1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static bool clear_storage_via_clrmem (rtx
, rtx
, unsigned);
138 static rtx
clear_storage_via_libcall (rtx
, rtx
);
139 static tree
clear_storage_libcall_fn (int);
140 static rtx
compress_float_constant (rtx
, rtx
);
141 static rtx
get_subtarget (rtx
);
142 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
143 HOST_WIDE_INT
, enum machine_mode
,
144 tree
, tree
, int, int);
145 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
146 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
147 tree
, enum machine_mode
, int, tree
, int);
149 static unsigned HOST_WIDE_INT
highest_pow2_factor (tree
);
150 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
152 static int is_aligning_offset (tree
, tree
);
153 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
154 enum expand_modifier
);
155 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
156 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
158 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
160 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
161 static rtx
const_vector_from_tree (tree
);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load
[NUM_MACHINE_MODES
];
168 static char direct_store
[NUM_MACHINE_MODES
];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
202 /* This array records the insn_code of insns to perform block clears. */
203 enum insn_code clrmem_optab
[NUM_MACHINE_MODES
];
205 /* These arrays record the insn_code of two different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
208 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
210 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
212 #ifndef SLOW_UNALIGNED_ACCESS
213 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
216 /* This is run once per compilation to set up which modes can be used
217 directly in memory and to initialize the block move optab. */
220 init_expr_once (void)
223 enum machine_mode mode
;
228 /* Try indexing by frame ptr and try by stack ptr.
229 It is known that on the Convex the stack ptr isn't a valid index.
230 With luck, one or the other is valid on any machine. */
231 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
232 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
234 /* A scratch register we can modify in-place below to avoid
235 useless RTL allocations. */
236 reg
= gen_rtx_REG (VOIDmode
, -1);
238 insn
= rtx_alloc (INSN
);
239 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
240 PATTERN (insn
) = pat
;
242 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
243 mode
= (enum machine_mode
) ((int) mode
+ 1))
247 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
248 PUT_MODE (mem
, mode
);
249 PUT_MODE (mem1
, mode
);
250 PUT_MODE (reg
, mode
);
252 /* See if there is some register that can be used in this mode and
253 directly loaded or stored from memory. */
255 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
256 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
257 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
260 if (! HARD_REGNO_MODE_OK (regno
, mode
))
266 SET_DEST (pat
) = reg
;
267 if (recog (pat
, insn
, &num_clobbers
) >= 0)
268 direct_load
[(int) mode
] = 1;
270 SET_SRC (pat
) = mem1
;
271 SET_DEST (pat
) = reg
;
272 if (recog (pat
, insn
, &num_clobbers
) >= 0)
273 direct_load
[(int) mode
] = 1;
276 SET_DEST (pat
) = mem
;
277 if (recog (pat
, insn
, &num_clobbers
) >= 0)
278 direct_store
[(int) mode
] = 1;
281 SET_DEST (pat
) = mem1
;
282 if (recog (pat
, insn
, &num_clobbers
) >= 0)
283 direct_store
[(int) mode
] = 1;
287 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
289 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
290 mode
= GET_MODE_WIDER_MODE (mode
))
292 enum machine_mode srcmode
;
293 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
294 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
298 ic
= can_extend_p (mode
, srcmode
, 0);
299 if (ic
== CODE_FOR_nothing
)
302 PUT_MODE (mem
, srcmode
);
304 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
305 float_extend_from_mem
[mode
][srcmode
] = true;
310 /* This is run at the start of compiling a function. */
315 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
318 /* Copy data from FROM to TO, where the machine modes are not the same.
319 Both modes may be integer, or both may be floating.
320 UNSIGNEDP should be nonzero if FROM is an unsigned type.
321 This causes zero-extension instead of sign-extension. */
324 convert_move (rtx to
, rtx from
, int unsignedp
)
326 enum machine_mode to_mode
= GET_MODE (to
);
327 enum machine_mode from_mode
= GET_MODE (from
);
328 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
329 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
333 /* rtx code for making an equivalent value. */
334 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
335 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
338 gcc_assert (to_real
== from_real
);
340 /* If the source and destination are already the same, then there's
345 /* If FROM is a SUBREG that indicates that we have already done at least
346 the required extension, strip it. We don't handle such SUBREGs as
349 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
350 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
351 >= GET_MODE_SIZE (to_mode
))
352 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
353 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
355 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
357 if (to_mode
== from_mode
358 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
360 emit_move_insn (to
, from
);
364 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
366 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
368 if (VECTOR_MODE_P (to_mode
))
369 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
371 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
373 emit_move_insn (to
, from
);
377 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
379 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
380 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
389 gcc_assert (GET_MODE_PRECISION (from_mode
)
390 != GET_MODE_PRECISION (to_mode
));
392 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
397 /* Try converting directly if the insn is supported. */
399 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
400 if (code
!= CODE_FOR_nothing
)
402 emit_unop_insn (code
, to
, from
,
403 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
407 /* Otherwise use a libcall. */
408 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall
);
414 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
416 insns
= get_insns ();
418 emit_libcall_block (insns
, to
, value
,
419 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
421 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
433 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
434 != CODE_FOR_nothing
);
436 if (full_mode
!= from_mode
)
437 from
= convert_to_mode (full_mode
, from
, unsignedp
);
438 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
442 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
444 enum machine_mode full_mode
445 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
447 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
448 != CODE_FOR_nothing
);
450 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
452 if (to_mode
== full_mode
)
455 /* else proceed to integer conversions below. */
456 from_mode
= full_mode
;
459 /* Now both modes are integers. */
461 /* Handle expanding beyond a word. */
462 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
463 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
470 enum machine_mode lowpart_mode
;
471 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
473 /* Try converting directly if the insn is supported. */
474 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
477 /* If FROM is a SUBREG, put it into a register. Do this
478 so that we always generate the same set of insns for
479 better cse'ing; if an intermediate assignment occurred,
480 we won't be doing the operation directly on the SUBREG. */
481 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
482 from
= force_reg (from_mode
, from
);
483 emit_unop_insn (code
, to
, from
, equiv_code
);
486 /* Next, try converting via full word. */
487 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
488 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
489 != CODE_FOR_nothing
))
493 if (reg_overlap_mentioned_p (to
, from
))
494 from
= force_reg (from_mode
, from
);
495 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
497 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
498 emit_unop_insn (code
, to
,
499 gen_lowpart (word_mode
, to
), equiv_code
);
503 /* No special multiword conversion insn; do it by hand. */
506 /* Since we will turn this into a no conflict block, we must ensure
507 that the source does not overlap the target. */
509 if (reg_overlap_mentioned_p (to
, from
))
510 from
= force_reg (from_mode
, from
);
512 /* Get a copy of FROM widened to a word, if necessary. */
513 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
514 lowpart_mode
= word_mode
;
516 lowpart_mode
= from_mode
;
518 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
520 lowpart
= gen_lowpart (lowpart_mode
, to
);
521 emit_move_insn (lowpart
, lowfrom
);
523 /* Compute the value to put in each remaining word. */
525 fill_value
= const0_rtx
;
530 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
531 && STORE_FLAG_VALUE
== -1)
533 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
535 fill_value
= gen_reg_rtx (word_mode
);
536 emit_insn (gen_slt (fill_value
));
542 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
543 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
545 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
549 /* Fill the remaining words. */
550 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
552 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
553 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
555 gcc_assert (subword
);
557 if (fill_value
!= subword
)
558 emit_move_insn (subword
, fill_value
);
561 insns
= get_insns ();
564 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
565 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
569 /* Truncating multi-word to a word or less. */
570 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
571 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
574 && ! MEM_VOLATILE_P (from
)
575 && direct_load
[(int) to_mode
]
576 && ! mode_dependent_address_p (XEXP (from
, 0)))
578 || GET_CODE (from
) == SUBREG
))
579 from
= force_reg (from_mode
, from
);
580 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
584 /* Now follow all the conversions between integers
585 no more than a word long. */
587 /* For truncation, usually we can just refer to FROM in a narrower mode. */
588 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
589 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
590 GET_MODE_BITSIZE (from_mode
)))
593 && ! MEM_VOLATILE_P (from
)
594 && direct_load
[(int) to_mode
]
595 && ! mode_dependent_address_p (XEXP (from
, 0)))
597 || GET_CODE (from
) == SUBREG
))
598 from
= force_reg (from_mode
, from
);
599 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
600 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
601 from
= copy_to_reg (from
);
602 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
606 /* Handle extension. */
607 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
609 /* Convert directly if that works. */
610 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
614 from
= force_not_mem (from
);
616 emit_unop_insn (code
, to
, from
, equiv_code
);
621 enum machine_mode intermediate
;
625 /* Search for a mode to convert via. */
626 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
627 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
628 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
630 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
631 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
632 GET_MODE_BITSIZE (intermediate
))))
633 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
634 != CODE_FOR_nothing
))
636 convert_move (to
, convert_to_mode (intermediate
, from
,
637 unsignedp
), unsignedp
);
641 /* No suitable intermediate mode.
642 Generate what we need with shifts. */
643 shift_amount
= build_int_cst (NULL_TREE
,
644 GET_MODE_BITSIZE (to_mode
)
645 - GET_MODE_BITSIZE (from_mode
));
646 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
647 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
649 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
652 emit_move_insn (to
, tmp
);
657 /* Support special truncate insns for certain modes. */
658 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
660 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
665 /* Handle truncation of volatile memrefs, and so on;
666 the things that couldn't be truncated directly,
667 and for which there was no special instruction.
669 ??? Code above formerly short-circuited this, for most integer
670 mode pairs, with a force_reg in from_mode followed by a recursive
671 call to this routine. Appears always to have been wrong. */
672 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
674 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
675 emit_move_insn (to
, temp
);
679 /* Mode combination is not recognized. */
683 /* Return an rtx for a value that would result
684 from converting X to mode MODE.
685 Both X and MODE may be floating, or both integer.
686 UNSIGNEDP is nonzero if X is an unsigned value.
687 This can be done by referring to a part of X in place
688 or by copying to a new temporary with conversion. */
691 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
693 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
696 /* Return an rtx for a value that would result
697 from converting X from mode OLDMODE to mode MODE.
698 Both modes may be floating, or both integer.
699 UNSIGNEDP is nonzero if X is an unsigned value.
701 This can be done by referring to a part of X in place
702 or by copying to a new temporary with conversion.
704 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
707 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
711 /* If FROM is a SUBREG that indicates that we have already done at least
712 the required extension, strip it. */
714 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
715 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
716 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
717 x
= gen_lowpart (mode
, x
);
719 if (GET_MODE (x
) != VOIDmode
)
720 oldmode
= GET_MODE (x
);
725 /* There is one case that we must handle specially: If we are converting
726 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
727 we are to interpret the constant as unsigned, gen_lowpart will do
728 the wrong if the constant appears negative. What we want to do is
729 make the high-order word of the constant zero, not all ones. */
731 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
732 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
733 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
735 HOST_WIDE_INT val
= INTVAL (x
);
737 if (oldmode
!= VOIDmode
738 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
740 int width
= GET_MODE_BITSIZE (oldmode
);
742 /* We need to zero extend VAL. */
743 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
746 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
754 if ((GET_CODE (x
) == CONST_INT
755 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
756 || (GET_MODE_CLASS (mode
) == MODE_INT
757 && GET_MODE_CLASS (oldmode
) == MODE_INT
758 && (GET_CODE (x
) == CONST_DOUBLE
759 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
760 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
761 && direct_load
[(int) mode
])
763 && (! HARD_REGISTER_P (x
)
764 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
765 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
766 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
772 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
774 HOST_WIDE_INT val
= INTVAL (x
);
775 int width
= GET_MODE_BITSIZE (oldmode
);
777 /* We must sign or zero-extend in this case. Start by
778 zero-extending, then sign extend if we need to. */
779 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
781 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
782 val
|= (HOST_WIDE_INT
) (-1) << width
;
784 return gen_int_mode (val
, mode
);
787 return gen_lowpart (mode
, x
);
790 /* Converting from integer constant into mode is always equivalent to an
792 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
794 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
795 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
798 temp
= gen_reg_rtx (mode
);
799 convert_move (temp
, x
, unsignedp
);
803 /* STORE_MAX_PIECES is the number of bytes at a time that we can
804 store efficiently. Due to internal GCC limitations, this is
805 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
806 for an immediate constant. */
808 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
810 /* Determine whether the LEN bytes can be moved by using several move
811 instructions. Return nonzero if a call to move_by_pieces should
815 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
816 unsigned int align ATTRIBUTE_UNUSED
)
818 return MOVE_BY_PIECES_P (len
, align
);
821 /* Generate several move instructions to copy LEN bytes from block FROM to
822 block TO. (These are MEM rtx's with BLKmode).
824 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
825 used to push FROM to the stack.
827 ALIGN is maximum stack alignment we can assume.
829 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
830 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
834 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
835 unsigned int align
, int endp
)
837 struct move_by_pieces data
;
838 rtx to_addr
, from_addr
= XEXP (from
, 0);
839 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
840 enum machine_mode mode
= VOIDmode
, tmode
;
841 enum insn_code icode
;
843 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
846 data
.from_addr
= from_addr
;
849 to_addr
= XEXP (to
, 0);
852 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
853 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
855 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
862 #ifdef STACK_GROWS_DOWNWARD
868 data
.to_addr
= to_addr
;
871 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
872 || GET_CODE (from_addr
) == POST_INC
873 || GET_CODE (from_addr
) == POST_DEC
);
875 data
.explicit_inc_from
= 0;
876 data
.explicit_inc_to
= 0;
877 if (data
.reverse
) data
.offset
= len
;
880 /* If copying requires more than two move insns,
881 copy addresses to registers (to make displacements shorter)
882 and use post-increment if available. */
883 if (!(data
.autinc_from
&& data
.autinc_to
)
884 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
886 /* Find the mode of the largest move... */
887 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
888 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
889 if (GET_MODE_SIZE (tmode
) < max_size
)
892 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
894 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
895 data
.autinc_from
= 1;
896 data
.explicit_inc_from
= -1;
898 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
900 data
.from_addr
= copy_addr_to_reg (from_addr
);
901 data
.autinc_from
= 1;
902 data
.explicit_inc_from
= 1;
904 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
905 data
.from_addr
= copy_addr_to_reg (from_addr
);
906 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
908 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
910 data
.explicit_inc_to
= -1;
912 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
914 data
.to_addr
= copy_addr_to_reg (to_addr
);
916 data
.explicit_inc_to
= 1;
918 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
919 data
.to_addr
= copy_addr_to_reg (to_addr
);
922 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
923 if (align
>= GET_MODE_ALIGNMENT (tmode
))
924 align
= GET_MODE_ALIGNMENT (tmode
);
927 enum machine_mode xmode
;
929 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
931 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
932 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
933 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
936 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
944 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
945 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
946 if (GET_MODE_SIZE (tmode
) < max_size
)
949 if (mode
== VOIDmode
)
952 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
953 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
954 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
956 max_size
= GET_MODE_SIZE (mode
);
959 /* The code above should have handled everything. */
960 gcc_assert (!data
.len
);
966 gcc_assert (!data
.reverse
);
971 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
972 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
974 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
977 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
984 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
992 /* Return number of insns required to move L bytes by pieces.
993 ALIGN (in bits) is maximum alignment we can assume. */
995 static unsigned HOST_WIDE_INT
996 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
997 unsigned int max_size
)
999 unsigned HOST_WIDE_INT n_insns
= 0;
1000 enum machine_mode tmode
;
1002 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1003 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1004 align
= GET_MODE_ALIGNMENT (tmode
);
1007 enum machine_mode tmode
, xmode
;
1009 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1011 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1012 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1013 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1016 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1019 while (max_size
> 1)
1021 enum machine_mode mode
= VOIDmode
;
1022 enum insn_code icode
;
1024 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1025 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1026 if (GET_MODE_SIZE (tmode
) < max_size
)
1029 if (mode
== VOIDmode
)
1032 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1033 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1034 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1036 max_size
= GET_MODE_SIZE (mode
);
1043 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1044 with move instructions for mode MODE. GENFUN is the gen_... function
1045 to make a move insn for that mode. DATA has all the other info. */
1048 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1049 struct move_by_pieces
*data
)
1051 unsigned int size
= GET_MODE_SIZE (mode
);
1052 rtx to1
= NULL_RTX
, from1
;
1054 while (data
->len
>= size
)
1057 data
->offset
-= size
;
1061 if (data
->autinc_to
)
1062 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1065 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1068 if (data
->autinc_from
)
1069 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1072 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1074 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1075 emit_insn (gen_add2_insn (data
->to_addr
,
1076 GEN_INT (-(HOST_WIDE_INT
)size
)));
1077 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1078 emit_insn (gen_add2_insn (data
->from_addr
,
1079 GEN_INT (-(HOST_WIDE_INT
)size
)));
1082 emit_insn ((*genfun
) (to1
, from1
));
1085 #ifdef PUSH_ROUNDING
1086 emit_single_push_insn (mode
, from1
, NULL
);
1092 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1093 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1094 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1095 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1097 if (! data
->reverse
)
1098 data
->offset
+= size
;
1104 /* Emit code to move a block Y to a block X. This may be done with
1105 string-move instructions, with multiple scalar move instructions,
1106 or with a library call.
1108 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1109 SIZE is an rtx that says how long they are.
1110 ALIGN is the maximum alignment we can assume they have.
1111 METHOD describes what kind of copy this is, and what mechanisms may be used.
1113 Return the address of the new block, if memcpy is called and returns it,
1117 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1125 case BLOCK_OP_NORMAL
:
1126 may_use_call
= true;
1129 case BLOCK_OP_CALL_PARM
:
1130 may_use_call
= block_move_libcall_safe_for_call_parm ();
1132 /* Make inhibit_defer_pop nonzero around the library call
1133 to force it to pop the arguments right away. */
1137 case BLOCK_OP_NO_LIBCALL
:
1138 may_use_call
= false;
1145 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1147 gcc_assert (MEM_P (x
));
1148 gcc_assert (MEM_P (y
));
1151 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1152 block copy is more efficient for other large modes, e.g. DCmode. */
1153 x
= adjust_address (x
, BLKmode
, 0);
1154 y
= adjust_address (y
, BLKmode
, 0);
1156 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1157 can be incorrect is coming from __builtin_memcpy. */
1158 if (GET_CODE (size
) == CONST_INT
)
1160 if (INTVAL (size
) == 0)
1163 x
= shallow_copy_rtx (x
);
1164 y
= shallow_copy_rtx (y
);
1165 set_mem_size (x
, size
);
1166 set_mem_size (y
, size
);
1169 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1170 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1171 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1173 else if (may_use_call
)
1174 retval
= emit_block_move_via_libcall (x
, y
, size
);
1176 emit_block_move_via_loop (x
, y
, size
, align
);
1178 if (method
== BLOCK_OP_CALL_PARM
)
1184 /* A subroutine of emit_block_move. Returns true if calling the
1185 block move libcall will not clobber any parameters which may have
1186 already been placed on the stack. */
1189 block_move_libcall_safe_for_call_parm (void)
1191 /* If arguments are pushed on the stack, then they're safe. */
1195 /* If registers go on the stack anyway, any argument is sure to clobber
1196 an outgoing argument. */
1197 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1199 tree fn
= emit_block_move_libcall_fn (false);
1201 if (REG_PARM_STACK_SPACE (fn
) != 0)
1206 /* If any argument goes in memory, then it might clobber an outgoing
1209 CUMULATIVE_ARGS args_so_far
;
1212 fn
= emit_block_move_libcall_fn (false);
1213 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1215 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1216 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1218 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1219 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1220 if (!tmp
|| !REG_P (tmp
))
1222 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far
, mode
,
1225 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1235 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1237 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1238 int save_volatile_ok
= volatile_ok
;
1239 enum machine_mode mode
;
1241 /* Since this is a move insn, we don't care about volatility. */
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1248 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1249 mode
= GET_MODE_WIDER_MODE (mode
))
1251 enum insn_code code
= movmem_optab
[(int) mode
];
1252 insn_operand_predicate_fn pred
;
1254 if (code
!= CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size
) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1261 <= (GET_MODE_MASK (mode
) >> 1)))
1262 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1263 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1264 || (*pred
) (x
, BLKmode
))
1265 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1266 || (*pred
) (y
, BLKmode
))
1267 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1268 || (*pred
) (opalign
, VOIDmode
)))
1271 rtx last
= get_last_insn ();
1274 op2
= convert_to_mode (mode
, size
, 1);
1275 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1276 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1277 op2
= copy_to_mode_reg (mode
, op2
);
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1284 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1288 volatile_ok
= save_volatile_ok
;
1292 delete_insns_since (last
);
1296 volatile_ok
= save_volatile_ok
;
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1304 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
)
1306 rtx dst_addr
, src_addr
;
1307 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1308 enum machine_mode size_mode
;
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1315 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1316 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1318 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1319 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1321 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1322 src_tree
= make_tree (ptr_type_node
, src_addr
);
1324 size_mode
= TYPE_MODE (sizetype
);
1326 size
= convert_to_mode (size_mode
, size
, 1);
1327 size
= copy_to_mode_reg (size_mode
, size
);
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1335 size_tree
= make_tree (sizetype
, size
);
1337 fn
= emit_block_move_libcall_fn (true);
1338 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1339 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1340 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1344 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1345 call_expr
, arg_list
, NULL_TREE
);
1347 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1356 static GTY(()) tree block_move_fn
;
1359 init_block_move_fn (const char *asmspec
)
1365 fn
= get_identifier ("memcpy");
1366 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1367 const_ptr_type_node
, sizetype
,
1370 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1371 DECL_EXTERNAL (fn
) = 1;
1372 TREE_PUBLIC (fn
) = 1;
1373 DECL_ARTIFICIAL (fn
) = 1;
1374 TREE_NOTHROW (fn
) = 1;
1380 set_user_assembler_name (block_move_fn
, asmspec
);
1384 emit_block_move_libcall_fn (int for_call
)
1386 static bool emitted_extern
;
1389 init_block_move_fn (NULL
);
1391 if (for_call
&& !emitted_extern
)
1393 emitted_extern
= true;
1394 make_decl_rtl (block_move_fn
);
1395 assemble_external (block_move_fn
);
1398 return block_move_fn
;
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1406 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1407 unsigned int align ATTRIBUTE_UNUSED
)
1409 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1410 enum machine_mode iter_mode
;
1412 iter_mode
= GET_MODE (size
);
1413 if (iter_mode
== VOIDmode
)
1414 iter_mode
= word_mode
;
1416 top_label
= gen_label_rtx ();
1417 cmp_label
= gen_label_rtx ();
1418 iter
= gen_reg_rtx (iter_mode
);
1420 emit_move_insn (iter
, const0_rtx
);
1422 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1423 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1424 do_pending_stack_adjust ();
1426 emit_jump (cmp_label
);
1427 emit_label (top_label
);
1429 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1430 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1431 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1432 x
= change_address (x
, QImode
, x_addr
);
1433 y
= change_address (y
, QImode
, y_addr
);
1435 emit_move_insn (x
, y
);
1437 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1438 true, OPTAB_LIB_WIDEN
);
1440 emit_move_insn (iter
, tmp
);
1442 emit_label (cmp_label
);
1444 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1452 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1455 #ifdef HAVE_load_multiple
1463 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1464 x
= validize_mem (force_const_mem (mode
, x
));
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple
)
1470 last
= get_last_insn ();
1471 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1479 delete_insns_since (last
);
1483 for (i
= 0; i
< nregs
; i
++)
1484 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1485 operand_subword_force (x
, i
, mode
));
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1492 move_block_from_reg (int regno
, rtx x
, int nregs
)
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple
)
1503 rtx last
= get_last_insn ();
1504 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1512 delete_insns_since (last
);
1516 for (i
= 0; i
< nregs
; i
++)
1518 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1522 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1533 gen_group_rtx (rtx orig
)
1538 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1540 length
= XVECLEN (orig
, 0);
1541 tmps
= alloca (sizeof (rtx
) * length
);
1543 /* Skip a NULL entry in first slot. */
1544 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1549 for (; i
< length
; i
++)
1551 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1552 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1554 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1557 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1560 /* Emit code to move a block ORIG_SRC of type TYPE to a block DST,
1561 where DST is non-consecutive registers represented by a PARALLEL.
1562 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1566 emit_group_load (rtx dst
, rtx orig_src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1571 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1573 /* Check for a NULL entry, used to indicate that the parameter goes
1574 both on the stack and in registers. */
1575 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1580 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1582 /* Process the pieces. */
1583 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1585 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1586 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1587 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1590 /* Handle trailing fragments that run over the size of the struct. */
1591 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1593 /* Arrange to shift the fragment to where it belongs.
1594 extract_bit_field loads to the lsb of the reg. */
1596 #ifdef BLOCK_REG_PADDING
1597 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1598 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1603 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1604 bytelen
= ssize
- bytepos
;
1605 gcc_assert (bytelen
> 0);
1608 /* If we won't be loading directly from memory, protect the real source
1609 from strange tricks we might play; but make sure that the source can
1610 be loaded directly into the destination. */
1612 if (!MEM_P (orig_src
)
1613 && (!CONSTANT_P (orig_src
)
1614 || (GET_MODE (orig_src
) != mode
1615 && GET_MODE (orig_src
) != VOIDmode
)))
1617 if (GET_MODE (orig_src
) == VOIDmode
)
1618 src
= gen_reg_rtx (mode
);
1620 src
= gen_reg_rtx (GET_MODE (orig_src
));
1622 emit_move_insn (src
, orig_src
);
1625 /* Optimize the access just a bit. */
1627 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1628 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1629 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1630 && bytelen
== GET_MODE_SIZE (mode
))
1632 tmps
[i
] = gen_reg_rtx (mode
);
1633 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1635 else if (GET_CODE (src
) == CONCAT
)
1637 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1638 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1640 if ((bytepos
== 0 && bytelen
== slen0
)
1641 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1643 /* The following assumes that the concatenated objects all
1644 have the same size. In this case, a simple calculation
1645 can be used to determine the object and the bit field
1647 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1648 if (! CONSTANT_P (tmps
[i
])
1649 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1650 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1651 (bytepos
% slen0
) * BITS_PER_UNIT
,
1652 1, NULL_RTX
, mode
, mode
);
1658 gcc_assert (!bytepos
);
1659 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1660 emit_move_insn (mem
, src
);
1661 tmps
[i
] = adjust_address (mem
, mode
, 0);
1664 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1665 SIMD register, which is currently broken. While we get GCC
1666 to emit proper RTL for these cases, let's dump to memory. */
1667 else if (VECTOR_MODE_P (GET_MODE (dst
))
1670 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1673 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1674 emit_move_insn (mem
, src
);
1675 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1677 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1678 && XVECLEN (dst
, 0) > 1)
1679 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1680 else if (CONSTANT_P (src
)
1681 || (REG_P (src
) && GET_MODE (src
) == mode
))
1684 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1685 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1689 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1690 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1693 /* Copy the extracted pieces into the proper (probable) hard regs. */
1694 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1695 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0), tmps
[i
]);
1698 /* Emit code to move a block SRC to block DST, where SRC and DST are
1699 non-consecutive groups of registers, each represented by a PARALLEL. */
1702 emit_group_move (rtx dst
, rtx src
)
1706 gcc_assert (GET_CODE (src
) == PARALLEL
1707 && GET_CODE (dst
) == PARALLEL
1708 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1710 /* Skip first entry if NULL. */
1711 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1712 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1713 XEXP (XVECEXP (src
, 0, i
), 0));
1716 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1717 where SRC is non-consecutive registers represented by a PARALLEL.
