cap frequency in make_forwarder_block
[official-gcc.git] / gcc / ada / exp_ch4.adb
blob98b24a9a6a138b33a1723d571f72f8b87e93e85c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Fixd; use Exp_Fixd;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Freeze; use Freeze;
46 with Inline; use Inline;
47 with Lib; use Lib;
48 with Namet; use Namet;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Par_SCO; use Par_SCO;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Res; use Sem_Res;
64 with Sem_Type; use Sem_Type;
65 with Sem_Util; use Sem_Util;
66 with Sem_Warn; use Sem_Warn;
67 with Sinfo; use Sinfo;
68 with Snames; use Snames;
69 with Stand; use Stand;
70 with SCIL_LL; use SCIL_LL;
71 with Targparm; use Targparm;
72 with Tbuild; use Tbuild;
73 with Ttypes; use Ttypes;
74 with Uintp; use Uintp;
75 with Urealp; use Urealp;
76 with Validsw; use Validsw;
78 package body Exp_Ch4 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Binary_Op_Validity_Checks (N : Node_Id);
85 pragma Inline (Binary_Op_Validity_Checks);
86 -- Performs validity checks for a binary operator
88 procedure Build_Boolean_Array_Proc_Call
89 (N : Node_Id;
90 Op1 : Node_Id;
91 Op2 : Node_Id);
92 -- If a boolean array assignment can be done in place, build call to
93 -- corresponding library procedure.
95 function Current_Anonymous_Master return Entity_Id;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
101 procedure Displace_Allocator_Pointer (N : Node_Id);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
107 procedure Expand_Allocator_Expression (N : Node_Id);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
111 procedure Expand_Array_Comparison (N : Node_Id);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
115 -- the actual comparison call that is made. Special processing (call a
116 -- run-time routine)
118 function Expand_Array_Equality
119 (Nod : Node_Id;
120 Lhs : Node_Id;
121 Rhs : Node_Id;
122 Bodies : List_Id;
123 Typ : Entity_Id) return Node_Id;
124 -- Expand an array equality into a call to a function implementing this
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
135 procedure Expand_Boolean_Operator (N : Node_Id);
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
139 procedure Expand_Short_Circuit_Operator (N : Node_Id);
140 -- Common expansion processing for short-circuit boolean operators
142 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
146 function Expand_Composite_Equality
147 (Nod : Node_Id;
148 Typ : Entity_Id;
149 Lhs : Node_Id;
150 Rhs : Node_Id;
151 Bodies : List_Id) return Node_Id;
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
154 -- to attach bodies of local functions that are created in the process. It
155 -- is the responsibility of the caller to insert those bodies at the right
156 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
157 -- the left and right sides for the comparison, and Typ is the type of the
158 -- objects to compare.
160 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
166 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
172 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
178 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
183 -- discriminants.
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
189 procedure Insert_Dereference_Action (N : Node_Id);
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
194 function Make_Array_Comparison_Op
195 (Typ : Entity_Id;
196 Nod : Node_Id) return Node_Id;
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
203 function Make_Boolean_Array_Op
204 (Typ : Entity_Id;
205 N : Node_Id) return Node_Id;
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
214 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
229 procedure Optimize_Length_Comparison (N : Node_Id);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
235 procedure Process_Transient_Object
236 (Decl : Node_Id;
237 Rel_Node : Node_Id);
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
245 procedure Rewrite_Comparison (N : Node_Id);
246 -- If N is the node for a comparison whose outcome can be determined at
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
253 procedure Tagged_Membership
254 (N : Node_Id;
255 SCIL_Node : out Node_Id;
256 Result : out Node_Id);
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
260 function Safe_In_Place_Array_Op
261 (Lhs : Node_Id;
262 Op1 : Node_Id;
263 Op2 : Node_Id) return Boolean;
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
267 procedure Unary_Op_Validity_Checks (N : Node_Id);
268 pragma Inline (Unary_Op_Validity_Checks);
269 -- Performs validity checks for a unary operator
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
275 procedure Binary_Op_Validity_Checks (N : Node_Id) is
276 begin
277 if Validity_Checks_On and Validity_Check_Operands then
278 Ensure_Valid (Left_Opnd (N));
279 Ensure_Valid (Right_Opnd (N));
280 end if;
281 end Binary_Op_Validity_Checks;
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
287 procedure Build_Boolean_Array_Proc_Call
288 (N : Node_Id;
289 Op1 : Node_Id;
290 Op2 : Node_Id)
292 Loc : constant Source_Ptr := Sloc (N);
293 Kind : constant Node_Kind := Nkind (Expression (N));
294 Target : constant Node_Id :=
295 Make_Attribute_Reference (Loc,
296 Prefix => Name (N),
