1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
31 #include "hard-reg-set.h"
34 #include "insn-config.h"
43 /* Simplification and canonicalization of RTL. */
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
52 static rtx
neg_const_int (enum machine_mode
, rtx
);
53 static bool mode_signbit_p (enum machine_mode
, rtx
);
54 static int simplify_plus_minus_op_data_cmp (const void *, const void *);
55 static rtx
simplify_plus_minus (enum rtx_code
, enum machine_mode
, rtx
,
57 static rtx
simplify_immed_subreg (enum machine_mode
, rtx
, enum machine_mode
,
59 static rtx
simplify_associative_operation (enum rtx_code
, enum machine_mode
,
61 static rtx
simplify_relational_operation_1 (enum rtx_code
, enum machine_mode
,
62 enum machine_mode
, rtx
, rtx
);
64 /* Negate a CONST_INT rtx, truncating (because a conversion from a
65 maximally negative number can overflow). */
67 neg_const_int (enum machine_mode mode
, rtx i
)
69 return gen_int_mode (- INTVAL (i
), mode
);
72 /* Test whether expression, X, is an immediate constant that represents
73 the most significant bit of machine mode MODE. */
76 mode_signbit_p (enum machine_mode mode
, rtx x
)
78 unsigned HOST_WIDE_INT val
;
81 if (GET_MODE_CLASS (mode
) != MODE_INT
)
84 width
= GET_MODE_BITSIZE (mode
);
88 if (width
<= HOST_BITS_PER_WIDE_INT
89 && GET_CODE (x
) == CONST_INT
)
91 else if (width
<= 2 * HOST_BITS_PER_WIDE_INT
92 && GET_CODE (x
) == CONST_DOUBLE
93 && CONST_DOUBLE_LOW (x
) == 0)
95 val
= CONST_DOUBLE_HIGH (x
);
96 width
-= HOST_BITS_PER_WIDE_INT
;
101 if (width
< HOST_BITS_PER_WIDE_INT
)
102 val
&= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
103 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
106 /* Make a binary operation by properly ordering the operands and
107 seeing if the expression folds. */
110 simplify_gen_binary (enum rtx_code code
, enum machine_mode mode
, rtx op0
,
115 /* Put complex operands first and constants second if commutative. */
116 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
117 && swap_commutative_operands_p (op0
, op1
))
118 tem
= op0
, op0
= op1
, op1
= tem
;
120 /* If this simplifies, do it. */
121 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
125 /* Handle addition and subtraction specially. Otherwise, just form
128 if (code
== PLUS
|| code
== MINUS
)
130 tem
= simplify_plus_minus (code
, mode
, op0
, op1
, 1);
135 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
138 /* If X is a MEM referencing the constant pool, return the real value.
139 Otherwise return X. */
141 avoid_constant_pool_reference (rtx x
)
144 enum machine_mode cmode
;
146 switch (GET_CODE (x
))
152 /* Handle float extensions of constant pool references. */
154 c
= avoid_constant_pool_reference (tmp
);
155 if (c
!= tmp
&& GET_CODE (c
) == CONST_DOUBLE
)
159 REAL_VALUE_FROM_CONST_DOUBLE (d
, c
);
160 return CONST_DOUBLE_FROM_REAL_VALUE (d
, GET_MODE (x
));
170 /* Call target hook to avoid the effects of -fpic etc.... */
171 addr
= targetm
.delegitimize_address (addr
);
173 if (GET_CODE (addr
) == LO_SUM
)
174 addr
= XEXP (addr
, 1);
176 if (GET_CODE (addr
) != SYMBOL_REF
177 || ! CONSTANT_POOL_ADDRESS_P (addr
))
180 c
= get_pool_constant (addr
);
181 cmode
= get_pool_mode (addr
);
183 /* If we're accessing the constant in a different mode than it was
184 originally stored, attempt to fix that up via subreg simplifications.
185 If that fails we have no choice but to return the original memory. */
186 if (cmode
!= GET_MODE (x
))
188 c
= simplify_subreg (GET_MODE (x
), c
, cmode
, 0);
195 /* Make a unary operation by first seeing if it folds and otherwise making
196 the specified operation. */
199 simplify_gen_unary (enum rtx_code code
, enum machine_mode mode
, rtx op
,
200 enum machine_mode op_mode
)
204 /* If this simplifies, use it. */
205 if ((tem
= simplify_unary_operation (code
, mode
, op
, op_mode
)) != 0)
208 return gen_rtx_fmt_e (code
, mode
, op
);
211 /* Likewise for ternary operations. */
214 simplify_gen_ternary (enum rtx_code code
, enum machine_mode mode
,
215 enum machine_mode op0_mode
, rtx op0
, rtx op1
, rtx op2
)
219 /* If this simplifies, use it. */
220 if (0 != (tem
= simplify_ternary_operation (code
, mode
, op0_mode
,
224 return gen_rtx_fmt_eee (code
, mode
, op0
, op1
, op2
);
227 /* Likewise, for relational operations.
228 CMP_MODE specifies mode comparison is done in. */
231 simplify_gen_relational (enum rtx_code code
, enum machine_mode mode
,
232 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
236 if (0 != (tem
= simplify_relational_operation (code
, mode
, cmp_mode
,
240 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
243 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
244 resulting RTX. Return a new RTX which is as simplified as possible. */
247 simplify_replace_rtx (rtx x
, rtx old_rtx
, rtx new_rtx
)
249 enum rtx_code code
= GET_CODE (x
);
250 enum machine_mode mode
= GET_MODE (x
);
251 enum machine_mode op_mode
;
254 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
255 to build a new expression substituting recursively. If we can't do
256 anything, return our input. */
261 switch (GET_RTX_CLASS (code
))
265 op_mode
= GET_MODE (op0
);
266 op0
= simplify_replace_rtx (op0
, old_rtx
, new_rtx
);
267 if (op0
== XEXP (x
, 0))
269 return simplify_gen_unary (code
, mode
, op0
, op_mode
);
273 op0
= simplify_replace_rtx (XEXP (x
, 0), old_rtx
, new_rtx
);
274 op1
= simplify_replace_rtx (XEXP (x
, 1), old_rtx
, new_rtx
);
275 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
277 return simplify_gen_binary (code
, mode
, op0
, op1
);
280 case RTX_COMM_COMPARE
:
283 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
284 op0
= simplify_replace_rtx (op0
, old_rtx
, new_rtx
);
285 op1
= simplify_replace_rtx (op1
, old_rtx
, new_rtx
);
286 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
288 return simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
291 case RTX_BITFIELD_OPS
:
293 op_mode
= GET_MODE (op0
);
294 op0
= simplify_replace_rtx (op0
, old_rtx
, new_rtx
);
295 op1
= simplify_replace_rtx (XEXP (x
, 1), old_rtx
, new_rtx
);
296 op2
= simplify_replace_rtx (XEXP (x
, 2), old_rtx
, new_rtx
);
297 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
299 if (op_mode
== VOIDmode
)
300 op_mode
= GET_MODE (op0
);
301 return simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
304 /* The only case we try to handle is a SUBREG. */
307 op0
= simplify_replace_rtx (SUBREG_REG (x
), old_rtx
, new_rtx
);
308 if (op0
== SUBREG_REG (x
))
310 op0
= simplify_gen_subreg (GET_MODE (x
), op0
,
311 GET_MODE (SUBREG_REG (x
)),
313 return op0
? op0
: x
;
320 op0
= simplify_replace_rtx (XEXP (x
, 0), old_rtx
, new_rtx
);
321 if (op0
== XEXP (x
, 0))
323 return replace_equiv_address_nv (x
, op0
);
325 else if (code
== LO_SUM
)
327 op0
= simplify_replace_rtx (XEXP (x
, 0), old_rtx
, new_rtx
);
328 op1
= simplify_replace_rtx (XEXP (x
, 1), old_rtx
, new_rtx
);
330 /* (lo_sum (high x) x) -> x */
331 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
334 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
336 return gen_rtx_LO_SUM (mode
, op0
, op1
);
338 else if (code
== REG
)
340 if (REG_P (old_rtx
) && REGNO (x
) == REGNO (old_rtx
))
351 /* Try to simplify a unary operation CODE whose output mode is to be
352 MODE with input operand OP whose mode was originally OP_MODE.
353 Return zero if no simplification can be made. */
355 simplify_unary_operation (enum rtx_code code
, enum machine_mode mode
,
356 rtx op
, enum machine_mode op_mode
)
358 unsigned int width
= GET_MODE_BITSIZE (mode
);
359 rtx trueop
= avoid_constant_pool_reference (op
);
361 if (code
== VEC_DUPLICATE
)
363 gcc_assert (VECTOR_MODE_P (mode
));
364 if (GET_MODE (trueop
) != VOIDmode
)
366 if (!VECTOR_MODE_P (GET_MODE (trueop
)))
367 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE (trueop
));
369 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE_INNER
370 (GET_MODE (trueop
)));
372 if (GET_CODE (trueop
) == CONST_INT
|| GET_CODE (trueop
) == CONST_DOUBLE
373 || GET_CODE (trueop
) == CONST_VECTOR
)
375 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
376 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
377 rtvec v
= rtvec_alloc (n_elts
);
380 if (GET_CODE (trueop
) != CONST_VECTOR
)
381 for (i
= 0; i
< n_elts
; i
++)
382 RTVEC_ELT (v
, i
) = trueop
;
385 enum machine_mode inmode
= GET_MODE (trueop
);
386 int in_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (inmode
));
387 unsigned in_n_elts
= (GET_MODE_SIZE (inmode
) / in_elt_size
);
389 gcc_assert (in_n_elts
< n_elts
);
390 gcc_assert ((n_elts
% in_n_elts
) == 0);
391 for (i
= 0; i
< n_elts
; i
++)
392 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop
, i
% in_n_elts
);
394 return gen_rtx_CONST_VECTOR (mode
, v
);
397 else if (GET_CODE (op
) == CONST
)
398 return simplify_unary_operation (code
, mode
, XEXP (op
, 0), op_mode
);
400 if (VECTOR_MODE_P (mode
) && GET_CODE (trueop
) == CONST_VECTOR
)
402 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
403 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
404 enum machine_mode opmode
= GET_MODE (trueop
);
405 int op_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (opmode
));
406 unsigned op_n_elts
= (GET_MODE_SIZE (opmode
) / op_elt_size
);
407 rtvec v
= rtvec_alloc (n_elts
);
410 gcc_assert (op_n_elts
== n_elts
);
411 for (i
= 0; i
< n_elts
; i
++)
413 rtx x
= simplify_unary_operation (code
, GET_MODE_INNER (mode
),
414 CONST_VECTOR_ELT (trueop
, i
),
415 GET_MODE_INNER (opmode
));
418 RTVEC_ELT (v
, i
) = x
;
420 return gen_rtx_CONST_VECTOR (mode
, v
);
423 /* The order of these tests is critical so that, for example, we don't
424 check the wrong mode (input vs. output) for a conversion operation,
425 such as FIX. At some point, this should be simplified. */
427 if (code
== FLOAT
&& GET_MODE (trueop
) == VOIDmode
428 && (GET_CODE (trueop
) == CONST_DOUBLE
|| GET_CODE (trueop
) == CONST_INT
))
430 HOST_WIDE_INT hv
, lv
;
433 if (GET_CODE (trueop
) == CONST_INT
)
434 lv
= INTVAL (trueop
), hv
= HWI_SIGN_EXTEND (lv
);
436 lv
= CONST_DOUBLE_LOW (trueop
), hv
= CONST_DOUBLE_HIGH (trueop
);
438 REAL_VALUE_FROM_INT (d
, lv
, hv
, mode
);
439 d
= real_value_truncate (mode
, d
);
440 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
442 else if (code
== UNSIGNED_FLOAT
&& GET_MODE (trueop
) == VOIDmode
443 && (GET_CODE (trueop
) == CONST_DOUBLE
444 || GET_CODE (trueop
) == CONST_INT
))
446 HOST_WIDE_INT hv
, lv
;
449 if (GET_CODE (trueop
) == CONST_INT
)
450 lv
= INTVAL (trueop
), hv
= HWI_SIGN_EXTEND (lv
);
452 lv
= CONST_DOUBLE_LOW (trueop
), hv
= CONST_DOUBLE_HIGH (trueop
);
454 if (op_mode
== VOIDmode
)
456 /* We don't know how to interpret negative-looking numbers in
457 this case, so don't try to fold those. */
461 else if (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
* 2)
464 hv
= 0, lv
&= GET_MODE_MASK (op_mode
);
466 REAL_VALUE_FROM_UNSIGNED_INT (d
, lv
, hv
, mode
);
467 d
= real_value_truncate (mode
, d
);
468 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
471 if (GET_CODE (trueop
) == CONST_INT
472 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
474 HOST_WIDE_INT arg0
= INTVAL (trueop
);
488 val
= (arg0
>= 0 ? arg0
: - arg0
);
492 /* Don't use ffs here. Instead, get low order bit and then its
493 number. If arg0 is zero, this will return 0, as desired. */
494 arg0
&= GET_MODE_MASK (mode
);
495 val
= exact_log2 (arg0
& (- arg0
)) + 1;
499 arg0
&= GET_MODE_MASK (mode
);
500 if (arg0
== 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
))
503 val
= GET_MODE_BITSIZE (mode
) - floor_log2 (arg0
) - 1;
507 arg0
&= GET_MODE_MASK (mode
);
510 /* Even if the value at zero is undefined, we have to come
511 up with some replacement. Seems good enough. */
512 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
))
513 val
= GET_MODE_BITSIZE (mode
);
516 val
= exact_log2 (arg0
& -arg0
);
520 arg0
&= GET_MODE_MASK (mode
);
523 val
++, arg0
&= arg0
- 1;
527 arg0
&= GET_MODE_MASK (mode
);
530 val
++, arg0
&= arg0
- 1;
539 /* When zero-extending a CONST_INT, we need to know its
541 gcc_assert (op_mode
!= VOIDmode
);
542 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
544 /* If we were really extending the mode,
545 we would have to distinguish between zero-extension
546 and sign-extension. */
547 gcc_assert (width
== GET_MODE_BITSIZE (op_mode
));
550 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
551 val
= arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
557 if (op_mode
== VOIDmode
)
559 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
561 /* If we were really extending the mode,
562 we would have to distinguish between zero-extension
563 and sign-extension. */
564 gcc_assert (width
== GET_MODE_BITSIZE (op_mode
));
567 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
570 = arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
572 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (op_mode
) - 1)))
573 val
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
590 val
= trunc_int_for_mode (val
, mode
);
592 return GEN_INT (val
);
595 /* We can do some operations on integer CONST_DOUBLEs. Also allow
596 for a DImode operation on a CONST_INT. */
597 else if (GET_MODE (trueop
) == VOIDmode
