node).
110 CV_Bits : constant := 5;
111 -- Number of low order bits of Node_Id value used to reference entries
112 -- in the cache table.
114 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
115 -- Size of cache for compile time values
117 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
119 type CV_Entry is record
120 N : Node_Id;
121 V : Uint;
122 end record;
124 type CV_Cache_Array is array (CV_Range) of CV_Entry;
126 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
127 -- This is the actual cache, with entries consisting of node/value pairs,
128 -- and the impossible value Node_High_Bound used for unset entries.
130 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
131 -- Range membership may either be statically known to be in range or out
132 -- of range, or not statically known. Used for Test_In_Range below.
134 -----------------------
135 -- Local Subprograms --
136 -----------------------
138 function From_Bits (B : Bits; T : Entity_Id) return Uint;
139 -- Converts a bit string of length B'Length to a Uint value to be used
140 -- for a target of type T, which is a modular type. This procedure
141 -- includes the necessary reduction by the modulus in the case of a
142 -- non-binary modulus (for a binary modulus, the bit string is the
143 -- right length any way so all is well).
145 function Get_String_Val (N : Node_Id) return Node_Id;
146 -- Given a tree node for a folded string or character value, returns
147 -- the corresponding string literal or character literal (one of the
148 -- two must be available, or the operand would not have been marked
149 -- as foldable in the earlier analysis of the operation).
151 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
152 -- Bits represents the number of bits in an integer value to be computed
153 -- (but the value has not been computed yet). If this value in Bits is
154 -- reasonable, a result of True is returned, with the implication that
155 -- the caller should go ahead and complete the calculation. If the value
156 -- in Bits is unreasonably large, then an error is posted on node N, and
157 -- False is returned (and the caller skips the proposed calculation).
159 procedure Out_Of_Range (N : Node_Id);
160 -- This procedure is called if it is determined that node N, which
161 -- appears in a non-static context, is a compile time known value
162 -- which is outside its range, i.e. the range of Etype. This is used
163 -- in contexts where this is an illegality if N is static, and should
164 -- generate a warning otherwise.
166 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
167 -- N and Exp are nodes representing an expression, Exp is known
168 -- to raise CE. N is rewritten in term of Exp in the optimal way.
170 function String_Type_Len (Stype : Entity_Id) return Uint;
171 -- Given a string type, determines the length of the index type, or,
172 -- if this index type is non-static, the length of the base type of
173 -- this index type. Note that if the string type is itself static,
174 -- then the index type is static, so the second case applies only
175 -- if the string type passed is non-static.
177 function Test (Cond : Boolean) return Uint;
178 pragma Inline (Test);
179 -- This function simply returns the appropriate Boolean'Pos value
180 -- corresponding to the value of Cond as a universal integer. It is
181 -- used for producing the result of the static evaluation of the
182 -- logical operators
184 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
185 -- Check whether an arithmetic operation with universal operands which
186 -- is a rewritten function call with an explicit scope indication is
187 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
188 -- visible numeric type declared in P and the context does not impose a
189 -- type on the result (e.g. in the expression of a type conversion).
190 -- If ambiguous, emit an error and return Empty, else return the result
191 -- type of the operator.
193 procedure Test_Expression_Is_Foldable
194 (N : Node_Id;
195 Op1 : Node_Id;
196 Stat : out Boolean;
197 Fold : out Boolean);
198 -- Tests to see if expression N whose single operand is Op1 is foldable,
199 -- i.e. the operand value is known at compile time. If the operation is
200 -- foldable, then Fold is True on return, and Stat indicates whether
201 -- the result is static (i.e. both operands were static). Note that it
202 -- is quite possible for Fold to be True, and Stat to be False, since
203 -- there are cases in which we know the value of an operand even though
204 -- it is not technically static (e.g. the static lower bound of a range
205 -- whose upper bound is non-static).
207 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
208 -- call to Check_Non_Static_Context on the operand. If Fold is False on
209 -- return, then all processing is complete, and the caller should
210 -- return, since there is nothing else to do.
212 -- If Stat is set True on return, then Is_Static_Expression is also set
213 -- true in node N. There are some cases where this is over-enthusiastic,
214 -- e.g. in the two operand case below, for string comparison, the result
215 -- is not static even though the two operands are static. In such cases,
216 -- the caller must reset the Is_Static_Expression flag in N.
218 procedure Test_Expression_Is_Foldable
219 (N : Node_Id;
220 Op1 : Node_Id;
221 Op2 : Node_Id;
222 Stat : out Boolean;
223 Fold : out Boolean);
224 -- Same processing, except applies to an expression N with two operands
225 -- Op1 and Op2.
227 function Test_In_Range
228 (N : Node_Id;
229 Typ : Entity_Id;
230 Assume_Valid : Boolean;
231 Fixed_Int : Boolean;
232 Int_Real : Boolean) return Range_Membership;
233 -- Common processing for Is_In_Range and Is_Out_Of_Range:
234 -- Returns In_Range or Out_Of_Range if it can be guaranteed at compile time
235 -- that expression N is known to be in or out of range of the subtype Typ.
236 -- If not compile time known, Unknown is returned.
237 -- See documentation of Is_In_Range for complete description of parameters.
239 procedure To_Bits (U : Uint; B : out Bits);
240 -- Converts a Uint value to a bit string of length B'Length
242 ------------------------------
243 -- Check_Non_Static_Context --
244 ------------------------------
246 procedure Check_Non_Static_Context (N : Node_Id) is
247 T : constant Entity_Id := Etype (N);
248 Checks_On : constant Boolean :=
249 not Index_Checks_Suppressed (T)
250 and not Range_Checks_Suppressed (T);
252 begin
253 -- Ignore cases of non-scalar types or error types
255 if T = Any_Type or else not Is_Scalar_Type (T) then
256 return;
257 end if;
259 -- At this stage we have a scalar type. If we have an expression
260 -- that raises CE, then we already issued a warning or error msg
261 -- so there is nothing more to be done in this routine.
263 if Raises_Constraint_Error (N) then
264 return;
265 end if;
267 -- Now we have a scalar type which is not marked as raising a
268 -- constraint error exception. The main purpose of this routine
269 -- is to deal with static expressions appearing in a non-static
270 -- context. That means that if we do not have a static expression
271 -- then there is not much to do. The one case that we deal with
272 -- here is that if we have a floating-point value that is out of
273 -- range, then we post a warning that an infinity will result.
275 if not Is_Static_Expression (N) then
276 if Is_Floating_Point_Type (T)
277 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
278 then
279 Error_Msg_N
280 ("?float value out of range, infinity will be generated", N);
281 end if;
283 return;
284 end if;
286 -- Here we have the case of outer level static expression of
287 -- scalar type, where the processing of this procedure is needed.
289 -- For real types, this is where we convert the value to a machine
290 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
291 -- only need to do this if the parent is a constant declaration,
292 -- since in other cases, gigi should do the necessary conversion
293 -- correctly, but experimentation shows that this is not the case
294 -- on all machines, in particular if we do not convert all literals
295 -- to machine values in non-static contexts, then ACVC test C490001
296 -- fails on Sparc/Solaris and SGI/Irix.
298 if Nkind (N) = N_Real_Literal
299 and then not Is_Machine_Number (N)
300 and then not Is_Generic_Type (Etype (N))
301 and then Etype (N) /= Universal_Real
302 then
303 -- Check that value is in bounds before converting to machine
304 -- number, so as not to lose case where value overflows in the
305 -- least significant bit or less. See B490001.
307 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
308 Out_Of_Range (N);
309 return;
310 end if;
312 -- Note: we have to copy the node, to avoid problems with conformance
313 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
315 Rewrite (N, New_Copy (N));
317 if not Is_Floating_Point_Type (T) then
318 Set_Realval
319 (N, Corresponding_Integer_Value (N) * Small_Value (T));
321 elsif not UR_Is_Zero (Realval (N)) then
323 -- Note: even though RM 4.9(38) specifies biased rounding,
324 -- this has been modified by AI-100 in order to prevent
325 -- confusing differences in rounding between static and
326 -- non-static expressions. AI-100 specifies that the effect
327 -- of such rounding is implementation dependent, and in GNAT
328 -- we round to nearest even to match the run-time behavior.
330 Set_Realval
331 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
332 end if;
334 Set_Is_Machine_Number (N);
335 end if;
337 -- Check for out of range universal integer. This is a non-static
338 -- context, so the integer value must be in range of the runtime
339 -- representation of universal integers.
341 -- We do this only within an expression, because that is the only
342 -- case in which non-static universal integer values can occur, and
343 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
344 -- called in contexts like the expression of a number declaration where
345 -- we certainly want to allow out of range values.
347 if Etype (N) = Universal_Integer
348 and then Nkind (N) = N_Integer_Literal
349 and then Nkind (Parent (N)) in N_Subexpr
350 and then
351 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
352 or else
353 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
354 then
355 Apply_Compile_Time_Constraint_Error
356 (N, "non-static universal integer value out of range?",
357 CE_Range_Check_Failed);
359 -- Check out of range of base type
361 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
362 Out_Of_Range (N);
364 -- Give warning if outside subtype (where one or both of the bounds of
365 -- the subtype is static). This warning is omitted if the expression
366 -- appears in a range that could be null (warnings are handled elsewhere
367 -- for this case).
369 elsif T /= Base_Type (T)
370 and then Nkind (Parent (N)) /= N_Range
371 then
372 if Is_In_Range (N, T, Assume_Valid => True) then
373 null;
375 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
376 Apply_Compile_Time_Constraint_Error
377 (N, "value not in range of}?", CE_Range_Check_Failed);
379 elsif Checks_On then
380 Enable_Range_Check (N);
382 else
383 Set_Do_Range_Check (N, False);
384 end if;
385 end if;
386 end Check_Non_Static_Context;
388 ---------------------------------
389 -- Check_String_Literal_Length --
390 ---------------------------------
392 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
393 begin
394 if not Raises_Constraint_Error (N)
395 and then Is_Constrained (Ttype)
396 then
398 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
399 then
400 Apply_Compile_Time_Constraint_Error
401 (N, "string length wrong for}?",
402 CE_Length_Check_Failed,
403 Ent => Ttype,
404 Typ => Ttype);
405 end if;
406 end if;
407 end Check_String_Literal_Length;
409 --------------------------
410 -- Compile_Time_Compare --
411 --------------------------
413 function Compile_Time_Compare
414 (L, R : Node_Id;
415 Assume_Valid : Boolean) return Compare_Result
417 Discard : aliased Uint;
418 begin
419 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
420 end Compile_Time_Compare;
422 function Compile_Time_Compare
423 (L, R : Node_Id;
424 Diff : access Uint;
425 Assume_Valid : Boolean;
426 Rec : Boolean := False) return Compare_Result
428 Ltyp : Entity_Id := Underlying_Type (Etype (L));
429 Rtyp : Entity_Id := Underlying_Type (Etype (R));
430 -- These get reset to the base type for the case of entities where
431 -- Is_Known_Valid is not set. This takes care of handling possible
432 -- invalid representations using the value of the base type, in
433 -- accordance with RM 13.9.1(10).
435 Discard : aliased Uint;
437 procedure Compare_Decompose
438 (N : Node_Id;
439 R : out Node_Id;
440 V : out Uint);
441 -- This procedure decomposes the node N into an expression node and a
442 -- signed offset, so that the value of N is equal to the value of R plus
443 -- the value V (which may be negative). If no such decomposition is
444 -- possible, then on return R is a copy of N, and V is set to zero.
446 function Compare_Fixup (N : Node_Id) return Node_Id;
447 -- This function deals with replacing 'Last and 'First references with
448 -- their corresponding type bounds, which we then can compare. The
449 -- argument is the original node, the result is the identity, unless we
450 -- have a 'Last/'First reference in which case the value returned is the
451 -- appropriate type bound.
453 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
454 -- Even if the context does not assume that values are valid, some
455 -- simple cases can be recognized.
457 function Is_Same_Value (L, R : Node_Id) return Boolean;
458 -- Returns True iff L and R represent expressions that definitely
459 -- have identical (but not necessarily compile time known) values
460 -- Indeed the caller is expected to have already dealt with the
461 -- cases of compile time known values, so these are not tested here.
463 -----------------------
464 -- Compare_Decompose --
465 -----------------------
467 procedure Compare_Decompose
468 (N : Node_Id;
469 R : out Node_Id;
470 V : out Uint)
472 begin
473 if Nkind (N) = N_Op_Add
474 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
475 then
476 R := Left_Opnd (N);
477 V := Intval (Right_Opnd (N));
478 return;
480 elsif Nkind (N) = N_Op_Subtract
481 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
482 then
483 R := Left_Opnd (N);
484 V := UI_Negate (Intval (Right_Opnd (N)));
485 return;
487 elsif Nkind (N) = N_Attribute_Reference then
488 if Attribute_Name (N) = Name_Succ then
489 R := First (Expressions (N));
490 V := Uint_1;
491 return;
493 elsif Attribute_Name (N) = Name_Pred then
494 R := First (Expressions (N));
495 V := Uint_Minus_1;
496 return;
497 end if;
498 end if;
500 R := N;
501 V := Uint_0;
502 end Compare_Decompose;
504 -------------------
505 -- Compare_Fixup --
506 -------------------
508 function Compare_Fixup (N : Node_Id) return Node_Id is
509 Indx : Node_Id;
510 Xtyp : Entity_Id;
511 Subs : Nat;
513 begin
514 if Nkind (N) = N_Attribute_Reference
515 and then (Attribute_Name (N) = Name_First
516 or else
517 Attribute_Name (N) = Name_Last)
518 then
519 Xtyp := Etype (Prefix (N));
521 -- If we have no type, then just abandon the attempt to do
522 -- a fixup, this is probably the result of some other error.
524 if No (Xtyp) then
525 return N;
526 end if;
528 -- Dereference an access type
530 if Is_Access_Type (Xtyp) then
531 Xtyp := Designated_Type (Xtyp);
532 end if;
534 -- If we don't have an array type at this stage, something
535 -- is peculiar, e.g. another error, and we abandon the attempt
536 -- at a fixup.
538 if not Is_Array_Type (Xtyp) then
539 return N;
540 end if;
542 -- Ignore unconstrained array, since bounds are not meaningful
544 if not Is_Constrained (Xtyp) then
545 return N;
546 end if;
548 if Ekind (Xtyp) = E_String_Literal_Subtype then
549 if Attribute_Name (N) = Name_First then
550 return String_Literal_Low_Bound (Xtyp);
552 else -- Attribute_Name (N) = Name_Last
553 return Make_Integer_Literal (Sloc (N),
554 Intval => Intval (String_Literal_Low_Bound (Xtyp))
555 + String_Literal_Length (Xtyp));
556 end if;
557 end if;
559 -- Find correct index type
561 Indx := First_Index (Xtyp);
563 if Present (Expressions (N)) then
564 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
566 for J in 2 .. Subs loop
567 Indx := Next_Index (Indx);
568 end loop;
569 end if;
571 Xtyp := Etype (Indx);
573 if Attribute_Name (N) = Name_First then
574 return Type_Low_Bound (Xtyp);
576 else -- Attribute_Name (N) = Name_Last
577 return Type_High_Bound (Xtyp);
578 end if;
579 end if;
581 return N;
582 end Compare_Fixup;
584 ----------------------------
585 -- Is_Known_Valid_Operand --
586 ----------------------------
588 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
589 begin
590 return (Is_Entity_Name (Opnd)
591 and then
592 (Is_Known_Valid (Entity (Opnd))
593 or else Ekind (Entity (Opnd)) = E_In_Parameter
594 or else
595 (Ekind (Entity (Opnd)) in Object_Kind
596 and then Present (Current_Value (Entity (Opnd))))))
597 or else Is_OK_Static_Expression (Opnd);
598 end Is_Known_Valid_Operand;
600 -------------------
601 -- Is_Same_Value --
602 -------------------
604 function Is_Same_Value (L, R : Node_Id) return Boolean is
605 Lf : constant Node_Id := Compare_Fixup (L);
606 Rf : constant Node_Id := Compare_Fixup (R);
608 function Is_Same_Subscript (L, R : List_Id) return Boolean;
609 -- L, R are the Expressions values from two attribute nodes for First
610 -- or Last attributes. Either may be set to No_List if no expressions
611 -- are present (indicating subscript 1). The result is True if both
612 -- expressions represent the same subscript (note one case is where
613 -- one subscript is missing and the other is explicitly set to 1).
615 -----------------------
616 -- Is_Same_Subscript --
617 -----------------------
619 function Is_Same_Subscript (L, R : List_Id) return Boolean is
620 begin
621 if L = No_List then
622 if R = No_List then
623 return True;
624 else
625 return Expr_Value (First (R)) = Uint_1;
626 end if;
628 else
629 if R = No_List then
630 return Expr_Value (First (L)) = Uint_1;
631 else
632 return Expr_Value (First (L)) = Expr_Value (First (R));
633 end if;
634 end if;
635 end Is_Same_Subscript;
637 -- Start of processing for Is_Same_Value
639 begin
640 -- Values are the same if they refer to the same entity and the
641 -- entity is non-volatile. This does not however apply to Float
642 -- types, since we may have two NaN values and they should never
643 -- compare equal.
645 -- If the entity is a discriminant, the two expressions may be bounds
646 -- of components of objects of the same discriminated type. The
647 -- values of the discriminants are not static, and therefore the
648 -- result is unknown.
650 -- It would be better to comment individual branches of this test ???
652 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
653 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
654 and then Entity (Lf) = Entity (Rf)
655 and then Ekind (Entity (Lf)) /= E_Discriminant
656 and then Present (Entity (Lf))
657 and then not Is_Floating_Point_Type (Etype (L))
658 and then not Is_Volatile_Reference (L)
659 and then not Is_Volatile_Reference (R)
660 then
661 return True;
663 -- Or if they are compile time known and identical
665 elsif Compile_Time_Known_Value (Lf)
666 and then
667 Compile_Time_Known_Value (Rf)
668 and then Expr_Value (Lf) = Expr_Value (Rf)
669 then
670 return True;
672 -- False if Nkind of the two nodes is different for remaining cases
674 elsif Nkind (Lf) /= Nkind (Rf) then
675 return False;
677 -- True if both 'First or 'Last values applying to the same entity
678 -- (first and last don't change even if value does). Note that we
679 -- need this even with the calls to Compare_Fixup, to handle the
680 -- case of unconstrained array attributes where Compare_Fixup
681 -- cannot find useful bounds.
683 elsif Nkind (Lf) = N_Attribute_Reference
684 and then Attribute_Name (Lf) = Attribute_Name (Rf)
685 and then (Attribute_Name (Lf) = Name_First
686 or else
687 Attribute_Name (Lf) = Name_Last)
688 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
689 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
690 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
691 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
692 then
693 return True;
695 -- True if the same selected component from the same record
697 elsif Nkind (Lf) = N_Selected_Component
698 and then Selector_Name (Lf) = Selector_Name (Rf)
699 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
700 then
701 return True;
703 -- True if the same unary operator applied to the same operand
705 elsif Nkind (Lf) in N_Unary_Op
706 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
707 then
708 return True;
710 -- True if the same binary operator applied to the same operands
712 elsif Nkind (Lf) in N_Binary_Op
713 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
714 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
715 then
716 return True;
718 -- All other cases, we can't tell, so return False
720 else
721 return False;
722 end if;
723 end Is_Same_Value;
725 -- Start of processing for Compile_Time_Compare
727 begin
728 Diff.all := No_Uint;
730 -- If either operand could raise constraint error, then we cannot
731 -- know the result at compile time (since CE may be raised!)