297 Attribute_Name => Name_Address);
299 Arg1 : Node_Id := Op1;
300 Arg2 : Node_Id := Op2;
301 Call_Node : Node_Id;
302 Proc_Name : Entity_Id;
304 begin
305 if Kind = N_Op_Not then
306 if Nkind (Op1) in N_Binary_Op then
308 -- Use negated version of the binary operators
310 if Nkind (Op1) = N_Op_And then
311 Proc_Name := RTE (RE_Vector_Nand);
313 elsif Nkind (Op1) = N_Op_Or then
314 Proc_Name := RTE (RE_Vector_Nor);
316 else pragma Assert (Nkind (Op1) = N_Op_Xor);
317 Proc_Name := RTE (RE_Vector_Xor);
318 end if;
320 Call_Node :=
321 Make_Procedure_Call_Statement (Loc,
322 Name => New_Occurrence_Of (Proc_Name, Loc),
324 Parameter_Associations => New_List (
325 Target,
326 Make_Attribute_Reference (Loc,
327 Prefix => Left_Opnd (Op1),
328 Attribute_Name => Name_Address),
330 Make_Attribute_Reference (Loc,
331 Prefix => Right_Opnd (Op1),
332 Attribute_Name => Name_Address),
334 Make_Attribute_Reference (Loc,
335 Prefix => Left_Opnd (Op1),
336 Attribute_Name => Name_Length)));
338 else
339 Proc_Name := RTE (RE_Vector_Not);
341 Call_Node :=
342 Make_Procedure_Call_Statement (Loc,
343 Name => New_Occurrence_Of (Proc_Name, Loc),
344 Parameter_Associations => New_List (
345 Target,
347 Make_Attribute_Reference (Loc,
348 Prefix => Op1,
349 Attribute_Name => Name_Address),
351 Make_Attribute_Reference (Loc,
352 Prefix => Op1,
353 Attribute_Name => Name_Length)));
354 end if;
356 else
357 -- We use the following equivalences:
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
364 if Nkind (Op1) = N_Op_Not then
365 Arg1 := Right_Opnd (Op1);
366 Arg2 := Right_Opnd (Op2);
368 if Kind = N_Op_And then
369 Proc_Name := RTE (RE_Vector_Nor);
370 elsif Kind = N_Op_Or then
371 Proc_Name := RTE (RE_Vector_Nand);
372 else
373 Proc_Name := RTE (RE_Vector_Xor);
374 end if;
376 else
377 if Kind = N_Op_And then
378 Proc_Name := RTE (RE_Vector_And);
379 elsif Kind = N_Op_Or then
380 Proc_Name := RTE (RE_Vector_Or);
381 elsif Nkind (Op2) = N_Op_Not then
382 Proc_Name := RTE (RE_Vector_Nxor);
383 Arg2 := Right_Opnd (Op2);
384 else
385 Proc_Name := RTE (RE_Vector_Xor);
386 end if;
387 end if;
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => New_Occurrence_Of (Proc_Name, Loc),
392 Parameter_Associations => New_List (
393 Target,
394 Make_Attribute_Reference (Loc,
395 Prefix => Arg1,
396 Attribute_Name => Name_Address),
397 Make_Attribute_Reference (Loc,
398 Prefix => Arg2,
399 Attribute_Name => Name_Address),
400 Make_Attribute_Reference (Loc,
401 Prefix => Arg1,
402 Attribute_Name => Name_Length)));
403 end if;
405 Rewrite (N, Call_Node);
406 Analyze (N);
408 exception
409 when RE_Not_Available =>
410 return;
411 end Build_Boolean_Array_Proc_Call;
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
417 function Current_Anonymous_Master return Entity_Id is
418 Decls : List_Id;
419 Loc : Source_Ptr;
420 Subp_Body : Node_Id;
421 Unit_Decl : Node_Id;
422 Unit_Id : Entity_Id;
424 begin
425 Unit_Id := Cunit_Entity (Current_Sem_Unit);
427 -- Find the entity of the current unit
429 if Ekind (Unit_Id) = E_Subprogram_Body then
431 -- When processing subprogram bodies, the proper scope is always that
432 -- of the spec.
434 Subp_Body := Unit_Id;
435 while Present (Subp_Body)
436 and then Nkind (Subp_Body) /= N_Subprogram_Body
437 loop
438 Subp_Body := Parent (Subp_Body);
439 end loop;
441 Unit_Id := Corresponding_Spec (Subp_Body);
442 end if;
444 Loc := Sloc (Unit_Id);
445 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
447 -- Find the declarations list of the current unit
449 if Nkind (Unit_Decl) = N_Package_Declaration then
450 Unit_Decl := Specification (Unit_Decl);
451 Decls := Visible_Declarations (Unit_Decl);
453 if No (Decls) then
454 Decls := New_List (Make_Null_Statement (Loc));
455 Set_Visible_Declarations (Unit_Decl, Decls);
457 elsif Is_Empty_List (Decls) then
458 Append_To (Decls, Make_Null_Statement (Loc));
459 end if;
461 else
462 Decls := Declarations (Unit_Decl);
464 if No (Decls) then
465 Decls := New_List (Make_Null_Statement (Loc));
466 Set_Declarations (Unit_Decl, Decls);
468 elsif Is_Empty_List (Decls) then
469 Append_To (Decls, Make_Null_Statement (Loc));
470 end if;
471 end if;
473 -- The current unit has an existing anonymous master, traverse its
474 -- declarations and locate the entity.
476 if Has_Anonymous_Master (Unit_Id) then
477 declare
478 Decl : Node_Id;
479 Fin_Mas_Id : Entity_Id;
481 begin
482 Decl := First (Decls);
483 while Present (Decl) loop
485 -- Look for the first variable in the declarations whole type
486 -- is Finalization_Master.
488 if Nkind (Decl) = N_Object_Declaration then
489 Fin_Mas_Id := Defining_Identifier (Decl);
491 if Ekind (Fin_Mas_Id) = E_Variable
492 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
493 then
494 return Fin_Mas_Id;
495 end if;
496 end if;
498 Next (Decl);
499 end loop;
501 -- The master was not found even though the unit was labeled as
502 -- having one.
504 raise Program_Error;
505 end;
507 -- Create a new anonymous master
509 else
510 declare
511 First_Decl : constant Node_Id := First (Decls);
512 Action : Node_Id;
513 Fin_Mas_Id : Entity_Id;
515 begin
516 -- Since the master and its associated initialization is inserted
517 -- at top level, use the scope of the unit when analyzing.