1718 SSIZE represents the total size of block ORIG_DST, or -1 if not
1722 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1727 gcc_assert (GET_CODE (src
) == PARALLEL
);
1729 /* Check for a NULL entry, used to indicate that the parameter goes
1730 both on the stack and in registers. */
1731 if (XEXP (XVECEXP (src
, 0, 0), 0))
1736 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1738 /* Copy the (probable) hard regs into pseudos. */
1739 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1741 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1742 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1743 emit_move_insn (tmps
[i
], reg
);
1746 /* If we won't be storing directly into memory, protect the real destination
1747 from strange tricks we might play. */
1749 if (GET_CODE (dst
) == PARALLEL
)
1753 /* We can get a PARALLEL dst if there is a conditional expression in
1754 a return statement. In that case, the dst and src are the same,
1755 so no action is necessary. */
1756 if (rtx_equal_p (dst
, src
))
1759 /* It is unclear if we can ever reach here, but we may as well handle
1760 it. Allocate a temporary, and split this into a store/load to/from
1763 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1764 emit_group_store (temp
, src
, type
, ssize
);
1765 emit_group_load (dst
, temp
, type
, ssize
);
1768 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1770 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1771 /* Make life a bit easier for combine. */
1772 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1775 /* Process the pieces. */
1776 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1778 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1779 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1780 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1783 /* Handle trailing fragments that run over the size of the struct. */
1784 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1786 /* store_bit_field always takes its value from the lsb.
1787 Move the fragment to the lsb if it's not already there. */
1789 #ifdef BLOCK_REG_PADDING
1790 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1791 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1797 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1798 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1799 build_int_cst (NULL_TREE
, shift
),
1802 bytelen
= ssize
- bytepos
;
1805 if (GET_CODE (dst
) == CONCAT
)
1807 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1808 dest
= XEXP (dst
, 0);
1809 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1811 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1812 dest
= XEXP (dst
, 1);
1816 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1817 dest
= assign_stack_temp (GET_MODE (dest
),
1818 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1819 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1826 /* Optimize the access just a bit. */
1828 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1829 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1830 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1831 && bytelen
== GET_MODE_SIZE (mode
))
1832 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1834 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1838 /* Copy from the pseudo into the (probable) hard reg. */
1839 if (orig_dst
!= dst
)
1840 emit_move_insn (orig_dst
, dst
);
1843 /* Generate code to copy a BLKmode object of TYPE out of a
1844 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1845 is null, a stack temporary is created. TGTBLK is returned.
1847 The purpose of this routine is to handle functions that return
1848 BLKmode structures in registers. Some machines (the PA for example)
1849 want to return all small structures in registers regardless of the
1850 structure's alignment. */
1853 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1855 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1856 rtx src
= NULL
, dst
= NULL
;
1857 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
1858 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
1862 tgtblk
= assign_temp (build_qualified_type (type
,
1864 | TYPE_QUAL_CONST
)),
1866 preserve_temp_slots (tgtblk
);
1869 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1870 into a new pseudo which is a full word. */
1872 if (GET_MODE (srcreg
) != BLKmode
1873 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
1874 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
1876 /* If the structure doesn't take up a whole number of words, see whether
1877 SRCREG is padded on the left or on the right. If it's on the left,
1878 set PADDING_CORRECTION to the number of bits to skip.
1880 In most ABIs, the structure will be returned at the least end of
1881 the register, which translates to right padding on little-endian
1882 targets and left padding on big-endian targets. The opposite
1883 holds if the structure is returned at the most significant
1884 end of the register. */
1885 if (bytes
% UNITS_PER_WORD
!= 0
1886 && (targetm
.calls
.return_in_msb (type
)
1888 : BYTES_BIG_ENDIAN
))
1890 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
1892 /* Copy the structure BITSIZE bites at a time.
1894 We could probably emit more efficient code for machines which do not use
1895 strict alignment, but it doesn't seem worth the effort at the current
1897 for (bitpos
= 0, xbitpos
= padding_correction
;
1898 bitpos
< bytes
* BITS_PER_UNIT
;
1899 bitpos
+= bitsize
, xbitpos
+= bitsize
)
1901 /* We need a new source operand each time xbitpos is on a
1902 word boundary and when xbitpos == padding_correction
1903 (the first time through). */
1904 if (xbitpos
% BITS_PER_WORD
== 0
1905 || xbitpos
== padding_correction
)
1906 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
1909 /* We need a new destination operand each time bitpos is on
1911 if (bitpos
% BITS_PER_WORD
== 0)
1912 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
1914 /* Use xbitpos for the source extraction (right justified) and
1915 xbitpos for the destination store (left justified). */
1916 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
1917 extract_bit_field (src
, bitsize
,
1918 xbitpos
% BITS_PER_WORD
, 1,
1919 NULL_RTX
, word_mode
, word_mode
));
1925 /* Add a USE expression for REG to the (possibly empty) list pointed
1926 to by CALL_FUSAGE. REG must denote a hard register. */
1929 use_reg (rtx
*call_fusage
, rtx reg
)
1931 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
1934 = gen_rtx_EXPR_LIST (VOIDmode
,
1935 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
1938 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
1939 starting at REGNO. All of these registers must be hard registers. */
1942 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
1946 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
1948 for (i
= 0; i
< nregs
; i
++)
1949 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
1952 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
1953 PARALLEL REGS. This is for calls that pass values in multiple
1954 non-contiguous locations. The Irix 6 ABI has examples of this. */
1957 use_group_regs (rtx
*call_fusage
, rtx regs
)
1961 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
1963 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
1965 /* A NULL entry means the parameter goes both on the stack and in
1966 registers. This can also be a MEM for targets that pass values
1967 partially on the stack and partially in registers. */
1968 if (reg
!= 0 && REG_P (reg
))
1969 use_reg (call_fusage
, reg
);
1974 /* Determine whether the LEN bytes generated by CONSTFUN can be
1975 stored to memory using several move instructions. CONSTFUNDATA is
1976 a pointer which will be passed as argument in every CONSTFUN call.
1977 ALIGN is maximum alignment we can assume. Return nonzero if a
1978 call to store_by_pieces should succeed. */
1981 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1982 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
1983 void *constfundata
, unsigned int align
)
1985 unsigned HOST_WIDE_INT l
;
1986 unsigned int max_size
;
1987 HOST_WIDE_INT offset
= 0;
1988 enum machine_mode mode
, tmode
;
1989 enum insn_code icode
;
1996 if (! STORE_BY_PIECES_P (len
, align
))
1999 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2000 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2001 align
= GET_MODE_ALIGNMENT (tmode
);
2004 enum machine_mode xmode
;
2006 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2008 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2009 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2010 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2013 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2016 /* We would first store what we can in the largest integer mode, then go to
2017 successively smaller modes. */
2020 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2025 max_size
= STORE_MAX_PIECES
+ 1;
2026 while (max_size
> 1)
2028 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2029 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2030 if (GET_MODE_SIZE (tmode
) < max_size
)
2033 if (mode
== VOIDmode
)
2036 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2037 if (icode
!= CODE_FOR_nothing
2038 && align
>= GET_MODE_ALIGNMENT (mode
))
2040 unsigned int size
= GET_MODE_SIZE (mode
);
2047 cst
= (*constfun
) (constfundata
, offset
, mode
);
2048 if (!LEGITIMATE_CONSTANT_P (cst
))
2058 max_size
= GET_MODE_SIZE (mode
);
2061 /* The code above should have handled everything. */
2068 /* Generate several move instructions to store LEN bytes generated by
2069 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2070 pointer which will be passed as argument in every CONSTFUN call.
2071 ALIGN is maximum alignment we can assume.
2072 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2073 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2077 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2078 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2079 void *constfundata
, unsigned int align
, int endp
)
2081 struct store_by_pieces data
;
2085 gcc_assert (endp
!= 2);
2089 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2090 data
.constfun
= constfun
;
2091 data
.constfundata
= constfundata
;
2094 store_by_pieces_1 (&data
, align
);
2099 gcc_assert (!data
.reverse
);
2104 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2105 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2107 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2110 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2117 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2125 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2126 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2129 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2131 struct store_by_pieces data
;
2136 data
.constfun
= clear_by_pieces_1
;
2137 data
.constfundata
= NULL
;
2140 store_by_pieces_1 (&data
, align
);
2143 /* Callback routine for clear_by_pieces.
2144 Return const0_rtx unconditionally. */
2147 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2148 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2149 enum machine_mode mode ATTRIBUTE_UNUSED
)
2154 /* Subroutine of clear_by_pieces and store_by_pieces.
2155 Generate several move instructions to store LEN bytes of block TO. (A MEM
2156 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2159 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2160 unsigned int align ATTRIBUTE_UNUSED
)
2162 rtx to_addr
= XEXP (data
->to
, 0);
2163 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2164 enum machine_mode mode
= VOIDmode
, tmode
;
2165 enum insn_code icode
;
2168 data
->to_addr
= to_addr
;
2170 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2171 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2173 data
->explicit_inc_to
= 0;
2175 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2177 data
->offset
= data
->len
;
2179 /* If storing requires more than two move insns,
2180 copy addresses to registers (to make displacements shorter)
2181 and use post-increment if available. */
2182 if (!data
->autinc_to
2183 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2185 /* Determine the main mode we'll be using. */
2186 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2187 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2188 if (GET_MODE_SIZE (tmode
) < max_size
)
2191 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2193 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2194 data
->autinc_to
= 1;
2195 data
->explicit_inc_to
= -1;
2198 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2199 && ! data
->autinc_to
)
2201 data
->to_addr
= copy_addr_to_reg (to_addr
);
2202 data
->autinc_to
= 1;
2203 data
->explicit_inc_to
= 1;
2206 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2207 data
->to_addr
= copy_addr_to_reg (to_addr
);
2210 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2211 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2212 align
= GET_MODE_ALIGNMENT (tmode
);
2215 enum machine_mode xmode
;
2217 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2219 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2220 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2221 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2224 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2227 /* First store what we can in the largest integer mode, then go to
2228 successively smaller modes. */
2230 while (max_size
> 1)
2232 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2233 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2234 if (GET_MODE_SIZE (tmode
) < max_size
)
2237 if (mode
== VOIDmode
)
2240 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2241 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2242 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2244 max_size
= GET_MODE_SIZE (mode
);
2247 /* The code above should have handled everything. */
2248 gcc_assert (!data
->len
);
2251 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2252 with move instructions for mode MODE. GENFUN is the gen_... function
2253 to make a move insn for that mode. DATA has all the other info. */
2256 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2257 struct store_by_pieces
*data
)
2259 unsigned int size
= GET_MODE_SIZE (mode
);
2262 while (data
->len
>= size
)
2265 data
->offset
-= size
;
2267 if (data
->autinc_to
)
2268 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2271 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2273 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2274 emit_insn (gen_add2_insn (data
->to_addr
,
2275 GEN_INT (-(HOST_WIDE_INT
) size
)));
2277 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2278 emit_insn ((*genfun
) (to1
, cst
));
2280 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2281 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2283 if (! data
->reverse
)
2284 data
->offset
+= size
;
2290 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2291 its length in bytes. */
2294 clear_storage (rtx object
, rtx size
)
2297 unsigned int align
= (MEM_P (object
) ? MEM_ALIGN (object
)
2298 : GET_MODE_ALIGNMENT (GET_MODE (object
)));
2300 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2301 just move a zero. Otherwise, do this a piece at a time. */
2302 if (GET_MODE (object
) != BLKmode
2303 && GET_CODE (size
) == CONST_INT
2304 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (object
)))
2305 emit_move_insn (object
, CONST0_RTX (GET_MODE (object
)));
2308 if (size
== const0_rtx
)
2310 else if (GET_CODE (size
) == CONST_INT
2311 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2312 clear_by_pieces (object
, INTVAL (size
), align
);
2313 else if (clear_storage_via_clrmem (object
, size
, align
))
2316 retval
= clear_storage_via_libcall (object
, size
);
2322 /* A subroutine of clear_storage. Expand a clrmem pattern;
2323 return true if successful. */
2326 clear_storage_via_clrmem (rtx object
, rtx size
, unsigned int align
)
2328 /* Try the most limited insn first, because there's no point
2329 including more than one in the machine description unless
2330 the more limited one has some advantage. */
2332 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2333 enum machine_mode mode
;
2335 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2336 mode
= GET_MODE_WIDER_MODE (mode
))
2338 enum insn_code code
= clrmem_optab
[(int) mode
];
2339 insn_operand_predicate_fn pred
;
2341 if (code
!= CODE_FOR_nothing
2342 /* We don't need MODE to be narrower than
2343 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2344 the mode mask, as it is returned by the macro, it will
2345 definitely be less than the actual mode mask. */
2346 && ((GET_CODE (size
) == CONST_INT
2347 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2348 <= (GET_MODE_MASK (mode
) >> 1)))
2349 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2350 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2351 || (*pred
) (object
, BLKmode
))
2352 && ((pred
= insn_data
[(int) code
].operand
[2].predicate
) == 0
2353 || (*pred
) (opalign
, VOIDmode
)))
2356 rtx last
= get_last_insn ();
2359 op1
= convert_to_mode (mode
, size
, 1);
2360 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2361 if (pred
!= 0 && ! (*pred
) (op1
, mode
))
2362 op1
= copy_to_mode_reg (mode
, op1
);
2364 pat
= GEN_FCN ((int) code
) (object
, op1
, opalign
);
2371 delete_insns_since (last
);
2378 /* A subroutine of clear_storage. Expand a call to memset.
2379 Return the return value of memset, 0 otherwise. */
2382 clear_storage_via_libcall (rtx object
, rtx size
)
2384 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2385 enum machine_mode size_mode
;
2388 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2389 place those into new pseudos into a VAR_DECL and use them later. */
2391 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2393 size_mode
= TYPE_MODE (sizetype
);
2394 size
= convert_to_mode (size_mode
, size
, 1);
2395 size
= copy_to_mode_reg (size_mode
, size
);
2397 /* It is incorrect to use the libcall calling conventions to call
2398 memset in this context. This could be a user call to memset and
2399 the user may wish to examine the return value from memset. For
2400 targets where libcalls and normal calls have different conventions
2401 for returning pointers, we could end up generating incorrect code. */
2403 object_tree
= make_tree (ptr_type_node
, object
);
2404 size_tree
= make_tree (sizetype
, size
);
2406 fn
= clear_storage_libcall_fn (true);
2407 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2408 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2409 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2411 /* Now we have to build up the CALL_EXPR itself. */
2412 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2413 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2414 call_expr
, arg_list
, NULL_TREE
);
2416 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2421 /* A subroutine of clear_storage_via_libcall. Create the tree node
2422 for the function we use for block clears. The first time FOR_CALL
2423 is true, we call assemble_external. */
2425 static GTY(()) tree block_clear_fn
;
2428 init_block_clear_fn (const char *asmspec
)
2430 if (!block_clear_fn
)
2434 fn
= get_identifier ("memset");
2435 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2436 integer_type_node
, sizetype
,
2439 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2440 DECL_EXTERNAL (fn
) = 1;
2441 TREE_PUBLIC (fn
) = 1;
2442 DECL_ARTIFICIAL (fn
) = 1;
2443 TREE_NOTHROW (fn
) = 1;
2445 block_clear_fn
= fn
;
2449 set_user_assembler_name (block_clear_fn
, asmspec
);
2453 clear_storage_libcall_fn (int for_call
)
2455 static bool emitted_extern
;
2457 if (!block_clear_fn
)
2458 init_block_clear_fn (NULL
);
2460 if (for_call
&& !emitted_extern
)
2462 emitted_extern
= true;
2463 make_decl_rtl (block_clear_fn
);
2464 assemble_external (block_clear_fn
);
2467 return block_clear_fn
;
2470 /* Generate code to copy Y into X.
2471 Both Y and X must have the same mode, except that
2472 Y can be a constant with VOIDmode.
2473 This mode cannot be BLKmode; use emit_block_move for that.
2475 Return the last instruction emitted. */
2478 emit_move_insn (rtx x
, rtx y
)
2480 enum machine_mode mode
= GET_MODE (x
);
2481 rtx y_cst
= NULL_RTX
;
2484 gcc_assert (mode
!= BLKmode
2485 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
2490 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2491 && (last_insn
= compress_float_constant (x
, y
)))
2496 if (!LEGITIMATE_CONSTANT_P (y
))
2498 y
= force_const_mem (mode
, y
);
2500 /* If the target's cannot_force_const_mem prevented the spill,
2501 assume that the target's move expanders will also take care
2502 of the non-legitimate constant. */
2508 /* If X or Y are memory references, verify that their addresses are valid
2511 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
2512 && ! push_operand (x
, GET_MODE (x
)))
2514 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
2515 x
= validize_mem (x
);
2518 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
2520 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
2521 y
= validize_mem (y
);
2523 gcc_assert (mode
!= BLKmode
);
2525 last_insn
= emit_move_insn_1 (x
, y
);
2527 if (y_cst
&& REG_P (x
)
2528 && (set
= single_set (last_insn
)) != NULL_RTX
2529 && SET_DEST (set
) == x
2530 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
2531 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
2536 /* Low level part of emit_move_insn.
2537 Called just like emit_move_insn, but assumes X and Y
2538 are basically valid. */
2541 emit_move_insn_1 (rtx x
, rtx y
)
2543 enum machine_mode mode
= GET_MODE (x
);
2544 enum machine_mode submode
;
2545 enum mode_class
class = GET_MODE_CLASS (mode
);
2547 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
2549 if (mov_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
2551 emit_insn (GEN_FCN (mov_optab
->handlers
[(int) mode
].insn_code
) (x
, y
));
2553 /* Expand complex moves by moving real part and imag part, if possible. */
2554 else if ((class == MODE_COMPLEX_FLOAT
|| class == MODE_COMPLEX_INT
)
2555 && BLKmode
!= (submode
= GET_MODE_INNER (mode
))
2556 && (mov_optab
->handlers
[(int) submode
].insn_code
2557 != CODE_FOR_nothing
))
2559 /* Don't split destination if it is a stack push. */
2560 int stack
= push_operand (x
, GET_MODE (x
));
2562 #ifdef PUSH_ROUNDING
2563 /* In case we output to the stack, but the size is smaller than the
2564 machine can push exactly, we need to use move instructions. */
2566 && (PUSH_ROUNDING (GET_MODE_SIZE (submode
))
2567 != GET_MODE_SIZE (submode
)))
2570 HOST_WIDE_INT offset1
, offset2
;
2572 /* Do not use anti_adjust_stack, since we don't want to update
2573 stack_pointer_delta. */
2574 temp
= expand_binop (Pmode
,
2575 #ifdef STACK_GROWS_DOWNWARD
2583 (GET_MODE_SIZE (GET_MODE (x
)))),
2584 stack_pointer_rtx
, 0, OPTAB_LIB_WIDEN
);
2586 if (temp
!= stack_pointer_rtx
)
2587 emit_move_insn (stack_pointer_rtx
, temp
);
2589 #ifdef STACK_GROWS_DOWNWARD
2591 offset2
= GET_MODE_SIZE (submode
);
2593 offset1
= -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x
)));
2594 offset2
= (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x
)))
2595 + GET_MODE_SIZE (submode
));
2598 emit_move_insn (change_address (x
, submode
,
2599 gen_rtx_PLUS (Pmode
,
2601 GEN_INT (offset1
))),
2602 gen_realpart (submode
, y
));
2603 emit_move_insn (change_address (x
, submode
,
2604 gen_rtx_PLUS (Pmode
,
2606 GEN_INT (offset2
))),
2607 gen_imagpart (submode
, y
));
2611 /* If this is a stack, push the highpart first, so it
2612 will be in the argument order.
2614 In that case, change_address is used only to convert
2615 the mode, not to change the address. */
2618 /* Note that the real part always precedes the imag part in memory
2619 regardless of machine's endianness. */
2620 #ifdef STACK_GROWS_DOWNWARD
2621 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2622 gen_imagpart (submode
, y
));
2623 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2624 gen_realpart (submode
, y
));
2626 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2627 gen_realpart (submode
, y
));
2628 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2629 gen_imagpart (submode
, y
));
2634 rtx realpart_x
, realpart_y
;
2635 rtx imagpart_x
, imagpart_y
;
2637 /* If this is a complex value with each part being smaller than a
2638 word, the usual calling sequence will likely pack the pieces into
2639 a single register. Unfortunately, SUBREG of hard registers only
2640 deals in terms of words, so we have a problem converting input
2641 arguments to the CONCAT of two registers that is used elsewhere
2642 for complex values. If this is before reload, we can copy it into
2643 memory and reload. FIXME, we should see about using extract and
2644 insert on integer registers, but complex short and complex char
2645 variables should be rarely used. */
2646 if (GET_MODE_BITSIZE (mode
) < 2 * BITS_PER_WORD
2647 && (reload_in_progress
| reload_completed
) == 0)
2650 = (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
);
2652 = (REG_P (y
) && REGNO (y
) < FIRST_PSEUDO_REGISTER
);
2654 if (packed_dest_p
|| packed_src_p
)
2656 enum mode_class reg_class
= ((class == MODE_COMPLEX_FLOAT
)
2657 ? MODE_FLOAT
: MODE_INT
);
2659 enum machine_mode reg_mode
2660 = mode_for_size (GET_MODE_BITSIZE (mode
), reg_class
, 1);
2662 if (reg_mode
!= BLKmode
)
2664 rtx mem
= assign_stack_temp (reg_mode
,
2665 GET_MODE_SIZE (mode
), 0);
2666 rtx cmem
= adjust_address (mem
, mode
, 0);
2670 rtx sreg
= gen_rtx_SUBREG (reg_mode
, x
, 0);
2672 emit_move_insn_1 (cmem
, y
);
2673 return emit_move_insn_1 (sreg
, mem
);
2677 rtx sreg
= gen_rtx_SUBREG (reg_mode
, y
, 0);
2679 emit_move_insn_1 (mem
, sreg
);
2680 return emit_move_insn_1 (x
, cmem
);
2686 realpart_x
= gen_realpart (submode
, x
);
2687 realpart_y
= gen_realpart (submode
, y
);
2688 imagpart_x
= gen_imagpart (submode
, x
);
2689 imagpart_y
= gen_imagpart (submode
, y
);
2691 /* Show the output dies here. This is necessary for SUBREGs
2692 of pseudos since we cannot track their lifetimes correctly;
2693 hard regs shouldn't appear here except as return values.
2694 We never want to emit such a clobber after reload. */
2696 && ! (reload_in_progress
|| reload_completed
)
2697 && (GET_CODE (realpart_x
) == SUBREG
2698 || GET_CODE (imagpart_x
) == SUBREG
))
2699 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2701 emit_move_insn (realpart_x
, realpart_y
);
2702 emit_move_insn (imagpart_x
, imagpart_y
);
2705 return get_last_insn ();
2708 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
2709 find a mode to do it in. If we have a movcc, use it. Otherwise,
2710 find the MODE_INT mode of the same width. */
2711 else if (GET_MODE_CLASS (mode
) == MODE_CC
2712 && mov_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
)
2714 enum insn_code insn_code
;
2715 enum machine_mode tmode
= VOIDmode
;
2719 && mov_optab
->handlers
[(int) CCmode
].insn_code
!= CODE_FOR_nothing
)
2722 for (tmode
= QImode
; tmode
!= VOIDmode
;
2723 tmode
= GET_MODE_WIDER_MODE (tmode
))
2724 if (GET_MODE_SIZE (tmode
) == GET_MODE_SIZE (mode
))
2727 gcc_assert (tmode
!= VOIDmode
);
2729 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
2730 may call change_address which is not appropriate if we were
2731 called when a reload was in progress. We don't have to worry
2732 about changing the address since the size in bytes is supposed to
2733 be the same. Copy the MEM to change the mode and move any
2734 substitutions from the old MEM to the new one. */
2736 if (reload_in_progress
)
2738 x
= gen_lowpart_common (tmode
, x1
);
2739 if (x
== 0 && MEM_P (x1
))
2741 x
= adjust_address_nv (x1
, tmode
, 0);
2742 copy_replacements (x1
, x
);
2745 y
= gen_lowpart_common (tmode
, y1
);
2746 if (y
== 0 && MEM_P (y1
))
2748 y
= adjust_address_nv (y1
, tmode
, 0);
2749 copy_replacements (y1
, y
);
2754 x
= gen_lowpart (tmode
, x
);
2755 y
= gen_lowpart (tmode
, y
);
2758 insn_code
= mov_optab
->handlers
[(int) tmode
].insn_code
;
2759 return emit_insn (GEN_FCN (insn_code
) (x
, y
));
2762 /* Try using a move pattern for the corresponding integer mode. This is
2763 only safe when simplify_subreg can convert MODE constants into integer
2764 constants. At present, it can only do this reliably if the value
2765 fits within a HOST_WIDE_INT. */
2766 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
2767 && (submode
= int_mode_for_mode (mode
)) != BLKmode
2768 && mov_optab
->handlers
[submode
].insn_code
!= CODE_FOR_nothing
)
2769 return emit_insn (GEN_FCN (mov_optab
->handlers
[submode
].insn_code
)
2770 (simplify_gen_subreg (submode
, x
, mode
, 0),
2771 simplify_gen_subreg (submode
, y
, mode
, 0)));
2773 /* This will handle any multi-word or full-word mode that lacks a move_insn
2774 pattern. However, you will get better code if you define such patterns,
2775 even if they must turn into multiple assembler instructions. */
2783 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
2785 #ifdef PUSH_ROUNDING
2787 /* If X is a push on the stack, do the push now and replace
2788 X with a reference to the stack pointer. */
2789 if (push_operand (x
, GET_MODE (x
)))
2794 /* Do not use anti_adjust_stack, since we don't want to update
2795 stack_pointer_delta. */
2796 temp
= expand_binop (Pmode
,
2797 #ifdef STACK_GROWS_DOWNWARD
2805 (GET_MODE_SIZE (GET_MODE (x
)))),
2806 stack_pointer_rtx
, 0, OPTAB_LIB_WIDEN
);
2808 if (temp
!= stack_pointer_rtx
)
2809 emit_move_insn (stack_pointer_rtx
, temp
);
2811 code
= GET_CODE (XEXP (x
, 0));
2813 /* Just hope that small offsets off SP are OK. */
2814 if (code
== POST_INC
)
2815 temp
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
2816 GEN_INT (-((HOST_WIDE_INT
)
2817 GET_MODE_SIZE (GET_MODE (x
)))));
2818 else if (code
== POST_DEC
)
2819 temp
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
2820 GEN_INT (GET_MODE_SIZE (GET_MODE (x
))));
2822 temp
= stack_pointer_rtx
;
2824 x
= change_address (x
, VOIDmode
, temp
);
2828 /* If we are in reload, see if either operand is a MEM whose address
2829 is scheduled for replacement. */
2830 if (reload_in_progress
&& MEM_P (x
)
2831 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
2832 x
= replace_equiv_address_nv (x
, inner
);
2833 if (reload_in_progress
&& MEM_P (y
)
2834 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
2835 y
= replace_equiv_address_nv (y
, inner
);
2841 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
2844 rtx xpart
= operand_subword (x
, i
, 1, mode
);
2845 rtx ypart
= operand_subword (y
, i
, 1, mode
);
2847 /* If we can't get a part of Y, put Y into memory if it is a
2848 constant. Otherwise, force it into a register. If we still
2849 can't get a part of Y, abort. */
2850 if (ypart
== 0 && CONSTANT_P (y
))
2852 y
= force_const_mem (mode
, y
);
2853 ypart
= operand_subword (y
, i
, 1, mode
);
2855 else if (ypart
== 0)
2856 ypart
= operand_subword_force (y
, i
, mode
);
2858 gcc_assert (xpart
&& ypart
);
2860 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
2862 last_insn
= emit_move_insn (xpart
, ypart
);
2868 /* Show the output dies here. This is necessary for SUBREGs
2869 of pseudos since we cannot track their lifetimes correctly;
2870 hard regs shouldn't appear here except as return values.
