cap frequency in make_forwarder_block
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobbad546dd4b767fac6b8242c14659248825b77fe6
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "flags.h"
38 #include "tm_p.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-expr.h"
49 #include "is-a.h"
50 #include "gimple.h"
51 #include "gimplify.h"
52 #include "gimple-iterator.h"
53 #include "gimplify-me.h"
54 #include "gimple-ssa.h"
55 #include "tree-cfg.h"
56 #include "tree-phinodes.h"
57 #include "ssa-iterators.h"
58 #include "stringpool.h"
59 #include "tree-ssanames.h"
60 #include "hashtab.h"
61 #include "rtl.h"
62 #include "statistics.h"
63 #include "real.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "varasm.h"
72 #include "stmt.h"
73 #include "expr.h"
74 #include "tree-dfa.h"
75 #include "tree-pass.h"
76 #include "langhooks.h"
77 #include "domwalk.h"
78 #include "cfgloop.h"
79 #include "tree-data-ref.h"
80 #include "gimple-pretty-print.h"
81 #include "insn-codes.h"
82 #include "optabs.h"
83 #include "tree-scalar-evolution.h"
84 #include "tree-inline.h"
86 #ifndef HAVE_conditional_move
87 #define HAVE_conditional_move (0)
88 #endif
90 static unsigned int tree_ssa_phiopt_worker (bool, bool);
91 static bool conditional_replacement (basic_block, basic_block,
92 edge, edge, gphi *, tree, tree);
93 static int value_replacement (basic_block, basic_block,
94 edge, edge, gimple, tree, tree);
95 static bool minmax_replacement (basic_block, basic_block,
96 edge, edge, gimple, tree, tree);
97 static bool abs_replacement (basic_block, basic_block,
98 edge, edge, gimple, tree, tree);
99 static bool neg_replacement (basic_block, basic_block,
100 edge, edge, gimple, tree, tree);
101 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
102 hash_set<tree> *);
103 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
104 static hash_set<tree> * get_non_trapping ();
105 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
106 static void hoist_adjacent_loads (basic_block, basic_block,
107 basic_block, basic_block);
108 static bool gate_hoist_loads (void);
110 /* This pass tries to transform conditional stores into unconditional
111 ones, enabling further simplifications with the simpler then and else
112 blocks. In particular it replaces this:
114 bb0:
115 if (cond) goto bb2; else goto bb1;
116 bb1:
117 *p = RHS;
118 bb2:
120 with
122 bb0:
123 if (cond) goto bb1; else goto bb2;
124 bb1:
125 condtmp' = *p;
126 bb2:
127 condtmp = PHI <RHS, condtmp'>
128 *p = condtmp;
130 This transformation can only be done under several constraints,
131 documented below. It also replaces:
133 bb0:
134 if (cond) goto bb2; else goto bb1;
135 bb1:
136 *p = RHS1;
137 goto bb3;
138 bb2:
139 *p = RHS2;
140 bb3:
142 with
144 bb0:
145 if (cond) goto bb3; else goto bb1;
146 bb1:
147 bb3:
148 condtmp = PHI <RHS1, RHS2>
149 *p = condtmp; */
151 static unsigned int
152 tree_ssa_cs_elim (void)
154 unsigned todo;
155 /* ??? We are not interested in loop related info, but the following
156 will create it, ICEing as we didn't init loops with pre-headers.
157 An interfacing issue of find_data_references_in_bb. */
158 loop_optimizer_init (LOOPS_NORMAL);
159 scev_initialize ();
160 todo = tree_ssa_phiopt_worker (true, false);
161 scev_finalize ();
162 loop_optimizer_finalize ();
163 return todo;
166 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
168 static gphi *
169 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
171 gimple_stmt_iterator i;
172 gphi *phi = NULL;
173 if (gimple_seq_singleton_p (seq))
174 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
175 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
177 gphi *p = as_a <gphi *> (gsi_stmt (i));
178 /* If the PHI arguments are equal then we can skip this PHI. */
179 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
180 gimple_phi_arg_def (p, e1->dest_idx)))
181 continue;
183 /* If we already have a PHI that has the two edge arguments are
184 different, then return it is not a singleton for these PHIs. */
185 if (phi)
186 return NULL;
188 phi = p;
190 return phi;
193 /* The core routine of conditional store replacement and normal
194 phi optimizations. Both share much of the infrastructure in how
195 to match applicable basic block patterns. DO_STORE_ELIM is true
196 when we want to do conditional store replacement, false otherwise.
197 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
198 of diamond control flow patterns, false otherwise. */
199 static unsigned int
200 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
202 basic_block bb;
203 basic_block *bb_order;
204 unsigned n, i;
205 bool cfgchanged = false;
206 hash_set<tree> *nontrap = 0;
208 if (do_store_elim)
209 /* Calculate the set of non-trapping memory accesses. */
210 nontrap = get_non_trapping ();
212 /* The replacement of conditional negation with a non-branching
213 sequence is really only a win when optimizing for speed and we
214 can avoid transformations by gimple if-conversion that result
215 in poor RTL generation.
217 Ideally either gimple if-conversion or the RTL expanders will
218 be improved and the code to emit branchless conditional negation
219 can be removed. */
220 bool replace_conditional_negation = false;
221 if (!do_store_elim)
222 replace_conditional_negation
223 = ((!optimize_size && optimize >= 2)
224 || (((flag_tree_loop_vectorize || cfun->has_force_vectorize_loops)
225 && flag_tree_loop_if_convert != 0)
226 || flag_tree_loop_if_convert == 1
227 || flag_tree_loop_if_convert_stores == 1));
229 /* Search every basic block for COND_EXPR we may be able to optimize.
231 We walk the blocks in order that guarantees that a block with
232 a single predecessor is processed before the predecessor.
233 This ensures that we collapse inner ifs before visiting the
234 outer ones, and also that we do not try to visit a removed
235 block. */
236 bb_order = single_pred_before_succ_order ();
237 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
239 for (i = 0; i < n; i++)
241 gimple cond_stmt;
242 gphi *phi;
243 basic_block bb1, bb2;
244 edge e1, e2;
245 tree arg0, arg1;
247 bb = bb_order[i];
249 cond_stmt = last_stmt (bb);
250 /* Check to see if the last statement is a GIMPLE_COND. */
251 if (!cond_stmt
252 || gimple_code (cond_stmt) != GIMPLE_COND)
253 continue;
255 e1 = EDGE_SUCC (bb, 0);
256 bb1 = e1->dest;
257 e2 = EDGE_SUCC (bb, 1);
258 bb2 = e2->dest;
260 /* We cannot do the optimization on abnormal edges. */
261 if ((e1->flags & EDGE_ABNORMAL) != 0
262 || (e2->flags & EDGE_ABNORMAL) != 0)
263 continue;
265 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
266 if (EDGE_COUNT (bb1->succs) == 0
267 || bb2 == NULL
268 || EDGE_COUNT (bb2->succs) == 0)
269 continue;
271 /* Find the bb which is the fall through to the other. */
272 if (EDGE_SUCC (bb1, 0)->dest == bb2)
274 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
276 basic_block bb_tmp = bb1;
277 edge e_tmp = e1;
278 bb1 = bb2;
279 bb2 = bb_tmp;
280 e1 = e2;
281 e2 = e_tmp;
283 else if (do_store_elim
284 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
286 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
288 if (!single_succ_p (bb1)
289 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
290 || !single_succ_p (bb2)
291 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
292 || EDGE_COUNT (bb3->preds) != 2)
293 continue;
294 if (cond_if_else_store_replacement (bb1, bb2, bb3))
295 cfgchanged = true;
296 continue;
298 else if (do_hoist_loads
299 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
301 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
303 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
304 && single_succ_p (bb1)
305 && single_succ_p (bb2)
306 && single_pred_p (bb1)
307 && single_pred_p (bb2)
308 && EDGE_COUNT (bb->succs) == 2
309 && EDGE_COUNT (bb3->preds) == 2
310 /* If one edge or the other is dominant, a conditional move
311 is likely to perform worse than the well-predicted branch. */
312 && !predictable_edge_p (EDGE_SUCC (bb, 0))
313 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
314 hoist_adjacent_loads (bb, bb1, bb2, bb3);
315 continue;
317 else
318 continue;
320 e1 = EDGE_SUCC (bb1, 0);
322 /* Make sure that bb1 is just a fall through. */
323 if (!single_succ_p (bb1)
324 || (e1->flags & EDGE_FALLTHRU) == 0)
325 continue;
327 /* Also make sure that bb1 only have one predecessor and that it
328 is bb. */
329 if (!single_pred_p (bb1)
330 || single_pred (bb1) != bb)
331 continue;
333 if (do_store_elim)
335 /* bb1 is the middle block, bb2 the join block, bb the split block,
336 e1 the fallthrough edge from bb1 to bb2. We can't do the
337 optimization if the join block has more than two predecessors. */
338 if (EDGE_COUNT (bb2->preds) > 2)
339 continue;
340 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
341 cfgchanged = true;
343 else
345 gimple_seq phis = phi_nodes (bb2);
346 gimple_stmt_iterator gsi;
347 bool candorest = true;
349 /* Value replacement can work with more than one PHI
350 so try that first. */
351 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
353 phi = as_a <gphi *> (gsi_stmt (gsi));
354 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
355 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
356 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
358 candorest = false;
359 cfgchanged = true;
360 break;
364 if (!candorest)
365 continue;
367 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
368 if (!phi)
369 continue;
371 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
372 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
374 /* Something is wrong if we cannot find the arguments in the PHI
375 node. */
376 gcc_assert (arg0 != NULL && arg1 != NULL);
378 /* Do the replacement of conditional if it can be done. */
379 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
380 cfgchanged = true;
381 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
382 cfgchanged = true;
383 else if (replace_conditional_negation
384 && neg_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
385 cfgchanged = true;
386 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
387 cfgchanged = true;
391 free (bb_order);
393 if (do_store_elim)
394 delete nontrap;
395 /* If the CFG has changed, we should cleanup the CFG. */
396 if (cfgchanged && do_store_elim)
398 /* In cond-store replacement we have added some loads on edges
399 and new VOPS (as we moved the store, and created a load). */
400 gsi_commit_edge_inserts ();
401 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
403 else if (cfgchanged)
404 return TODO_cleanup_cfg;
405 return 0;
408 /* Replace PHI node element whose edge is E in block BB with variable NEW.
