1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64 /* Holds an array of names indexed by insn_code_number. */
65 static char **insn_name_ptr
= 0;
66 static int insn_name_ptr_size
= 0;
68 /* A listhead of decision trees. The alternatives to a node are kept
69 in a doubly-linked list so we can easily add nodes to the proper
70 place when merging. */
74 struct decision
*first
;
75 struct decision
*last
;
78 /* A single test. The two accept types aren't tests per-se, but
79 their equality (or lack thereof) does affect tree merging so
80 it is convenient to keep them here. */
84 /* A linked list through the tests attached to a node. */
85 struct decision_test
*next
;
87 /* These types are roughly in the order in which we'd like to test them. */
90 DT_mode
, DT_code
, DT_veclen
,
91 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
93 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
94 DT_accept_op
, DT_accept_insn
99 enum machine_mode mode
; /* Machine mode of node. */
100 RTX_CODE code
; /* Code to test. */
104 const char *name
; /* Predicate to call. */
105 const struct pred_data
*data
;
106 /* Optimization hints for this predicate. */
107 enum machine_mode mode
; /* Machine mode for node. */
110 const char *c_test
; /* Additional test to perform. */
111 int veclen
; /* Length of vector. */
112 int dup
; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
114 int opno
; /* Operand number matched. */
117 int code_number
; /* Insn number matched. */
118 int lineno
; /* Line number of the insn. */
119 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
124 /* Data structure for decision tree for recognizing legitimate insns. */
128 struct decision_head success
; /* Nodes to test on success. */
129 struct decision
*next
; /* Node to test on failure. */
130 struct decision
*prev
; /* Node whose failure tests us. */
131 struct decision
*afterward
; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position
; /* String denoting position in pattern. */
136 struct decision_test
*tests
; /* The tests for this node. */
138 int number
; /* Node number, used for labels */
139 int subroutine_number
; /* Number of subroutine this node starts */
140 int need_label
; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number
;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
152 RECOG
, SPLIT
, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number
;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code
;
165 /* Record the highest depth we ever have so we know how many variables to
166 allocate in each subroutine we make. */
168 static int max_depth
;
170 /* The line number of the start of the pattern currently being processed. */
171 static int pattern_lineno
;
173 /* Count of errors. */
174 static int error_count
;
176 /* Predicate handling.
178 We construct from the machine description a table mapping each
179 predicate to a list of the rtl codes it can possibly match. The
180 function 'maybe_both_true' uses it to deduce that there are no
181 expressions that can be matches by certain pairs of tree nodes.
182 Also, if a predicate can match only one code, we can hardwire that
183 code into the node testing the predicate.
185 Some predicates are flagged as special. validate_pattern will not
186 warn about modeless match_operand expressions if they have a
187 special predicate. Predicates that allow only constants are also
188 treated as special, for this purpose.
190 validate_pattern will warn about predicates that allow non-lvalues
191 when they appear in destination operands.
193 Calculating the set of rtx codes that can possibly be accepted by a
194 predicate expression EXP requires a three-state logic: any given
195 subexpression may definitively accept a code C (Y), definitively
196 reject a code C (N), or may have an indeterminate effect (I). N
197 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
208 We represent Y with 1, N with 0, I with 2. If any code is left in
209 an I state by the complete expression, we must assume that that
210 code can be accepted. */
216 #define TRISTATE_AND(a,b) \
217 ((a) == I ? ((b) == N ? N : I) : \
218 (b) == I ? ((a) == N ? N : I) : \
221 #define TRISTATE_OR(a,b) \
222 ((a) == I ? ((b) == Y ? Y : I) : \
223 (b) == I ? ((a) == Y ? Y : I) : \
226 #define TRISTATE_NOT(a) \
227 ((a) == I ? I : !(a))
229 /* Recursively calculate the set of rtx codes accepted by the
230 predicate expression EXP, writing the result to CODES. */
232 compute_predicate_codes (rtx exp
, char codes
[NUM_RTX_CODE
])
234 char op0_codes
[NUM_RTX_CODE
];
235 char op1_codes
[NUM_RTX_CODE
];
236 char op2_codes
[NUM_RTX_CODE
];
239 switch (GET_CODE (exp
))
242 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
243 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
244 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
245 codes
[i
] = TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]);
249 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
250 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
251 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
252 codes
[i
] = TRISTATE_OR (op0_codes
[i
], op1_codes
[i
]);
255 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
256 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
257 codes
[i
] = TRISTATE_NOT (op0_codes
[i
]);
261 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
262 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
263 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
264 compute_predicate_codes (XEXP (exp
, 2), op2_codes
);
265 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
266 codes
[i
] = TRISTATE_OR (TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]),
267 TRISTATE_AND (TRISTATE_NOT (op0_codes
[i
]),
272 /* MATCH_CODE allows a specified list of codes. */
273 memset (codes
, N
, NUM_RTX_CODE
);
275 const char *next_code
= XSTR (exp
, 0);
278 if (*next_code
== '\0')
280 message_with_line (pattern_lineno
, "empty match_code expression");
285 while ((code
= scan_comma_elt (&next_code
)) != 0)
287 size_t n
= next_code
- code
;
289 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
290 if (!strncmp (code
, GET_RTX_NAME (i
), n
)
291 && GET_RTX_NAME (i
)[n
] == '\0')
301 /* MATCH_OPERAND disallows the set of codes that the named predicate
302 disallows, and is indeterminate for the codes that it does allow. */
304 struct pred_data
*p
= lookup_predicate (XSTR (exp
, 1));
307 message_with_line (pattern_lineno
,
308 "reference to unknown predicate '%s'",
313 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
314 codes
[i
] = p
->codes
[i
] ? I
: N
;
320 /* (match_test WHATEVER) is completely indeterminate. */
321 memset (codes
, I
, NUM_RTX_CODE
);
325 message_with_line (pattern_lineno
,
326 "'%s' cannot be used in a define_predicate expression",
327 GET_RTX_NAME (GET_CODE (exp
)));
329 memset (codes
, I
, NUM_RTX_CODE
);
338 /* Process a define_predicate expression: compute the set of predicates
339 that can be matched, and record this as a known predicate. */
341 process_define_predicate (rtx desc
)
343 struct pred_data
*pred
= xcalloc (sizeof (struct pred_data
), 1);
344 char codes
[NUM_RTX_CODE
];
345 bool seen_one
= false;
348 pred
->name
= XSTR (desc
, 0);
349 if (GET_CODE (desc
) == DEFINE_SPECIAL_PREDICATE
)
352 compute_predicate_codes (XEXP (desc
, 1), codes
);
354 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
357 pred
->codes
[i
] = true;
358 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
359 pred
->allows_non_const
= true;
365 && i
!= STRICT_LOW_PART
)
366 pred
->allows_non_lvalue
= true;
369 pred
->singleton
= UNKNOWN
;
376 add_predicate (pred
);
383 static struct decision
*new_decision
384 (const char *, struct decision_head
*);
385 static struct decision_test
*new_decision_test
386 (enum decision_type
, struct decision_test
***);
387 static rtx find_operand
389 static rtx find_matching_operand
391 static void validate_pattern
392 (rtx
, rtx
, rtx
, int);
393 static struct decision
*add_to_sequence
394 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
396 static int maybe_both_true_2
397 (struct decision_test
*, struct decision_test
*);
398 static int maybe_both_true_1
399 (struct decision_test
*, struct decision_test
*);
400 static int maybe_both_true
401 (struct decision
*, struct decision
*, int);
403 static int nodes_identical_1
404 (struct decision_test
*, struct decision_test
*);
405 static int nodes_identical
406 (struct decision
*, struct decision
*);
407 static void merge_accept_insn
408 (struct decision
*, struct decision
*);
409 static void merge_trees
410 (struct decision_head
*, struct decision_head
*);
412 static void factor_tests
413 (struct decision_head
*);
414 static void simplify_tests
415 (struct decision_head
*);
416 static int break_out_subroutines
417 (struct decision_head
*, int);
418 static void find_afterward
419 (struct decision_head
*, struct decision
*);
421 static void change_state
422 (const char *, const char *, struct decision
*, const char *);
423 static void print_code
425 static void write_afterward
426 (struct decision
*, struct decision
