2004-10-04 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / predict.c
blob8611f30d8aa55bf513a5608f3c0d9e9503b4ee9a
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* References:
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
63 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
64 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
65 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
66 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68 /* Random guesstimation given names. */
69 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
70 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
71 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
72 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74 static void combine_predictions_for_insn (rtx, basic_block);
75 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
76 static void estimate_loops_at_level (struct loop *loop);
77 static void propagate_freq (struct loop *);
78 static void estimate_bb_frequencies (struct loops *);
79 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
80 static bool last_basic_block_p (basic_block);
81 static void compute_function_frequency (void);
82 static void choose_function_section (void);
83 static bool can_predict_insn_p (rtx);
85 /* Information we hold about each branch predictor.
86 Filled using information from predict.def. */
88 struct predictor_info
90 const char *const name; /* Name used in the debugging dumps. */
91 const int hitrate; /* Expected hitrate used by
92 predict_insn_def call. */
93 const int flags;
96 /* Use given predictor without Dempster-Shaffer theory if it matches
97 using first_match heuristics. */
98 #define PRED_FLAG_FIRST_MATCH 1
100 /* Recompute hitrate in percent to our representation. */
102 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
105 static const struct predictor_info predictor_info[]= {
106 #include "predict.def"
108 /* Upper bound on predictors. */
109 {NULL, 0, 0}
111 #undef DEF_PREDICTOR
113 /* Return true in case BB can be CPU intensive and should be optimized
114 for maximal performance. */
116 bool
117 maybe_hot_bb_p (basic_block bb)
119 if (profile_info && flag_branch_probabilities
120 && (bb->count
121 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
122 return false;
123 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
124 return false;
125 return true;
128 /* Return true in case BB is cold and should be optimized for size. */
130 bool
131 probably_cold_bb_p (basic_block bb)
133 if (profile_info && flag_branch_probabilities
134 && (bb->count
135 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
136 return true;
137 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
138 return true;
139 return false;
142 /* Return true in case BB is probably never executed. */
143 bool
144 probably_never_executed_bb_p (basic_block bb)
146 if (profile_info && flag_branch_probabilities)
147 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
148 return false;
151 /* Return true if the one of outgoing edges is already predicted by
152 PREDICTOR. */
154 bool
155 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 rtx note;
158 if (!INSN_P (BB_END (bb)))
159 return false;
160 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
161 if (REG_NOTE_KIND (note) == REG_BR_PRED
162 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
163 return true;
164 return false;
167 /* Return true if the one of outgoing edges is already predicted by
168 PREDICTOR. */
170 bool
171 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 struct edge_prediction *i = bb_ann (bb)->predictions;
174 for (i = bb_ann (bb)->predictions; i; i = i->next)
175 if (i->predictor == predictor)
176 return true;
177 return false;
180 void
181 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 if (!any_condjump_p (insn))
184 abort ();
185 if (!flag_guess_branch_prob)
186 return;
188 REG_NOTES (insn)
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
196 /* Predict insn by given predictor. */
198 void
199 predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
202 int probability = predictor_info[(int) predictor].hitrate;
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
207 predict_insn (insn, predictor, probability);
210 /* Predict edge E with given probability if possible. */
212 void
213 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
215 rtx last_insn;
216 last_insn = BB_END (e->src);
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
227 predict_insn (last_insn, predictor, probability);
230 /* Predict edge E with the given PROBABILITY. */
231 void
232 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
234 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
236 i->next = bb_ann (e->src)->predictions;
237 bb_ann (e->src)->predictions = i;
238 i->probability = probability;
239 i->predictor = predictor;
240 i->edge = e;
243 /* Return true when we can store prediction on insn INSN.
244 At the moment we represent predictions only on conditional
245 jumps, not at computed jump or other complicated cases. */
246 static bool
247 can_predict_insn_p (rtx insn)
249 return (JUMP_P (insn)
250 && any_condjump_p (insn)
251 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
254 /* Predict edge E by given predictor if possible. */
256 void
257 predict_edge_def (edge e, enum br_predictor predictor,
258 enum prediction taken)
260 int probability = predictor_info[(int) predictor].hitrate;
262 if (taken != TAKEN)
263 probability = REG_BR_PROB_BASE - probability;
265 predict_edge (e, predictor, probability);
268 /* Invert all branch predictions or probability notes in the INSN. This needs
269 to be done each time we invert the condition used by the jump. */
271 void
272 invert_br_probabilities (rtx insn)
274 rtx note;
276 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
277 if (REG_NOTE_KIND (note) == REG_BR_PROB)
278 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
279 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
280 XEXP (XEXP (note, 0), 1)
281 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
284 /* Dump information about the branch prediction to the output file. */
286 static void
287 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
288 basic_block bb, int used)
290 edge e;
291 edge_iterator ei;
293 if (!file)
294 return;
296 FOR_EACH_EDGE (e, ei, bb->succs)
297 if (! (e->flags & EDGE_FALLTHRU))
298 break;
300 fprintf (file, " %s heuristics%s: %.1f%%",
301 predictor_info[predictor].name,
302 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
304 if (bb->count)
306 fprintf (file, " exec ");
307 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
308 if (e)
310 fprintf (file, " hit ");
311 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
312 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
316 fprintf (file, "\n");
319 /* We can not predict the probabilities of outgoing edges of bb. Set them
320 evenly and hope for the best. */
321 static void
322 set_even_probabilities (basic_block bb)
324 int nedges = 0;
325 edge e;
326 edge_iterator ei;