409 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
410 is known to have two edges, one of which must reach BB). */
412 static void
413 replace_phi_edge_with_variable (basic_block cond_block,
414 edge e, gimple phi, tree new_tree)
416 basic_block bb = gimple_bb (phi);
417 basic_block block_to_remove;
418 gimple_stmt_iterator gsi;
420 /* Change the PHI argument to new. */
421 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
423 /* Remove the empty basic block. */
424 if (EDGE_SUCC (cond_block, 0)->dest == bb)
426 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
427 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
428 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
429 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
431 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
433 else
435 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
436 EDGE_SUCC (cond_block, 1)->flags
437 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
438 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
439 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
441 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
443 delete_basic_block (block_to_remove);
445 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
446 gsi = gsi_last_bb (cond_block);
447 gsi_remove (&gsi, true);
449 if (dump_file && (dump_flags & TDF_DETAILS))
450 fprintf (dump_file,
451 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
452 cond_block->index,
453 bb->index);
456 /* The function conditional_replacement does the main work of doing the
457 conditional replacement. Return true if the replacement is done.
458 Otherwise return false.
459 BB is the basic block where the replacement is going to be done on. ARG0
460 is argument 0 from PHI. Likewise for ARG1. */
462 static bool
463 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
464 edge e0, edge e1, gphi *phi,
465 tree arg0, tree arg1)
467 tree result;
468 gimple stmt;
469 gassign *new_stmt;
470 tree cond;
471 gimple_stmt_iterator gsi;
472 edge true_edge, false_edge;
473 tree new_var, new_var2;
474 bool neg;
476 /* FIXME: Gimplification of complex type is too hard for now. */
477 /* We aren't prepared to handle vectors either (and it is a question
478 if it would be worthwhile anyway). */
479 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
480 || POINTER_TYPE_P (TREE_TYPE (arg0)))
481 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
482 || POINTER_TYPE_P (TREE_TYPE (arg1))))
483 return false;
485 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
486 convert it to the conditional. */
487 if ((integer_zerop (arg0) && integer_onep (arg1))
488 || (integer_zerop (arg1) && integer_onep (arg0)))
489 neg = false;
490 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
491 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
492 neg = true;
493 else
494 return false;
496 if (!empty_block_p (middle_bb))
497 return false;
499 /* At this point we know we have a GIMPLE_COND with two successors.
500 One successor is BB, the other successor is an empty block which
501 falls through into BB.
503 There is a single PHI node at the join point (BB) and its arguments
504 are constants (0, 1) or (0, -1).
506 So, given the condition COND, and the two PHI arguments, we can
507 rewrite this PHI into non-branching code:
509 dest = (COND) or dest = COND'
511 We use the condition as-is if the argument associated with the
512 true edge has the value one or the argument associated with the
513 false edge as the value zero. Note that those conditions are not
514 the same since only one of the outgoing edges from the GIMPLE_COND
515 will directly reach BB and thus be associated with an argument. */
517 stmt = last_stmt (cond_bb);
518 result = PHI_RESULT (phi);
520 /* To handle special cases like floating point comparison, it is easier and
521 less error-prone to build a tree and gimplify it on the fly though it is
522 less efficient. */
523 cond = fold_build2_loc (gimple_location (stmt),
524 gimple_cond_code (stmt), boolean_type_node,
525 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
527 /* We need to know which is the true edge and which is the false
528 edge so that we know when to invert the condition below. */
529 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
530 if ((e0 == true_edge && integer_zerop (arg0))
531 || (e0 == false_edge && !integer_zerop (arg0))
532 || (e1 == true_edge && integer_zerop (arg1))
533 || (e1 == false_edge && !integer_zerop (arg1)))
534 cond = fold_build1_loc (gimple_location (stmt),
535 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
537 if (neg)
539 cond = fold_convert_loc (gimple_location (stmt),
540 TREE_TYPE (result), cond);
541 cond = fold_build1_loc (gimple_location (stmt),
542 NEGATE_EXPR, TREE_TYPE (cond), cond);
545 /* Insert our new statements at the end of conditional block before the
546 COND_STMT. */
547 gsi = gsi_for_stmt (stmt);
548 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
549 GSI_SAME_STMT);
551 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
553 source_location locus_0, locus_1;
555 new_var2 = make_ssa_name (TREE_TYPE (result));
556 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
557 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
558 new_var = new_var2;
560 /* Set the locus to the first argument, unless is doesn't have one. */
561 locus_0 = gimple_phi_arg_location (phi, 0);
562 locus_1 = gimple_phi_arg_location (phi, 1);
563 if (locus_0 == UNKNOWN_LOCATION)
564 locus_0 = locus_1;
565 gimple_set_location (new_stmt, locus_0);
568 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
570 /* Note that we optimized this PHI. */
571 return true;
574 /* Update *ARG which is defined in STMT so that it contains the
575 computed value if that seems profitable. Return true if the
576 statement is made dead by that rewriting. */
578 static bool
579 jump_function_from_stmt (tree *arg, gimple stmt)
581 enum tree_code code = gimple_assign_rhs_code (stmt);
582 if (code == ADDR_EXPR)
584 /* For arg = &p->i transform it to p, if possible. */
585 tree rhs1 = gimple_assign_rhs1 (stmt);
586 HOST_WIDE_INT offset;
587 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
588 &offset);
589 if (tem
590 && TREE_CODE (tem) == MEM_REF
591 && (mem_ref_offset (tem) + offset) == 0)
593 *arg = TREE_OPERAND (tem, 0);
594 return true;
597 /* TODO: Much like IPA-CP jump-functions we want to handle constant
598 additions symbolically here, and we'd need to update the comparison
599 code that compares the arg + cst tuples in our caller. For now the
600 code above exactly handles the VEC_BASE pattern from vec.h. */
601 return false;
604 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
605 of the form SSA_NAME NE 0.
607 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
608 the two input values of the EQ_EXPR match arg0 and arg1.