*, const char *);
427 static struct decision
*write_switch
428 (struct decision
*, int);
429 static void write_cond
430 (struct decision_test
*, int, enum routine_type
);
431 static void write_action
432 (struct decision
*, struct decision_test
*, int, int,
433 struct decision
*, enum routine_type
);
434 static int is_unconditional
435 (struct decision_test
*, enum routine_type
);
436 static int write_node
437 (struct decision
*, int, enum routine_type
);
438 static void write_tree_1
439 (struct decision_head
*, int, enum routine_type
);
440 static void write_tree
441 (struct decision_head
*, const char *, enum routine_type
, int);
442 static void write_subroutine
443 (struct decision_head
*, enum routine_type
);
444 static void write_subroutines
445 (struct decision_head
*, enum routine_type
);
446 static void write_header
449 static struct decision_head make_insn_sequence
450 (rtx
, enum routine_type
);
451 static void process_tree
452 (struct decision_head
*, enum routine_type
);
454 static void record_insn_name
457 static void debug_decision_0
458 (struct decision
*, int, int);
459 static void debug_decision_1
460 (struct decision
*, int);
461 static void debug_decision_2
462 (struct decision_test
*);
463 extern void debug_decision
465 extern void debug_decision_list
468 /* Create a new node in sequence after LAST. */
470 static struct decision
*
471 new_decision (const char *position
, struct decision_head
*last
)
473 struct decision
*new = xcalloc (1, sizeof (struct decision
));
475 new->success
= *last
;
476 new->position
= xstrdup (position
);
477 new->number
= next_number
++;
479 last
->first
= last
->last
= new;
483 /* Create a new test and link it in at PLACE. */
485 static struct decision_test
*
486 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
488 struct decision_test
**place
= *pplace
;
489 struct decision_test
*test
;
491 test
= xmalloc (sizeof (*test
));
502 /* Search for and return operand N, stop when reaching node STOP. */
505 find_operand (rtx pattern
, int n
, rtx stop
)
515 code
= GET_CODE (pattern
);
516 if ((code
== MATCH_SCRATCH
517 || code
== MATCH_OPERAND
518 || code
== MATCH_OPERATOR
519 || code
== MATCH_PARALLEL
)
520 && XINT (pattern
, 0) == n
)
523 fmt
= GET_RTX_FORMAT (code
);
524 len
= GET_RTX_LENGTH (code
);
525 for (i
= 0; i
< len
; i
++)
530 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
535 if (! XVEC (pattern
, i
))
540 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
541 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
546 case 'i': case 'w': case '0': case 's':
557 /* Search for and return operand M, such that it has a matching
558 constraint for operand N. */
561 find_matching_operand (rtx pattern
, int n
)
568 code
= GET_CODE (pattern
);
569 if (code
== MATCH_OPERAND
570 && (XSTR (pattern
, 2)[0] == '0' + n
571 || (XSTR (pattern
, 2)[0] == '%'
572 && XSTR (pattern
, 2)[1] == '0' + n
)))
575 fmt
= GET_RTX_FORMAT (code
);
576 len
= GET_RTX_LENGTH (code
);
577 for (i
= 0; i
< len
; i
++)
582 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
587 if (! XVEC (pattern
, i
))
592 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
593 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
597 case 'i': case 'w': case '0': case 's':
609 /* Check for various errors in patterns. SET is nonnull for a destination,
610 and is the complete set pattern. SET_CODE is '=' for normal sets, and
611 '+' within a context that requires in-out constraints. */
614 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
621 code
= GET_CODE (pattern
);
629 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
631 message_with_line (pattern_lineno
,
632 "operand %i duplicated before defined",
640 const char *pred_name
= XSTR (pattern
, 1);
641 const struct pred_data
*pred
;
644 if (GET_CODE (insn
) == DEFINE_INSN
)
645 c_test
= XSTR (insn
, 2);
647 c_test
= XSTR (insn
, 1);
649 if (pred_name
[0] != 0)
651 pred
= lookup_predicate (pred_name
);
653 message_with_line (pattern_lineno
,
654 "warning: unknown predicate '%s'",
660 if (code
== MATCH_OPERAND
)
662 const char constraints0
= XSTR (pattern
, 2)[0];
664 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
665 don't use the MATCH_OPERAND constraint, only the predicate.
666 This is confusing to folks doing new ports, so help them
667 not make the mistake. */
668 if (GET_CODE (insn
) == DEFINE_EXPAND
669 || GET_CODE (insn
) == DEFINE_SPLIT
670 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
673 message_with_line (pattern_lineno
,
674 "warning: constraints not supported in %s",
675 rtx_name
[GET_CODE (insn
)]);
678 /* A MATCH_OPERAND that is a SET should have an output reload. */
679 else if (set
&& constraints0
)
683 if (constraints0
== '+')
685 /* If we've only got an output reload for this operand,
686 we'd better have a matching input operand. */
687 else if (constraints0
== '='
688 && find_matching_operand (insn
, XINT (pattern
, 0)))
692 message_with_line (pattern_lineno
,
693 "operand %d missing in-out reload",
698 else if (constraints0
!= '=' && constraints0
!= '+')
700 message_with_line (pattern_lineno
,
701 "operand %d missing output reload",
708 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
709 while not likely to occur at runtime, results in less efficient
710 code from insn-recog.c. */
711 if (set
&& pred
&& pred
->allows_non_lvalue
)
712 message_with_line (pattern_lineno
,
713 "warning: destination operand %d "
717 /* A modeless MATCH_OPERAND can be handy when we can check for
718 multiple modes in the c_test. In most other cases, it is a
719 mistake. Only DEFINE_INSN is eligible, since SPLIT and
720 PEEP2 can FAIL within the output pattern. Exclude special
721 predicates, which check the mode themselves. Also exclude
722 predicates that allow only constants. Exclude the SET_DEST
723 of a call instruction, as that is a common idiom. */
725 if (GET_MODE (pattern
) == VOIDmode
726 && code
== MATCH_OPERAND
727 && GET_CODE (insn
) == DEFINE_INSN
730 && pred
->allows_non_const
731 && strstr (c_test
, "operands") == NULL
733 && GET_CODE (set
) == SET
734 && GET_CODE (SET_SRC (set
)) == CALL
))
735 message_with_line (pattern_lineno
,
736 "warning: operand %d missing mode?",
743 enum machine_mode dmode
, smode
;
746 dest
= SET_DEST (pattern
);
747 src
= SET_SRC (pattern
);
749 /* STRICT_LOW_PART is a wrapper. Its argument is the real
750 destination, and it's mode should match the source. */
751 if (GET_CODE (dest
) == STRICT_LOW_PART
)
752 dest
= XEXP (dest
, 0);
754 /* Find the referent for a DUP. */
756 if (GET_CODE (dest
) == MATCH_DUP
757 || GET_CODE (dest
) == MATCH_OP_DUP
758 || GET_CODE (dest
) == MATCH_PAR_DUP
)
759 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
761 if (GET_CODE (src
) == MATCH_DUP
762 || GET_CODE (src
) == MATCH_OP_DUP
763 || GET_CODE (src
) == MATCH_PAR_DUP
)
764 src
= find_operand (insn
, XINT (src
, 0), NULL
);
766 dmode
= GET_MODE (dest
);
767 smode
= GET_MODE (src
);
769 /* The mode of an ADDRESS_OPERAND is the mode of the memory
770 reference, not the mode of the address. */
771 if (GET_CODE (src
) == MATCH_OPERAND
772 && ! strcmp (XSTR (src
, 1), "address_operand"))
775 /* The operands of a SET must have the same mode unless one
777 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
779 message_with_line (pattern_lineno
,
780 "mode mismatch in set: %smode vs %smode",
781 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
785 /* If only one of the operands is VOIDmode, and PC or CC0 is
786 not involved, it's probably a mistake. */
787 else if (dmode
!= smode
788 && GET_CODE (dest
) != PC
789 && GET_CODE (dest
) != CC0
790 && GET_CODE (src
) != PC
791 && GET_CODE (src
) != CC0
792 && GET_CODE (src
) != CONST_INT
)
795 which
= (dmode
== VOIDmode
? "destination" : "source");
796 message_with_line (pattern_lineno
,
797 "warning: %s missing a mode?", which
);
800 if (dest
!= SET_DEST (pattern
))
801 validate_pattern (dest
, insn
, pattern
, '=');
802 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
803 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
808 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
812 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
813 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
814 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
817 case STRICT_LOW_PART
:
818 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
822 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
824 message_with_line (pattern_lineno
,
825 "operand to label_ref %smode not VOIDmode",
826 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
835 fmt
= GET_RTX_FORMAT (code
);
836 len
= GET_RTX_LENGTH (code
);
837 for (i
= 0; i
< len
; i
++)
842 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
846 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
847 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
850 case 'i': case 'w': case '0': case 's':
859 /* Create a chain of nodes to verify that an rtl expression matches
862 LAST is a pointer to the listhead in the previous node in the chain (or
863 in the calling function, for the first node).