328 FOR_EACH_EDGE (e, ei, bb->succs)
329 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
330 nedges ++;
331 FOR_EACH_EDGE (e, ei, bb->succs)
332 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
333 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
334 else
335 e->probability = 0;
338 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
339 note if not already present. Remove now useless REG_BR_PRED notes. */
341 static void
342 combine_predictions_for_insn (rtx insn, basic_block bb)
344 rtx prob_note;
345 rtx *pnote;
346 rtx note;
347 int best_probability = PROB_EVEN;
348 int best_predictor = END_PREDICTORS;
349 int combined_probability = REG_BR_PROB_BASE / 2;
350 int d;
351 bool first_match = false;
352 bool found = false;
354 if (!can_predict_insn_p (insn))
356 set_even_probabilities (bb);
357 return;
360 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
361 pnote = &REG_NOTES (insn);
362 if (dump_file)
363 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
364 bb->index);
366 /* We implement "first match" heuristics and use probability guessed
367 by predictor with smallest index. */
368 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
369 if (REG_NOTE_KIND (note) == REG_BR_PRED)
371 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
372 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
374 found = true;
375 if (best_predictor > predictor)
376 best_probability = probability, best_predictor = predictor;
378 d = (combined_probability * probability
379 + (REG_BR_PROB_BASE - combined_probability)
380 * (REG_BR_PROB_BASE - probability));
382 /* Use FP math to avoid overflows of 32bit integers. */
383 if (d == 0)
384 /* If one probability is 0% and one 100%, avoid division by zero. */
385 combined_probability = REG_BR_PROB_BASE / 2;
386 else
387 combined_probability = (((double) combined_probability) * probability
388 * REG_BR_PROB_BASE / d + 0.5);
391 /* Decide which heuristic to use. In case we didn't match anything,
392 use no_prediction heuristic, in case we did match, use either
393 first match or Dempster-Shaffer theory depending on the flags. */
395 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
396 first_match = true;
398 if (!found)
399 dump_prediction (dump_file, PRED_NO_PREDICTION,
400 combined_probability, bb, true);
401 else
403 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
404 bb, !first_match);
405 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
406 bb, first_match);
409 if (first_match)
410 combined_probability = best_probability;
411 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
413 while (*pnote)
415 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
417 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
418 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
420 dump_prediction (dump_file, predictor, probability, bb,
421 !first_match || best_predictor == predictor);
422 *pnote = XEXP (*pnote, 1);
424 else
425 pnote = &XEXP (*pnote, 1);
428 if (!prob_note)
430 REG_NOTES (insn)
431 = gen_rtx_EXPR_LIST (REG_BR_PROB,
432 GEN_INT (combined_probability), REG_NOTES (insn));
434 /* Save the prediction into CFG in case we are seeing non-degenerated
435 conditional jump. */
436 if (EDGE_COUNT (bb->succs) > 1)
438 BRANCH_EDGE (bb)->probability = combined_probability;
439 FALLTHRU_EDGE (bb)->probability
440 = REG_BR_PROB_BASE - combined_probability;
443 else if (EDGE_COUNT (bb->succs) > 1)
445 int prob = INTVAL (XEXP (prob_note, 0));
447 BRANCH_EDGE (bb)->probability = prob;
448 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
450 else
451 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
454 /* Combine predictions into single probability and store them into CFG.
455 Remove now useless prediction entries. */
457 static void
458 combine_predictions_for_bb (FILE *file, basic_block bb)
460 int best_probability = PROB_EVEN;
461 int best_predictor = END_PREDICTORS;
462 int combined_probability = REG_BR_PROB_BASE / 2;
463 int d;
464 bool first_match = false;
465 bool found = false;
466 struct edge_prediction *pred;
467 int nedges = 0;
468 edge e, first = NULL, second = NULL;
469 edge_iterator ei;
471 FOR_EACH_EDGE (e, ei, bb->succs)
472 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
474 nedges ++;
475 if (first && !second)
476 second = e;
477 if (!first)
478 first = e;
481 /* When there is no successor or only one choice, prediction is easy.
483 We are lazy for now and predict only basic blocks with two outgoing
484 edges. It is possible to predict generic case too, but we have to
485 ignore first match heuristics and do more involved combining. Implement
486 this later. */
487 if (nedges != 2)
489 if (!bb->count)
490 set_even_probabilities (bb);
491 bb_ann (bb)->predictions = NULL;
492 if (file)
493 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
494 nedges, bb->index);
495 return;
498 if (file)
499 fprintf (file, "Predictions for bb %i\n", bb->index);
501 /* We implement "first match" heuristics and use probability guessed
502 by predictor with smallest index. */
503 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
505 int predictor = pred->predictor;
506 int probability = pred->probability;
508 if (pred->edge != first)
509 probability = REG_BR_PROB_BASE - probability;
511 found = true;
512 if (best_predictor > predictor)
513 best_probability = probability, best_predictor = predictor;
515 d = (combined_probability * probability
516 + (REG_BR_PROB_BASE - combined_probability)
517 * (REG_BR_PROB_BASE - probability));
519 /* Use FP math to avoid overflows of 32bit integers. */
520 if (d == 0)
521 /* If one probability is 0% and one 100%, avoid division by zero. */
522 combined_probability = REG_BR_PROB_BASE / 2;
523 else
524 combined_probability = (((double) combined_probability) * probability
525 * REG_BR_PROB_BASE / d + 0.5);
528 /* Decide which heuristic to use. In case we didn't match anything,
529 use no_prediction heuristic, in case we did match, use either
530 first match or Dempster-Shaffer theory depending on the flags. */
532 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
533 first_match = true;
535 if (!found)
536 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
537 else
539 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
540 !first_match);
541 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
542 first_match);
545 if (first_match)
546 combined_probability = best_probability;
547 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
549 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
551 int predictor = pred->predictor;
552 int probability = pred->probability;
554 if (pred->edge != EDGE_SUCC (bb, 0))
555 probability = REG_BR_PROB_BASE - probability;
556 dump_prediction (file, predictor, probability, bb,
557 !first_match || best_predictor == predictor);
559 bb_ann (bb)->predictions = NULL;
561 if (!bb->count)
563 first->probability = combined_probability;
564 second->probability = REG_BR_PROB_BASE - combined_probability;
568 /* Predict edge probabilities by exploiting loop structure.