733 if not (Cannot_Raise_Constraint_Error (L)
734 and then
735 Cannot_Raise_Constraint_Error (R))
736 then
737 return Unknown;
738 end if;
740 -- Identical operands are most certainly equal
742 if L = R then
743 return EQ;
745 -- If expressions have no types, then do not attempt to determine if
746 -- they are the same, since something funny is going on. One case in
747 -- which this happens is during generic template analysis, when bounds
748 -- are not fully analyzed.
750 elsif No (Ltyp) or else No (Rtyp) then
751 return Unknown;
753 -- We do not attempt comparisons for packed arrays arrays represented as
754 -- modular types, where the semantics of comparison is quite different.
756 elsif Is_Packed_Array_Type (Ltyp)
757 and then Is_Modular_Integer_Type (Ltyp)
758 then
759 return Unknown;
761 -- For access types, the only time we know the result at compile time
762 -- (apart from identical operands, which we handled already) is if we
763 -- know one operand is null and the other is not, or both operands are
764 -- known null.
766 elsif Is_Access_Type (Ltyp) then
767 if Known_Null (L) then
768 if Known_Null (R) then
769 return EQ;
770 elsif Known_Non_Null (R) then
771 return NE;
772 else
773 return Unknown;
774 end if;
776 elsif Known_Non_Null (L) and then Known_Null (R) then
777 return NE;
779 else
780 return Unknown;
781 end if;
783 -- Case where comparison involves two compile time known values
785 elsif Compile_Time_Known_Value (L)
786 and then Compile_Time_Known_Value (R)
787 then
788 -- For the floating-point case, we have to be a little careful, since
789 -- at compile time we are dealing with universal exact values, but at
790 -- runtime, these will be in non-exact target form. That's why the
791 -- returned results are LE and GE below instead of LT and GT.
793 if Is_Floating_Point_Type (Ltyp)
794 or else
795 Is_Floating_Point_Type (Rtyp)
796 then
797 declare
798 Lo : constant Ureal := Expr_Value_R (L);
799 Hi : constant Ureal := Expr_Value_R (R);
801 begin
802 if Lo < Hi then
803 return LE;
804 elsif Lo = Hi then
805 return EQ;
806 else
807 return GE;
808 end if;
809 end;
811 -- For string types, we have two string literals and we proceed to
812 -- compare them using the Ada style dictionary string comparison.
814 elsif not Is_Scalar_Type (Ltyp) then
815 declare
816 Lstring : constant String_Id := Strval (Expr_Value_S (L));
817 Rstring : constant String_Id := Strval (Expr_Value_S (R));
818 Llen : constant Nat := String_Length (Lstring);
819 Rlen : constant Nat := String_Length (Rstring);
821 begin
822 for J in 1 .. Nat'Min (Llen, Rlen) loop
823 declare
824 LC : constant Char_Code := Get_String_Char (Lstring, J);
825 RC : constant Char_Code := Get_String_Char (Rstring, J);
826 begin
827 if LC < RC then
828 return LT;
829 elsif LC > RC then
830 return GT;
831 end if;
832 end;
833 end loop;
835 if Llen < Rlen then
836 return LT;
837 elsif Llen > Rlen then
838 return GT;
839 else
840 return EQ;
841 end if;
842 end;
844 -- For remaining scalar cases we know exactly (note that this does
845 -- include the fixed-point case, where we know the run time integer
846 -- values now).
848 else
849 declare
850 Lo : constant Uint := Expr_Value (L);
851 Hi : constant Uint := Expr_Value (R);
853 begin
854 if Lo < Hi then
855 Diff.all := Hi - Lo;
856 return LT;
858 elsif Lo = Hi then
859 return EQ;
861 else
862 Diff.all := Lo - Hi;
863 return GT;
864 end if;
865 end;
866 end if;
868 -- Cases where at least one operand is not known at compile time
870 else
871 -- Remaining checks apply only for discrete types
873 if not Is_Discrete_Type (Ltyp)
874 or else not Is_Discrete_Type (Rtyp)
875 then
876 return Unknown;
877 end if;
879 -- Defend against generic types, or actually any expressions that
880 -- contain a reference to a generic type from within a generic
881 -- template. We don't want to do any range analysis of such
882 -- expressions for two reasons. First, the bounds of a generic type
883 -- itself are junk and cannot be used for any kind of analysis.
884 -- Second, we may have a case where the range at run time is indeed
885 -- known, but we don't want to do compile time analysis in the
886 -- template based on that range since in an instance the value may be
887 -- static, and able to be elaborated without reference to the bounds
888 -- of types involved. As an example, consider:
890 -- (F'Pos (F'Last) + 1) > Integer'Last
892 -- The expression on the left side of > is Universal_Integer and thus
893 -- acquires the type Integer for evaluation at run time, and at run
894 -- time it is true that this condition is always False, but within
895 -- an instance F may be a type with a static range greater than the
896 -- range of Integer, and the expression statically evaluates to True.
898 if References_Generic_Formal_Type (L)
899 or else
900 References_Generic_Formal_Type (R)
901 then
902 return Unknown;
903 end if;
905 -- Replace types by base types for the case of entities which are
906 -- not known to have valid representations. This takes care of
907 -- properly dealing with invalid representations.
909 if not Assume_Valid and then not Assume_No_Invalid_Values then
910 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
911 Ltyp := Underlying_Type (Base_Type (Ltyp));
912 end if;
914 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
915 Rtyp := Underlying_Type (Base_Type (Rtyp));
916 end if;
917 end if;
919 -- Try range analysis on variables and see if ranges are disjoint
921 declare
922 LOK, ROK : Boolean;
923 LLo, LHi : Uint;
924 RLo, RHi : Uint;
926 begin
927 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
928 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
930 if LOK and ROK then
931 if LHi < RLo then
932 return LT;
934 elsif RHi < LLo then
935 return GT;
937 elsif LLo = LHi
938 and then RLo = RHi
939 and then LLo = RLo
940 then
942 -- If the range includes a single literal and we can assume
943 -- validity then the result is known even if an operand is
944 -- not static.
946 if Assume_Valid then
947 return EQ;
948 else
949 return Unknown;
950 end if;
952 elsif LHi = RLo then
953 return LE;
955 elsif RHi = LLo then
956 return GE;
958 elsif not Is_Known_Valid_Operand (L)
959 and then not Assume_Valid
960 then
961 if Is_Same_Value (L, R) then
962 return EQ;
963 else
964 return Unknown;
965 end if;
966 end if;
967 end if;
968 end;
970 -- Here is where we check for comparisons against maximum bounds of
971 -- types, where we know that no value can be outside the bounds of
972 -- the subtype. Note that this routine is allowed to assume that all
973 -- expressions are within their subtype bounds. Callers wishing to
974 -- deal with possibly invalid values must in any case take special
975 -- steps (e.g. conversions to larger types) to avoid this kind of
976 -- optimization, which is always considered to be valid. We do not
977 -- attempt this optimization with generic types, since the type
978 -- bounds may not be meaningful in this case.
980 -- We are in danger of an infinite recursion here. It does not seem
981 -- useful to go more than one level deep, so the parameter Rec is
982 -- used to protect ourselves against this infinite recursion.
984 if not Rec then
986 -- See if we can get a decisive check against one operand and
987 -- a bound of the other operand (four possible tests here).
988 -- Note that we avoid testing junk bounds of a generic type.
990 if not Is_Generic_Type (Rtyp) then
991 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
992 Discard'Access,
993 Assume_Valid, Rec => True)
995 when LT => return LT;
996 when LE => return LE;
997 when EQ => return LE;
998 when others => null;
999 end case;
1001 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1002 Discard'Access,
1003 Assume_Valid, Rec => True)
1005 when GT => return GT;
1006 when GE => return GE;
1007 when EQ => return GE;
1008 when others => null;
1009 end case;
1010 end if;
1012 if not Is_Generic_Type (Ltyp) then
1013 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1014 Discard'Access,
1015 Assume_Valid, Rec => True)
1017 when GT => return GT;
1018 when GE => return GE;
1019 when EQ => return GE;
1020 when others => null;
1021 end case;
1023 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1024 Discard'Access,
1025 Assume_Valid, Rec => True)
1027 when LT => return LT;
1028 when LE => return LE;
1029 when EQ => return LE;
1030 when others => null;
1031 end case;
1032 end if;
1033 end if;
1035 -- Next attempt is to decompose the expressions to extract
1036 -- a constant offset resulting from the use of any of the forms:
1038 -- expr + literal
1039 -- expr - literal
1040 -- typ'Succ (expr)
1041 -- typ'Pred (expr)
1043 -- Then we see if the two expressions are the same value, and if so
1044 -- the result is obtained by comparing the offsets.
1046 declare
1047 Lnode : Node_Id;
1048 Loffs : Uint;
1049 Rnode : Node_Id;
1050 Roffs : Uint;
1052 begin
1053 Compare_Decompose (L, Lnode, Loffs);
1054 Compare_Decompose (R, Rnode, Roffs);
1056 if Is_Same_Value (Lnode, Rnode) then
1057 if Loffs = Roffs then
1058 return EQ;
1060 elsif Loffs < Roffs then
1061 Diff.all := Roffs - Loffs;
1062 return LT;
1064 else
1065 Diff.all := Loffs - Roffs;
1066 return GT;
1067 end if;
1068 end if;
1069 end;
1071 -- Next attempt is to see if we have an entity compared with a
1072 -- compile time known value, where there is a current value
1073 -- conditional for the entity which can tell us the result.
1075 declare
1076 Var : Node_Id;
1077 -- Entity variable (left operand)
1079 Val : Uint;
1080 -- Value (right operand)
1082 Inv : Boolean;
1083 -- If False, we have reversed the operands
1085 Op : Node_Kind;
1086 -- Comparison operator kind from Get_Current_Value_Condition call
1088 Opn : Node_Id;
1089 -- Value from Get_Current_Value_Condition call
1091 Opv : Uint;
1092 -- Value of Opn
1094 Result : Compare_Result;
1095 -- Known result before inversion
1097 begin
1098 if Is_Entity_Name (L)
1099 and then Compile_Time_Known_Value (R)
1100 then
1101 Var := L;
1102 Val := Expr_Value (R);
1103 Inv := False;
1105 elsif Is_Entity_Name (R)
1106 and then Compile_Time_Known_Value (L)
1107 then
1108 Var := R;
1109 Val := Expr_Value (L);
1110 Inv := True;
1112 -- That was the last chance at finding a compile time result
1114 else
1115 return Unknown;
1116 end if;
1118 Get_Current_Value_Condition (Var, Op, Opn);
1120 -- That was the last chance, so if we got nothing return
1122 if No (Opn) then
1123 return Unknown;
1124 end if;
1126 Opv := Expr_Value (Opn);
1128 -- We got a comparison, so we might have something interesting
1130 -- Convert LE to LT and GE to GT, just so we have fewer cases
1132 if Op = N_Op_Le then
1133 Op := N_Op_Lt;
1134 Opv := Opv + 1;
1136 elsif Op = N_Op_Ge then
1137 Op := N_Op_Gt;
1138 Opv := Opv - 1;
1139 end if;
1141 -- Deal with equality case
1143 if Op = N_Op_Eq then
1144 if Val = Opv then
1145 Result := EQ;
1146 elsif Opv < Val then
1147 Result := LT;
1148 else
1149 Result := GT;
1150 end if;
1152 -- Deal with inequality case
1154 elsif Op = N_Op_Ne then
1155 if Val = Opv then
1156 Result := NE;
1157 else
1158 return Unknown;
1159 end if;
1161 -- Deal with greater than case
1163 elsif Op = N_Op_Gt then
1164 if Opv >= Val then
1165 Result := GT;
1166 elsif Opv = Val - 1 then
1167 Result := GE;
1168 else
1169 return Unknown;
1170 end if;
1172 -- Deal with less than case
1174 else pragma Assert (Op = N_Op_Lt);
1175 if Opv <= Val then
1176 Result := LT;
1177 elsif Opv = Val + 1 then
1178 Result := LE;
1179 else
1180 return Unknown;
1181 end if;
1182 end if;
1184 -- Deal with inverting result
1186 if Inv then
1187 case Result is
1188 when GT => return LT;
1189 when GE => return LE;
1190 when LT => return GT;
1191 when LE => return GE;
1192 when others => return Result;
1193 end case;
1194 end if;
1196 return Result;
1197 end;
1198 end if;
1199 end Compile_Time_Compare;
1201 -------------------------------
1202 -- Compile_Time_Known_Bounds --
1203 -------------------------------
1205 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1206 Indx : Node_Id;
1207 Typ : Entity_Id;
1209 begin
1210 if not Is_Array_Type (T) then
1211 return False;
1212 end if;
1214 Indx := First_Index (T);
1215 while Present (Indx) loop
1216 Typ := Underlying_Type (Etype (Indx));
1218 -- Never look at junk bounds of a generic type
1220 if Is_Generic_Type (Typ) then
1221 return False;
1222 end if;
1224 -- Otherwise check bounds for compile time known
1226 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1227 return False;
1228 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1229 return False;
1230 else
1231 Next_Index (Indx);
1232 end if;
1233 end loop;
1235 return True;
1236 end Compile_Time_Known_Bounds;
1238 ------------------------------
1239 -- Compile_Time_Known_Value --
1240 ------------------------------
1242 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1243 K : constant Node_Kind := Nkind (Op);
1244 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1246 begin
1247 -- Never known at compile time if bad type or raises constraint error
1248 -- or empty (latter case occurs only as a result of a previous error)
1250 if No (Op)
1251 or else Op = Error
1252 or else Etype (Op) = Any_Type
1253 or else Raises_Constraint_Error (Op)
1254 then
1255 return False;
1256 end if;
1258 -- If this is not a static expression or a null literal, and we are in
1259 -- configurable run-time mode, then we consider it not known at compile
1260 -- time. This avoids anomalies where whether something is allowed with a
1261 -- given configurable run-time library depends on how good the compiler
1262 -- is at optimizing and knowing that things are constant when they are
1263 -- nonstatic.
1265 if Configurable_Run_Time_Mode
1266 and then K /= N_Null
1267 and then not Is_Static_Expression (Op)
1268 then
1269 return False;
1270 end if;
1272 -- If we have an entity name, then see if it is the name of a constant
1273 -- and if so, test the corresponding constant value, or the name of
1274 -- an enumeration literal, which is always a constant.
1276 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1277 declare
1278 E : constant Entity_Id := Entity (Op);
1279 V : Node_Id;
1281 begin
1282 -- Never known at compile time if it is a packed array value.
1283 -- We might want to try to evaluate these at compile time one
1284 -- day, but we do not make that attempt now.
1286 if Is_Packed_Array_Type (Etype (Op)) then
1287 return False;
1288 end if;
1290 if Ekind (E) = E_Enumeration_Literal then
1291 return True;
1293 elsif Ekind (E) = E_Constant then
1294 V := Constant_Value (E);
1295 return Present (V) and then Compile_Time_Known_Value (V);
1296 end if;
1297 end;
1299 -- We have a value, see if it is compile time known
1301 else
1302 -- Integer literals are worth storing in the cache
1304 if K = N_Integer_Literal then
1305 CV_Ent.N := Op;
1306 CV_Ent.V := Intval (Op);
1307 return True;
1309 -- Other literals and NULL are known at compile time
1311 elsif
1312 K = N_Character_Literal
1313 or else
1314 K = N_Real_Literal
1315 or else
1316 K = N_String_Literal
1317 or else
1318 K = N_Null
1319 then
1320 return True;
1322 -- Any reference to Null_Parameter is known at compile time. No
1323 -- other attribute references (that have not already been folded)
1324 -- are known at compile time.
1326 elsif K = N_Attribute_Reference then
1327 return Attribute_Name (Op) = Name_Null_Parameter;
1328 end if;
1329 end if;
1331 -- If we fall through, not known at compile time
1333 return False;
1335 -- If we get an exception while trying to do this test, then some error
1336 -- has occurred, and we simply say that the value is not known after all
1338 exception
1339 when others =>
1340 return False;
1341 end Compile_Time_Known_Value;
1343 --------------------------------------
1344 -- Compile_Time_Known_Value_Or_Aggr --
1345 --------------------------------------
1347 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1348 begin
1349 -- If we have an entity name, then see if it is the name of a constant
1350 -- and if so, test the corresponding constant value, or the name of
1351 -- an enumeration literal, which is always a constant.
1353 if Is_Entity_Name (Op) then
1354 declare
1355 E : constant Entity_Id := Entity (Op);
1356 V : Node_Id;
1358 begin
1359 if Ekind (E) = E_Enumeration_Literal then
1360 return True;
1362 elsif Ekind (E) /= E_Constant then
1363 return False;
1365 else
1366 V := Constant_Value (E);
1367 return Present (V)
1368 and then Compile_Time_Known_Value_Or_Aggr (V);
1369 end if;
1370 end;
1372 -- We have a value, see if it is compile time known
1374 else
1375 if Compile_Time_Known_Value (Op) then
1376 return True;
1378 elsif Nkind (Op) = N_Aggregate then
1380 if Present (Expressions (Op)) then
1381 declare
1382 Expr : Node_Id;
1384 begin
1385 Expr := First (Expressions (Op));
1386 while Present (Expr) loop
1387 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1388 return False;
1389 end if;
1391 Next (Expr);
1392 end loop;
1393 end;
1394 end if;
1396 if Present (Component_Associations (Op)) then
1397 declare
1398 Cass : Node_Id;
1400 begin
1401 Cass := First (Component_Associations (Op));
1402 while Present (Cass) loop
1403 if not
1404 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1405 then
1406 return False;
1407 end if;
1409 Next (Cass);
1410 end loop;
1411 end;
1412 end if;
1414 return True;
1416 -- All other types of values are not known at compile time
1418 else
1419 return False;
1420 end if;
1422 end if;
1423 end Compile_Time_Known_Value_Or_Aggr;
1425 -----------------
1426 -- Eval_Actual --
1427 -----------------
1429 -- This is only called for actuals of functions that are not predefined
1430 -- operators (which have already been rewritten as operators at this
1431 -- stage), so the call can never be folded, and all that needs doing for
1432 -- the actual is to do the check for a non-static context.
1434 procedure Eval_Actual (N : Node_Id) is
1435 begin
1436 Check_Non_Static_Context (N);
1437 end Eval_Actual;
1439 --------------------
1440 -- Eval_Allocator --
1441 --------------------
1443 -- Allocators are never static, so all we have to do is to do the
1444 -- check for a non-static context if an expression is present.