865 POSITION is the string representing the current position in the insn.
867 INSN_TYPE is the type of insn for which we are emitting code.
869 A pointer to the final node in the chain is returned. */
871 static struct decision
*
872 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
873 enum routine_type insn_type
, int top
)
876 struct decision
*this, *sub
;
877 struct decision_test
*test
;
878 struct decision_test
**place
;
882 int depth
= strlen (position
);
884 enum machine_mode mode
;
886 if (depth
> max_depth
)
889 subpos
= xmalloc (depth
+ 2);
890 strcpy (subpos
, position
);
891 subpos
[depth
+ 1] = 0;
893 sub
= this = new_decision (position
, last
);
894 place
= &this->tests
;
897 mode
= GET_MODE (pattern
);
898 code
= GET_CODE (pattern
);
903 /* Toplevel peephole pattern. */
904 if (insn_type
== PEEPHOLE2
&& top
)
906 /* We don't need the node we just created -- unlink it. */
907 last
->first
= last
->last
= NULL
;
909 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
911 /* Which insn we're looking at is represented by A-Z. We don't
912 ever use 'A', however; it is always implied. */
914 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
915 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
916 last
, subpos
, insn_type
, 0);
917 last
= &sub
->success
;
922 /* Else nothing special. */
926 /* The explicit patterns within a match_parallel enforce a minimum
927 length on the vector. The match_parallel predicate may allow
928 for more elements. We do need to check for this minimum here
929 or the code generated to match the internals may reference data
930 beyond the end of the vector. */
931 test
= new_decision_test (DT_veclen_ge
, &place
);
932 test
->u
.veclen
= XVECLEN (pattern
, 2);
939 RTX_CODE was_code
= code
;
940 const char *pred_name
;
941 bool allows_const_int
= true;
943 if (code
== MATCH_SCRATCH
)
945 pred_name
= "scratch_operand";
950 pred_name
= XSTR (pattern
, 1);
951 if (code
== MATCH_PARALLEL
)
957 if (pred_name
[0] != 0)
959 const struct pred_data
*pred
;
961 test
= new_decision_test (DT_pred
, &place
);
962 test
->u
.pred
.name
= pred_name
;
963 test
->u
.pred
.mode
= mode
;
965 /* See if we know about this predicate.
966 If we do, remember it for use below.
968 We can optimize the generated code a little if either
969 (a) the predicate only accepts one code, or (b) the
970 predicate does not allow CONST_INT, in which case it
971 can match only if the modes match. */
972 pred
= lookup_predicate (pred_name
);
975 test
->u
.pred
.data
= pred
;
976 allows_const_int
= pred
->codes
[CONST_INT
];
977 if (was_code
== MATCH_PARALLEL
978 && pred
->singleton
!= PARALLEL
)
979 message_with_line (pattern_lineno
,
980 "predicate '%s' used in match_parallel "
981 "does not allow only PARALLEL", pred
->name
);
983 code
= pred
->singleton
;
986 message_with_line (pattern_lineno
,
987 "warning: unknown predicate '%s' in '%s' expression",
988 pred_name
, GET_RTX_NAME (was_code
));
991 /* Can't enforce a mode if we allow const_int. */
992 if (allows_const_int
)
995 /* Accept the operand, i.e. record it in `operands'. */
996 test
= new_decision_test (DT_accept_op
, &place
);
997 test
->u
.opno
= XINT (pattern
, 0);
999 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
1001 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
1002 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
1004 subpos
[depth
] = i
+ base
;
1005 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
1006 &sub
->success
, subpos
, insn_type
, 0);
1015 test
= new_decision_test (DT_dup
, &place
);
1016 test
->u
.dup
= XINT (pattern
, 0);
1018 test
= new_decision_test (DT_accept_op
, &place
);
1019 test
->u
.opno
= XINT (pattern
, 0);
1021 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
1023 subpos
[depth
] = i
+ '0';
1024 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
1025 &sub
->success
, subpos
, insn_type
, 0);
1033 test
= new_decision_test (DT_dup
, &place
);
1034 test
->u
.dup
= XINT (pattern
, 0);
1038 pattern
= XEXP (pattern
, 0);
1045 fmt
= GET_RTX_FORMAT (code
);
1046 len
= GET_RTX_LENGTH (code
);
1048 /* Do tests against the current node first. */
1049 for (i
= 0; i
< (size_t) len
; i
++)
1057 test
= new_decision_test (DT_elt_zero_int
, &place
);
1058 test
->u
.intval
= XINT (pattern
, i
);
1062 test
= new_decision_test (DT_elt_one_int
, &place
);
1063 test
->u
.intval
= XINT (pattern
, i
);
1066 else if (fmt
[i
] == 'w')
1068 /* If this value actually fits in an int, we can use a switch
1069 statement here, so indicate that. */
1070 enum decision_type type
1071 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
1072 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
1076 test
= new_decision_test (type
, &place
);
1077 test
->u
.intval
= XWINT (pattern
, i
);
1079 else if (fmt
[i
] == 'E')
1083 test
= new_decision_test (DT_veclen
, &place
);
1084 test
->u
.veclen
= XVECLEN (pattern
, i
);
1088 /* Now test our sub-patterns. */
1089 for (i
= 0; i
< (size_t) len
; i
++)
1094 subpos
[depth
] = '0' + i
;
1095 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1096 subpos
, insn_type
, 0);
1102 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1104 subpos
[depth
] = 'a' + j
;
1105 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1106 &sub
->success
, subpos
, insn_type
, 0);
1112 /* Handled above. */
1123 /* Insert nodes testing mode and code, if they're still relevant,
1124 before any of the nodes we may have added above. */
1125 if (code
!= UNKNOWN
)
1127 place
= &this->tests
;
1128 test
= new_decision_test (DT_code
, &place
);
1129 test
->u
.code
= code
;
1132 if (mode
!= VOIDmode
)
1134 place
= &this->tests
;
1135 test
= new_decision_test (DT_mode
, &place
);
1136 test
->u
.mode
= mode
;
1139 /* If we didn't insert any tests or accept nodes, hork. */
1140 gcc_assert (this->tests
);
1147 /* A subroutine of maybe_both_true; examines only one test.