519 Push_Scope (Unit_Id);
521 -- Create the finalization master
523 Fin_Mas_Id :=
524 Make_Defining_Identifier (Loc,
525 Chars => New_External_Name (Chars (Unit_Id), "AM"));
527 -- Generate:
528 -- <Fin_Mas_Id> : Finalization_Master;
530 Action :=
531 Make_Object_Declaration (Loc,
532 Defining_Identifier => Fin_Mas_Id,
533 Object_Definition =>
534 New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
536 Insert_Before_And_Analyze (First_Decl, Action);
538 -- Mark the unit to prevent the generation of multiple masters
540 Set_Has_Anonymous_Master (Unit_Id);
542 -- Do not set the base pool and mode of operation on .NET/JVM
543 -- since those targets do not support pools and all VM masters
544 -- are heterogeneous by default.
546 if VM_Target = No_VM then
548 -- Generate:
549 -- Set_Base_Pool
550 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
552 Action :=
553 Make_Procedure_Call_Statement (Loc,
554 Name =>
555 New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
557 Parameter_Associations => New_List (
558 New_Occurrence_Of (Fin_Mas_Id, Loc),
559 Make_Attribute_Reference (Loc,
560 Prefix =>
561 New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
562 Attribute_Name => Name_Unrestricted_Access)));
564 Insert_Before_And_Analyze (First_Decl, Action);
566 -- Generate:
567 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
569 Action :=
570 Make_Procedure_Call_Statement (Loc,
571 Name =>
572 New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
573 Parameter_Associations => New_List (
574 New_Occurrence_Of (Fin_Mas_Id, Loc)));
576 Insert_Before_And_Analyze (First_Decl, Action);
577 end if;
579 -- Restore the original state of the scope stack
581 Pop_Scope;
583 return Fin_Mas_Id;
584 end;
585 end if;
586 end Current_Anonymous_Master;
588 --------------------------------
589 -- Displace_Allocator_Pointer --
590 --------------------------------
592 procedure Displace_Allocator_Pointer (N : Node_Id) is
593 Loc : constant Source_Ptr := Sloc (N);
594 Orig_Node : constant Node_Id := Original_Node (N);
595 Dtyp : Entity_Id;
596 Etyp : Entity_Id;
597 PtrT : Entity_Id;
599 begin
600 -- Do nothing in case of VM targets: the virtual machine will handle
601 -- interfaces directly.
603 if not Tagged_Type_Expansion then
604 return;
605 end if;
607 pragma Assert (Nkind (N) = N_Identifier
608 and then Nkind (Orig_Node) = N_Allocator);
610 PtrT := Etype (Orig_Node);
611 Dtyp := Available_View (Designated_Type (PtrT));
612 Etyp := Etype (Expression (Orig_Node));
614 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
616 -- If the type of the allocator expression is not an interface type
617 -- we can generate code to reference the record component containing
618 -- the pointer to the secondary dispatch table.
620 if not Is_Interface (Etyp) then
621 declare
622 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
624 begin
625 -- 1) Get access to the allocated object
627 Rewrite (N,
628 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
629 Set_Etype (N, Etyp);
630 Set_Analyzed (N);
632 -- 2) Add the conversion to displace the pointer to reference
633 -- the secondary dispatch table.
635 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
636 Analyze_And_Resolve (N, Dtyp);
638 -- 3) The 'access to the secondary dispatch table will be used
639 -- as the value returned by the allocator.
641 Rewrite (N,
642 Make_Attribute_Reference (Loc,
643 Prefix => Relocate_Node (N),
644 Attribute_Name => Name_Access));
645 Set_Etype (N, Saved_Typ);
646 Set_Analyzed (N);
647 end;
649 -- If the type of the allocator expression is an interface type we
650 -- generate a run-time call to displace "this" to reference the
651 -- component containing the pointer to the secondary dispatch table
652 -- or else raise Constraint_Error if the actual object does not
653 -- implement the target interface. This case corresponds to the
654 -- following example:
656 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
657 -- begin
658 -- return new Iface_2'Class'(Obj);
659 -- end Op;
661 else
662 Rewrite (N,
663 Unchecked_Convert_To (PtrT,
664 Make_Function_Call (Loc,
665 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
666 Parameter_Associations => New_List (
667 Unchecked_Convert_To (RTE (RE_Address),
668 Relocate_Node (N)),
670 New_Occurrence_Of
671 (Elists.Node
672 (First_Elmt
673 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
674 Loc)))));
675 Analyze_And_Resolve (N, PtrT);
676 end if;
677 end if;
678 end Displace_Allocator_Pointer;
680 ---------------------------------
681 -- Expand_Allocator_Expression --
682 ---------------------------------
684 procedure Expand_Allocator_Expression (N : Node_Id) is
685 Loc : constant Source_Ptr := Sloc (N);
686 Exp : constant Node_Id := Expression (Expression (N));
687 PtrT : constant Entity_Id := Etype (N);
688 DesigT : constant Entity_Id := Designated_Type (PtrT);
690 procedure Apply_Accessibility_Check
691 (Ref : Node_Id;
692 Built_In_Place : Boolean := False);
693 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
694 -- type, generate an accessibility check to verify that the level of the
695 -- type of the created object is not deeper than the level of the access
696 -- type. If the type of the qualified expression is class-wide, then
697 -- always generate the check (except in the case where it is known to be
698 -- unnecessary, see comment below). Otherwise, only generate the check
699 -- if the level of the qualified expression type is statically deeper
700 -- than the access type.
702 -- Although the static accessibility will generally have been performed
703 -- as a legality check, it won't have been done in cases where the
704 -- allocator appears in generic body, so a run-time check is needed in
705 -- general. One special case is when the access type is declared in the
706 -- same scope as the class-wide allocator, in which case the check can
707 -- never fail, so it need not be generated.