598 && width
<= HOST_BITS_PER_WIDE_INT
* 2
599 && (GET_CODE (trueop
) == CONST_DOUBLE
600 || GET_CODE (trueop
) == CONST_INT
))
602 unsigned HOST_WIDE_INT l1
, lv
;
603 HOST_WIDE_INT h1
, hv
;
605 if (GET_CODE (trueop
) == CONST_DOUBLE
)
606 l1
= CONST_DOUBLE_LOW (trueop
), h1
= CONST_DOUBLE_HIGH (trueop
);
608 l1
= INTVAL (trueop
), h1
= HWI_SIGN_EXTEND (l1
);
618 neg_double (l1
, h1
, &lv
, &hv
);
623 neg_double (l1
, h1
, &lv
, &hv
);
635 lv
= HOST_BITS_PER_WIDE_INT
+ exact_log2 (h1
& -h1
) + 1;
638 lv
= exact_log2 (l1
& -l1
) + 1;
644 lv
= GET_MODE_BITSIZE (mode
) - floor_log2 (h1
) - 1
645 - HOST_BITS_PER_WIDE_INT
;
647 lv
= GET_MODE_BITSIZE (mode
) - floor_log2 (l1
) - 1;
648 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode
, lv
))
649 lv
= GET_MODE_BITSIZE (mode
);
655 lv
= exact_log2 (l1
& -l1
);
657 lv
= HOST_BITS_PER_WIDE_INT
+ exact_log2 (h1
& -h1
);
658 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, lv
))
659 lv
= GET_MODE_BITSIZE (mode
);
682 /* This is just a change-of-mode, so do nothing. */
687 gcc_assert (op_mode
!= VOIDmode
);
689 if (GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
693 lv
= l1
& GET_MODE_MASK (op_mode
);
697 if (op_mode
== VOIDmode
698 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
702 lv
= l1
& GET_MODE_MASK (op_mode
);
703 if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
704 && (lv
& ((HOST_WIDE_INT
) 1
705 << (GET_MODE_BITSIZE (op_mode
) - 1))) != 0)
706 lv
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
708 hv
= HWI_SIGN_EXTEND (lv
);
719 return immed_double_const (lv
, hv
, mode
);
722 else if (GET_CODE (trueop
) == CONST_DOUBLE
723 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
725 REAL_VALUE_TYPE d
, t
;
726 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop
);
731 if (HONOR_SNANS (mode
) && real_isnan (&d
))
733 real_sqrt (&t
, mode
, &d
);
737 d
= REAL_VALUE_ABS (d
);
740 d
= REAL_VALUE_NEGATE (d
);
743 d
= real_value_truncate (mode
, d
);
746 /* All this does is change the mode. */
749 real_arithmetic (&d
, FIX_TRUNC_EXPR
, &d
, NULL
);
756 real_to_target (tmp
, &d
, GET_MODE (trueop
));
757 for (i
= 0; i
< 4; i
++)
759 real_from_target (&d
, tmp
, mode
);
764 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
767 else if (GET_CODE (trueop
) == CONST_DOUBLE
768 && GET_MODE_CLASS (GET_MODE (trueop
)) == MODE_FLOAT
769 && GET_MODE_CLASS (mode
) == MODE_INT
770 && width
<= 2*HOST_BITS_PER_WIDE_INT
&& width
> 0)
772 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
773 operators are intentionally left unspecified (to ease implementation
774 by target backends), for consistency, this routine implements the
775 same semantics for constant folding as used by the middle-end. */
777 HOST_WIDE_INT xh
, xl
, th
, tl
;
778 REAL_VALUE_TYPE x
, t
;
779 REAL_VALUE_FROM_CONST_DOUBLE (x
, trueop
);
783 if (REAL_VALUE_ISNAN (x
))
786 /* Test against the signed upper bound. */
787 if (width
> HOST_BITS_PER_WIDE_INT
)
789 th
= ((unsigned HOST_WIDE_INT
) 1
790 << (width
- HOST_BITS_PER_WIDE_INT
- 1)) - 1;
796 tl
= ((unsigned HOST_WIDE_INT
) 1 << (width
- 1)) - 1;
798 real_from_integer (&t
, VOIDmode
, tl
, th
, 0);
799 if (REAL_VALUES_LESS (t
, x
))
806 /* Test against the signed lower bound. */
807 if (width
> HOST_BITS_PER_WIDE_INT
)
809 th
= (HOST_WIDE_INT
) -1 << (width
- HOST_BITS_PER_WIDE_INT
- 1);
815 tl
= (HOST_WIDE_INT
) -1 << (width
- 1);
817 real_from_integer (&t
, VOIDmode
, tl
, th
, 0);
818 if (REAL_VALUES_LESS (x
, t
))
824 REAL_VALUE_TO_INT (&xl
, &xh
, x
);
828 if (REAL_VALUE_ISNAN (x
) || REAL_VALUE_NEGATIVE (x
))
831 /* Test against the unsigned upper bound. */
832 if (width
== 2*HOST_BITS_PER_WIDE_INT
)
837 else if (width
>= HOST_BITS_PER_WIDE_INT
)
839 th
= ((unsigned HOST_WIDE_INT
) 1
840 << (width
- HOST_BITS_PER_WIDE_INT
)) - 1;
846 tl
= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
848 real_from_integer (&t
, VOIDmode
, tl
, th
, 1);
849 if (REAL_VALUES_LESS (t
, x
))
856 REAL_VALUE_TO_INT (&xl
, &xh
, x
);
862 return immed_double_const (xl
, xh
, mode
);
865 /* This was formerly used only for non-IEEE float.
866 eggert@twinsun.com says it is safe for IEEE also. */
869 enum rtx_code reversed
;
872 /* There are some simplifications we can do even if the operands
877 /* (not (not X)) == X. */
878 if (GET_CODE (op
) == NOT
)
881 /* (not (eq X Y)) == (ne X Y), etc. */
882 if (COMPARISON_P (op
)
883 && (mode
== BImode
|| STORE_FLAG_VALUE
== -1)
884 && ((reversed
= reversed_comparison_code (op
, NULL_RTX
))
886 return simplify_gen_relational (reversed
, mode
, VOIDmode
,
887 XEXP (op
, 0), XEXP (op
, 1));
889 /* (not (plus X -1)) can become (neg X). */
890 if (GET_CODE (op
) == PLUS
891 && XEXP (op
, 1) == constm1_rtx
)
892 return simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
894 /* Similarly, (not (neg X)) is (plus X -1). */
895 if (GET_CODE (op
) == NEG
)
896 return plus_constant (XEXP (op
, 0), -1);
898 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
899 if (GET_CODE (op
) == XOR
900 && GET_CODE (XEXP (op
, 1)) == CONST_INT
901 && (temp
= simplify_unary_operation (NOT
, mode
,
904 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
906 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
907 if (GET_CODE (op
) == PLUS
908 && GET_CODE (XEXP (op
, 1)) == CONST_INT
909 && mode_signbit_p (mode
, XEXP (op
, 1))
910 && (temp
= simplify_unary_operation (NOT
, mode
,
913 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
917 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
918 operands other than 1, but that is not valid. We could do a
919 similar simplification for (not (lshiftrt C X)) where C is
920 just the sign bit, but this doesn't seem common enough to
922 if (GET_CODE (op
) == ASHIFT
923 && XEXP (op
, 0) == const1_rtx
)
925 temp
= simplify_gen_unary (NOT
, mode
, const1_rtx
, mode
);
926 return simplify_gen_binary (ROTATE
, mode
, temp
, XEXP (op
, 1));
929 /* If STORE_FLAG_VALUE is -1, (not (comparison X Y)) can be done
930 by reversing the comparison code if valid. */
931 if (STORE_FLAG_VALUE
== -1
933 && (reversed
= reversed_comparison_code (op
, NULL_RTX
))
935 return simplify_gen_relational (reversed
, mode
, VOIDmode
,
936 XEXP (op
, 0), XEXP (op
, 1));
938 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
939 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
940 so we can perform the above simplification. */
942 if (STORE_FLAG_VALUE
== -1
943 && GET_CODE (op
) == ASHIFTRT
944 && GET_CODE (XEXP (op
, 1)) == CONST_INT
945 && INTVAL (XEXP (op
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
946 return simplify_gen_relational (GE
, mode
, VOIDmode
,
947 XEXP (op
, 0), const0_rtx
);
952 /* (neg (neg X)) == X. */
953 if (GET_CODE (op
) == NEG
)
956 /* (neg (plus X 1)) can become (not X). */
957 if (GET_CODE (op
) == PLUS
958 && XEXP (op
, 1) == const1_rtx
)
959 return simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
961 /* Similarly, (neg (not X)) is (plus X 1). */
962 if (GET_CODE (op
) == NOT
)
963 return plus_constant (XEXP (op
, 0), 1);
965 /* (neg (minus X Y)) can become (minus Y X). This transformation
966 isn't safe for modes with signed zeros, since if X and Y are
967 both +0, (minus Y X) is the same as (minus X Y). If the
968 rounding mode is towards +infinity (or -infinity) then the two
969 expressions will be rounded differently. */
970 if (GET_CODE (op
) == MINUS
971 && !HONOR_SIGNED_ZEROS (mode
)
972 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
973 return simplify_gen_binary (MINUS
, mode
, XEXP (op
, 1),
976 if (GET_CODE (op
) == PLUS
977 && !HONOR_SIGNED_ZEROS (mode
)
978 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
980 /* (neg (plus A C)) is simplified to (minus -C A). */
981 if (GET_CODE (XEXP (op
, 1)) == CONST_INT
982 || GET_CODE (XEXP (op
, 1)) == CONST_DOUBLE
)
984 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 1),
987 return simplify_gen_binary (MINUS
, mode
, temp
,
991 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
992 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
993 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 1));
996 /* (neg (mult A B)) becomes (mult (neg A) B).
997 This works even for floating-point values. */
998 if (GET_CODE (op
) == MULT
999 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1001 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
1002 return simplify_gen_binary (MULT
, mode
, temp
, XEXP (op
, 1));
1005 /* NEG commutes with ASHIFT since it is multiplication. Only do
1006 this if we can then eliminate the NEG (e.g., if the operand
1008 if (GET_CODE (op
) == ASHIFT
)
1010 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 0),
1013 return simplify_gen_binary (ASHIFT
, mode
, temp
,
1017 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
1018 C is equal to the width of MODE minus 1. */
1019 if (GET_CODE (op
) == ASHIFTRT
1020 && GET_CODE (XEXP (op
, 1)) == CONST_INT
1021 && INTVAL (XEXP (op
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
1022 return simplify_gen_binary (LSHIFTRT
, mode
,
1023 XEXP (op
, 0), XEXP (op
, 1));
1025 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
1026 C is equal to the width of MODE minus 1. */
1027 if (GET_CODE (op
) == LSHIFTRT
1028 && GET_CODE (XEXP (op
, 1)) == CONST_INT
1029 && INTVAL (XEXP (op
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
1030 return simplify_gen_binary (ASHIFTRT
, mode
,
1031 XEXP (op
, 0), XEXP (op
, 1));
1036 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1037 becomes just the MINUS if its mode is MODE. This allows
1038 folding switch statements on machines using casesi (such as
1040 if (GET_CODE (op
) == TRUNCATE
1041 && GET_MODE (XEXP (op
, 0)) == mode
1042 && GET_CODE (XEXP (op
, 0)) == MINUS
1043 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
1044 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
1045 return XEXP (op
, 0);
1047 /* Check for a sign extension of a subreg of a promoted
1048 variable, where the promotion is sign-extended, and the
1049 target mode is the same as the variable's promotion. */
1050 if (GET_CODE (op
) == SUBREG
1051 && SUBREG_PROMOTED_VAR_P (op
)
1052 && ! SUBREG_PROMOTED_UNSIGNED_P (op
)
1053 && GET_MODE (XEXP (op
, 0)) == mode
)
1054 return XEXP (op
, 0);
1056 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1057 if (! POINTERS_EXTEND_UNSIGNED
1058 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1060 || (GET_CODE (op
) == SUBREG
1061 && REG_P (SUBREG_REG (op
))
1062 && REG_POINTER (SUBREG_REG (op
))
1063 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1064 return convert_memory_address (Pmode
, op
);
1069 /* Check for a zero extension of a subreg of a promoted
1070 variable, where the promotion is zero-extended, and the
1071 target mode is the same as the variable's promotion. */
1072 if (GET_CODE (op
) == SUBREG
1073 && SUBREG_PROMOTED_VAR_P (op
)
1074 && SUBREG_PROMOTED_UNSIGNED_P (op
)
1075 && GET_MODE (XEXP (op
, 0)) == mode
)
1076 return XEXP (op
, 0);
1078 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1079 if (POINTERS_EXTEND_UNSIGNED
> 0
1080 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1082 || (GET_CODE (op
) == SUBREG
1083 && REG_P (SUBREG_REG (op
))
1084 && REG_POINTER (SUBREG_REG (op
))
1085 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1086 return convert_memory_address (Pmode
, op
);
1098 /* Subroutine of simplify_binary_operation to simplify a commutative,
1099 associative binary operation CODE with result mode MODE, operating
1100 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1101 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1102 canonicalization is possible. */
1105 simplify_associative_operation (enum rtx_code code
, enum machine_mode mode
,
1110 /* Linearize the operator to the left. */
1111 if (GET_CODE (op1
) == code
)
1113 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1114 if (GET_CODE (op0
) == code
)
1116 tem
= simplify_gen_binary (code
, mode
, op0
, XEXP (op1
, 0));
1117 return simplify_gen_binary (code
, mode
, tem
, XEXP (op1
, 1));
1120 /* "a op (b op c)" becomes "(b op c) op a". */
1121 if (! swap_commutative_operands_p (op1
, op0
))
1122 return simplify_gen_binary (code
, mode
, op1
, op0
);
1129 if (GET_CODE (op0
) == code
)
1131 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1132 if (swap_commutative_operands_p (XEXP (op0
, 1), op1
))
1134 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), op1
);
1135 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1138 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1139 tem
= swap_commutative_operands_p (XEXP (op0
, 1), op1
)
1140 ? simplify_binary_operation (code
, mode
, op1
, XEXP (op0
, 1))
1141 : simplify_binary_operation (code
, mode
, XEXP (op0
, 1), op1
);
1143 return simplify_gen_binary (code
, mode
, XEXP (op0
, 0), tem
);
1145 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1146 tem
= swap_commutative_operands_p (XEXP (op0
, 0), op1
)
1147 ? simplify_binary_operation (code
, mode
, op1
, XEXP (op0
, 0))
1148 : simplify_binary_operation (code
, mode
, XEXP (op0
, 0), op1
);
1150 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1156 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1157 and OP1. Return 0 if no simplification is possible.