2871 We never want to emit such a clobber after reload. */
2873 && ! (reload_in_progress
|| reload_completed
)
2874 && need_clobber
!= 0)
2875 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2883 /* If Y is representable exactly in a narrower mode, and the target can
2884 perform the extension directly from constant or memory, then emit the
2885 move as an extension. */
2888 compress_float_constant (rtx x
, rtx y
)
2890 enum machine_mode dstmode
= GET_MODE (x
);
2891 enum machine_mode orig_srcmode
= GET_MODE (y
);
2892 enum machine_mode srcmode
;
2895 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
2897 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
2898 srcmode
!= orig_srcmode
;
2899 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
2902 rtx trunc_y
, last_insn
;
2904 /* Skip if the target can't extend this way. */
2905 ic
= can_extend_p (dstmode
, srcmode
, 0);
2906 if (ic
== CODE_FOR_nothing
)
2909 /* Skip if the narrowed value isn't exact. */
2910 if (! exact_real_truncate (srcmode
, &r
))
2913 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
2915 if (LEGITIMATE_CONSTANT_P (trunc_y
))
2917 /* Skip if the target needs extra instructions to perform
2919 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
2922 else if (float_extend_from_mem
[dstmode
][srcmode
])
2923 trunc_y
= validize_mem (force_const_mem (srcmode
, trunc_y
));
2927 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
2928 last_insn
= get_last_insn ();
2931 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
2939 /* Pushing data onto the stack. */
2941 /* Push a block of length SIZE (perhaps variable)
2942 and return an rtx to address the beginning of the block.
2943 The value may be virtual_outgoing_args_rtx.
2945 EXTRA is the number of bytes of padding to push in addition to SIZE.
2946 BELOW nonzero means this padding comes at low addresses;
2947 otherwise, the padding comes at high addresses. */
2950 push_block (rtx size
, int extra
, int below
)
2954 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
2955 if (CONSTANT_P (size
))
2956 anti_adjust_stack (plus_constant (size
, extra
));
2957 else if (REG_P (size
) && extra
== 0)
2958 anti_adjust_stack (size
);
2961 temp
= copy_to_mode_reg (Pmode
, size
);
2963 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
2964 temp
, 0, OPTAB_LIB_WIDEN
);
2965 anti_adjust_stack (temp
);
2968 #ifndef STACK_GROWS_DOWNWARD
2974 temp
= virtual_outgoing_args_rtx
;
2975 if (extra
!= 0 && below
)
2976 temp
= plus_constant (temp
, extra
);
2980 if (GET_CODE (size
) == CONST_INT
)
2981 temp
= plus_constant (virtual_outgoing_args_rtx
,
2982 -INTVAL (size
) - (below
? 0 : extra
));
2983 else if (extra
!= 0 && !below
)
2984 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
2985 negate_rtx (Pmode
, plus_constant (size
, extra
)));
2987 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
2988 negate_rtx (Pmode
, size
));
2991 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
2994 #ifdef PUSH_ROUNDING
2996 /* Emit single push insn. */
2999 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3002 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3004 enum insn_code icode
;
3005 insn_operand_predicate_fn pred
;
3007 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3008 /* If there is push pattern, use it. Otherwise try old way of throwing
3009 MEM representing push operation to move expander. */
3010 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3011 if (icode
!= CODE_FOR_nothing
)
3013 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3014 && !((*pred
) (x
, mode
))))
3015 x
= force_reg (mode
, x
);
3016 emit_insn (GEN_FCN (icode
) (x
));
3019 if (GET_MODE_SIZE (mode
) == rounded_size
)
3020 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3021 /* If we are to pad downward, adjust the stack pointer first and
3022 then store X into the stack location using an offset. This is
3023 because emit_move_insn does not know how to pad; it does not have
3025 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3027 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3028 HOST_WIDE_INT offset
;
3030 emit_move_insn (stack_pointer_rtx
,
3031 expand_binop (Pmode
,
3032 #ifdef STACK_GROWS_DOWNWARD
3038 GEN_INT (rounded_size
),
3039 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3041 offset
= (HOST_WIDE_INT
) padding_size
;
3042 #ifdef STACK_GROWS_DOWNWARD
3043 if (STACK_PUSH_CODE
== POST_DEC
)
3044 /* We have already decremented the stack pointer, so get the
3046 offset
+= (HOST_WIDE_INT
) rounded_size
;
3048 if (STACK_PUSH_CODE
== POST_INC
)
3049 /* We have already incremented the stack pointer, so get the
3051 offset
-= (HOST_WIDE_INT
) rounded_size
;
3053 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3057 #ifdef STACK_GROWS_DOWNWARD
3058 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3059 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3060 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3062 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3063 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3064 GEN_INT (rounded_size
));
3066 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3069 dest
= gen_rtx_MEM (mode
, dest_addr
);
3073 set_mem_attributes (dest
, type
, 1);
3075 if (flag_optimize_sibling_calls
)
3076 /* Function incoming arguments may overlap with sibling call
3077 outgoing arguments and we cannot allow reordering of reads
3078 from function arguments with stores to outgoing arguments
3079 of sibling calls. */
3080 set_mem_alias_set (dest
, 0);
3082 emit_move_insn (dest
, x
);
3086 /* Generate code to push X onto the stack, assuming it has mode MODE and
3088 MODE is redundant except when X is a CONST_INT (since they don't
3090 SIZE is an rtx for the size of data to be copied (in bytes),
3091 needed only if X is BLKmode.
3093 ALIGN (in bits) is maximum alignment we can assume.
3095 If PARTIAL and REG are both nonzero, then copy that many of the first
3096 words of X into registers starting with REG, and push the rest of X.
3097 The amount of space pushed is decreased by PARTIAL words,
3098 rounded *down* to a multiple of PARM_BOUNDARY.
3099 REG must be a hard register in this case.
3100 If REG is zero but PARTIAL is not, take any all others actions for an
3101 argument partially in registers, but do not actually load any
3104 EXTRA is the amount in bytes of extra space to leave next to this arg.
3105 This is ignored if an argument block has already been allocated.
3107 On a machine that lacks real push insns, ARGS_ADDR is the address of
3108 the bottom of the argument block for this call. We use indexing off there
3109 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3110 argument block has not been preallocated.
3112 ARGS_SO_FAR is the size of args previously pushed for this call.
3114 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3115 for arguments passed in registers. If nonzero, it will be the number
3116 of bytes required. */
3119 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3120 unsigned int align
, int partial
, rtx reg
, int extra
,
3121 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3125 enum direction stack_direction
3126 #ifdef STACK_GROWS_DOWNWARD
3132 /* Decide where to pad the argument: `downward' for below,
3133 `upward' for above, or `none' for don't pad it.
3134 Default is below for small data on big-endian machines; else above. */
3135 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3137 /* Invert direction if stack is post-decrement.
3139 if (STACK_PUSH_CODE
== POST_DEC
)
3140 if (where_pad
!= none
)
3141 where_pad
= (where_pad
== downward
? upward
: downward
);
3145 if (mode
== BLKmode
)
3147 /* Copy a block into the stack, entirely or partially. */
3150 int used
= partial
* UNITS_PER_WORD
;
3154 if (reg
&& GET_CODE (reg
) == PARALLEL
)
3156 /* Use the size of the elt to compute offset. */
3157 rtx elt
= XEXP (XVECEXP (reg
, 0, 0), 0);
3158 used
= partial
* GET_MODE_SIZE (GET_MODE (elt
));
3159 offset
= used
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3162 offset
= used
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3168 /* USED is now the # of bytes we need not copy to the stack
3169 because registers will take care of them. */
3172 xinner
= adjust_address (xinner
, BLKmode
, used
);
3174 /* If the partial register-part of the arg counts in its stack size,
3175 skip the part of stack space corresponding to the registers.
3176 Otherwise, start copying to the beginning of the stack space,
3177 by setting SKIP to 0. */
3178 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3180 #ifdef PUSH_ROUNDING
3181 /* Do it with several push insns if that doesn't take lots of insns
3182 and if there is no difficulty with push insns that skip bytes
3183 on the stack for alignment purposes. */
3186 && GET_CODE (size
) == CONST_INT
3188 && MEM_ALIGN (xinner
) >= align
3189 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3190 /* Here we avoid the case of a structure whose weak alignment
3191 forces many pushes of a small amount of data,
3192 and such small pushes do rounding that causes trouble. */
3193 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3194 || align
>= BIGGEST_ALIGNMENT
3195 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3196 == (align
/ BITS_PER_UNIT
)))
3197 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3199 /* Push padding now if padding above and stack grows down,
3200 or if padding below and stack grows up.
3201 But if space already allocated, this has already been done. */
3202 if (extra
&& args_addr
== 0
3203 && where_pad
!= none
&& where_pad
!= stack_direction
)
3204 anti_adjust_stack (GEN_INT (extra
));
3206 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3209 #endif /* PUSH_ROUNDING */
3213 /* Otherwise make space on the stack and copy the data
3214 to the address of that space. */
3216 /* Deduct words put into registers from the size we must copy. */
3219 if (GET_CODE (size
) == CONST_INT
)
3220 size
= GEN_INT (INTVAL (size
) - used
);
3222 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3223 GEN_INT (used
), NULL_RTX
, 0,
3227 /* Get the address of the stack space.
3228 In this case, we do not deal with EXTRA separately.
3229 A single stack adjust will do. */
3232 temp
= push_block (size
, extra
, where_pad
== downward
);
3235 else if (GET_CODE (args_so_far
) == CONST_INT
)
3236 temp
= memory_address (BLKmode
,
3237 plus_constant (args_addr
,
3238 skip
+ INTVAL (args_so_far
)));
3240 temp
= memory_address (BLKmode
,
3241 plus_constant (gen_rtx_PLUS (Pmode
,
3246 if (!ACCUMULATE_OUTGOING_ARGS
)
3248 /* If the source is referenced relative to the stack pointer,
3249 copy it to another register to stabilize it. We do not need
3250 to do this if we know that we won't be changing sp. */
3252 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3253 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3254 temp
= copy_to_reg (temp
);
3257 target
= gen_rtx_MEM (BLKmode
, temp
);
3259 /* We do *not* set_mem_attributes here, because incoming arguments
3260 may overlap with sibling call outgoing arguments and we cannot
3261 allow reordering of reads from function arguments with stores
3262 to outgoing arguments of sibling calls. We do, however, want
3263 to record the alignment of the stack slot. */
3264 /* ALIGN may well be better aligned than TYPE, e.g. due to
3265 PARM_BOUNDARY. Assume the caller isn't lying. */
3266 set_mem_align (target
, align
);
3268 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3271 else if (partial
> 0)
3273 /* Scalar partly in registers. */
3275 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3278 /* # words of start of argument
3279 that we must make space for but need not store. */
3280 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_WORD
);
3281 int args_offset
= INTVAL (args_so_far
);
3284 /* Push padding now if padding above and stack grows down,
3285 or if padding below and stack grows up.
3286 But if space already allocated, this has already been done. */
3287 if (extra
&& args_addr
== 0
3288 && where_pad
!= none
&& where_pad
!= stack_direction
)
3289 anti_adjust_stack (GEN_INT (extra
));
3291 /* If we make space by pushing it, we might as well push
3292 the real data. Otherwise, we can leave OFFSET nonzero
3293 and leave the space uninitialized. */
3297 /* Now NOT_STACK gets the number of words that we don't need to
3298 allocate on the stack. */
3299 not_stack
= partial
- offset
;
3301 /* If the partial register-part of the arg counts in its stack size,
3302 skip the part of stack space corresponding to the registers.
3303 Otherwise, start copying to the beginning of the stack space,
3304 by setting SKIP to 0. */
3305 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3307 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3308 x
= validize_mem (force_const_mem (mode
, x
));
3310 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3311 SUBREGs of such registers are not allowed. */
3312 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3313 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3314 x
= copy_to_reg (x
);
3316 /* Loop over all the words allocated on the stack for this arg. */
3317 /* We can do it by words, because any scalar bigger than a word
3318 has a size a multiple of a word. */
3319 #ifndef PUSH_ARGS_REVERSED
3320 for (i
= not_stack
; i
< size
; i
++)
3322 for (i
= size
- 1; i
>= not_stack
; i
--)
3324 if (i
>= not_stack
+ offset
)
3325 emit_push_insn (operand_subword_force (x
, i
, mode
),
3326 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3328 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3330 reg_parm_stack_space
, alignment_pad
);
3337 /* Push padding now if padding above and stack grows down,
3338 or if padding below and stack grows up.
3339 But if space already allocated, this has already been done. */
3340 if (extra
&& args_addr
== 0
3341 && where_pad
!= none
&& where_pad
!= stack_direction
)
3342 anti_adjust_stack (GEN_INT (extra
));
3344 #ifdef PUSH_ROUNDING
3345 if (args_addr
== 0 && PUSH_ARGS
)
3346 emit_single_push_insn (mode
, x
, type
);
3350 if (GET_CODE (args_so_far
) == CONST_INT
)
3352 = memory_address (mode
,
3353 plus_constant (args_addr
,
3354 INTVAL (args_so_far
)));
3356 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3358 dest
= gen_rtx_MEM (mode
, addr
);
3360 /* We do *not* set_mem_attributes here, because incoming arguments
3361 may overlap with sibling call outgoing arguments and we cannot
3362 allow reordering of reads from function arguments with stores
3363 to outgoing arguments of sibling calls. We do, however, want
3364 to record the alignment of the stack slot. */
3365 /* ALIGN may well be better aligned than TYPE, e.g. due to
3366 PARM_BOUNDARY. Assume the caller isn't lying. */
3367 set_mem_align (dest
, align
);
3369 emit_move_insn (dest
, x
);
3373 /* If part should go in registers, copy that part
3374 into the appropriate registers. Do this now, at the end,
3375 since mem-to-mem copies above may do function calls. */
3376 if (partial
> 0 && reg
!= 0)
3378 /* Handle calls that pass values in multiple non-contiguous locations.
3379 The Irix 6 ABI has examples of this. */
3380 if (GET_CODE (reg
) == PARALLEL
)
3381 emit_group_load (reg
, x
, type
, -1);
3383 move_block_to_reg (REGNO (reg
), x
, partial
, mode
);
3386 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3387 anti_adjust_stack (GEN_INT (extra
));
3389 if (alignment_pad
&& args_addr
== 0)
3390 anti_adjust_stack (alignment_pad
);
3393 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3397 get_subtarget (rtx x
)
3401 /* Only registers can be subtargets. */
3403 /* Don't use hard regs to avoid extending their life. */
3404 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3408 /* Expand an assignment that stores the value of FROM into TO.
3409 If WANT_VALUE is nonzero, return an rtx for the value of TO.
3410 (If the value is constant, this rtx is a constant.)
3411 Otherwise, the returned value is NULL_RTX. */
3414 expand_assignment (tree to
, tree from
, int want_value
)
3419 /* Don't crash if the lhs of the assignment was erroneous. */
3421 if (TREE_CODE (to
) == ERROR_MARK
)
3423 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3424 return want_value
? result
: NULL_RTX
;
3427 /* Assignment of a structure component needs special treatment
3428 if the structure component's rtx is not simply a MEM.
3429 Assignment of an array element at a constant index, and assignment of
3430 an array element in an unaligned packed structure field, has the same
3433 if (TREE_CODE (to
) == COMPONENT_REF
|| TREE_CODE (to
) == BIT_FIELD_REF
3434 || TREE_CODE (to
) == ARRAY_REF
|| TREE_CODE (to
) == ARRAY_RANGE_REF
3435 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3437 enum machine_mode mode1
;
3438 HOST_WIDE_INT bitsize
, bitpos
;
3446 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3447 &unsignedp
, &volatilep
);
3449 /* If we are going to use store_bit_field and extract_bit_field,
3450 make sure to_rtx will be safe for multiple use. */
3452 if (mode1
== VOIDmode
&& want_value
)
3453 tem
= stabilize_reference (tem
);
3455 orig_to_rtx
= to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3459 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3461 gcc_assert (MEM_P (to_rtx
));
3463 #ifdef POINTERS_EXTEND_UNSIGNED
3464 if (GET_MODE (offset_rtx
) != Pmode
)
3465 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3467 if (GET_MODE (offset_rtx
) != ptr_mode
)
3468 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3471 /* A constant address in TO_RTX can have VOIDmode, we must not try
3472 to call force_reg for that case. Avoid that case. */
3474 && GET_MODE (to_rtx
) == BLKmode
3475 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3477 && (bitpos
% bitsize
) == 0
3478 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3479 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3481 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3485 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3486 highest_pow2_factor_for_target (to
,
3492 /* If the field is at offset zero, we could have been given the
3493 DECL_RTX of the parent struct. Don't munge it. */
3494 to_rtx
= shallow_copy_rtx (to_rtx
);
3496 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3499 /* Deal with volatile and readonly fields. The former is only done
3500 for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3501 if (volatilep
&& MEM_P (to_rtx
))
3503 if (to_rtx
== orig_to_rtx
)
3504 to_rtx
= copy_rtx (to_rtx
);
3505 MEM_VOLATILE_P (to_rtx
) = 1;
3508 if (MEM_P (to_rtx
) && ! can_address_p (to
))
3510 if (to_rtx
== orig_to_rtx
)
3511 to_rtx
= copy_rtx (to_rtx
);
3512 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3515 /* Optimize bitfld op= val in certain cases. */
3516 while (mode1
== VOIDmode
&& !want_value
3517 && bitsize
> 0 && bitsize
< BITS_PER_WORD
3518 && GET_MODE_BITSIZE (GET_MODE (to_rtx
)) <= BITS_PER_WORD
3519 && !TREE_SIDE_EFFECTS (to
)
3520 && !TREE_THIS_VOLATILE (to
))
3523 rtx value
, str_rtx
= to_rtx
;
3524 HOST_WIDE_INT bitpos1
= bitpos
;
3529 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
3530 || !BINARY_CLASS_P (src
))
3533 op0
= TREE_OPERAND (src
, 0);
3534 op1
= TREE_OPERAND (src
, 1);
3537 if (! operand_equal_p (to
, op0
, 0))
3540 if (MEM_P (str_rtx
))
3542 enum machine_mode mode
= GET_MODE (str_rtx
);
3543 HOST_WIDE_INT offset1
;
3545 if (GET_MODE_BITSIZE (mode
) == 0
3546 || GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
3548 mode
= get_best_mode (bitsize
, bitpos1
, MEM_ALIGN (str_rtx
),
3550 if (mode
== VOIDmode
)
3554 bitpos1
%= GET_MODE_BITSIZE (mode
);
3555 offset1
= (offset1
- bitpos1
) / BITS_PER_UNIT
;
3556 str_rtx
= adjust_address (str_rtx
, mode
, offset1
);
3558 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3561 /* If the bit field covers the whole REG/MEM, store_field
3562 will likely generate better code. */
3563 if (bitsize
>= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3566 /* We can't handle fields split across multiple entities. */
3567 if (bitpos1
+ bitsize
> GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3570 if (BYTES_BIG_ENDIAN
)
3571 bitpos1
= GET_MODE_BITSIZE (GET_MODE (str_rtx
)) - bitpos1
3574 /* Special case some bitfield op= exp. */
3575 switch (TREE_CODE (src
))
3579 /* For now, just optimize the case of the topmost bitfield
3580 where we don't need to do any masking and also
3581 1 bit bitfields where xor can be used.
3582 We might win by one instruction for the other bitfields
3583 too if insv/extv instructions aren't used, so that
3584 can be added later. */
3585 if (bitpos1
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
))
3586 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3588 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3589 value
= convert_modes (GET_MODE (str_rtx
),
3590 TYPE_MODE (TREE_TYPE (op1
)), value
,
3591 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3593 /* We may be accessing data outside the field, which means
3594 we can alias adjacent data. */
3595 if (MEM_P (str_rtx
))
3597 str_rtx
= shallow_copy_rtx (str_rtx
);
3598 set_mem_alias_set (str_rtx
, 0);
3599 set_mem_expr (str_rtx
, 0);
3602 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3604 && bitpos1
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3606 value
= expand_and (GET_MODE (str_rtx
), value
, const1_rtx
,
3610 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3611 build_int_cst (NULL_TREE
, bitpos1
),
3613 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3614 value
, str_rtx
, 1, OPTAB_WIDEN
);
3615 if (result
!= str_rtx
)
3616 emit_move_insn (str_rtx
, result
);
3628 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3630 /* Spurious cast for HPUX compiler. */
3631 ? ((enum machine_mode
)
3632 TYPE_MODE (TREE_TYPE (to
)))
3634 unsignedp
, TREE_TYPE (tem
), get_alias_set (to
));
3636 preserve_temp_slots (result
);
3640 /* If the value is meaningful, convert RESULT to the proper mode.
3641 Otherwise, return nothing. */
3642 return (want_value
? convert_modes (TYPE_MODE (TREE_TYPE (to
)),
3643 TYPE_MODE (TREE_TYPE (from
)),
3645 TYPE_UNSIGNED (TREE_TYPE (to
)))
3649 /* If the rhs is a function call and its value is not an aggregate,
3650 call the function before we start to compute the lhs.
3651 This is needed for correct code for cases such as
3652 val = setjmp (buf) on machines where reference to val
3653 requires loading up part of an address in a separate insn.
3655 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3656 since it might be a promoted variable where the zero- or sign- extension
3657 needs to be done. Handling this in the normal way is safe because no
3658 computation is done before the call. */
3659 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
3660 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
3661 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
3662 && REG_P (DECL_RTL (to
))))
3667 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3669 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3671 /* Handle calls that return values in multiple non-contiguous locations.
3672 The Irix 6 ABI has examples of this. */
3673 if (GET_CODE (to_rtx
) == PARALLEL
)
3674 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
3675 int_size_in_bytes (TREE_TYPE (from
)));
3676 else if (GET_MODE (to_rtx
) == BLKmode
)
3677 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
3680 if (POINTER_TYPE_P (TREE_TYPE (to
)))
3681 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
3682 emit_move_insn (to_rtx
, value
);
3684 preserve_temp_slots (to_rtx
);
3687 return want_value
? to_rtx
: NULL_RTX
;
3690 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3691 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3694 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
3696 /* Don't move directly into a return register. */
3697 if (TREE_CODE (to
) == RESULT_DECL
3698 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
3703 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
3705 if (GET_CODE (to_rtx
) == PARALLEL
)
3706 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
3707 int_size_in_bytes (TREE_TYPE (from
)));
3709 emit_move_insn (to_rtx
, temp
);
3711 preserve_temp_slots (to_rtx
);
3714 return want_value
? to_rtx
: NULL_RTX
;
3717 /* In case we are returning the contents of an object which overlaps
3718 the place the value is being stored, use a safe function when copying
3719 a value through a pointer into a structure value return block. */
3720 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
3721 && current_function_returns_struct
3722 && !current_function_returns_pcc_struct
)
3727 size
= expr_size (from
);
3728 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3730 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
3731 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
3732 XEXP (from_rtx
, 0), Pmode
,
3733 convert_to_mode (TYPE_MODE (sizetype
),
3734 size
, TYPE_UNSIGNED (sizetype
)),
3735 TYPE_MODE (sizetype
));
3737 preserve_temp_slots (to_rtx
);
3740 return want_value
? to_rtx
: NULL_RTX
;
3743 /* Compute FROM and store the value in the rtx we got. */
3746 result
= store_expr (from
, to_rtx
, want_value
);
3747 preserve_temp_slots (result
);
3750 return want_value
? result
: NULL_RTX
;
3753 /* Generate code for computing expression EXP,
3754 and storing the value into TARGET.
3756 If WANT_VALUE & 1 is nonzero, return a copy of the value
3757 not in TARGET, so that we can be sure to use the proper
3758 value in a containing expression even if TARGET has something
3759 else stored in it. If possible, we copy the value through a pseudo
3760 and return that pseudo. Or, if the value is constant, we try to
3761 return the constant. In some cases, we return a pseudo
3762 copied *from* TARGET.