709 -- As an open issue, there seem to be cases where the static level
710 -- associated with the class-wide object's underlying type is not
711 -- sufficient to perform the proper accessibility check, such as for
712 -- allocators in nested subprograms or accept statements initialized by
713 -- class-wide formals when the actual originates outside at a deeper
714 -- static level. The nested subprogram case might require passing
715 -- accessibility levels along with class-wide parameters, and the task
716 -- case seems to be an actual gap in the language rules that needs to
717 -- be fixed by the ARG. ???
719 -------------------------------
720 -- Apply_Accessibility_Check --
721 -------------------------------
723 procedure Apply_Accessibility_Check
724 (Ref : Node_Id;
725 Built_In_Place : Boolean := False)
727 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
728 Cond : Node_Id;
729 Fin_Call : Node_Id;
730 Free_Stmt : Node_Id;
731 Obj_Ref : Node_Id;
732 Stmts : List_Id;
734 begin
735 if Ada_Version >= Ada_2005
736 and then Is_Class_Wide_Type (DesigT)
737 and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
738 and then not Scope_Suppress.Suppress (Accessibility_Check)
739 and then
740 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
741 or else
742 (Is_Class_Wide_Type (Etype (Exp))
743 and then Scope (PtrT) /= Current_Scope))
744 then
745 -- If the allocator was built in place, Ref is already a reference
746 -- to the access object initialized to the result of the allocator
747 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
748 -- Remove_Side_Effects for cases where the build-in-place call may
749 -- still be the prefix of the reference (to avoid generating
750 -- duplicate calls). Otherwise, it is the entity associated with
751 -- the object containing the address of the allocated object.
753 if Built_In_Place then
754 Remove_Side_Effects (Ref);
755 Obj_Ref := New_Copy_Tree (Ref);
756 else
757 Obj_Ref := New_Occurrence_Of (Ref, Loc);
758 end if;
760 -- For access to interface types we must generate code to displace
761 -- the pointer to the base of the object since the subsequent code
762 -- references components located in the TSD of the object (which
763 -- is associated with the primary dispatch table --see a-tags.ads)
764 -- and also generates code invoking Free, which requires also a
765 -- reference to the base of the unallocated object.
767 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
768 Obj_Ref :=
769 Unchecked_Convert_To (Etype (Obj_Ref),
770 Make_Function_Call (Loc,
771 Name =>
772 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
773 Parameter_Associations => New_List (
774 Unchecked_Convert_To (RTE (RE_Address),
775 New_Copy_Tree (Obj_Ref)))));
776 end if;
778 -- Step 1: Create the object clean up code
780 Stmts := New_List;
782 -- Deallocate the object if the accessibility check fails. This
783 -- is done only on targets or profiles that support deallocation.
785 -- Free (Obj_Ref);
787 if RTE_Available (RE_Free) then
788 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
789 Set_Storage_Pool (Free_Stmt, Pool_Id);
791 Append_To (Stmts, Free_Stmt);
793 -- The target or profile cannot deallocate objects
795 else
796 Free_Stmt := Empty;
797 end if;
799 -- Finalize the object if applicable. Generate:
801 -- [Deep_]Finalize (Obj_Ref.all);
803 if Needs_Finalization (DesigT) then
804 Fin_Call :=
805 Make_Final_Call
806 (Obj_Ref =>
807 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
808 Typ => DesigT);
810 -- When the target or profile supports deallocation, wrap the
811 -- finalization call in a block to ensure proper deallocation
812 -- even if finalization fails. Generate:
814 -- begin
815 -- <Fin_Call>
816 -- exception
817 -- when others =>
818 -- <Free_Stmt>
819 -- raise;
820 -- end;
822 if Present (Free_Stmt) then
823 Fin_Call :=
824 Make_Block_Statement (Loc,
825 Handled_Statement_Sequence =>
826 Make_Handled_Sequence_Of_Statements (Loc,
827 Statements => New_List (Fin_Call),
829 Exception_Handlers => New_List (
830 Make_Exception_Handler (Loc,
831 Exception_Choices => New_List (
832 Make_Others_Choice (Loc)),
834 Statements => New_List (
835 New_Copy_Tree (Free_Stmt),
836 Make_Raise_Statement (Loc))))));
837 end if;
839 Prepend_To (Stmts, Fin_Call);
840 end if;
842 -- Signal the accessibility failure through a Program_Error
844 Append_To (Stmts,
845 Make_Raise_Program_Error (Loc,
846 Condition => New_Occurrence_Of (Standard_True, Loc),
847 Reason => PE_Accessibility_Check_Failed));
849 -- Step 2: Create the accessibility comparison
851 -- Generate:
852 -- Ref'Tag
854 Obj_Ref :=
855 Make_Attribute_Reference (Loc,
856 Prefix => Obj_Ref,
857 Attribute_Name => Name_Tag);
859 -- For tagged types, determine the accessibility level by looking
860 -- at the type specific data of the dispatch table. Generate:
862 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
864 if Tagged_Type_Expansion then
865 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
867 -- Use a runtime call to determine the accessibility level when
868 -- compiling on virtual machine targets. Generate:
870 -- Get_Access_Level (Ref'Tag)
872 else
873 Cond :=
874 Make_Function_Call (Loc,
875 Name =>
876 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
877 Parameter_Associations => New_List (Obj_Ref));
878 end if;
880 Cond :=
881 Make_Op_Gt (Loc,
882 Left_Opnd => Cond,
883 Right_Opnd =>
884 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
886 -- Due to the complexity and side effects of the check, utilize an
887 -- if statement instead of the regular Program_Error circuitry.