1159 Don't use this for relational operations such as EQ or LT.
1160 Use simplify_relational_operation instead. */
1162 simplify_binary_operation (enum rtx_code code
, enum machine_mode mode
,
1165 HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
1167 unsigned int width
= GET_MODE_BITSIZE (mode
);
1168 rtx trueop0
, trueop1
;
1171 /* Relational operations don't work here. We must know the mode
1172 of the operands in order to do the comparison correctly.
1173 Assuming a full word can give incorrect results.
1174 Consider comparing 128 with -128 in QImode. */
1175 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMPARE
);
1176 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
);
1178 /* Make sure the constant is second. */
1179 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
1180 && swap_commutative_operands_p (op0
, op1
))
1182 tem
= op0
, op0
= op1
, op1
= tem
;
1185 trueop0
= avoid_constant_pool_reference (op0
);
1186 trueop1
= avoid_constant_pool_reference (op1
);
1188 if (VECTOR_MODE_P (mode
)
1189 && GET_CODE (trueop0
) == CONST_VECTOR
1190 && GET_CODE (trueop1
) == CONST_VECTOR
)
1192 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
1193 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1194 enum machine_mode op0mode
= GET_MODE (trueop0
);
1195 int op0_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (op0mode
));
1196 unsigned op0_n_elts
= (GET_MODE_SIZE (op0mode
) / op0_elt_size
);
1197 enum machine_mode op1mode
= GET_MODE (trueop1
);
1198 int op1_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (op1mode
));
1199 unsigned op1_n_elts
= (GET_MODE_SIZE (op1mode
) / op1_elt_size
);
1200 rtvec v
= rtvec_alloc (n_elts
);
1203 gcc_assert (op0_n_elts
== n_elts
);
1204 gcc_assert (op1_n_elts
== n_elts
);
1205 for (i
= 0; i
< n_elts
; i
++)
1207 rtx x
= simplify_binary_operation (code
, GET_MODE_INNER (mode
),
1208 CONST_VECTOR_ELT (trueop0
, i
),
1209 CONST_VECTOR_ELT (trueop1
, i
));
1212 RTVEC_ELT (v
, i
) = x
;
1215 return gen_rtx_CONST_VECTOR (mode
, v
);
1218 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1219 && GET_CODE (trueop0
) == CONST_DOUBLE
1220 && GET_CODE (trueop1
) == CONST_DOUBLE
1221 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
1232 real_to_target (tmp0
, CONST_DOUBLE_REAL_VALUE (op0
),
1234 real_to_target (tmp1
, CONST_DOUBLE_REAL_VALUE (op1
),
1236 for (i
= 0; i
< 4; i
++)
1253 real_from_target (&r
, tmp0
, mode
);
1254 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1258 REAL_VALUE_TYPE f0
, f1
, value
;
1260 REAL_VALUE_FROM_CONST_DOUBLE (f0
, trueop0
);
1261 REAL_VALUE_FROM_CONST_DOUBLE (f1
, trueop1
);
1262 f0
= real_value_truncate (mode
, f0
);
1263 f1
= real_value_truncate (mode
, f1
);
1265 if (HONOR_SNANS (mode
)
1266 && (REAL_VALUE_ISNAN (f0
) || REAL_VALUE_ISNAN (f1
)))
1270 && REAL_VALUES_EQUAL (f1
, dconst0
)
1271 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1274 if (MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
1275 && flag_trapping_math
1276 && REAL_VALUE_ISINF (f0
) && REAL_VALUE_ISINF (f1
))
1278 int s0
= REAL_VALUE_NEGATIVE (f0
);
1279 int s1
= REAL_VALUE_NEGATIVE (f1
);
1284 /* Inf + -Inf = NaN plus exception. */
1289 /* Inf - Inf = NaN plus exception. */
1294 /* Inf / Inf = NaN plus exception. */
1301 if (code
== MULT
&& MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
1302 && flag_trapping_math
1303 && ((REAL_VALUE_ISINF (f0
) && REAL_VALUES_EQUAL (f1
, dconst0
))
1304 || (REAL_VALUE_ISINF (f1
)
1305 && REAL_VALUES_EQUAL (f0
, dconst0
))))
1306 /* Inf * 0 = NaN plus exception. */
1309 REAL_ARITHMETIC (value
, rtx_to_tree_code (code
), f0
, f1
);
1311 value
= real_value_truncate (mode
, value
);
1312 return CONST_DOUBLE_FROM_REAL_VALUE (value
, mode
);
1316 /* We can fold some multi-word operations. */
1317 if (GET_MODE_CLASS (mode
) == MODE_INT
1318 && width
== HOST_BITS_PER_WIDE_INT
* 2
1319 && (GET_CODE (trueop0
) == CONST_DOUBLE
1320 || GET_CODE (trueop0
) == CONST_INT
)
1321 && (GET_CODE (trueop1
) == CONST_DOUBLE
1322 || GET_CODE (trueop1
) == CONST_INT
))
1324 unsigned HOST_WIDE_INT l1
, l2
, lv
, lt
;
1325 HOST_WIDE_INT h1
, h2
, hv
, ht
;
1327 if (GET_CODE (trueop0
) == CONST_DOUBLE
)
1328 l1
= CONST_DOUBLE_LOW (trueop0
), h1
= CONST_DOUBLE_HIGH (trueop0
);
1330 l1
= INTVAL (trueop0
), h1
= HWI_SIGN_EXTEND (l1
);
1332 if (GET_CODE (trueop1
) == CONST_DOUBLE
)
1333 l2
= CONST_DOUBLE_LOW (trueop1
), h2
= CONST_DOUBLE_HIGH (trueop1
);
1335 l2
= INTVAL (trueop1
), h2
= HWI_SIGN_EXTEND (l2
);
1340 /* A - B == A + (-B). */
1341 neg_double (l2
, h2
, &lv
, &hv
);
1344 /* Fall through.... */
1347 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
1351 mul_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
1355 if (div_and_round_double (TRUNC_DIV_EXPR
, 0, l1
, h1
, l2
, h2
,
1356 &lv
, &hv
, <
, &ht
))
1361 if (div_and_round_double (TRUNC_DIV_EXPR
, 0, l1
, h1
, l2
, h2
,
1362 <
, &ht
, &lv
, &hv
))
1367 if (div_and_round_double (TRUNC_DIV_EXPR
, 1, l1
, h1
, l2
, h2
,
1368 &lv
, &hv
, <
, &ht
))
1373 if (div_and_round_double (TRUNC_DIV_EXPR
, 1, l1
, h1
, l2
, h2
,
1374 <
, &ht
, &lv
, &hv
))
1379 lv
= l1
& l2
, hv
= h1
& h2
;
1383 lv
= l1
| l2
, hv
= h1
| h2
;
1387 lv
= l1
^ l2
, hv
= h1
^ h2
;
1393 && ((unsigned HOST_WIDE_INT
) l1
1394 < (unsigned HOST_WIDE_INT
) l2
)))
1403 && ((unsigned HOST_WIDE_INT
) l1
1404 > (unsigned HOST_WIDE_INT
) l2
)))
1411 if ((unsigned HOST_WIDE_INT
) h1
< (unsigned HOST_WIDE_INT
) h2
1413 && ((unsigned HOST_WIDE_INT
) l1
1414 < (unsigned HOST_WIDE_INT
) l2
)))
1421 if ((unsigned HOST_WIDE_INT
) h1
> (unsigned HOST_WIDE_INT
) h2
1423 && ((unsigned HOST_WIDE_INT
) l1
1424 > (unsigned HOST_WIDE_INT
) l2
)))
1430 case LSHIFTRT
: case ASHIFTRT
:
1432 case ROTATE
: case ROTATERT
:
1433 if (SHIFT_COUNT_TRUNCATED
)
1434 l2
&= (GET_MODE_BITSIZE (mode
) - 1), h2
= 0;
1436 if (h2
!= 0 || l2
>= GET_MODE_BITSIZE (mode
))
1439 if (code
== LSHIFTRT
|| code
== ASHIFTRT
)
1440 rshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
,
1442 else if (code
== ASHIFT
)
1443 lshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
, 1);
1444 else if (code
== ROTATE
)
1445 lrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
1446 else /* code == ROTATERT */
1447 rrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
1454 return immed_double_const (lv
, hv
, mode
);
1457 if (GET_CODE (op0
) != CONST_INT
|| GET_CODE (op1
) != CONST_INT
1458 || width
> HOST_BITS_PER_WIDE_INT
|| width
== 0)
1460 /* Even if we can't compute a constant result,
1461 there are some cases worth simplifying. */
1466 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1467 when x is NaN, infinite, or finite and nonzero. They aren't
1468 when x is -0 and the rounding mode is not towards -infinity,
1469 since (-0) + 0 is then 0. */
1470 if (!HONOR_SIGNED_ZEROS (mode
) && trueop1
== CONST0_RTX (mode
))
1473 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1474 transformations are safe even for IEEE. */
1475 if (GET_CODE (op0
) == NEG
)
1476 return simplify_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
1477 else if (GET_CODE (op1
) == NEG
)
1478 return simplify_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
1480 /* (~a) + 1 -> -a */
1481 if (INTEGRAL_MODE_P (mode
)
1482 && GET_CODE (op0
) == NOT
1483 && trueop1
== const1_rtx
)
1484 return simplify_gen_unary (NEG
, mode
, XEXP (op0
, 0), mode
);
1486 /* Handle both-operands-constant cases. We can only add
1487 CONST_INTs to constants since the sum of relocatable symbols
1488 can't be handled by most assemblers. Don't add CONST_INT
1489 to CONST_INT since overflow won't be computed properly if wider
1490 than HOST_BITS_PER_WIDE_INT. */
1492 if (CONSTANT_P (op0
) && GET_MODE (op0
) != VOIDmode
1493 && GET_CODE (op1
) == CONST_INT
)
1494 return plus_constant (op0
, INTVAL (op1
));
1495 else if (CONSTANT_P (op1
) && GET_MODE (op1
) != VOIDmode
1496 && GET_CODE (op0
) == CONST_INT
)
1497 return plus_constant (op1
, INTVAL (op0
));
1499 /* See if this is something like X * C - X or vice versa or
1500 if the multiplication is written as a shift. If so, we can
1501 distribute and make a new multiply, shift, or maybe just
1502 have X (if C is 2 in the example above). But don't make
1503 something more expensive than we had before. */
1505 if (! FLOAT_MODE_P (mode
))
1507 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
1508 rtx lhs
= op0
, rhs
= op1
;
1510 if (GET_CODE (lhs
) == NEG
)
1511 coeff0
= -1, lhs
= XEXP (lhs
, 0);
1512 else if (GET_CODE (lhs
) == MULT
1513 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
1515 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
1517 else if (GET_CODE (lhs
) == ASHIFT
1518 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
1519 && INTVAL (XEXP (lhs
, 1)) >= 0
1520 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
1522 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
1523 lhs
= XEXP (lhs
, 0);
1526 if (GET_CODE (rhs
) == NEG
)
1527 coeff1
= -1, rhs
= XEXP (rhs
, 0);
1528 else if (GET_CODE (rhs
) == MULT
1529 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
1531 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
1533 else if (GET_CODE (rhs
) == ASHIFT
1534 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
1535 && INTVAL (XEXP (rhs
, 1)) >= 0
1536 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
1538 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
1539 rhs
= XEXP (rhs
, 0);
1542 if (rtx_equal_p (lhs
, rhs
))
1544 rtx orig
= gen_rtx_PLUS (mode
, op0
, op1
);
1545 tem
= simplify_gen_binary (MULT
, mode
, lhs
,
1546 GEN_INT (coeff0
+ coeff1
));
1547 return rtx_cost (tem
, SET
) <= rtx_cost (orig
, SET
)
1552 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1553 if ((GET_CODE (op1
) == CONST_INT
1554 || GET_CODE (op1
) == CONST_DOUBLE
)
1555 && GET_CODE (op0
) == XOR
1556 && (GET_CODE (XEXP (op0
, 1)) == CONST_INT
1557 || GET_CODE (XEXP (op0
, 1)) == CONST_DOUBLE
)
1558 && mode_signbit_p (mode
, op1
))
1559 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
1560 simplify_gen_binary (XOR
, mode
, op1
,
1563 /* If one of the operands is a PLUS or a MINUS, see if we can
1564 simplify this by the associative law.