1446 procedure Eval_Allocator (N : Node_Id) is
1447 Expr : constant Node_Id := Expression (N);
1449 begin
1450 if Nkind (Expr) = N_Qualified_Expression then
1451 Check_Non_Static_Context (Expression (Expr));
1452 end if;
1453 end Eval_Allocator;
1455 ------------------------
1456 -- Eval_Arithmetic_Op --
1457 ------------------------
1459 -- Arithmetic operations are static functions, so the result is static
1460 -- if both operands are static (RM 4.9(7), 4.9(20)).
1462 procedure Eval_Arithmetic_Op (N : Node_Id) is
1463 Left : constant Node_Id := Left_Opnd (N);
1464 Right : constant Node_Id := Right_Opnd (N);
1465 Ltype : constant Entity_Id := Etype (Left);
1466 Rtype : constant Entity_Id := Etype (Right);
1467 Otype : Entity_Id := Empty;
1468 Stat : Boolean;
1469 Fold : Boolean;
1471 begin
1472 -- If not foldable we are done
1474 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1476 if not Fold then
1477 return;
1478 end if;
1480 if Is_Universal_Numeric_Type (Etype (Left))
1481 and then
1482 Is_Universal_Numeric_Type (Etype (Right))
1483 then
1484 Otype := Find_Universal_Operator_Type (N);
1485 end if;
1487 -- Fold for cases where both operands are of integer type
1489 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1490 declare
1491 Left_Int : constant Uint := Expr_Value (Left);
1492 Right_Int : constant Uint := Expr_Value (Right);
1493 Result : Uint;
1495 begin
1496 case Nkind (N) is
1498 when N_Op_Add =>
1499 Result := Left_Int + Right_Int;
1501 when N_Op_Subtract =>
1502 Result := Left_Int - Right_Int;
1504 when N_Op_Multiply =>
1505 if OK_Bits
1506 (N, UI_From_Int
1507 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1508 then
1509 Result := Left_Int * Right_Int;
1510 else
1511 Result := Left_Int;
1512 end if;
1514 when N_Op_Divide =>
1516 -- The exception Constraint_Error is raised by integer
1517 -- division, rem and mod if the right operand is zero.
1519 if Right_Int = 0 then
1520 Apply_Compile_Time_Constraint_Error
1521 (N, "division by zero",
1522 CE_Divide_By_Zero,
1523 Warn => not Stat);
1524 return;
1526 else
1527 Result := Left_Int / Right_Int;
1528 end if;
1530 when N_Op_Mod =>
1532 -- The exception Constraint_Error is raised by integer
1533 -- division, rem and mod if the right operand is zero.
1535 if Right_Int = 0 then
1536 Apply_Compile_Time_Constraint_Error
1537 (N, "mod with zero divisor",
1538 CE_Divide_By_Zero,
1539 Warn => not Stat);
1540 return;
1541 else
1542 Result := Left_Int mod Right_Int;
1543 end if;
1545 when N_Op_Rem =>
1547 -- The exception Constraint_Error is raised by integer
1548 -- division, rem and mod if the right operand is zero.
1550 if Right_Int = 0 then
1551 Apply_Compile_Time_Constraint_Error
1552 (N, "rem with zero divisor",
1553 CE_Divide_By_Zero,
1554 Warn => not Stat);
1555 return;
1557 else
1558 Result := Left_Int rem Right_Int;
1559 end if;
1561 when others =>
1562 raise Program_Error;
1563 end case;
1565 -- Adjust the result by the modulus if the type is a modular type
1567 if Is_Modular_Integer_Type (Ltype) then
1568 Result := Result mod Modulus (Ltype);
1570 -- For a signed integer type, check non-static overflow
1572 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1573 declare
1574 BT : constant Entity_Id := Base_Type (Ltype);
1575 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1576 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1577 begin
1578 if Result < Lo or else Result > Hi then
1579 Apply_Compile_Time_Constraint_Error
1580 (N, "value not in range of }?",
1581 CE_Overflow_Check_Failed,
1582 Ent => BT);
1583 return;
1584 end if;
1585 end;
1586 end if;
1588 -- If we get here we can fold the result
1590 Fold_Uint (N, Result, Stat);
1591 end;
1593 -- Cases where at least one operand is a real. We handle the cases of
1594 -- both reals, or mixed/real integer cases (the latter happen only for
1595 -- divide and multiply, and the result is always real).
1597 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1598 declare
1599 Left_Real : Ureal;
1600 Right_Real : Ureal;
1601 Result : Ureal;
1603 begin
1604 if Is_Real_Type (Ltype) then
1605 Left_Real := Expr_Value_R (Left);
1606 else
1607 Left_Real := UR_From_Uint (Expr_Value (Left));
1608 end if;
1610 if Is_Real_Type (Rtype) then
1611 Right_Real := Expr_Value_R (Right);
1612 else
1613 Right_Real := UR_From_Uint (Expr_Value (Right));
1614 end if;
1616 if Nkind (N) = N_Op_Add then
1617 Result := Left_Real + Right_Real;
1619 elsif Nkind (N) = N_Op_Subtract then
1620 Result := Left_Real - Right_Real;
1622 elsif Nkind (N) = N_Op_Multiply then
1623 Result := Left_Real * Right_Real;
1625 else pragma Assert (Nkind (N) = N_Op_Divide);
1626 if UR_Is_Zero (Right_Real) then
1627 Apply_Compile_Time_Constraint_Error
1628 (N, "division by zero", CE_Divide_By_Zero);
1629 return;
1630 end if;
1632 Result := Left_Real / Right_Real;
1633 end if;
1635 Fold_Ureal (N, Result, Stat);
1636 end;
1637 end if;
1639 -- If the operator was resolved to a specific type, make sure that type
1640 -- is frozen even if the expression is folded into a literal (which has
1641 -- a universal type).
1643 if Present (Otype) then
1644 Freeze_Before (N, Otype);
1645 end if;
1646 end Eval_Arithmetic_Op;
1648 ----------------------------
1649 -- Eval_Character_Literal --
1650 ----------------------------
1652 -- Nothing to be done!
1654 procedure Eval_Character_Literal (N : Node_Id) is
1655 pragma Warnings (Off, N);
1656 begin
1657 null;
1658 end Eval_Character_Literal;
1660 ---------------
1661 -- Eval_Call --
1662 ---------------
1664 -- Static function calls are either calls to predefined operators
1665 -- with static arguments, or calls to functions that rename a literal.
1666 -- Only the latter case is handled here, predefined operators are
1667 -- constant-folded elsewhere.
1669 -- If the function is itself inherited (see 7423-001) the literal of
1670 -- the parent type must be explicitly converted to the return type
1671 -- of the function.
1673 procedure Eval_Call (N : Node_Id) is
1674 Loc : constant Source_Ptr := Sloc (N);
1675 Typ : constant Entity_Id := Etype (N);
1676 Lit : Entity_Id;
1678 begin
1679 if Nkind (N) = N_Function_Call
1680 and then No (Parameter_Associations (N))
1681 and then Is_Entity_Name (Name (N))
1682 and then Present (Alias (Entity (Name (N))))
1683 and then Is_Enumeration_Type (Base_Type (Typ))
1684 then
1685 Lit := Ultimate_Alias (Entity (Name (N)));
1687 if Ekind (Lit) = E_Enumeration_Literal then
1688 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1689 Rewrite
1690 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1691 else
1692 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1693 end if;
1695 Resolve (N, Typ);
1696 end if;
1697 end if;
1698 end Eval_Call;
1700 --------------------------
1701 -- Eval_Case_Expression --
1702 --------------------------
1704 -- Right now we do not attempt folding of any case expressions, and the
1705 -- language does not require it, so the only required processing is to
1706 -- do the check for all expressions appearing in the case expression.
1708 procedure Eval_Case_Expression (N : Node_Id) is
1709 Alt : Node_Id;
1711 begin
1712 Check_Non_Static_Context (Expression (N));
1714 Alt := First (Alternatives (N));
1715 while Present (Alt) loop
1716 Check_Non_Static_Context (Expression (Alt));
1717 Next (Alt);
1718 end loop;
1719 end Eval_Case_Expression;
1721 ------------------------
1722 -- Eval_Concatenation --
1723 ------------------------
1725 -- Concatenation is a static function, so the result is static if both
1726 -- operands are static (RM 4.9(7), 4.9(21)).
1728 procedure Eval_Concatenation (N : Node_Id) is
1729 Left : constant Node_Id := Left_Opnd (N);
1730 Right : constant Node_Id := Right_Opnd (N);
1731 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1732 Stat : Boolean;
1733 Fold : Boolean;
1735 begin
1736 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1737 -- non-static context.
1739 if Ada_Version = Ada_83
1740 and then Comes_From_Source (N)
1741 then
1742 Check_Non_Static_Context (Left);
1743 Check_Non_Static_Context (Right);
1744 return;
1745 end if;
1747 -- If not foldable we are done. In principle concatenation that yields
1748 -- any string type is static (i.e. an array type of character types).
1749 -- However, character types can include enumeration literals, and
1750 -- concatenation in that case cannot be described by a literal, so we
1751 -- only consider the operation static if the result is an array of
1752 -- (a descendant of) a predefined character type.
1754 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1756 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
1757 Set_Is_Static_Expression (N, False);
1758 return;
1759 end if;
1761 -- Compile time string concatenation
1763 -- ??? Note that operands that are aggregates can be marked as static,
1764 -- so we should attempt at a later stage to fold concatenations with
1765 -- such aggregates.
1767 declare
1768 Left_Str : constant Node_Id := Get_String_Val (Left);
1769 Left_Len : Nat;
1770 Right_Str : constant Node_Id := Get_String_Val (Right);
1771 Folded_Val : String_Id;
1773 begin
1774 -- Establish new string literal, and store left operand. We make
1775 -- sure to use the special Start_String that takes an operand if
1776 -- the left operand is a string literal. Since this is optimized
1777 -- in the case where that is the most recently created string
1778 -- literal, we ensure efficient time/space behavior for the
1779 -- case of a concatenation of a series of string literals.
1781 if Nkind (Left_Str) = N_String_Literal then
1782 Left_Len := String_Length (Strval (Left_Str));
1784 -- If the left operand is the empty string, and the right operand
1785 -- is a string literal (the case of "" & "..."), the result is the
1786 -- value of the right operand. This optimization is important when
1787 -- Is_Folded_In_Parser, to avoid copying an enormous right
1788 -- operand.
1790 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1791 Folded_Val := Strval (Right_Str);
1792 else
1793 Start_String (Strval (Left_Str));
1794 end if;
1796 else
1797 Start_String;
1798 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1799 Left_Len := 1;
1800 end if;
1802 -- Now append the characters of the right operand, unless we
1803 -- optimized the "" & "..." case above.
1805 if Nkind (Right_Str) = N_String_Literal then
1806 if Left_Len /= 0 then
1807 Store_String_Chars (Strval (Right_Str));
1808 Folded_Val := End_String;
1809 end if;
1810 else
1811 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1812 Folded_Val := End_String;
1813 end if;
1815 Set_Is_Static_Expression (N, Stat);
1817 if Stat then
1819 -- If left operand is the empty string, the result is the
1820 -- right operand, including its bounds if anomalous.
1822 if Left_Len = 0
1823 and then Is_Array_Type (Etype (Right))
1824 and then Etype (Right) /= Any_String
1825 then
1826 Set_Etype (N, Etype (Right));
1827 end if;
1829 Fold_Str (N, Folded_Val, Static => True);
1830 end if;
1831 end;
1832 end Eval_Concatenation;
1834 ---------------------------------
1835 -- Eval_Conditional_Expression --
1836 ---------------------------------
1838 -- We can fold to a static expression if the condition and both constituent
1839 -- expressions are static. Otherwise, the only required processing is to do
1840 -- the check for non-static context for the then and else expressions.
1842 procedure Eval_Conditional_Expression (N : Node_Id) is
1843 Condition : constant Node_Id := First (Expressions (N));
1844 Then_Expr : constant Node_Id := Next (Condition);
1845 Else_Expr : constant Node_Id := Next (Then_Expr);
1846 Result : Node_Id;
1847 Non_Result : Node_Id;
1849 Rstat : constant Boolean :=
1850 Is_Static_Expression (Condition)
1851 and then
1852 Is_Static_Expression (Then_Expr)
1853 and then
1854 Is_Static_Expression (Else_Expr);
1856 begin
1857 -- If any operand is Any_Type, just propagate to result and do not try
1858 -- to fold, this prevents cascaded errors.
1860 if Etype (Condition) = Any_Type or else
1861 Etype (Then_Expr) = Any_Type or else
1862 Etype (Else_Expr) = Any_Type
1863 then
1864 Set_Etype (N, Any_Type);
1865 Set_Is_Static_Expression (N, False);
1866 return;
1868 -- Static case where we can fold. Note that we don't try to fold cases
1869 -- where the condition is known at compile time, but the result is
1870 -- non-static. This avoids possible cases of infinite recursion where
1871 -- the expander puts in a redundant test and we remove it. Instead we
1872 -- deal with these cases in the expander.
1874 elsif Rstat then
1876 -- Select result operand
1878 if Is_True (Expr_Value (Condition)) then
1879 Result := Then_Expr;
1880 Non_Result := Else_Expr;
1881 else
1882 Result := Else_Expr;
1883 Non_Result := Then_Expr;
1884 end if;
1886 -- Note that it does not matter if the non-result operand raises a
1887 -- Constraint_Error, but if the result raises constraint error then
1888 -- we replace the node with a raise constraint error. This will
1889 -- properly propagate Raises_Constraint_Error since this flag is
1890 -- set in Result.
1892 if Raises_Constraint_Error (Result) then
1893 Rewrite_In_Raise_CE (N, Result);
1894 Check_Non_Static_Context (Non_Result);
1896 -- Otherwise the result operand replaces the original node
1898 else
1899 Rewrite (N, Relocate_Node (Result));
1900 end if;
1902 -- Case of condition not known at compile time
1904 else
1905 Check_Non_Static_Context (Condition);
1906 Check_Non_Static_Context (Then_Expr);
1907 Check_Non_Static_Context (Else_Expr);
1908 end if;
1910 Set_Is_Static_Expression (N, Rstat);
1911 end Eval_Conditional_Expression;
1913 ----------------------
1914 -- Eval_Entity_Name --
1915 ----------------------
1917 -- This procedure is used for identifiers and expanded names other than
1918 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1919 -- static if they denote a static constant (RM 4.9(6)) or if the name
1920 -- denotes an enumeration literal (RM 4.9(22)).
1922 procedure Eval_Entity_Name (N : Node_Id) is
1923 Def_Id : constant Entity_Id := Entity (N);
1924 Val : Node_Id;
1926 begin
1927 -- Enumeration literals are always considered to be constants
1928 -- and cannot raise constraint error (RM 4.9(22)).
1930 if Ekind (Def_Id) = E_Enumeration_Literal then
1931 Set_Is_Static_Expression (N);
1932 return;
1934 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1935 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1936 -- it does not violate 10.2.1(8) here, since this is not a variable.
1938 elsif Ekind (Def_Id) = E_Constant then
1940 -- Deferred constants must always be treated as nonstatic
1941 -- outside the scope of their full view.
1943 if Present (Full_View (Def_Id))
1944 and then not In_Open_Scopes (Scope (Def_Id))
1945 then
1946 Val := Empty;
1947 else
1948 Val := Constant_Value (Def_Id);
1949 end if;
1951 if Present (Val) then
1952 Set_Is_Static_Expression
1953 (N, Is_Static_Expression (Val)
1954 and then Is_Static_Subtype (Etype (Def_Id)));
1955 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1957 if not Is_Static_Expression (N)
1958 and then not Is_Generic_Type (Etype (N))
1959 then
1960 Validate_Static_Object_Name (N);
1961 end if;
1963 return;
1964 end if;
1965 end if;
1967 -- Fall through if the name is not static
1969 Validate_Static_Object_Name (N);
1970 end Eval_Entity_Name;
1972 ----------------------------
1973 -- Eval_Indexed_Component --
1974 ----------------------------
1976 -- Indexed components are never static, so we need to perform the check
1977 -- for non-static context on the index values. Then, we check if the
1978 -- value can be obtained at compile time, even though it is non-static.
1980 procedure Eval_Indexed_Component (N : Node_Id) is
1981 Expr : Node_Id;
1983 begin
1984 -- Check for non-static context on index values
1986 Expr := First (Expressions (N));
1987 while Present (Expr) loop
1988 Check_Non_Static_Context (Expr);
1989 Next (Expr);
1990 end loop;
1992 -- If the indexed component appears in an object renaming declaration
1993 -- then we do not want to try to evaluate it, since in this case we
1994 -- need the identity of the array element.
1996 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1997 return;
1999 -- Similarly if the indexed component appears as the prefix of an
2000 -- attribute we don't want to evaluate it, because at least for
2001 -- some cases of attributes we need the identify (e.g. Access, Size)
2003 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2004 return;
2005 end if;
2007 -- Note: there are other cases, such as the left side of an assignment,
2008 -- or an OUT parameter for a call, where the replacement results in the
2009 -- illegal use of a constant, But these cases are illegal in the first
2010 -- place, so the replacement, though silly, is harmless.
2012 -- Now see if this is a constant array reference
2014 if List_Length (Expressions (N)) = 1
2015 and then Is_Entity_Name (Prefix (N))
2016 and then Ekind (Entity (Prefix (N))) = E_Constant
2017 and then Present (Constant_Value (Entity (Prefix (N))))
2018 then
2019 declare
2020 Loc : constant Source_Ptr := Sloc (N);
2021 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2022 Sub : constant Node_Id := First (Expressions (N));
2024 Atyp : Entity_Id;
2025 -- Type of array
2027 Lin : Nat;
2028 -- Linear one's origin subscript value for array reference
2030 Lbd : Node_Id;
2031 -- Lower bound of the first array index
2033 Elm : Node_Id;
2034 -- Value from constant array
2036 begin
2037 Atyp := Etype (Arr);
2039 if Is_Access_Type (Atyp) then
2040 Atyp := Designated_Type (Atyp);
2041 end if;
2043 -- If we have an array type (we should have but perhaps there are
2044 -- error cases where this is not the case), then see if we can do
2045 -- a constant evaluation of the array reference.
2047 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2048 if Ekind (Atyp) = E_String_Literal_Subtype then
2049 Lbd := String_Literal_Low_Bound (Atyp);
2050 else
2051 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2052 end if;
2054 if Compile_Time_Known_Value (Sub)
2055 and then Nkind (Arr) = N_Aggregate
2056 and then Compile_Time_Known_Value (Lbd)
2057 and then Is_Discrete_Type (Component_Type (Atyp))
2058 then
2059 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2061 if List_Length (Expressions (Arr)) >= Lin then
2062 Elm := Pick (Expressions (Arr), Lin);
2064 -- If the resulting expression is compile time known,
2065 -- then we can rewrite the indexed component with this
2066 -- value, being sure to mark the result as non-static.
2067 -- We also reset the Sloc, in case this generates an
2068 -- error later on (e.g. 136'Access).
2070 if Compile_Time_Known_Value (Elm) then
2071 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2072 Set_Is_Static_Expression (N, False);
2073 Set_Sloc (N, Loc);
2074 end if;
2075 end if;
2077 -- We can also constant-fold if the prefix is a string literal.