889 Insert_Action (N,
890 Make_Implicit_If_Statement (N,
891 Condition => Cond,
892 Then_Statements => Stmts));
893 end if;
894 end Apply_Accessibility_Check;
896 -- Local variables
898 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
899 Indic : constant Node_Id := Subtype_Mark (Expression (N));
900 T : constant Entity_Id := Entity (Indic);
901 Node : Node_Id;
902 Tag_Assign : Node_Id;
903 Temp : Entity_Id;
904 Temp_Decl : Node_Id;
906 TagT : Entity_Id := Empty;
907 -- Type used as source for tag assignment
909 TagR : Node_Id := Empty;
910 -- Target reference for tag assignment
912 -- Start of processing for Expand_Allocator_Expression
914 begin
915 -- Handle call to C++ constructor
917 if Is_CPP_Constructor_Call (Exp) then
918 Make_CPP_Constructor_Call_In_Allocator
919 (Allocator => N,
920 Function_Call => Exp);
921 return;
922 end if;
924 -- In the case of an Ada 2012 allocator whose initial value comes from a
925 -- function call, pass "the accessibility level determined by the point
926 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
927 -- Expand_Call but it couldn't be done there (because the Etype of the
928 -- allocator wasn't set then) so we generate the parameter here. See
929 -- the Boolean variable Defer in (a block within) Expand_Call.
931 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
932 declare
933 Subp : Entity_Id;
935 begin
936 if Nkind (Name (Exp)) = N_Explicit_Dereference then
937 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
938 else
939 Subp := Entity (Name (Exp));
940 end if;
942 Subp := Ultimate_Alias (Subp);
944 if Present (Extra_Accessibility_Of_Result (Subp)) then
945 Add_Extra_Actual_To_Call
946 (Subprogram_Call => Exp,
947 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
948 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
949 end if;
950 end;
951 end if;
953 -- Case of tagged type or type requiring finalization
955 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
957 -- Ada 2005 (AI-318-02): If the initialization expression is a call
958 -- to a build-in-place function, then access to the allocated object
959 -- must be passed to the function. Currently we limit such functions
960 -- to those with constrained limited result subtypes, but eventually
961 -- we plan to expand the allowed forms of functions that are treated
962 -- as build-in-place.
964 if Ada_Version >= Ada_2005
965 and then Is_Build_In_Place_Function_Call (Exp)
966 then
967 Make_Build_In_Place_Call_In_Allocator (N, Exp);
968 Apply_Accessibility_Check (N, Built_In_Place => True);
969 return;
970 end if;
972 -- Actions inserted before:
973 -- Temp : constant ptr_T := new T'(Expression);
974 -- Temp._tag = T'tag; -- when not class-wide
975 -- [Deep_]Adjust (Temp.all);
977 -- We analyze by hand the new internal allocator to avoid any
978 -- recursion and inappropriate call to Initialize.
980 -- We don't want to remove side effects when the expression must be
981 -- built in place. In the case of a build-in-place function call,
982 -- that could lead to a duplication of the call, which was already
983 -- substituted for the allocator.
985 if not Aggr_In_Place then
986 Remove_Side_Effects (Exp);
987 end if;
989 Temp := Make_Temporary (Loc, 'P', N);
991 -- For a class wide allocation generate the following code:
993 -- type Equiv_Record is record ... end record;
994 -- implicit subtype CW is <Class_Wide_Subytpe>;
995 -- temp : PtrT := new CW'(CW!(expr));
997 if Is_Class_Wide_Type (T) then
998 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
1000 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1001 -- object we generate code to move up "this" to reference the
1002 -- base of the object before allocating the new object.
1004 -- Note that Exp'Address is recursively expanded into a call
1005 -- to Base_Address (Exp.Tag)
1007 if Is_Class_Wide_Type (Etype (Exp))
1008 and then Is_Interface (Etype (Exp))
1009 and then Tagged_Type_Expansion
1010 then
1011 Set_Expression
1012 (Expression (N),
1013 Unchecked_Convert_To (Entity (Indic),
1014 Make_Explicit_Dereference (Loc,
1015 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
1016 Make_Attribute_Reference (Loc,
1017 Prefix => Exp,
1018 Attribute_Name => Name_Address)))));
1019 else
1020 Set_Expression
1021 (Expression (N),
1022 Unchecked_Convert_To (Entity (Indic), Exp));
1023 end if;
1025 Analyze_And_Resolve (Expression (N), Entity (Indic));
1026 end if;
1028 -- Processing for allocators returning non-interface types
1030 if not Is_Interface (Directly_Designated_Type (PtrT)) then
1031 if Aggr_In_Place then
1032 Temp_Decl :=
1033 Make_Object_Declaration (Loc,
1034 Defining_Identifier => Temp,
1035 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1036 Expression =>
1037 Make_Allocator (Loc,
1038 Expression =>
1039 New_Occurrence_Of (Etype (Exp), Loc)));
1041 -- Copy the Comes_From_Source flag for the allocator we just
1042 -- built, since logically this allocator is a replacement of
1043 -- the original allocator node. This is for proper handling of
1044 -- restriction No_Implicit_Heap_Allocations.
1046 Set_Comes_From_Source
1047 (Expression (Temp_Decl), Comes_From_Source (N));
1049 Set_No_Initialization (Expression (Temp_Decl));
1050 Insert_Action (N, Temp_Decl);
1052 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1053 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1055 -- Attach the object to the associated finalization master.
1056 -- This is done manually on .NET/JVM since those compilers do
1057 -- no support pools and can't benefit from internally generated
1058 -- Allocate / Deallocate procedures.