3764 If the mode is BLKmode then we may return TARGET itself.
3765 It turns out that in BLKmode it doesn't cause a problem.
3766 because C has no operators that could combine two different
3767 assignments into the same BLKmode object with different values
3768 with no sequence point. Will other languages need this to
3771 If WANT_VALUE & 1 is 0, we return NULL, to make sure
3772 to catch quickly any cases where the caller uses the value
3773 and fails to set WANT_VALUE.
3775 If WANT_VALUE & 2 is set, this is a store into a call param on the
3776 stack, and block moves may need to be treated specially. */
3779 store_expr (tree exp
, rtx target
, int want_value
)
3782 rtx alt_rtl
= NULL_RTX
;
3783 int dont_return_target
= 0;
3784 int dont_store_target
= 0;
3786 if (VOID_TYPE_P (TREE_TYPE (exp
)))
3788 /* C++ can generate ?: expressions with a throw expression in one
3789 branch and an rvalue in the other. Here, we resolve attempts to
3790 store the throw expression's nonexistent result. */
3791 gcc_assert (!want_value
);
3792 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
3795 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
3797 /* Perform first part of compound expression, then assign from second
3799 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
3800 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
3801 return store_expr (TREE_OPERAND (exp
, 1), target
, want_value
);
3803 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
3805 /* For conditional expression, get safe form of the target. Then
3806 test the condition, doing the appropriate assignment on either
3807 side. This avoids the creation of unnecessary temporaries.
3808 For non-BLKmode, it is more efficient not to do this. */
3810 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
3812 do_pending_stack_adjust ();
3814 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
3815 store_expr (TREE_OPERAND (exp
, 1), target
, want_value
& 2);
3816 emit_jump_insn (gen_jump (lab2
));
3819 store_expr (TREE_OPERAND (exp
, 2), target
, want_value
& 2);
3823 return want_value
& 1 ? target
: NULL_RTX
;
3825 else if ((want_value
& 1) != 0
3827 && ! MEM_VOLATILE_P (target
)
3828 && GET_MODE (target
) != BLKmode
)
3829 /* If target is in memory and caller wants value in a register instead,
3830 arrange that. Pass TARGET as target for expand_expr so that,
3831 if EXP is another assignment, WANT_VALUE will be nonzero for it.
3832 We know expand_expr will not use the target in that case.
3833 Don't do this if TARGET is volatile because we are supposed
3834 to write it and then read it. */
3836 temp
= expand_expr (exp
, target
, GET_MODE (target
),
3837 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
3838 if (GET_MODE (temp
) != BLKmode
&& GET_MODE (temp
) != VOIDmode
)
3840 /* If TEMP is already in the desired TARGET, only copy it from
3841 memory and don't store it there again. */
3843 || (rtx_equal_p (temp
, target
)
3844 && ! side_effects_p (temp
) && ! side_effects_p (target
)))
3845 dont_store_target
= 1;
3846 temp
= copy_to_reg (temp
);
3848 dont_return_target
= 1;
3850 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
3851 /* If this is a scalar in a register that is stored in a wider mode
3852 than the declared mode, compute the result into its declared mode
3853 and then convert to the wider mode. Our value is the computed
3856 rtx inner_target
= 0;
3858 /* If we don't want a value, we can do the conversion inside EXP,
3859 which will often result in some optimizations. Do the conversion
3860 in two steps: first change the signedness, if needed, then
3861 the extend. But don't do this if the type of EXP is a subtype
3862 of something else since then the conversion might involve
3863 more than just converting modes. */
3864 if ((want_value
& 1) == 0
3865 && INTEGRAL_TYPE_P (TREE_TYPE (exp
))
3866 && TREE_TYPE (TREE_TYPE (exp
)) == 0
3867 && (!lang_hooks
.reduce_bit_field_operations
3868 || (GET_MODE_PRECISION (GET_MODE (target
))
3869 == TYPE_PRECISION (TREE_TYPE (exp
)))))
3871 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
3872 != SUBREG_PROMOTED_UNSIGNED_P (target
))
3874 (lang_hooks
.types
.signed_or_unsigned_type
3875 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
3877 exp
= convert (lang_hooks
.types
.type_for_mode
3878 (GET_MODE (SUBREG_REG (target
)),
3879 SUBREG_PROMOTED_UNSIGNED_P (target
)),
3882 inner_target
= SUBREG_REG (target
);
3885 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
3886 want_value
& 2 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
3888 /* If TEMP is a MEM and we want a result value, make the access
3889 now so it gets done only once. Strictly speaking, this is
3890 only necessary if the MEM is volatile, or if the address
3891 overlaps TARGET. But not performing the load twice also
3892 reduces the amount of rtl we generate and then have to CSE. */
3893 if (MEM_P (temp
) && (want_value
& 1) != 0)
3894 temp
= copy_to_reg (temp
);
3896 /* If TEMP is a VOIDmode constant, use convert_modes to make
3897 sure that we properly convert it. */
3898 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
3900 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
3901 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
3902 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
3903 GET_MODE (target
), temp
,
3904 SUBREG_PROMOTED_UNSIGNED_P (target
));
3907 convert_move (SUBREG_REG (target
), temp
,
3908 SUBREG_PROMOTED_UNSIGNED_P (target
));
3910 /* If we promoted a constant, change the mode back down to match
3911 target. Otherwise, the caller might get confused by a result whose
3912 mode is larger than expected. */
3914 if ((want_value
& 1) != 0 && GET_MODE (temp
) != GET_MODE (target
))
3916 if (GET_MODE (temp
) != VOIDmode
)
3918 temp
= gen_lowpart_SUBREG (GET_MODE (target
), temp
);
3919 SUBREG_PROMOTED_VAR_P (temp
) = 1;
3920 SUBREG_PROMOTED_UNSIGNED_SET (temp
,
3921 SUBREG_PROMOTED_UNSIGNED_P (target
));
3924 temp
= convert_modes (GET_MODE (target
),
3925 GET_MODE (SUBREG_REG (target
)),
3926 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
3929 return want_value
& 1 ? temp
: NULL_RTX
;
3933 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
3935 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
3937 /* Return TARGET if it's a specified hardware register.
3938 If TARGET is a volatile mem ref, either return TARGET
3939 or return a reg copied *from* TARGET; ANSI requires this.
3941 Otherwise, if TEMP is not TARGET, return TEMP
3942 if it is constant (for efficiency),
3943 or if we really want the correct value. */
3944 if (!(target
&& REG_P (target
)
3945 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
3946 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
3947 && ! rtx_equal_p (temp
, target
)
3948 && (CONSTANT_P (temp
) || (want_value
& 1) != 0))
3949 dont_return_target
= 1;
3952 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
3953 the same as that of TARGET, adjust the constant. This is needed, for
3954 example, in case it is a CONST_DOUBLE and we want only a word-sized
3956 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
3957 && TREE_CODE (exp
) != ERROR_MARK
3958 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
3959 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
3960 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
3962 /* If value was not generated in the target, store it there.
3963 Convert the value to TARGET's type first if necessary and emit the
3964 pending incrementations that have been queued when expanding EXP.
3965 Note that we cannot emit the whole queue blindly because this will
3966 effectively disable the POST_INC optimization later.
3968 If TEMP and TARGET compare equal according to rtx_equal_p, but
3969 one or both of them are volatile memory refs, we have to distinguish
3971 - expand_expr has used TARGET. In this case, we must not generate
3972 another copy. This can be detected by TARGET being equal according
3974 - expand_expr has not used TARGET - that means that the source just
3975 happens to have the same RTX form. Since temp will have been created
3976 by expand_expr, it will compare unequal according to == .
3977 We must generate a copy in this case, to reach the correct number
3978 of volatile memory references. */
3980 if ((! rtx_equal_p (temp
, target
)
3981 || (temp
!= target
&& (side_effects_p (temp
)
3982 || side_effects_p (target
))))
3983 && TREE_CODE (exp
) != ERROR_MARK
3984 && ! dont_store_target
3985 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
3986 but TARGET is not valid memory reference, TEMP will differ
3987 from TARGET although it is really the same location. */
3988 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
3989 /* If there's nothing to copy, don't bother. Don't call expr_size
3990 unless necessary, because some front-ends (C++) expr_size-hook
3991 aborts on objects that are not supposed to be bit-copied or
3993 && expr_size (exp
) != const0_rtx
)
3995 if (GET_MODE (temp
) != GET_MODE (target
)
3996 && GET_MODE (temp
) != VOIDmode
)
3998 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
3999 if (dont_return_target
)
4001 /* In this case, we will return TEMP,
4002 so make sure it has the proper mode.
4003 But don't forget to store the value into TARGET. */
4004 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4005 emit_move_insn (target
, temp
);
4008 convert_move (target
, temp
, unsignedp
);
4011 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4013 /* Handle copying a string constant into an array. The string
4014 constant may be shorter than the array. So copy just the string's
4015 actual length, and clear the rest. First get the size of the data
4016 type of the string, which is actually the size of the target. */
4017 rtx size
= expr_size (exp
);
4019 if (GET_CODE (size
) == CONST_INT
4020 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4021 emit_block_move (target
, temp
, size
,
4023 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4026 /* Compute the size of the data to copy from the string. */
4028 = size_binop (MIN_EXPR
,
4029 make_tree (sizetype
, size
),
4030 size_int (TREE_STRING_LENGTH (exp
)));
4032 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4034 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4037 /* Copy that much. */
4038 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4039 TYPE_UNSIGNED (sizetype
));
4040 emit_block_move (target
, temp
, copy_size_rtx
,
4042 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4044 /* Figure out how much is left in TARGET that we have to clear.
4045 Do all calculations in ptr_mode. */
4046 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4048 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4049 target
= adjust_address (target
, BLKmode
,
4050 INTVAL (copy_size_rtx
));
4054 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4055 copy_size_rtx
, NULL_RTX
, 0,
4058 #ifdef POINTERS_EXTEND_UNSIGNED
4059 if (GET_MODE (copy_size_rtx
) != Pmode
)
4060 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4061 TYPE_UNSIGNED (sizetype
));
4064 target
= offset_address (target
, copy_size_rtx
,
4065 highest_pow2_factor (copy_size
));
4066 label
= gen_label_rtx ();
4067 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4068 GET_MODE (size
), 0, label
);
4071 if (size
!= const0_rtx
)
4072 clear_storage (target
, size
);
4078 /* Handle calls that return values in multiple non-contiguous locations.
4079 The Irix 6 ABI has examples of this. */
4080 else if (GET_CODE (target
) == PARALLEL
)
4081 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4082 int_size_in_bytes (TREE_TYPE (exp
)));
4083 else if (GET_MODE (temp
) == BLKmode
)
4084 emit_block_move (target
, temp
, expr_size (exp
),
4086 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4089 temp
= force_operand (temp
, target
);
4091 emit_move_insn (target
, temp
);
4095 /* If we don't want a value, return NULL_RTX. */
4096 if ((want_value
& 1) == 0)
4099 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
4100 ??? The latter test doesn't seem to make sense. */
4101 else if (dont_return_target
&& !MEM_P (temp
))
4104 /* Return TARGET itself if it is a hard register. */
4105 else if ((want_value
& 1) != 0
4106 && GET_MODE (target
) != BLKmode
4107 && ! (REG_P (target
)
4108 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
4109 return copy_to_reg (target
);
4115 /* Examine CTOR. Discover how many scalar fields are set to nonzero
4116 values and place it in *P_NZ_ELTS. Discover how many scalar fields
4117 are set to non-constant values and place it in *P_NC_ELTS. */
4120 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4121 HOST_WIDE_INT
*p_nc_elts
)
4123 HOST_WIDE_INT nz_elts
, nc_elts
;
4129 for (list
= CONSTRUCTOR_ELTS (ctor
); list
; list
= TREE_CHAIN (list
))
4131 tree value
= TREE_VALUE (list
);
4132 tree purpose
= TREE_PURPOSE (list
);
4136 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4138 tree lo_index
= TREE_OPERAND (purpose
, 0);
4139 tree hi_index
= TREE_OPERAND (purpose
, 1);
4141 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4142 mult
= (tree_low_cst (hi_index
, 1)
4143 - tree_low_cst (lo_index
, 1) + 1);
4146 switch (TREE_CODE (value
))
4150 HOST_WIDE_INT nz
= 0, nc
= 0;
4151 categorize_ctor_elements_1 (value
, &nz
, &nc
);
4152 nz_elts
+= mult
* nz
;
4153 nc_elts
+= mult
* nc
;
4159 if (!initializer_zerop (value
))
4163 if (!initializer_zerop (TREE_REALPART (value
)))
4165 if (!initializer_zerop (TREE_IMAGPART (value
)))
4171 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4172 if (!initializer_zerop (TREE_VALUE (v
)))
4179 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4185 *p_nz_elts
+= nz_elts
;
4186 *p_nc_elts
+= nc_elts
;
4190 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4191 HOST_WIDE_INT
*p_nc_elts
)
4195 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
);
4198 /* Count the number of scalars in TYPE. Return -1 on overflow or
4202 count_type_elements (tree type
)
4204 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4205 switch (TREE_CODE (type
))
4209 tree telts
= array_type_nelts (type
);
4210 if (telts
&& host_integerp (telts
, 1))
4212 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4213 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4216 else if (max
/ n
> m
)
4224 HOST_WIDE_INT n
= 0, t
;
4227 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4228 if (TREE_CODE (f
) == FIELD_DECL
)
4230 t
= count_type_elements (TREE_TYPE (f
));
4240 case QUAL_UNION_TYPE
:
4242 /* Ho hum. How in the world do we guess here? Clearly it isn't
4243 right to count the fields. Guess based on the number of words. */
4244 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4247 return n
/ UNITS_PER_WORD
;
4254 return TYPE_VECTOR_SUBPARTS (type
);
4263 case REFERENCE_TYPE
:
4277 /* Return 1 if EXP contains mostly (3/4) zeros. */
4280 mostly_zeros_p (tree exp
)
4282 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4285 HOST_WIDE_INT nz_elts
, nc_elts
, elts
;
4287 /* If there are no ranges of true bits, it is all zero. */
4288 if (TREE_TYPE (exp
) && TREE_CODE (TREE_TYPE (exp
)) == SET_TYPE
)
4289 return CONSTRUCTOR_ELTS (exp
) == NULL_TREE
;
4291 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
);
4292 elts
= count_type_elements (TREE_TYPE (exp
));
4294 return nz_elts
< elts
/ 4;
4297 return initializer_zerop (exp
);
4300 /* Helper function for store_constructor.
4301 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4302 TYPE is the type of the CONSTRUCTOR, not the element type.
4303 CLEARED is as for store_constructor.
4304 ALIAS_SET is the alias set to use for any stores.
4306 This provides a recursive shortcut back to store_constructor when it isn't
4307 necessary to go through store_field. This is so that we can pass through
4308 the cleared field to let store_constructor know that we may not have to
4309 clear a substructure if the outer structure has already been cleared. */
4312 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4313 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4314 tree exp
, tree type
, int cleared
, int alias_set
)
4316 if (TREE_CODE (exp
) == CONSTRUCTOR
4317 /* We can only call store_constructor recursively if the size and
4318 bit position are on a byte boundary. */
4319 && bitpos
% BITS_PER_UNIT
== 0
4320 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4321 /* If we have a nonzero bitpos for a register target, then we just
4322 let store_field do the bitfield handling. This is unlikely to
4323 generate unnecessary clear instructions anyways. */
4324 && (bitpos
== 0 || MEM_P (target
)))
4328 = adjust_address (target
,
4329 GET_MODE (target
) == BLKmode
4331 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4332 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4335 /* Update the alias set, if required. */
4336 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4337 && MEM_ALIAS_SET (target
) != 0)
4339 target
= copy_rtx (target
);
4340 set_mem_alias_set (target
, alias_set
);
4343 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4346 store_field (target
, bitsize
, bitpos
, mode
, exp
, VOIDmode
, 0, type
,
4350 /* Store the value of constructor EXP into the rtx TARGET.
4351 TARGET is either a REG or a MEM; we know it cannot conflict, since
4352 safe_from_p has been called.
4353 CLEARED is true if TARGET is known to have been zero'd.
4354 SIZE is the number of bytes of TARGET we are allowed to modify: this
4355 may not be the same as the size of EXP if we are assigning to a field
4356 which has been packed to exclude padding bits. */
4359 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4361 tree type
= TREE_TYPE (exp
);
4362 #ifdef WORD_REGISTER_OPERATIONS
4363 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4366 switch (TREE_CODE (type
))
4370 case QUAL_UNION_TYPE
:
4374 /* If size is zero or the target is already cleared, do nothing. */
4375 if (size
== 0 || cleared
)
4377 /* We either clear the aggregate or indicate the value is dead. */
4378 else if ((TREE_CODE (type
) == UNION_TYPE
4379 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4380 && ! CONSTRUCTOR_ELTS (exp
))
4381 /* If the constructor is empty, clear the union. */
4383 clear_storage (target
, expr_size (exp
));
4387 /* If we are building a static constructor into a register,
4388 set the initial value as zero so we can fold the value into
4389 a constant. But if more than one register is involved,
4390 this probably loses. */
4391 else if (REG_P (target
) && TREE_STATIC (exp
)
4392 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4394 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4398 /* If the constructor has fewer fields than the structure or
4399 if we are initializing the structure to mostly zeros, clear
4400 the whole structure first. Don't do this if TARGET is a
4401 register whose mode size isn't equal to SIZE since
4402 clear_storage can't handle this case. */
4404 && ((list_length (CONSTRUCTOR_ELTS (exp
))
4405 != fields_length (type
))
4406 || mostly_zeros_p (exp
))
4408 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4411 clear_storage (target
, GEN_INT (size
));
4416 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4418 /* Store each element of the constructor into the
4419 corresponding field of TARGET. */
4421 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
4423 tree field
= TREE_PURPOSE (elt
);
4424 tree value
= TREE_VALUE (elt
);
4425 enum machine_mode mode
;
4426 HOST_WIDE_INT bitsize
;
4427 HOST_WIDE_INT bitpos
= 0;
4429 rtx to_rtx
= target
;
4431 /* Just ignore missing fields. We cleared the whole
4432 structure, above, if any fields are missing. */
4436 if (cleared
&& initializer_zerop (value
))
4439 if (host_integerp (DECL_SIZE (field
), 1))
4440 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4444 mode
= DECL_MODE (field
);
4445 if (DECL_BIT_FIELD (field
))
4448 offset
= DECL_FIELD_OFFSET (field
);
4449 if (host_integerp (offset
, 0)
4450 && host_integerp (bit_position (field
), 0))
4452 bitpos
= int_bit_position (field
);
4456 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4463 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4464 make_tree (TREE_TYPE (exp
),
4467 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4468 gcc_assert (MEM_P (to_rtx
));
4470 #ifdef POINTERS_EXTEND_UNSIGNED
4471 if (GET_MODE (offset_rtx
) != Pmode
)
4472 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4474 if (GET_MODE (offset_rtx
) != ptr_mode
)
4475 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4478 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4479 highest_pow2_factor (offset
));
4482 #ifdef WORD_REGISTER_OPERATIONS
4483 /* If this initializes a field that is smaller than a
4484 word, at the start of a word, try to widen it to a full
4485 word. This special case allows us to output C++ member
4486 function initializations in a form that the optimizers
4489 && bitsize
< BITS_PER_WORD
4490 && bitpos
% BITS_PER_WORD
== 0
4491 && GET_MODE_CLASS (mode
) == MODE_INT
4492 && TREE_CODE (value
) == INTEGER_CST
4494 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4496 tree type
= TREE_TYPE (value
);
4498 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4500 type
= lang_hooks
.types
.type_for_size
4501 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4502 value
= convert (type
, value
);
4505 if (BYTES_BIG_ENDIAN
)
4507 = fold (build2 (LSHIFT_EXPR
, type
, value
,
4508 build_int_cst (NULL_TREE
,
4509 BITS_PER_WORD
- bitsize
)));
4510 bitsize
= BITS_PER_WORD
;
4515 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4516 && DECL_NONADDRESSABLE_P (field
))
4518 to_rtx
= copy_rtx (to_rtx
);
4519 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4522 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4523 value
, type
, cleared
,
4524 get_alias_set (TREE_TYPE (field
)));
4534 tree elttype
= TREE_TYPE (type
);
4536 HOST_WIDE_INT minelt
= 0;
4537 HOST_WIDE_INT maxelt
= 0;
4539 domain
= TYPE_DOMAIN (type
);
4540 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4541 && TYPE_MAX_VALUE (domain
)
4542 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4543 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4545 /* If we have constant bounds for the range of the type, get them. */
4548 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4549 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4552 /* If the constructor has fewer elements than the array, clear
4553 the whole array first. Similarly if this is static
4554 constructor of a non-BLKmode object. */
4557 else if (REG_P (target
) && TREE_STATIC (exp
))
4561 HOST_WIDE_INT count
= 0, zero_count
= 0;
4562 need_to_clear
= ! const_bounds_p
;
4564 /* This loop is a more accurate version of the loop in
4565 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4566 is also needed to check for missing elements. */
4567 for (elt
= CONSTRUCTOR_ELTS (exp
);
4568 elt
!= NULL_TREE
&& ! need_to_clear
;
4569 elt
= TREE_CHAIN (elt
))
4571 tree index
= TREE_PURPOSE (elt
);
4572 HOST_WIDE_INT this_node_count
;
4574 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4576 tree lo_index
= TREE_OPERAND (index
, 0);
4577 tree hi_index
= TREE_OPERAND (index
, 1);
4579 if (! host_integerp (lo_index
, 1)
4580 || ! host_integerp (hi_index
, 1))
4586 this_node_count
= (tree_low_cst (hi_index
, 1)
4587 - tree_low_cst (lo_index
, 1) + 1);
4590 this_node_count
= 1;
4592 count
+= this_node_count
;
4593 if (mostly_zeros_p (TREE_VALUE (elt
)))
4594 zero_count
+= this_node_count
;
4597 /* Clear the entire array first if there are any missing
4598 elements, or if the incidence of zero elements is >=
4601 && (count
< maxelt
- minelt
+ 1
4602 || 4 * zero_count
>= 3 * count
))
4606 if (need_to_clear
&& size
> 0)
4609 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4611 clear_storage (target
, GEN_INT (size
));
4615 if (!cleared
&& REG_P (target
))
4616 /* Inform later passes that the old value is dead. */
4617 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4619 /* Store each element of the constructor into the
4620 corresponding element of TARGET, determined by counting the
4622 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4624 elt
= TREE_CHAIN (elt
), i
++)
4626 enum machine_mode mode
;
4627 HOST_WIDE_INT bitsize
;
4628 HOST_WIDE_INT bitpos
;
4630 tree value
= TREE_VALUE (elt
);
4631 tree index
= TREE_PURPOSE (elt
);
4632 rtx xtarget
= target
;
4634 if (cleared
&& initializer_zerop (value
))
4637 unsignedp
= TYPE_UNSIGNED (elttype
);
4638 mode
= TYPE_MODE (elttype
);
4639 if (mode
== BLKmode
)
4640 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4641 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4644 bitsize
= GET_MODE_BITSIZE (mode
);
4646 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4648 tree lo_index
= TREE_OPERAND (index
, 0);
4649 tree hi_index
= TREE_OPERAND (index
, 1);
4650 rtx index_r
, pos_rtx
;
4651 HOST_WIDE_INT lo
, hi
, count
;
4654 /* If the range is constant and "small", unroll the loop. */
4656 && host_integerp (lo_index
, 0)
4657 && host_integerp (hi_index
, 0)
4658 && (lo
= tree_low_cst (lo_index
, 0),
4659 hi
= tree_low_cst (hi_index
, 0),
4660 count
= hi
- lo
+ 1,
4663 || (host_integerp (TYPE_SIZE (elttype
), 1)
4664 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4667 lo
-= minelt
; hi
-= minelt
;
4668 for (; lo
<= hi
; lo
++)
4670 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4673 && !MEM_KEEP_ALIAS_SET_P (target
)
4674 && TREE_CODE (type
) == ARRAY_TYPE
4675 && TYPE_NONALIASED_COMPONENT (type
))
4677 target
= copy_rtx (target
);
4678 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4681 store_constructor_field
4682 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
4683 get_alias_set (elttype
));
4688 rtx loop_start
= gen_label_rtx ();
4689 rtx loop_end
= gen_label_rtx ();
4692 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
4693 unsignedp
= TYPE_UNSIGNED (domain
);
4695 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
4698 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
4700 SET_DECL_RTL (index
, index_r
);
4701 store_expr (lo_index
, index_r
, 0);
4703 /* Build the head of the loop. */
4704 do_pending_stack_adjust ();
4705 emit_label (loop_start
);
4707 /* Assign value to element index. */
4709 = convert (ssizetype
,
4710 fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
4711 index
, TYPE_MIN_VALUE (domain
))));
4712 position
= size_binop (MULT_EXPR
, position
,
4714 TYPE_SIZE_UNIT (elttype
)));
4716 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
4717 xtarget
= offset_address (target
, pos_rtx
,
4718 highest_pow2_factor (position
));
4719 xtarget
= adjust_address (xtarget
, mode
, 0);
4720 if (TREE_CODE (value
) == CONSTRUCTOR
)
4721 store_constructor (value
, xtarget
, cleared
,
4722 bitsize
/ BITS_PER_UNIT
);
4724 store_expr (value
, xtarget
, 0);
4726 /* Generate a conditional jump to exit the loop. */
4727 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
4729 jumpif (exit_cond
, loop_end
);
4731 /* Update the loop counter, and jump to the head of
4733 expand_assignment (index
,
4734 build2 (PLUS_EXPR
, TREE_TYPE (index
),
4735 index
, integer_one_node
), 0);
4737 emit_jump (loop_start
);
4739 /* Build the end of the loop. */
4740 emit_label (loop_end
);
4743 else if ((index
!= 0 && ! host_integerp (index
, 0))
4744 || ! host_integerp (TYPE_SIZE (elttype
), 1))
4749 index
= ssize_int (1);
4752 index
= fold_convert (ssizetype
,
4753 fold (build2 (MINUS_EXPR
,
4756 TYPE_MIN_VALUE (domain
))));
4758 position
= size_binop (MULT_EXPR
, index
,
4760 TYPE_SIZE_UNIT (elttype
)));
4761 xtarget
= offset_address (target
,
4762 expand_expr (position
, 0, VOIDmode
, 0),
4763 highest_pow2_factor (position
));
4764 xtarget
= adjust_address (xtarget
, mode
, 0);
4765 store_expr (value
, xtarget
, 0);
4770 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
4771 * tree_low_cst (TYPE_SIZE (elttype
), 1));
4773 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
4775 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
4776 && TREE_CODE (type
) == ARRAY_TYPE
4777 && TYPE_NONALIASED_COMPONENT (type
))
4779 target
= copy_rtx (target
);
4780 MEM_KEEP_ALIAS_SET_P (target
) = 1;
4782 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
4783 type
, cleared
, get_alias_set (elttype
));
4795 tree elttype
= TREE_TYPE (type
);
4796 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
4797 enum machine_mode eltmode
= TYPE_MODE (elttype
);
4798 HOST_WIDE_INT bitsize
;
4799 HOST_WIDE_INT bitpos
;
4803 gcc_assert (eltmode
!= BLKmode
);
4805 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
4806 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
4808 enum machine_mode mode
= GET_MODE (target
);
4810 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
4811 if (icode
!= CODE_FOR_nothing
)
4815 vector
= alloca (n_elts
);
4816 for (i
= 0; i
< n_elts
; i
++)
4817 vector
[i
] = CONST0_RTX (GET_MODE_INNER (mode
));
4821 /* If the constructor has fewer elements than the vector,
4822 clear the whole array first. Similarly if this is static
4823 constructor of a non-BLKmode object. */
4826 else if (REG_P (target
) && TREE_STATIC (exp
))
4830 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
4832 for (elt
= CONSTRUCTOR_ELTS (exp
);
4834 elt
= TREE_CHAIN (elt
))
4836 int n_elts_here
= tree_low_cst
4837 (int_const_binop (TRUNC_DIV_EXPR
,
4838 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt
))),
4839 TYPE_SIZE (elttype
), 0), 1);
4841 count
+= n_elts_here
;
4842 if (mostly_zeros_p (TREE_VALUE (elt
)))
4843 zero_count
+= n_elts_here
;
4846 /* Clear the entire vector first if there are any missing elements,
4847 or if the incidence of zero elements is >= 75%. */
4848 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
4851 if (need_to_clear
&& size
> 0 && !vector
)
4854 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4856 clear_storage (target
, GEN_INT (size
));
4860 if (!cleared
&& REG_P (target
))
4861 /* Inform later passes that the old value is dead. */
4862 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4864 /* Store each element of the constructor into the corresponding
4865 element of TARGET, determined by counting the elements. */
4866 for (elt
= CONSTRUCTOR_ELTS (exp
), i
= 0;
4868 elt
= TREE_CHAIN (elt
), i
+= bitsize
/ elt_size
)
4870 tree value
= TREE_VALUE (elt
);
4871 tree index
= TREE_PURPOSE (elt
);
4872 HOST_WIDE_INT eltpos
;
4874 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
4875 if (cleared
&& initializer_zerop (value
))
4879 eltpos
= tree_low_cst (index
, 1);
4885 /* Vector CONSTRUCTORs should only be built from smaller
4886 vectors in the case of BLKmode vectors. */
4887 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
4888 vector
[eltpos
] = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
4892 enum machine_mode value_mode
=
4893 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
4894 ? TYPE_MODE (TREE_TYPE (value
))
4896 bitpos
= eltpos
* elt_size
;
4897 store_constructor_field (target
, bitsize
, bitpos
,
4898 value_mode
, value
, type
,
4899 cleared
, get_alias_set (elttype
));
4904 emit_insn (GEN_FCN (icode
)
4906 gen_rtx_PARALLEL (GET_MODE (target
),
4907 gen_rtvec_v (n_elts
, vector
))));
4911 /* Set constructor assignments. */
4914 tree elt
= CONSTRUCTOR_ELTS (exp
);
4915 unsigned HOST_WIDE_INT nbytes
= int_size_in_bytes (type
), nbits
;
4916 tree domain
= TYPE_DOMAIN (type
);
4917 tree domain_min
, domain_max
, bitlength
;
4919 /* The default implementation strategy is to extract the
4920 constant parts of the constructor, use that to initialize
4921 the target, and then "or" in whatever non-constant ranges
4922 we need in addition.