1565 Don't use the associative law for floating point.
1566 The inaccuracy makes it nonassociative,
1567 and subtle programs can break if operations are associated. */
1569 if (INTEGRAL_MODE_P (mode
)
1570 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
1571 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
1572 || (GET_CODE (op0
) == CONST
1573 && GET_CODE (XEXP (op0
, 0)) == PLUS
)
1574 || (GET_CODE (op1
) == CONST
1575 && GET_CODE (XEXP (op1
, 0)) == PLUS
))
1576 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
, 0)) != 0)
1579 /* Reassociate floating point addition only when the user
1580 specifies unsafe math optimizations. */
1581 if (FLOAT_MODE_P (mode
)
1582 && flag_unsafe_math_optimizations
)
1584 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
1592 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1593 using cc0, in which case we want to leave it as a COMPARE
1594 so we can distinguish it from a register-register-copy.
1596 In IEEE floating point, x-0 is not the same as x. */
1598 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
1599 || ! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
1600 && trueop1
== CONST0_RTX (mode
))
1604 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1605 if (((GET_CODE (op0
) == GT
&& GET_CODE (op1
) == LT
)
1606 || (GET_CODE (op0
) == GTU
&& GET_CODE (op1
) == LTU
))
1607 && XEXP (op0
, 1) == const0_rtx
&& XEXP (op1
, 1) == const0_rtx
)
1609 rtx xop00
= XEXP (op0
, 0);
1610 rtx xop10
= XEXP (op1
, 0);
1613 if (GET_CODE (xop00
) == CC0
&& GET_CODE (xop10
) == CC0
)
1615 if (REG_P (xop00
) && REG_P (xop10
)
1616 && GET_MODE (xop00
) == GET_MODE (xop10
)
1617 && REGNO (xop00
) == REGNO (xop10
)
1618 && GET_MODE_CLASS (GET_MODE (xop00
)) == MODE_CC
1619 && GET_MODE_CLASS (GET_MODE (xop10
)) == MODE_CC
)
1626 /* We can't assume x-x is 0 even with non-IEEE floating point,
1627 but since it is zero except in very strange circumstances, we
1628 will treat it as zero with -funsafe-math-optimizations. */
1629 if (rtx_equal_p (trueop0
, trueop1
)
1630 && ! side_effects_p (op0
)
1631 && (! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
))
1632 return CONST0_RTX (mode
);
1634 /* Change subtraction from zero into negation. (0 - x) is the
1635 same as -x when x is NaN, infinite, or finite and nonzero.
1636 But if the mode has signed zeros, and does not round towards
1637 -infinity, then 0 - 0 is 0, not -0. */
1638 if (!HONOR_SIGNED_ZEROS (mode
) && trueop0
== CONST0_RTX (mode
))
1639 return simplify_gen_unary (NEG
, mode
, op1
, mode
);
1641 /* (-1 - a) is ~a. */
1642 if (trueop0
== constm1_rtx
)
1643 return simplify_gen_unary (NOT
, mode
, op1
, mode
);
1645 /* Subtracting 0 has no effect unless the mode has signed zeros
1646 and supports rounding towards -infinity. In such a case,
1648 if (!(HONOR_SIGNED_ZEROS (mode
)
1649 && HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1650 && trueop1
== CONST0_RTX (mode
))
1653 /* See if this is something like X * C - X or vice versa or
1654 if the multiplication is written as a shift. If so, we can
1655 distribute and make a new multiply, shift, or maybe just
1656 have X (if C is 2 in the example above). But don't make
1657 something more expensive than we had before. */
1659 if (! FLOAT_MODE_P (mode
))
1661 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
1662 rtx lhs
= op0
, rhs
= op1
;
1664 if (GET_CODE (lhs
) == NEG
)
1665 coeff0
= -1, lhs
= XEXP (lhs
, 0);
1666 else if (GET_CODE (lhs
) == MULT
1667 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
1669 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
1671 else if (GET_CODE (lhs
) == ASHIFT
1672 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
1673 && INTVAL (XEXP (lhs
, 1)) >= 0
1674 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
1676 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
1677 lhs
= XEXP (lhs
, 0);
1680 if (GET_CODE (rhs
) == NEG
)
1681 coeff1
= - 1, rhs
= XEXP (rhs
, 0);
1682 else if (GET_CODE (rhs
) == MULT
1683 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
1685 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
1687 else if (GET_CODE (rhs
) == ASHIFT
1688 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
1689 && INTVAL (XEXP (rhs
, 1)) >= 0
1690 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
1692 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
1693 rhs
= XEXP (rhs
, 0);
1696 if (rtx_equal_p (lhs
, rhs
))
1698 rtx orig
= gen_rtx_MINUS (mode
, op0
, op1
);
1699 tem
= simplify_gen_binary (MULT
, mode
, lhs
,
1700 GEN_INT (coeff0
- coeff1
));
1701 return rtx_cost (tem
, SET
) <= rtx_cost (orig
, SET
)
1706 /* (a - (-b)) -> (a + b). True even for IEEE. */
1707 if (GET_CODE (op1
) == NEG
)
1708 return simplify_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
1710 /* (-x - c) may be simplified as (-c - x). */
1711 if (GET_CODE (op0
) == NEG
1712 && (GET_CODE (op1
) == CONST_INT
1713 || GET_CODE (op1
) == CONST_DOUBLE
))
1715 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
1717 return simplify_gen_binary (MINUS
, mode
, tem
, XEXP (op0
, 0));
1720 /* If one of the operands is a PLUS or a MINUS, see if we can
1721 simplify this by the associative law.
1722 Don't use the associative law for floating point.
1723 The inaccuracy makes it nonassociative,
1724 and subtle programs can break if operations are associated. */
1726 if (INTEGRAL_MODE_P (mode
)
1727 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
1728 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
1729 || (GET_CODE (op0
) == CONST
1730 && GET_CODE (XEXP (op0
, 0)) == PLUS
)
1731 || (GET_CODE (op1
) == CONST
1732 && GET_CODE (XEXP (op1
, 0)) == PLUS
))
1733 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
, 0)) != 0)
1736 /* Don't let a relocatable value get a negative coeff. */
1737 if (GET_CODE (op1
) == CONST_INT
&& GET_MODE (op0
) != VOIDmode
)
1738 return simplify_gen_binary (PLUS
, mode
,
1740 neg_const_int (mode
, op1
));
1742 /* (x - (x & y)) -> (x & ~y) */
1743 if (GET_CODE (op1
) == AND
)
1745 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
1747 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 1),
1748 GET_MODE (XEXP (op1
, 1)));
1749 return simplify_gen_binary (AND
, mode
, op0
, tem
);
1751 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
1753 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 0),
1754 GET_MODE (XEXP (op1
, 0)));
1755 return simplify_gen_binary (AND
, mode
, op0
, tem
);
1761 if (trueop1
== constm1_rtx
)
1762 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
1764 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1765 x is NaN, since x * 0 is then also NaN. Nor is it valid
1766 when the mode has signed zeros, since multiplying a negative
1767 number by 0 will give -0, not 0. */
1768 if (!HONOR_NANS (mode
)
1769 && !HONOR_SIGNED_ZEROS (mode
)
1770 && trueop1
== CONST0_RTX (mode
)
1771 && ! side_effects_p (op0
))
1774 /* In IEEE floating point, x*1 is not equivalent to x for
1776 if (!HONOR_SNANS (mode
)
1777 && trueop1
== CONST1_RTX (mode
))
1780 /* Convert multiply by constant power of two into shift unless
1781 we are still generating RTL. This test is a kludge. */
1782 if (GET_CODE (trueop1
) == CONST_INT
1783 && (val
= exact_log2 (INTVAL (trueop1
))) >= 0
1784 /* If the mode is larger than the host word size, and the
1785 uppermost bit is set, then this isn't a power of two due
1786 to implicit sign extension. */
1787 && (width
<= HOST_BITS_PER_WIDE_INT
1788 || val
!= HOST_BITS_PER_WIDE_INT
- 1))
1789 return simplify_gen_binary (ASHIFT
, mode
, op0
, GEN_INT (val
));
1791 /* x*2 is x+x and x*(-1) is -x */
1792 if (GET_CODE (trueop1
) == CONST_DOUBLE
1793 && GET_MODE_CLASS (GET_MODE (trueop1
)) == MODE_FLOAT
1794 && GET_MODE (op0
) == mode
)
1797 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
1799 if (REAL_VALUES_EQUAL (d
, dconst2
))
1800 return simplify_gen_binary (PLUS
, mode
, op0
, copy_rtx (op0
));
1802 if (REAL_VALUES_EQUAL (d
, dconstm1
))
1803 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
1806 /* Reassociate multiplication, but for floating point MULTs
1807 only when the user specifies unsafe math optimizations. */
1808 if (! FLOAT_MODE_P (mode
)
1809 || flag_unsafe_math_optimizations
)
1811 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
1818 if (trueop1
== const0_rtx
)
1820 if (GET_CODE (trueop1
) == CONST_INT
1821 && ((INTVAL (trueop1
) & GET_MODE_MASK (mode
))
1822 == GET_MODE_MASK (mode
)))
1824 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
1826 /* A | (~A) -> -1 */
1827 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
1828 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
1829 && ! side_effects_p (op0
)
1830 && GET_MODE_CLASS (mode
) != MODE_CC
)
1832 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
1838 if (trueop1
== const0_rtx
)
1840 if (GET_CODE (trueop1
) == CONST_INT
1841 && ((INTVAL (trueop1
) & GET_MODE_MASK (mode
))
1842 == GET_MODE_MASK (mode
)))
1843 return simplify_gen_unary (NOT
, mode
, op0
, mode
);
1844 if (trueop0
== trueop1
1845 && ! side_effects_p (op0
)
1846 && GET_MODE_CLASS (mode
) != MODE_CC
)
1849 /* Canonicalize XOR of the most significant bit to PLUS. */
1850 if ((GET_CODE (op1
) == CONST_INT
1851 || GET_CODE (op1
) == CONST_DOUBLE
)
1852 && mode_signbit_p (mode
, op1
))
1853 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
1854 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
1855 if ((GET_CODE (op1
) == CONST_INT
1856 || GET_CODE (op1
) == CONST_DOUBLE
)
1857 && GET_CODE (op0
) == PLUS
1858 && (GET_CODE (XEXP (op0
, 1)) == CONST_INT
1859 || GET_CODE (XEXP (op0
, 1)) == CONST_DOUBLE
)
1860 && mode_signbit_p (mode
, XEXP (op0
, 1)))
1861 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
1862 simplify_gen_binary (XOR
, mode
, op1
,
1865 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
1871 if (trueop1
== const0_rtx
&& ! side_effects_p (op0
))
1873 /* If we are turning off bits already known off in OP0, we need
1875 if (GET_CODE (trueop1
) == CONST_INT
1876 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
1877 && (nonzero_bits (trueop0
, mode
) & ~INTVAL (trueop1
)) == 0)
1879 if (trueop0
== trueop1
&& ! side_effects_p (op0
)
1880 && GET_MODE_CLASS (mode
) != MODE_CC
)
1883 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
1884 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
1885 && ! side_effects_p (op0
)
1886 && GET_MODE_CLASS (mode
) != MODE_CC
)
1888 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1889 ((A & N) + B) & M -> (A + B) & M
1890 Similarly if (N & M) == 0,
1891 ((A | N) + B) & M -> (A + B) & M
1892 and for - instead of + and/or ^ instead of |. */
1893 if (GET_CODE (trueop1
) == CONST_INT
1894 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
1895 && ~INTVAL (trueop1
)
1896 && (INTVAL (trueop1
) & (INTVAL (trueop1
) + 1)) == 0
1897 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
))
1902 pmop
[0] = XEXP (op0
, 0);
1903 pmop
[1] = XEXP (op0
, 1);
1905 for (which
= 0; which
< 2; which
++)
1908 switch (GET_CODE (tem
))
1911 if (GET_CODE (XEXP (tem
, 1)) == CONST_INT
1912 && (INTVAL (XEXP (tem
, 1)) & INTVAL (trueop1
))
1913 == INTVAL (trueop1
))
1914 pmop
[which
] = XEXP (tem
, 0);
1918 if (GET_CODE (XEXP (tem
, 1)) == CONST_INT
1919 && (INTVAL (XEXP (tem
, 1)) & INTVAL (trueop1
)) == 0)
1920 pmop
[which
] = XEXP (tem
, 0);
1927 if (pmop
[0] != XEXP (op0
, 0) || pmop
[1] != XEXP (op0
, 1))
1929 tem
= simplify_gen_binary (GET_CODE (op0
), mode
,
1931 return simplify_gen_binary (code
, mode
, tem
, op1
);
1934 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
1940 /* 0/x is 0 (or x&0 if x has side-effects). */
1941 if (trueop0
== const0_rtx
)
1942 return side_effects_p (op1
)
1943 ? simplify_gen_binary (AND
, mode
, op1
, const0_rtx
)
1946 if (trueop1
== const1_rtx
)
1948 /* Handle narrowing UDIV. */
1949 rtx x
= gen_lowpart_common (mode
, op0
);
1952 if (mode
!= GET_MODE (op0
) && GET_MODE (op0
) != VOIDmode
)
1953 return gen_lowpart_SUBREG (mode
, op0
);
1956 /* Convert divide by power of two into shift. */
1957 if (GET_CODE (trueop1
) == CONST_INT
1958 && (arg1
= exact_log2 (INTVAL (trueop1
))) > 0)
1959 return simplify_gen_binary (LSHIFTRT
, mode
, op0
, GEN_INT (arg1
));
1963 /* Handle floating point and integers separately. */
1964 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
1966 /* Maybe change 0.0 / x to 0.0. This transformation isn't
1967 safe for modes with NaNs, since 0.0 / 0.0 will then be
1968 NaN rather than 0.0. Nor is it safe for modes with signed
1969 zeros, since dividing 0 by a negative number gives -0.0 */
1970 if (trueop0
== CONST0_RTX (mode
)
1971 && !HONOR_NANS (mode
)
1972 && !HONOR_SIGNED_ZEROS (mode
)
1973 && ! side_effects_p (op1
))
1976 if (trueop1
== CONST1_RTX (mode
)
1977 && !HONOR_SNANS (mode
))
1980 if (GET_CODE (trueop1
) == CONST_DOUBLE
1981 && trueop1
!= CONST0_RTX (mode
))
1984 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
1987 if (REAL_VALUES_EQUAL (d
, dconstm1
)
1988 && !HONOR_SNANS (mode
))
1989 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
1991 /* Change FP division by a constant into multiplication.