1060 if VM_Target /= No_VM
1061 and then Is_Controlled (DesigT)
1062 and then Present (Finalization_Master (PtrT))
1063 then
1064 Insert_Action (N,
1065 Make_Attach_Call
1066 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1067 Ptr_Typ => PtrT));
1068 end if;
1070 else
1071 Node := Relocate_Node (N);
1072 Set_Analyzed (Node);
1074 Temp_Decl :=
1075 Make_Object_Declaration (Loc,
1076 Defining_Identifier => Temp,
1077 Constant_Present => True,
1078 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1079 Expression => Node);
1081 Insert_Action (N, Temp_Decl);
1082 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1084 -- Attach the object to the associated finalization master.
1085 -- This is done manually on .NET/JVM since those compilers do
1086 -- no support pools and can't benefit from internally generated
1087 -- Allocate / Deallocate procedures.
1089 if VM_Target /= No_VM
1090 and then Is_Controlled (DesigT)
1091 and then Present (Finalization_Master (PtrT))
1092 then
1093 Insert_Action (N,
1094 Make_Attach_Call
1095 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1096 Ptr_Typ => PtrT));
1097 end if;
1098 end if;
1100 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1101 -- interface type. In this case we use the type of the qualified
1102 -- expression to allocate the object.
1104 else
1105 declare
1106 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
1107 New_Decl : Node_Id;
1109 begin
1110 New_Decl :=
1111 Make_Full_Type_Declaration (Loc,
1112 Defining_Identifier => Def_Id,
1113 Type_Definition =>
1114 Make_Access_To_Object_Definition (Loc,
1115 All_Present => True,
1116 Null_Exclusion_Present => False,
1117 Constant_Present =>
1118 Is_Access_Constant (Etype (N)),
1119 Subtype_Indication =>
1120 New_Occurrence_Of (Etype (Exp), Loc)));
1122 Insert_Action (N, New_Decl);
1124 -- Inherit the allocation-related attributes from the original
1125 -- access type.
1127 Set_Finalization_Master
1128 (Def_Id, Finalization_Master (PtrT));
1130 Set_Associated_Storage_Pool
1131 (Def_Id, Associated_Storage_Pool (PtrT));
1133 -- Declare the object using the previous type declaration
1135 if Aggr_In_Place then
1136 Temp_Decl :=
1137 Make_Object_Declaration (Loc,
1138 Defining_Identifier => Temp,
1139 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1140 Expression =>
1141 Make_Allocator (Loc,
1142 New_Occurrence_Of (Etype (Exp), Loc)));
1144 -- Copy the Comes_From_Source flag for the allocator we just
1145 -- built, since logically this allocator is a replacement of
1146 -- the original allocator node. This is for proper handling
1147 -- of restriction No_Implicit_Heap_Allocations.
1149 Set_Comes_From_Source
1150 (Expression (Temp_Decl), Comes_From_Source (N));
1152 Set_No_Initialization (Expression (Temp_Decl));
1153 Insert_Action (N, Temp_Decl);
1155 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1156 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1158 else
1159 Node := Relocate_Node (N);
1160 Set_Analyzed (Node);
1162 Temp_Decl :=
1163 Make_Object_Declaration (Loc,
1164 Defining_Identifier => Temp,
1165 Constant_Present => True,
1166 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
1167 Expression => Node);
1169 Insert_Action (N, Temp_Decl);
1170 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1171 end if;
1173 -- Generate an additional object containing the address of the
1174 -- returned object. The type of this second object declaration
1175 -- is the correct type required for the common processing that
1176 -- is still performed by this subprogram. The displacement of
1177 -- this pointer to reference the component associated with the
1178 -- interface type will be done at the end of common processing.
1180 New_Decl :=
1181 Make_Object_Declaration (Loc,
1182 Defining_Identifier => Make_Temporary (Loc, 'P'),
1183 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1184 Expression =>
1185 Unchecked_Convert_To (PtrT,
1186 New_Occurrence_Of (Temp, Loc)));
1188 Insert_Action (N, New_Decl);
1190 Temp_Decl := New_Decl;
1191 Temp := Defining_Identifier (New_Decl);
1192 end;
1193 end if;
1195 Apply_Accessibility_Check (Temp);
1197 -- Generate the tag assignment
1199 -- Suppress the tag assignment when VM_Target because VM tags are
1200 -- represented implicitly in objects.
1202 if not Tagged_Type_Expansion then
1203 null;
1205 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1206 -- interface objects because in this case the tag does not change.
1208 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1209 pragma Assert (Is_Class_Wide_Type
1210 (Directly_Designated_Type (Etype (N))));
1211 null;
1213 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1214 TagT := T;
1215 TagR := New_Occurrence_Of (Temp, Loc);
1217 elsif Is_Private_Type (T)
1218 and then Is_Tagged_Type (Underlying_Type (T))
1219 then
1220 TagT := Underlying_Type (T);
1221 TagR :=
1222 Unchecked_Convert_To (Underlying_Type (T),
1223 Make_Explicit_Dereference (Loc,
1224 Prefix => New_Occurrence_Of (Temp, Loc)));
1225 end if;
1227 if Present (TagT) then
1228 declare
1229 Full_T : constant Entity_Id := Underlying_Type (TagT);
1231 begin
1232 Tag_Assign :=
1233 Make_Assignment_Statement (Loc,
1234 Name =>
1235 Make_Selected_Component (Loc,
1236 Prefix => TagR,
1237 Selector_Name =>
1238 New_Occurrence_Of
1239 (First_Tag_Component (Full_T), Loc)),
1241 Expression =>
1242 Unchecked_Convert_To (RTE (RE_Tag),
1243 New_Occurrence_Of
1244 (Elists.Node
1245 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1246 end;
1248 -- The previous assignment has to be done in any case
1250 Set_Assignment_OK (Name (Tag_Assign));
1251 Insert_Action (N, Tag_Assign);
1252 end if;
1254 if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1256 -- Generate an Adjust call if the object will be moved. In Ada
1257 -- 2005, the object may be inherently limited, in which case
1258 -- there is no Adjust procedure, and the object is built in
1259 -- place. In Ada 95, the object can be limited but not
1260 -- inherently limited if this allocator came from a return
1261 -- statement (we're allocating the result on the secondary
1262 -- stack). In that case, the object will be moved, so we _do_
1263 -- want to Adjust.