610 If so update *code and return TRUE. Otherwise return FALSE. */
612 static bool
613 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
614 enum tree_code *code, const_tree rhs)
616 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
617 statement. */
618 if (TREE_CODE (rhs) == SSA_NAME)
620 gimple def1 = SSA_NAME_DEF_STMT (rhs);
622 /* Verify the defining statement has an EQ_EXPR on the RHS. */
623 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
625 /* Finally verify the source operands of the EQ_EXPR are equal
626 to arg0 and arg1. */
627 tree op0 = gimple_assign_rhs1 (def1);
628 tree op1 = gimple_assign_rhs2 (def1);
629 if ((operand_equal_for_phi_arg_p (arg0, op0)
630 && operand_equal_for_phi_arg_p (arg1, op1))
631 || (operand_equal_for_phi_arg_p (arg0, op1)
632 && operand_equal_for_phi_arg_p (arg1, op0)))
634 /* We will perform the optimization. */
635 *code = gimple_assign_rhs_code (def1);
636 return true;
640 return false;
643 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
645 Also return TRUE if arg0/arg1 are equal to the source arguments of a
646 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
648 Return FALSE otherwise. */
650 static bool
651 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
652 enum tree_code *code, gimple cond)
654 gimple def;
655 tree lhs = gimple_cond_lhs (cond);
656 tree rhs = gimple_cond_rhs (cond);
658 if ((operand_equal_for_phi_arg_p (arg0, lhs)
659 && operand_equal_for_phi_arg_p (arg1, rhs))
660 || (operand_equal_for_phi_arg_p (arg1, lhs)
661 && operand_equal_for_phi_arg_p (arg0, rhs)))
662 return true;
664 /* Now handle more complex case where we have an EQ comparison
665 which feeds a BIT_AND_EXPR which feeds COND.
667 First verify that COND is of the form SSA_NAME NE 0. */
668 if (*code != NE_EXPR || !integer_zerop (rhs)
669 || TREE_CODE (lhs) != SSA_NAME)
670 return false;
672 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
673 def = SSA_NAME_DEF_STMT (lhs);
674 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
675 return false;
677 /* Now verify arg0/arg1 correspond to the source arguments of an
678 EQ comparison feeding the BIT_AND_EXPR. */
680 tree tmp = gimple_assign_rhs1 (def);
681 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
682 return true;
684 tmp = gimple_assign_rhs2 (def);
685 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
686 return true;
688 return false;
691 /* Returns true if ARG is a neutral element for operation CODE
692 on the RIGHT side. */
694 static bool
695 neutral_element_p (tree_code code, tree arg, bool right)
697 switch (code)
699 case PLUS_EXPR:
700 case BIT_IOR_EXPR:
701 case BIT_XOR_EXPR:
702 return integer_zerop (arg);
704 case LROTATE_EXPR:
705 case RROTATE_EXPR:
706 case LSHIFT_EXPR:
707 case RSHIFT_EXPR:
708 case MINUS_EXPR:
709 case POINTER_PLUS_EXPR:
710 return right && integer_zerop (arg);
712 case MULT_EXPR:
713 return integer_onep (arg);
715 case TRUNC_DIV_EXPR:
716 case CEIL_DIV_EXPR:
717 case FLOOR_DIV_EXPR:
718 case ROUND_DIV_EXPR:
719 case EXACT_DIV_EXPR:
720 return right && integer_onep (arg);
722 case BIT_AND_EXPR:
723 return integer_all_onesp (arg);
725 default:
726 return false;
730 /* Returns true if ARG is an absorbing element for operation CODE. */
732 static bool
733 absorbing_element_p (tree_code code, tree arg)
735 switch (code)
737 case BIT_IOR_EXPR:
738 return integer_all_onesp (arg);
740 case MULT_EXPR:
741 case BIT_AND_EXPR:
742 return integer_zerop (arg);
744 default:
745 return false;
749 /* The function value_replacement does the main work of doing the value
750 replacement. Return non-zero if the replacement is done. Otherwise return
751 0. If we remove the middle basic block, return 2.
752 BB is the basic block where the replacement is going to be done on. ARG0
753 is argument 0 from the PHI. Likewise for ARG1. */
755 static int
756 value_replacement (basic_block cond_bb, basic_block middle_bb,
757 edge e0, edge e1, gimple phi,
758 tree arg0, tree arg1)
760 gimple_stmt_iterator gsi;
761 gimple cond;
762 edge true_edge, false_edge;
763 enum tree_code code;
764 bool emtpy_or_with_defined_p = true;
766 /* If the type says honor signed zeros we cannot do this
767 optimization. */
768 if (HONOR_SIGNED_ZEROS (arg1))
769 return 0;
771 /* If there is a statement in MIDDLE_BB that defines one of the PHI
772 arguments, then adjust arg0 or arg1. */
773 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
774 while (!gsi_end_p (gsi))
776 gimple stmt = gsi_stmt (gsi);
777 tree lhs;
778 gsi_next_nondebug (&gsi);
779 if (!is_gimple_assign (stmt))
781 emtpy_or_with_defined_p = false;
782 continue;
784 /* Now try to adjust arg0 or arg1 according to the computation
785 in the statement. */
786 lhs = gimple_assign_lhs (stmt);
787 if (!(lhs == arg0
788 && jump_function_from_stmt (&arg0, stmt))
789 || (lhs == arg1
790 && jump_function_from_stmt (&arg1, stmt)))
791 emtpy_or_with_defined_p = false;
794 cond = last_stmt (cond_bb);
795 code = gimple_cond_code (cond);
797 /* This transformation is only valid for equality comparisons. */
798 if (code != NE_EXPR && code != EQ_EXPR)
799 return 0;
801 /* We need to know which is the true edge and which is the false
802 edge so that we know if have abs or negative abs. */
803 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
805 /* At this point we know we have a COND_EXPR with two successors.
806 One successor is BB, the other successor is an empty block which
807 falls through into BB.
809 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
811 There is a single PHI node at the join point (BB) with two arguments.
813 We now need to verify that the two arguments in the PHI node match
814 the two arguments to the equality comparison. */
816 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
818 edge e;
819 tree arg;
821 /* For NE_EXPR, we want to build an assignment result = arg where
822 arg is the PHI argument associated with the true edge. For
823 EQ_EXPR we want the PHI argument associated with the false edge. */
824 e = (code == NE_EXPR ? true_edge : false_edge);
826 /* Unfortunately, E may not reach BB (it may instead have gone to
827 OTHER_BLOCK). If that is the case, then we want the single outgoing
828 edge from OTHER_BLOCK which reaches BB and represents the desired
829 path from COND_BLOCK. */
830 if (e->dest == middle_bb)
831 e = single_succ_edge (e->dest);
833 /* Now we know the incoming edge to BB that has the argument for the
834 RHS of our new assignment statement. */
835 if (e0 == e)
836 arg = arg0;
837 else
838 arg = arg1;
840 /* If the middle basic block was empty or is defining the
841 PHI arguments and this is a single phi where the args are different
842 for the edges e0 and e1 then we can remove the middle basic block. */
843 if (emtpy_or_with_defined_p
844 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
845 e0, e1) == phi)
847 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
848 /* Note that we optimized this PHI. */
849 return 2;
851 else
853 /* Replace the PHI arguments with arg. */
854 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
855 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
856 if (dump_file && (dump_flags & TDF_DETAILS))
858 fprintf (dump_file, "PHI ");
859 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
860 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
861 cond_bb->index);
862 print_generic_expr (dump_file, arg, 0);
863 fprintf (dump_file, ".\n");
865 return 1;
870 /* Now optimize (x != 0) ? x + y : y to just y.
871 The following condition is too restrictive, there can easily be another
872 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
873 gimple assign = last_and_only_stmt (middle_bb);
874 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
875 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
876 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
877 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
878 return 0;
880 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
881 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
882 return 0;
884 /* Only transform if it removes the condition. */
885 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
886 return 0;
888 /* Size-wise, this is always profitable. */
889 if (optimize_bb_for_speed_p (cond_bb)
890 /* The special case is useless if it has a low probability. */
891 && profile_status_for_fn (cfun) != PROFILE_ABSENT
892 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
893 /* If assign is cheap, there is no point avoiding it. */
894 && estimate_num_insns (assign, &eni_time_weights)
895 >= 3 * estimate_num_insns (cond, &eni_time_weights))
896 return 0;
898 tree lhs = gimple_assign_lhs (assign);
899 tree rhs1 = gimple_assign_rhs1 (assign);
900 tree rhs2 = gimple_assign_rhs2 (assign);
901 enum tree_code code_def = gimple_assign_rhs_code (assign);
902 tree cond_lhs = gimple_cond_lhs (cond);
903 tree cond_rhs = gimple_cond_rhs (cond);
905 if (((code == NE_EXPR && e1 == false_edge)
906 || (code == EQ_EXPR && e1 == true_edge))
907 && arg0 == lhs
908 && ((arg1 == rhs1
909 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
910 && neutral_element_p (code_def, cond_rhs, true))
911 || (arg1 == rhs2
912 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
913 && neutral_element_p (code_def, cond_rhs, false))
914 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
915 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
916 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
917 && absorbing_element_p (code_def, cond_rhs))))
919 gsi = gsi_for_stmt (cond);
920 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
921 gsi_move_before (&gsi_from, &gsi);
922 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
923 return 2;
926 return 0;
929 /* The function minmax_replacement does the main work of doing the minmax
930 replacement. Return true if the replacement is done. Otherwise return
931 false.