4924 If a large set is all zero or all ones, it is probably
4925 better to set it using memset. Also, if a large set has
4926 just a single range, it may also be better to first clear
4927 all the first clear the set (using memset), and set the
4930 /* Check for all zeros. */
4931 if (elt
== NULL_TREE
&& size
> 0)
4934 clear_storage (target
, GEN_INT (size
));
4938 domain_min
= convert (sizetype
, TYPE_MIN_VALUE (domain
));
4939 domain_max
= convert (sizetype
, TYPE_MAX_VALUE (domain
));
4940 bitlength
= size_binop (PLUS_EXPR
,
4941 size_diffop (domain_max
, domain_min
),
4944 nbits
= tree_low_cst (bitlength
, 1);
4946 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets
4947 that are "complicated" (more than one range), initialize
4948 (the constant parts) by copying from a constant. */
4949 if (GET_MODE (target
) != BLKmode
|| nbits
<= 2 * BITS_PER_WORD
4950 || (nbytes
<= 32 && TREE_CHAIN (elt
) != NULL_TREE
))
4952 unsigned int set_word_size
= TYPE_ALIGN (TREE_TYPE (exp
));
4953 enum machine_mode mode
= mode_for_size (set_word_size
, MODE_INT
, 1);
4954 char *bit_buffer
= alloca (nbits
);
4955 HOST_WIDE_INT word
= 0;
4956 unsigned int bit_pos
= 0;
4957 unsigned int ibit
= 0;
4958 unsigned int offset
= 0; /* In bytes from beginning of set. */
4960 elt
= get_set_constructor_bits (exp
, bit_buffer
, nbits
);
4963 if (bit_buffer
[ibit
])
4965 if (BYTES_BIG_ENDIAN
)
4966 word
|= (1 << (set_word_size
- 1 - bit_pos
));
4968 word
|= 1 << bit_pos
;
4972 if (bit_pos
>= set_word_size
|| ibit
== nbits
)
4974 if (word
!= 0 || ! cleared
)
4976 rtx datum
= gen_int_mode (word
, mode
);
4979 /* The assumption here is that it is safe to
4980 use XEXP if the set is multi-word, but not
4981 if it's single-word. */
4983 to_rtx
= adjust_address (target
, mode
, offset
);
4986 gcc_assert (!offset
);
4989 emit_move_insn (to_rtx
, datum
);
4996 offset
+= set_word_size
/ BITS_PER_UNIT
;
5001 /* Don't bother clearing storage if the set is all ones. */
5002 if (TREE_CHAIN (elt
) != NULL_TREE
5003 || (TREE_PURPOSE (elt
) == NULL_TREE
5005 : ( ! host_integerp (TREE_VALUE (elt
), 0)
5006 || ! host_integerp (TREE_PURPOSE (elt
), 0)
5007 || (tree_low_cst (TREE_VALUE (elt
), 0)
5008 - tree_low_cst (TREE_PURPOSE (elt
), 0) + 1
5009 != (HOST_WIDE_INT
) nbits
))))
5010 clear_storage (target
, expr_size (exp
));
5012 for (; elt
!= NULL_TREE
; elt
= TREE_CHAIN (elt
))
5014 /* Start of range of element or NULL. */
5015 tree startbit
= TREE_PURPOSE (elt
);
5016 /* End of range of element, or element value. */
5017 tree endbit
= TREE_VALUE (elt
);
5018 HOST_WIDE_INT startb
, endb
;
5019 rtx bitlength_rtx
, startbit_rtx
, endbit_rtx
, targetx
;
5021 bitlength_rtx
= expand_expr (bitlength
,
5022 NULL_RTX
, MEM
, EXPAND_CONST_ADDRESS
);
5024 /* Handle non-range tuple element like [ expr ]. */
5025 if (startbit
== NULL_TREE
)
5027 startbit
= save_expr (endbit
);
5031 startbit
= convert (sizetype
, startbit
);
5032 endbit
= convert (sizetype
, endbit
);
5033 if (! integer_zerop (domain_min
))
5035 startbit
= size_binop (MINUS_EXPR
, startbit
, domain_min
);
5036 endbit
= size_binop (MINUS_EXPR
, endbit
, domain_min
);
5038 startbit_rtx
= expand_expr (startbit
, NULL_RTX
, MEM
,
5039 EXPAND_CONST_ADDRESS
);
5040 endbit_rtx
= expand_expr (endbit
, NULL_RTX
, MEM
,
5041 EXPAND_CONST_ADDRESS
);
5047 ((build_qualified_type (lang_hooks
.types
.type_for_mode
5048 (GET_MODE (target
), 0),
5051 emit_move_insn (targetx
, target
);
5056 gcc_assert (MEM_P (target
));
5060 /* Optimization: If startbit and endbit are constants divisible
5061 by BITS_PER_UNIT, call memset instead. */
5062 if (TREE_CODE (startbit
) == INTEGER_CST
5063 && TREE_CODE (endbit
) == INTEGER_CST
5064 && (startb
= TREE_INT_CST_LOW (startbit
)) % BITS_PER_UNIT
== 0
5065 && (endb
= TREE_INT_CST_LOW (endbit
) + 1) % BITS_PER_UNIT
== 0)
5067 emit_library_call (memset_libfunc
, LCT_NORMAL
,
5069 plus_constant (XEXP (targetx
, 0),
5070 startb
/ BITS_PER_UNIT
),
5072 constm1_rtx
, TYPE_MODE (integer_type_node
),
5073 GEN_INT ((endb
- startb
) / BITS_PER_UNIT
),
5074 TYPE_MODE (sizetype
));
5077 emit_library_call (setbits_libfunc
, LCT_NORMAL
,
5078 VOIDmode
, 4, XEXP (targetx
, 0),
5079 Pmode
, bitlength_rtx
, TYPE_MODE (sizetype
),
5080 startbit_rtx
, TYPE_MODE (sizetype
),
5081 endbit_rtx
, TYPE_MODE (sizetype
));
5084 emit_move_insn (target
, targetx
);
5093 /* Store the value of EXP (an expression tree)
5094 into a subfield of TARGET which has mode MODE and occupies
5095 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5096 If MODE is VOIDmode, it means that we are storing into a bit-field.
5098 If VALUE_MODE is VOIDmode, return nothing in particular.
5099 UNSIGNEDP is not used in this case.
5101 Otherwise, return an rtx for the value stored. This rtx
5102 has mode VALUE_MODE if that is convenient to do.
5103 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
5105 TYPE is the type of the underlying object,
5107 ALIAS_SET is the alias set for the destination. This value will
5108 (in general) be different from that for TARGET, since TARGET is a
5109 reference to the containing structure. */
5112 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5113 enum machine_mode mode
, tree exp
, enum machine_mode value_mode
,
5114 int unsignedp
, tree type
, int alias_set
)
5116 HOST_WIDE_INT width_mask
= 0;
5118 if (TREE_CODE (exp
) == ERROR_MARK
)
5121 /* If we have nothing to store, do nothing unless the expression has
5124 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5125 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5126 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5128 /* If we are storing into an unaligned field of an aligned union that is
5129 in a register, we may have the mode of TARGET being an integer mode but
5130 MODE == BLKmode. In that case, get an aligned object whose size and
5131 alignment are the same as TARGET and store TARGET into it (we can avoid
5132 the store if the field being stored is the entire width of TARGET). Then
5133 call ourselves recursively to store the field into a BLKmode version of
5134 that object. Finally, load from the object into TARGET. This is not
5135 very efficient in general, but should only be slightly more expensive
5136 than the otherwise-required unaligned accesses. Perhaps this can be
5137 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5138 twice, once with emit_move_insn and once via store_field. */
5141 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5143 rtx object
= assign_temp (type
, 0, 1, 1);
5144 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5146 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5147 emit_move_insn (object
, target
);
5149 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, VOIDmode
, 0, type
,
5152 emit_move_insn (target
, object
);
5154 /* We want to return the BLKmode version of the data. */
5158 if (GET_CODE (target
) == CONCAT
)
5160 /* We're storing into a struct containing a single __complex. */
5162 gcc_assert (!bitpos
);
5163 return store_expr (exp
, target
, value_mode
!= VOIDmode
);
5166 /* If the structure is in a register or if the component
5167 is a bit field, we cannot use addressing to access it.
5168 Use bit-field techniques or SUBREG to store in it. */
5170 if (mode
== VOIDmode
5171 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5172 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5173 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5175 || GET_CODE (target
) == SUBREG
5176 /* If the field isn't aligned enough to store as an ordinary memref,
5177 store it as a bit field. */
5179 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5180 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5181 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5182 || (bitpos
% BITS_PER_UNIT
!= 0)))
5183 /* If the RHS and field are a constant size and the size of the
5184 RHS isn't the same size as the bitfield, we must use bitfield
5187 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5188 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5190 rtx temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5192 /* If BITSIZE is narrower than the size of the type of EXP
5193 we will be narrowing TEMP. Normally, what's wanted are the
5194 low-order bits. However, if EXP's type is a record and this is
5195 big-endian machine, we want the upper BITSIZE bits. */
5196 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5197 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5198 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5199 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5200 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5204 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5206 if (mode
!= VOIDmode
&& mode
!= BLKmode
5207 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5208 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5210 /* If the modes of TARGET and TEMP are both BLKmode, both
5211 must be in memory and BITPOS must be aligned on a byte
5212 boundary. If so, we simply do a block copy. */
5213 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5215 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5216 && !(bitpos
% BITS_PER_UNIT
));
5218 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5219 emit_block_move (target
, temp
,
5220 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5224 return value_mode
== VOIDmode
? const0_rtx
: target
;
5227 /* Store the value in the bitfield. */
5228 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5230 if (value_mode
!= VOIDmode
)
5232 /* The caller wants an rtx for the value.
5233 If possible, avoid refetching from the bitfield itself. */
5235 && ! (MEM_P (target
) && MEM_VOLATILE_P (target
)))
5238 enum machine_mode tmode
;
5240 tmode
= GET_MODE (temp
);
5241 if (tmode
== VOIDmode
)
5245 return expand_and (tmode
, temp
,
5246 gen_int_mode (width_mask
, tmode
),
5249 count
= build_int_cst (NULL_TREE
,
5250 GET_MODE_BITSIZE (tmode
) - bitsize
);
5251 temp
= expand_shift (LSHIFT_EXPR
, tmode
, temp
, count
, 0, 0);
5252 return expand_shift (RSHIFT_EXPR
, tmode
, temp
, count
, 0, 0);
5255 return extract_bit_field (target
, bitsize
, bitpos
, unsignedp
,
5256 NULL_RTX
, value_mode
, VOIDmode
);
5262 rtx addr
= XEXP (target
, 0);
5263 rtx to_rtx
= target
;
5265 /* If a value is wanted, it must be the lhs;
5266 so make the address stable for multiple use. */
5268 if (value_mode
!= VOIDmode
&& !REG_P (addr
)
5269 && ! CONSTANT_ADDRESS_P (addr
)
5270 /* A frame-pointer reference is already stable. */
5271 && ! (GET_CODE (addr
) == PLUS
5272 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
5273 && (XEXP (addr
, 0) == virtual_incoming_args_rtx
5274 || XEXP (addr
, 0) == virtual_stack_vars_rtx
)))
5275 to_rtx
= replace_equiv_address (to_rtx
, copy_to_reg (addr
));
5277 /* Now build a reference to just the desired component. */
5279 to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5281 if (to_rtx
== target
)
5282 to_rtx
= copy_rtx (to_rtx
);
5284 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5285 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5286 set_mem_alias_set (to_rtx
, alias_set
);
5288 return store_expr (exp
, to_rtx
, value_mode
!= VOIDmode
);
5292 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5293 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5294 codes and find the ultimate containing object, which we return.
5296 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5297 bit position, and *PUNSIGNEDP to the signedness of the field.
5298 If the position of the field is variable, we store a tree
5299 giving the variable offset (in units) in *POFFSET.
5300 This offset is in addition to the bit position.
5301 If the position is not variable, we store 0 in *POFFSET.
5303 If any of the extraction expressions is volatile,
5304 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5306 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5307 is a mode that can be used to access the field. In that case, *PBITSIZE
5310 If the field describes a variable-sized object, *PMODE is set to
5311 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5312 this case, but the address of the object can be found. */
5315 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5316 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5317 enum machine_mode
*pmode
, int *punsignedp
,
5321 enum machine_mode mode
= VOIDmode
;
5322 tree offset
= size_zero_node
;
5323 tree bit_offset
= bitsize_zero_node
;
5326 /* First get the mode, signedness, and size. We do this from just the
5327 outermost expression. */
5328 if (TREE_CODE (exp
) == COMPONENT_REF
)
5330 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5331 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5332 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5334 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5336 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5338 size_tree
= TREE_OPERAND (exp
, 1);
5339 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5343 mode
= TYPE_MODE (TREE_TYPE (exp
));
5344 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5346 if (mode
== BLKmode
)
5347 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5349 *pbitsize
= GET_MODE_BITSIZE (mode
);
5354 if (! host_integerp (size_tree
, 1))
5355 mode
= BLKmode
, *pbitsize
= -1;
5357 *pbitsize
= tree_low_cst (size_tree
, 1);
5360 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5361 and find the ultimate containing object. */
5364 if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5365 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
, TREE_OPERAND (exp
, 2));
5366 else if (TREE_CODE (exp
) == COMPONENT_REF
)
5368 tree field
= TREE_OPERAND (exp
, 1);
5369 tree this_offset
= component_ref_field_offset (exp
);
5371 /* If this field hasn't been filled in yet, don't go
5372 past it. This should only happen when folding expressions
5373 made during type construction. */
5374 if (this_offset
== 0)
5377 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5378 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5379 DECL_FIELD_BIT_OFFSET (field
));
5381 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5384 else if (TREE_CODE (exp
) == ARRAY_REF
5385 || TREE_CODE (exp
) == ARRAY_RANGE_REF
)
5387 tree index
= TREE_OPERAND (exp
, 1);
5388 tree low_bound
= array_ref_low_bound (exp
);
5389 tree unit_size
= array_ref_element_size (exp
);
5391 /* We assume all arrays have sizes that are a multiple of a byte.
5392 First subtract the lower bound, if any, in the type of the
5393 index, then convert to sizetype and multiply by the size of the
5395 if (! integer_zerop (low_bound
))
5396 index
= fold (build2 (MINUS_EXPR
, TREE_TYPE (index
),
5399 offset
= size_binop (PLUS_EXPR
, offset
,
5400 size_binop (MULT_EXPR
,
5401 convert (sizetype
, index
),
5405 /* We can go inside most conversions: all NON_VALUE_EXPRs, all normal
5406 conversions that don't change the mode, and all view conversions
5407 except those that need to "step up" the alignment. */
5408 else if (TREE_CODE (exp
) != NON_LVALUE_EXPR
5409 && ! (TREE_CODE (exp
) == VIEW_CONVERT_EXPR
5410 && ! ((TYPE_ALIGN (TREE_TYPE (exp
))
5411 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5413 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5414 < BIGGEST_ALIGNMENT
)
5415 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5416 || TYPE_ALIGN_OK (TREE_TYPE
5417 (TREE_OPERAND (exp
, 0))))))
5418 && ! ((TREE_CODE (exp
) == NOP_EXPR
5419 || TREE_CODE (exp
) == CONVERT_EXPR
)
5420 && (TYPE_MODE (TREE_TYPE (exp
))
5421 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))))
5424 /* If any reference in the chain is volatile, the effect is volatile. */
5425 if (TREE_THIS_VOLATILE (exp
))
5428 exp
= TREE_OPERAND (exp
, 0);
5431 /* If OFFSET is constant, see if we can return the whole thing as a
5432 constant bit position. Otherwise, split it up. */
5433 if (host_integerp (offset
, 0)
5434 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5436 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5437 && host_integerp (tem
, 0))
5438 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5440 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5446 /* Return a tree of sizetype representing the size, in bytes, of the element
5447 of EXP, an ARRAY_REF. */
5450 array_ref_element_size (tree exp
)
5452 tree aligned_size
= TREE_OPERAND (exp
, 3);
5453 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5455 /* If a size was specified in the ARRAY_REF, it's the size measured
5456 in alignment units of the element type. So multiply by that value. */
5459 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5460 sizetype from another type of the same width and signedness. */
5461 if (TREE_TYPE (aligned_size
) != sizetype
)
5462 aligned_size
= fold_convert (sizetype
, aligned_size
);
5463 return size_binop (MULT_EXPR
, aligned_size
,
5464 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5467 /* Otherwise, take the size from that of the element type. Substitute
5468 any PLACEHOLDER_EXPR that we have. */
5470 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5473 /* Return a tree representing the lower bound of the array mentioned in
5474 EXP, an ARRAY_REF. */
5477 array_ref_low_bound (tree exp
)
5479 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5481 /* If a lower bound is specified in EXP, use it. */
5482 if (TREE_OPERAND (exp
, 2))
5483 return TREE_OPERAND (exp
, 2);
5485 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5486 substituting for a PLACEHOLDER_EXPR as needed. */
5487 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5488 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5490 /* Otherwise, return a zero of the appropriate type. */
5491 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5494 /* Return a tree representing the upper bound of the array mentioned in
5495 EXP, an ARRAY_REF. */
5498 array_ref_up_bound (tree exp
)
5500 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5502 /* If there is a domain type and it has an upper bound, use it, substituting
5503 for a PLACEHOLDER_EXPR as needed. */
5504 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5505 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5507 /* Otherwise fail. */
5511 /* Return a tree representing the offset, in bytes, of the field referenced
5512 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5515 component_ref_field_offset (tree exp
)
5517 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5518 tree field
= TREE_OPERAND (exp
, 1);
5520 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5521 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5525 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5526 sizetype from another type of the same width and signedness. */
5527 if (TREE_TYPE (aligned_offset
) != sizetype
)
5528 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5529 return size_binop (MULT_EXPR
, aligned_offset
,
5530 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5533 /* Otherwise, take the offset from that of the field. Substitute
5534 any PLACEHOLDER_EXPR that we have. */
5536 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5539 /* Return 1 if T is an expression that get_inner_reference handles. */
5542 handled_component_p (tree t
)
5544 switch (TREE_CODE (t
))
5549 case ARRAY_RANGE_REF
:
5550 case NON_LVALUE_EXPR
:
5551 case VIEW_CONVERT_EXPR
:
5554 /* ??? Sure they are handled, but get_inner_reference may return
5555 a different PBITSIZE, depending upon whether the expression is
5556 wrapped up in a NOP_EXPR or not, e.g. for bitfields. */
5559 return (TYPE_MODE (TREE_TYPE (t
))
5560 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t
, 0))));
5567 /* Given an rtx VALUE that may contain additions and multiplications, return
5568 an equivalent value that just refers to a register, memory, or constant.
5569 This is done by generating instructions to perform the arithmetic and
5570 returning a pseudo-register containing the value.
5572 The returned value may be a REG, SUBREG, MEM or constant. */
5575 force_operand (rtx value
, rtx target
)
5578 /* Use subtarget as the target for operand 0 of a binary operation. */
5579 rtx subtarget
= get_subtarget (target
);
5580 enum rtx_code code
= GET_CODE (value
);
5582 /* Check for subreg applied to an expression produced by loop optimizer. */
5584 && !REG_P (SUBREG_REG (value
))
5585 && !MEM_P (SUBREG_REG (value
)))
5587 value
= simplify_gen_subreg (GET_MODE (value
),
5588 force_reg (GET_MODE (SUBREG_REG (value
)),
5589 force_operand (SUBREG_REG (value
),
5591 GET_MODE (SUBREG_REG (value
)),
5592 SUBREG_BYTE (value
));
5593 code
= GET_CODE (value
);
5596 /* Check for a PIC address load. */
5597 if ((code
== PLUS
|| code
== MINUS
)
5598 && XEXP (value
, 0) == pic_offset_table_rtx
5599 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5600 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5601 || GET_CODE (XEXP (value
, 1)) == CONST
))
5604 subtarget
= gen_reg_rtx (GET_MODE (value
));
5605 emit_move_insn (subtarget
, value
);
5609 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5612 target
= gen_reg_rtx (GET_MODE (value
));
5613 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5614 code
== ZERO_EXTEND
);
5618 if (ARITHMETIC_P (value
))
5620 op2
= XEXP (value
, 1);
5621 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5623 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5626 op2
= negate_rtx (GET_MODE (value
), op2
);
5629 /* Check for an addition with OP2 a constant integer and our first
5630 operand a PLUS of a virtual register and something else. In that
5631 case, we want to emit the sum of the virtual register and the
5632 constant first and then add the other value. This allows virtual
5633 register instantiation to simply modify the constant rather than
5634 creating another one around this addition. */
5635 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5636 && GET_CODE (XEXP (value
, 0)) == PLUS
5637 && REG_P (XEXP (XEXP (value
, 0), 0))
5638 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5639 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5641 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5642 XEXP (XEXP (value
, 0), 0), op2
,
5643 subtarget
, 0, OPTAB_LIB_WIDEN
);
5644 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5645 force_operand (XEXP (XEXP (value
,
5647 target
, 0, OPTAB_LIB_WIDEN
);
5650 op1
= force_operand (XEXP (value
, 0), subtarget
);
5651 op2
= force_operand (op2
, NULL_RTX
);
5655 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5657 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5658 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5659 target
, 1, OPTAB_LIB_WIDEN
);
5661 return expand_divmod (0,
5662 FLOAT_MODE_P (GET_MODE (value
))
5663 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5664 GET_MODE (value
), op1
, op2
, target
, 0);
5667 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5671 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5675 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5679 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5680 target
, 0, OPTAB_LIB_WIDEN
);
5683 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5684 target
, 1, OPTAB_LIB_WIDEN
);
5687 if (UNARY_P (value
))
5689 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5690 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5693 #ifdef INSN_SCHEDULING
5694 /* On machines that have insn scheduling, we want all memory reference to be
5695 explicit, so we need to deal with such paradoxical SUBREGs. */
5696 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5697 && (GET_MODE_SIZE (GET_MODE (value
))
5698 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5700 = simplify_gen_subreg (GET_MODE (value
),
5701 force_reg (GET_MODE (SUBREG_REG (value
)),
5702 force_operand (SUBREG_REG (value
),
5704 GET_MODE (SUBREG_REG (value
)),
5705 SUBREG_BYTE (value
));
5711 /* Subroutine of expand_expr: return nonzero iff there is no way that
5712 EXP can reference X, which is being modified. TOP_P is nonzero if this
5713 call is going to be used to determine whether we need a temporary
5714 for EXP, as opposed to a recursive call to this function.