1992 Only do this with -funsafe-math-optimizations. */
1993 if (flag_unsafe_math_optimizations
1994 && !REAL_VALUES_EQUAL (d
, dconst0
))
1996 REAL_ARITHMETIC (d
, RDIV_EXPR
, dconst1
, d
);
1997 tem
= CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1998 return simplify_gen_binary (MULT
, mode
, op0
, tem
);
2004 /* 0/x is 0 (or x&0 if x has side-effects). */
2005 if (trueop0
== const0_rtx
)
2006 return side_effects_p (op1
)
2007 ? simplify_gen_binary (AND
, mode
, op1
, const0_rtx
)
2010 if (trueop1
== const1_rtx
)
2012 /* Handle narrowing DIV. */
2013 rtx x
= gen_lowpart_common (mode
, op0
);
2016 if (mode
!= GET_MODE (op0
) && GET_MODE (op0
) != VOIDmode
)
2017 return gen_lowpart_SUBREG (mode
, op0
);
2021 if (trueop1
== constm1_rtx
)
2023 rtx x
= gen_lowpart_common (mode
, op0
);
2025 x
= (mode
!= GET_MODE (op0
) && GET_MODE (op0
) != VOIDmode
)
2026 ? gen_lowpart_SUBREG (mode
, op0
) : op0
;
2027 return simplify_gen_unary (NEG
, mode
, x
, mode
);
2033 /* 0%x is 0 (or x&0 if x has side-effects). */
2034 if (trueop0
== const0_rtx
)
2035 return side_effects_p (op1
)
2036 ? simplify_gen_binary (AND
, mode
, op1
, const0_rtx
)
2038 /* x%1 is 0 (of x&0 if x has side-effects). */
2039 if (trueop1
== const1_rtx
)
2040 return side_effects_p (op0
)
2041 ? simplify_gen_binary (AND
, mode
, op0
, const0_rtx
)
2043 /* Implement modulus by power of two as AND. */
2044 if (GET_CODE (trueop1
) == CONST_INT
2045 && exact_log2 (INTVAL (trueop1
)) > 0)
2046 return simplify_gen_binary (AND
, mode
, op0
,
2047 GEN_INT (INTVAL (op1
) - 1));
2051 /* 0%x is 0 (or x&0 if x has side-effects). */
2052 if (trueop0
== const0_rtx
)
2053 return side_effects_p (op1
)
2054 ? simplify_gen_binary (AND
, mode
, op1
, const0_rtx
)
2056 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2057 if (trueop1
== const1_rtx
|| trueop1
== constm1_rtx
)
2058 return side_effects_p (op0
)
2059 ? simplify_gen_binary (AND
, mode
, op0
, const0_rtx
)
2066 /* Rotating ~0 always results in ~0. */
2067 if (GET_CODE (trueop0
) == CONST_INT
&& width
<= HOST_BITS_PER_WIDE_INT
2068 && (unsigned HOST_WIDE_INT
) INTVAL (trueop0
) == GET_MODE_MASK (mode
)
2069 && ! side_effects_p (op1
))
2072 /* Fall through.... */
2076 if (trueop1
== const0_rtx
)
2078 if (trueop0
== const0_rtx
&& ! side_effects_p (op1
))
2083 if (width
<= HOST_BITS_PER_WIDE_INT
2084 && GET_CODE (trueop1
) == CONST_INT
2085 && INTVAL (trueop1
) == (HOST_WIDE_INT
) 1 << (width
-1)
2086 && ! side_effects_p (op0
))
2088 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2090 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2096 if (width
<= HOST_BITS_PER_WIDE_INT
2097 && GET_CODE (trueop1
) == CONST_INT
2098 && ((unsigned HOST_WIDE_INT
) INTVAL (trueop1
)
2099 == (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
) >> 1)
2100 && ! side_effects_p (op0
))
2102 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2104 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2110 if (trueop1
== const0_rtx
&& ! side_effects_p (op0
))
2112 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2114 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2120 if (trueop1
== constm1_rtx
&& ! side_effects_p (op0
))
2122 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2124 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2133 /* ??? There are simplifications that can be done. */
2137 if (!VECTOR_MODE_P (mode
))
2139 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
2140 gcc_assert (mode
== GET_MODE_INNER (GET_MODE (trueop0
)));
2141 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
2142 gcc_assert (XVECLEN (trueop1
, 0) == 1);
2143 gcc_assert (GET_CODE (XVECEXP (trueop1
, 0, 0)) == CONST_INT
);
2145 if (GET_CODE (trueop0
) == CONST_VECTOR
)
2146 return CONST_VECTOR_ELT (trueop0
, INTVAL (XVECEXP
2151 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
2152 gcc_assert (GET_MODE_INNER (mode
)
2153 == GET_MODE_INNER (GET_MODE (trueop0
)));
2154 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
2156 if (GET_CODE (trueop0
) == CONST_VECTOR
)
2158 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
2159 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
2160 rtvec v
= rtvec_alloc (n_elts
);
2163 gcc_assert (XVECLEN (trueop1
, 0) == (int) n_elts
);
2164 for (i
= 0; i
< n_elts
; i
++)
2166 rtx x
= XVECEXP (trueop1
, 0, i
);
2168 gcc_assert (GET_CODE (x
) == CONST_INT
);
2169 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
,
2173 return gen_rtx_CONST_VECTOR (mode
, v
);
2179 enum machine_mode op0_mode
= (GET_MODE (trueop0
) != VOIDmode
2180 ? GET_MODE (trueop0
)
2181 : GET_MODE_INNER (mode
));
2182 enum machine_mode op1_mode
= (GET_MODE (trueop1
) != VOIDmode
2183 ? GET_MODE (trueop1
)
2184 : GET_MODE_INNER (mode
));
2186 gcc_assert (VECTOR_MODE_P (mode
));
2187 gcc_assert (GET_MODE_SIZE (op0_mode
) + GET_MODE_SIZE (op1_mode
)
2188 == GET_MODE_SIZE (mode
));
2190 if (VECTOR_MODE_P (op0_mode
))
2191 gcc_assert (GET_MODE_INNER (mode
)
2192 == GET_MODE_INNER (op0_mode
));
2194 gcc_assert (GET_MODE_INNER (mode
) == op0_mode
);
2196 if (VECTOR_MODE_P (op1_mode
))
2197 gcc_assert (GET_MODE_INNER (mode
)
2198 == GET_MODE_INNER (op1_mode
));
2200 gcc_assert (GET_MODE_INNER (mode
) == op1_mode
);
2202 if ((GET_CODE (trueop0
) == CONST_VECTOR
2203 || GET_CODE (trueop0
) == CONST_INT
2204 || GET_CODE (trueop0
) == CONST_DOUBLE
)
2205 && (GET_CODE (trueop1
) == CONST_VECTOR
2206 || GET_CODE (trueop1
) == CONST_INT
2207 || GET_CODE (trueop1
) == CONST_DOUBLE
))
2209 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
2210 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
2211 rtvec v
= rtvec_alloc (n_elts
);
2213 unsigned in_n_elts
= 1;
2215 if (VECTOR_MODE_P (op0_mode
))
2216 in_n_elts
= (GET_MODE_SIZE (op0_mode
) / elt_size
);
2217 for (i
= 0; i
< n_elts
; i
++)
2221 if (!VECTOR_MODE_P (op0_mode
))
2222 RTVEC_ELT (v
, i
) = trueop0
;
2224 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
, i
);
2228 if (!VECTOR_MODE_P (op1_mode
))
2229 RTVEC_ELT (v
, i
) = trueop1
;
2231 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop1
,
2236 return gen_rtx_CONST_VECTOR (mode
, v
);
2248 /* Get the integer argument values in two forms:
2249 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
2251 arg0
= INTVAL (trueop0
);
2252 arg1
= INTVAL (trueop1
);
2254 if (width
< HOST_BITS_PER_WIDE_INT
)
2256 arg0
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
2257 arg1
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
2260 if (arg0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
2261 arg0s
|= ((HOST_WIDE_INT
) (-1) << width
);
2264 if (arg1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
2265 arg1s
|= ((HOST_WIDE_INT
) (-1) << width
);
2273 /* Compute the value of the arithmetic. */
2278 val
= arg0s
+ arg1s
;
2282 val
= arg0s
- arg1s
;
2286 val
= arg0s
* arg1s
;
2291 || (arg0s
== (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
2294 val
= arg0s
/ arg1s
;
2299 || (arg0s
== (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
2302 val
= arg0s
% arg1s
;
2307 || (arg0s
== (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
2310 val
= (unsigned HOST_WIDE_INT
) arg0
/ arg1
;
2315 || (arg0s
== (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)
2318 val
= (unsigned HOST_WIDE_INT
) arg0
% arg1
;
2336 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure the
2337 value is in range. We can't return any old value for out-of-range
2338 arguments because either the middle-end (via shift_truncation_mask)
2339 or the back-end might be relying on target-specific knowledge.
2340 Nor can we rely on shift_truncation_mask, since the shift might
2341 not be part of an ashlM3, lshrM3 or ashrM3 instruction. */
2342 if (SHIFT_COUNT_TRUNCATED
)
2343 arg1
= (unsigned HOST_WIDE_INT
) arg1
% width
;
2344 else if (arg1
< 0 || arg1
>= GET_MODE_BITSIZE (mode
))
2347 val
= (code
== ASHIFT
2348 ? ((unsigned HOST_WIDE_INT
) arg0
) << arg1
2349 : ((unsigned HOST_WIDE_INT
) arg0
) >> arg1
);
2351 /* Sign-extend the result for arithmetic right shifts. */
2352 if (code
== ASHIFTRT
&& arg0s
< 0 && arg1
> 0)
2353 val
|= ((HOST_WIDE_INT
) -1) << (width
- arg1
);
2361 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << (width
- arg1
))
2362 | (((unsigned HOST_WIDE_INT
) arg0
) >> arg1
));
2370 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << arg1
)
2371 | (((unsigned HOST_WIDE_INT
) arg0
) >> (width
- arg1
)));
2375 /* Do nothing here. */
2379 val
= arg0s
<= arg1s
? arg0s
: arg1s
;
2383 val
= ((unsigned HOST_WIDE_INT
) arg0
2384 <= (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
2388 val
= arg0s
> arg1s
? arg0s
: arg1s
;
2392 val
= ((unsigned HOST_WIDE_INT
) arg0
2393 > (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
2400 /* ??? There are simplifications that can be done. */
2407 val
= trunc_int_for_mode (val
, mode
);
2409 return GEN_INT (val
);
2412 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
2415 Rather than test for specific case, we do this by a brute-force method
2416 and do all possible simplifications until no more changes occur. Then
2417 we rebuild the operation.
2419 If FORCE is true, then always generate the rtx. This is used to
2420 canonicalize stuff emitted from simplify_gen_binary. Note that this
2421 can still fail if the rtx is too complex. It won't fail just because
2422 the result is not 'simpler' than the input, however. */
2424 struct simplify_plus_minus_op_data
2431 simplify_plus_minus_op_data_cmp (const void *p1
, const void *p2
)
2433 const struct simplify_plus_minus_op_data
*d1
= p1
;
2434 const struct simplify_plus_minus_op_data
*d2
= p2
;
2436 return (commutative_operand_precedence (d2
->op
)
2437 - commutative_operand_precedence (d1
->op
));
2441 simplify_plus_minus (enum rtx_code code
, enum machine_mode mode
, rtx op0
,
2444 struct simplify_plus_minus_op_data ops
[8];
2446 int n_ops
= 2, input_ops
= 2, input_consts
= 0, n_consts
;
2450 memset (ops
, 0, sizeof ops
);
2452 /* Set up the two operands and then expand them until nothing has been
2453 changed. If we run out of room in our array, give up; this should
2454 almost never happen. */
2459 ops
[1].neg
= (code
== MINUS
);
2465 for (i
= 0; i
< n_ops
; i
++)
2467 rtx this_op
= ops
[i
].op
;
2468 int this_neg
= ops
[i
].neg
;
2469 enum rtx_code this_code
= GET_CODE (this_op
);
2478 ops
[n_ops
].op
= XEXP (this_op
, 1);
2479 ops
[n_ops
].neg
= (this_code
== MINUS
) ^ this_neg
;
2482 ops
[i
].op
= XEXP (this_op
, 0);
2488 ops
[i
].op
= XEXP (this_op
, 0);
2489 ops
[i
].neg
= ! this_neg
;
2495 && GET_CODE (XEXP (this_op
, 0)) == PLUS
2496 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 0))
2497 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 1)))
2499 ops
[i
].op
= XEXP (XEXP (this_op
, 0), 0);
2500 ops
[n_ops
].op
= XEXP (XEXP (this_op
, 0), 1);
2501 ops
[n_ops
].neg
= this_neg
;
2509 /* ~a -> (-a - 1) */
2512 ops
[n_ops
].op
= constm1_rtx
;
2513 ops
[n_ops
++].neg
= this_neg
;
2514 ops
[i
].op
= XEXP (this_op
, 0);
2515 ops
[i
].neg
= !this_neg
;
2523 ops
[i
].op
= neg_const_int (mode
, this_op
);
2536 /* If we only have two operands, we can't do anything. */
2537 if (n_ops
<= 2 && !force
)
2540 /* Count the number of CONSTs we didn't split above. */
2541 for (i
= 0; i
< n_ops
; i
++)
2542 if (GET_CODE (ops
[i
].op
) == CONST
)
2545 /* Now simplify each pair of operands until nothing changes. The first
2546 time through just simplify constants against each other. */
2553 for (i
= 0; i
< n_ops
- 1; i
++)
2554 for (j
= i
+ 1; j
< n_ops
; j
++)
2556 rtx lhs
= ops
[i
].op
, rhs
= ops
[j
].op
;
2557 int lneg
= ops
[i
].neg
, rneg
= ops
[j
].neg
;
2559 if (lhs
!= 0 && rhs
!= 0
2560 && (! first
|| (CONSTANT_P (lhs
) && CONSTANT_P (rhs
))))
2562 enum rtx_code ncode
= PLUS
;
2568 tem
= lhs
, lhs
= rhs
, rhs
= tem
;
2570 else if (swap_commutative_operands_p (lhs
, rhs
))
2571 tem
= lhs
, lhs
= rhs
, rhs
= tem
;
2573 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
2575 /* Reject "simplifications" that just wrap the two
2576 arguments in a CONST. Failure to do so can result
2577 in infinite recursion with simplify_binary_operation
2578 when it calls us to simplify CONST operations. */
2580 && ! (GET_CODE (tem
) == CONST
2581 && GET_CODE (XEXP (tem
, 0)) == ncode
2582 && XEXP (XEXP (tem
, 0), 0) == lhs
2583 && XEXP (XEXP (tem
, 0), 1) == rhs
)
2584 /* Don't allow -x + -1 -> ~x simplifications in the
2585 first pass. This allows us the chance to combine
2586 the -1 with other constants. */
2588 && GET_CODE (tem
) == NOT
2589 && XEXP (tem
, 0) == rhs
))
2592 if (GET_CODE (tem
) == NEG
)
2593 tem
= XEXP (tem
, 0), lneg
= !lneg
;
2594 if (GET_CODE (tem
) == CONST_INT
&& lneg
)
2595 tem
= neg_const_int (mode
, tem
), lneg
= 0;
2599 ops
[j
].op
= NULL_RTX
;
2609 /* Pack all the operands to the lower-numbered entries. */
2610 for (i
= 0, j
= 0; j
< n_ops
; j
++)
2615 /* Sort the operations based on swap_commutative_operands_p. */
2616 qsort (ops
, n_ops
, sizeof (*ops
), simplify_plus_minus_op_data_cmp
);
2618 /* Create (minus -C X) instead of (neg (const (plus X C))). */
2620 && GET_CODE (ops
[1].op
) == CONST_INT
2621 && CONSTANT_P (ops
[0].op
)
2623 return gen_rtx_fmt_ee (MINUS
, mode
, ops
[1].op
, ops
[0].op
);
2625 /* We suppressed creation of trivial CONST expressions in the
2626 combination loop to avoid recursion. Create one manually now.