2078 -- This will be useful in an instantiation or an inlining.
2080 elsif Compile_Time_Known_Value (Sub)
2081 and then Nkind (Arr) = N_String_Literal
2082 and then Compile_Time_Known_Value (Lbd)
2083 and then Expr_Value (Lbd) = 1
2084 and then Expr_Value (Sub) <=
2085 String_Literal_Length (Etype (Arr))
2086 then
2087 declare
2088 C : constant Char_Code :=
2089 Get_String_Char (Strval (Arr),
2090 UI_To_Int (Expr_Value (Sub)));
2091 begin
2092 Set_Character_Literal_Name (C);
2094 Elm :=
2095 Make_Character_Literal (Loc,
2096 Chars => Name_Find,
2097 Char_Literal_Value => UI_From_CC (C));
2098 Set_Etype (Elm, Component_Type (Atyp));
2099 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2100 Set_Is_Static_Expression (N, False);
2101 end;
2102 end if;
2103 end if;
2104 end;
2105 end if;
2106 end Eval_Indexed_Component;
2108 --------------------------
2109 -- Eval_Integer_Literal --
2110 --------------------------
2112 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2113 -- as static by the analyzer. The reason we did it that early is to allow
2114 -- the possibility of turning off the Is_Static_Expression flag after
2115 -- analysis, but before resolution, when integer literals are generated in
2116 -- the expander that do not correspond to static expressions.
2118 procedure Eval_Integer_Literal (N : Node_Id) is
2119 T : constant Entity_Id := Etype (N);
2121 function In_Any_Integer_Context return Boolean;
2122 -- If the literal is resolved with a specific type in a context where
2123 -- the expected type is Any_Integer, there are no range checks on the
2124 -- literal. By the time the literal is evaluated, it carries the type
2125 -- imposed by the enclosing expression, and we must recover the context
2126 -- to determine that Any_Integer is meant.
2128 ----------------------------
2129 -- In_Any_Integer_Context --
2130 ----------------------------
2132 function In_Any_Integer_Context return Boolean is
2133 Par : constant Node_Id := Parent (N);
2134 K : constant Node_Kind := Nkind (Par);
2136 begin
2137 -- Any_Integer also appears in digits specifications for real types,
2138 -- but those have bounds smaller that those of any integer base type,
2139 -- so we can safely ignore these cases.
2141 return K = N_Number_Declaration
2142 or else K = N_Attribute_Reference
2143 or else K = N_Attribute_Definition_Clause
2144 or else K = N_Modular_Type_Definition
2145 or else K = N_Signed_Integer_Type_Definition;
2146 end In_Any_Integer_Context;
2148 -- Start of processing for Eval_Integer_Literal
2150 begin
2152 -- If the literal appears in a non-expression context, then it is
2153 -- certainly appearing in a non-static context, so check it. This is
2154 -- actually a redundant check, since Check_Non_Static_Context would
2155 -- check it, but it seems worth while avoiding the call.
2157 if Nkind (Parent (N)) not in N_Subexpr
2158 and then not In_Any_Integer_Context
2159 then
2160 Check_Non_Static_Context (N);
2161 end if;
2163 -- Modular integer literals must be in their base range
2165 if Is_Modular_Integer_Type (T)
2166 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2167 then
2168 Out_Of_Range (N);
2169 end if;
2170 end Eval_Integer_Literal;
2172 ---------------------
2173 -- Eval_Logical_Op --
2174 ---------------------
2176 -- Logical operations are static functions, so the result is potentially
2177 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2179 procedure Eval_Logical_Op (N : Node_Id) is
2180 Left : constant Node_Id := Left_Opnd (N);
2181 Right : constant Node_Id := Right_Opnd (N);
2182 Stat : Boolean;
2183 Fold : Boolean;
2185 begin
2186 -- If not foldable we are done
2188 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2190 if not Fold then
2191 return;
2192 end if;
2194 -- Compile time evaluation of logical operation
2196 declare
2197 Left_Int : constant Uint := Expr_Value (Left);
2198 Right_Int : constant Uint := Expr_Value (Right);
2200 begin
2201 -- VMS includes bitwise operations on signed types
2203 if Is_Modular_Integer_Type (Etype (N))
2204 or else Is_VMS_Operator (Entity (N))
2205 then
2206 declare
2207 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2208 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2210 begin
2211 To_Bits (Left_Int, Left_Bits);
2212 To_Bits (Right_Int, Right_Bits);
2214 -- Note: should really be able to use array ops instead of
2215 -- these loops, but they weren't working at the time ???
2217 if Nkind (N) = N_Op_And then
2218 for J in Left_Bits'Range loop
2219 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2220 end loop;
2222 elsif Nkind (N) = N_Op_Or then
2223 for J in Left_Bits'Range loop
2224 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2225 end loop;
2227 else
2228 pragma Assert (Nkind (N) = N_Op_Xor);
2230 for J in Left_Bits'Range loop
2231 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2232 end loop;
2233 end if;
2235 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2236 end;
2238 else
2239 pragma Assert (Is_Boolean_Type (Etype (N)));
2241 if Nkind (N) = N_Op_And then
2242 Fold_Uint (N,
2243 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2245 elsif Nkind (N) = N_Op_Or then
2246 Fold_Uint (N,
2247 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2249 else
2250 pragma Assert (Nkind (N) = N_Op_Xor);
2251 Fold_Uint (N,
2252 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2253 end if;
2254 end if;
2255 end;
2256 end Eval_Logical_Op;
2258 ------------------------
2259 -- Eval_Membership_Op --
2260 ------------------------
2262 -- A membership test is potentially static if the expression is static, and
2263 -- the range is a potentially static range, or is a subtype mark denoting a
2264 -- static subtype (RM 4.9(12)).
2266 procedure Eval_Membership_Op (N : Node_Id) is
2267 Left : constant Node_Id := Left_Opnd (N);
2268 Right : constant Node_Id := Right_Opnd (N);
2269 Def_Id : Entity_Id;
2270 Lo : Node_Id;
2271 Hi : Node_Id;
2272 Result : Boolean;
2273 Stat : Boolean;
2274 Fold : Boolean;
2276 begin
2277 -- Ignore if error in either operand, except to make sure that Any_Type
2278 -- is properly propagated to avoid junk cascaded errors.
2280 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2281 Set_Etype (N, Any_Type);
2282 return;
2283 end if;
2285 -- Ignore if types involved have predicates
2287 if Present (Predicate_Function (Etype (Left)))
2288 or else
2289 Present (Predicate_Function (Etype (Right)))
2290 then
2291 return;
2292 end if;
2294 -- Case of right operand is a subtype name
2296 if Is_Entity_Name (Right) then
2297 Def_Id := Entity (Right);
2299 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2300 and then Is_OK_Static_Subtype (Def_Id)
2301 then
2302 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2304 if not Fold or else not Stat then
2305 return;
2306 end if;
2307 else
2308 Check_Non_Static_Context (Left);
2309 return;
2310 end if;
2312 -- For string membership tests we will check the length further on
2314 if not Is_String_Type (Def_Id) then
2315 Lo := Type_Low_Bound (Def_Id);
2316 Hi := Type_High_Bound (Def_Id);
2318 else
2319 Lo := Empty;
2320 Hi := Empty;
2321 end if;
2323 -- Case of right operand is a range
2325 else
2326 if Is_Static_Range (Right) then
2327 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2329 if not Fold or else not Stat then
2330 return;
2332 -- If one bound of range raises CE, then don't try to fold
2334 elsif not Is_OK_Static_Range (Right) then
2335 Check_Non_Static_Context (Left);
2336 return;
2337 end if;
2339 else
2340 Check_Non_Static_Context (Left);
2341 return;
2342 end if;
2344 -- Here we know range is an OK static range
2346 Lo := Low_Bound (Right);
2347 Hi := High_Bound (Right);
2348 end if;
2350 -- For strings we check that the length of the string expression is
2351 -- compatible with the string subtype if the subtype is constrained,
2352 -- or if unconstrained then the test is always true.
2354 if Is_String_Type (Etype (Right)) then
2355 if not Is_Constrained (Etype (Right)) then
2356 Result := True;
2358 else
2359 declare
2360 Typlen : constant Uint := String_Type_Len (Etype (Right));
2361 Strlen : constant Uint :=
2362 UI_From_Int
2363 (String_Length (Strval (Get_String_Val (Left))));
2364 begin
2365 Result := (Typlen = Strlen);
2366 end;
2367 end if;
2369 -- Fold the membership test. We know we have a static range and Lo and
2370 -- Hi are set to the expressions for the end points of this range.
2372 elsif Is_Real_Type (Etype (Right)) then
2373 declare
2374 Leftval : constant Ureal := Expr_Value_R (Left);
2376 begin
2377 Result := Expr_Value_R (Lo) <= Leftval
2378 and then Leftval <= Expr_Value_R (Hi);
2379 end;
2381 else
2382 declare
2383 Leftval : constant Uint := Expr_Value (Left);
2385 begin
2386 Result := Expr_Value (Lo) <= Leftval
2387 and then Leftval <= Expr_Value (Hi);
2388 end;
2389 end if;
2391 if Nkind (N) = N_Not_In then
2392 Result := not Result;
2393 end if;
2395 Fold_Uint (N, Test (Result), True);
2397 Warn_On_Known_Condition (N);
2398 end Eval_Membership_Op;
2400 ------------------------
2401 -- Eval_Named_Integer --
2402 ------------------------
2404 procedure Eval_Named_Integer (N : Node_Id) is
2405 begin
2406 Fold_Uint (N,
2407 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2408 end Eval_Named_Integer;
2410 ---------------------
2411 -- Eval_Named_Real --
2412 ---------------------
2414 procedure Eval_Named_Real (N : Node_Id) is
2415 begin
2416 Fold_Ureal (N,
2417 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2418 end Eval_Named_Real;
2420 -------------------
2421 -- Eval_Op_Expon --
2422 -------------------
2424 -- Exponentiation is a static functions, so the result is potentially
2425 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2427 procedure Eval_Op_Expon (N : Node_Id) is
2428 Left : constant Node_Id := Left_Opnd (N);
2429 Right : constant Node_Id := Right_Opnd (N);
2430 Stat : Boolean;
2431 Fold : Boolean;
2433 begin
2434 -- If not foldable we are done
2436 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2438 if not Fold then
2439 return;
2440 end if;
2442 -- Fold exponentiation operation
2444 declare
2445 Right_Int : constant Uint := Expr_Value (Right);
2447 begin
2448 -- Integer case
2450 if Is_Integer_Type (Etype (Left)) then
2451 declare
2452 Left_Int : constant Uint := Expr_Value (Left);
2453 Result : Uint;
2455 begin
2456 -- Exponentiation of an integer raises Constraint_Error for a
2457 -- negative exponent (RM 4.5.6).
2459 if Right_Int < 0 then
2460 Apply_Compile_Time_Constraint_Error
2461 (N, "integer exponent negative",
2462 CE_Range_Check_Failed,
2463 Warn => not Stat);
2464 return;
2466 else
2467 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2468 Result := Left_Int ** Right_Int;
2469 else
2470 Result := Left_Int;
2471 end if;
2473 if Is_Modular_Integer_Type (Etype (N)) then
2474 Result := Result mod Modulus (Etype (N));
2475 end if;
2477 Fold_Uint (N, Result, Stat);
2478 end if;
2479 end;
2481 -- Real case
2483 else
2484 declare
2485 Left_Real : constant Ureal := Expr_Value_R (Left);
2487 begin
2488 -- Cannot have a zero base with a negative exponent
2490 if UR_Is_Zero (Left_Real) then
2492 if Right_Int < 0 then
2493 Apply_Compile_Time_Constraint_Error
2494 (N, "zero ** negative integer",
2495 CE_Range_Check_Failed,
2496 Warn => not Stat);
2497 return;
2498 else
2499 Fold_Ureal (N, Ureal_0, Stat);
2500 end if;
2502 else
2503 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2504 end if;
2505 end;
2506 end if;
2507 end;
2508 end Eval_Op_Expon;
2510 -----------------
2511 -- Eval_Op_Not --
2512 -----------------
2514 -- The not operation is a static functions, so the result is potentially
2515 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2517 procedure Eval_Op_Not (N : Node_Id) is
2518 Right : constant Node_Id := Right_Opnd (N);
2519 Stat : Boolean;
2520 Fold : Boolean;
2522 begin
2523 -- If not foldable we are done
2525 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2527 if not Fold then
2528 return;
2529 end if;
2531 -- Fold not operation
2533 declare
2534 Rint : constant Uint := Expr_Value (Right);
2535 Typ : constant Entity_Id := Etype (N);
2537 begin
2538 -- Negation is equivalent to subtracting from the modulus minus one.
2539 -- For a binary modulus this is equivalent to the ones-complement of
2540 -- the original value. For non-binary modulus this is an arbitrary
2541 -- but consistent definition.
2543 if Is_Modular_Integer_Type (Typ) then
2544 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2546 else
2547 pragma Assert (Is_Boolean_Type (Typ));
2548 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2549 end if;
2551 Set_Is_Static_Expression (N, Stat);
2552 end;
2553 end Eval_Op_Not;
2555 -------------------------------
2556 -- Eval_Qualified_Expression --
2557 -------------------------------
2559 -- A qualified expression is potentially static if its subtype mark denotes
2560 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2562 procedure Eval_Qualified_Expression (N : Node_Id) is
2563 Operand : constant Node_Id := Expression (N);
2564 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2566 Stat : Boolean;
2567 Fold : Boolean;
2568 Hex : Boolean;
2570 begin
2571 -- Can only fold if target is string or scalar and subtype is static.
2572 -- Also, do not fold if our parent is an allocator (this is because the
2573 -- qualified expression is really part of the syntactic structure of an
2574 -- allocator, and we do not want to end up with something that
2575 -- corresponds to "new 1" where the 1 is the result of folding a
2576 -- qualified expression).
2578 if not Is_Static_Subtype (Target_Type)
2579 or else Nkind (Parent (N)) = N_Allocator
2580 then
2581 Check_Non_Static_Context (Operand);
2583 -- If operand is known to raise constraint_error, set the flag on the
2584 -- expression so it does not get optimized away.
2586 if Nkind (Operand) = N_Raise_Constraint_Error then
2587 Set_Raises_Constraint_Error (N);
2588 end if;
2590 return;
2591 end if;
2593 -- If not foldable we are done
2595 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2597 if not Fold then
2598 return;
2600 -- Don't try fold if target type has constraint error bounds
2602 elsif not Is_OK_Static_Subtype (Target_Type) then
2603 Set_Raises_Constraint_Error (N);
2604 return;
2605 end if;
2607 -- Here we will fold, save Print_In_Hex indication
2609 Hex := Nkind (Operand) = N_Integer_Literal
2610 and then Print_In_Hex (Operand);
2612 -- Fold the result of qualification
2614 if Is_Discrete_Type (Target_Type) then
2615 Fold_Uint (N, Expr_Value (Operand), Stat);
2617 -- Preserve Print_In_Hex indication
2619 if Hex and then Nkind (N) = N_Integer_Literal then
2620 Set_Print_In_Hex (N);
2621 end if;
2623 elsif Is_Real_Type (Target_Type) then
2624 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2626 else
2627 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2629 if not Stat then
2630 Set_Is_Static_Expression (N, False);
2631 else
2632 Check_String_Literal_Length (N, Target_Type);
2633 end if;
2635 return;
2636 end if;
2638 -- The expression may be foldable but not static
2640 Set_Is_Static_Expression (N, Stat);
2642 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
2643 Out_Of_Range (N);
2644 end if;
2645 end Eval_Qualified_Expression;
2647 -----------------------
2648 -- Eval_Real_Literal --
2649 -----------------------
2651 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2652 -- as static by the analyzer. The reason we did it that early is to allow
2653 -- the possibility of turning off the Is_Static_Expression flag after
2654 -- analysis, but before resolution, when integer literals are generated
2655 -- in the expander that do not correspond to static expressions.
2657 procedure Eval_Real_Literal (N : Node_Id) is
2658 PK : constant Node_Kind := Nkind (Parent (N));
2660 begin
2661 -- If the literal appears in a non-expression context and not as part of
2662 -- a number declaration, then it is appearing in a non-static context,
2663 -- so check it.
2665 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
2666 Check_Non_Static_Context (N);
2667 end if;
2668 end Eval_Real_Literal;
2670 ------------------------
2671 -- Eval_Relational_Op --
2672 ------------------------
2674 -- Relational operations are static functions, so the result is static if
2675 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2676 -- the result is never static, even if the operands are.
2678 procedure Eval_Relational_Op (N : Node_Id) is
2679 Left : constant Node_Id := Left_Opnd (N);
2680 Right : constant Node_Id := Right_Opnd (N);
2681 Typ : constant Entity_Id := Etype (Left);
2682 Otype : Entity_Id := Empty;
2683 Result : Boolean;
2684 Stat : Boolean;
2685 Fold : Boolean;
2687 begin
2688 -- One special case to deal with first. If we can tell that the result
2689 -- will be false because the lengths of one or more index subtypes are
2690 -- compile time known and different, then we can replace the entire
2691 -- result by False. We only do this for one dimensional arrays, because
2692 -- the case of multi-dimensional arrays is rare and too much trouble! If
2693 -- one of the operands is an illegal aggregate, its type might still be
2694 -- an arbitrary composite type, so nothing to do.
2696 if Is_Array_Type (Typ)
2697 and then Typ /= Any_Composite
2698 and then Number_Dimensions (Typ) = 1
2699 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
2700 then
2701 if Raises_Constraint_Error (Left)
2702 or else Raises_Constraint_Error (Right)
2703 then
2704 return;
2705 end if;
2707 -- OK, we have the case where we may be able to do this fold
2709 Length_Mismatch : declare
2710 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2711 -- If Op is an expression for a constrained array with a known at
2712 -- compile time length, then Len is set to this (non-negative
2713 -- length). Otherwise Len is set to minus 1.
2715 -----------------------
2716 -- Get_Static_Length --
2717 -----------------------
2719 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2720 T : Entity_Id;
2722 begin
2723 -- First easy case string literal
2725 if Nkind (Op) = N_String_Literal then
2726 Len := UI_From_Int (String_Length (Strval (Op)));
2727 return;
2728 end if;
2730 -- Second easy case, not constrained subtype, so no length
2732 if not Is_Constrained (Etype (Op)) then
2733 Len := Uint_Minus_1;
2734 return;
2735 end if;
2737 -- General case
2739 T := Etype (First_Index (Etype (Op)));
2741 -- The simple case, both bounds are known at compile time
2743 if Is_Discrete_Type (T)
2744 and then
2745 Compile_Time_Known_Value (Type_Low_Bound (T))
2746 and then
2747 Compile_Time_Known_Value (Type_High_Bound (T))
2748 then
2749 Len := UI_Max (Uint_0,
2750 Expr_Value (Type_High_Bound (T)) -
2751 Expr_Value (Type_Low_Bound (T)) + 1);
2752 return;
2753 end if;
2755 -- A more complex case, where the bounds are of the form
2756 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2757 -- either A'First or A'Last (with A an entity name), or X is an
2758 -- entity name, and the two X's are the same and K1 and K2 are
2759 -- known at compile time, in this case, the length can also be
2760 -- computed at compile time, even though the bounds are not
2761 -- known. A common case of this is e.g. (X'First .. X'First+5).