1148 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1151 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1153 if (d1
->type
== d2
->type
)
1158 return d1
->u
.mode
== d2
->u
.mode
;
1161 return d1
->u
.code
== d2
->u
.code
;
1164 return d1
->u
.veclen
== d2
->u
.veclen
;
1166 case DT_elt_zero_int
:
1167 case DT_elt_one_int
:
1168 case DT_elt_zero_wide
:
1169 case DT_elt_zero_wide_safe
:
1170 return d1
->u
.intval
== d2
->u
.intval
;
1177 /* If either has a predicate that we know something about, set
1178 things up so that D1 is the one that always has a known
1179 predicate. Then see if they have any codes in common. */
1181 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1183 if (d2
->type
== DT_pred
)
1185 struct decision_test
*tmp
;
1186 tmp
= d1
, d1
= d2
, d2
= tmp
;
1189 /* If D2 tests a mode, see if it matches D1. */
1190 if (d1
->u
.pred
.mode
!= VOIDmode
)
1192 if (d2
->type
== DT_mode
)
1194 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1195 /* The mode of an address_operand predicate is the
1196 mode of the memory, not the operand. It can only
1197 be used for testing the predicate, so we must
1199 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1202 /* Don't check two predicate modes here, because if both predicates
1203 accept CONST_INT, then both can still be true even if the modes
1204 are different. If they don't accept CONST_INT, there will be a
1205 separate DT_mode that will make maybe_both_true_1 return 0. */
1208 if (d1
->u
.pred
.data
)
1210 /* If D2 tests a code, see if it is in the list of valid
1211 codes for D1's predicate. */
1212 if (d2
->type
== DT_code
)
1214 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1218 /* Otherwise see if the predicates have any codes in common. */
1219 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1221 bool common
= false;
1224 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1225 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1237 /* Tests vs veclen may be known when strict equality is involved. */
1238 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1239 return d1
->u
.veclen
>= d2
->u
.veclen
;
1240 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1241 return d2
->u
.veclen
>= d1
->u
.veclen
;
1246 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1247 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1250 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1252 struct decision_test
*t1
, *t2
;
1254 /* A match_operand with no predicate can match anything. Recognize
1255 this by the existence of a lone DT_accept_op test. */
1256 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1259 /* Eliminate pairs of tests while they can exactly match. */
1260 while (d1
&& d2
&& d1
->type
== d2
->type
)
1262 if (maybe_both_true_2 (d1
, d2
) == 0)
1264 d1
= d1
->next
, d2
= d2
->next
;
1267 /* After that, consider all pairs. */
1268 for (t1
= d1
; t1
; t1
= t1
->next
)
1269 for (t2
= d2
; t2
; t2
= t2
->next
)
1270 if (maybe_both_true_2 (t1
, t2
) == 0)
1276 /* Return 0 if we can prove that there is no RTL that can match both
1277 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1278 can match both or just that we couldn't prove there wasn't such an RTL).
1280 TOPLEVEL is nonzero if we are to only look at the top level and not
1281 recursively descend. */
1284 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1287 struct decision
*p1
, *p2
;
1290 /* Don't compare strings on the different positions in insn. Doing so
1291 is incorrect and results in false matches from constructs like
1293 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1294 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1296 [(set (match_operand:HI "register_operand" "r")
1297 (match_operand:HI "register_operand" "r"))]
1299 If we are presented with such, we are recursing through the remainder
1300 of a node's success nodes (from the loop at the end of this function).
1301 Skip forward until we come to a position that matches.
1303 Due to the way position strings are constructed, we know that iterating
1304 forward from the lexically lower position (e.g. "00") will run into
1305 the lexically higher position (e.g. "1") and not the other way around.
1306 This saves a bit of effort. */
1308 cmp
= strcmp (d1
->position
, d2
->position
);
1311 gcc_assert (!toplevel
);
1313 /* If the d2->position was lexically lower, swap. */
1315 p1
= d1
, d1
= d2
, d2
= p1
;
1317 if (d1
->success
.first
== 0)
1319 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1320 if (maybe_both_true (p1
, d2
, 0))
1326 /* Test the current level. */
1327 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1331 /* We can't prove that D1 and D2 cannot both be true. If we are only
1332 to check the top level, return 1. Otherwise, see if we can prove
1333 that all choices in both successors are mutually exclusive. If
1334 either does not have any successors, we can't prove they can't both
1337 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1340 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1341 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1342 if (maybe_both_true (p1
, p2
, 0))
1348 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1351 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1356 return d1
->u
.mode
== d2
->u
.mode
;
1359 return d1
->u
.code
== d2
->u
.code
;
1362 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1363 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1366 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1370 return d1
->u
.veclen
== d2
->u
.veclen
;
1373 return d1
->u
.dup
== d2
->u
.dup
;
1375 case DT_elt_zero_int
:
1376 case DT_elt_one_int
:
1377 case DT_elt_zero_wide
:
1378 case DT_elt_zero_wide_safe
:
1379 return d1
->u
.intval
== d2
->u
.intval
;
1382 return d1
->u
.opno
== d2
->u
.opno
;
1384 case DT_accept_insn
:
1385 /* Differences will be handled in merge_accept_insn. */
1393 /* True iff the two nodes are identical (on one level only). Due
1394 to the way these lists are constructed, we shouldn't have to
1395 consider different orderings on the tests. */
1398 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1400 struct decision_test
*t1
, *t2
;
1402 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1404 if (t1
->type
!= t2
->type
)
1406 if (! nodes_identical_1 (t1
, t2
))
1410 /* For success, they should now both be null. */
1414 /* Check that their subnodes are at the same position, as any one set
1415 of sibling decisions must be at the same position. Allowing this
1416 requires complications to find_afterward and when change_state is
1418 if (d1
->success
.first
1419 && d2
->success
.first
1420 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1426 /* A subroutine of merge_trees; given two nodes that have been declared
1427 identical, cope with two insn accept states. If they differ in the
1428 number of clobbers, then the conflict was created by make_insn_sequence
1429 and we can drop the with-clobbers version on the floor. If both
1430 nodes have no additional clobbers, we have found an ambiguity in the
1431 source machine description. */
1434 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1436 struct decision_test
*old
, *add
;
1438 for (old
= oldd
->tests
; old
; old
= old
->next
)
1439 if (old
->type
== DT_accept_insn
)
1444 for (add
= addd
->tests
; add
; add
= add
->next
)
1445 if (add
->type
== DT_accept_insn
)
1450 /* If one node is for a normal insn and the second is for the base
1451 insn with clobbers stripped off, the second node should be ignored. */
1453 if (old
->u
.insn
.num_clobbers_to_add
== 0
1454 && add
->u
.insn
.num_clobbers_to_add
> 0)
1456 /* Nothing to do here. */
1458 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1459 && add
->u
.insn
.num_clobbers_to_add
== 0)
1461 /* In this case, replace OLD with ADD. */
1462 old
->u
.insn
= add
->u
.insn
;
1466 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1467 get_insn_name (add
->u
.insn
.code_number
),
1468 get_insn_name (old
->u
.insn
.code_number
));
1469 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1470 get_insn_name (old
->u
.insn
.code_number
));
1475 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1478 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1480 struct decision
*next
, *add
;
1482 if (addh
->first
== 0)
1484 if (oldh
->first
== 0)
1490 /* Trying to merge bits at different positions isn't possible. */
1491 gcc_assert (!strcmp (oldh
->first
->position
, addh
->first
->position
));
1493 for (add
= addh
->first
; add
; add
= next
)
1495 struct decision
*old
, *insert_before
= NULL
;
1499 /* The semantics of pattern matching state that the tests are
1500 done in the order given in the MD file so that if an insn
1501 matches two patterns, the first one will be used. However,
1502 in practice, most, if not all, patterns are unambiguous so
1503 that their order is independent. In that case, we can merge
1504 identical tests and group all similar modes and codes together.