932 BB is the basic block where the replacement is going to be done on. ARG0
933 is argument 0 from the PHI. Likewise for ARG1. */
935 static bool
936 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
937 edge e0, edge e1, gimple phi,
938 tree arg0, tree arg1)
940 tree result, type;
941 gcond *cond;
942 gassign *new_stmt;
943 edge true_edge, false_edge;
944 enum tree_code cmp, minmax, ass_code;
945 tree smaller, larger, arg_true, arg_false;
946 gimple_stmt_iterator gsi, gsi_from;
948 type = TREE_TYPE (PHI_RESULT (phi));
950 /* The optimization may be unsafe due to NaNs. */
951 if (HONOR_NANS (type))
952 return false;
954 cond = as_a <gcond *> (last_stmt (cond_bb));
955 cmp = gimple_cond_code (cond);
957 /* This transformation is only valid for order comparisons. Record which
958 operand is smaller/larger if the result of the comparison is true. */
959 if (cmp == LT_EXPR || cmp == LE_EXPR)
961 smaller = gimple_cond_lhs (cond);
962 larger = gimple_cond_rhs (cond);
964 else if (cmp == GT_EXPR || cmp == GE_EXPR)
966 smaller = gimple_cond_rhs (cond);
967 larger = gimple_cond_lhs (cond);
969 else
970 return false;
972 /* We need to know which is the true edge and which is the false
973 edge so that we know if have abs or negative abs. */
974 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
976 /* Forward the edges over the middle basic block. */
977 if (true_edge->dest == middle_bb)
978 true_edge = EDGE_SUCC (true_edge->dest, 0);
979 if (false_edge->dest == middle_bb)
980 false_edge = EDGE_SUCC (false_edge->dest, 0);
982 if (true_edge == e0)
984 gcc_assert (false_edge == e1);
985 arg_true = arg0;
986 arg_false = arg1;
988 else
990 gcc_assert (false_edge == e0);
991 gcc_assert (true_edge == e1);
992 arg_true = arg1;
993 arg_false = arg0;
996 if (empty_block_p (middle_bb))
998 if (operand_equal_for_phi_arg_p (arg_true, smaller)
999 && operand_equal_for_phi_arg_p (arg_false, larger))
1001 /* Case
1003 if (smaller < larger)
1004 rslt = smaller;
1005 else
1006 rslt = larger; */
1007 minmax = MIN_EXPR;
1009 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1010 && operand_equal_for_phi_arg_p (arg_true, larger))
1011 minmax = MAX_EXPR;
1012 else
1013 return false;
1015 else
1017 /* Recognize the following case, assuming d <= u:
1019 if (a <= u)
1020 b = MAX (a, d);
1021 x = PHI <b, u>
1023 This is equivalent to
1025 b = MAX (a, d);
1026 x = MIN (b, u); */
1028 gimple assign = last_and_only_stmt (middle_bb);
1029 tree lhs, op0, op1, bound;
1031 if (!assign
1032 || gimple_code (assign) != GIMPLE_ASSIGN)
1033 return false;
1035 lhs = gimple_assign_lhs (assign);
1036 ass_code = gimple_assign_rhs_code (assign);
1037 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1038 return false;
1039 op0 = gimple_assign_rhs1 (assign);
1040 op1 = gimple_assign_rhs2 (assign);
1042 if (true_edge->src == middle_bb)
1044 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1045 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1046 return false;
1048 if (operand_equal_for_phi_arg_p (arg_false, larger))
1050 /* Case
1052 if (smaller < larger)
1054 r' = MAX_EXPR (smaller, bound)
1056 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1057 if (ass_code != MAX_EXPR)
1058 return false;
1060 minmax = MIN_EXPR;
1061 if (operand_equal_for_phi_arg_p (op0, smaller))
1062 bound = op1;
1063 else if (operand_equal_for_phi_arg_p (op1, smaller))
1064 bound = op0;
1065 else
1066 return false;
1068 /* We need BOUND <= LARGER. */
1069 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1070 bound, larger)))
1071 return false;
1073 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1075 /* Case
1077 if (smaller < larger)
1079 r' = MIN_EXPR (larger, bound)
1081 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1082 if (ass_code != MIN_EXPR)
1083 return false;
1085 minmax = MAX_EXPR;
1086 if (operand_equal_for_phi_arg_p (op0, larger))
1087 bound = op1;
1088 else if (operand_equal_for_phi_arg_p (op1, larger))
1089 bound = op0;
1090 else
1091 return false;
1093 /* We need BOUND >= SMALLER. */
1094 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1095 bound, smaller)))
1096 return false;
1098 else
1099 return false;
1101 else
1103 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1104 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1105 return false;
1107 if (operand_equal_for_phi_arg_p (arg_true, larger))
1109 /* Case
1111 if (smaller > larger)
1113 r' = MIN_EXPR (smaller, bound)
1115 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1116 if (ass_code != MIN_EXPR)
1117 return false;
1119 minmax = MAX_EXPR;
1120 if (operand_equal_for_phi_arg_p (op0, smaller))
1121 bound = op1;
1122 else if (operand_equal_for_phi_arg_p (op1, smaller))
1123 bound = op0;
1124 else
1125 return false;
1127 /* We need BOUND >= LARGER. */
1128 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1129 bound, larger)))
1130 return false;
1132 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1134 /* Case
1136 if (smaller > larger)
1138 r' = MAX_EXPR (larger, bound)
1140 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1141 if (ass_code != MAX_EXPR)
1142 return false;
1144 minmax = MIN_EXPR;
1145 if (operand_equal_for_phi_arg_p (op0, larger))
1146 bound = op1;
1147 else if (operand_equal_for_phi_arg_p (op1, larger))
1148 bound = op0;
1149 else
1150 return false;
1152 /* We need BOUND <= SMALLER. */
1153 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1154 bound, smaller)))
1155 return false;
1157 else
1158 return false;
1161 /* Move the statement from the middle block. */
1162 gsi = gsi_last_bb (cond_bb);
1163 gsi_from = gsi_last_nondebug_bb (middle_bb);
1164 gsi_move_before (&gsi_from, &gsi);
1167 /* Emit the statement to compute min/max. */
1168 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1169 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1170 gsi = gsi_last_bb (cond_bb);
1171 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1173 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1174 return true;
1177 /* The function absolute_replacement does the main work of doing the absolute
1178 replacement. Return true if the replacement is done. Otherwise return
1179 false.
1180 bb is the basic block where the replacement is going to be done on. arg0
1181 is argument 0 from the phi. Likewise for arg1. */
1183 static bool
1184 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1185 edge e0 ATTRIBUTE_UNUSED, edge e1,
1186 gimple phi, tree arg0, tree arg1)
1188 tree result;
1189 gassign *new_stmt;
1190 gimple cond;
1191 gimple_stmt_iterator gsi;
1192 edge true_edge, false_edge;
1193 gimple assign;
1194 edge e;
1195 tree rhs, lhs;
1196 bool negate;
1197 enum tree_code cond_code;
1199 /* If the type says honor signed zeros we cannot do this
1200 optimization. */
1201 if (HONOR_SIGNED_ZEROS (arg1))
1202 return false;
1204 /* OTHER_BLOCK must have only one executable statement which must have the
1205 form arg0 = -arg1 or arg1 = -arg0. */
1207 assign = last_and_only_stmt (middle_bb);
1208 /* If we did not find the proper negation assignment, then we can not
1209 optimize. */
1210 if (assign == NULL)
1211 return false;
1213 /* If we got here, then we have found the only executable statement
1214 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1215 arg1 = -arg0, then we can not optimize. */
1216 if (gimple_code (assign) != GIMPLE_ASSIGN)
1217 return false;
1219 lhs = gimple_assign_lhs (assign);
1221 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1222 return false;
1224 rhs = gimple_assign_rhs1 (assign);
1226 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1227 if (!(lhs == arg0 && rhs == arg1)
1228 && !(lhs == arg1 && rhs == arg0))
1229 return false;
1231 cond = last_stmt (cond_bb);
1232 result = PHI_RESULT (phi);
1234 /* Only relationals comparing arg[01] against zero are interesting. */
1235 cond_code = gimple_cond_code (cond);
1236 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1237 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1238 return false;
1240 /* Make sure the conditional is arg[01] OP y. */
1241 if (gimple_cond_lhs (cond) != rhs)
1242 return false;
1244 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1245 ? real_zerop (gimple_cond_rhs (cond))
1246 : integer_zerop (gimple_cond_rhs (cond)))
1248 else
1249 return false;
1251 /* We need to know which is the true edge and which is the false
1252 edge so that we know if have abs or negative abs. */
1253 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1255 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1256 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1257 the false edge goes to OTHER_BLOCK. */
1258 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1259 e = true_edge;
1260 else
1261 e = false_edge;
1263 if (e->dest == middle_bb)
1264 negate = true;
1265 else
1266 negate = false;
1268 result = duplicate_ssa_name (result, NULL);
1270 if (negate)
1271 lhs = make_ssa_name (TREE_TYPE (result));
1272 else
1273 lhs = result;
1275 /* Build the modify expression with abs expression. */
1276 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1278 gsi = gsi_last_bb (cond_bb);
1279 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1281 if (negate)
1283 /* Get the right GSI. We want to insert after the recently
1284 added ABS_EXPR statement (which we know is the first statement
1285 in the block. */
1286 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1288 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1291 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1293 /* Note that we optimized this PHI. */
1294 return true;
1297 /* The function neg_replacement replaces conditional negation with
1298 equivalent straight line code. Returns TRUE if replacement is done,
1299 otherwise returns FALSE.