2763 Extract_Length : declare
2764 procedure Decompose_Expr
2765 (Expr : Node_Id;
2766 Ent : out Entity_Id;
2767 Kind : out Character;
2768 Cons : out Uint);
2769 -- Given an expression, see if is of the form above,
2770 -- X [+/- K]. If so Ent is set to the entity in X,
2771 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2772 -- and Cons is the value of K. If the expression is
2773 -- not of the required form, Ent is set to Empty.
2775 --------------------
2776 -- Decompose_Expr --
2777 --------------------
2779 procedure Decompose_Expr
2780 (Expr : Node_Id;
2781 Ent : out Entity_Id;
2782 Kind : out Character;
2783 Cons : out Uint)
2785 Exp : Node_Id;
2787 begin
2788 if Nkind (Expr) = N_Op_Add
2789 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2790 then
2791 Exp := Left_Opnd (Expr);
2792 Cons := Expr_Value (Right_Opnd (Expr));
2794 elsif Nkind (Expr) = N_Op_Subtract
2795 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2796 then
2797 Exp := Left_Opnd (Expr);
2798 Cons := -Expr_Value (Right_Opnd (Expr));
2800 -- If the bound is a constant created to remove side
2801 -- effects, recover original expression to see if it has
2802 -- one of the recognizable forms.
2804 elsif Nkind (Expr) = N_Identifier
2805 and then not Comes_From_Source (Entity (Expr))
2806 and then Ekind (Entity (Expr)) = E_Constant
2807 and then
2808 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2809 then
2810 Exp := Expression (Parent (Entity (Expr)));
2811 Decompose_Expr (Exp, Ent, Kind, Cons);
2813 -- If original expression includes an entity, create a
2814 -- reference to it for use below.
2816 if Present (Ent) then
2817 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2818 end if;
2820 else
2821 Exp := Expr;
2822 Cons := Uint_0;
2823 end if;
2825 -- At this stage Exp is set to the potential X
2827 if Nkind (Exp) = N_Attribute_Reference then
2828 if Attribute_Name (Exp) = Name_First then
2829 Kind := 'F';
2831 elsif Attribute_Name (Exp) = Name_Last then
2832 Kind := 'L';
2834 else
2835 Ent := Empty;
2836 return;
2837 end if;
2839 Exp := Prefix (Exp);
2841 else
2842 Kind := 'E';
2843 end if;
2845 if Is_Entity_Name (Exp)
2846 and then Present (Entity (Exp))
2847 then
2848 Ent := Entity (Exp);
2849 else
2850 Ent := Empty;
2851 end if;
2852 end Decompose_Expr;
2854 -- Local Variables
2856 Ent1, Ent2 : Entity_Id;
2857 Kind1, Kind2 : Character;
2858 Cons1, Cons2 : Uint;
2860 -- Start of processing for Extract_Length
2862 begin
2863 Decompose_Expr
2864 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2865 Decompose_Expr
2866 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
2868 if Present (Ent1)
2869 and then Kind1 = Kind2
2870 and then Ent1 = Ent2
2871 then
2872 Len := Cons2 - Cons1 + 1;
2873 else
2874 Len := Uint_Minus_1;
2875 end if;
2876 end Extract_Length;
2877 end Get_Static_Length;
2879 -- Local Variables
2881 Len_L : Uint;
2882 Len_R : Uint;
2884 -- Start of processing for Length_Mismatch
2886 begin
2887 Get_Static_Length (Left, Len_L);
2888 Get_Static_Length (Right, Len_R);
2890 if Len_L /= Uint_Minus_1
2891 and then Len_R /= Uint_Minus_1
2892 and then Len_L /= Len_R
2893 then
2894 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2895 Warn_On_Known_Condition (N);
2896 return;
2897 end if;
2898 end Length_Mismatch;
2899 end if;
2901 -- Test for expression being foldable
2903 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2905 -- Only comparisons of scalars can give static results. In particular,
2906 -- comparisons of strings never yield a static result, even if both
2907 -- operands are static strings.
2909 if not Is_Scalar_Type (Typ) then
2910 Stat := False;
2911 Set_Is_Static_Expression (N, False);
2912 end if;
2914 -- For operators on universal numeric types called as functions with
2915 -- an explicit scope, determine appropriate specific numeric type, and
2916 -- diagnose possible ambiguity.
2918 if Is_Universal_Numeric_Type (Etype (Left))
2919 and then
2920 Is_Universal_Numeric_Type (Etype (Right))
2921 then
2922 Otype := Find_Universal_Operator_Type (N);
2923 end if;
2925 -- For static real type expressions, we cannot use Compile_Time_Compare
2926 -- since it worries about run-time results which are not exact.
2928 if Stat and then Is_Real_Type (Typ) then
2929 declare
2930 Left_Real : constant Ureal := Expr_Value_R (Left);
2931 Right_Real : constant Ureal := Expr_Value_R (Right);
2933 begin
2934 case Nkind (N) is
2935 when N_Op_Eq => Result := (Left_Real = Right_Real);
2936 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2937 when N_Op_Lt => Result := (Left_Real < Right_Real);
2938 when N_Op_Le => Result := (Left_Real <= Right_Real);
2939 when N_Op_Gt => Result := (Left_Real > Right_Real);
2940 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2942 when others =>
2943 raise Program_Error;
2944 end case;
2946 Fold_Uint (N, Test (Result), True);
2947 end;
2949 -- For all other cases, we use Compile_Time_Compare to do the compare
2951 else
2952 declare
2953 CR : constant Compare_Result :=
2954 Compile_Time_Compare (Left, Right, Assume_Valid => False);
2956 begin
2957 if CR = Unknown then
2958 return;
2959 end if;
2961 case Nkind (N) is
2962 when N_Op_Eq =>
2963 if CR = EQ then
2964 Result := True;
2965 elsif CR = NE or else CR = GT or else CR = LT then
2966 Result := False;
2967 else
2968 return;
2969 end if;
2971 when N_Op_Ne =>
2972 if CR = NE or else CR = GT or else CR = LT then
2973 Result := True;
2974 elsif CR = EQ then
2975 Result := False;
2976 else
2977 return;
2978 end if;
2980 when N_Op_Lt =>
2981 if CR = LT then
2982 Result := True;
2983 elsif CR = EQ or else CR = GT or else CR = GE then
2984 Result := False;
2985 else
2986 return;
2987 end if;
2989 when N_Op_Le =>
2990 if CR = LT or else CR = EQ or else CR = LE then
2991 Result := True;
2992 elsif CR = GT then
2993 Result := False;
2994 else
2995 return;
2996 end if;
2998 when N_Op_Gt =>
2999 if CR = GT then
3000 Result := True;
3001 elsif CR = EQ or else CR = LT or else CR = LE then
3002 Result := False;
3003 else
3004 return;
3005 end if;
3007 when N_Op_Ge =>
3008 if CR = GT or else CR = EQ or else CR = GE then
3009 Result := True;
3010 elsif CR = LT then
3011 Result := False;
3012 else
3013 return;
3014 end if;
3016 when others =>
3017 raise Program_Error;
3018 end case;
3019 end;
3021 Fold_Uint (N, Test (Result), Stat);
3022 end if;
3024 -- For the case of a folded relational operator on a specific numeric
3025 -- type, freeze operand type now.
3027 if Present (Otype) then
3028 Freeze_Before (N, Otype);
3029 end if;
3031 Warn_On_Known_Condition (N);
3032 end Eval_Relational_Op;
3034 ----------------
3035 -- Eval_Shift --
3036 ----------------
3038 -- Shift operations are intrinsic operations that can never be static, so
3039 -- the only processing required is to perform the required check for a non
3040 -- static context for the two operands.
3042 -- Actually we could do some compile time evaluation here some time ???
3044 procedure Eval_Shift (N : Node_Id) is
3045 begin
3046 Check_Non_Static_Context (Left_Opnd (N));
3047 Check_Non_Static_Context (Right_Opnd (N));
3048 end Eval_Shift;
3050 ------------------------
3051 -- Eval_Short_Circuit --
3052 ------------------------
3054 -- A short circuit operation is potentially static if both operands are
3055 -- potentially static (RM 4.9 (13)).
3057 procedure Eval_Short_Circuit (N : Node_Id) is
3058 Kind : constant Node_Kind := Nkind (N);
3059 Left : constant Node_Id := Left_Opnd (N);
3060 Right : constant Node_Id := Right_Opnd (N);
3061 Left_Int : Uint;
3063 Rstat : constant Boolean :=
3064 Is_Static_Expression (Left)
3065 and then
3066 Is_Static_Expression (Right);
3068 begin
3069 -- Short circuit operations are never static in Ada 83
3071 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3072 Check_Non_Static_Context (Left);
3073 Check_Non_Static_Context (Right);
3074 return;
3075 end if;
3077 -- Now look at the operands, we can't quite use the normal call to
3078 -- Test_Expression_Is_Foldable here because short circuit operations
3079 -- are a special case, they can still be foldable, even if the right
3080 -- operand raises constraint error.
3082 -- If either operand is Any_Type, just propagate to result and do not
3083 -- try to fold, this prevents cascaded errors.
3085 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3086 Set_Etype (N, Any_Type);
3087 return;
3089 -- If left operand raises constraint error, then replace node N with
3090 -- the raise constraint error node, and we are obviously not foldable.
3091 -- Is_Static_Expression is set from the two operands in the normal way,
3092 -- and we check the right operand if it is in a non-static context.
3094 elsif Raises_Constraint_Error (Left) then
3095 if not Rstat then
3096 Check_Non_Static_Context (Right);
3097 end if;
3099 Rewrite_In_Raise_CE (N, Left);
3100 Set_Is_Static_Expression (N, Rstat);
3101 return;
3103 -- If the result is not static, then we won't in any case fold
3105 elsif not Rstat then
3106 Check_Non_Static_Context (Left);
3107 Check_Non_Static_Context (Right);
3108 return;
3109 end if;
3111 -- Here the result is static, note that, unlike the normal processing
3112 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3113 -- the right operand raises constraint error, that's because it is not
3114 -- significant if the left operand is decisive.
3116 Set_Is_Static_Expression (N);
3118 -- It does not matter if the right operand raises constraint error if
3119 -- it will not be evaluated. So deal specially with the cases where
3120 -- the right operand is not evaluated. Note that we will fold these
3121 -- cases even if the right operand is non-static, which is fine, but
3122 -- of course in these cases the result is not potentially static.
3124 Left_Int := Expr_Value (Left);
3126 if (Kind = N_And_Then and then Is_False (Left_Int))
3127 or else
3128 (Kind = N_Or_Else and then Is_True (Left_Int))
3129 then
3130 Fold_Uint (N, Left_Int, Rstat);
3131 return;
3132 end if;
3134 -- If first operand not decisive, then it does matter if the right
3135 -- operand raises constraint error, since it will be evaluated, so
3136 -- we simply replace the node with the right operand. Note that this
3137 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3138 -- (both are set to True in Right).
3140 if Raises_Constraint_Error (Right) then
3141 Rewrite_In_Raise_CE (N, Right);
3142 Check_Non_Static_Context (Left);
3143 return;
3144 end if;
3146 -- Otherwise the result depends on the right operand
3148 Fold_Uint (N, Expr_Value (Right), Rstat);
3149 return;
3150 end Eval_Short_Circuit;
3152 ----------------
3153 -- Eval_Slice --
3154 ----------------
3156 -- Slices can never be static, so the only processing required is to check
3157 -- for non-static context if an explicit range is given.
3159 procedure Eval_Slice (N : Node_Id) is
3160 Drange : constant Node_Id := Discrete_Range (N);
3161 begin
3162 if Nkind (Drange) = N_Range then
3163 Check_Non_Static_Context (Low_Bound (Drange));
3164 Check_Non_Static_Context (High_Bound (Drange));
3165 end if;
3167 -- A slice of the form A (subtype), when the subtype is the index of
3168 -- the type of A, is redundant, the slice can be replaced with A, and
3169 -- this is worth a warning.
3171 if Is_Entity_Name (Prefix (N)) then
3172 declare
3173 E : constant Entity_Id := Entity (Prefix (N));
3174 T : constant Entity_Id := Etype (E);
3175 begin
3176 if Ekind (E) = E_Constant
3177 and then Is_Array_Type (T)
3178 and then Is_Entity_Name (Drange)
3179 then
3180 if Is_Entity_Name (Original_Node (First_Index (T)))
3181 and then Entity (Original_Node (First_Index (T)))
3182 = Entity (Drange)
3183 then
3184 if Warn_On_Redundant_Constructs then
3185 Error_Msg_N ("redundant slice denotes whole array?", N);
3186 end if;
3188 -- The following might be a useful optimization????
3190 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3191 end if;
3192 end if;
3193 end;
3194 end if;
3195 end Eval_Slice;
3197 -------------------------
3198 -- Eval_String_Literal --
3199 -------------------------
3201 procedure Eval_String_Literal (N : Node_Id) is
3202 Typ : constant Entity_Id := Etype (N);
3203 Bas : constant Entity_Id := Base_Type (Typ);
3204 Xtp : Entity_Id;
3205 Len : Nat;
3206 Lo : Node_Id;
3208 begin
3209 -- Nothing to do if error type (handles cases like default expressions
3210 -- or generics where we have not yet fully resolved the type).
3212 if Bas = Any_Type or else Bas = Any_String then
3213 return;
3214 end if;
3216 -- String literals are static if the subtype is static (RM 4.9(2)), so
3217 -- reset the static expression flag (it was set unconditionally in
3218 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3219 -- the subtype is static by looking at the lower bound.
3221 if Ekind (Typ) = E_String_Literal_Subtype then
3222 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3223 Set_Is_Static_Expression (N, False);
3224 return;
3225 end if;
3227 -- Here if Etype of string literal is normal Etype (not yet possible,
3228 -- but may be possible in future).
3230 elsif not Is_OK_Static_Expression
3231 (Type_Low_Bound (Etype (First_Index (Typ))))
3232 then
3233 Set_Is_Static_Expression (N, False);
3234 return;
3235 end if;
3237 -- If original node was a type conversion, then result if non-static
3239 if Nkind (Original_Node (N)) = N_Type_Conversion then
3240 Set_Is_Static_Expression (N, False);
3241 return;
3242 end if;
3244 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3245 -- if its bounds are outside the index base type and this index type is
3246 -- static. This can happen in only two ways. Either the string literal
3247 -- is too long, or it is null, and the lower bound is type'First. In
3248 -- either case it is the upper bound that is out of range of the index
3249 -- type.
3251 if Ada_Version >= Ada_95 then
3252 if Root_Type (Bas) = Standard_String
3253 or else
3254 Root_Type (Bas) = Standard_Wide_String
3255 then
3256 Xtp := Standard_Positive;
3257 else
3258 Xtp := Etype (First_Index (Bas));
3259 end if;
3261 if Ekind (Typ) = E_String_Literal_Subtype then
3262 Lo := String_Literal_Low_Bound (Typ);
3263 else
3264 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3265 end if;
3267 Len := String_Length (Strval (N));
3269 if UI_From_Int (Len) > String_Type_Len (Bas) then
3270 Apply_Compile_Time_Constraint_Error
3271 (N, "string literal too long for}", CE_Length_Check_Failed,
3272 Ent => Bas,
3273 Typ => First_Subtype (Bas));
3275 elsif Len = 0
3276 and then not Is_Generic_Type (Xtp)
3277 and then
3278 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3279 then
3280 Apply_Compile_Time_Constraint_Error
3281 (N, "null string literal not allowed for}",
3282 CE_Length_Check_Failed,
3283 Ent => Bas,
3284 Typ => First_Subtype (Bas));
3285 end if;
3286 end if;
3287 end Eval_String_Literal;
3289 --------------------------
3290 -- Eval_Type_Conversion --
3291 --------------------------
3293 -- A type conversion is potentially static if its subtype mark is for a
3294 -- static scalar subtype, and its operand expression is potentially static
3295 -- (RM 4.9(10)).
3297 procedure Eval_Type_Conversion (N : Node_Id) is
3298 Operand : constant Node_Id := Expression (N);
3299 Source_Type : constant Entity_Id := Etype (Operand);
3300 Target_Type : constant Entity_Id := Etype (N);
3302 Stat : Boolean;
3303 Fold : Boolean;
3305 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3306 -- Returns true if type T is an integer type, or if it is a fixed-point
3307 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3308 -- on the conversion node).
3310 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3311 -- Returns true if type T is a floating-point type, or if it is a
3312 -- fixed-point type that is not to be treated as an integer (i.e. the
3313 -- flag Conversion_OK is not set on the conversion node).
3315 ------------------------------
3316 -- To_Be_Treated_As_Integer --
3317 ------------------------------
3319 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3320 begin
3321 return
3322 Is_Integer_Type (T)
3323 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3324 end To_Be_Treated_As_Integer;
3326 ---------------------------
3327 -- To_Be_Treated_As_Real --
3328 ---------------------------
3330 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3331 begin
3332 return
3333 Is_Floating_Point_Type (T)
3334 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3335 end To_Be_Treated_As_Real;
3337 -- Start of processing for Eval_Type_Conversion
3339 begin
3340 -- Cannot fold if target type is non-static or if semantic error
3342 if not Is_Static_Subtype (Target_Type) then
3343 Check_Non_Static_Context (Operand);
3344 return;
3346 elsif Error_Posted (N) then
3347 return;
3348 end if;
3350 -- If not foldable we are done
3352 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3354 if not Fold then
3355 return;
3357 -- Don't try fold if target type has constraint error bounds
3359 elsif not Is_OK_Static_Subtype (Target_Type) then
3360 Set_Raises_Constraint_Error (N);
3361 return;
3362 end if;
3364 -- Remaining processing depends on operand types. Note that in the
3365 -- following type test, fixed-point counts as real unless the flag
3366 -- Conversion_OK is set, in which case it counts as integer.
3368 -- Fold conversion, case of string type. The result is not static
3370 if Is_String_Type (Target_Type) then
3371 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3373 return;
3375 -- Fold conversion, case of integer target type
3377 elsif To_Be_Treated_As_Integer (Target_Type) then
3378 declare
3379 Result : Uint;
3381 begin
3382 -- Integer to integer conversion
3384 if To_Be_Treated_As_Integer (Source_Type) then
3385 Result := Expr_Value (Operand);
3387 -- Real to integer conversion
3389 else
3390 Result := UR_To_Uint (Expr_Value_R (Operand));
3391 end if;
3393 -- If fixed-point type (Conversion_OK must be set), then the
3394 -- result is logically an integer, but we must replace the
3395 -- conversion with the corresponding real literal, since the
3396 -- type from a semantic point of view is still fixed-point.