569 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
570 RTL otherwise use tree based approach. */
571 static void
572 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
574 unsigned i;
576 if (!rtlsimpleloops)
577 scev_initialize (loops_info);
579 /* Try to predict out blocks in a loop that are not part of a
580 natural loop. */
581 for (i = 1; i < loops_info->num; i++)
583 basic_block bb, *bbs;
584 unsigned j;
585 int exits;
586 struct loop *loop = loops_info->parray[i];
587 struct niter_desc desc;
588 unsigned HOST_WIDE_INT niter;
590 flow_loop_scan (loop, LOOP_EXIT_EDGES);
591 exits = loop->num_exits;
593 if (rtlsimpleloops)
595 iv_analysis_loop_init (loop);
596 find_simple_exit (loop, &desc);
598 if (desc.simple_p && desc.const_iter)
600 int prob;
601 niter = desc.niter + 1;
602 if (niter == 0) /* We might overflow here. */
603 niter = desc.niter;
605 prob = (REG_BR_PROB_BASE
606 - (REG_BR_PROB_BASE + niter /2) / niter);
607 /* Branch prediction algorithm gives 0 frequency for everything
608 after the end of loop for loop having 0 probability to finish. */
609 if (prob == REG_BR_PROB_BASE)
610 prob = REG_BR_PROB_BASE - 1;
611 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
612 prob);
615 else
617 edge *exits;
618 unsigned j, n_exits;
619 struct tree_niter_desc niter_desc;
621 exits = get_loop_exit_edges (loop, &n_exits);
622 for (j = 0; j < n_exits; j++)
624 tree niter = NULL;
626 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
627 niter = niter_desc.niter;
628 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
629 niter = loop_niter_by_eval (loop, exits[j]);
631 if (TREE_CODE (niter) == INTEGER_CST)
633 int probability;
634 if (host_integerp (niter, 1)
635 && tree_int_cst_lt (niter,
636 build_int_cstu (NULL_TREE,
637 REG_BR_PROB_BASE - 1)))
639 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
640 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
642 else
643 probability = 1;
645 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
649 free (exits);
652 bbs = get_loop_body (loop);
654 for (j = 0; j < loop->num_nodes; j++)
656 int header_found = 0;
657 edge e;
658 edge_iterator ei;
660 bb = bbs[j];
662 /* Bypass loop heuristics on continue statement. These
663 statements construct loops via "non-loop" constructs
664 in the source language and are better to be handled
665 separately. */
666 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
667 || predicted_by_p (bb, PRED_CONTINUE))
668 continue;
670 /* Loop branch heuristics - predict an edge back to a
671 loop's head as taken. */
672 FOR_EACH_EDGE (e, ei, bb->succs)
673 if (e->dest == loop->header
674 && e->src == loop->latch)
676 header_found = 1;
677 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
680 /* Loop exit heuristics - predict an edge exiting the loop if the
681 conditional has no loop header successors as not taken. */
682 if (!header_found)
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (e->dest->index < 0
685 || !flow_bb_inside_loop_p (loop, e->dest))
686 predict_edge
687 (e, PRED_LOOP_EXIT,
688 (REG_BR_PROB_BASE
689 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
690 / exits);
693 /* Free basic blocks from get_loop_body. */
694 free (bbs);
697 if (!rtlsimpleloops)
698 scev_reset ();
701 /* Attempt to predict probabilities of BB outgoing edges using local
702 properties. */
703 static void
704 bb_estimate_probability_locally (basic_block bb)
706 rtx last_insn = BB_END (bb);
707 rtx cond;
709 if (! can_predict_insn_p (last_insn))
710 return;
711 cond = get_condition (last_insn, NULL, false, false);
712 if (! cond)
713 return;
715 /* Try "pointer heuristic."
716 A comparison ptr == 0 is predicted as false.
717 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
718 if (COMPARISON_P (cond)
719 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
720 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
722 if (GET_CODE (cond) == EQ)
723 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
724 else if (GET_CODE (cond) == NE)
725 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
727 else
729 /* Try "opcode heuristic."
730 EQ tests are usually false and NE tests are usually true. Also,
731 most quantities are positive, so we can make the appropriate guesses
732 about signed comparisons against zero. */
733 switch (GET_CODE (cond))
735 case CONST_INT:
736 /* Unconditional branch. */
737 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
738 cond == const0_rtx ? NOT_TAKEN : TAKEN);
739 break;
741 case EQ:
742 case UNEQ:
743 /* Floating point comparisons appears to behave in a very
744 unpredictable way because of special role of = tests in
745 FP code. */
746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
748 /* Comparisons with 0 are often used for booleans and there is
749 nothing useful to predict about them. */
750 else if (XEXP (cond, 1) == const0_rtx
751 || XEXP (cond, 0) == const0_rtx)
753 else
754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
755 break;
757 case NE:
758 case LTGT:
759 /* Floating point comparisons appears to behave in a very
760 unpredictable way because of special role of = tests in
761 FP code. */
762 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
764 /* Comparisons with 0 are often used for booleans and there is
765 nothing useful to predict about them. */
766 else if (XEXP (cond, 1) == const0_rtx
767 || XEXP (cond, 0) == const0_rtx)
769 else
770 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
771 break;
773 case ORDERED:
774 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
775 break;
777 case UNORDERED:
778 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
779 break;
781 case LE:
782 case LT:
783 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
784 || XEXP (cond, 1) == constm1_rtx)
785 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
786 break;
788 case GE:
789 case GT:
790 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
791 || XEXP (cond, 1) == constm1_rtx)
792 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
793 break;
795 default:
796 break;
800 /* Statically estimate the probability that a branch will be taken and produce
801 estimated profile. When profile feedback is present never executed portions
802 of function gets estimated. */
804 void
805 estimate_probability (struct loops *loops_info)
807 basic_block bb;
809 connect_infinite_loops_to_exit ();
810 calculate_dominance_info (CDI_DOMINATORS);
811 calculate_dominance_info (CDI_POST_DOMINATORS);
813 predict_loops (loops_info, true);
815 iv_analysis_done ();
817 /* Attempt to predict conditional jumps using a number of heuristics. */
818 FOR_EACH_BB (bb)
820 rtx last_insn = BB_END (bb);