2627 The combination loop should have ensured that there is exactly
2628 one CONST_INT, and the sort will have ensured that it is last
2629 in the array and that any other constant will be next-to-last. */
2632 && GET_CODE (ops
[n_ops
- 1].op
) == CONST_INT
2633 && CONSTANT_P (ops
[n_ops
- 2].op
))
2635 rtx value
= ops
[n_ops
- 1].op
;
2636 if (ops
[n_ops
- 1].neg
^ ops
[n_ops
- 2].neg
)
2637 value
= neg_const_int (mode
, value
);
2638 ops
[n_ops
- 2].op
= plus_constant (ops
[n_ops
- 2].op
, INTVAL (value
));
2642 /* Count the number of CONSTs that we generated. */
2644 for (i
= 0; i
< n_ops
; i
++)
2645 if (GET_CODE (ops
[i
].op
) == CONST
)
2648 /* Give up if we didn't reduce the number of operands we had. Make
2649 sure we count a CONST as two operands. If we have the same
2650 number of operands, but have made more CONSTs than before, this
2651 is also an improvement, so accept it. */
2653 && (n_ops
+ n_consts
> input_ops
2654 || (n_ops
+ n_consts
== input_ops
&& n_consts
<= input_consts
)))
2657 /* Put a non-negated operand first, if possible. */
2659 for (i
= 0; i
< n_ops
&& ops
[i
].neg
; i
++)
2662 ops
[0].op
= gen_rtx_NEG (mode
, ops
[0].op
);
2671 /* Now make the result by performing the requested operations. */
2673 for (i
= 1; i
< n_ops
; i
++)
2674 result
= gen_rtx_fmt_ee (ops
[i
].neg
? MINUS
: PLUS
,
2675 mode
, result
, ops
[i
].op
);
2680 /* Like simplify_binary_operation except used for relational operators.
2681 MODE is the mode of the result. If MODE is VOIDmode, both operands must
2684 CMP_MODE specifies in which mode the comparison is done in, so it is
2685 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
2686 the operands or, if both are VOIDmode, the operands are compared in
2687 "infinite precision". */
2689 simplify_relational_operation (enum rtx_code code
, enum machine_mode mode
,
2690 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
2692 rtx tem
, trueop0
, trueop1
;
2694 if (cmp_mode
== VOIDmode
)
2695 cmp_mode
= GET_MODE (op0
);
2696 if (cmp_mode
== VOIDmode
)
2697 cmp_mode
= GET_MODE (op1
);
2699 tem
= simplify_const_relational_operation (code
, cmp_mode
, op0
, op1
);
2702 #ifdef FLOAT_STORE_FLAG_VALUE
2703 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
2705 if (tem
== const0_rtx
)
2706 return CONST0_RTX (mode
);
2707 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
2709 REAL_VALUE_TYPE val
;
2710 val
= FLOAT_STORE_FLAG_VALUE (mode
);
2711 return CONST_DOUBLE_FROM_REAL_VALUE (val
, mode
);
2719 /* For the following tests, ensure const0_rtx is op1. */
2720 if (swap_commutative_operands_p (op0
, op1
)
2721 || (op0
== const0_rtx
&& op1
!= const0_rtx
))
2722 tem
= op0
, op0
= op1
, op1
= tem
, code
= swap_condition (code
);
2724 /* If op0 is a compare, extract the comparison arguments from it. */
2725 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
2726 return simplify_relational_operation (code
, mode
, VOIDmode
,
2727 XEXP (op0
, 0), XEXP (op0
, 1));
2729 if (mode
== VOIDmode
2730 || GET_MODE_CLASS (cmp_mode
) == MODE_CC
2734 trueop0
= avoid_constant_pool_reference (op0
);
2735 trueop1
= avoid_constant_pool_reference (op1
);
2736 return simplify_relational_operation_1 (code
, mode
, cmp_mode
,
2740 /* This part of simplify_relational_operation is only used when CMP_MODE
2741 is not in class MODE_CC (i.e. it is a real comparison).
2743 MODE is the mode of the result, while CMP_MODE specifies in which
2744 mode the comparison is done in, so it is the mode of the operands. */
2746 simplify_relational_operation_1 (enum rtx_code code
, enum machine_mode mode
,
2747 enum machine_mode cmp_mode
, rtx op0
, rtx op1
)
2749 if (GET_CODE (op1
) == CONST_INT
)
2751 if (INTVAL (op1
) == 0 && COMPARISON_P (op0
))
2753 /* If op0 is a comparison, extract the comparison arguments form it. */
2756 if (GET_MODE (op0
) == cmp_mode
)
2757 return simplify_rtx (op0
);
2759 return simplify_gen_relational (GET_CODE (op0
), mode
, VOIDmode
,
2760 XEXP (op0
, 0), XEXP (op0
, 1));
2762 else if (code
== EQ
)
2764 enum rtx_code new_code
= reversed_comparison_code (op0
, NULL_RTX
);
2765 if (new_code
!= UNKNOWN
)
2766 return simplify_gen_relational (new_code
, mode
, VOIDmode
,
2767 XEXP (op0
, 0), XEXP (op0
, 1));
2775 /* Check if the given comparison (done in the given MODE) is actually a
2776 tautology or a contradiction.
2777 If no simplification is possible, this function returns zero.
2778 Otherwise, it returns either const_true_rtx or const0_rtx. */
2781 simplify_const_relational_operation (enum rtx_code code
,
2782 enum machine_mode mode
,
2785 int equal
, op0lt
, op0ltu
, op1lt
, op1ltu
;
2790 gcc_assert (mode
!= VOIDmode
2791 || (GET_MODE (op0
) == VOIDmode
2792 && GET_MODE (op1
) == VOIDmode
));
2794 /* If op0 is a compare, extract the comparison arguments from it. */
2795 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
2796 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
2798 /* We can't simplify MODE_CC values since we don't know what the
2799 actual comparison is. */
2800 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
|| CC0_P (op0
))
2803 /* Make sure the constant is second. */
2804 if (swap_commutative_operands_p (op0
, op1
))
2806 tem
= op0
, op0
= op1
, op1
= tem
;
2807 code
= swap_condition (code
);
2810 trueop0
= avoid_constant_pool_reference (op0
);
2811 trueop1
= avoid_constant_pool_reference (op1
);
2813 /* For integer comparisons of A and B maybe we can simplify A - B and can
2814 then simplify a comparison of that with zero. If A and B are both either
2815 a register or a CONST_INT, this can't help; testing for these cases will
2816 prevent infinite recursion here and speed things up.
2818 If CODE is an unsigned comparison, then we can never do this optimization,
2819 because it gives an incorrect result if the subtraction wraps around zero.
2820 ANSI C defines unsigned operations such that they never overflow, and
2821 thus such cases can not be ignored; but we cannot do it even for
2822 signed comparisons for languages such as Java, so test flag_wrapv. */
2824 if (!flag_wrapv
&& INTEGRAL_MODE_P (mode
) && trueop1
!= const0_rtx
2825 && ! ((REG_P (op0
) || GET_CODE (trueop0
) == CONST_INT
)
2826 && (REG_P (op1
) || GET_CODE (trueop1
) == CONST_INT
))
2827 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
2828 /* We cannot do this for == or != if tem is a nonzero address. */
2829 && ((code
!= EQ
&& code
!= NE
) || ! nonzero_address_p (tem
))
2830 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
)
2831 return simplify_const_relational_operation (signed_condition (code
),
2832 mode
, tem
, const0_rtx
);
2834 if (flag_unsafe_math_optimizations
&& code
== ORDERED
)
2835 return const_true_rtx
;
2837 if (flag_unsafe_math_optimizations
&& code
== UNORDERED
)
2840 /* For modes without NaNs, if the two operands are equal, we know the
2841 result except if they have side-effects. */
2842 if (! HONOR_NANS (GET_MODE (trueop0
))
2843 && rtx_equal_p (trueop0
, trueop1
)
2844 && ! side_effects_p (trueop0
))
2845 equal
= 1, op0lt
= 0, op0ltu
= 0, op1lt
= 0, op1ltu
= 0;
2847 /* If the operands are floating-point constants, see if we can fold
2849 else if (GET_CODE (trueop0
) == CONST_DOUBLE
2850 && GET_CODE (trueop1
) == CONST_DOUBLE
2851 && GET_MODE_CLASS (GET_MODE (trueop0
)) == MODE_FLOAT
)
2853 REAL_VALUE_TYPE d0
, d1
;
2855 REAL_VALUE_FROM_CONST_DOUBLE (d0
, trueop0
);
2856 REAL_VALUE_FROM_CONST_DOUBLE (d1
, trueop1
);
2858 /* Comparisons are unordered iff at least one of the values is NaN. */
2859 if (REAL_VALUE_ISNAN (d0
) || REAL_VALUE_ISNAN (d1
))
2869 return const_true_rtx
;
2882 equal
= REAL_VALUES_EQUAL (d0
, d1
);
2883 op0lt
= op0ltu
= REAL_VALUES_LESS (d0
, d1
);
2884 op1lt
= op1ltu
= REAL_VALUES_LESS (d1
, d0
);
2887 /* Otherwise, see if the operands are both integers. */
2888 else if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
2889 && (GET_CODE (trueop0
) == CONST_DOUBLE
2890 || GET_CODE (trueop0
) == CONST_INT
)
2891 && (GET_CODE (trueop1
) == CONST_DOUBLE
2892 || GET_CODE (trueop1
) == CONST_INT
))
2894 int width
= GET_MODE_BITSIZE (mode
);
2895 HOST_WIDE_INT l0s
, h0s
, l1s
, h1s
;
2896 unsigned HOST_WIDE_INT l0u
, h0u
, l1u
, h1u
;
2898 /* Get the two words comprising each integer constant. */
2899 if (GET_CODE (trueop0
) == CONST_DOUBLE
)
2901 l0u
= l0s
= CONST_DOUBLE_LOW (trueop0
);
2902 h0u
= h0s
= CONST_DOUBLE_HIGH (trueop0
);
2906 l0u
= l0s
= INTVAL (trueop0
);
2907 h0u
= h0s
= HWI_SIGN_EXTEND (l0s
);
2910 if (GET_CODE (trueop1
) == CONST_DOUBLE
)
2912 l1u
= l1s
= CONST_DOUBLE_LOW (trueop1
);
2913 h1u
= h1s
= CONST_DOUBLE_HIGH (trueop1
);
2917 l1u
= l1s
= INTVAL (trueop1
);
2918 h1u
= h1s
= HWI_SIGN_EXTEND (l1s
);
2921 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
2922 we have to sign or zero-extend the values. */
2923 if (width
!= 0 && width
< HOST_BITS_PER_WIDE_INT
)
2925 l0u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
2926 l1u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
2928 if (l0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
2929 l0s
|= ((HOST_WIDE_INT
) (-1) << width
);
2931 if (l1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
2932 l1s
|= ((HOST_WIDE_INT
) (-1) << width
);
2934 if (width
!= 0 && width
<= HOST_BITS_PER_WIDE_INT
)
2935 h0u
= h1u
= 0, h0s
= HWI_SIGN_EXTEND (l0s
), h1s
= HWI_SIGN_EXTEND (l1s
);
2937 equal
= (h0u
== h1u
&& l0u
== l1u
);
2938 op0lt
= (h0s
< h1s
|| (h0s
== h1s
&& l0u
< l1u
));
2939 op1lt
= (h1s
< h0s
|| (h1s
== h0s
&& l1u
< l0u
));
2940 op0ltu
= (h0u
< h1u
|| (h0u
== h1u
&& l0u
< l1u
));
2941 op1ltu
= (h1u
< h0u
|| (h1u
== h0u
&& l1u
< l0u
));
2944 /* Otherwise, there are some code-specific tests we can make. */
2947 /* Optimize comparisons with upper and lower bounds. */
2948 if (SCALAR_INT_MODE_P (mode
)
2949 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
2962 get_mode_bounds (mode
, sign
, mode
, &mmin
, &mmax
);
2969 /* x >= min is always true. */
2970 if (rtx_equal_p (trueop1
, mmin
))
2971 tem
= const_true_rtx
;
2977 /* x <= max is always true. */
2978 if (rtx_equal_p (trueop1
, mmax
))
2979 tem
= const_true_rtx
;
2984 /* x > max is always false. */
2985 if (rtx_equal_p (trueop1
, mmax
))
2991 /* x < min is always false. */
2992 if (rtx_equal_p (trueop1
, mmin
))
2999 if (tem
== const0_rtx
3000 || tem
== const_true_rtx
)
3007 if (trueop1
== const0_rtx
&& nonzero_address_p (op0
))
3012 if (trueop1
== const0_rtx
&& nonzero_address_p (op0
))
3013 return const_true_rtx
;
3017 /* Optimize abs(x) < 0.0. */
3018 if (trueop1
== CONST0_RTX (mode
) && !HONOR_SNANS (mode
))
3020 tem
= GET_CODE (trueop0
) == FLOAT_EXTEND
? XEXP (trueop0
, 0)
3022 if (GET_CODE (tem
) == ABS
)
3028 /* Optimize abs(x) >= 0.0. */
3029 if (trueop1
== CONST0_RTX (mode
) && !HONOR_NANS (mode
))
3031 tem
= GET_CODE (trueop0
) == FLOAT_EXTEND
? XEXP (trueop0
, 0)
3033 if (GET_CODE (tem
) == ABS
)
3034 return const_true_rtx
;
3039 /* Optimize ! (abs(x) < 0.0). */
3040 if (trueop1
== CONST0_RTX (mode
))
3042 tem
= GET_CODE (trueop0
) == FLOAT_EXTEND
? XEXP (trueop0
, 0)
3044 if (GET_CODE (tem
) == ABS
)
3045 return const_true_rtx
;
3056 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
3062 return equal
? const_true_rtx
: const0_rtx
;
3065 return ! equal
? const_true_rtx
: const0_rtx
;
3068 return op0lt
? const_true_rtx
: const0_rtx
;
3071 return op1lt