3398 if Is_Fixed_Point_Type (Target_Type) then
3399 Fold_Ureal
3400 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3402 -- Otherwise result is integer literal
3404 else
3405 Fold_Uint (N, Result, Stat);
3406 end if;
3407 end;
3409 -- Fold conversion, case of real target type
3411 elsif To_Be_Treated_As_Real (Target_Type) then
3412 declare
3413 Result : Ureal;
3415 begin
3416 if To_Be_Treated_As_Real (Source_Type) then
3417 Result := Expr_Value_R (Operand);
3418 else
3419 Result := UR_From_Uint (Expr_Value (Operand));
3420 end if;
3422 Fold_Ureal (N, Result, Stat);
3423 end;
3425 -- Enumeration types
3427 else
3428 Fold_Uint (N, Expr_Value (Operand), Stat);
3429 end if;
3431 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3432 Out_Of_Range (N);
3433 end if;
3435 end Eval_Type_Conversion;
3437 -------------------
3438 -- Eval_Unary_Op --
3439 -------------------
3441 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3442 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3444 procedure Eval_Unary_Op (N : Node_Id) is
3445 Right : constant Node_Id := Right_Opnd (N);
3446 Otype : Entity_Id := Empty;
3447 Stat : Boolean;
3448 Fold : Boolean;
3450 begin
3451 -- If not foldable we are done
3453 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3455 if not Fold then
3456 return;
3457 end if;
3459 if Etype (Right) = Universal_Integer
3460 or else
3461 Etype (Right) = Universal_Real
3462 then
3463 Otype := Find_Universal_Operator_Type (N);
3464 end if;
3466 -- Fold for integer case
3468 if Is_Integer_Type (Etype (N)) then
3469 declare
3470 Rint : constant Uint := Expr_Value (Right);
3471 Result : Uint;
3473 begin
3474 -- In the case of modular unary plus and abs there is no need
3475 -- to adjust the result of the operation since if the original
3476 -- operand was in bounds the result will be in the bounds of the
3477 -- modular type. However, in the case of modular unary minus the
3478 -- result may go out of the bounds of the modular type and needs
3479 -- adjustment.
3481 if Nkind (N) = N_Op_Plus then
3482 Result := Rint;
3484 elsif Nkind (N) = N_Op_Minus then
3485 if Is_Modular_Integer_Type (Etype (N)) then
3486 Result := (-Rint) mod Modulus (Etype (N));
3487 else
3488 Result := (-Rint);
3489 end if;
3491 else
3492 pragma Assert (Nkind (N) = N_Op_Abs);
3493 Result := abs Rint;
3494 end if;
3496 Fold_Uint (N, Result, Stat);
3497 end;
3499 -- Fold for real case
3501 elsif Is_Real_Type (Etype (N)) then
3502 declare
3503 Rreal : constant Ureal := Expr_Value_R (Right);
3504 Result : Ureal;
3506 begin
3507 if Nkind (N) = N_Op_Plus then
3508 Result := Rreal;
3510 elsif Nkind (N) = N_Op_Minus then
3511 Result := UR_Negate (Rreal);
3513 else
3514 pragma Assert (Nkind (N) = N_Op_Abs);
3515 Result := abs Rreal;
3516 end if;
3518 Fold_Ureal (N, Result, Stat);
3519 end;
3520 end if;
3522 -- If the operator was resolved to a specific type, make sure that type
3523 -- is frozen even if the expression is folded into a literal (which has
3524 -- a universal type).
3526 if Present (Otype) then
3527 Freeze_Before (N, Otype);
3528 end if;
3529 end Eval_Unary_Op;
3531 -------------------------------
3532 -- Eval_Unchecked_Conversion --
3533 -------------------------------
3535 -- Unchecked conversions can never be static, so the only required
3536 -- processing is to check for a non-static context for the operand.
3538 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3539 begin
3540 Check_Non_Static_Context (Expression (N));
3541 end Eval_Unchecked_Conversion;
3543 --------------------
3544 -- Expr_Rep_Value --
3545 --------------------
3547 function Expr_Rep_Value (N : Node_Id) return Uint is
3548 Kind : constant Node_Kind := Nkind (N);
3549 Ent : Entity_Id;
3551 begin
3552 if Is_Entity_Name (N) then
3553 Ent := Entity (N);
3555 -- An enumeration literal that was either in the source or created
3556 -- as a result of static evaluation.
3558 if Ekind (Ent) = E_Enumeration_Literal then
3559 return Enumeration_Rep (Ent);
3561 -- A user defined static constant
3563 else
3564 pragma Assert (Ekind (Ent) = E_Constant);
3565 return Expr_Rep_Value (Constant_Value (Ent));
3566 end if;
3568 -- An integer literal that was either in the source or created as a
3569 -- result of static evaluation.
3571 elsif Kind = N_Integer_Literal then
3572 return Intval (N);
3574 -- A real literal for a fixed-point type. This must be the fixed-point
3575 -- case, either the literal is of a fixed-point type, or it is a bound
3576 -- of a fixed-point type, with type universal real. In either case we
3577 -- obtain the desired value from Corresponding_Integer_Value.
3579 elsif Kind = N_Real_Literal then
3580 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3581 return Corresponding_Integer_Value (N);
3583 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3585 elsif Kind = N_Attribute_Reference
3586 and then Attribute_Name (N) = Name_Null_Parameter
3587 then
3588 return Uint_0;
3590 -- Otherwise must be character literal
3592 else
3593 pragma Assert (Kind = N_Character_Literal);
3594 Ent := Entity (N);
3596 -- Since Character literals of type Standard.Character don't have any
3597 -- defining character literals built for them, they do not have their
3598 -- Entity set, so just use their Char code. Otherwise for user-
3599 -- defined character literals use their Pos value as usual which is
3600 -- the same as the Rep value.
3602 if No (Ent) then
3603 return Char_Literal_Value (N);
3604 else
3605 return Enumeration_Rep (Ent);
3606 end if;
3607 end if;
3608 end Expr_Rep_Value;
3610 ----------------
3611 -- Expr_Value --
3612 ----------------
3614 function Expr_Value (N : Node_Id) return Uint is
3615 Kind : constant Node_Kind := Nkind (N);
3616 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3617 Ent : Entity_Id;
3618 Val : Uint;
3620 begin
3621 -- If already in cache, then we know it's compile time known and we can
3622 -- return the value that was previously stored in the cache since
3623 -- compile time known values cannot change.
3625 if CV_Ent.N = N then
3626 return CV_Ent.V;
3627 end if;
3629 -- Otherwise proceed to test value
3631 if Is_Entity_Name (N) then
3632 Ent := Entity (N);
3634 -- An enumeration literal that was either in the source or created as
3635 -- a result of static evaluation.
3637 if Ekind (Ent) = E_Enumeration_Literal then
3638 Val := Enumeration_Pos (Ent);
3640 -- A user defined static constant
3642 else
3643 pragma Assert (Ekind (Ent) = E_Constant);
3644 Val := Expr_Value (Constant_Value (Ent));
3645 end if;
3647 -- An integer literal that was either in the source or created as a
3648 -- result of static evaluation.
3650 elsif Kind = N_Integer_Literal then
3651 Val := Intval (N);
3653 -- A real literal for a fixed-point type. This must be the fixed-point
3654 -- case, either the literal is of a fixed-point type, or it is a bound
3655 -- of a fixed-point type, with type universal real. In either case we
3656 -- obtain the desired value from Corresponding_Integer_Value.
3658 elsif Kind = N_Real_Literal then
3660 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3661 Val := Corresponding_Integer_Value (N);
3663 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3665 elsif Kind = N_Attribute_Reference
3666 and then Attribute_Name (N) = Name_Null_Parameter
3667 then
3668 Val := Uint_0;
3670 -- Otherwise must be character literal
3672 else
3673 pragma Assert (Kind = N_Character_Literal);
3674 Ent := Entity (N);
3676 -- Since Character literals of type Standard.Character don't
3677 -- have any defining character literals built for them, they
3678 -- do not have their Entity set, so just use their Char
3679 -- code. Otherwise for user-defined character literals use
3680 -- their Pos value as usual.
3682 if No (Ent) then
3683 Val := Char_Literal_Value (N);
3684 else
3685 Val := Enumeration_Pos (Ent);
3686 end if;
3687 end if;
3689 -- Come here with Val set to value to be returned, set cache
3691 CV_Ent.N := N;
3692 CV_Ent.V := Val;
3693 return Val;
3694 end Expr_Value;
3696 ------------------
3697 -- Expr_Value_E --
3698 ------------------
3700 function Expr_Value_E (N : Node_Id) return Entity_Id is
3701 Ent : constant Entity_Id := Entity (N);
3703 begin
3704 if Ekind (Ent) = E_Enumeration_Literal then
3705 return Ent;
3706 else
3707 pragma Assert (Ekind (Ent) = E_Constant);
3708 return Expr_Value_E (Constant_Value (Ent));
3709 end if;
3710 end Expr_Value_E;
3712 ------------------
3713 -- Expr_Value_R --
3714 ------------------
3716 function Expr_Value_R (N : Node_Id) return Ureal is
3717 Kind : constant Node_Kind := Nkind (N);
3718 Ent : Entity_Id;
3719 Expr : Node_Id;
3721 begin
3722 if Kind = N_Real_Literal then
3723 return Realval (N);
3725 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3726 Ent := Entity (N);
3727 pragma Assert (Ekind (Ent) = E_Constant);
3728 return Expr_Value_R (Constant_Value (Ent));
3730 elsif Kind = N_Integer_Literal then
3731 return UR_From_Uint (Expr_Value (N));
3733 -- Strange case of VAX literals, which are at this stage transformed
3734 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3735 -- Exp_Vfpt for further details.
3737 elsif Vax_Float (Etype (N))
3738 and then Nkind (N) = N_Unchecked_Type_Conversion
3739 then
3740 Expr := Expression (N);
3742 if Nkind (Expr) = N_Function_Call
3743 and then Present (Parameter_Associations (Expr))
3744 then
3745 Expr := First (Parameter_Associations (Expr));
3747 if Nkind (Expr) = N_Real_Literal then
3748 return Realval (Expr);
3749 end if;
3750 end if;
3752 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3754 elsif Kind = N_Attribute_Reference
3755 and then Attribute_Name (N) = Name_Null_Parameter
3756 then
3757 return Ureal_0;
3758 end if;
3760 -- If we fall through, we have a node that cannot be interpreted as a
3761 -- compile time constant. That is definitely an error.
3763 raise Program_Error;
3764 end Expr_Value_R;
3766 ------------------
3767 -- Expr_Value_S --
3768 ------------------
3770 function Expr_Value_S (N : Node_Id) return Node_Id is
3771 begin
3772 if Nkind (N) = N_String_Literal then
3773 return N;
3774 else
3775 pragma Assert (Ekind (Entity (N)) = E_Constant);
3776 return Expr_Value_S (Constant_Value (Entity (N)));
3777 end if;
3778 end Expr_Value_S;
3780 ----------------------------------
3781 -- Find_Universal_Operator_Type --
3782 ----------------------------------
3784 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3785 PN : constant Node_Id := Parent (N);
3786 Call : constant Node_Id := Original_Node (N);
3787 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3789 Is_Fix : constant Boolean :=
3790 Nkind (N) in N_Binary_Op
3791 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3792 -- A mixed-mode operation in this context indicates the presence of
3793 -- fixed-point type in the designated package.
3795 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3796 -- Case where N is a relational (or membership) operator (else it is an
3797 -- arithmetic one).
3799 In_Membership : constant Boolean :=
3800 Nkind (PN) in N_Membership_Test
3801 and then
3802 Nkind (Right_Opnd (PN)) = N_Range
3803 and then
3804 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3805 and then
3806 Is_Universal_Numeric_Type
3807 (Etype (Low_Bound (Right_Opnd (PN))))
3808 and then
3809 Is_Universal_Numeric_Type
3810 (Etype (High_Bound (Right_Opnd (PN))));
3811 -- Case where N is part of a membership test with a universal range
3813 E : Entity_Id;
3814 Pack : Entity_Id;
3815 Typ1 : Entity_Id := Empty;
3816 Priv_E : Entity_Id;
3818 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
3819 -- Check whether one operand is a mixed-mode operation that requires the
3820 -- presence of a fixed-point type. Given that all operands are universal
3821 -- and have been constant-folded, retrieve the original function call.
3823 ---------------------------
3824 -- Is_Mixed_Mode_Operand --
3825 ---------------------------
3827 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
3828 Onod : constant Node_Id := Original_Node (Op);
3829 begin
3830 return Nkind (Onod) = N_Function_Call
3831 and then Present (Next_Actual (First_Actual (Onod)))
3832 and then Etype (First_Actual (Onod)) /=
3833 Etype (Next_Actual (First_Actual (Onod)));
3834 end Is_Mixed_Mode_Operand;
3836 -- Start of processing for Find_Universal_Operator_Type
3838 begin
3839 if Nkind (Call) /= N_Function_Call
3840 or else Nkind (Name (Call)) /= N_Expanded_Name
3841 then
3842 return Empty;
3844 -- There are several cases where the context does not imply the type of
3845 -- the operands:
3846 -- - the universal expression appears in a type conversion;
3847 -- - the expression is a relational operator applied to universal
3848 -- operands;
3849 -- - the expression is a membership test with a universal operand
3850 -- and a range with universal bounds.
3852 elsif Nkind (Parent (N)) = N_Type_Conversion
3853 or else Is_Relational
3854 or else In_Membership
3855 then
3856 Pack := Entity (Prefix (Name (Call)));
3858 -- If the prefix is a package declared elsewhere, iterate over its
3859 -- visible entities, otherwise iterate over all declarations in the
3860 -- designated scope.
3862 if Ekind (Pack) = E_Package
3863 and then not In_Open_Scopes (Pack)
3864 then
3865 Priv_E := First_Private_Entity (Pack);
3866 else
3867 Priv_E := Empty;
3868 end if;
3870 Typ1 := Empty;
3871 E := First_Entity (Pack);
3872 while Present (E) and then E /= Priv_E loop
3873 if Is_Numeric_Type (E)
3874 and then Nkind (Parent (E)) /= N_Subtype_Declaration
3875 and then Comes_From_Source (E)
3876 and then Is_Integer_Type (E) = Is_Int
3877 and then
3878 (Nkind (N) in N_Unary_Op
3879 or else Is_Relational
3880 or else Is_Fixed_Point_Type (E) = Is_Fix)
3881 then
3882 if No (Typ1) then
3883 Typ1 := E;
3885 -- Before emitting an error, check for the presence of a
3886 -- mixed-mode operation that specifies a fixed point type.
3888 elsif Is_Relational
3889 and then
3890 (Is_Mixed_Mode_Operand (Left_Opnd (N))
3891 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
3892 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
3894 then
3895 if Is_Fixed_Point_Type (E) then
3896 Typ1 := E;
3897 end if;
3899 else
3900 -- More than one type of the proper class declared in P
3902 Error_Msg_N ("ambiguous operation", N);
3903 Error_Msg_Sloc := Sloc (Typ1);
3904 Error_Msg_N ("\possible interpretation (inherited)#", N);
3905 Error_Msg_Sloc := Sloc (E);
3906 Error_Msg_N ("\possible interpretation (inherited)#", N);
3907 return Empty;
3908 end if;
3909 end if;
3911 Next_Entity (E);
3912 end loop;
3913 end if;
3915 return Typ1;
3916 end Find_Universal_Operator_Type;
3918 --------------------------
3919 -- Flag_Non_Static_Expr --
3920 --------------------------
3922 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3923 begin
3924 if Error_Posted (Expr) and then not All_Errors_Mode then
3925 return;
3926 else
3927 Error_Msg_F (Msg, Expr);
3928 Why_Not_Static (Expr);
3929 end if;
3930 end Flag_Non_Static_Expr;
3932 --------------
3933 -- Fold_Str --
3934 --------------
3936 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
3937 Loc : constant Source_Ptr := Sloc (N);
3938 Typ : constant Entity_Id := Etype (N);
3940 begin
3941 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
3943 -- We now have the literal with the right value, both the actual type
3944 -- and the expected type of this literal are taken from the expression
3945 -- that was evaluated.
3947 Analyze (N);
3948 Set_Is_Static_Expression (N, Static);
3949 Set_Etype (N, Typ);
3950 Resolve (N);
3951 end Fold_Str;
3953 ---------------
3954 -- Fold_Uint --
3955 ---------------
3957 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
3958 Loc : constant Source_Ptr := Sloc (N);
3959 Typ : Entity_Id := Etype (N);
3960 Ent : Entity_Id;
3962 begin
3963 -- If we are folding a named number, retain the entity in the literal,
3964 -- for ASIS use.
3966 if Is_Entity_Name (N)
3967 and then Ekind (Entity (N)) = E_Named_Integer
3968 then
3969 Ent := Entity (N);
3970 else
3971 Ent := Empty;
3972 end if;
3974 if Is_Private_Type (Typ) then
3975 Typ := Full_View (Typ);
3976 end if;
3978 -- For a result of type integer, substitute an N_Integer_Literal node
3979 -- for the result of the compile time evaluation of the expression.
3980 -- For ASIS use, set a link to the original named number when not in
3981 -- a generic context.
3983 if Is_Integer_Type (Typ) then
3984 Rewrite (N, Make_Integer_Literal (Loc, Val));
3986 Set_Original_Entity (N, Ent);
3988 -- Otherwise we have an enumeration type, and we substitute either
3989 -- an N_Identifier or N_Character_Literal to represent the enumeration
3990 -- literal corresponding to the given value, which must always be in
3991 -- range, because appropriate tests have already been made for this.
3993 else pragma Assert (Is_Enumeration_Type (Typ));
3994 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3995 end if;
3997 -- We now have the literal with the right value, both the actual type
3998 -- and the expected type of this literal are taken from the expression
3999 -- that was evaluated.
4001 Analyze (N);
4002 Set_Is_Static_Expression (N, Static);
4003 Set_Etype (N, Typ);
4004 Resolve (N);
4005 end Fold_Uint;
4007 ----------------
4008 -- Fold_Ureal --
4009 ----------------
4011 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4012 Loc : constant Source_Ptr := Sloc (N);
4013 Typ : constant Entity_Id := Etype (N);
4014 Ent : Entity_Id;
4016 begin
4017 -- If we are folding a named number, retain the entity in the literal,
4018 -- for ASIS use.