1506 Scan starting from the end of OLDH until we reach a point
1507 where we reach the head of the list or where we pass a
1508 pattern that could also be true if NEW is true. If we find
1509 an identical pattern, we can merge them. Also, record the
1510 last node that tests the same code and mode and the last one
1511 that tests just the same mode.
1513 If we have no match, place NEW after the closest match we found. */
1515 for (old
= oldh
->last
; old
; old
= old
->prev
)
1517 if (nodes_identical (old
, add
))
1519 merge_accept_insn (old
, add
);
1520 merge_trees (&old
->success
, &add
->success
);
1524 if (maybe_both_true (old
, add
, 0))
1527 /* Insert the nodes in DT test type order, which is roughly
1528 how expensive/important the test is. Given that the tests
1529 are also ordered within the list, examining the first is
1531 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1532 insert_before
= old
;
1535 if (insert_before
== NULL
)
1538 add
->prev
= oldh
->last
;
1539 oldh
->last
->next
= add
;
1544 if ((add
->prev
= insert_before
->prev
) != NULL
)
1545 add
->prev
->next
= add
;
1548 add
->next
= insert_before
;
1549 insert_before
->prev
= add
;
1556 /* Walk the tree looking for sub-nodes that perform common tests.
1557 Factor out the common test into a new node. This enables us
1558 (depending on the test type) to emit switch statements later. */
1561 factor_tests (struct decision_head
*head
)
1563 struct decision
*first
, *next
;
1565 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1567 enum decision_type type
;
1568 struct decision
*new, *old_last
;
1570 type
= first
->tests
->type
;
1573 /* Want at least two compatible sequential nodes. */
1574 if (next
->tests
->type
!= type
)
1577 /* Don't want all node types, just those we can turn into
1578 switch statements. */
1581 && type
!= DT_veclen
1582 && type
!= DT_elt_zero_int
1583 && type
!= DT_elt_one_int
1584 && type
!= DT_elt_zero_wide_safe
)
1587 /* If we'd been performing more than one test, create a new node
1588 below our first test. */
1589 if (first
->tests
->next
!= NULL
)
1591 new = new_decision (first
->position
, &first
->success
);
1592 new->tests
= first
->tests
->next
;
1593 first
->tests
->next
= NULL
;
1596 /* Crop the node tree off after our first test. */
1598 old_last
= head
->last
;
1601 /* For each compatible test, adjust to perform only one test in
1602 the top level node, then merge the node back into the tree. */
1605 struct decision_head h
;
1607 if (next
->tests
->next
!= NULL
)
1609 new = new_decision (next
->position
, &next
->success
);
1610 new->tests
= next
->tests
->next
;
1611 next
->tests
->next
= NULL
;
1616 h
.first
= h
.last
= new;
1618 merge_trees (head
, &h
);
1620 while (next
&& next
->tests
->type
== type
);
1622 /* After we run out of compatible tests, graft the remaining nodes
1623 back onto the tree. */
1626 next
->prev
= head
->last
;
1627 head
->last
->next
= next
;
1628 head
->last
= old_last
;
1633 for (first
= head
->first
; first
; first
= first
->next
)
1634 factor_tests (&first
->success
);
1637 /* After factoring, try to simplify the tests on any one node.
1638 Tests that are useful for switch statements are recognizable
1639 by having only a single test on a node -- we'll be manipulating
1640 nodes with multiple tests:
1642 If we have mode tests or code tests that are redundant with
1643 predicates, remove them. */
1646 simplify_tests (struct decision_head
*head
)
1648 struct decision
*tree
;
1650 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1652 struct decision_test
*a
, *b
;
1659 /* Find a predicate node. */
1660 while (b
&& b
->type
!= DT_pred
)
1664 /* Due to how these tests are constructed, we don't even need
1665 to check that the mode and code are compatible -- they were
1666 generated from the predicate in the first place. */
1667 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1674 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1675 simplify_tests (&tree
->success
);
1678 /* Count the number of subnodes of HEAD. If the number is high enough,
1679 make the first node in HEAD start a separate subroutine in the C code
1680 that is generated. */
1683 break_out_subroutines (struct decision_head
*head
, int initial
)
1686 struct decision
*sub
;
1688 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1689 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1691 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1693 head
->first
->subroutine_number
= ++next_subroutine_number
;
1699 /* For each node p, find the next alternative that might be true
1703 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1705 struct decision
*p
, *q
, *afterward
;
1707 /* We can't propagate alternatives across subroutine boundaries.
1708 This is not incorrect, merely a minor optimization loss. */
1711 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1713 for ( ; p
; p
= p
->next
)
1715 /* Find the next node that might be true if this one fails. */
1716 for (q
= p
->next
; q
; q
= q
->next
)
1717 if (maybe_both_true (p
, q
, 1))
1720 /* If we reached the end of the list without finding one,
1721 use the incoming afterward position. */
1730 for (p
= head
->first
; p
; p
= p
->next
)
1731 if (p
->success
.first
)
1732 find_afterward (&p
->success
, p
->afterward
);
1734 /* When we are generating a subroutine, record the real afterward
1735 position in the first node where write_tree can find it, and we
1736 can do the right thing at the subroutine call site. */
1738 if (p
->subroutine_number
> 0)
1739 p
->afterward
= real_afterward
;
1742 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1743 actions are necessary to move to NEWPOS. If we fail to move to the
1744 new state, branch to node AFTERWARD if nonzero, otherwise return.