821 edge e;
822 edge_iterator ei;
824 if (! can_predict_insn_p (last_insn))
825 continue;
827 FOR_EACH_EDGE (e, ei, bb->succs)
829 /* Predict early returns to be probable, as we've already taken
830 care for error returns and other are often used for fast paths
831 trought function. */
832 if ((e->dest == EXIT_BLOCK_PTR
833 || (EDGE_COUNT (e->dest->succs) == 1
834 && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
835 && !predicted_by_p (bb, PRED_NULL_RETURN)
836 && !predicted_by_p (bb, PRED_CONST_RETURN)
837 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
838 && !last_basic_block_p (e->dest))
839 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
841 /* Look for block we are guarding (i.e. we dominate it,
842 but it doesn't postdominate us). */
843 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
844 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
845 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
847 rtx insn;
849 /* The call heuristic claims that a guarded function call
850 is improbable. This is because such calls are often used
851 to signal exceptional situations such as printing error
852 messages. */
853 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
854 insn = NEXT_INSN (insn))
855 if (CALL_P (insn)
856 /* Constant and pure calls are hardly used to signalize
857 something exceptional. */
858 && ! CONST_OR_PURE_CALL_P (insn))
860 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
861 break;
865 bb_estimate_probability_locally (bb);
868 /* Attach the combined probability to each conditional jump. */
869 FOR_EACH_BB (bb)
870 combine_predictions_for_insn (BB_END (bb), bb);
872 remove_fake_edges ();
873 estimate_bb_frequencies (loops_info);
874 free_dominance_info (CDI_POST_DOMINATORS);
875 if (profile_status == PROFILE_ABSENT)
876 profile_status = PROFILE_GUESSED;
879 /* Set edge->probability for each successor edge of BB. */
880 void
881 guess_outgoing_edge_probabilities (basic_block bb)
883 bb_estimate_probability_locally (bb);
884 combine_predictions_for_insn (BB_END (bb), bb);
887 /* Return constant EXPR will likely have at execution time, NULL if unknown.
888 The function is used by builtin_expect branch predictor so the evidence
889 must come from this construct and additional possible constant folding.
891 We may want to implement more involved value guess (such as value range
892 propagation based prediction), but such tricks shall go to new
893 implementation. */
895 static tree
896 expr_expected_value (tree expr, bitmap visited)
898 if (TREE_CONSTANT (expr))
899 return expr;
900 else if (TREE_CODE (expr) == SSA_NAME)
902 tree def = SSA_NAME_DEF_STMT (expr);
904 /* If we were already here, break the infinite cycle. */
905 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
906 return NULL;
907 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
909 if (TREE_CODE (def) == PHI_NODE)
911 /* All the arguments of the PHI node must have the same constant
912 length. */
913 int i;
914 tree val = NULL, new_val;
916 for (i = 0; i < PHI_NUM_ARGS (def); i++)
918 tree arg = PHI_ARG_DEF (def, i);
920 /* If this PHI has itself as an argument, we cannot
921 determine the string length of this argument. However,
922 if we can find a expected constant value for the other
923 PHI args then we can still be sure that this is
924 likely a constant. So be optimistic and just
925 continue with the next argument. */
926 if (arg == PHI_RESULT (def))
927 continue;
929 new_val = expr_expected_value (arg, visited);
930 if (!new_val)
931 return NULL;
932 if (!val)
933 val = new_val;
934 else if (!operand_equal_p (val, new_val, false))
935 return NULL;
937 return val;
939 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
940 return NULL;
941 return expr_expected_value (TREE_OPERAND (def, 1), visited);
943 else if (TREE_CODE (expr) == CALL_EXPR)
945 tree decl = get_callee_fndecl (expr);
946 if (!decl)
947 return NULL;
948 if (DECL_BUILT_IN (decl) && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
950 tree arglist = TREE_OPERAND (expr, 1);
951 tree val;
953 if (arglist == NULL_TREE
954 || TREE_CHAIN (arglist) == NULL_TREE)
955 return NULL;
956 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
957 if (TREE_CONSTANT (val))
958 return val;
959 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
962 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
964 tree op0, op1, res;
965 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
966 if (!op0)
967 return NULL;
968 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
969 if (!op1)
970 return NULL;
971 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
972 if (TREE_CONSTANT (res))
973 return res;
974 return NULL;
976 if (UNARY_CLASS_P (expr))
978 tree op0, res;
979 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
980 if (!op0)
981 return NULL;
982 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
983 if (TREE_CONSTANT (res))
984 return res;
985 return NULL;
987 return NULL;
990 /* Get rid of all builtin_expect calls we no longer need. */
991 static void
992 strip_builtin_expect (void)
994 basic_block bb;
995 FOR_EACH_BB (bb)
997 block_stmt_iterator bi;
998 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1000 tree stmt = bsi_stmt (bi);
1001 tree fndecl;
1002 tree arglist;
1004 if (TREE_CODE (stmt) == MODIFY_EXPR
1005 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1006 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1007 && DECL_BUILT_IN (fndecl)
1008 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1009 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1010 && TREE_CHAIN (arglist))
1012 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1013 modify_stmt (stmt);
1019 /* Predict using opcode of the last statement in basic block. */
1020 static void
1021 tree_predict_by_opcode (basic_block bb)
1023 tree stmt = last_stmt (bb);
1024 edge then_edge;
1025 tree cond;
1026 tree op0;
1027 tree type;
1028 tree val;
1029 bitmap visited;
1030 edge_iterator ei;
1032 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1033 return;
1034 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1035 if (then_edge->flags & EDGE_TRUE_VALUE)
1036 break;
1037 cond = TREE_OPERAND (stmt, 0);
1038 if (!COMPARISON_CLASS_P (cond))
1039 return;
1040 op0 = TREE_OPERAND (cond, 0);
1041 type = TREE_TYPE (op0);
1042 visited = BITMAP_XMALLOC ();
1043 val = expr_expected_value (cond, visited);
1044 BITMAP_XFREE (visited);
1045 if (val)
1047 if (integer_zerop (val))
1048 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1049 else
1050 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1051 return;
1053 /* Try "pointer heuristic."