1301 COND_BB branches around negation occuring in MIDDLE_BB.
1303 E0 and E1 are edges out of COND_BB. E0 reaches MIDDLE_BB and
1304 E1 reaches the other successor which should contain PHI with
1305 arguments ARG0 and ARG1.
1307 Assuming negation is to occur when the condition is true,
1308 then the non-branching sequence is:
1310 result = (rhs ^ -cond) + cond
1312 Inverting the condition or its result gives us negation
1313 when the original condition is false. */
1315 static bool
1316 neg_replacement (basic_block cond_bb, basic_block middle_bb,
1317 edge e0 ATTRIBUTE_UNUSED, edge e1,
1318 gimple phi, tree arg0, tree arg1)
1320 gimple new_stmt, cond;
1321 gimple_stmt_iterator gsi;
1322 gimple assign;
1323 edge true_edge, false_edge;
1324 tree rhs, lhs;
1325 enum tree_code cond_code;
1326 bool invert = false;
1328 /* This transformation performs logical operations on the
1329 incoming arguments. So force them to be integral types. */
1330 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
1331 return false;
1333 /* OTHER_BLOCK must have only one executable statement which must have the
1334 form arg0 = -arg1 or arg1 = -arg0. */
1336 assign = last_and_only_stmt (middle_bb);
1337 /* If we did not find the proper negation assignment, then we can not
1338 optimize. */
1339 if (assign == NULL)
1340 return false;
1342 /* If we got here, then we have found the only executable statement
1343 in OTHER_BLOCK. If it is anything other than arg0 = -arg1 or
1344 arg1 = -arg0, then we can not optimize. */
1345 if (gimple_code (assign) != GIMPLE_ASSIGN)
1346 return false;
1348 lhs = gimple_assign_lhs (assign);
1350 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1351 return false;
1353 rhs = gimple_assign_rhs1 (assign);
1355 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1356 if (!(lhs == arg0 && rhs == arg1)
1357 && !(lhs == arg1 && rhs == arg0))
1358 return false;
1360 /* The basic sequence assumes we negate when the condition is true.
1361 If we need the opposite, then we will either need to invert the
1362 condition or its result. */
1363 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1364 invert = false_edge->dest == middle_bb;
1366 /* Unlike abs_replacement, we can handle arbitrary conditionals here. */
1367 cond = last_stmt (cond_bb);
1368 cond_code = gimple_cond_code (cond);
1370 /* If inversion is needed, first try to invert the test since
1371 that's cheapest. */
1372 if (invert)
1374 bool honor_nans = HONOR_NANS (gimple_cond_lhs (cond));
1375 enum tree_code new_code = invert_tree_comparison (cond_code, honor_nans);
1377 /* If invert_tree_comparison was successful, then use its return
1378 value as the new code and note that inversion is no longer
1379 needed. */
1380 if (new_code != ERROR_MARK)
1382 cond_code = new_code;
1383 invert = false;
1387 tree cond_val = make_ssa_name (boolean_type_node);
1388 new_stmt = gimple_build_assign (cond_val, cond_code,
1389 gimple_cond_lhs (cond),
1390 gimple_cond_rhs (cond));
1391 gsi = gsi_last_bb (cond_bb);
1392 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1394 /* If we still need inversion, then invert the result of the
1395 condition. */
1396 if (invert)
1398 tree tmp = make_ssa_name (boolean_type_node);
1399 new_stmt = gimple_build_assign (tmp, BIT_XOR_EXPR, cond_val,
1400 boolean_true_node);
1401 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1402 cond_val = tmp;
1405 /* Get the condition in the right type so that we can perform
1406 logical and arithmetic operations on it. */
1407 tree cond_val_converted = make_ssa_name (TREE_TYPE (rhs));
1408 new_stmt = gimple_build_assign (cond_val_converted, NOP_EXPR, cond_val);
1409 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1411 tree neg_cond_val_converted = make_ssa_name (TREE_TYPE (rhs));
1412 new_stmt = gimple_build_assign (neg_cond_val_converted, NEGATE_EXPR,
1413 cond_val_converted);
1414 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1416 tree tmp = make_ssa_name (TREE_TYPE (rhs));
1417 new_stmt = gimple_build_assign (tmp, BIT_XOR_EXPR, rhs,
1418 neg_cond_val_converted);
1419 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1421 tree new_lhs = make_ssa_name (TREE_TYPE (rhs));
1422 new_stmt = gimple_build_assign (new_lhs, PLUS_EXPR, tmp, cond_val_converted);
1423 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1425 replace_phi_edge_with_variable (cond_bb, e1, phi, new_lhs);
1427 /* Note that we optimized this PHI. */
1428 return true;
1431 /* Auxiliary functions to determine the set of memory accesses which
1432 can't trap because they are preceded by accesses to the same memory
1433 portion. We do that for MEM_REFs, so we only need to track
1434 the SSA_NAME of the pointer indirectly referenced. The algorithm
1435 simply is a walk over all instructions in dominator order. When
1436 we see an MEM_REF we determine if we've already seen a same
1437 ref anywhere up to the root of the dominator tree. If we do the
1438 current access can't trap. If we don't see any dominating access
1439 the current access might trap, but might also make later accesses
1440 non-trapping, so we remember it. We need to be careful with loads
1441 or stores, for instance a load might not trap, while a store would,
1442 so if we see a dominating read access this doesn't mean that a later
1443 write access would not trap. Hence we also need to differentiate the
1444 type of access(es) seen.
1446 ??? We currently are very conservative and assume that a load might
1447 trap even if a store doesn't (write-only memory). This probably is
1448 overly conservative. */
1450 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1451 through it was seen, which would constitute a no-trap region for
1452 same accesses. */
1453 struct name_to_bb
1455 unsigned int ssa_name_ver;
1456 unsigned int phase;
1457 bool store;
1458 HOST_WIDE_INT offset, size;
1459 basic_block bb;
1462 /* Hashtable helpers. */
1464 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1466 typedef name_to_bb value_type;
1467 typedef name_to_bb compare_type;
1468 static inline hashval_t hash (const value_type *);
1469 static inline bool equal (const value_type *, const compare_type *);
1472 /* Used for quick clearing of the hash-table when we see calls.
1473 Hash entries with phase < nt_call_phase are invalid. */
1474 static unsigned int nt_call_phase;
1476 /* The hash function. */
1478 inline hashval_t
1479 ssa_names_hasher::hash (const value_type *n)
1481 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1482 ^ (n->offset << 6) ^ (n->size << 3);
1485 /* The equality function of *P1 and *P2. */
1487 inline bool
1488 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1490 return n1->ssa_name_ver == n2->ssa_name_ver
1491 && n1->store == n2->store
1492 && n1->offset == n2->offset
1493 && n1->size == n2->size;
1496 class nontrapping_dom_walker : public dom_walker
1498 public:
1499 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1500 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1502 virtual void before_dom_children (basic_block);
1503 virtual void after_dom_children (basic_block);
1505 private:
1507 /* We see the expression EXP in basic block BB. If it's an interesting
1508 expression (an MEM_REF through an SSA_NAME) possibly insert the
1509 expression into the set NONTRAP or the hash table of seen expressions.