4020 if Is_Entity_Name (N)
4021 and then Ekind (Entity (N)) = E_Named_Real
4022 then
4023 Ent := Entity (N);
4024 else
4025 Ent := Empty;
4026 end if;
4028 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4030 -- Set link to original named number, for ASIS use
4032 Set_Original_Entity (N, Ent);
4034 -- Both the actual and expected type comes from the original expression
4036 Analyze (N);
4037 Set_Is_Static_Expression (N, Static);
4038 Set_Etype (N, Typ);
4039 Resolve (N);
4040 end Fold_Ureal;
4042 ---------------
4043 -- From_Bits --
4044 ---------------
4046 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4047 V : Uint := Uint_0;
4049 begin
4050 for J in 0 .. B'Last loop
4051 if B (J) then
4052 V := V + 2 ** J;
4053 end if;
4054 end loop;
4056 if Non_Binary_Modulus (T) then
4057 V := V mod Modulus (T);
4058 end if;
4060 return V;
4061 end From_Bits;
4063 --------------------
4064 -- Get_String_Val --
4065 --------------------
4067 function Get_String_Val (N : Node_Id) return Node_Id is
4068 begin
4069 if Nkind (N) = N_String_Literal then
4070 return N;
4072 elsif Nkind (N) = N_Character_Literal then
4073 return N;
4075 else
4076 pragma Assert (Is_Entity_Name (N));
4077 return Get_String_Val (Constant_Value (Entity (N)));
4078 end if;
4079 end Get_String_Val;
4081 ----------------
4082 -- Initialize --
4083 ----------------
4085 procedure Initialize is
4086 begin
4087 CV_Cache := (others => (Node_High_Bound, Uint_0));
4088 end Initialize;
4090 --------------------
4091 -- In_Subrange_Of --
4092 --------------------
4094 function In_Subrange_Of
4095 (T1 : Entity_Id;
4096 T2 : Entity_Id;
4097 Fixed_Int : Boolean := False) return Boolean
4099 L1 : Node_Id;
4100 H1 : Node_Id;
4102 L2 : Node_Id;
4103 H2 : Node_Id;
4105 begin
4106 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4107 return True;
4109 -- Never in range if both types are not scalar. Don't know if this can
4110 -- actually happen, but just in case.
4112 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
4113 return False;
4115 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4116 -- definitely not compatible with T2.
4118 elsif Is_Floating_Point_Type (T1)
4119 and then Has_Infinities (T1)
4120 and then Is_Floating_Point_Type (T2)
4121 and then not Has_Infinities (T2)
4122 then
4123 return False;
4125 else
4126 L1 := Type_Low_Bound (T1);
4127 H1 := Type_High_Bound (T1);
4129 L2 := Type_Low_Bound (T2);
4130 H2 := Type_High_Bound (T2);
4132 -- Check bounds to see if comparison possible at compile time
4134 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4135 and then
4136 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4137 then
4138 return True;
4139 end if;
4141 -- If bounds not comparable at compile time, then the bounds of T2
4142 -- must be compile time known or we cannot answer the query.
4144 if not Compile_Time_Known_Value (L2)
4145 or else not Compile_Time_Known_Value (H2)
4146 then
4147 return False;
4148 end if;
4150 -- If the bounds of T1 are know at compile time then use these
4151 -- ones, otherwise use the bounds of the base type (which are of
4152 -- course always static).
4154 if not Compile_Time_Known_Value (L1) then
4155 L1 := Type_Low_Bound (Base_Type (T1));
4156 end if;
4158 if not Compile_Time_Known_Value (H1) then
4159 H1 := Type_High_Bound (Base_Type (T1));
4160 end if;
4162 -- Fixed point types should be considered as such only if
4163 -- flag Fixed_Int is set to False.
4165 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4166 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4167 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4168 then
4169 return
4170 Expr_Value_R (L2) <= Expr_Value_R (L1)
4171 and then
4172 Expr_Value_R (H2) >= Expr_Value_R (H1);
4174 else
4175 return
4176 Expr_Value (L2) <= Expr_Value (L1)
4177 and then
4178 Expr_Value (H2) >= Expr_Value (H1);
4180 end if;
4181 end if;
4183 -- If any exception occurs, it means that we have some bug in the compiler
4184 -- possibly triggered by a previous error, or by some unforeseen peculiar
4185 -- occurrence. However, this is only an optimization attempt, so there is
4186 -- really no point in crashing the compiler. Instead we just decide, too
4187 -- bad, we can't figure out the answer in this case after all.
4189 exception
4190 when others =>
4192 -- Debug flag K disables this behavior (useful for debugging)
4194 if Debug_Flag_K then
4195 raise;
4196 else
4197 return False;
4198 end if;
4199 end In_Subrange_Of;
4201 -----------------
4202 -- Is_In_Range --
4203 -----------------
4205 function Is_In_Range
4206 (N : Node_Id;
4207 Typ : Entity_Id;
4208 Assume_Valid : Boolean := False;
4209 Fixed_Int : Boolean := False;
4210 Int_Real : Boolean := False) return Boolean
4212 begin
4213 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4214 = In_Range;
4215 end Is_In_Range;
4217 -------------------
4218 -- Is_Null_Range --
4219 -------------------
4221 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4222 Typ : constant Entity_Id := Etype (Lo);
4224 begin
4225 if not Compile_Time_Known_Value (Lo)
4226 or else not Compile_Time_Known_Value (Hi)
4227 then
4228 return False;
4229 end if;
4231 if Is_Discrete_Type (Typ) then
4232 return Expr_Value (Lo) > Expr_Value (Hi);
4234 else
4235 pragma Assert (Is_Real_Type (Typ));
4236 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4237 end if;
4238 end Is_Null_Range;
4240 -----------------------------
4241 -- Is_OK_Static_Expression --
4242 -----------------------------
4244 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4245 begin
4246 return Is_Static_Expression (N)
4247 and then not Raises_Constraint_Error (N);
4248 end Is_OK_Static_Expression;
4250 ------------------------
4251 -- Is_OK_Static_Range --
4252 ------------------------
4254 -- A static range is a range whose bounds are static expressions, or a
4255 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4256 -- We have already converted range attribute references, so we get the
4257 -- "or" part of this rule without needing a special test.
4259 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4260 begin
4261 return Is_OK_Static_Expression (Low_Bound (N))
4262 and then Is_OK_Static_Expression (High_Bound (N));
4263 end Is_OK_Static_Range;
4265 --------------------------
4266 -- Is_OK_Static_Subtype --
4267 --------------------------
4269 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4270 -- neither bound raises constraint error when evaluated.
4272 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4273 Base_T : constant Entity_Id := Base_Type (Typ);
4274 Anc_Subt : Entity_Id;
4276 begin
4277 -- First a quick check on the non static subtype flag. As described
4278 -- in further detail in Einfo, this flag is not decisive in all cases,
4279 -- but if it is set, then the subtype is definitely non-static.
4281 if Is_Non_Static_Subtype (Typ) then
4282 return False;
4283 end if;
4285 Anc_Subt := Ancestor_Subtype (Typ);
4287 if Anc_Subt = Empty then
4288 Anc_Subt := Base_T;
4289 end if;
4291 if Is_Generic_Type (Root_Type (Base_T))
4292 or else Is_Generic_Actual_Type (Base_T)
4293 then
4294 return False;
4296 -- String types
4298 elsif Is_String_Type (Typ) then
4299 return
4300 Ekind (Typ) = E_String_Literal_Subtype
4301 or else
4302 (Is_OK_Static_Subtype (Component_Type (Typ))
4303 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4305 -- Scalar types
4307 elsif Is_Scalar_Type (Typ) then
4308 if Base_T = Typ then
4309 return True;
4311 else
4312 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4313 -- Get_Type_{Low,High}_Bound.
4315 return Is_OK_Static_Subtype (Anc_Subt)
4316 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4317 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4318 end if;
4320 -- Types other than string and scalar types are never static
4322 else
4323 return False;
4324 end if;
4325 end Is_OK_Static_Subtype;
4327 ---------------------
4328 -- Is_Out_Of_Range --
4329 ---------------------
4331 function Is_Out_Of_Range
4332 (N : Node_Id;
4333 Typ : Entity_Id;
4334 Assume_Valid : Boolean := False;
4335 Fixed_Int : Boolean := False;
4336 Int_Real : Boolean := False) return Boolean
4338 begin
4339 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4340 = Out_Of_Range;
4341 end Is_Out_Of_Range;
4343 ---------------------
4344 -- Is_Static_Range --
4345 ---------------------
4347 -- A static range is a range whose bounds are static expressions, or a
4348 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4349 -- We have already converted range attribute references, so we get the
4350 -- "or" part of this rule without needing a special test.
4352 function Is_Static_Range (N : Node_Id) return Boolean is
4353 begin
4354 return Is_Static_Expression (Low_Bound (N))
4355 and then Is_Static_Expression (High_Bound (N));
4356 end Is_Static_Range;
4358 -----------------------
4359 -- Is_Static_Subtype --
4360 -----------------------
4362 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4364 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4365 Base_T : constant Entity_Id := Base_Type (Typ);
4366 Anc_Subt : Entity_Id;
4368 begin
4369 -- First a quick check on the non static subtype flag. As described
4370 -- in further detail in Einfo, this flag is not decisive in all cases,
4371 -- but if it is set, then the subtype is definitely non-static.
4373 if Is_Non_Static_Subtype (Typ) then
4374 return False;
4375 end if;
4377 Anc_Subt := Ancestor_Subtype (Typ);
4379 if Anc_Subt = Empty then
4380 Anc_Subt := Base_T;
4381 end if;
4383 if Is_Generic_Type (Root_Type (Base_T))
4384 or else Is_Generic_Actual_Type (Base_T)
4385 then
4386 return False;
4388 -- String types
4390 elsif Is_String_Type (Typ) then
4391 return
4392 Ekind (Typ) = E_String_Literal_Subtype
4393 or else
4394 (Is_Static_Subtype (Component_Type (Typ))
4395 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4397 -- Scalar types
4399 elsif Is_Scalar_Type (Typ) then
4400 if Base_T = Typ then
4401 return True;
4403 else
4404 return Is_Static_Subtype (Anc_Subt)
4405 and then Is_Static_Expression (Type_Low_Bound (Typ))
4406 and then Is_Static_Expression (Type_High_Bound (Typ));
4407 end if;
4409 -- Types other than string and scalar types are never static
4411 else
4412 return False;
4413 end if;
4414 end Is_Static_Subtype;
4416 --------------------
4417 -- Not_Null_Range --
4418 --------------------
4420 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4421 Typ : constant Entity_Id := Etype (Lo);
4423 begin
4424 if not Compile_Time_Known_Value (Lo)
4425 or else not Compile_Time_Known_Value (Hi)
4426 then
4427 return False;
4428 end if;
4430 if Is_Discrete_Type (Typ) then
4431 return Expr_Value (Lo) <= Expr_Value (Hi);
4433 else
4434 pragma Assert (Is_Real_Type (Typ));
4436 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4437 end if;
4438 end Not_Null_Range;
4440 -------------
4441 -- OK_Bits --
4442 -------------
4444 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4445 begin
4446 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4448 if Bits < 500_000 then
4449 return True;
4451 else
4452 Error_Msg_N ("static value too large, capacity exceeded", N);
4453 return False;
4454 end if;
4455 end OK_Bits;
4457 ------------------
4458 -- Out_Of_Range --
4459 ------------------
4461 procedure Out_Of_Range (N : Node_Id) is
4462 begin
4463 -- If we have the static expression case, then this is an illegality
4464 -- in Ada 95 mode, except that in an instance, we never generate an
4465 -- error (if the error is legitimate, it was already diagnosed in the
4466 -- template). The expression to compute the length of a packed array is
4467 -- attached to the array type itself, and deserves a separate message.
4469 if Is_Static_Expression (N)
4470 and then not In_Instance
4471 and then not In_Inlined_Body
4472 and then Ada_Version >= Ada_95
4473 then
4474 if Nkind (Parent (N)) = N_Defining_Identifier
4475 and then Is_Array_Type (Parent (N))
4476 and then Present (Packed_Array_Type (Parent (N)))
4477 and then Present (First_Rep_Item (Parent (N)))
4478 then
4479 Error_Msg_N
4480 ("length of packed array must not exceed Integer''Last",
4481 First_Rep_Item (Parent (N)));
4482 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4484 else
4485 Apply_Compile_Time_Constraint_Error
4486 (N, "value not in range of}", CE_Range_Check_Failed);
4487 end if;
4489 -- Here we generate a warning for the Ada 83 case, or when we are in an
4490 -- instance, or when we have a non-static expression case.
4492 else
4493 Apply_Compile_Time_Constraint_Error
4494 (N, "value not in range of}?", CE_Range_Check_Failed);
4495 end if;
4496 end Out_Of_Range;
4498 -------------------------
4499 -- Rewrite_In_Raise_CE --
4500 -------------------------
4502 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4503 Typ : constant Entity_Id := Etype (N);
4505 begin
4506 -- If we want to raise CE in the condition of a N_Raise_CE node
4507 -- we may as well get rid of the condition.
4509 if Present (Parent (N))
4510 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4511 then
4512 Set_Condition (Parent (N), Empty);
4514 -- If the expression raising CE is a N_Raise_CE node, we can use that
4515 -- one. We just preserve the type of the context.
4517 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4518 Rewrite (N, Exp);
4519 Set_Etype (N, Typ);
4521 -- Else build an explcit N_Raise_CE
4523 else
4524 Rewrite (N,
4525 Make_Raise_Constraint_Error (Sloc (Exp),
4526 Reason => CE_Range_Check_Failed));
4527 Set_Raises_Constraint_Error (N);
4528 Set_Etype (N, Typ);
4529 end if;
4530 end Rewrite_In_Raise_CE;
4532 ---------------------
4533 -- String_Type_Len --
4534 ---------------------
4536 function String_Type_Len (Stype : Entity_Id) return Uint is
4537 NT : constant Entity_Id := Etype (First_Index (Stype));
4538 T : Entity_Id;
4540 begin
4541 if Is_OK_Static_Subtype (NT) then
4542 T := NT;
4543 else
4544 T := Base_Type (NT);
4545 end if;
4547 return Expr_Value (Type_High_Bound (T)) -
4548 Expr_Value (Type_Low_Bound (T)) + 1;
4549 end String_Type_Len;
4551 ------------------------------------
4552 -- Subtypes_Statically_Compatible --
4553 ------------------------------------
4555 function Subtypes_Statically_Compatible
4556 (T1 : Entity_Id;
4557 T2 : Entity_Id) return Boolean
4559 begin
4560 -- Scalar types
4562 if Is_Scalar_Type (T1) then
4564 -- Definitely compatible if we match
4566 if Subtypes_Statically_Match (T1, T2) then
4567 return True;
4569 -- If either subtype is nonstatic then they're not compatible
4571 elsif not Is_Static_Subtype (T1)
4572 or else not Is_Static_Subtype (T2)
4573 then
4574 return False;
4576 -- If either type has constraint error bounds, then consider that
4577 -- they match to avoid junk cascaded errors here.
4579 elsif not Is_OK_Static_Subtype (T1)
4580 or else not Is_OK_Static_Subtype (T2)
4581 then
4582 return True;
4584 -- Base types must match, but we don't check that (should we???) but
4585 -- we do at least check that both types are real, or both types are
4586 -- not real.
4588 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
4589 return False;
4591 -- Here we check the bounds
4593 else
4594 declare
4595 LB1 : constant Node_Id := Type_Low_Bound (T1);
4596 HB1 : constant Node_Id := Type_High_Bound (T1);
4597 LB2 : constant Node_Id := Type_Low_Bound (T2);
4598 HB2 : constant Node_Id := Type_High_Bound (T2);
4600 begin
4601 if Is_Real_Type (T1) then
4602 return
4603 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4604 or else
4605 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4606 and then
4607 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4609 else
4610 return
4611 (Expr_Value (LB1) > Expr_Value (HB1))
4612 or else
4613 (Expr_Value (LB2) <= Expr_Value (LB1)
4614 and then
4615 Expr_Value (HB1) <= Expr_Value (HB2));
4616 end if;
4617 end;
4618 end if;
4620 -- Access types
4622 elsif Is_Access_Type (T1) then
4623 return (not Is_Constrained (T2)
4624 or else (Subtypes_Statically_Match
4625 (Designated_Type (T1), Designated_Type (T2))))
4626 and then not (Can_Never_Be_Null (T2)
4627 and then not Can_Never_Be_Null (T1));
4629 -- All other cases
4631 else
4632 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4633 or else Subtypes_Statically_Match (T1, T2);
4634 end if;
4635 end Subtypes_Statically_Compatible;
4637 -------------------------------
4638 -- Subtypes_Statically_Match --
4639 -------------------------------
4641 -- Subtypes statically match if they have statically matching constraints
4642 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4643 -- they are the same identical constraint, or if they are static and the
4644 -- values match (RM 4.9.1(1)).
4646 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4647 begin
4648 -- A type always statically matches itself
4650 if T1 = T2 then
4651 return True;
4653 -- Scalar types
4655 elsif Is_Scalar_Type (T1) then
4657 -- Base types must be the same
4659 if Base_Type (T1) /= Base_Type (T2) then
4660 return False;
4661 end if;
4663 -- A constrained numeric subtype never matches an unconstrained
4664 -- subtype, i.e. both types must be constrained or unconstrained.
4666 -- To understand the requirement for this test, see RM 4.9.1(1).
4667 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4668 -- a constrained subtype with constraint bounds matching the bounds
4669 -- of its corresponding unconstrained base type. In this situation,
4670 -- Integer and Integer'Base do not statically match, even though
4671 -- they have the same bounds.
4673 -- We only apply this test to types in Standard and types that appear
4674 -- in user programs. That way, we do not have to be too careful about
4675 -- setting Is_Constrained right for Itypes.
4677 if Is_Numeric_Type (T1)
4678 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4679 and then (Scope (T1) = Standard_Standard
4680 or else Comes_From_Source (T1))
4681 and then (Scope (T2) = Standard_Standard
4682 or else Comes_From_Source (T2))
4683 then
4684 return False;
4686 -- A generic scalar type does not statically match its base type
4687 -- (AI-311). In this case we make sure that the formals, which are
4688 -- first subtypes of their bases, are constrained.
4690 elsif Is_Generic_Type (T1)
4691 and then Is_Generic_Type (T2)
4692 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4693 then
4694 return False;
4695 end if;
4697 -- If there was an error in either range, then just assume the types
4698 -- statically match to avoid further junk errors.
4700 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4701 or else Error_Posted (Scalar_Range (T1))
4702 or else Error_Posted (Scalar_Range (T2))
4703 then
4704 return True;
4705 end if;
4707 -- Otherwise both types have bound that can be compared
4709 declare
4710 LB1 : constant Node_Id := Type_Low_Bound (T1);
4711 HB1 : constant Node_Id := Type_High_Bound (T1);
4712 LB2 : constant Node_Id := Type_Low_Bound (T2);
4713 HB2 : constant Node_Id := Type_High_Bound (T2);
4715 begin
4716 -- If the bounds are the same tree node, then match
4718 if LB1 = LB2 and then HB1 = HB2 then
4719 return True;
4721 -- Otherwise bounds must be static and identical value
4723 else
4724 if not Is_Static_Subtype (T1)
4725 or else not Is_Static_Subtype (T2)
4726 then
4727 return False;
4729 -- If either type has constraint error bounds, then say that
4730 -- they match to avoid junk cascaded errors here.
4732 elsif not Is_OK_Static_Subtype (T1)
4733 or else not Is_OK_Static_Subtype (T2)
4734 then
4735 return True;
4737 elsif Is_Real_Type (T1) then
4738 return
4739 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4740 and then
4741 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4743 else
4744 return
4745 Expr_Value (LB1) = Expr_Value (LB2)
4746 and then
4747 Expr_Value (HB1) = Expr_Value (HB2);
4748 end if;
4749 end if;
4750 end;
4752 -- Type with discriminants
4754 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
4756 -- Because of view exchanges in multiple instantiations, conformance
4757 -- checking might try to match a partial view of a type with no
4758 -- discriminants with a full view that has defaulted discriminants.