1054 A comparison ptr == 0 is predicted as false.
1055 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1056 if (POINTER_TYPE_P (type))
1058 if (TREE_CODE (cond) == EQ_EXPR)
1059 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1060 else if (TREE_CODE (cond) == NE_EXPR)
1061 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1063 else
1065 /* Try "opcode heuristic."
1066 EQ tests are usually false and NE tests are usually true. Also,
1067 most quantities are positive, so we can make the appropriate guesses
1068 about signed comparisons against zero. */
1069 switch (TREE_CODE (cond))
1071 case EQ_EXPR:
1072 case UNEQ_EXPR:
1073 /* Floating point comparisons appears to behave in a very
1074 unpredictable way because of special role of = tests in
1075 FP code. */
1076 if (FLOAT_TYPE_P (type))
1078 /* Comparisons with 0 are often used for booleans and there is
1079 nothing useful to predict about them. */
1080 else if (integer_zerop (op0)
1081 || integer_zerop (TREE_OPERAND (cond, 1)))
1083 else
1084 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1085 break;
1087 case NE_EXPR:
1088 case LTGT_EXPR:
1089 /* Floating point comparisons appears to behave in a very
1090 unpredictable way because of special role of = tests in
1091 FP code. */
1092 if (FLOAT_TYPE_P (type))
1094 /* Comparisons with 0 are often used for booleans and there is
1095 nothing useful to predict about them. */
1096 else if (integer_zerop (op0)
1097 || integer_zerop (TREE_OPERAND (cond, 1)))
1099 else
1100 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1101 break;
1103 case ORDERED_EXPR:
1104 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1105 break;
1107 case UNORDERED_EXPR:
1108 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1109 break;
1111 case LE_EXPR:
1112 case LT_EXPR:
1113 if (integer_zerop (TREE_OPERAND (cond, 1))
1114 || integer_onep (TREE_OPERAND (cond, 1))
1115 || integer_all_onesp (TREE_OPERAND (cond, 1))
1116 || real_zerop (TREE_OPERAND (cond, 1))
1117 || real_onep (TREE_OPERAND (cond, 1))
1118 || real_minus_onep (TREE_OPERAND (cond, 1)))
1119 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1120 break;
1122 case GE_EXPR:
1123 case GT_EXPR:
1124 if (integer_zerop (TREE_OPERAND (cond, 1))
1125 || integer_onep (TREE_OPERAND (cond, 1))
1126 || integer_all_onesp (TREE_OPERAND (cond, 1))
1127 || real_zerop (TREE_OPERAND (cond, 1))
1128 || real_onep (TREE_OPERAND (cond, 1))
1129 || real_minus_onep (TREE_OPERAND (cond, 1)))
1130 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1131 break;
1133 default:
1134 break;
1138 /* Try to guess whether the value of return means error code. */
1139 static enum br_predictor
1140 return_prediction (tree val, enum prediction *prediction)
1142 /* VOID. */
1143 if (!val)
1144 return PRED_NO_PREDICTION;
1145 /* Different heuristics for pointers and scalars. */
1146 if (POINTER_TYPE_P (TREE_TYPE (val)))
1148 /* NULL is usually not returned. */
1149 if (integer_zerop (val))
1151 *prediction = NOT_TAKEN;
1152 return PRED_NULL_RETURN;
1155 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1157 /* Negative return values are often used to indicate
1158 errors. */
1159 if (TREE_CODE (val) == INTEGER_CST
1160 && tree_int_cst_sgn (val) < 0)
1162 *prediction = NOT_TAKEN;
1163 return PRED_NEGATIVE_RETURN;
1165 /* Constant return values seems to be commonly taken.
1166 Zero/one often represent booleans so exclude them from the
1167 heuristics. */
1168 if (TREE_CONSTANT (val)
1169 && (!integer_zerop (val) && !integer_onep (val)))
1171 *prediction = TAKEN;
1172 return PRED_NEGATIVE_RETURN;
1175 return PRED_NO_PREDICTION;
1178 /* Find the basic block with return expression and look up for possible
1179 return value trying to apply RETURN_PREDICTION heuristics. */
1180 static void
1181 apply_return_prediction (int *heads)
1183 tree return_stmt;
1184 tree return_val;
1185 edge e;
1186 tree phi;
1187 int phi_num_args, i;
1188 enum br_predictor pred;
1189 enum prediction direction;
1190 edge_iterator ei;
1192 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1194 return_stmt = last_stmt (e->src);
1195 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1196 break;
1198 if (!e)
1199 return;
1200 return_val = TREE_OPERAND (return_stmt, 0);
1201 if (!return_val)
1202 return;
1203 if (TREE_CODE (return_val) == MODIFY_EXPR)
1204 return_val = TREE_OPERAND (return_val, 1);
1205 if (TREE_CODE (return_val) != SSA_NAME
1206 || !SSA_NAME_DEF_STMT (return_val)
1207 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1208 return;
1209 phi = SSA_NAME_DEF_STMT (return_val);
1210 while (phi)
1212 tree next = PHI_CHAIN (phi);
1213 if (PHI_RESULT (phi) == return_val)
1214 break;
1215 phi = next;
1217 if (!phi)
1218 return;
1219 phi_num_args = PHI_NUM_ARGS (phi);
1220 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1222 /* Avoid the degenerate case where all return values form the function
1223 belongs to same category (ie they are all positive constants)
1224 so we can hardly say something about them. */
1225 for (i = 1; i < phi_num_args; i++)
1226 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1227 break;
1228 if (i != phi_num_args)
1229 for (i = 0; i < phi_num_args; i++)
1231 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1232 if (pred != PRED_NO_PREDICTION)