1510 STORE is true if this expression is on the LHS, otherwise it's on
1511 the RHS. */
1512 void add_or_mark_expr (basic_block, tree, bool);
1514 hash_set<tree> *m_nontrapping;
1516 /* The hash table for remembering what we've seen. */
1517 hash_table<ssa_names_hasher> m_seen_ssa_names;
1520 /* Called by walk_dominator_tree, when entering the block BB. */
1521 void
1522 nontrapping_dom_walker::before_dom_children (basic_block bb)
1524 edge e;
1525 edge_iterator ei;
1526 gimple_stmt_iterator gsi;
1528 /* If we haven't seen all our predecessors, clear the hash-table. */
1529 FOR_EACH_EDGE (e, ei, bb->preds)
1530 if ((((size_t)e->src->aux) & 2) == 0)
1532 nt_call_phase++;
1533 break;
1536 /* Mark this BB as being on the path to dominator root and as visited. */
1537 bb->aux = (void*)(1 | 2);
1539 /* And walk the statements in order. */
1540 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1542 gimple stmt = gsi_stmt (gsi);
1544 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1545 nt_call_phase++;
1546 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1548 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1549 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1554 /* Called by walk_dominator_tree, when basic block BB is exited. */
1555 void
1556 nontrapping_dom_walker::after_dom_children (basic_block bb)
1558 /* This BB isn't on the path to dominator root anymore. */
1559 bb->aux = (void*)2;
1562 /* We see the expression EXP in basic block BB. If it's an interesting
1563 expression (an MEM_REF through an SSA_NAME) possibly insert the
1564 expression into the set NONTRAP or the hash table of seen expressions.
1565 STORE is true if this expression is on the LHS, otherwise it's on
1566 the RHS. */
1567 void
1568 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1570 HOST_WIDE_INT size;
1572 if (TREE_CODE (exp) == MEM_REF
1573 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1574 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1575 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1577 tree name = TREE_OPERAND (exp, 0);
1578 struct name_to_bb map;
1579 name_to_bb **slot;
1580 struct name_to_bb *n2bb;
1581 basic_block found_bb = 0;
1583 /* Try to find the last seen MEM_REF through the same
1584 SSA_NAME, which can trap. */
1585 map.ssa_name_ver = SSA_NAME_VERSION (name);
1586 map.phase = 0;
1587 map.bb = 0;
1588 map.store = store;
1589 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1590 map.size = size;
1592 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1593 n2bb = *slot;
1594 if (n2bb && n2bb->phase >= nt_call_phase)
1595 found_bb = n2bb->bb;
1597 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1598 (it's in a basic block on the path from us to the dominator root)
1599 then we can't trap. */
1600 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1602 m_nontrapping->add (exp);
1604 else
1606 /* EXP might trap, so insert it into the hash table. */
1607 if (n2bb)
1609 n2bb->phase = nt_call_phase;
1610 n2bb->bb = bb;
1612 else
1614 n2bb = XNEW (struct name_to_bb);
1615 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1616 n2bb->phase = nt_call_phase;
1617 n2bb->bb = bb;
1618 n2bb->store = store;
1619 n2bb->offset = map.offset;
1620 n2bb->size = size;
1621 *slot = n2bb;
1627 /* This is the entry point of gathering non trapping memory accesses.
1628 It will do a dominator walk over the whole function, and it will
1629 make use of the bb->aux pointers. It returns a set of trees
1630 (the MEM_REFs itself) which can't trap. */
1631 static hash_set<tree> *
1632 get_non_trapping (void)
1634 nt_call_phase = 0;
1635 hash_set<tree> *nontrap = new hash_set<tree>;
1636 /* We're going to do a dominator walk, so ensure that we have
1637 dominance information. */
1638 calculate_dominance_info (CDI_DOMINATORS);
1640 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1641 .walk (cfun->cfg->x_entry_block_ptr);
1643 clear_aux_for_blocks ();
1644 return nontrap;
1647 /* Do the main work of conditional store replacement. We already know
1648 that the recognized pattern looks like so:
1650 split:
1651 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1652 MIDDLE_BB:
1653 something
1654 fallthrough (edge E0)
1655 JOIN_BB:
1656 some more
1658 We check that MIDDLE_BB contains only one store, that that store
1659 doesn't trap (not via NOTRAP, but via checking if an access to the same
1660 memory location dominates us) and that the store has a "simple" RHS. */
1662 static bool
1663 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1664 edge e0, edge e1, hash_set<tree> *nontrap)
1666 gimple assign = last_and_only_stmt (middle_bb);
1667 tree lhs, rhs, name, name2;
1668 gphi *newphi;
1669 gassign *new_stmt;
1670 gimple_stmt_iterator gsi;
1671 source_location locus;
1673 /* Check if middle_bb contains of only one store. */
1674 if (!assign
1675 || !gimple_assign_single_p (assign)
1676 || gimple_has_volatile_ops (assign))
1677 return false;
1679 locus = gimple_location (assign);
1680 lhs = gimple_assign_lhs (assign);
1681 rhs = gimple_assign_rhs1 (assign);
1682 if (TREE_CODE (lhs) != MEM_REF
1683 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1684 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1685 return false;
1687 /* Prove that we can move the store down. We could also check
1688 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1689 whose value is not available readily, which we want to avoid. */
1690 if (!nontrap->contains (lhs))
1691 return false;
1693 /* Now we've checked the constraints, so do the transformation:
1694 1) Remove the single store. */
1695 gsi = gsi_for_stmt (assign);
1696 unlink_stmt_vdef (assign);
1697 gsi_remove (&gsi, true);
1698 release_defs (assign);
1700 /* 2) Insert a load from the memory of the store to the temporary
1701 on the edge which did not contain the store. */
1702 lhs = unshare_expr (lhs);
1703 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1704 new_stmt = gimple_build_assign (name, lhs);
1705 gimple_set_location (new_stmt, locus);
1706 gsi_insert_on_edge (e1, new_stmt);
1708 /* 3) Create a PHI node at the join block, with one argument
1709 holding the old RHS, and the other holding the temporary
1710 where we stored the old memory contents. */
1711 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1712 newphi = create_phi_node (name2, join_bb);
1713 add_phi_arg (newphi, rhs, e0, locus);
1714 add_phi_arg (newphi, name, e1, locus);
1716 lhs = unshare_expr (lhs);
1717 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1719 /* 4) Insert that PHI node. */
1720 gsi = gsi_after_labels (join_bb);
1721 if (gsi_end_p (gsi))
1723 gsi = gsi_last_bb (join_bb);
1724 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1726 else
1727 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1729 return true;
1732 /* Do the main work of conditional store replacement. */
1734 static bool
1735 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1736 basic_block join_bb, gimple then_assign,
1737 gimple else_assign)
1739 tree lhs_base, lhs, then_rhs, else_rhs, name;
1740 source_location then_locus, else_locus;
1741 gimple_stmt_iterator gsi;
1742 gphi *newphi;
1743 gassign *new_stmt;
1745 if (then_assign == NULL
1746 || !gimple_assign_single_p (then_assign)
1747 || gimple_clobber_p (then_assign)
1748 || gimple_has_volatile_ops (then_assign)
1749 || else_assign == NULL
1750 || !gimple_assign_single_p (else_assign)
1751 || gimple_clobber_p (else_assign)
1752 || gimple_has_volatile_ops (else_assign))
1753 return false;
1755 lhs = gimple_assign_lhs (then_assign);
1756 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1757 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1758 return false;
1760 lhs_base = get_base_address (lhs);
1761 if (lhs_base == NULL_TREE
1762 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1763 return false;