1746 Failure to move to the new state can only occur if we are trying to
1747 match multiple insns and we try to step past the end of the stream. */
1750 change_state (const char *oldpos
, const char *newpos
,
1751 struct decision
*afterward
, const char *indent
)
1753 int odepth
= strlen (oldpos
);
1754 int ndepth
= strlen (newpos
);
1756 int old_has_insn
, new_has_insn
;
1758 /* Pop up as many levels as necessary. */
1759 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1762 /* Hunt for the last [A-Z] in both strings. */
1763 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1764 if (ISUPPER (oldpos
[old_has_insn
]))
1766 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1767 if (ISUPPER (newpos
[new_has_insn
]))
1770 /* Go down to desired level. */
1771 while (depth
< ndepth
)
1773 /* It's a different insn from the first one. */
1774 if (ISUPPER (newpos
[depth
]))
1776 /* We can only fail if we're moving down the tree. */
1777 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1779 printf ("%stem = peep2_next_insn (%d);\n",
1780 indent
, newpos
[depth
] - 'A');
1784 printf ("%stem = peep2_next_insn (%d);\n",
1785 indent
, newpos
[depth
] - 'A');
1786 printf ("%sif (tem == NULL_RTX)\n", indent
);
1788 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1790 printf ("%s goto ret0;\n", indent
);
1792 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1794 else if (ISLOWER (newpos
[depth
]))
1795 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1796 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1798 printf ("%sx%d = XEXP (x%d, %c);\n",
1799 indent
, depth
+ 1, depth
, newpos
[depth
]);
1804 /* Print the enumerator constant for CODE -- the upcase version of
1808 print_code (enum rtx_code code
)
1811 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1812 putchar (TOUPPER (*p
));
1815 /* Emit code to cross an afterward link -- change state and branch. */
1818 write_afterward (struct decision
*start
, struct decision
*afterward
,
1821 if (!afterward
|| start
->subroutine_number
> 0)
1822 printf("%sgoto ret0;\n", indent
);
1825 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1826 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1830 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1831 special care to avoid "decimal constant is so large that it is unsigned"
1832 warnings in the resulting code. */
1835 print_host_wide_int (HOST_WIDE_INT val
)
1837 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1839 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1841 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1844 /* Emit a switch statement, if possible, for an initial sequence of
1845 nodes at START. Return the first node yet untested. */
1847 static struct decision
*
1848 write_switch (struct decision
*start
, int depth
)
1850 struct decision
*p
= start
;
1851 enum decision_type type
= p
->tests
->type
;
1852 struct decision
*needs_label
= NULL
;
1854 /* If we have two or more nodes in sequence that test the same one
1855 thing, we may be able to use a switch statement. */
1859 || p
->next
->tests
->type
!= type
1860 || p
->next
->tests
->next
1861 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1864 /* DT_code is special in that we can do interesting things with
1865 known predicates at the same time. */
1866 if (type
== DT_code
)
1868 char codemap
[NUM_RTX_CODE
];
1869 struct decision
*ret
;
1872 memset (codemap
, 0, sizeof(codemap
));
1874 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1875 code
= p
->tests
->u
.code
;
1878 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1883 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1884 p
->success
.first
->need_label
= 1;
1891 && p
->tests
->type
== DT_code
1892 && ! codemap
[code
= p
->tests
->u
.code
]);
1894 /* If P is testing a predicate that we know about and we haven't
1895 seen any of the codes that are valid for the predicate, we can
1896 write a series of "case" statement, one for each possible code.
1897 Since we are already in a switch, these redundant tests are very
1898 cheap and will reduce the number of predicates called. */
1900 /* Note that while we write out cases for these predicates here,
1901 we don't actually write the test here, as it gets kinda messy.
1902 It is trivial to leave this to later by telling our caller that
1903 we only processed the CODE tests. */
1904 if (needs_label
!= NULL
)
1909 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1911 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1913 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1914 if (codemap
[c
] && data
->codes
[c
])
1917 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1920 fputs (" case ", stdout
);
1922 fputs (":\n", stdout
);
1926 printf (" goto L%d;\n", p
->number
);
1932 /* Make the default case skip the predicates we managed to match. */
1934 printf (" default:\n");
1939 printf (" goto L%d;\n", p
->number
);
1943 write_afterward (start
, start
->afterward
, " ");
1946 printf (" break;\n");
1951 else if (type
== DT_mode
1952 || type
== DT_veclen
1953 || type
== DT_elt_zero_int
1954 || type
== DT_elt_one_int
1955 || type
== DT_elt_zero_wide_safe
)
1957 const char *indent
= "";
1959 /* We cast switch parameter to integer, so we must ensure that the value
1961 if (type
== DT_elt_zero_wide_safe
)
1964 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1966 printf ("%s switch (", indent
);
1970 printf ("GET_MODE (x%d)", depth
);
1973 printf ("XVECLEN (x%d, 0)", depth
);
1975 case DT_elt_zero_int
:
1976 printf ("XINT (x%d, 0)", depth
);
1978 case DT_elt_one_int
:
1979 printf ("XINT (x%d, 1)", depth
);
1981 case DT_elt_zero_wide_safe
:
1982 /* Convert result of XWINT to int for portability since some C
1983 compilers won't do it and some will. */
1984 printf ("(int) XWINT (x%d, 0)", depth
);
1989 printf (")\n%s {\n", indent
);
1993 /* Merge trees will not unify identical nodes if their
1994 sub-nodes are at different levels. Thus we must check
1995 for duplicate cases. */
1997 for (q
= start
; q
!= p
; q
= q
->next
)
1998 if (nodes_identical_1 (p
->tests
, q
->tests
))
2001 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
2004 printf ("%s case ", indent
);
2008 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
2011 printf ("%d", p
->tests
->u
.veclen
);
2013 case DT_elt_zero_int
:
2014 case DT_elt_one_int
:
2015 case DT_elt_zero_wide
:
2016 case DT_elt_zero_wide_safe
:
2017 print_host_wide_int (p
->tests
->u
.intval
);
2022 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
2023 p
->success
.first
->need_label
= 1;
2027 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
2030 printf ("%s default:\n%s break;\n%s }\n",
2031 indent
, indent
, indent
);
2033 return needs_label
!= NULL
? needs_label
: p
;
2037 /* None of the other tests are amenable. */
2042 /* Emit code for one test. */
2045 write_cond (struct decision_test
*p
, int depth
,
2046 enum routine_type subroutine_type
)
2051 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
2055 printf ("GET_CODE (x%d) == ", depth
);
2056 print_code (p
->u
.code
);
2060 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
2063 case DT_elt_zero_int
:
2064 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
2067 case DT_elt_one_int
:
2068 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
2071 case DT_elt_zero_wide
:
2072 case DT_elt_zero_wide_safe
:
2073 printf ("XWINT (x%d, 0) == ", depth
);
2074 print_host_wide_int (p
->u
.intval
);
2078 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2079 depth
, (int) p
->u
.intval
);
2083 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2087 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2091 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2092 GET_MODE_NAME (p
->u
.pred
.mode
));
2096 printf ("(%s)", p
->u
.c_test
);
2099 case DT_accept_insn
:
2100 gcc_assert (subroutine_type
== RECOG
);
2101 gcc_assert (p
->u
.insn
.num_clobbers_to_add
);
2102 printf ("pnum_clobbers != NULL");
2110 /* Emit code for one action. The previous tests have succeeded;
2111 TEST is the last of the chain. In the normal case we simply
2112 perform a state change. For the `accept' tests we must do more work. */
2115 write_action (struct decision
*p
, struct decision_test
*test
,
2116 int depth
, int uncond
, struct decision
*success
,
2117 enum routine_type subroutine_type
)
2124 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2126 fputs (" {\n", stdout
);
2133 if (test
->type
== DT_accept_op
)
2135 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2137 /* Only allow DT_accept_insn to follow. */
2141 gcc_assert (test
->type
== DT_accept_insn
);
2145 /* Sanity check that we're now at the end of the list of tests. */
2146 gcc_assert (!test
->next
);
2148 if (test
->type
== DT_accept_insn
)
2150 switch (subroutine_type
)
2153 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2154 printf ("%s*pnum_clobbers = %d;\n",
2155 indent
, test
->u
.insn
.num_clobbers_to_add
);
2156 printf ("%sreturn %d; /* %s */\n", indent
,
2157 test
->u
.insn
.code_number
,
2158 insn_name_ptr
[test
->u
.insn
.code_number
]);
2162 printf ("%sreturn gen_split_%d (insn, operands);\n",
2163 indent
, test
->u
.insn
.code_number
);
2168 int match_len
= 0, i
;
2170 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2171 if (ISUPPER (p
->position
[i
]))
2173 match_len
= p
->position
[i
] - 'A';
2176 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2177 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2178 indent
, test
->u
.insn
.code_number
);
2179 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2189 printf("%sgoto L%d;\n", indent
, success
->number
);
2190 success
->need_label
= 1;
2194 fputs (" }\n", stdout
);
2197 /* Return 1 if the test is always true and has no fallthru path. Return -1
2198 if the test does have a fallthru path, but requires that the condition be
2199 terminated. Otherwise return 0 for a normal test. */
2200 /* ??? is_unconditional is a stupid name for a tri-state function. */
2203 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2205 if (t
->type
== DT_accept_op
)
2208 if (t
->type
== DT_accept_insn
)
2210 switch (subroutine_type
)
2213 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2226 /* Emit code for one node -- the conditional and the accompanying action.