1265 if not Aggr_In_Place
1266 and then not Is_Limited_View (T)
1267 then
1268 Insert_Action (N,
1270 -- An unchecked conversion is needed in the classwide case
1271 -- because the designated type can be an ancestor of the
1272 -- subtype mark of the allocator.
1274 Make_Adjust_Call
1275 (Obj_Ref =>
1276 Unchecked_Convert_To (T,
1277 Make_Explicit_Dereference (Loc,
1278 Prefix => New_Occurrence_Of (Temp, Loc))),
1279 Typ => T));
1280 end if;
1281 end if;
1283 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1284 Analyze_And_Resolve (N, PtrT);
1286 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1287 -- component containing the secondary dispatch table of the interface
1288 -- type.
1290 if Is_Interface (Directly_Designated_Type (PtrT)) then
1291 Displace_Allocator_Pointer (N);
1292 end if;
1294 elsif Aggr_In_Place then
1295 Temp := Make_Temporary (Loc, 'P', N);
1296 Temp_Decl :=
1297 Make_Object_Declaration (Loc,
1298 Defining_Identifier => Temp,
1299 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1300 Expression =>
1301 Make_Allocator (Loc,
1302 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
1304 -- Copy the Comes_From_Source flag for the allocator we just built,
1305 -- since logically this allocator is a replacement of the original
1306 -- allocator node. This is for proper handling of restriction
1307 -- No_Implicit_Heap_Allocations.
1309 Set_Comes_From_Source
1310 (Expression (Temp_Decl), Comes_From_Source (N));
1312 Set_No_Initialization (Expression (Temp_Decl));
1313 Insert_Action (N, Temp_Decl);
1315 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1316 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1318 -- Attach the object to the associated finalization master. Thisis
1319 -- done manually on .NET/JVM since those compilers do no support
1320 -- pools and cannot benefit from internally generated Allocate and
1321 -- Deallocate procedures.
1323 if VM_Target /= No_VM
1324 and then Is_Controlled (DesigT)
1325 and then Present (Finalization_Master (PtrT))
1326 then
1327 Insert_Action (N,
1328 Make_Attach_Call
1329 (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1330 Ptr_Typ => PtrT));
1331 end if;
1333 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1334 Analyze_And_Resolve (N, PtrT);
1336 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
1337 Install_Null_Excluding_Check (Exp);
1339 elsif Is_Access_Type (DesigT)
1340 and then Nkind (Exp) = N_Allocator
1341 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1342 then
1343 -- Apply constraint to designated subtype indication
1345 Apply_Constraint_Check
1346 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
1348 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1350 -- Propagate constraint_error to enclosing allocator
1352 Rewrite (Exp, New_Copy (Expression (Exp)));
1353 end if;
1355 else
1356 Build_Allocate_Deallocate_Proc (N, True);
1358 -- If we have:
1359 -- type A is access T1;
1360 -- X : A := new T2'(...);
1361 -- T1 and T2 can be different subtypes, and we might need to check
1362 -- both constraints. First check against the type of the qualified
1363 -- expression.
1365 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1367 if Do_Range_Check (Exp) then
1368 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1369 end if;
1371 -- A check is also needed in cases where the designated subtype is
1372 -- constrained and differs from the subtype given in the qualified
1373 -- expression. Note that the check on the qualified expression does
1374 -- not allow sliding, but this check does (a relaxation from Ada 83).
1376 if Is_Constrained (DesigT)
1377 and then not Subtypes_Statically_Match (T, DesigT)
1378 then
1379 Apply_Constraint_Check
1380 (Exp, DesigT, No_Sliding => False);
1382 if Do_Range_Check (Exp) then
1383 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1384 end if;
1385 end if;
1387 -- For an access to unconstrained packed array, GIGI needs to see an
1388 -- expression with a constrained subtype in order to compute the
1389 -- proper size for the allocator.
1391 if Is_Array_Type (T)
1392 and then not Is_Constrained (T)
1393 and then Is_Packed (T)
1394 then
1395 declare
1396 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1397 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1398 begin
1399 Insert_Action (Exp,
1400 Make_Subtype_Declaration (Loc,
1401 Defining_Identifier => ConstrT,
1402 Subtype_Indication =>
1403 Make_Subtype_From_Expr (Internal_Exp, T)));
1404 Freeze_Itype (ConstrT, Exp);
1405 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1406 end;
1407 end if;
1409 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1410 -- to a build-in-place function, then access to the allocated object
1411 -- must be passed to the function. Currently we limit such functions
1412 -- to those with constrained limited result subtypes, but eventually
1413 -- we plan to expand the allowed forms of functions that are treated
1414 -- as build-in-place.