1233 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1234 direction);
1238 /* Look for basic block that contains unlikely to happen events
1239 (such as noreturn calls) and mark all paths leading to execution
1240 of this basic blocks as unlikely. */
1242 static void
1243 tree_bb_level_predictions (void)
1245 basic_block bb;
1246 int *heads;
1248 heads = xmalloc (sizeof (int) * last_basic_block);
1249 memset (heads, -1, sizeof (int) * last_basic_block);
1250 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1252 apply_return_prediction (heads);
1254 FOR_EACH_BB (bb)
1256 block_stmt_iterator bsi = bsi_last (bb);
1258 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1260 tree stmt = bsi_stmt (bsi);
1261 switch (TREE_CODE (stmt))
1263 case MODIFY_EXPR:
1264 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1266 stmt = TREE_OPERAND (stmt, 1);
1267 goto call_expr;
1269 break;
1270 case CALL_EXPR:
1271 call_expr:;
1272 if (call_expr_flags (stmt) & ECF_NORETURN)
1273 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1274 NOT_TAKEN);
1275 break;
1276 default:
1277 break;
1282 free (heads);
1285 /* Predict branch probabilities and estimate profile of the tree CFG. */
1286 static void
1287 tree_estimate_probability (void)
1289 basic_block bb;
1290 struct loops loops_info;
1292 flow_loops_find (&loops_info, LOOP_TREE);
1293 if (dump_file && (dump_flags & TDF_DETAILS))
1294 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1296 add_noreturn_fake_exit_edges ();
1297 connect_infinite_loops_to_exit ();
1298 calculate_dominance_info (CDI_DOMINATORS);
1299 calculate_dominance_info (CDI_POST_DOMINATORS);
1301 tree_bb_level_predictions ();
1303 predict_loops (&loops_info, false);
1305 FOR_EACH_BB (bb)
1307 edge e;
1308 edge_iterator ei;
1310 FOR_EACH_EDGE (e, ei, bb->succs)
1312 /* Predict early returns to be probable, as we've already taken
1313 care for error returns and other cases are often used for
1314 fast paths trought function. */
1315 if (e->dest == EXIT_BLOCK_PTR
1316 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1317 && EDGE_COUNT (bb->preds) > 1)
1319 edge e1;
1320 edge_iterator ei1;
1322 FOR_EACH_EDGE (e1, ei1, bb->preds)
1323 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1324 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1325 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1326 && !last_basic_block_p (e1->src))
1327 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1330 /* Look for block we are guarding (ie we dominate it,
1331 but it doesn't postdominate us). */
1332 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1333 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1334 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1336 block_stmt_iterator bi;
1338 /* The call heuristic claims that a guarded function call
1339 is improbable. This is because such calls are often used
1340 to signal exceptional situations such as printing error
1341 messages. */
1342 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1343 bsi_next (&bi))
1345 tree stmt = bsi_stmt (bi);
1346 if ((TREE_CODE (stmt) == CALL_EXPR
1347 || (TREE_CODE (stmt) == MODIFY_EXPR
1348 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1349 /* Constant and pure calls are hardly used to signalize
1350 something exceptional. */
1351 && TREE_SIDE_EFFECTS (stmt))
1353 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1354 break;
1359 tree_predict_by_opcode (bb);
1361 FOR_EACH_BB (bb)
1362 combine_predictions_for_bb (dump_file, bb);
1364 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1365 strip_builtin_expect ();
1366 estimate_bb_frequencies (&loops_info);
1367 free_dominance_info (CDI_POST_DOMINATORS);
1368 remove_fake_exit_edges ();
1369 flow_loops_free (&loops_info);
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 dump_tree_cfg (dump_file, dump_flags);
1372 if (profile_status == PROFILE_ABSENT)
1373 profile_status = PROFILE_GUESSED;
1376 /* __builtin_expect dropped tokens into the insn stream describing expected
1377 values of registers. Generate branch probabilities based off these
1378 values. */
1380 void
1381 expected_value_to_br_prob (void)
1383 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1385 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1387 switch (GET_CODE (insn))
1389 case NOTE:
1390 /* Look for expected value notes. */
1391 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1393 ev = NOTE_EXPECTED_VALUE (insn);
1394 ev_reg = XEXP (ev, 0);
1395 delete_insn (insn);
1397 continue;
1399 case CODE_LABEL:
1400 /* Never propagate across labels. */
1401 ev = NULL_RTX;
1402 continue;
1404 case JUMP_INSN:
1405 /* Look for simple conditional branches. If we haven't got an
1406 expected value yet, no point going further. */
1407 if (!JUMP_P (insn) || ev == NULL_RTX
1408 || ! any_condjump_p (insn))
1409 continue;
1410 break;
1412 default:
1413 /* Look for insns that clobber the EV register. */
1414 if (ev && reg_set_p (ev_reg, insn))
1415 ev = NULL_RTX;
1416 continue;
1419 /* Collect the branch condition, hopefully relative to EV_REG. */
1420 /* ??? At present we'll miss things like
1421 (expected_value (eq r70 0))
1422 (set r71 -1)
1423 (set r80 (lt r70 r71))
1424 (set pc (if_then_else (ne r80 0) ...))