1765 then_rhs = gimple_assign_rhs1 (then_assign);
1766 else_rhs = gimple_assign_rhs1 (else_assign);
1767 then_locus = gimple_location (then_assign);
1768 else_locus = gimple_location (else_assign);
1770 /* Now we've checked the constraints, so do the transformation:
1771 1) Remove the stores. */
1772 gsi = gsi_for_stmt (then_assign);
1773 unlink_stmt_vdef (then_assign);
1774 gsi_remove (&gsi, true);
1775 release_defs (then_assign);
1777 gsi = gsi_for_stmt (else_assign);
1778 unlink_stmt_vdef (else_assign);
1779 gsi_remove (&gsi, true);
1780 release_defs (else_assign);
1782 /* 2) Create a PHI node at the join block, with one argument
1783 holding the old RHS, and the other holding the temporary
1784 where we stored the old memory contents. */
1785 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1786 newphi = create_phi_node (name, join_bb);
1787 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1788 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1790 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1792 /* 3) Insert that PHI node. */
1793 gsi = gsi_after_labels (join_bb);
1794 if (gsi_end_p (gsi))
1796 gsi = gsi_last_bb (join_bb);
1797 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1799 else
1800 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1802 return true;
1805 /* Conditional store replacement. We already know
1806 that the recognized pattern looks like so:
1808 split:
1809 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1810 THEN_BB:
1812 X = Y;
1814 goto JOIN_BB;
1815 ELSE_BB:
1817 X = Z;
1819 fallthrough (edge E0)
1820 JOIN_BB:
1821 some more
1823 We check that it is safe to sink the store to JOIN_BB by verifying that
1824 there are no read-after-write or write-after-write dependencies in
1825 THEN_BB and ELSE_BB. */
1827 static bool
1828 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1829 basic_block join_bb)
1831 gimple then_assign = last_and_only_stmt (then_bb);
1832 gimple else_assign = last_and_only_stmt (else_bb);
1833 vec<data_reference_p> then_datarefs, else_datarefs;
1834 vec<ddr_p> then_ddrs, else_ddrs;
1835 gimple then_store, else_store;
1836 bool found, ok = false, res;
1837 struct data_dependence_relation *ddr;
1838 data_reference_p then_dr, else_dr;
1839 int i, j;
1840 tree then_lhs, else_lhs;
1841 basic_block blocks[3];
1843 if (MAX_STORES_TO_SINK == 0)
1844 return false;
1846 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1847 if (then_assign && else_assign)
1848 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1849 then_assign, else_assign);
1851 /* Find data references. */
1852 then_datarefs.create (1);
1853 else_datarefs.create (1);
1854 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1855 == chrec_dont_know)
1856 || !then_datarefs.length ()
1857 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1858 == chrec_dont_know)
1859 || !else_datarefs.length ())
1861 free_data_refs (then_datarefs);
1862 free_data_refs (else_datarefs);
1863 return false;
1866 /* Find pairs of stores with equal LHS. */
1867 auto_vec<gimple, 1> then_stores, else_stores;
1868 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1870 if (DR_IS_READ (then_dr))
1871 continue;
1873 then_store = DR_STMT (then_dr);
1874 then_lhs = gimple_get_lhs (then_store);
1875 if (then_lhs == NULL_TREE)
1876 continue;
1877 found = false;
1879 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1881 if (DR_IS_READ (else_dr))
1882 continue;
1884 else_store = DR_STMT (else_dr);
1885 else_lhs = gimple_get_lhs (else_store);
1886 if (else_lhs == NULL_TREE)
1887 continue;
1889 if (operand_equal_p (then_lhs, else_lhs, 0))
1891 found = true;
1892 break;
1896 if (!found)
1897 continue;
1899 then_stores.safe_push (then_store);
1900 else_stores.safe_push (else_store);
1903 /* No pairs of stores found. */
1904 if (!then_stores.length ()
1905 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1907 free_data_refs (then_datarefs);
1908 free_data_refs (else_datarefs);
1909 return false;
1912 /* Compute and check data dependencies in both basic blocks. */
1913 then_ddrs.create (1);
1914 else_ddrs.create (1);
1915 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1916 vNULL, false)
1917 || !compute_all_dependences (else_datarefs, &else_ddrs,
1918 vNULL, false))
1920 free_dependence_relations (then_ddrs);
1921 free_dependence_relations (else_ddrs);
1922 free_data_refs (then_datarefs);
1923 free_data_refs (else_datarefs);
1924 return false;
1926 blocks[0] = then_bb;
1927 blocks[1] = else_bb;
1928 blocks[2] = join_bb;
1929 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1931 /* Check that there are no read-after-write or write-after-write dependencies
1932 in THEN_BB. */
1933 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1935 struct data_reference *dra = DDR_A (ddr);
1936 struct data_reference *drb = DDR_B (ddr);
1938 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1939 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1940 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1941 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1942 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1943 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1945 free_dependence_relations (then_ddrs);
1946 free_dependence_relations (else_ddrs);
1947 free_data_refs (then_datarefs);
1948 free_data_refs (else_datarefs);
1949 return false;
1953 /* Check that there are no read-after-write or write-after-write dependencies
1954 in ELSE_BB. */
1955 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1957 struct data_reference *dra = DDR_A (ddr);
1958 struct data_reference *drb = DDR_B (ddr);
1960 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1961 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1962 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1963 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1964 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1965 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1967 free_dependence_relations (then_ddrs);
1968 free_dependence_relations (else_ddrs);
1969 free_data_refs (then_datarefs);
1970 free_data_refs (else_datarefs);
1971 return false;
1975 /* Sink stores with same LHS. */
1976 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1978 else_store = else_stores[i];
1979 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1980 then_store, else_store);
1981 ok = ok || res;
1984 free_dependence_relations (then_ddrs);
1985 free_dependence_relations (else_ddrs);
1986 free_data_refs (then_datarefs);
1987 free_data_refs (else_datarefs);
1989 return ok;
1992 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1994 static bool
1995 local_mem_dependence (gimple stmt, basic_block bb)
1997 tree vuse = gimple_vuse (stmt);
1998 gimple def;
2000 if (!vuse)
2001 return false;
2003 def = SSA_NAME_DEF_STMT (vuse);
2004 return (def && gimple_bb (def) == bb);
2007 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2008 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2009 and BB3 rejoins control flow following BB1 and BB2, look for
2010 opportunities to hoist loads as follows. If BB3 contains a PHI of
2011 two loads, one each occurring in BB1 and BB2, and the loads are
2012 provably of adjacent fields in the same structure, then move both
2013 loads into BB0. Of course this can only be done if there are no
2014 dependencies preventing such motion.
2016 One of the hoisted loads will always be speculative, so the
2017 transformation is currently conservative:
2019 - The fields must be strictly adjacent.
2020 - The two fields must occupy a single memory block that is
2021 guaranteed to not cross a page boundary.
2023 The last is difficult to prove, as such memory blocks should be
2024 aligned on the minimum of the stack alignment boundary and the
2025 alignment guaranteed by heap allocation interfaces. Thus we rely
2026 on a parameter for the alignment value.