? const_true_rtx
: const0_rtx
;
3073 return op0ltu
? const_true_rtx
: const0_rtx
;
3075 return op1ltu
? const_true_rtx
: const0_rtx
;
3078 return equal
|| op0lt
? const_true_rtx
: const0_rtx
;
3081 return equal
|| op1lt
? const_true_rtx
: const0_rtx
;
3083 return equal
|| op0ltu
? const_true_rtx
: const0_rtx
;
3085 return equal
|| op1ltu
? const_true_rtx
: const0_rtx
;
3087 return const_true_rtx
;
3095 /* Simplify CODE, an operation with result mode MODE and three operands,
3096 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
3097 a constant. Return 0 if no simplifications is possible. */
3100 simplify_ternary_operation (enum rtx_code code
, enum machine_mode mode
,
3101 enum machine_mode op0_mode
, rtx op0
, rtx op1
,
3104 unsigned int width
= GET_MODE_BITSIZE (mode
);
3106 /* VOIDmode means "infinite" precision. */
3108 width
= HOST_BITS_PER_WIDE_INT
;
3114 if (GET_CODE (op0
) == CONST_INT
3115 && GET_CODE (op1
) == CONST_INT
3116 && GET_CODE (op2
) == CONST_INT
3117 && ((unsigned) INTVAL (op1
) + (unsigned) INTVAL (op2
) <= width
)
3118 && width
<= (unsigned) HOST_BITS_PER_WIDE_INT
)
3120 /* Extracting a bit-field from a constant */
3121 HOST_WIDE_INT val
= INTVAL (op0
);
3123 if (BITS_BIG_ENDIAN
)
3124 val
>>= (GET_MODE_BITSIZE (op0_mode
)
3125 - INTVAL (op2
) - INTVAL (op1
));
3127 val
>>= INTVAL (op2
);
3129 if (HOST_BITS_PER_WIDE_INT
!= INTVAL (op1
))
3131 /* First zero-extend. */
3132 val
&= ((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1;
3133 /* If desired, propagate sign bit. */
3134 if (code
== SIGN_EXTRACT
3135 && (val
& ((HOST_WIDE_INT
) 1 << (INTVAL (op1
) - 1))))
3136 val
|= ~ (((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1);
3139 /* Clear the bits that don't belong in our mode,
3140 unless they and our sign bit are all one.
3141 So we get either a reasonable negative value or a reasonable
3142 unsigned value for this mode. */
3143 if (width
< HOST_BITS_PER_WIDE_INT
3144 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3145 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3146 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3148 return GEN_INT (val
);
3153 if (GET_CODE (op0
) == CONST_INT
)
3154 return op0
!= const0_rtx
? op1
: op2
;
3156 /* Convert c ? a : a into "a". */
3157 if (rtx_equal_p (op1
, op2
) && ! side_effects_p (op0
))
3160 /* Convert a != b ? a : b into "a". */
3161 if (GET_CODE (op0
) == NE
3162 && ! side_effects_p (op0
)
3163 && ! HONOR_NANS (mode
)
3164 && ! HONOR_SIGNED_ZEROS (mode
)
3165 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
3166 && rtx_equal_p (XEXP (op0
, 1), op2
))
3167 || (rtx_equal_p (XEXP (op0
, 0), op2
)
3168 && rtx_equal_p (XEXP (op0
, 1), op1
))))
3171 /* Convert a == b ? a : b into "b". */
3172 if (GET_CODE (op0
) == EQ
3173 && ! side_effects_p (op0
)
3174 && ! HONOR_NANS (mode
)
3175 && ! HONOR_SIGNED_ZEROS (mode
)
3176 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
3177 && rtx_equal_p (XEXP (op0
, 1), op2
))
3178 || (rtx_equal_p (XEXP (op0
, 0), op2
)
3179 && rtx_equal_p (XEXP (op0
, 1), op1
))))
3182 if (COMPARISON_P (op0
) && ! side_effects_p (op0
))
3184 enum machine_mode cmp_mode
= (GET_MODE (XEXP (op0
, 0)) == VOIDmode
3185 ? GET_MODE (XEXP (op0
, 1))
3186 : GET_MODE (XEXP (op0
, 0)));
3189 /* Look for happy constants in op1 and op2. */
3190 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op2
) == CONST_INT
)
3192 HOST_WIDE_INT t
= INTVAL (op1
);
3193 HOST_WIDE_INT f
= INTVAL (op2
);
3195 if (t
== STORE_FLAG_VALUE
&& f
== 0)
3196 code
= GET_CODE (op0
);
3197 else if (t
== 0 && f
== STORE_FLAG_VALUE
)
3200 tmp
= reversed_comparison_code (op0
, NULL_RTX
);
3208 return simplify_gen_relational (code
, mode
, cmp_mode
,
3209 XEXP (op0
, 0), XEXP (op0
, 1));
3212 if (cmp_mode
== VOIDmode
)
3213 cmp_mode
= op0_mode
;
3214 temp
= simplify_relational_operation (GET_CODE (op0
), op0_mode
,
3215 cmp_mode
, XEXP (op0
, 0),
3218 /* See if any simplifications were possible. */
3221 if (GET_CODE (temp
) == CONST_INT
)
3222 return temp
== const0_rtx
? op2
: op1
;
3224 return gen_rtx_IF_THEN_ELSE (mode
, temp
, op1
, op2
);
3230 gcc_assert (GET_MODE (op0
) == mode
);
3231 gcc_assert (GET_MODE (op1
) == mode
);
3232 gcc_assert (VECTOR_MODE_P (mode
));
3233 op2
= avoid_constant_pool_reference (op2
);
3234 if (GET_CODE (op2
) == CONST_INT
)
3236 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
3237 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3238 int mask
= (1 << n_elts
) - 1;
3240 if (!(INTVAL (op2
) & mask
))
3242 if ((INTVAL (op2
) & mask
) == mask
)
3245 op0
= avoid_constant_pool_reference (op0
);
3246 op1
= avoid_constant_pool_reference (op1
);
3247 if (GET_CODE (op0
) == CONST_VECTOR
3248 && GET_CODE (op1
) == CONST_VECTOR
)
3250 rtvec v
= rtvec_alloc (n_elts
);
3253 for (i
= 0; i
< n_elts
; i
++)
3254 RTVEC_ELT (v
, i
) = (INTVAL (op2
) & (1 << i
)
3255 ? CONST_VECTOR_ELT (op0
, i
)
3256 : CONST_VECTOR_ELT (op1
, i
));
3257 return gen_rtx_CONST_VECTOR (mode
, v
);
3269 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
3270 returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
3272 Works by unpacking OP into a collection of 8-bit values
3273 represented as a little-endian array of 'unsigned char', selecting by BYTE,
3274 and then repacking them again for OUTERMODE. */
3277 simplify_immed_subreg (enum machine_mode outermode
, rtx op
,
3278 enum machine_mode innermode
, unsigned int byte
)
3280 /* We support up to 512-bit values (for V8DFmode). */
3284 value_mask
= (1 << value_bit
) - 1
3286 unsigned char value
[max_bitsize
/ value_bit
];
3295 rtvec result_v
= NULL
;
3296 enum mode_class outer_class
;
3297 enum machine_mode outer_submode
;
3299 /* Some ports misuse CCmode. */
3300 if (GET_MODE_CLASS (outermode
) == MODE_CC
&& GET_CODE (op
) == CONST_INT
)
3303 /* Unpack the value. */
3305 if (GET_CODE (op
) == CONST_VECTOR
)
3307 num_elem
= CONST_VECTOR_NUNITS (op
);
3308 elems
= &CONST_VECTOR_ELT (op
, 0);
3309 elem_bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (innermode
));
3315 elem_bitsize
= max_bitsize
;
3317 /* If this asserts, it is too complicated; reducing value_bit may help. */
3318 gcc_assert (BITS_PER_UNIT
% value_bit
== 0);
3319 /* I don't know how to handle endianness of sub-units. */
3320 gcc_assert (elem_bitsize
% BITS_PER_UNIT
== 0);
3322 for (elem
= 0; elem
< num_elem
; elem
++)
3325 rtx el
= elems
[elem
];
3327 /* Vectors are kept in target memory order. (This is probably
3330 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
3331 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
3333 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
3334 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
3335 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
3336 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
3337 vp
= value
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
3340 switch (GET_CODE (el
))
3344 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
3346 *vp
++ = INTVAL (el
) >> i
;
3347 /* CONST_INTs are always logically sign-extended. */
3348 for (; i
< elem_bitsize
; i
+= value_bit
)
3349 *vp
++ = INTVAL (el
) < 0 ? -1 : 0;
3353 if (GET_MODE (el
) == VOIDmode
)
3355 /* If this triggers, someone should have generated a
3356 CONST_INT instead. */
3357 gcc_assert (elem_bitsize
> HOST_BITS_PER_WIDE_INT
);
3359 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
3360 *vp
++ = CONST_DOUBLE_LOW (el
) >> i
;
3361 while (i
< HOST_BITS_PER_WIDE_INT
* 2 && i
< elem_bitsize
)
3364 = CONST_DOUBLE_HIGH (el
) >> (i
- HOST_BITS_PER_WIDE_INT
);
3367 /* It shouldn't matter what's done here, so fill it with
3369 for (; i
< max_bitsize
; i
+= value_bit
)
3374 long tmp
[max_bitsize
/ 32];
3375 int bitsize
= GET_MODE_BITSIZE (GET_MODE (el
));
3377 gcc_assert (GET_MODE_CLASS (GET_MODE (el
)) == MODE_FLOAT
);
3378 gcc_assert (bitsize
<= elem_bitsize
);
3379 gcc_assert (bitsize
% value_bit
== 0);
3381 real_to_target (tmp
, CONST_DOUBLE_REAL_VALUE (el
),
3384 /* real_to_target produces its result in words affected by
3385 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
3386 and use WORDS_BIG_ENDIAN instead; see the documentation
3387 of SUBREG in rtl.texi. */
3388 for (i
= 0; i
< bitsize
; i
+= value_bit
)
3391 if (WORDS_BIG_ENDIAN
)
3392 ibase
= bitsize
- 1 - i
;
3395 *vp
++ = tmp
[ibase
/ 32] >> i
% 32;
3398 /* It shouldn't matter what's done here, so fill it with
3400 for (; i
< elem_bitsize
; i
+= value_bit
)
3410 /* Now, pick the right byte to start with. */
3411 /* Renumber BYTE so that the least-significant byte is byte 0. A special
3412 case is paradoxical SUBREGs, which shouldn't be adjusted since they
3413 will already have offset 0. */
3414 if (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
))
3416 unsigned ibyte
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
)
3418 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
3419 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
3420 byte
= (subword_byte
% UNITS_PER_WORD
3421 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
3424 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
3425 so if it's become negative it will instead be very large.) */
3426 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
3428 /* Convert from bytes to chunks of size value_bit. */
3429 value_start
= byte
* (BITS_PER_UNIT
/ value_bit
);
3431 /* Re-pack the value. */
3433 if (VECTOR_MODE_P (outermode
))
3435 num_elem
= GET_MODE_NUNITS (outermode
);
3436 result_v
= rtvec_alloc (num_elem
);
3437 elems
= &RTVEC_ELT (result_v
, 0);
3438 outer_submode
= GET_MODE_INNER (outermode
);
3444 outer_submode
= outermode
;
3447 outer_class
= GET_MODE_CLASS (outer_submode
);
3448 elem_bitsize
= GET_MODE_BITSIZE (outer_submode
);
3450 gcc_assert (elem_bitsize
% value_bit
== 0);
3451 gcc_assert (elem_bitsize
+ value_start
* value_bit
<= max_bitsize
);
3453 for (elem
= 0; elem
< num_elem
; elem
++)
3457 /* Vectors are stored in target memory order. (This is probably
3460 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
3461 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
3463 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
3464 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
3465 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
3466 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
3467 vp
= value
+ value_start
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
3470 switch (outer_class
)
3473 case MODE_PARTIAL_INT
:
3475 unsigned HOST_WIDE_INT hi
= 0, lo
= 0;
3478 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
3480 lo
|= (HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
3481 for (; i
< elem_bitsize
; i
+= value_bit
)
3482 hi
|= ((HOST_WIDE_INT
)(*vp
++ & value_mask
)
3483 << (i
- HOST_BITS_PER_WIDE_INT
));
3485 /* immed_double_const doesn't call trunc_int_for_mode. I don't
3487 if (elem_bitsize
<= HOST_BITS_PER_WIDE_INT
)
3488 elems
[elem
] = gen_int_mode (lo
, outer_submode
);
3490 elems
[elem
] = immed_double_const (lo
, hi
, outer_submode
);
3497 long tmp
[max_bitsize
/ 32];
3499 /* real_from_target wants its input in words affected by
3500 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
3501 and use WORDS_BIG_ENDIAN instead; see the documentation
3502 of SUBREG in rtl.texi. */
3503 for (i
= 0; i
< max_bitsize
/ 32; i
++)