2227 Return true if there is no fallthru path. */
2230 write_node (struct decision
*p
, int depth
,
2231 enum routine_type subroutine_type
)
2233 struct decision_test
*test
, *last_test
;
2236 /* Scan the tests and simplify comparisons against small
2238 for (test
= p
->tests
; test
; test
= test
->next
)
2240 if (test
->type
== DT_code
2241 && test
->u
.code
== CONST_INT
2243 && test
->next
->type
== DT_elt_zero_wide_safe
2244 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2245 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2247 test
->type
= DT_const_int
;
2248 test
->u
.intval
= test
->next
->u
.intval
;
2249 test
->next
= test
->next
->next
;
2253 last_test
= test
= p
->tests
;
2254 uncond
= is_unconditional (test
, subroutine_type
);
2258 write_cond (test
, depth
, subroutine_type
);
2260 while ((test
= test
->next
) != NULL
)
2263 if (is_unconditional (test
, subroutine_type
))
2267 write_cond (test
, depth
, subroutine_type
);
2273 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2278 /* Emit code for all of the sibling nodes of HEAD. */
2281 write_tree_1 (struct decision_head
*head
, int depth
,
2282 enum routine_type subroutine_type
)
2284 struct decision
*p
, *next
;
2287 for (p
= head
->first
; p
; p
= next
)
2289 /* The label for the first element was printed in write_tree. */
2290 if (p
!= head
->first
&& p
->need_label
)
2291 OUTPUT_LABEL (" ", p
->number
);
2293 /* Attempt to write a switch statement for a whole sequence. */
2294 next
= write_switch (p
, depth
);
2299 /* Failed -- fall back and write one node. */
2300 uncond
= write_node (p
, depth
, subroutine_type
);
2305 /* Finished with this chain. Close a fallthru path by branching
2306 to the afterward node. */
2308 write_afterward (head
->last
, head
->last
->afterward
, " ");
2311 /* Write out the decision tree starting at HEAD. PREVPOS is the
2312 position at the node that branched to this node. */
2315 write_tree (struct decision_head
*head
, const char *prevpos
,
2316 enum routine_type type
, int initial
)
2318 struct decision
*p
= head
->first
;
2322 OUTPUT_LABEL (" ", p
->number
);
2324 if (! initial
&& p
->subroutine_number
> 0)
2326 static const char * const name_prefix
[] = {
2327 "recog", "split", "peephole2"
2330 static const char * const call_suffix
[] = {
2331 ", pnum_clobbers", "", ", _pmatch_len"
2334 /* This node has been broken out into a separate subroutine.
2335 Call it, test the result, and branch accordingly. */
2339 printf (" tem = %s_%d (x0, insn%s);\n",
2340 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2341 if (IS_SPLIT (type
))
2342 printf (" if (tem != 0)\n return tem;\n");
2344 printf (" if (tem >= 0)\n return tem;\n");
2346 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2347 printf (" goto L%d;\n", p
->afterward
->number
);
2351 printf (" return %s_%d (x0, insn%s);\n",
2352 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2357 int depth
= strlen (p
->position
);
2359 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2360 write_tree_1 (head
, depth
, type
);
2362 for (p
= head
->first
; p
; p
= p
->next
)
2363 if (p
->success
.first
)
2364 write_tree (&p
->success
, p
->position
, type
, 0);
2368 /* Write out a subroutine of type TYPE to do comparisons starting at
2372 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2374 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2379 s_or_e
= subfunction
? "static " : "";
2382 sprintf (extension
, "_%d", subfunction
);
2383 else if (type
== RECOG
)
2384 extension
[0] = '\0';
2386 strcpy (extension
, "_insns");
2392 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2396 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2401 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2406 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2407 for (i
= 1; i
<= max_depth
; i
++)
2408 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2410 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2413 printf (" recog_data.insn = NULL_RTX;\n");
2416 write_tree (head
, "", type
, 1);
2418 printf (" goto ret0;\n");
2420 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2423 /* In break_out_subroutines, we discovered the boundaries for the
2424 subroutines, but did not write them out. Do so now. */
2427 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2431 for (p
= head
->first
; p
; p
= p
->next
)
2432 if (p
->success
.first
)
2433 write_subroutines (&p
->success
, type
);
2435 if (head
->first
->subroutine_number
> 0)
2436 write_subroutine (head
, type
);
2439 /* Begin the output file. */
2445 /* Generated automatically by the program `genrecog' from the target\n\
2446 machine description file. */\n\
2448 #include \"config.h\"\n\
2449 #include \"system.h\"\n\
2450 #include \"coretypes.h\"\n\
2451 #include \"tm.h\"\n\
2452 #include \"rtl.h\"\n\
2453 #include \"tm_p.h\"\n\
2454 #include \"function.h\"\n\
2455 #include \"insn-config.h\"\n\
2456 #include \"recog.h\"\n\
2457 #include \"real.h\"\n\
2458 #include \"output.h\"\n\
2459 #include \"flags.h\"\n\
2460 #include \"hard-reg-set.h\"\n\
2461 #include \"resource.h\"\n\
2462 #include \"toplev.h\"\n\
2463 #include \"reload.h\"\n\
2467 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2468 X0 is a valid instruction.\n\
2470 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2471 returns a nonnegative number which is the insn code number for the\n\
2472 pattern that matched. This is the same as the order in the machine\n\
2473 description of the entry that matched. This number can be used as an\n\
2474 index into `insn_data' and other tables.\n");
2476 The third argument to recog is an optional pointer to an int. If\n\
2477 present, recog will accept a pattern if it matches except for missing\n\
2478 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2479 the optional pointer will be set to the number of CLOBBERs that need\n\
2480 to be added (it should be initialized to zero by the caller). If it");
2482 is set nonzero, the caller should allocate a PARALLEL of the\n\
2483 appropriate size, copy the initial entries, and call add_clobbers\n\
2484 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2488 The function split_insns returns 0 if the rtl could not\n\
2489 be split or the split rtl as an INSN list if it can be.\n\
2491 The function peephole2_insns returns 0 if the rtl could not\n\
2492 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2493 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2498 /* Construct and return a sequence of decisions
2499 that will recognize INSN.