2028 Provided a good value is used for the last case, the first
2029 restriction could possibly be relaxed. */
2031 static void
2032 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2033 basic_block bb2, basic_block bb3)
2035 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2036 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2037 gphi_iterator gsi;
2039 /* Walk the phis in bb3 looking for an opportunity. We are looking
2040 for phis of two SSA names, one each of which is defined in bb1 and
2041 bb2. */
2042 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2044 gphi *phi_stmt = gsi.phi ();
2045 gimple def1, def2, defswap;
2046 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
2047 tree tree_offset1, tree_offset2, tree_size2, next;
2048 int offset1, offset2, size2;
2049 unsigned align1;
2050 gimple_stmt_iterator gsi2;
2051 basic_block bb_for_def1, bb_for_def2;
2053 if (gimple_phi_num_args (phi_stmt) != 2
2054 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2055 continue;
2057 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2058 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2060 if (TREE_CODE (arg1) != SSA_NAME
2061 || TREE_CODE (arg2) != SSA_NAME
2062 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2063 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2064 continue;
2066 def1 = SSA_NAME_DEF_STMT (arg1);
2067 def2 = SSA_NAME_DEF_STMT (arg2);
2069 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2070 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2071 continue;
2073 /* Check the mode of the arguments to be sure a conditional move
2074 can be generated for it. */
2075 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2076 == CODE_FOR_nothing)
2077 continue;
2079 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2080 if (!gimple_assign_single_p (def1)
2081 || !gimple_assign_single_p (def2)
2082 || gimple_has_volatile_ops (def1)
2083 || gimple_has_volatile_ops (def2))
2084 continue;
2086 ref1 = gimple_assign_rhs1 (def1);
2087 ref2 = gimple_assign_rhs1 (def2);
2089 if (TREE_CODE (ref1) != COMPONENT_REF
2090 || TREE_CODE (ref2) != COMPONENT_REF)
2091 continue;
2093 /* The zeroth operand of the two component references must be
2094 identical. It is not sufficient to compare get_base_address of
2095 the two references, because this could allow for different
2096 elements of the same array in the two trees. It is not safe to
2097 assume that the existence of one array element implies the
2098 existence of a different one. */
2099 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2100 continue;
2102 field1 = TREE_OPERAND (ref1, 1);
2103 field2 = TREE_OPERAND (ref2, 1);
2105 /* Check for field adjacency, and ensure field1 comes first. */
2106 for (next = DECL_CHAIN (field1);
2107 next && TREE_CODE (next) != FIELD_DECL;
2108 next = DECL_CHAIN (next))
2111 if (next != field2)
2113 for (next = DECL_CHAIN (field2);
2114 next && TREE_CODE (next) != FIELD_DECL;
2115 next = DECL_CHAIN (next))
2118 if (next != field1)
2119 continue;
2121 fieldswap = field1;
2122 field1 = field2;
2123 field2 = fieldswap;
2124 defswap = def1;
2125 def1 = def2;
2126 def2 = defswap;
2129 bb_for_def1 = gimple_bb (def1);
2130 bb_for_def2 = gimple_bb (def2);
2132 /* Check for proper alignment of the first field. */
2133 tree_offset1 = bit_position (field1);
2134 tree_offset2 = bit_position (field2);
2135 tree_size2 = DECL_SIZE (field2);
2137 if (!tree_fits_uhwi_p (tree_offset1)
2138 || !tree_fits_uhwi_p (tree_offset2)
2139 || !tree_fits_uhwi_p (tree_size2))
2140 continue;
2142 offset1 = tree_to_uhwi (tree_offset1);
2143 offset2 = tree_to_uhwi (tree_offset2);
2144 size2 = tree_to_uhwi (tree_size2);
2145 align1 = DECL_ALIGN (field1) % param_align_bits;
2147 if (offset1 % BITS_PER_UNIT != 0)
2148 continue;
2150 /* For profitability, the two field references should fit within
2151 a single cache line. */
2152 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2153 continue;
2155 /* The two expressions cannot be dependent upon vdefs defined
2156 in bb1/bb2. */
2157 if (local_mem_dependence (def1, bb_for_def1)
2158 || local_mem_dependence (def2, bb_for_def2))
2159 continue;
2161 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2162 bb0. We hoist the first one first so that a cache miss is handled
2163 efficiently regardless of hardware cache-fill policy. */
2164 gsi2 = gsi_for_stmt (def1);
2165 gsi_move_to_bb_end (&gsi2, bb0);
2166 gsi2 = gsi_for_stmt (def2);
2167 gsi_move_to_bb_end (&gsi2, bb0);
2169 if (dump_file && (dump_flags & TDF_DETAILS))
2171 fprintf (dump_file,
2172 "\nHoisting adjacent loads from %d and %d into %d: \n",
2173 bb_for_def1->index, bb_for_def2->index, bb0->index);
2174 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2175 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2180 /* Determine whether we should attempt to hoist adjacent loads out of
2181 diamond patterns in pass_phiopt. Always hoist loads if
2182 -fhoist-adjacent-loads is specified and the target machine has
2183 both a conditional move instruction and a defined cache line size. */
2185 static bool
2186 gate_hoist_loads (void)
2188 return (flag_hoist_adjacent_loads == 1
2189 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2190 && HAVE_conditional_move);
2193 /* This pass tries to replaces an if-then-else block with an
2194 assignment. We have four kinds of transformations. Some of these
2195 transformations are also performed by the ifcvt RTL optimizer.
2197 Conditional Replacement
2198 -----------------------
2200 This transformation, implemented in conditional_replacement,
2201 replaces
2203 bb0:
2204 if (cond) goto bb2; else goto bb1;
2205 bb1:
2206 bb2:
2207 x = PHI <0 (bb1), 1 (bb0), ...>;
2209 with
2211 bb0:
2212 x' = cond;
2213 goto bb2;
2214 bb2:
2215 x = PHI <x' (bb0), ...>;
2217 We remove bb1 as it becomes unreachable. This occurs often due to
2218 gimplification of conditionals.
2220 Value Replacement
2221 -----------------
2223 This transformation, implemented in value_replacement, replaces
2225 bb0:
2226 if (a != b) goto bb2; else goto bb1;
2227 bb1:
2228 bb2:
2229 x = PHI <a (bb1), b (bb0), ...>;
2231 with
2233 bb0:
2234 bb2:
2235 x = PHI <b (bb0), ...>;
2237 This opportunity can sometimes occur as a result of other
2238 optimizations.
2241 Another case caught by value replacement looks like this:
2243 bb0:
2244 t1 = a == CONST;
2245 t2 = b > c;
2246 t3 = t1 & t2;
2247 if (t3 != 0) goto bb1; else goto bb2;
2248 bb1:
2249 bb2:
2250 x = PHI (CONST, a)
2252 Gets replaced with:
2253 bb0:
2254 bb2:
2255 t1 = a == CONST;
2256 t2 = b > c;
2257 t3 = t1 & t2;
2258 x = a;
2260 ABS Replacement
2261 ---------------
2263 This transformation, implemented in abs_replacement, replaces
2265 bb0:
2266 if (a >= 0) goto bb2; else goto bb1;
2267 bb1:
2268 x = -a;
2269 bb2:
2270 x = PHI <x (bb1), a (bb0), ...>;
2272 with
2274 bb0:
2275 x' = ABS_EXPR< a >;
2276 bb2:
2277 x = PHI <x' (bb0), ...>;
2279 MIN/MAX Replacement
2280 -------------------
2282 This transformation, minmax_replacement replaces
2284 bb0:
2285 if (a <= b) goto bb2; else goto bb1;
2286 bb1:
2287 bb2:
2288 x = PHI <b (bb1), a (bb0), ...>;
2290 with
2292 bb0:
2293 x' = MIN_EXPR (a, b)
2294 bb2:
2295 x = PHI <x' (bb0), ...>;
2297 A similar transformation is done for MAX_EXPR.
2300 This pass also performs a fifth transformation of a slightly different
2301 flavor.
2303 Adjacent Load Hoisting
2304 ----------------------
2306 This transformation replaces
2308 bb0:
2309 if (...) goto bb2; else goto bb1;
2310 bb1:
2311 x1 = (<expr>).field1;
2312 goto bb3;
2313 bb2:
2314 x2 = (<expr>).field2;
2315 bb3:
2316 # x = PHI <x1, x2>;
2318 with
2320 bb0:
2321 x1 = (<expr>).field1;
2322 x2 = (<expr>).field2;
2323 if (...) goto bb2; else goto bb1;
2324 bb1:
2325 goto bb3;
2326 bb2:
2327 bb3:
2328 # x = PHI <x1, x2>;
2330 The purpose of this transformation is to enable generation of conditional
2331 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2332 the loads is speculative, the transformation is restricted to very
2333 specific cases to avoid introducing a page fault. We are looking for
2334 the common idiom:
2336 if (...)
2337 x = y->left;
2338 else
2339 x = y->right;
2341 where left and right are typically adjacent pointers in a tree structure. */
2343 namespace {
2345 const pass_data pass_data_phiopt =
2347 GIMPLE_PASS, /* type */
2348 "phiopt", /* name */
2349 OPTGROUP_NONE, /* optinfo_flags */
2350 TV_TREE_PHIOPT, /* tv_id */
2351 ( PROP_cfg | PROP_ssa ), /* properties_required */
2352 0, /* properties_provided */
2353 0, /* properties_destroyed */
2354 0, /* todo_flags_start */
2355 0, /* todo_flags_finish */
2358 class pass_phiopt : public gimple_opt_pass
2360 public:
2361 pass_phiopt (gcc::context *ctxt)
2362 : gimple_opt_pass (pass_data_phiopt, ctxt)
2365 /* opt_pass methods: */
2366 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2367 virtual bool gate (function *) { return flag_ssa_phiopt; }
2368 virtual unsigned int execute (function *)
2370 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2373 }; // class pass_phiopt
2375 } // anon namespace
2377 gimple_opt_pass *
2378 make_pass_phiopt (gcc::context *ctxt)
2380 return new pass_phiopt (ctxt);
2383 namespace {
2385 const pass_data pass_data_cselim =
2387 GIMPLE_PASS, /* type */
2388 "cselim", /* name */
2389 OPTGROUP_NONE, /* optinfo_flags */
2390 TV_TREE_PHIOPT, /* tv_id */
2391 ( PROP_cfg | PROP_ssa ), /* properties_required */
2392 0, /* properties_provided */
2393 0, /* properties_destroyed */
2394 0, /* todo_flags_start */
2395 0, /* todo_flags_finish */
2398 class pass_cselim : public gimple_opt_pass
2400 public:
2401 pass_cselim (gcc::context *ctxt)
2402 : gimple_opt_pass (pass_data_cselim, ctxt)
2405 /* opt_pass methods: */
2406 virtual bool gate (function *) { return flag_tree_cselim; }
2407 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2409 }; // class pass_cselim
2411 } // anon namespace
2413 gimple_opt_pass *
2414 make_pass_cselim (gcc::context *ctxt)
2416 return new pass_cselim (ctxt);