1425 as canonicalize_condition will render this to us as
1426 (lt r70, r71)
1427 Could use cselib to try and reduce this further. */
1428 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1429 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1430 false, false);
1431 if (! cond || XEXP (cond, 0) != ev_reg
1432 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1433 continue;
1435 /* Substitute and simplify. Given that the expression we're
1436 building involves two constants, we should wind up with either
1437 true or false. */
1438 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1439 XEXP (ev, 1), XEXP (cond, 1));
1440 cond = simplify_rtx (cond);
1442 /* Turn the condition into a scaled branch probability. */
1443 if (cond != const_true_rtx && cond != const0_rtx)
1444 abort ();
1445 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1446 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1450 /* Check whether this is the last basic block of function. Commonly
1451 there is one extra common cleanup block. */
1452 static bool
1453 last_basic_block_p (basic_block bb)
1455 if (bb == EXIT_BLOCK_PTR)
1456 return false;
1458 return (bb->next_bb == EXIT_BLOCK_PTR
1459 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1460 && EDGE_COUNT (bb->succs) == 1
1461 && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
1464 /* Sets branch probabilities according to PREDiction and
1465 FLAGS. HEADS[bb->index] should be index of basic block in that we
1466 need to alter branch predictions (i.e. the first of our dominators
1467 such that we do not post-dominate it) (but we fill this information
1468 on demand, so -1 may be there in case this was not needed yet). */
1470 static void
1471 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1472 enum prediction taken)
1474 edge e;
1475 edge_iterator ei;
1476 int y;
1478 if (heads[bb->index] < 0)
1480 /* This is first time we need this field in heads array; so
1481 find first dominator that we do not post-dominate (we are
1482 using already known members of heads array). */
1483 basic_block ai = bb;
1484 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1485 int head;
1487 while (heads[next_ai->index] < 0)
1489 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1490 break;
1491 heads[next_ai->index] = ai->index;
1492 ai = next_ai;
1493 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1495 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1496 head = next_ai->index;
1497 else
1498 head = heads[next_ai->index];
1499 while (next_ai != bb)
1501 next_ai = ai;
1502 if (heads[ai->index] == ENTRY_BLOCK)
1503 ai = ENTRY_BLOCK_PTR;
1504 else
1505 ai = BASIC_BLOCK (heads[ai->index]);
1506 heads[next_ai->index] = head;
1509 y = heads[bb->index];
1511 /* Now find the edge that leads to our branch and aply the prediction. */
1513 if (y == last_basic_block)
1514 return;
1515 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1516 if (e->dest->index >= 0
1517 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1518 predict_edge_def (e, pred, taken);
1521 /* This is used to carry information about basic blocks. It is
1522 attached to the AUX field of the standard CFG block. */
1524 typedef struct block_info_def
1526 /* Estimated frequency of execution of basic_block. */
1527 sreal frequency;
1529 /* To keep queue of basic blocks to process. */
1530 basic_block next;
1532 /* True if block needs to be visited in propagate_freq. */
1533 unsigned int tovisit:1;
1535 /* Number of predecessors we need to visit first. */
1536 int npredecessors;
1537 } *block_info;
1539 /* Similar information for edges. */
1540 typedef struct edge_info_def
1542 /* In case edge is an loopback edge, the probability edge will be reached
1543 in case header is. Estimated number of iterations of the loop can be
1544 then computed as 1 / (1 - back_edge_prob). */
1545 sreal back_edge_prob;
1546 /* True if the edge is an loopback edge in the natural loop. */
1547 unsigned int back_edge:1;
1548 } *edge_info;
1550 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1551 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1553 /* Helper function for estimate_bb_frequencies.
1554 Propagate the frequencies for LOOP. */
1556 static void
1557 propagate_freq (struct loop *loop)
1559 basic_block head = loop->header;
1560 basic_block bb;
1561 basic_block last;
1562 edge e;
1563 basic_block nextbb;
1565 /* For each basic block we need to visit count number of his predecessors
1566 we need to visit first. */
1567 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1569 if (BLOCK_INFO (bb)->tovisit)
1571 edge_iterator ei;
1572 int count = 0;
1574 FOR_EACH_EDGE (e, ei, bb->preds)
1575 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
1576 count++;
1577 else if (BLOCK_INFO (e->src)->tovisit
1578 && dump_file && !EDGE_INFO (e)->back_edge)
1579 fprintf (dump_file,
1580 "Irreducible region hit, ignoring edge to %i->%i\n",
1581 e->src->index, bb->index);
1582 BLOCK_INFO (bb)->npredecessors = count;
1586 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1587 last = head;
1588 for (bb = head; bb; bb = nextbb)
1590 edge_iterator ei;
1591 sreal cyclic_probability, frequency;
1593 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1594 memcpy (&frequency, &real_zero, sizeof (real_zero));
1596 nextbb = BLOCK_INFO (bb)->next;
1597 BLOCK_INFO (bb)->next = NULL;
1599 /* Compute frequency of basic block. */
1600 if (bb != head)
1602 #ifdef ENABLE_CHECKING
1603 FOR_EACH_EDGE (e, ei, bb->preds)
1604 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
1605 abort ();
1606 #endif
1608 FOR_EACH_EDGE (e, ei, bb->preds)
1609 if (EDGE_INFO (e)->back_edge)
1611 sreal_add (&cyclic_probability, &cyclic_probability,
1612 &EDGE_INFO (e)->back_edge_prob);
1614 else if (!(e->flags & EDGE_DFS_BACK))
1616 sreal tmp;
1618 /* frequency += (e->probability
1619 * BLOCK_INFO (e->src)->frequency /
1620 REG_BR_PROB_BASE); */
1622 sreal_init (&tmp, e->probability, 0);
1623 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1624 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1625 sreal_add (&frequency, &frequency, &tmp);
1628 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1630 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1631 sizeof (frequency));
1633 else
1635 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1637 memcpy (&cyclic_probability, &real_almost_one,
1638 sizeof (real_almost_one));
1641 /* BLOCK_INFO (bb)->frequency = frequency
1642 / (1 - cyclic_probability) */
1644 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1645 sreal_div (&BLOCK_INFO (bb)->frequency,
1646 &frequency, &cyclic_probability);
1650 BLOCK_INFO (bb)->tovisit = 0;
1652 /* Compute back edge frequencies. */
1653 FOR_EACH_EDGE (e, ei, bb->succs)
1654 if (e->dest == head)
1656 sreal tmp;
1658 /* EDGE_INFO (e)->back_edge_prob
1659 = ((e->probability * BLOCK_INFO (bb)->frequency)
1660 / REG_BR_PROB_BASE); */
1662 sreal_init (&tmp, e->probability, 0);
1663 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1664 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1665 &tmp, &real_inv_br_prob_base);
1668 /* Propagate to successor blocks. */
1669 FOR_EACH_EDGE (e, ei, bb->succs)
1670 if (!(e->flags & EDGE_DFS_BACK)
1671 && BLOCK_INFO (e->dest)->npredecessors)
1673 BLOCK_INFO (e->dest)->npredecessors--;
1674 if (!BLOCK_INFO (e->dest)->npredecessors)
1676 if (!nextbb)
1677 nextbb = e->dest;
1678 else
1679 BLOCK_INFO (last)->next = e->dest;
1681 last = e->dest;
1687 /* Estimate probabilities of loopback edges in loops at same nest level. */
1689 static void
1690 estimate_loops_at_level (struct loop *first_loop)
1692 struct loop *loop;
1694 for (loop = first_loop; loop; loop = loop->next)
1696 edge e;
1697 basic_block *bbs;
1698 unsigned i;
1700 estimate_loops_at_level (loop->inner);
1702 /* Do not do this for dummy function loop. */
1703 if (EDGE_COUNT (loop->latch->succs) > 0)
1705 /* Find current loop back edge and mark it. */
1706 e = loop_latch_edge (loop);
1707 EDGE_INFO (e)->back_edge = 1;
1710 bbs = get_loop_body (loop);
1711 for (i = 0; i < loop->num_nodes; i++)
1712 BLOCK_INFO (bbs[i])->tovisit = 1;
1713 free (bbs);
1714 propagate_freq (loop);
1718 /* Convert counts measured by profile driven feedback to frequencies.