2501 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2503 static struct decision_head
2504 make_insn_sequence (rtx insn
, enum routine_type type
)
2507 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2508 int truth
= maybe_eval_c_test (c_test
);
2509 struct decision
*last
;
2510 struct decision_test
*test
, **place
;
2511 struct decision_head head
;
2514 /* We should never see an insn whose C test is false at compile time. */
2517 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2519 c_test_pos
[0] = '\0';
2520 if (type
== PEEPHOLE2
)
2524 /* peephole2 gets special treatment:
2525 - X always gets an outer parallel even if it's only one entry
2526 - we remove all traces of outer-level match_scratch and match_dup
2527 expressions here. */
2528 x
= rtx_alloc (PARALLEL
);
2529 PUT_MODE (x
, VOIDmode
);
2530 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2531 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2533 rtx tmp
= XVECEXP (insn
, 0, i
);
2534 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2536 XVECEXP (x
, 0, j
) = tmp
;
2542 c_test_pos
[0] = 'A' + j
- 1;
2543 c_test_pos
[1] = '\0';
2545 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2546 x
= XVECEXP (insn
, type
== RECOG
, 0);
2549 x
= rtx_alloc (PARALLEL
);
2550 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2551 PUT_MODE (x
, VOIDmode
);
2554 validate_pattern (x
, insn
, NULL_RTX
, 0);
2556 memset(&head
, 0, sizeof(head
));
2557 last
= add_to_sequence (x
, &head
, "", type
, 1);
2559 /* Find the end of the test chain on the last node. */
2560 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2562 place
= &test
->next
;
2564 /* Skip the C test if it's known to be true at compile time. */
2567 /* Need a new node if we have another test to add. */
2568 if (test
->type
== DT_accept_op
)
2570 last
= new_decision (c_test_pos
, &last
->success
);
2571 place
= &last
->tests
;
2573 test
= new_decision_test (DT_c_test
, &place
);
2574 test
->u
.c_test
= c_test
;
2577 test
= new_decision_test (DT_accept_insn
, &place
);
2578 test
->u
.insn
.code_number
= next_insn_code
;
2579 test
->u
.insn
.lineno
= pattern_lineno
;
2580 test
->u
.insn
.num_clobbers_to_add
= 0;
2585 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2586 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2587 If so, set up to recognize the pattern without these CLOBBERs. */
2589 if (GET_CODE (x
) == PARALLEL
)
2593 /* Find the last non-clobber in the parallel. */
2594 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2596 rtx y
= XVECEXP (x
, 0, i
- 1);
2597 if (GET_CODE (y
) != CLOBBER
2598 || (!REG_P (XEXP (y
, 0))
2599 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2603 if (i
!= XVECLEN (x
, 0))
2606 struct decision_head clobber_head
;
2608 /* Build a similar insn without the clobbers. */
2610 new = XVECEXP (x
, 0, 0);
2615 new = rtx_alloc (PARALLEL
);
2616 XVEC (new, 0) = rtvec_alloc (i
);
2617 for (j
= i
- 1; j
>= 0; j
--)
2618 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2622 memset (&clobber_head
, 0, sizeof(clobber_head
));
2623 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2625 /* Find the end of the test chain on the last node. */
2626 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2629 /* We definitely have a new test to add -- create a new
2631 place
= &test
->next
;
2632 if (test
->type
== DT_accept_op
)
2634 last
= new_decision ("", &last
->success
);
2635 place
= &last
->tests
;
2638 /* Skip the C test if it's known to be true at compile
2642 test
= new_decision_test (DT_c_test
, &place
);
2643 test
->u
.c_test
= c_test
;
2646 test
= new_decision_test (DT_accept_insn
, &place
);
2647 test
->u
.insn
.code_number
= next_insn_code
;
2648 test
->u
.insn
.lineno
= pattern_lineno
;
2649 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2651 merge_trees (&head
, &clobber_head
);
2657 /* Define the subroutine we will call below and emit in genemit. */
2658 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2662 /* Define the subroutine we will call below and emit in genemit. */
2663 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2672 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2674 if (head
->first
== NULL
)
2676 /* We can elide peephole2_insns, but not recog or split_insns. */
2677 if (subroutine_type
== PEEPHOLE2
)
2682 factor_tests (head
);
2684 next_subroutine_number
= 0;
2685 break_out_subroutines (head
, 1);
2686 find_afterward (head
, NULL
);
2688 /* We run this after find_afterward, because find_afterward needs
2689 the redundant DT_mode tests on predicates to determine whether
2690 two tests can both be true or not. */
2691 simplify_tests(head
);
2693 write_subroutines (head
, subroutine_type
);
2696 write_subroutine (head
, subroutine_type
);
2699 extern int main (int, char **);
2702 main (int argc
, char **argv
)
2705 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2707 progname
= "genrecog";
2709 memset (&recog_tree
, 0, sizeof recog_tree
);
2710 memset (&split_tree
, 0, sizeof split_tree
);
2711 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2713 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2714 return (FATAL_EXIT_CODE
);
2720 /* Read the machine description. */
2724 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2728 switch (GET_CODE (desc
))
2730 case DEFINE_PREDICATE
:
2731 case DEFINE_SPECIAL_PREDICATE
:
2732 process_define_predicate (desc
);
2736 h
= make_insn_sequence (desc
, RECOG
);
2737 merge_trees (&recog_tree
, &h
);
2741 h
= make_insn_sequence (desc
, SPLIT
);
2742 merge_trees (&split_tree
, &h
);
2745 case DEFINE_PEEPHOLE2
:
2746 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2747 merge_trees (&peephole2_tree
, &h
);
2754 if (error_count
|| have_error
)
2755 return FATAL_EXIT_CODE
;
2759 process_tree (&recog_tree
, RECOG
);
2760 process_tree (&split_tree
, SPLIT
);
2761 process_tree (&peephole2_tree
, PEEPHOLE2
);
2764 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2767 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2769 get_insn_name (int code
)
2771 if (code
< insn_name_ptr_size
)
2772 return insn_name_ptr
[code
];
2778 record_insn_name (int code
, const char *name
)
2780 static const char *last_real_name
= "insn";
2781 static int last_real_code
= 0;
2784 if (insn_name_ptr_size
<= code
)
2787 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2788 insn_name_ptr
= xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2789 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2790 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2791 insn_name_ptr_size
= new_size
;
2794 if (!name
|| name
[0] == '\0')
2796 new = xmalloc (strlen (last_real_name
) + 10);
2797 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2801 last_real_name
= new = xstrdup (name
);
2802 last_real_code
= code
;
2805 insn_name_ptr
[code
] = new;
2809 debug_decision_2 (struct decision_test
*test
)
2814 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2817 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2820 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2822 case DT_elt_zero_int
:
2823 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2825 case DT_elt_one_int
:
2826 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2828 case DT_elt_zero_wide
:
2829 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2831 case DT_elt_zero_wide_safe
:
2832 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2835 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2838 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2841 fprintf (stderr
, "pred=(%s,%s)",
2842 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2847 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2848 memcpy (sub
+16, "...", 4);
2849 fprintf (stderr
, "c_test=\"%s\"", sub
);
2853 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2855 case DT_accept_insn
:
2856 fprintf (stderr
, "A_insn=(%d,%d)",
2857 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2866 debug_decision_1 (struct decision
*d
, int indent
)
2869 struct decision_test
*test
;
2873 for (i
= 0; i
< indent
; ++i
)
2875 fputs ("(nil)\n", stderr
);
2879 for (i
= 0; i
< indent
; ++i
)
2886 debug_decision_2 (test
);
2887 while ((test
= test
->next
) != NULL
)
2889 fputs (" + ", stderr
);
2890 debug_decision_2 (test
);
2893 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2894 (d
->next
? d
->next
->number
: -1),
2895 (d
->afterward
? d
->afterward
->number
: -1));
2899 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2908 for (i
= 0; i
< indent
; ++i
)
2910 fputs ("(nil)\n", stderr
);
2914 debug_decision_1 (d
, indent
);
2915 for (n
= d
->success
.first
; n
; n
= n
->next
)
2916 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2920 debug_decision (struct decision
*d
)
2922 debug_decision_0 (d
, 0, 1000000);
2926 debug_decision_list (struct decision
*d
)
2930 debug_decision_0 (d
, 0, 0);