5716 It is always safe for this routine to return zero since it merely
5717 searches for optimization opportunities. */
5720 safe_from_p (rtx x
, tree exp
, int top_p
)
5726 /* If EXP has varying size, we MUST use a target since we currently
5727 have no way of allocating temporaries of variable size
5728 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5729 So we assume here that something at a higher level has prevented a
5730 clash. This is somewhat bogus, but the best we can do. Only
5731 do this when X is BLKmode and when we are at the top level. */
5732 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5733 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5734 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5735 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5736 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5738 && GET_MODE (x
) == BLKmode
)
5739 /* If X is in the outgoing argument area, it is always safe. */
5741 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5742 || (GET_CODE (XEXP (x
, 0)) == PLUS
5743 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5746 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5747 find the underlying pseudo. */
5748 if (GET_CODE (x
) == SUBREG
)
5751 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5755 /* Now look at our tree code and possibly recurse. */
5756 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5758 case tcc_declaration
:
5759 exp_rtl
= DECL_RTL_IF_SET (exp
);
5765 case tcc_exceptional
:
5766 if (TREE_CODE (exp
) == TREE_LIST
)
5770 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5772 exp
= TREE_CHAIN (exp
);
5775 if (TREE_CODE (exp
) != TREE_LIST
)
5776 return safe_from_p (x
, exp
, 0);
5779 else if (TREE_CODE (exp
) == ERROR_MARK
)
5780 return 1; /* An already-visited SAVE_EXPR? */
5785 /* The only case we look at here is the DECL_INITIAL inside a
5787 return (TREE_CODE (exp
) != DECL_EXPR
5788 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5789 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5790 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5793 case tcc_comparison
:
5794 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5799 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5801 case tcc_expression
:
5803 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5804 the expression. If it is set, we conflict iff we are that rtx or
5805 both are in memory. Otherwise, we check all operands of the
5806 expression recursively. */
5808 switch (TREE_CODE (exp
))
5811 /* If the operand is static or we are static, we can't conflict.
5812 Likewise if we don't conflict with the operand at all. */
5813 if (staticp (TREE_OPERAND (exp
, 0))
5814 || TREE_STATIC (exp
)
5815 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5818 /* Otherwise, the only way this can conflict is if we are taking
5819 the address of a DECL a that address if part of X, which is
5821 exp
= TREE_OPERAND (exp
, 0);
5824 if (!DECL_RTL_SET_P (exp
)
5825 || !MEM_P (DECL_RTL (exp
)))
5828 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5832 case MISALIGNED_INDIRECT_REF
:
5833 case ALIGN_INDIRECT_REF
:
5836 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5837 get_alias_set (exp
)))
5842 /* Assume that the call will clobber all hard registers and
5844 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5849 case WITH_CLEANUP_EXPR
:
5850 case CLEANUP_POINT_EXPR
:
5851 /* Lowered by gimplify.c. */
5855 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5861 /* If we have an rtx, we do not need to scan our operands. */
5865 nops
= first_rtl_op (TREE_CODE (exp
));
5866 for (i
= 0; i
< nops
; i
++)
5867 if (TREE_OPERAND (exp
, i
) != 0
5868 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
5871 /* If this is a language-specific tree code, it may require
5872 special handling. */
5873 if ((unsigned int) TREE_CODE (exp
)
5874 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5875 && !lang_hooks
.safe_from_p (x
, exp
))
5880 /* Should never get a type here. */
5884 /* If we have an rtl, find any enclosed object. Then see if we conflict
5888 if (GET_CODE (exp_rtl
) == SUBREG
)
5890 exp_rtl
= SUBREG_REG (exp_rtl
);
5892 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
5896 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5897 are memory and they conflict. */
5898 return ! (rtx_equal_p (x
, exp_rtl
)
5899 || (MEM_P (x
) && MEM_P (exp_rtl
)
5900 && true_dependence (exp_rtl
, VOIDmode
, x
,
5901 rtx_addr_varies_p
)));
5904 /* If we reach here, it is safe. */
5909 /* Return the highest power of two that EXP is known to be a multiple of.
5910 This is used in updating alignment of MEMs in array references. */
5912 static unsigned HOST_WIDE_INT
5913 highest_pow2_factor (tree exp
)
5915 unsigned HOST_WIDE_INT c0
, c1
;
5917 switch (TREE_CODE (exp
))
5920 /* We can find the lowest bit that's a one. If the low
5921 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5922 We need to handle this case since we can find it in a COND_EXPR,
5923 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5924 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5926 if (TREE_CONSTANT_OVERFLOW (exp
))
5927 return BIGGEST_ALIGNMENT
;
5930 /* Note: tree_low_cst is intentionally not used here,
5931 we don't care about the upper bits. */
5932 c0
= TREE_INT_CST_LOW (exp
);
5934 return c0
? c0
: BIGGEST_ALIGNMENT
;
5938 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
5939 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
5940 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
5941 return MIN (c0
, c1
);
5944 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
5945 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
5948 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
5950 if (integer_pow2p (TREE_OPERAND (exp
, 1))
5951 && host_integerp (TREE_OPERAND (exp
, 1), 1))
5953 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
5954 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
5955 return MAX (1, c0
/ c1
);
5959 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
5961 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
5964 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
5967 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
5968 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
5969 return MIN (c0
, c1
);
5978 /* Similar, except that the alignment requirements of TARGET are
5979 taken into account. Assume it is at least as aligned as its
5980 type, unless it is a COMPONENT_REF in which case the layout of
5981 the structure gives the alignment. */
5983 static unsigned HOST_WIDE_INT
5984 highest_pow2_factor_for_target (tree target
, tree exp
)
5986 unsigned HOST_WIDE_INT target_align
, factor
;
5988 factor
= highest_pow2_factor (exp
);
5989 if (TREE_CODE (target
) == COMPONENT_REF
)
5990 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
5992 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
5993 return MAX (factor
, target_align
);
5996 /* Expands variable VAR. */
5999 expand_var (tree var
)
6001 if (DECL_EXTERNAL (var
))
6004 if (TREE_STATIC (var
))
6005 /* If this is an inlined copy of a static local variable,
6006 look up the original decl. */
6007 var
= DECL_ORIGIN (var
);
6009 if (TREE_STATIC (var
)
6010 ? !TREE_ASM_WRITTEN (var
)
6011 : !DECL_RTL_SET_P (var
))
6013 if (TREE_CODE (var
) == VAR_DECL
&& DECL_VALUE_EXPR (var
))
6014 /* Should be ignored. */;
6015 else if (lang_hooks
.expand_decl (var
))
6017 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6019 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6020 rest_of_decl_compilation (var
, 0, 0);
6022 /* No expansion needed. */
6023 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6024 || TREE_CODE (var
) == CONST_DECL
6025 || TREE_CODE (var
) == FUNCTION_DECL
6026 || TREE_CODE (var
) == LABEL_DECL
);
6030 /* Subroutine of expand_expr. Expand the two operands of a binary
6031 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6032 The value may be stored in TARGET if TARGET is nonzero. The
6033 MODIFIER argument is as documented by expand_expr. */
6036 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6037 enum expand_modifier modifier
)
6039 if (! safe_from_p (target
, exp1
, 1))
6041 if (operand_equal_p (exp0
, exp1
, 0))
6043 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6044 *op1
= copy_rtx (*op0
);
6048 /* If we need to preserve evaluation order, copy exp0 into its own
6049 temporary variable so that it can't be clobbered by exp1. */
6050 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6051 exp0
= save_expr (exp0
);
6052 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6053 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6058 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6059 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6062 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6063 enum expand_modifier modifier
)
6065 rtx result
, subtarget
;
6067 HOST_WIDE_INT bitsize
, bitpos
;
6068 int volatilep
, unsignedp
;
6069 enum machine_mode mode1
;
6071 /* If we are taking the address of a constant and are at the top level,
6072 we have to use output_constant_def since we can't call force_const_mem
6074 /* ??? This should be considered a front-end bug. We should not be
6075 generating ADDR_EXPR of something that isn't an LVALUE. The only
6076 exception here is STRING_CST. */
6077 if (TREE_CODE (exp
) == CONSTRUCTOR
6078 || CONSTANT_CLASS_P (exp
))
6079 return XEXP (output_constant_def (exp
, 0), 0);
6081 /* Everything must be something allowed by is_gimple_addressable. */
6082 switch (TREE_CODE (exp
))
6085 /* This case will happen via recursion for &a->b. */
6086 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6089 /* Recurse and make the output_constant_def clause above handle this. */
6090 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6094 /* The real part of the complex number is always first, therefore
6095 the address is the same as the address of the parent object. */
6098 inner
= TREE_OPERAND (exp
, 0);
6102 /* The imaginary part of the complex number is always second.
6103 The expression is therefore always offset by the size of the
6106 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6107 inner
= TREE_OPERAND (exp
, 0);
6111 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6112 expand_expr, as that can have various side effects; LABEL_DECLs for
6113 example, may not have their DECL_RTL set yet. Assume language
6114 specific tree nodes can be expanded in some interesting way. */
6116 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6118 result
= expand_expr (exp
, target
, tmode
,
6119 modifier
== EXPAND_INITIALIZER
6120 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6122 /* If the DECL isn't in memory, then the DECL wasn't properly
6123 marked TREE_ADDRESSABLE, which will be either a front-end
6124 or a tree optimizer bug. */
6125 gcc_assert (GET_CODE (result
) == MEM
);
6126 result
= XEXP (result
, 0);
6128 /* ??? Is this needed anymore? */
6129 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6131 assemble_external (exp
);
6132 TREE_USED (exp
) = 1;
6135 if (modifier
!= EXPAND_INITIALIZER
6136 && modifier
!= EXPAND_CONST_ADDRESS
)
6137 result
= force_operand (result
, target
);
6141 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6142 &mode1
, &unsignedp
, &volatilep
);
6146 /* We must have made progress. */
6147 gcc_assert (inner
!= exp
);
6149 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6150 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6156 if (modifier
!= EXPAND_NORMAL
)
6157 result
= force_operand (result
, NULL
);
6158 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6160 result
= convert_memory_address (tmode
, result
);
6161 tmp
= convert_memory_address (tmode
, tmp
);
6163 if (modifier
== EXPAND_SUM
)
6164 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6167 subtarget
= bitpos
? NULL_RTX
: target
;
6168 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6169 1, OPTAB_LIB_WIDEN
);
6175 /* Someone beforehand should have rejected taking the address
6176 of such an object. */
6177 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6179 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6180 if (modifier
< EXPAND_SUM
)
6181 result
= force_operand (result
, target
);
6187 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6188 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6191 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6192 enum expand_modifier modifier
)
6194 enum machine_mode rmode
;
6197 /* Target mode of VOIDmode says "whatever's natural". */
6198 if (tmode
== VOIDmode
)
6199 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6201 /* We can get called with some Weird Things if the user does silliness
6202 like "(short) &a". In that case, convert_memory_address won't do
6203 the right thing, so ignore the given target mode. */
6204 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6207 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6210 /* Despite expand_expr claims concerning ignoring TMODE when not
6211 strictly convenient, stuff breaks if we don't honor it. Note
6212 that combined with the above, we only do this for pointer modes. */
6213 rmode
= GET_MODE (result
);
6214 if (rmode
== VOIDmode
)
6217 result
= convert_memory_address (tmode
, result
);
6223 /* expand_expr: generate code for computing expression EXP.
6224 An rtx for the computed value is returned. The value is never null.
6225 In the case of a void EXP, const0_rtx is returned.
6227 The value may be stored in TARGET if TARGET is nonzero.
6228 TARGET is just a suggestion; callers must assume that
6229 the rtx returned may not be the same as TARGET.
6231 If TARGET is CONST0_RTX, it means that the value will be ignored.
6233 If TMODE is not VOIDmode, it suggests generating the
6234 result in mode TMODE. But this is done only when convenient.
6235 Otherwise, TMODE is ignored and the value generated in its natural mode.
6236 TMODE is just a suggestion; callers must assume that
6237 the rtx returned may not have mode TMODE.
6239 Note that TARGET may have neither TMODE nor MODE. In that case, it
6240 probably will not be used.
6242 If MODIFIER is EXPAND_SUM then when EXP is an addition
6243 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6244 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6245 products as above, or REG or MEM, or constant.
6246 Ordinarily in such cases we would output mul or add instructions
6247 and then return a pseudo reg containing the sum.
6249 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6250 it also marks a label as absolutely required (it can't be dead).
6251 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6252 This is used for outputting expressions used in initializers.
6254 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6255 with a constant address even if that address is not normally legitimate.
6256 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6258 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6259 a call parameter. Such targets require special care as we haven't yet
6260 marked TARGET so that it's safe from being trashed by libcalls. We
6261 don't want to use TARGET for anything but the final result;
6262 Intermediate values must go elsewhere. Additionally, calls to
6263 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6265 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6266 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6267 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6268 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6271 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6272 enum expand_modifier
, rtx
*);
6275 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6276 enum expand_modifier modifier
, rtx
*alt_rtl
)
6279 rtx ret
, last
= NULL
;
6281 /* Handle ERROR_MARK before anybody tries to access its type. */
6282 if (TREE_CODE (exp
) == ERROR_MARK
6283 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6285 ret
= CONST0_RTX (tmode
);
6286 return ret
? ret
: const0_rtx
;
6289 if (flag_non_call_exceptions
)
6291 rn
= lookup_stmt_eh_region (exp
);
6292 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6294 last
= get_last_insn ();
6297 /* If this is an expression of some kind and it has an associated line
6298 number, then emit the line number before expanding the expression.
6300 We need to save and restore the file and line information so that
6301 errors discovered during expansion are emitted with the right
6302 information. It would be better of the diagnostic routines
6303 used the file/line information embedded in the tree nodes rather
6305 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6307 location_t saved_location
= input_location
;
6308 input_location
= EXPR_LOCATION (exp
);
6309 emit_line_note (input_location
);
6311 /* Record where the insns produced belong. */
6312 record_block_change (TREE_BLOCK (exp
));
6314 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6316 input_location
= saved_location
;
6320 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6323 /* If using non-call exceptions, mark all insns that may trap.
6324 expand_call() will mark CALL_INSNs before we get to this code,
6325 but it doesn't handle libcalls, and these may trap. */
6329 for (insn
= next_real_insn (last
); insn
;
6330 insn
= next_real_insn (insn
))
6332 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6333 /* If we want exceptions for non-call insns, any
6334 may_trap_p instruction may throw. */
6335 && GET_CODE (PATTERN (insn
)) != CLOBBER
6336 && GET_CODE (PATTERN (insn
)) != USE
6337 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6339 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6349 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6350 enum expand_modifier modifier
, rtx
*alt_rtl
)
6353 tree type
= TREE_TYPE (exp
);
6355 enum machine_mode mode
;
6356 enum tree_code code
= TREE_CODE (exp
);
6358 rtx subtarget
, original_target
;
6361 bool reduce_bit_field
= false;
6362 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6363 ? reduce_to_bit_field_precision ((expr), \
6368 mode
= TYPE_MODE (type
);
6369 unsignedp
= TYPE_UNSIGNED (type
);
6370 if (lang_hooks
.reduce_bit_field_operations
6371 && TREE_CODE (type
) == INTEGER_TYPE
6372 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6374 /* An operation in what may be a bit-field type needs the
6375 result to be reduced to the precision of the bit-field type,
6376 which is narrower than that of the type's mode. */
6377 reduce_bit_field
= true;
6378 if (modifier
== EXPAND_STACK_PARM
)
6382 /* Use subtarget as the target for operand 0 of a binary operation. */
6383 subtarget
= get_subtarget (target
);
6384 original_target
= target
;
6385 ignore
= (target
== const0_rtx
6386 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6387 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6388 || code
== VIEW_CONVERT_EXPR
)
6389 && TREE_CODE (type
) == VOID_TYPE
));
6391 /* If we are going to ignore this result, we need only do something
6392 if there is a side-effect somewhere in the expression. If there
6393 is, short-circuit the most common cases here. Note that we must
6394 not call expand_expr with anything but const0_rtx in case this
6395 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6399 if (! TREE_SIDE_EFFECTS (exp
))
6402 /* Ensure we reference a volatile object even if value is ignored, but
6403 don't do this if all we are doing is taking its address. */
6404 if (TREE_THIS_VOLATILE (exp
)
6405 && TREE_CODE (exp
) != FUNCTION_DECL
6406 && mode
!= VOIDmode
&& mode
!= BLKmode
6407 && modifier
!= EXPAND_CONST_ADDRESS
)
6409 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6411 temp
= copy_to_reg (temp
);
6415 if (TREE_CODE_CLASS (code
) == tcc_unary
6416 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6417 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6420 else if (TREE_CODE_CLASS (code
) == tcc_binary
6421 || TREE_CODE_CLASS (code
) == tcc_comparison
6422 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6424 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6425 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6428 else if ((code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
)
6429 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp
, 1)))
6430 /* If the second operand has no side effects, just evaluate
6432 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6434 else if (code
== BIT_FIELD_REF
)
6436 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6437 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6438 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6445 /* If will do cse, generate all results into pseudo registers
6446 since 1) that allows cse to find more things
6447 and 2) otherwise cse could produce an insn the machine
6448 cannot support. An exception is a CONSTRUCTOR into a multi-word
6449 MEM: that's much more likely to be most efficient into the MEM.
6450 Another is a CALL_EXPR which must return in memory. */
6452 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6453 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6454 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6455 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6462 tree function
= decl_function_context (exp
);
6464 temp
= label_rtx (exp
);
6465 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6467 if (function
!= current_function_decl
6469 LABEL_REF_NONLOCAL_P (temp
) = 1;
6471 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6476 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6481 /* If a static var's type was incomplete when the decl was written,
6482 but the type is complete now, lay out the decl now. */
6483 if (DECL_SIZE (exp
) == 0
6484 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6485 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6486 layout_decl (exp
, 0);
6488 /* ... fall through ... */
6492 gcc_assert (DECL_RTL (exp
));
6494 /* Ensure variable marked as used even if it doesn't go through
6495 a parser. If it hasn't be used yet, write out an external
6497 if (! TREE_USED (exp
))
6499 assemble_external (exp
);
6500 TREE_USED (exp
) = 1;
6503 /* Show we haven't gotten RTL for this yet. */
6506 /* Variables inherited from containing functions should have
6507 been lowered by this point. */
6508 context
= decl_function_context (exp
);
6509 gcc_assert (!context
6510 || context
== current_function_decl
6511 || TREE_STATIC (exp
)
6512 /* ??? C++ creates functions that are not TREE_STATIC. */
6513 || TREE_CODE (exp
) == FUNCTION_DECL
);
6515 /* This is the case of an array whose size is to be determined
6516 from its initializer, while the initializer is still being parsed.
6519 if (MEM_P (DECL_RTL (exp
))
6520 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6521 temp
= validize_mem (DECL_RTL (exp
));
6523 /* If DECL_RTL is memory, we are in the normal case and either
6524 the address is not valid or it is not a register and -fforce-addr
6525 is specified, get the address into a register. */
6527 else if (MEM_P (DECL_RTL (exp
))
6528 && modifier
!= EXPAND_CONST_ADDRESS
6529 && modifier
!= EXPAND_SUM
6530 && modifier
!= EXPAND_INITIALIZER
6531 && (! memory_address_p (DECL_MODE (exp
),
6532 XEXP (DECL_RTL (exp
), 0))
6534 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6537 *alt_rtl
= DECL_RTL (exp
);
6538 temp
= replace_equiv_address (DECL_RTL (exp
),
6539 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6542 /* If we got something, return it. But first, set the alignment
6543 if the address is a register. */
6546 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6547 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6552 /* If the mode of DECL_RTL does not match that of the decl, it
6553 must be a promoted value. We return a SUBREG of the wanted mode,
6554 but mark it so that we know that it was already extended. */
6556 if (REG_P (DECL_RTL (exp
))
6557 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6559 enum machine_mode pmode
;
6561 /* Get the signedness used for this variable. Ensure we get the
6562 same mode we got when the variable was declared. */
6563 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6564 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6565 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6567 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6568 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6569 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6573 return DECL_RTL (exp
);
6576 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6577 TREE_INT_CST_HIGH (exp
), mode
);
6579 /* ??? If overflow is set, fold will have done an incomplete job,
6580 which can result in (plus xx (const_int 0)), which can get
6581 simplified by validate_replace_rtx during virtual register
6582 instantiation, which can result in unrecognizable insns.
6583 Avoid this by forcing all overflows into registers. */
6584 if (TREE_CONSTANT_OVERFLOW (exp
)
6585 && modifier
!= EXPAND_INITIALIZER
)
6586 temp
= force_reg (mode
, temp
);
6591 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6592 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6593 return const_vector_from_tree (exp
);
6595 return expand_expr (build1 (CONSTRUCTOR
, TREE_TYPE (exp
),
6596 TREE_VECTOR_CST_ELTS (exp
)),
6597 ignore
? const0_rtx
: target
, tmode
, modifier
);
6600 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6603 /* If optimized, generate immediate CONST_DOUBLE
6604 which will be turned into memory by reload if necessary.
6606 We used to force a register so that loop.c could see it. But
6607 this does not allow gen_* patterns to perform optimizations with
6608 the constants. It also produces two insns in cases like "x = 1.0;".
6609 On most machines, floating-point constants are not permitted in
6610 many insns, so we'd end up copying it to a register in any case.
6612 Now, we do the copying in expand_binop, if appropriate. */
6613 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6614 TYPE_MODE (TREE_TYPE (exp
)));
6617 /* Handle evaluating a complex constant in a CONCAT target. */
6618 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6620 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6623 rtarg
= XEXP (original_target
, 0);
6624 itarg
= XEXP (original_target
, 1);
6626 /* Move the real and imaginary parts separately. */
6627 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6628 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6631 emit_move_insn (rtarg
, op0
);
6633 emit_move_insn (itarg
, op1
);
6635 return original_target
;
6638 /* ... fall through ... */
6641 temp
= output_constant_def (exp
, 1);
6643 /* temp contains a constant address.
6644 On RISC machines where a constant address isn't valid,
6645 make some insns to get that address into a register. */
6646 if (modifier
!= EXPAND_CONST_ADDRESS
6647 && modifier
!= EXPAND_INITIALIZER
6648 && modifier
!= EXPAND_SUM
6649 && (! memory_address_p (mode
, XEXP (temp
, 0))
6650 || flag_force_addr
))
6651 return replace_equiv_address (temp
,
6652 copy_rtx (XEXP (temp
, 0)));
6657 tree val
= TREE_OPERAND (exp
, 0);
6658 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6660 if (!SAVE_EXPR_RESOLVED_P (exp
))
6662 /* We can indeed still hit this case, typically via builtin
6663 expanders calling save_expr immediately before expanding
6664 something. Assume this means that we only have to deal
6665 with non-BLKmode values. */
6666 gcc_assert (GET_MODE (ret
) != BLKmode
);
6668 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6669 DECL_ARTIFICIAL (val
) = 1;
6670 DECL_IGNORED_P (val
) = 1;
6671 TREE_OPERAND (exp
, 0) = val
;
6672 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6674 if (!CONSTANT_P (ret
))
6675 ret
= copy_to_reg (ret
);
6676 SET_DECL_RTL (val
, ret
);
6683 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6684 expand_goto (TREE_OPERAND (exp
, 0));
6686 expand_computed_goto (TREE_OPERAND (exp
, 0));
6690 /* If we don't need the result, just ensure we evaluate any
6696 for (elt
= CONSTRUCTOR_ELTS (exp
); elt
; elt
= TREE_CHAIN (elt
))
6697 expand_expr (TREE_VALUE (elt
), const0_rtx
, VOIDmode
, 0);
6702 /* All elts simple constants => refer to a constant in memory. But
6703 if this is a non-BLKmode mode, let it store a field at a time
6704 since that should make a CONST_INT or CONST_DOUBLE when we
6705 fold. Likewise, if we have a target we can use, it is best to
6706 store directly into the target unless the type is large enough
6707 that memcpy will be used. If we are making an initializer and
6708 all operands are constant, put it in memory as well.
6710 FIXME: Avoid trying to fill vector constructors piece-meal.
6711 Output them with output_constant_def below unless we're sure
6712 they're zeros. This should go away when vector initializers
6713 are treated like VECTOR_CST instead of arrays.
6715 else if ((TREE_STATIC (exp
)
6716 && ((mode
== BLKmode
6717 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6718 || TREE_ADDRESSABLE (exp
)
6719 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6720 && (! MOVE_BY_PIECES_P
6721 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6723 && ! mostly_zeros_p (exp
))))
6724 || ((modifier
== EXPAND_INITIALIZER
6725 || modifier
== EXPAND_CONST_ADDRESS
)
6726 && TREE_CONSTANT (exp
)))
6728 rtx constructor
= output_constant_def (exp
, 1);
6730 if (modifier
!= EXPAND_CONST_ADDRESS
6731 && modifier
!= EXPAND_INITIALIZER
6732 && modifier
!= EXPAND_SUM
)
6733 constructor
= validize_mem (constructor
);
6739 /* Handle calls that pass values in multiple non-contiguous
6740 locations. The Irix 6 ABI has examples of this. */
6741 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6742 || GET_CODE (target
) == PARALLEL
6743 || modifier
== EXPAND_STACK_PARM
)
6745 = assign_temp (build_qualified_type (type
,
6747 | (TREE_READONLY (exp
)
6748 * TYPE_QUAL_CONST
))),
6749 0, TREE_ADDRESSABLE (exp
), 1);
6751 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6755 case MISALIGNED_INDIRECT_REF
:
6756 case ALIGN_INDIRECT_REF
:
6759 tree exp1
= TREE_OPERAND (exp
, 0);
6762 if (code
== MISALIGNED_INDIRECT_REF
6763 && !targetm
.vectorize
.misaligned_mem_ok (mode
))
6766 if (modifier
!= EXPAND_WRITE
)
6770 t
= fold_read_from_constant_string (exp
);
6772 return expand_expr (t
, target
, tmode
, modifier
);
6775 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6776 op0
= memory_address (mode
, op0
);
6778 if (code
== ALIGN_INDIRECT_REF
)
6780 int align
= TYPE_ALIGN_UNIT (type
);
6781 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6782 op0
= memory_address (mode
, op0
);
6785 temp
= gen_rtx_MEM (mode
, op0
);
6787 orig
= REF_ORIGINAL (exp
);
6790 set_mem_attributes (temp
, orig
, 0);
6798 tree array
= TREE_OPERAND (exp
, 0);
6799 tree low_bound
= array_ref_low_bound (exp
);
6800 tree index
= convert (sizetype
, TREE_OPERAND (exp
, 1));
6803 gcc_assert (TREE_CODE (TREE_TYPE (array
)) == ARRAY_TYPE
);
6805 /* Optimize the special-case of a zero lower bound.