4759 -- In such a case, use the discriminant constraint of the full view,
4760 -- which must exist because we know that the two subtypes have the
4761 -- same base type.
4763 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
4764 if In_Instance then
4765 if Is_Private_Type (T2)
4766 and then Present (Full_View (T2))
4767 and then Has_Discriminants (Full_View (T2))
4768 then
4769 return Subtypes_Statically_Match (T1, Full_View (T2));
4771 elsif Is_Private_Type (T1)
4772 and then Present (Full_View (T1))
4773 and then Has_Discriminants (Full_View (T1))
4774 then
4775 return Subtypes_Statically_Match (Full_View (T1), T2);
4777 else
4778 return False;
4779 end if;
4780 else
4781 return False;
4782 end if;
4783 end if;
4785 declare
4786 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4787 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4789 DA1 : Elmt_Id;
4790 DA2 : Elmt_Id;
4792 begin
4793 if DL1 = DL2 then
4794 return True;
4795 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4796 return False;
4797 end if;
4799 -- Now loop through the discriminant constraints
4801 -- Note: the guard here seems necessary, since it is possible at
4802 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
4804 if Present (DL1) and then Present (DL2) then
4805 DA1 := First_Elmt (DL1);
4806 DA2 := First_Elmt (DL2);
4807 while Present (DA1) loop
4808 declare
4809 Expr1 : constant Node_Id := Node (DA1);
4810 Expr2 : constant Node_Id := Node (DA2);
4812 begin
4813 if not Is_Static_Expression (Expr1)
4814 or else not Is_Static_Expression (Expr2)
4815 then
4816 return False;
4818 -- If either expression raised a constraint error,
4819 -- consider the expressions as matching, since this
4820 -- helps to prevent cascading errors.
4822 elsif Raises_Constraint_Error (Expr1)
4823 or else Raises_Constraint_Error (Expr2)
4824 then
4825 null;
4827 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4828 return False;
4829 end if;
4830 end;
4832 Next_Elmt (DA1);
4833 Next_Elmt (DA2);
4834 end loop;
4835 end if;
4836 end;
4838 return True;
4840 -- A definite type does not match an indefinite or classwide type.
4841 -- However, a generic type with unknown discriminants may be
4842 -- instantiated with a type with no discriminants, and conformance
4843 -- checking on an inherited operation may compare the actual with the
4844 -- subtype that renames it in the instance.
4846 elsif
4847 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4848 then
4849 return
4850 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
4852 -- Array type
4854 elsif Is_Array_Type (T1) then
4856 -- If either subtype is unconstrained then both must be, and if both
4857 -- are unconstrained then no further checking is needed.
4859 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4860 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4861 end if;
4863 -- Both subtypes are constrained, so check that the index subtypes
4864 -- statically match.
4866 declare
4867 Index1 : Node_Id := First_Index (T1);
4868 Index2 : Node_Id := First_Index (T2);
4870 begin
4871 while Present (Index1) loop
4872 if not
4873 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4874 then
4875 return False;
4876 end if;
4878 Next_Index (Index1);
4879 Next_Index (Index2);
4880 end loop;
4882 return True;
4883 end;
4885 elsif Is_Access_Type (T1) then
4886 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4887 return False;
4889 elsif Ekind_In (T1, E_Access_Subprogram_Type,
4890 E_Anonymous_Access_Subprogram_Type)
4891 then
4892 return
4893 Subtype_Conformant
4894 (Designated_Type (T1),
4895 Designated_Type (T2));
4896 else
4897 return
4898 Subtypes_Statically_Match
4899 (Designated_Type (T1),
4900 Designated_Type (T2))
4901 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4902 end if;
4904 -- All other types definitely match
4906 else
4907 return True;
4908 end if;
4909 end Subtypes_Statically_Match;
4911 ----------
4912 -- Test --
4913 ----------
4915 function Test (Cond : Boolean) return Uint is
4916 begin
4917 if Cond then
4918 return Uint_1;
4919 else
4920 return Uint_0;
4921 end if;
4922 end Test;
4924 ---------------------------------
4925 -- Test_Expression_Is_Foldable --
4926 ---------------------------------
4928 -- One operand case
4930 procedure Test_Expression_Is_Foldable
4931 (N : Node_Id;
4932 Op1 : Node_Id;
4933 Stat : out Boolean;
4934 Fold : out Boolean)
4936 begin
4937 Stat := False;
4938 Fold := False;
4940 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4941 return;
4942 end if;
4944 -- If operand is Any_Type, just propagate to result and do not
4945 -- try to fold, this prevents cascaded errors.
4947 if Etype (Op1) = Any_Type then
4948 Set_Etype (N, Any_Type);
4949 return;
4951 -- If operand raises constraint error, then replace node N with the
4952 -- raise constraint error node, and we are obviously not foldable.
4953 -- Note that this replacement inherits the Is_Static_Expression flag
4954 -- from the operand.
4956 elsif Raises_Constraint_Error (Op1) then
4957 Rewrite_In_Raise_CE (N, Op1);
4958 return;
4960 -- If the operand is not static, then the result is not static, and
4961 -- all we have to do is to check the operand since it is now known
4962 -- to appear in a non-static context.
4964 elsif not Is_Static_Expression (Op1) then
4965 Check_Non_Static_Context (Op1);
4966 Fold := Compile_Time_Known_Value (Op1);
4967 return;
4969 -- An expression of a formal modular type is not foldable because
4970 -- the modulus is unknown.
4972 elsif Is_Modular_Integer_Type (Etype (Op1))
4973 and then Is_Generic_Type (Etype (Op1))
4974 then
4975 Check_Non_Static_Context (Op1);
4976 return;
4978 -- Here we have the case of an operand whose type is OK, which is
4979 -- static, and which does not raise constraint error, we can fold.
4981 else
4982 Set_Is_Static_Expression (N);
4983 Fold := True;
4984 Stat := True;
4985 end if;
4986 end Test_Expression_Is_Foldable;
4988 -- Two operand case
4990 procedure Test_Expression_Is_Foldable
4991 (N : Node_Id;
4992 Op1 : Node_Id;
4993 Op2 : Node_Id;
4994 Stat : out Boolean;
4995 Fold : out Boolean)
4997 Rstat : constant Boolean := Is_Static_Expression (Op1)
4998 and then Is_Static_Expression (Op2);
5000 begin
5001 Stat := False;
5002 Fold := False;
5004 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5005 return;
5006 end if;
5008 -- If either operand is Any_Type, just propagate to result and
5009 -- do not try to fold, this prevents cascaded errors.
5011 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5012 Set_Etype (N, Any_Type);
5013 return;
5015 -- If left operand raises constraint error, then replace node N with the
5016 -- Raise_Constraint_Error node, and we are obviously not foldable.
5017 -- Is_Static_Expression is set from the two operands in the normal way,
5018 -- and we check the right operand if it is in a non-static context.
5020 elsif Raises_Constraint_Error (Op1) then
5021 if not Rstat then
5022 Check_Non_Static_Context (Op2);
5023 end if;
5025 Rewrite_In_Raise_CE (N, Op1);
5026 Set_Is_Static_Expression (N, Rstat);
5027 return;
5029 -- Similar processing for the case of the right operand. Note that we
5030 -- don't use this routine for the short-circuit case, so we do not have
5031 -- to worry about that special case here.
5033 elsif Raises_Constraint_Error (Op2) then
5034 if not Rstat then
5035 Check_Non_Static_Context (Op1);
5036 end if;
5038 Rewrite_In_Raise_CE (N, Op2);
5039 Set_Is_Static_Expression (N, Rstat);
5040 return;
5042 -- Exclude expressions of a generic modular type, as above
5044 elsif Is_Modular_Integer_Type (Etype (Op1))
5045 and then Is_Generic_Type (Etype (Op1))
5046 then
5047 Check_Non_Static_Context (Op1);
5048 return;
5050 -- If result is not static, then check non-static contexts on operands
5051 -- since one of them may be static and the other one may not be static.
5053 elsif not Rstat then
5054 Check_Non_Static_Context (Op1);
5055 Check_Non_Static_Context (Op2);
5056 Fold := Compile_Time_Known_Value (Op1)
5057 and then Compile_Time_Known_Value (Op2);
5058 return;
5060 -- Else result is static and foldable. Both operands are static, and
5061 -- neither raises constraint error, so we can definitely fold.
5063 else
5064 Set_Is_Static_Expression (N);
5065 Fold := True;
5066 Stat := True;
5067 return;
5068 end if;
5069 end Test_Expression_Is_Foldable;
5071 -------------------
5072 -- Test_In_Range --
5073 -------------------
5075 function Test_In_Range
5076 (N : Node_Id;
5077 Typ : Entity_Id;
5078 Assume_Valid : Boolean;
5079 Fixed_Int : Boolean;
5080 Int_Real : Boolean) return Range_Membership
5082 Val : Uint;
5083 Valr : Ureal;
5085 pragma Warnings (Off, Assume_Valid);
5086 -- For now Assume_Valid is unreferenced since the current implementation
5087 -- always returns Unknown if N is not a compile time known value, but we
5088 -- keep the parameter to allow for future enhancements in which we try
5089 -- to get the information in the variable case as well.
5091 begin
5092 -- Universal types have no range limits, so always in range
5094 if Typ = Universal_Integer or else Typ = Universal_Real then
5095 return In_Range;
5097 -- Never known if not scalar type. Don't know if this can actually
5098 -- happen, but our spec allows it, so we must check!
5100 elsif not Is_Scalar_Type (Typ) then
5101 return Unknown;
5103 -- Never known if this is a generic type, since the bounds of generic
5104 -- types are junk. Note that if we only checked for static expressions
5105 -- (instead of compile time known values) below, we would not need this
5106 -- check, because values of a generic type can never be static, but they
5107 -- can be known at compile time.
5109 elsif Is_Generic_Type (Typ) then
5110 return Unknown;
5112 -- Never known unless we have a compile time known value
5114 elsif not Compile_Time_Known_Value (N) then
5115 return Unknown;
5117 -- General processing with a known compile time value
5119 else
5120 declare
5121 Lo : Node_Id;
5122 Hi : Node_Id;
5124 LB_Known : Boolean;
5125 HB_Known : Boolean;
5127 begin
5128 Lo := Type_Low_Bound (Typ);
5129 Hi := Type_High_Bound (Typ);
5131 LB_Known := Compile_Time_Known_Value (Lo);
5132 HB_Known := Compile_Time_Known_Value (Hi);
5134 -- Fixed point types should be considered as such only if flag
5135 -- Fixed_Int is set to False.
5137 if Is_Floating_Point_Type (Typ)
5138 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5139 or else Int_Real
5140 then
5141 Valr := Expr_Value_R (N);
5143 if LB_Known and HB_Known then
5144 if Valr >= Expr_Value_R (Lo)
5145 and then
5146 Valr <= Expr_Value_R (Hi)
5147 then
5148 return In_Range;
5149 else
5150 return Out_Of_Range;
5151 end if;
5153 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5154 or else
5155 (HB_Known and then Valr > Expr_Value_R (Hi))
5156 then
5157 return Out_Of_Range;
5159 else
5160 return Unknown;
5161 end if;
5163 else
5164 Val := Expr_Value (N);
5166 if LB_Known and HB_Known then
5167 if Val >= Expr_Value (Lo)
5168 and then
5169 Val <= Expr_Value (Hi)
5170 then
5171 return In_Range;
5172 else
5173 return Out_Of_Range;
5174 end if;
5176 elsif (LB_Known and then Val < Expr_Value (Lo))
5177 or else
5178 (HB_Known and then Val > Expr_Value (Hi))
5179 then
5180 return Out_Of_Range;
5182 else
5183 return Unknown;
5184 end if;
5185 end if;
5186 end;
5187 end if;
5188 end Test_In_Range;
5190 --------------
5191 -- To_Bits --
5192 --------------
5194 procedure To_Bits (U : Uint; B : out Bits) is
5195 begin
5196 for J in 0 .. B'Last loop
5197 B (J) := (U / (2 ** J)) mod 2 /= 0;
5198 end loop;
5199 end To_Bits;
5201 --------------------
5202 -- Why_Not_Static --
5203 --------------------
5205 procedure Why_Not_Static (Expr : Node_Id) is
5206 N : constant Node_Id := Original_Node (Expr);
5207 Typ : Entity_Id;
5208 E : Entity_Id;
5210 procedure Why_Not_Static_List (L : List_Id);
5211 -- A version that can be called on a list of expressions. Finds all
5212 -- non-static violations in any element of the list.
5214 -------------------------
5215 -- Why_Not_Static_List --
5216 -------------------------
5218 procedure Why_Not_Static_List (L : List_Id) is
5219 N : Node_Id;
5221 begin
5222 if Is_Non_Empty_List (L) then
5223 N := First (L);
5224 while Present (N) loop
5225 Why_Not_Static (N);
5226 Next (N);
5227 end loop;
5228 end if;
5229 end Why_Not_Static_List;
5231 -- Start of processing for Why_Not_Static
5233 begin
5234 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5235 -- this avoids massive updates to the ACATS base line.
5237 if Debug_Flag_2 then
5238 return;
5239 end if;
5241 -- Ignore call on error or empty node
5243 if No (Expr) or else Nkind (Expr) = N_Error then
5244 return;
5245 end if;
5247 -- Preprocessing for sub expressions
5249 if Nkind (Expr) in N_Subexpr then
5251 -- Nothing to do if expression is static
5253 if Is_OK_Static_Expression (Expr) then
5254 return;
5255 end if;
5257 -- Test for constraint error raised
5259 if Raises_Constraint_Error (Expr) then
5260 Error_Msg_N
5261 ("expression raises exception, cannot be static " &
5262 "(RM 4.9(34))!", N);
5263 return;
5264 end if;
5266 -- If no type, then something is pretty wrong, so ignore
5268 Typ := Etype (Expr);
5270 if No (Typ) then
5271 return;
5272 end if;
5274 -- Type must be scalar or string type
5276 if not Is_Scalar_Type (Typ)
5277 and then not Is_String_Type (Typ)
5278 then
5279 Error_Msg_N
5280 ("static expression must have scalar or string type " &
5281 "(RM 4.9(2))!", N);
5282 return;
5283 end if;
5284 end if;
5286 -- If we got through those checks, test particular node kind
5288 case Nkind (N) is
5289 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5290 E := Entity (N);
5292 if Is_Named_Number (E) then
5293 null;
5295 elsif Ekind (E) = E_Constant then
5296 if not Is_Static_Expression (Constant_Value (E)) then
5297 Error_Msg_NE
5298 ("& is not a static constant (RM 4.9(5))!", N, E);
5299 end if;
5301 else
5302 Error_Msg_NE
5303 ("& is not static constant or named number " &
5304 "(RM 4.9(5))!", N, E);
5305 end if;
5307 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
5308 if Nkind (N) in N_Op_Shift then
5309 Error_Msg_N
5310 ("shift functions are never static (RM 4.9(6,18))!", N);
5312 else
5313 Why_Not_Static (Left_Opnd (N));
5314 Why_Not_Static (Right_Opnd (N));
5315 end if;
5317 when N_Unary_Op =>
5318 Why_Not_Static (Right_Opnd (N));
5320 when N_Attribute_Reference =>
5321 Why_Not_Static_List (Expressions (N));
5323 E := Etype (Prefix (N));
5325 if E = Standard_Void_Type then
5326 return;
5327 end if;
5329 -- Special case non-scalar'Size since this is a common error
5331 if Attribute_Name (N) = Name_Size then
5332 Error_Msg_N
5333 ("size attribute is only static for static scalar type " &
5334 "(RM 4.9(7,8))", N);
5336 -- Flag array cases
5338 elsif Is_Array_Type (E) then
5339 if Attribute_Name (N) /= Name_First
5340 and then
5341 Attribute_Name (N) /= Name_Last
5342 and then
5343 Attribute_Name (N) /= Name_Length
5344 then
5345 Error_Msg_N
5346 ("static array attribute must be Length, First, or Last " &
5347 "(RM 4.9(8))!", N);
5349 -- Since we know the expression is not-static (we already
5350 -- tested for this, must mean array is not static).
5352 else
5353 Error_Msg_N
5354 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
5355 end if;
5357 return;
5359 -- Special case generic types, since again this is a common source
5360 -- of confusion.
5362 elsif Is_Generic_Actual_Type (E)
5363 or else
5364 Is_Generic_Type (E)
5365 then
5366 Error_Msg_N
5367 ("attribute of generic type is never static " &
5368 "(RM 4.9(7,8))!", N);
5370 elsif Is_Static_Subtype (E) then
5371 null;
5373 elsif Is_Scalar_Type (E) then
5374 Error_Msg_N
5375 ("prefix type for attribute is not static scalar subtype " &
5376 "(RM 4.9(7))!", N);
5378 else
5379 Error_Msg_N
5380 ("static attribute must apply to array/scalar type " &
5381 "(RM 4.9(7,8))!", N);
5382 end if;
5384 when N_String_Literal =>
5385 Error_Msg_N
5386 ("subtype of string literal is non-static (RM 4.9(4))!", N);
5388 when N_Explicit_Dereference =>
5389 Error_Msg_N
5390 ("explicit dereference is never static (RM 4.9)!", N);
5392 when N_Function_Call =>
5393 Why_Not_Static_List (Parameter_Associations (N));
5394 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
5396 when N_Parameter_Association =>
5397 Why_Not_Static (Explicit_Actual_Parameter (N));
5399 when N_Indexed_Component =>
5400 Error_Msg_N
5401 ("indexed component is never static (RM 4.9)!", N);
5403 when N_Procedure_Call_Statement =>
5404 Error_Msg_N
5405 ("procedure call is never static (RM 4.9)!", N);
5407 when N_Qualified_Expression =>
5408 Why_Not_Static (Expression (N));
5410 when N_Aggregate | N_Extension_Aggregate =>
5411 Error_Msg_N
5412 ("an aggregate is never static (RM 4.9)!", N);
5414 when N_Range =>
5415 Why_Not_Static (Low_Bound (N));
5416 Why_Not_Static (High_Bound (N));
5418 when N_Range_Constraint =>
5419 Why_Not_Static (Range_Expression (N));
5421 when N_Subtype_Indication =>
5422 Why_Not_Static (Constraint (N));
5424 when N_Selected_Component =>
5425 Error_Msg_N
5426 ("selected component is never static (RM 4.9)!", N);
5428 when N_Slice =>
5429 Error_Msg_N
5430 ("slice is never static (RM 4.9)!", N);
5432 when N_Type_Conversion =>
5433 Why_Not_Static (Expression (N));
5435 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5436 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
5437 then
5438 Error_Msg_N
5439 ("static conversion requires static scalar subtype result " &
5440 "(RM 4.9(9))!", N);
5441 end if;
5443 when N_Unchecked_Type_Conversion =>
5444 Error_Msg_N
5445 ("unchecked type conversion is never static (RM 4.9)!", N);
5447 when others =>
5448 null;
5450 end case;
5451 end Why_Not_Static;
5453 end Sem_Eval;