3505 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
3508 if (WORDS_BIG_ENDIAN
)
3509 ibase
= elem_bitsize
- 1 - i
;
3512 tmp
[ibase
/ 32] |= (*vp
++ & value_mask
) << i
% 32;
3515 real_from_target (&r
, tmp
, outer_submode
);
3516 elems
[elem
] = CONST_DOUBLE_FROM_REAL_VALUE (r
, outer_submode
);
3524 if (VECTOR_MODE_P (outermode
))
3525 return gen_rtx_CONST_VECTOR (outermode
, result_v
);
3530 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
3531 Return 0 if no simplifications are possible. */
3533 simplify_subreg (enum machine_mode outermode
, rtx op
,
3534 enum machine_mode innermode
, unsigned int byte
)
3536 /* Little bit of sanity checking. */
3537 gcc_assert (innermode
!= VOIDmode
);
3538 gcc_assert (outermode
!= VOIDmode
);
3539 gcc_assert (innermode
!= BLKmode
);
3540 gcc_assert (outermode
!= BLKmode
);
3542 gcc_assert (GET_MODE (op
) == innermode
3543 || GET_MODE (op
) == VOIDmode
);
3545 gcc_assert ((byte
% GET_MODE_SIZE (outermode
)) == 0);
3546 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
3548 if (outermode
== innermode
&& !byte
)
3551 if (GET_CODE (op
) == CONST_INT
3552 || GET_CODE (op
) == CONST_DOUBLE
3553 || GET_CODE (op
) == CONST_VECTOR
)
3554 return simplify_immed_subreg (outermode
, op
, innermode
, byte
);
3556 /* Changing mode twice with SUBREG => just change it once,
3557 or not at all if changing back op starting mode. */
3558 if (GET_CODE (op
) == SUBREG
)
3560 enum machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
3561 int final_offset
= byte
+ SUBREG_BYTE (op
);
3564 if (outermode
== innermostmode
3565 && byte
== 0 && SUBREG_BYTE (op
) == 0)
3566 return SUBREG_REG (op
);
3568 /* The SUBREG_BYTE represents offset, as if the value were stored
3569 in memory. Irritating exception is paradoxical subreg, where
3570 we define SUBREG_BYTE to be 0. On big endian machines, this
3571 value should be negative. For a moment, undo this exception. */
3572 if (byte
== 0 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
3574 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
3575 if (WORDS_BIG_ENDIAN
)
3576 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3577 if (BYTES_BIG_ENDIAN
)
3578 final_offset
+= difference
% UNITS_PER_WORD
;
3580 if (SUBREG_BYTE (op
) == 0
3581 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3583 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3584 if (WORDS_BIG_ENDIAN
)
3585 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3586 if (BYTES_BIG_ENDIAN
)
3587 final_offset
+= difference
% UNITS_PER_WORD
;
3590 /* See whether resulting subreg will be paradoxical. */
3591 if (GET_MODE_SIZE (innermostmode
) > GET_MODE_SIZE (outermode
))
3593 /* In nonparadoxical subregs we can't handle negative offsets. */
3594 if (final_offset
< 0)
3596 /* Bail out in case resulting subreg would be incorrect. */
3597 if (final_offset
% GET_MODE_SIZE (outermode
)
3598 || (unsigned) final_offset
>= GET_MODE_SIZE (innermostmode
))
3604 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (outermode
));
3606 /* In paradoxical subreg, see if we are still looking on lower part.
3607 If so, our SUBREG_BYTE will be 0. */
3608 if (WORDS_BIG_ENDIAN
)
3609 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3610 if (BYTES_BIG_ENDIAN
)
3611 offset
+= difference
% UNITS_PER_WORD
;
3612 if (offset
== final_offset
)
3618 /* Recurse for further possible simplifications. */
3619 newx
= simplify_subreg (outermode
, SUBREG_REG (op
),
3620 GET_MODE (SUBREG_REG (op
)),
3624 return gen_rtx_SUBREG (outermode
, SUBREG_REG (op
), final_offset
);
3627 /* SUBREG of a hard register => just change the register number
3628 and/or mode. If the hard register is not valid in that mode,
3629 suppress this simplification. If the hard register is the stack,
3630 frame, or argument pointer, leave this as a SUBREG. */
3633 && REGNO (op
) < FIRST_PSEUDO_REGISTER
3634 #ifdef CANNOT_CHANGE_MODE_CLASS
3635 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op
), innermode
, outermode
)
3636 && GET_MODE_CLASS (innermode
) != MODE_COMPLEX_INT
3637 && GET_MODE_CLASS (innermode
) != MODE_COMPLEX_FLOAT
)
3639 && ((reload_completed
&& !frame_pointer_needed
)
3640 || (REGNO (op
) != FRAME_POINTER_REGNUM
3641 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3642 && REGNO (op
) != HARD_FRAME_POINTER_REGNUM
3645 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3646 && REGNO (op
) != ARG_POINTER_REGNUM
3648 && REGNO (op
) != STACK_POINTER_REGNUM
3649 && subreg_offset_representable_p (REGNO (op
), innermode
,
3652 rtx tem
= gen_rtx_SUBREG (outermode
, op
, byte
);
3653 int final_regno
= subreg_hard_regno (tem
, 0);
3655 /* ??? We do allow it if the current REG is not valid for
3656 its mode. This is a kludge to work around how float/complex
3657 arguments are passed on 32-bit SPARC and should be fixed. */
3658 if (HARD_REGNO_MODE_OK (final_regno
, outermode
)
3659 || ! HARD_REGNO_MODE_OK (REGNO (op
), innermode
))
3661 rtx x
= gen_rtx_REG_offset (op
, outermode
, final_regno
, byte
);
3663 /* Propagate original regno. We don't have any way to specify
3664 the offset inside original regno, so do so only for lowpart.
3665 The information is used only by alias analysis that can not
3666 grog partial register anyway. */
3668 if (subreg_lowpart_offset (outermode
, innermode
) == byte
)
3669 ORIGINAL_REGNO (x
) = ORIGINAL_REGNO (op
);
3674 /* If we have a SUBREG of a register that we are replacing and we are
3675 replacing it with a MEM, make a new MEM and try replacing the
3676 SUBREG with it. Don't do this if the MEM has a mode-dependent address
3677 or if we would be widening it. */
3680 && ! mode_dependent_address_p (XEXP (op
, 0))
3681 /* Allow splitting of volatile memory references in case we don't
3682 have instruction to move the whole thing. */
3683 && (! MEM_VOLATILE_P (op
)
3684 || ! have_insn_for (SET
, innermode
))
3685 && GET_MODE_SIZE (outermode
) <= GET_MODE_SIZE (GET_MODE (op
)))
3686 return adjust_address_nv (op
, outermode
, byte
);
3688 /* Handle complex values represented as CONCAT
3689 of real and imaginary part. */
3690 if (GET_CODE (op
) == CONCAT
)
3692 int is_realpart
= byte
< (unsigned int) GET_MODE_UNIT_SIZE (innermode
);
3693 rtx part
= is_realpart
? XEXP (op
, 0) : XEXP (op
, 1);
3694 unsigned int final_offset
;
3697 final_offset
= byte
% (GET_MODE_UNIT_SIZE (innermode
));
3698 res
= simplify_subreg (outermode
, part
, GET_MODE (part
), final_offset
);
3701 /* We can at least simplify it by referring directly to the
3703 return gen_rtx_SUBREG (outermode
, part
, final_offset
);
3706 /* Optimize SUBREG truncations of zero and sign extended values. */
3707 if ((GET_CODE (op
) == ZERO_EXTEND
3708 || GET_CODE (op
) == SIGN_EXTEND
)
3709 && GET_MODE_BITSIZE (outermode
) < GET_MODE_BITSIZE (innermode
))
3711 unsigned int bitpos
= subreg_lsb_1 (outermode
, innermode
, byte
);
3713 /* If we're requesting the lowpart of a zero or sign extension,
3714 there are three possibilities. If the outermode is the same
3715 as the origmode, we can omit both the extension and the subreg.
3716 If the outermode is not larger than the origmode, we can apply
3717 the truncation without the extension. Finally, if the outermode
3718 is larger than the origmode, but both are integer modes, we
3719 can just extend to the appropriate mode. */
3722 enum machine_mode origmode
= GET_MODE (XEXP (op
, 0));
3723 if (outermode
== origmode
)
3724 return XEXP (op
, 0);
3725 if (GET_MODE_BITSIZE (outermode
) <= GET_MODE_BITSIZE (origmode
))
3726 return simplify_gen_subreg (outermode
, XEXP (op
, 0), origmode
,
3727 subreg_lowpart_offset (outermode
,
3729 if (SCALAR_INT_MODE_P (outermode
))
3730 return simplify_gen_unary (GET_CODE (op
), outermode
,
3731 XEXP (op
, 0), origmode
);
3734 /* A SUBREG resulting from a zero extension may fold to zero if
3735 it extracts higher bits that the ZERO_EXTEND's source bits. */
3736 if (GET_CODE (op
) == ZERO_EXTEND
3737 && bitpos
>= GET_MODE_BITSIZE (GET_MODE (XEXP (op
, 0))))
3738 return CONST0_RTX (outermode
);
3744 /* Make a SUBREG operation or equivalent if it folds. */
3747 simplify_gen_subreg (enum machine_mode outermode
, rtx op
,
3748 enum machine_mode innermode
, unsigned int byte
)
3751 /* Little bit of sanity checking. */
3752 gcc_assert (innermode
!= VOIDmode
);
3753 gcc_assert (outermode
!= VOIDmode
);
3754 gcc_assert (innermode
!= BLKmode
);
3755 gcc_assert (outermode
!= BLKmode
);
3757 gcc_assert (GET_MODE (op
) == innermode
3758 || GET_MODE (op
) == VOIDmode
);
3760 gcc_assert ((byte
% GET_MODE_SIZE (outermode
)) == 0);
3761 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
3763 newx
= simplify_subreg (outermode
, op
, innermode
, byte
);
3767 if (GET_CODE (op
) == SUBREG
|| GET_MODE (op
) == VOIDmode
)
3770 return gen_rtx_SUBREG (outermode
, op
, byte
);
3772 /* Simplify X, an rtx expression.
3774 Return the simplified expression or NULL if no simplifications
3777 This is the preferred entry point into the simplification routines;
3778 however, we still allow passes to call the more specific routines.
3780 Right now GCC has three (yes, three) major bodies of RTL simplification
3781 code that need to be unified.
3783 1. fold_rtx in cse.c. This code uses various CSE specific
3784 information to aid in RTL simplification.
3786 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
3787 it uses combine specific information to aid in RTL
3790 3. The routines in this file.
3793 Long term we want to only have one body of simplification code; to
3794 get to that state I recommend the following steps:
3796 1. Pour over fold_rtx & simplify_rtx and move any simplifications
3797 which are not pass dependent state into these routines.
3799 2. As code is moved by #1, change fold_rtx & simplify_rtx to
3800 use this routine whenever possible.
3802 3. Allow for pass dependent state to be provided to these
3803 routines and add simplifications based on the pass dependent
3804 state. Remove code from cse.c & combine.c that becomes
3807 It will take time, but ultimately the compiler will be easier to
3808 maintain and improve. It's totally silly that when we add a
3809 simplification that it needs to be added to 4 places (3 for RTL
3810 simplification and 1 for tree simplification. */
3813 simplify_rtx (rtx x
)
3815 enum rtx_code code
= GET_CODE (x
);
3816 enum machine_mode mode
= GET_MODE (x
);
3818 switch (GET_RTX_CLASS (code
))
3821 return simplify_unary_operation (code
, mode
,
3822 XEXP (x
, 0), GET_MODE (XEXP (x
, 0)));
3823 case RTX_COMM_ARITH
:
3824 if (swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
3825 return simplify_gen_binary (code
, mode
, XEXP (x
, 1), XEXP (x
, 0));
3827 /* Fall through.... */
3830 return simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3833 case RTX_BITFIELD_OPS
:
3834 return simplify_ternary_operation (code
, mode
, GET_MODE (XEXP (x
, 0)),
3835 XEXP (x
, 0), XEXP (x
, 1),
3839 case RTX_COMM_COMPARE
:
3840 return simplify_relational_operation (code
, mode
,
3841 ((GET_MODE (XEXP (x
, 0))
3843 ? GET_MODE (XEXP (x
, 0))
3844 : GET_MODE (XEXP (x
, 1))),
3850 return simplify_gen_subreg (mode
, SUBREG_REG (x
),
3851 GET_MODE (SUBREG_REG (x
)),
3858 /* Convert (lo_sum (high FOO) FOO) to FOO. */
3859 if (GET_CODE (XEXP (x
, 0)) == HIGH
3860 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))