6807 We convert the low_bound to sizetype to avoid some problems
6808 with constant folding. (E.g. suppose the lower bound is 1,
6809 and its mode is QI. Without the conversion, (ARRAY
6810 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
6811 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
6813 if (! integer_zerop (low_bound
))
6814 index
= size_diffop (index
, convert (sizetype
, low_bound
));
6816 /* Fold an expression like: "foo"[2].
6817 This is not done in fold so it won't happen inside &.
6818 Don't fold if this is for wide characters since it's too
6819 difficult to do correctly and this is a very rare case. */
6821 if (modifier
!= EXPAND_CONST_ADDRESS
6822 && modifier
!= EXPAND_INITIALIZER
6823 && modifier
!= EXPAND_MEMORY
)
6825 tree t
= fold_read_from_constant_string (exp
);
6828 return expand_expr (t
, target
, tmode
, modifier
);
6831 /* If this is a constant index into a constant array,
6832 just get the value from the array. Handle both the cases when
6833 we have an explicit constructor and when our operand is a variable
6834 that was declared const. */
6836 if (modifier
!= EXPAND_CONST_ADDRESS
6837 && modifier
!= EXPAND_INITIALIZER
6838 && modifier
!= EXPAND_MEMORY
6839 && TREE_CODE (array
) == CONSTRUCTOR
6840 && ! TREE_SIDE_EFFECTS (array
)
6841 && TREE_CODE (index
) == INTEGER_CST
6842 && 0 > compare_tree_int (index
,
6843 list_length (CONSTRUCTOR_ELTS
6844 (TREE_OPERAND (exp
, 0)))))
6848 for (elem
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
6849 i
= TREE_INT_CST_LOW (index
);
6850 elem
!= 0 && i
!= 0; i
--, elem
= TREE_CHAIN (elem
))
6854 return expand_expr (fold (TREE_VALUE (elem
)), target
, tmode
,
6858 else if (optimize
>= 1
6859 && modifier
!= EXPAND_CONST_ADDRESS
6860 && modifier
!= EXPAND_INITIALIZER
6861 && modifier
!= EXPAND_MEMORY
6862 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
6863 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
6864 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
6865 && targetm
.binds_local_p (array
))
6867 if (TREE_CODE (index
) == INTEGER_CST
)
6869 tree init
= DECL_INITIAL (array
);
6871 if (TREE_CODE (init
) == CONSTRUCTOR
)
6875 for (elem
= CONSTRUCTOR_ELTS (init
);
6877 && !tree_int_cst_equal (TREE_PURPOSE (elem
), index
));
6878 elem
= TREE_CHAIN (elem
))
6881 if (elem
&& !TREE_SIDE_EFFECTS (TREE_VALUE (elem
)))
6882 return expand_expr (fold (TREE_VALUE (elem
)), target
,
6885 else if (TREE_CODE (init
) == STRING_CST
6886 && 0 > compare_tree_int (index
,
6887 TREE_STRING_LENGTH (init
)))
6889 tree type
= TREE_TYPE (TREE_TYPE (init
));
6890 enum machine_mode mode
= TYPE_MODE (type
);
6892 if (GET_MODE_CLASS (mode
) == MODE_INT
6893 && GET_MODE_SIZE (mode
) == 1)
6894 return gen_int_mode (TREE_STRING_POINTER (init
)
6895 [TREE_INT_CST_LOW (index
)], mode
);
6900 goto normal_inner_ref
;
6903 /* If the operand is a CONSTRUCTOR, we can just extract the
6904 appropriate field if it is present. */
6905 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
6909 for (elt
= CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)); elt
;
6910 elt
= TREE_CHAIN (elt
))
6911 if (TREE_PURPOSE (elt
) == TREE_OPERAND (exp
, 1)
6912 /* We can normally use the value of the field in the
6913 CONSTRUCTOR. However, if this is a bitfield in
6914 an integral mode that we can fit in a HOST_WIDE_INT,
6915 we must mask only the number of bits in the bitfield,
6916 since this is done implicitly by the constructor. If
6917 the bitfield does not meet either of those conditions,
6918 we can't do this optimization. */
6919 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6920 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt
)))
6922 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt
)))
6923 <= HOST_BITS_PER_WIDE_INT
))))
6925 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
))
6926 && modifier
== EXPAND_STACK_PARM
)
6928 op0
= expand_expr (TREE_VALUE (elt
), target
, tmode
, modifier
);
6929 if (DECL_BIT_FIELD (TREE_PURPOSE (elt
)))
6931 HOST_WIDE_INT bitsize
6932 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt
)));
6933 enum machine_mode imode
6934 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt
)));
6936 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt
))))
6938 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
6939 op0
= expand_and (imode
, op0
, op1
, target
);
6944 = build_int_cst (NULL_TREE
,
6945 GET_MODE_BITSIZE (imode
) - bitsize
);
6947 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
6949 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
6957 goto normal_inner_ref
;
6960 case ARRAY_RANGE_REF
:
6963 enum machine_mode mode1
;
6964 HOST_WIDE_INT bitsize
, bitpos
;
6967 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6968 &mode1
, &unsignedp
, &volatilep
);
6971 /* If we got back the original object, something is wrong. Perhaps
6972 we are evaluating an expression too early. In any event, don't
6973 infinitely recurse. */
6974 gcc_assert (tem
!= exp
);
6976 /* If TEM's type is a union of variable size, pass TARGET to the inner
6977 computation, since it will need a temporary and TARGET is known
6978 to have to do. This occurs in unchecked conversion in Ada. */
6982 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
6983 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
6985 && modifier
!= EXPAND_STACK_PARM
6986 ? target
: NULL_RTX
),
6988 (modifier
== EXPAND_INITIALIZER
6989 || modifier
== EXPAND_CONST_ADDRESS
6990 || modifier
== EXPAND_STACK_PARM
)
6991 ? modifier
: EXPAND_NORMAL
);
6993 /* If this is a constant, put it into a register if it is a
6994 legitimate constant and OFFSET is 0 and memory if it isn't. */
6995 if (CONSTANT_P (op0
))
6997 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
6998 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7000 op0
= force_reg (mode
, op0
);
7002 op0
= validize_mem (force_const_mem (mode
, op0
));
7005 /* Otherwise, if this object not in memory and we either have an
7006 offset or a BLKmode result, put it there. This case can't occur in
7007 C, but can in Ada if we have unchecked conversion of an expression
7008 from a scalar type to an array or record type or for an
7009 ARRAY_RANGE_REF whose type is BLKmode. */
7010 else if (!MEM_P (op0
)
7012 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7014 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7015 (TYPE_QUALS (TREE_TYPE (tem
))
7016 | TYPE_QUAL_CONST
));
7017 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7019 emit_move_insn (memloc
, op0
);
7025 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7028 gcc_assert (MEM_P (op0
));
7030 #ifdef POINTERS_EXTEND_UNSIGNED
7031 if (GET_MODE (offset_rtx
) != Pmode
)
7032 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7034 if (GET_MODE (offset_rtx
) != ptr_mode
)
7035 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7038 if (GET_MODE (op0
) == BLKmode
7039 /* A constant address in OP0 can have VOIDmode, we must
7040 not try to call force_reg in that case. */
7041 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7043 && (bitpos
% bitsize
) == 0
7044 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7045 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7047 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7051 op0
= offset_address (op0
, offset_rtx
,
7052 highest_pow2_factor (offset
));
7055 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7056 record its alignment as BIGGEST_ALIGNMENT. */
7057 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7058 && is_aligning_offset (offset
, tem
))
7059 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7061 /* Don't forget about volatility even if this is a bitfield. */
7062 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7064 if (op0
== orig_op0
)
7065 op0
= copy_rtx (op0
);
7067 MEM_VOLATILE_P (op0
) = 1;
7070 /* The following code doesn't handle CONCAT.
7071 Assume only bitpos == 0 can be used for CONCAT, due to
7072 one element arrays having the same mode as its element. */
7073 if (GET_CODE (op0
) == CONCAT
)
7075 gcc_assert (bitpos
== 0
7076 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7080 /* In cases where an aligned union has an unaligned object
7081 as a field, we might be extracting a BLKmode value from
7082 an integer-mode (e.g., SImode) object. Handle this case
7083 by doing the extract into an object as wide as the field
7084 (which we know to be the width of a basic mode), then
7085 storing into memory, and changing the mode to BLKmode. */
7086 if (mode1
== VOIDmode
7087 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7088 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7089 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7090 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7091 && modifier
!= EXPAND_CONST_ADDRESS
7092 && modifier
!= EXPAND_INITIALIZER
)
7093 /* If the field isn't aligned enough to fetch as a memref,
7094 fetch it as a bit field. */
7095 || (mode1
!= BLKmode
7096 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7097 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7099 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7100 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7101 && ((modifier
== EXPAND_CONST_ADDRESS
7102 || modifier
== EXPAND_INITIALIZER
)
7104 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7105 || (bitpos
% BITS_PER_UNIT
!= 0)))
7106 /* If the type and the field are a constant size and the
7107 size of the type isn't the same size as the bitfield,
7108 we must use bitfield operations. */
7110 && TYPE_SIZE (TREE_TYPE (exp
))
7111 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7112 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7115 enum machine_mode ext_mode
= mode
;
7117 if (ext_mode
== BLKmode
7118 && ! (target
!= 0 && MEM_P (op0
)
7120 && bitpos
% BITS_PER_UNIT
== 0))
7121 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7123 if (ext_mode
== BLKmode
)
7126 target
= assign_temp (type
, 0, 1, 1);
7131 /* In this case, BITPOS must start at a byte boundary and
7132 TARGET, if specified, must be a MEM. */
7133 gcc_assert (MEM_P (op0
)
7134 && (!target
|| MEM_P (target
))
7135 && !(bitpos
% BITS_PER_UNIT
));
7137 emit_block_move (target
,
7138 adjust_address (op0
, VOIDmode
,
7139 bitpos
/ BITS_PER_UNIT
),
7140 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7142 (modifier
== EXPAND_STACK_PARM
7143 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7148 op0
= validize_mem (op0
);
7150 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7151 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7153 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7154 (modifier
== EXPAND_STACK_PARM
7155 ? NULL_RTX
: target
),
7156 ext_mode
, ext_mode
);
7158 /* If the result is a record type and BITSIZE is narrower than
7159 the mode of OP0, an integral mode, and this is a big endian
7160 machine, we must put the field into the high-order bits. */
7161 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7162 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7163 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7164 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7165 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7169 /* If the result type is BLKmode, store the data into a temporary
7170 of the appropriate type, but with the mode corresponding to the
7171 mode for the data we have (op0's mode). It's tempting to make
7172 this a constant type, since we know it's only being stored once,
7173 but that can cause problems if we are taking the address of this
7174 COMPONENT_REF because the MEM of any reference via that address
7175 will have flags corresponding to the type, which will not
7176 necessarily be constant. */
7177 if (mode
== BLKmode
)
7180 = assign_stack_temp_for_type
7181 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7183 emit_move_insn (new, op0
);
7184 op0
= copy_rtx (new);
7185 PUT_MODE (op0
, BLKmode
);
7186 set_mem_attributes (op0
, exp
, 1);
7192 /* If the result is BLKmode, use that to access the object
7194 if (mode
== BLKmode
)
7197 /* Get a reference to just this component. */
7198 if (modifier
== EXPAND_CONST_ADDRESS
7199 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7200 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7202 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7204 if (op0
== orig_op0
)
7205 op0
= copy_rtx (op0
);
7207 set_mem_attributes (op0
, exp
, 0);
7208 if (REG_P (XEXP (op0
, 0)))
7209 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7211 MEM_VOLATILE_P (op0
) |= volatilep
;
7212 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7213 || modifier
== EXPAND_CONST_ADDRESS
7214 || modifier
== EXPAND_INITIALIZER
)
7216 else if (target
== 0)
7217 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7219 convert_move (target
, op0
, unsignedp
);
7224 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7227 /* Check for a built-in function. */
7228 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7229 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7231 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7233 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7234 == BUILT_IN_FRONTEND
)
7235 return lang_hooks
.expand_expr (exp
, original_target
,
7239 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7242 return expand_call (exp
, target
, ignore
);
7244 case NON_LVALUE_EXPR
:
7247 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7250 if (TREE_CODE (type
) == UNION_TYPE
)
7252 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7254 /* If both input and output are BLKmode, this conversion isn't doing
7255 anything except possibly changing memory attribute. */
7256 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7258 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7261 result
= copy_rtx (result
);
7262 set_mem_attributes (result
, exp
, 0);
7268 if (TYPE_MODE (type
) != BLKmode
)
7269 target
= gen_reg_rtx (TYPE_MODE (type
));
7271 target
= assign_temp (type
, 0, 1, 1);
7275 /* Store data into beginning of memory target. */
7276 store_expr (TREE_OPERAND (exp
, 0),
7277 adjust_address (target
, TYPE_MODE (valtype
), 0),
7278 modifier
== EXPAND_STACK_PARM
? 2 : 0);
7282 gcc_assert (REG_P (target
));
7284 /* Store this field into a union of the proper type. */
7285 store_field (target
,
7286 MIN ((int_size_in_bytes (TREE_TYPE
7287 (TREE_OPERAND (exp
, 0)))
7289 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7290 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7291 VOIDmode
, 0, type
, 0);
7294 /* Return the entire union. */
7298 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7300 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7303 /* If the signedness of the conversion differs and OP0 is
7304 a promoted SUBREG, clear that indication since we now
7305 have to do the proper extension. */
7306 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7307 && GET_CODE (op0
) == SUBREG
)
7308 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7310 return REDUCE_BIT_FIELD (op0
);
7313 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7314 op0
= REDUCE_BIT_FIELD (op0
);
7315 if (GET_MODE (op0
) == mode
)
7318 /* If OP0 is a constant, just convert it into the proper mode. */
7319 if (CONSTANT_P (op0
))
7321 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7322 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7324 if (modifier
== EXPAND_INITIALIZER
)
7325 return simplify_gen_subreg (mode
, op0
, inner_mode
,
7326 subreg_lowpart_offset (mode
,
7329 return convert_modes (mode
, inner_mode
, op0
,
7330 TYPE_UNSIGNED (inner_type
));
7333 if (modifier
== EXPAND_INITIALIZER
)
7334 return gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7338 convert_to_mode (mode
, op0
,
7339 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7341 convert_move (target
, op0
,
7342 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7345 case VIEW_CONVERT_EXPR
:
7346 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7348 /* If the input and output modes are both the same, we are done.
7349 Otherwise, if neither mode is BLKmode and both are integral and within
7350 a word, we can use gen_lowpart. If neither is true, make sure the
7351 operand is in memory and convert the MEM to the new mode. */
7352 if (TYPE_MODE (type
) == GET_MODE (op0
))
7354 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7355 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7356 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7357 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7358 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7359 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7360 else if (!MEM_P (op0
))
7362 /* If the operand is not a MEM, force it into memory. Since we
7363 are going to be be changing the mode of the MEM, don't call
7364 force_const_mem for constants because we don't allow pool
7365 constants to change mode. */
7366 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7368 gcc_assert (!TREE_ADDRESSABLE (exp
));
7370 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7372 = assign_stack_temp_for_type
7373 (TYPE_MODE (inner_type
),
7374 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7376 emit_move_insn (target
, op0
);
7380 /* At this point, OP0 is in the correct mode. If the output type is such
7381 that the operand is known to be aligned, indicate that it is.
7382 Otherwise, we need only be concerned about alignment for non-BLKmode
7386 op0
= copy_rtx (op0
);
7388 if (TYPE_ALIGN_OK (type
))
7389 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7390 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7391 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7393 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7394 HOST_WIDE_INT temp_size
7395 = MAX (int_size_in_bytes (inner_type
),
7396 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7397 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7398 temp_size
, 0, type
);
7399 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7401 gcc_assert (!TREE_ADDRESSABLE (exp
));
7403 if (GET_MODE (op0
) == BLKmode
)
7404 emit_block_move (new_with_op0_mode
, op0
,
7405 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7406 (modifier
== EXPAND_STACK_PARM
7407 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7409 emit_move_insn (new_with_op0_mode
, op0
);
7414 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7420 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7421 something else, make sure we add the register to the constant and
7422 then to the other thing. This case can occur during strength
7423 reduction and doing it this way will produce better code if the
7424 frame pointer or argument pointer is eliminated.
7426 fold-const.c will ensure that the constant is always in the inner
7427 PLUS_EXPR, so the only case we need to do anything about is if
7428 sp, ap, or fp is our second argument, in which case we must swap
7429 the innermost first argument and our second argument. */
7431 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7432 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7433 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7434 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7435 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7436 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7438 tree t
= TREE_OPERAND (exp
, 1);
7440 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7441 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7444 /* If the result is to be ptr_mode and we are adding an integer to
7445 something, we might be forming a constant. So try to use
7446 plus_constant. If it produces a sum and we can't accept it,
7447 use force_operand. This allows P = &ARR[const] to generate
7448 efficient code on machines where a SYMBOL_REF is not a valid
7451 If this is an EXPAND_SUM call, always return the sum. */
7452 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7453 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7455 if (modifier
== EXPAND_STACK_PARM
)
7457 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7458 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7459 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7463 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7465 /* Use immed_double_const to ensure that the constant is
7466 truncated according to the mode of OP1, then sign extended
7467 to a HOST_WIDE_INT. Using the constant directly can result
7468 in non-canonical RTL in a 64x32 cross compile. */
7470 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7472 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7473 op1
= plus_constant (op1
, INTVAL (constant_part
));
7474 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7475 op1
= force_operand (op1
, target
);
7476 return REDUCE_BIT_FIELD (op1
);
7479 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7480 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7481 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7485 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7486 (modifier
== EXPAND_INITIALIZER
7487 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7488 if (! CONSTANT_P (op0
))
7490 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7491 VOIDmode
, modifier
);
7492 /* Return a PLUS if modifier says it's OK. */
7493 if (modifier
== EXPAND_SUM
7494 || modifier
== EXPAND_INITIALIZER
)
7495 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7498 /* Use immed_double_const to ensure that the constant is
7499 truncated according to the mode of OP1, then sign extended
7500 to a HOST_WIDE_INT. Using the constant directly can result
7501 in non-canonical RTL in a 64x32 cross compile. */
7503 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7505 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7506 op0
= plus_constant (op0
, INTVAL (constant_part
));
7507 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7508 op0
= force_operand (op0
, target
);
7509 return REDUCE_BIT_FIELD (op0
);
7513 /* No sense saving up arithmetic to be done
7514 if it's all in the wrong mode to form part of an address.
7515 And force_operand won't know whether to sign-extend or
7517 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7518 || mode
!= ptr_mode
)
7520 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7521 subtarget
, &op0
, &op1
, 0);
7522 if (op0
== const0_rtx
)
7524 if (op1
== const0_rtx
)
7529 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7530 subtarget
, &op0
, &op1
, modifier
);
7531 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7534 /* For initializers, we are allowed to return a MINUS of two
7535 symbolic constants. Here we handle all cases when both operands
7537 /* Handle difference of two symbolic constants,
7538 for the sake of an initializer. */
7539 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7540 && really_constant_p (TREE_OPERAND (exp
, 0))
7541 && really_constant_p (TREE_OPERAND (exp
, 1)))
7543 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7544 NULL_RTX
, &op0
, &op1
, modifier
);
7546 /* If the last operand is a CONST_INT, use plus_constant of
7547 the negated constant. Else make the MINUS. */
7548 if (GET_CODE (op1
) == CONST_INT
)
7549 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7551 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7554 /* No sense saving up arithmetic to be done
7555 if it's all in the wrong mode to form part of an address.
7556 And force_operand won't know whether to sign-extend or
7558 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7559 || mode
!= ptr_mode
)
7562 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7563 subtarget
, &op0
, &op1
, modifier
);
7565 /* Convert A - const to A + (-const). */
7566 if (GET_CODE (op1
) == CONST_INT
)
7568 op1
= negate_rtx (mode
, op1
);
7569 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7575 /* If first operand is constant, swap them.
7576 Thus the following special case checks need only
7577 check the second operand. */
7578 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7580 tree t1
= TREE_OPERAND (exp
, 0);
7581 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7582 TREE_OPERAND (exp
, 1) = t1
;
7585 /* Attempt to return something suitable for generating an
7586 indexed address, for machines that support that. */
7588 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7589 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7591 tree exp1
= TREE_OPERAND (exp
, 1);
7593 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7597 op0
= force_operand (op0
, NULL_RTX
);
7599 op0
= copy_to_mode_reg (mode
, op0
);
7601 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7602 gen_int_mode (tree_low_cst (exp1
, 0),
7603 TYPE_MODE (TREE_TYPE (exp1
)))));
7606 if (modifier
== EXPAND_STACK_PARM
)
7609 /* Check for multiplying things that have been extended
7610 from a narrower type. If this machine supports multiplying
7611 in that narrower type with a result in the desired type,
7612 do it that way, and avoid the explicit type-conversion. */
7613 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7614 && TREE_CODE (type
) == INTEGER_TYPE
7615 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7616 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7617 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7618 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7619 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7620 /* Don't use a widening multiply if a shift will do. */
7621 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7622 > HOST_BITS_PER_WIDE_INT
)
7623 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7625 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7626 && (TYPE_PRECISION (TREE_TYPE
7627 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7628 == TYPE_PRECISION (TREE_TYPE
7630 (TREE_OPERAND (exp
, 0), 0))))
7631 /* If both operands are extended, they must either both
7632 be zero-extended or both be sign-extended. */
7633 && (TYPE_UNSIGNED (TREE_TYPE
7634 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7635 == TYPE_UNSIGNED (TREE_TYPE
7637 (TREE_OPERAND (exp
, 0), 0)))))))
7639 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7640 enum machine_mode innermode
= TYPE_MODE (op0type
);
7641 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7642 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7643 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7645 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7647 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7649 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7650 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7651 TREE_OPERAND (exp
, 1),
7652 NULL_RTX
, &op0
, &op1
, 0);
7654 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7655 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7656 NULL_RTX
, &op0
, &op1
, 0);
7659 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7660 && innermode
== word_mode
)
7663 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7664 NULL_RTX
, VOIDmode
, 0);
7665 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7666 op1
= convert_modes (innermode
, mode
,
7667 expand_expr (TREE_OPERAND (exp
, 1),
7668 NULL_RTX
, VOIDmode
, 0),
7671 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7672 NULL_RTX
, VOIDmode
, 0);
7673 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7674 unsignedp
, OPTAB_LIB_WIDEN
);
7675 hipart
= gen_highpart (innermode
, temp
);
7676 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7680 emit_move_insn (hipart
, htem
);
7681 return REDUCE_BIT_FIELD (temp
);
7685 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7686 subtarget
, &op0
, &op1
, 0);
7687 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7689 case TRUNC_DIV_EXPR
:
7690 case FLOOR_DIV_EXPR
:
7692 case ROUND_DIV_EXPR
:
7693 case EXACT_DIV_EXPR
:
7694 if (modifier
== EXPAND_STACK_PARM
)
7696 /* Possible optimization: compute the dividend with EXPAND_SUM
7697 then if the divisor is constant can optimize the case
7698 where some terms of the dividend have coeffs divisible by it. */
7699 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7700 subtarget
, &op0
, &op1
, 0);
7701 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7704 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7705 expensive divide. If not, combine will rebuild the original
7707 if (flag_unsafe_math_optimizations
&& optimize
&& !optimize_size
7708 && TREE_CODE (type
) == REAL_TYPE
7709 && !real_onep (TREE_OPERAND (exp
, 0)))
7710 return expand_expr (build2 (MULT_EXPR
, type
, TREE_OPERAND (exp
, 0),
7711 build2 (RDIV_EXPR
, type
,
7712 build_real (type
, dconst1
),
7713 TREE_OPERAND (exp
, 1))),
7714 target
, tmode
, modifier
);
7718 case TRUNC_MOD_EXPR
:
7719 case FLOOR_MOD_EXPR
:
7721 case ROUND_MOD_EXPR
:
7722 if (modifier
== EXPAND_STACK_PARM
)
7724 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7725 subtarget
, &op0
, &op1
, 0);
7726 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7728 case FIX_ROUND_EXPR
:
7729 case FIX_FLOOR_EXPR
:
7731 gcc_unreachable (); /* Not used for C. */
7733 case FIX_TRUNC_EXPR
:
7734 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7735 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7736 target
= gen_reg_rtx (mode
);
7737 expand_fix (target
, op0
, unsignedp
);
7741 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7742 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7743 target
= gen_reg_rtx (mode
);
7744 /* expand_float can't figure out what to do if FROM has VOIDmode.
7745 So give it the correct mode. With -O, cse will optimize this. */
7746 if (GET_MODE (op0
) == VOIDmode
)
7747 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7749 expand_float (target
, op0
,
7750 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7754 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7755 if (modifier
== EXPAND_STACK_PARM
)
7757 temp
= expand_unop (mode
,
7758 optab_for_tree_code (NEGATE_EXPR
, type
),
7761 return REDUCE_BIT_FIELD (temp
);
7764 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7765 if (modifier
== EXPAND_STACK_PARM
)
7768 /* ABS_EXPR is not valid for complex arguments. */
7769 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7770 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7772 /* Unsigned abs is simply the operand. Testing here means we don't
7773 risk generating incorrect code below. */
7774 if (TYPE_UNSIGNED (type
))
7777 return expand_abs (mode
, op0
, target
, unsignedp
,
7778 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7782 target
= original_target
;
7784 || modifier
== EXPAND_STACK_PARM
7785 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7786 || GET_MODE (target
) != mode
7788 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7789 target
= gen_reg_rtx (mode
);
7790 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7791 target
, &op0
, &op1
, 0);
7793 /* First try to do it with a special MIN or MAX instruction.