1719 Return nonzero iff there was any nonzero execution count. */
1722 counts_to_freqs (void)
1724 gcov_type count_max, true_count_max = 0;
1725 basic_block bb;
1727 FOR_EACH_BB (bb)
1728 true_count_max = MAX (bb->count, true_count_max);
1730 count_max = MAX (true_count_max, 1);
1731 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1732 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1733 return true_count_max;
1736 /* Return true if function is likely to be expensive, so there is no point to
1737 optimize performance of prologue, epilogue or do inlining at the expense
1738 of code size growth. THRESHOLD is the limit of number of instructions
1739 function can execute at average to be still considered not expensive. */
1741 bool
1742 expensive_function_p (int threshold)
1744 unsigned int sum = 0;
1745 basic_block bb;
1746 unsigned int limit;
1748 /* We can not compute accurately for large thresholds due to scaled
1749 frequencies. */
1750 if (threshold > BB_FREQ_MAX)
1751 abort ();
1753 /* Frequencies are out of range. This either means that function contains
1754 internal loop executing more than BB_FREQ_MAX times or profile feedback
1755 is available and function has not been executed at all. */
1756 if (ENTRY_BLOCK_PTR->frequency == 0)
1757 return true;
1759 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1760 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1761 FOR_EACH_BB (bb)
1763 rtx insn;
1765 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1766 insn = NEXT_INSN (insn))
1767 if (active_insn_p (insn))
1769 sum += bb->frequency;
1770 if (sum > limit)
1771 return true;
1775 return false;
1778 /* Estimate basic blocks frequency by given branch probabilities. */
1780 static void
1781 estimate_bb_frequencies (struct loops *loops)
1783 basic_block bb;
1784 sreal freq_max;
1786 if (!flag_branch_probabilities || !counts_to_freqs ())
1788 static int real_values_initialized = 0;
1790 if (!real_values_initialized)
1792 real_values_initialized = 1;
1793 sreal_init (&real_zero, 0, 0);
1794 sreal_init (&real_one, 1, 0);
1795 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1796 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1797 sreal_init (&real_one_half, 1, -1);
1798 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1799 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1802 mark_dfs_back_edges ();
1804 EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
1806 /* Set up block info for each basic block. */
1807 alloc_aux_for_blocks (sizeof (struct block_info_def));
1808 alloc_aux_for_edges (sizeof (struct edge_info_def));
1809 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1811 edge e;
1812 edge_iterator ei;
1814 BLOCK_INFO (bb)->tovisit = 0;
1815 FOR_EACH_EDGE (e, ei, bb->succs)
1817 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1818 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1819 &EDGE_INFO (e)->back_edge_prob,
1820 &real_inv_br_prob_base);
1824 /* First compute probabilities locally for each loop from innermost
1825 to outermost to examine probabilities for back edges. */
1826 estimate_loops_at_level (loops->tree_root);
1828 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1829 FOR_EACH_BB (bb)
1830 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1831 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1833 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1834 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1836 sreal tmp;
1838 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1839 sreal_add (&tmp, &tmp, &real_one_half);
1840 bb->frequency = sreal_to_int (&tmp);
1843 free_aux_for_blocks ();
1844 free_aux_for_edges ();
1846 compute_function_frequency ();
1847 if (flag_reorder_functions)
1848 choose_function_section ();
1851 /* Decide whether function is hot, cold or unlikely executed. */
1852 static void
1853 compute_function_frequency (void)
1855 basic_block bb;
1857 if (!profile_info || !flag_branch_probabilities)
1858 return;
1859 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1860 FOR_EACH_BB (bb)
1862 if (maybe_hot_bb_p (bb))
1864 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1865 return;
1867 if (!probably_never_executed_bb_p (bb))
1868 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1872 /* Choose appropriate section for the function. */
1873 static void
1874 choose_function_section (void)
1876 if (DECL_SECTION_NAME (current_function_decl)
1877 || !targetm.have_named_sections
1878 /* Theoretically we can split the gnu.linkonce text section too,
1879 but this requires more work as the frequency needs to match
1880 for all generated objects so we need to merge the frequency
1881 of all instances. For now just never set frequency for these. */
1882 || DECL_ONE_ONLY (current_function_decl))
1883 return;
1885 /* If we are doing the partitioning optimization, let the optimization
1886 choose the correct section into which to put things. */
1888 if (flag_reorder_blocks_and_partition)
1889 return;
1891 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1892 DECL_SECTION_NAME (current_function_decl) =
1893 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1894 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1895 DECL_SECTION_NAME (current_function_decl) =
1896 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1897 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1901 struct tree_opt_pass pass_profile =
1903 "profile", /* name */
1904 NULL, /* gate */
1905 tree_estimate_probability, /* execute */
1906 NULL, /* sub */
1907 NULL, /* next */
1908 0, /* static_pass_number */
1909 TV_BRANCH_PROB, /* tv_id */
1910 PROP_cfg, /* properties_required */
1911 0, /* properties_provided */
1912 0, /* properties_destroyed */
1913 0, /* todo_flags_start */
1914 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1915 0 /* letter */