7794 If that does not win, use a conditional jump to select the proper
7796 this_optab
= optab_for_tree_code (code
, type
);
7797 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7802 /* At this point, a MEM target is no longer useful; we will get better
7806 target
= gen_reg_rtx (mode
);
7808 /* If op1 was placed in target, swap op0 and op1. */
7809 if (target
!= op0
&& target
== op1
)
7817 emit_move_insn (target
, op0
);
7819 op0
= gen_label_rtx ();
7821 /* If this mode is an integer too wide to compare properly,
7822 compare word by word. Rely on cse to optimize constant cases. */
7823 if (GET_MODE_CLASS (mode
) == MODE_INT
7824 && ! can_compare_p (GE
, mode
, ccp_jump
))
7826 if (code
== MAX_EXPR
)
7827 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
7830 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
7835 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
7836 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, op0
);
7838 emit_move_insn (target
, op1
);
7843 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7844 if (modifier
== EXPAND_STACK_PARM
)
7846 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
7850 /* ??? Can optimize bitwise operations with one arg constant.
7851 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7852 and (a bitwise1 b) bitwise2 b (etc)
7853 but that is probably not worth while. */
7855 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7856 boolean values when we want in all cases to compute both of them. In
7857 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7858 as actual zero-or-1 values and then bitwise anding. In cases where
7859 there cannot be any side effects, better code would be made by
7860 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7861 how to recognize those cases. */
7863 case TRUTH_AND_EXPR
:
7864 code
= BIT_AND_EXPR
;
7869 code
= BIT_IOR_EXPR
;
7873 case TRUTH_XOR_EXPR
:
7874 code
= BIT_XOR_EXPR
;
7882 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
7884 if (modifier
== EXPAND_STACK_PARM
)
7886 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7887 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
7890 /* Could determine the answer when only additive constants differ. Also,
7891 the addition of one can be handled by changing the condition. */
7898 case UNORDERED_EXPR
:
7906 temp
= do_store_flag (exp
,
7907 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
7908 tmode
!= VOIDmode
? tmode
: mode
, 0);
7912 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7913 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
7915 && REG_P (original_target
)
7916 && (GET_MODE (original_target
)
7917 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
7919 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
7922 /* If temp is constant, we can just compute the result. */
7923 if (GET_CODE (temp
) == CONST_INT
)
7925 if (INTVAL (temp
) != 0)
7926 emit_move_insn (target
, const1_rtx
);
7928 emit_move_insn (target
, const0_rtx
);
7933 if (temp
!= original_target
)
7935 enum machine_mode mode1
= GET_MODE (temp
);
7936 if (mode1
== VOIDmode
)
7937 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
7939 temp
= copy_to_mode_reg (mode1
, temp
);
7942 op1
= gen_label_rtx ();
7943 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
7944 GET_MODE (temp
), unsignedp
, op1
);
7945 emit_move_insn (temp
, const1_rtx
);
7950 /* If no set-flag instruction, must generate a conditional store
7951 into a temporary variable. Drop through and handle this
7956 || modifier
== EXPAND_STACK_PARM
7957 || ! safe_from_p (target
, exp
, 1)
7958 /* Make sure we don't have a hard reg (such as function's return
7959 value) live across basic blocks, if not optimizing. */
7960 || (!optimize
&& REG_P (target
)
7961 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
7962 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7965 emit_move_insn (target
, const0_rtx
);
7967 op1
= gen_label_rtx ();
7968 jumpifnot (exp
, op1
);
7971 emit_move_insn (target
, const1_rtx
);
7974 return ignore
? const0_rtx
: target
;
7976 case TRUTH_NOT_EXPR
:
7977 if (modifier
== EXPAND_STACK_PARM
)
7979 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
7980 /* The parser is careful to generate TRUTH_NOT_EXPR
7981 only with operands that are always zero or one. */
7982 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
7983 target
, 1, OPTAB_LIB_WIDEN
);
7987 case STATEMENT_LIST
:
7989 tree_stmt_iterator iter
;
7991 gcc_assert (ignore
);
7993 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
7994 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
7999 /* If it's void, we don't need to worry about computing a value. */
8000 if (VOID_TYPE_P (TREE_TYPE (exp
)))
8002 tree pred
= TREE_OPERAND (exp
, 0);
8003 tree then_
= TREE_OPERAND (exp
, 1);
8004 tree else_
= TREE_OPERAND (exp
, 2);
8006 gcc_assert (TREE_CODE (then_
) == GOTO_EXPR
8007 && TREE_CODE (GOTO_DESTINATION (then_
)) == LABEL_DECL
8008 && TREE_CODE (else_
) == GOTO_EXPR
8009 && TREE_CODE (GOTO_DESTINATION (else_
)) == LABEL_DECL
);
8011 jumpif (pred
, label_rtx (GOTO_DESTINATION (then_
)));
8012 return expand_expr (else_
, const0_rtx
, VOIDmode
, 0);
8015 /* Note that COND_EXPRs whose type is a structure or union
8016 are required to be constructed to contain assignments of
8017 a temporary variable, so that we can evaluate them here
8018 for side effect only. If type is void, we must do likewise. */
8020 gcc_assert (!TREE_ADDRESSABLE (type
)
8022 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8023 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8025 /* If we are not to produce a result, we have no target. Otherwise,
8026 if a target was specified use it; it will not be used as an
8027 intermediate target unless it is safe. If no target, use a
8030 if (modifier
!= EXPAND_STACK_PARM
8032 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8033 && GET_MODE (original_target
) == mode
8034 #ifdef HAVE_conditional_move
8035 && (! can_conditionally_move_p (mode
)
8036 || REG_P (original_target
))
8038 && !MEM_P (original_target
))
8039 temp
= original_target
;
8041 temp
= assign_temp (type
, 0, 0, 1);
8043 do_pending_stack_adjust ();
8045 op0
= gen_label_rtx ();
8046 op1
= gen_label_rtx ();
8047 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8048 store_expr (TREE_OPERAND (exp
, 1), temp
,
8049 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8051 emit_jump_insn (gen_jump (op1
));
8054 store_expr (TREE_OPERAND (exp
, 2), temp
,
8055 modifier
== EXPAND_STACK_PARM
? 2 : 0);
8062 target
= expand_vec_cond_expr (exp
, target
);
8067 /* If lhs is complex, expand calls in rhs before computing it.
8068 That's so we don't compute a pointer and save it over a
8069 call. If lhs is simple, compute it first so we can give it
8070 as a target if the rhs is just a call. This avoids an
8071 extra temp and copy and that prevents a partial-subsumption
8072 which makes bad code. Actually we could treat
8073 component_ref's of vars like vars. */
8075 tree lhs
= TREE_OPERAND (exp
, 0);
8076 tree rhs
= TREE_OPERAND (exp
, 1);
8080 /* Check for |= or &= of a bitfield of size one into another bitfield
8081 of size 1. In this case, (unless we need the result of the
8082 assignment) we can do this more efficiently with a
8083 test followed by an assignment, if necessary.
8085 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8086 things change so we do, this code should be enhanced to
8089 && TREE_CODE (lhs
) == COMPONENT_REF
8090 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8091 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8092 && TREE_OPERAND (rhs
, 0) == lhs
8093 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8094 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8095 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8097 rtx label
= gen_label_rtx ();
8099 do_jump (TREE_OPERAND (rhs
, 1),
8100 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8101 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8102 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8103 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8105 : integer_zero_node
)),
8107 do_pending_stack_adjust ();
8112 temp
= expand_assignment (lhs
, rhs
, ! ignore
);
8118 if (!TREE_OPERAND (exp
, 0))
8119 expand_null_return ();
8121 expand_return (TREE_OPERAND (exp
, 0));
8125 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8127 /* COMPLEX type for Extended Pascal & Fortran */
8130 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
8133 /* Get the rtx code of the operands. */
8134 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8135 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8138 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8142 /* Move the real (op0) and imaginary (op1) parts to their location. */
8143 emit_move_insn (gen_realpart (mode
, target
), op0
);
8144 emit_move_insn (gen_imagpart (mode
, target
), op1
);
8146 insns
= get_insns ();
8149 /* Complex construction should appear as a single unit. */
8150 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
8151 each with a separate pseudo as destination.
8152 It's not correct for flow to treat them as a unit. */
8153 if (GET_CODE (target
) != CONCAT
)
8154 emit_no_conflict_block (insns
, target
, op0
, op1
, NULL_RTX
);
8162 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8163 return gen_realpart (mode
, op0
);
8166 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8167 return gen_imagpart (mode
, op0
);
8170 expand_resx_expr (exp
);
8173 case TRY_CATCH_EXPR
:
8175 case EH_FILTER_EXPR
:
8176 case TRY_FINALLY_EXPR
:
8177 /* Lowered by tree-eh.c. */
8180 case WITH_CLEANUP_EXPR
:
8181 case CLEANUP_POINT_EXPR
:
8183 case CASE_LABEL_EXPR
:
8189 case PREINCREMENT_EXPR
:
8190 case PREDECREMENT_EXPR
:
8191 case POSTINCREMENT_EXPR
:
8192 case POSTDECREMENT_EXPR
:
8195 case LABELED_BLOCK_EXPR
:
8196 case EXIT_BLOCK_EXPR
:
8197 case TRUTH_ANDIF_EXPR
:
8198 case TRUTH_ORIF_EXPR
:
8199 /* Lowered by gimplify.c. */
8203 return get_exception_pointer (cfun
);
8206 return get_exception_filter (cfun
);
8209 /* Function descriptors are not valid except for as
8210 initialization constants, and should not be expanded. */
8218 expand_label (TREE_OPERAND (exp
, 0));
8222 expand_asm_expr (exp
);
8225 case WITH_SIZE_EXPR
:
8226 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8227 have pulled out the size to use in whatever context it needed. */
8228 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8231 case REALIGN_LOAD_EXPR
:
8233 tree oprnd0
= TREE_OPERAND (exp
, 0);
8234 tree oprnd1
= TREE_OPERAND (exp
, 1);
8235 tree oprnd2
= TREE_OPERAND (exp
, 2);
8238 this_optab
= optab_for_tree_code (code
, type
);
8239 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8240 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8241 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8250 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8254 /* Here to do an ordinary binary operator. */
8256 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8257 subtarget
, &op0
, &op1
, 0);
8259 this_optab
= optab_for_tree_code (code
, type
);
8261 if (modifier
== EXPAND_STACK_PARM
)
8263 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8264 unsignedp
, OPTAB_LIB_WIDEN
);
8266 return REDUCE_BIT_FIELD (temp
);
8268 #undef REDUCE_BIT_FIELD
8270 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8271 signedness of TYPE), possibly returning the result in TARGET. */
8273 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8275 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8276 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8278 if (TYPE_UNSIGNED (type
))
8281 if (prec
< HOST_BITS_PER_WIDE_INT
)
8282 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8285 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8286 ((unsigned HOST_WIDE_INT
) 1
8287 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8289 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8293 tree count
= build_int_cst (NULL_TREE
,
8294 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8295 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8296 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8300 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8301 when applied to the address of EXP produces an address known to be
8302 aligned more than BIGGEST_ALIGNMENT. */
8305 is_aligning_offset (tree offset
, tree exp
)
8307 /* Strip off any conversions. */
8308 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8309 || TREE_CODE (offset
) == NOP_EXPR
8310 || TREE_CODE (offset
) == CONVERT_EXPR
)
8311 offset
= TREE_OPERAND (offset
, 0);
8313 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8314 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8315 if (TREE_CODE (offset
) != BIT_AND_EXPR
8316 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8317 || compare_tree_int (TREE_OPERAND (offset
, 1),
8318 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8319 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8322 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8323 It must be NEGATE_EXPR. Then strip any more conversions. */
8324 offset
= TREE_OPERAND (offset
, 0);
8325 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8326 || TREE_CODE (offset
) == NOP_EXPR
8327 || TREE_CODE (offset
) == CONVERT_EXPR
)
8328 offset
= TREE_OPERAND (offset
, 0);
8330 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8333 offset
= TREE_OPERAND (offset
, 0);
8334 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8335 || TREE_CODE (offset
) == NOP_EXPR
8336 || TREE_CODE (offset
) == CONVERT_EXPR
)
8337 offset
= TREE_OPERAND (offset
, 0);
8339 /* This must now be the address of EXP. */
8340 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8343 /* Return the tree node if an ARG corresponds to a string constant or zero
8344 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8345 in bytes within the string that ARG is accessing. The type of the
8346 offset will be `sizetype'. */
8349 string_constant (tree arg
, tree
*ptr_offset
)
8354 if (TREE_CODE (arg
) == ADDR_EXPR
)
8356 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8358 *ptr_offset
= size_zero_node
;
8359 return TREE_OPERAND (arg
, 0);
8361 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8363 array
= TREE_OPERAND (arg
, 0);
8364 offset
= size_zero_node
;
8366 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8368 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8369 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8370 if (TREE_CODE (array
) != STRING_CST
8371 && TREE_CODE (array
) != VAR_DECL
)
8377 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8379 tree arg0
= TREE_OPERAND (arg
, 0);
8380 tree arg1
= TREE_OPERAND (arg
, 1);
8385 if (TREE_CODE (arg0
) == ADDR_EXPR
8386 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8387 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8389 array
= TREE_OPERAND (arg0
, 0);
8392 else if (TREE_CODE (arg1
) == ADDR_EXPR
8393 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8394 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8396 array
= TREE_OPERAND (arg1
, 0);
8405 if (TREE_CODE (array
) == STRING_CST
)
8407 *ptr_offset
= convert (sizetype
, offset
);
8410 else if (TREE_CODE (array
) == VAR_DECL
)
8414 /* Variables initialized to string literals can be handled too. */
8415 if (DECL_INITIAL (array
) == NULL_TREE
8416 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8419 /* If they are read-only, non-volatile and bind locally. */
8420 if (! TREE_READONLY (array
)
8421 || TREE_SIDE_EFFECTS (array
)
8422 || ! targetm
.binds_local_p (array
))
8425 /* Avoid const char foo[4] = "abcde"; */
8426 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8427 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8428 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8429 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8432 /* If variable is bigger than the string literal, OFFSET must be constant
8433 and inside of the bounds of the string literal. */
8434 offset
= convert (sizetype
, offset
);
8435 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8436 && (! host_integerp (offset
, 1)
8437 || compare_tree_int (offset
, length
) >= 0))
8440 *ptr_offset
= offset
;
8441 return DECL_INITIAL (array
);
8447 /* Generate code to calculate EXP using a store-flag instruction
8448 and return an rtx for the result. EXP is either a comparison
8449 or a TRUTH_NOT_EXPR whose operand is a comparison.
8451 If TARGET is nonzero, store the result there if convenient.
8453 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8456 Return zero if there is no suitable set-flag instruction
8457 available on this machine.
8459 Once expand_expr has been called on the arguments of the comparison,
8460 we are committed to doing the store flag, since it is not safe to
8461 re-evaluate the expression. We emit the store-flag insn by calling
8462 emit_store_flag, but only expand the arguments if we have a reason
8463 to believe that emit_store_flag will be successful. If we think that
8464 it will, but it isn't, we have to simulate the store-flag with a
8465 set/jump/set sequence. */
8468 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8471 tree arg0
, arg1
, type
;
8473 enum machine_mode operand_mode
;
8477 enum insn_code icode
;
8478 rtx subtarget
= target
;
8481 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8482 result at the end. We can't simply invert the test since it would
8483 have already been inverted if it were valid. This case occurs for
8484 some floating-point comparisons. */
8486 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8487 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8489 arg0
= TREE_OPERAND (exp
, 0);
8490 arg1
= TREE_OPERAND (exp
, 1);
8492 /* Don't crash if the comparison was erroneous. */
8493 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8496 type
= TREE_TYPE (arg0
);
8497 operand_mode
= TYPE_MODE (type
);
8498 unsignedp
= TYPE_UNSIGNED (type
);
8500 /* We won't bother with BLKmode store-flag operations because it would mean
8501 passing a lot of information to emit_store_flag. */
8502 if (operand_mode
== BLKmode
)
8505 /* We won't bother with store-flag operations involving function pointers
8506 when function pointers must be canonicalized before comparisons. */
8507 #ifdef HAVE_canonicalize_funcptr_for_compare
8508 if (HAVE_canonicalize_funcptr_for_compare
8509 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8510 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8512 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8513 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8514 == FUNCTION_TYPE
))))
8521 /* Get the rtx comparison code to use. We know that EXP is a comparison
8522 operation of some type. Some comparisons against 1 and -1 can be
8523 converted to comparisons with zero. Do so here so that the tests
8524 below will be aware that we have a comparison with zero. These
8525 tests will not catch constants in the first operand, but constants
8526 are rarely passed as the first operand. */
8528 switch (TREE_CODE (exp
))
8537 if (integer_onep (arg1
))
8538 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8540 code
= unsignedp
? LTU
: LT
;
8543 if (! unsignedp
&& integer_all_onesp (arg1
))
8544 arg1
= integer_zero_node
, code
= LT
;
8546 code
= unsignedp
? LEU
: LE
;
8549 if (! unsignedp
&& integer_all_onesp (arg1
))
8550 arg1
= integer_zero_node
, code
= GE
;
8552 code
= unsignedp
? GTU
: GT
;
8555 if (integer_onep (arg1
))
8556 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8558 code
= unsignedp
? GEU
: GE
;
8561 case UNORDERED_EXPR
:
8590 /* Put a constant second. */
8591 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8593 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8594 code
= swap_condition (code
);
8597 /* If this is an equality or inequality test of a single bit, we can
8598 do this by shifting the bit being tested to the low-order bit and
8599 masking the result with the constant 1. If the condition was EQ,
8600 we xor it with 1. This does not require an scc insn and is faster
8601 than an scc insn even if we have it.
8603 The code to make this transformation was moved into fold_single_bit_test,
8604 so we just call into the folder and expand its result. */
8606 if ((code
== NE
|| code
== EQ
)
8607 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8608 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8610 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8611 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8613 target
, VOIDmode
, EXPAND_NORMAL
);
8616 /* Now see if we are likely to be able to do this. Return if not. */
8617 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8620 icode
= setcc_gen_code
[(int) code
];
8621 if (icode
== CODE_FOR_nothing
8622 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8624 /* We can only do this if it is one of the special cases that
8625 can be handled without an scc insn. */
8626 if ((code
== LT
&& integer_zerop (arg1
))
8627 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8629 else if (BRANCH_COST
>= 0
8630 && ! only_cheap
&& (code
== NE
|| code
== EQ
)
8631 && TREE_CODE (type
) != REAL_TYPE
8632 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8633 != CODE_FOR_nothing
)
8634 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8635 != CODE_FOR_nothing
)))
8641 if (! get_subtarget (target
)
8642 || GET_MODE (subtarget
) != operand_mode
)
8645 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8648 target
= gen_reg_rtx (mode
);
8650 result
= emit_store_flag (target
, code
, op0
, op1
,
8651 operand_mode
, unsignedp
, 1);
8656 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8657 result
, 0, OPTAB_LIB_WIDEN
);
8661 /* If this failed, we have to do this with set/compare/jump/set code. */
8663 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8664 target
= gen_reg_rtx (GET_MODE (target
));
8666 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8667 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8668 operand_mode
, NULL_RTX
);
8669 if (GET_CODE (result
) == CONST_INT
)
8670 return (((result
== const0_rtx
&& ! invert
)
8671 || (result
!= const0_rtx
&& invert
))
8672 ? const0_rtx
: const1_rtx
);
8674 /* The code of RESULT may not match CODE if compare_from_rtx
8675 decided to swap its operands and reverse the original code.
8677 We know that compare_from_rtx returns either a CONST_INT or
8678 a new comparison code, so it is safe to just extract the
8679 code from RESULT. */
8680 code
= GET_CODE (result
);
8682 label
= gen_label_rtx ();
8683 gcc_assert (bcc_gen_fctn
[(int) code
]);
8685 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8686 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8693 /* Stubs in case we haven't got a casesi insn. */
8695 # define HAVE_casesi 0
8696 # define gen_casesi(a, b, c, d, e) (0)
8697 # define CODE_FOR_casesi CODE_FOR_nothing
8700 /* If the machine does not have a case insn that compares the bounds,
8701 this means extra overhead for dispatch tables, which raises the
8702 threshold for using them. */
8703 #ifndef CASE_VALUES_THRESHOLD
8704 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8705 #endif /* CASE_VALUES_THRESHOLD */
8708 case_values_threshold (void)
8710 return CASE_VALUES_THRESHOLD
;
8713 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8714 0 otherwise (i.e. if there is no casesi instruction). */
8716 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8717 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8719 enum machine_mode index_mode
= SImode
;
8720 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8721 rtx op1
, op2
, index
;
8722 enum machine_mode op_mode
;
8727 /* Convert the index to SImode. */
8728 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8730 enum machine_mode omode
= TYPE_MODE (index_type
);
8731 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8733 /* We must handle the endpoints in the original mode. */
8734 index_expr
= build2 (MINUS_EXPR
, index_type
,
8735 index_expr
, minval
);
8736 minval
= integer_zero_node
;
8737 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8738 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8739 omode
, 1, default_label
);
8740 /* Now we can safely truncate. */
8741 index
= convert_to_mode (index_mode
, index
, 0);
8745 if (TYPE_MODE (index_type
) != index_mode
)
8747 index_expr
= convert (lang_hooks
.types
.type_for_size
8748 (index_bits
, 0), index_expr
);
8749 index_type
= TREE_TYPE (index_expr
);
8752 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8755 do_pending_stack_adjust ();
8757 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8758 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8760 index
= copy_to_mode_reg (op_mode
, index
);
8762 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8764 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8765 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8766 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8767 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8769 op1
= copy_to_mode_reg (op_mode
, op1
);
8771 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8773 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8774 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8775 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8776 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8778 op2
= copy_to_mode_reg (op_mode
, op2
);
8780 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8781 table_label
, default_label
));
8785 /* Attempt to generate a tablejump instruction; same concept. */
8786 #ifndef HAVE_tablejump
8787 #define HAVE_tablejump 0
8788 #define gen_tablejump(x, y) (0)
8791 /* Subroutine of the next function.
8793 INDEX is the value being switched on, with the lowest value
8794 in the table already subtracted.
8795 MODE is its expected mode (needed if INDEX is constant).
8796 RANGE is the length of the jump table.
8797 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8799 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8800 index value is out of range. */
8803 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8808 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8809 cfun
->max_jumptable_ents
= INTVAL (range
);
8811 /* Do an unsigned comparison (in the proper mode) between the index
8812 expression and the value which represents the length of the range.
8813 Since we just finished subtracting the lower bound of the range
8814 from the index expression, this comparison allows us to simultaneously
8815 check that the original index expression value is both greater than
8816 or equal to the minimum value of the range and less than or equal to
8817 the maximum value of the range. */
8819 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8822 /* If index is in range, it must fit in Pmode.
8823 Convert to Pmode so we can index with it. */
8825 index
= convert_to_mode (Pmode
, index
, 1);
8827 /* Don't let a MEM slip through, because then INDEX that comes
8828 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8829 and break_out_memory_refs will go to work on it and mess it up. */
8830 #ifdef PIC_CASE_VECTOR_ADDRESS
8831 if (flag_pic
&& !REG_P (index
))
8832 index
= copy_to_mode_reg (Pmode
, index
);
8835 /* If flag_force_addr were to affect this address
8836 it could interfere with the tricky assumptions made
8837 about addresses that contain label-refs,
8838 which may be valid only very near the tablejump itself. */
8839 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8840 GET_MODE_SIZE, because this indicates how large insns are. The other
8841 uses should all be Pmode, because they are addresses. This code
8842 could fail if addresses and insns are not the same size. */
8843 index
= gen_rtx_PLUS (Pmode
,
8844 gen_rtx_MULT (Pmode
, index
,
8845 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
8846 gen_rtx_LABEL_REF (Pmode
, table_label
));
8847 #ifdef PIC_CASE_VECTOR_ADDRESS
8849 index
= PIC_CASE_VECTOR_ADDRESS (index
);
8852 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
8853 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
8854 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
8855 convert_move (temp
, vector
, 0);
8857 emit_jump_insn (gen_tablejump (temp
, table_label
));
8859 /* If we are generating PIC code or if the table is PC-relative, the
8860 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8861 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
8866 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
8867 rtx table_label
, rtx default_label
)
8871 if (! HAVE_tablejump
)
8874 index_expr
= fold (build2 (MINUS_EXPR
, index_type
,
8875 convert (index_type
, index_expr
),
8876 convert (index_type
, minval
)));
8877 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8878 do_pending_stack_adjust ();
8880 do_tablejump (index
, TYPE_MODE (index_type
),
8881 convert_modes (TYPE_MODE (index_type
),
8882 TYPE_MODE (TREE_TYPE (range
)),
8883 expand_expr (range
, NULL_RTX
,
8885 TYPE_UNSIGNED (TREE_TYPE (range
))),
8886 table_label
, default_label
);
8890 /* Nonzero if the mode is a valid vector mode for this architecture.
8891 This returns nonzero even if there is no hardware support for the
8892 vector mode, but we can emulate with narrower modes. */
8895 vector_mode_valid_p (enum machine_mode mode
)
8897 enum mode_class
class = GET_MODE_CLASS (mode
);
8898 enum machine_mode innermode
;
8900 /* Doh! What's going on? */
8901 if (class != MODE_VECTOR_INT
8902 && class != MODE_VECTOR_FLOAT
)
8905 /* Hardware support. Woo hoo! */
8906 if (targetm
.vector_mode_supported_p (mode
))
8909 innermode
= GET_MODE_INNER (mode
);
8911 /* We should probably return 1 if requesting V4DI and we have no DI,
8912 but we have V2DI, but this is probably very unlikely. */
8914 /* If we have support for the inner mode, we can safely emulate it.
8915 We may not have V2DI, but me can emulate with a pair of DIs. */
8916 return targetm
.scalar_mode_supported_p (innermode
);
8919 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8921 const_vector_from_tree (tree exp
)
8926 enum machine_mode inner
, mode
;
8928 mode
= TYPE_MODE (TREE_TYPE (exp
));
8930 if (initializer_zerop (exp
))
8931 return CONST0_RTX (mode
);
8933 units
= GET_MODE_NUNITS (mode
);
8934 inner
= GET_MODE_INNER (mode
);
8936 v
= rtvec_alloc (units
);
8938 link
= TREE_VECTOR_CST_ELTS (exp
);
8939 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
8941 elt
= TREE_VALUE (link
);
8943 if (TREE_CODE (elt
) == REAL_CST
)
8944 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
8947 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
8948 TREE_INT_CST_HIGH (elt
),
8952 /* Initialize remaining elements to 0. */
8953 for (; i
< units
; ++i
)
8954 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
8956 return gen_rtx_CONST_VECTOR (mode
, v
);
8958 #include "gt-expr.h"