1416 if Ada_Version >= Ada_2005
1417 and then Is_Build_In_Place_Function_Call (Exp)
1418 then
1419 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1420 end if;
1421 end if;
1423 exception
1424 when RE_Not_Available =>
1425 return;
1426 end Expand_Allocator_Expression;
1428 -----------------------------
1429 -- Expand_Array_Comparison --
1430 -----------------------------
1432 -- Expansion is only required in the case of array types. For the unpacked
1433 -- case, an appropriate runtime routine is called. For packed cases, and
1434 -- also in some other cases where a runtime routine cannot be called, the
1435 -- form of the expansion is:
1437 -- [body for greater_nn; boolean_expression]
1439 -- The body is built by Make_Array_Comparison_Op, and the form of the
1440 -- Boolean expression depends on the operator involved.
1442 procedure Expand_Array_Comparison (N : Node_Id) is
1443 Loc : constant Source_Ptr := Sloc (N);
1444 Op1 : Node_Id := Left_Opnd (N);
1445 Op2 : Node_Id := Right_Opnd (N);
1446 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1447 Ctyp : constant Entity_Id := Component_Type (Typ1);
1449 Expr : Node_Id;
1450 Func_Body : Node_Id;
1451 Func_Name : Entity_Id;
1453 Comp : RE_Id;
1455 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1456 -- True for byte addressable target
1458 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1459 -- Returns True if the length of the given operand is known to be less
1460 -- than 4. Returns False if this length is known to be four or greater
1461 -- or is not known at compile time.
1463 ------------------------
1464 -- Length_Less_Than_4 --
1465 ------------------------
1467 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1468 Otyp : constant Entity_Id := Etype (Opnd);
1470 begin
1471 if Ekind (Otyp) = E_String_Literal_Subtype then
1472 return String_Literal_Length (Otyp) < 4;
1474 else
1475 declare
1476 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1477 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1478 Hi : constant Node_Id := Type_High_Bound (Ityp);
1479 Lov : Uint;
1480 Hiv : Uint;
1482 begin
1483 if Compile_Time_Known_Value (Lo) then
1484 Lov := Expr_Value (Lo);
1485 else
1486 return False;
1487 end if;
1489 if Compile_Time_Known_Value (Hi) then
1490 Hiv := Expr_Value (Hi);
1491 else
1492 return False;
1493 end if;
1495 return Hiv < Lov + 3;
1496 end;
1497 end if;
1498 end Length_Less_Than_4;
1500 -- Start of processing for Expand_Array_Comparison
1502 begin
1503 -- Deal first with unpacked case, where we can call a runtime routine
1504 -- except that we avoid this for targets for which are not addressable
1505 -- by bytes, and for the JVM/CIL, since they do not support direct
1506 -- addressing of array components.
1508 if not Is_Bit_Packed_Array (Typ1)
1509 and then Byte_Addressable
1510 and then VM_Target = No_VM
1511 then
1512 -- The call we generate is:
1514 -- Compare_Array_xn[_Unaligned]
1515 -- (left'address, right'address, left'length, right'length) <op> 0
1517 -- x = U for unsigned, S for signed
1518 -- n = 8,16,32,64 for component size
1519 -- Add _Unaligned if length < 4 and component size is 8.
1520 -- <op> is the standard comparison operator
1522 if Component_Size (Typ1) = 8 then
1523 if Length_Less_Than_4 (Op1)
1524 or else
1525 Length_Less_Than_4 (Op2)
1526 then
1527 if Is_Unsigned_Type (Ctyp) then
1528 Comp := RE_Compare_Array_U8_Unaligned;
1529 else
1530 Comp := RE_Compare_Array_S8_Unaligned;
1531 end if;
1533 else
1534 if Is_Unsigned_Type (Ctyp) then
1535 Comp := RE_Compare_Array_U8;
1536 else
1537 Comp := RE_Compare_Array_S8;
1538 end if;
1539 end if;
1541 elsif Component_Size (Typ1) = 16 then
1542 if Is_Unsigned_Type (Ctyp) then
1543 Comp := RE_Compare_Array_U16;
1544 else
1545 Comp := RE_Compare_Array_S16;
1546 end if;
1548 elsif Component_Size (Typ1) = 32 then
1549 if Is_Unsigned_Type (Ctyp) then
1550 Comp := RE_Compare_Array_U32;
1551 else
1552 Comp := RE_Compare_Array_S32;
1553 end if;
1555 else pragma Assert (Component_Size (Typ1) = 64);
1556 if Is_Unsigned_Type (Ctyp) then
1557 Comp := RE_Compare_Array_U64;
1558 else
1559 Comp := RE_Compare_Array_S64;
1560 end if;
1561 end if;
1563 Remove_Side_Effects (Op1, Name_Req => True);
1564 Remove_Side_Effects (Op2, Name_Req => True);
1566 Rewrite (Op1,
1567 Make_Function_Call (Sloc (Op1),
1568 Name => New_Occurrence_Of (RTE (Comp), Loc),
1570 Parameter_Associations => New_List (
1571 Make_Attribute_Reference (Loc,
1572 Prefix => Relocate_Node (Op1),
1573 Attribute_Name => Name_Address),
1575 Make_Attribute_Reference (Loc,
1576 Prefix => Relocate_Node (Op2),
1577 Attribute_Name => Name_Address),
1579 Make_Attribute_Reference (Loc,
1580 Prefix => Relocate_Node (Op1),
1581 Attribute_Name => Name_Length),
1583 Make_Attribute_Reference (Loc,
1584 Prefix => Relocate_Node (Op2),
1585 Attribute_Name => Name_Length))));
1587 Rewrite (Op2,
1588 Make_Integer_Literal (Sloc (Op2),
1589 Intval => Uint_0));
1591 Analyze_And_Resolve (Op1, Standard_Integer);
1592 Analyze_And_Resolve (Op2, Standard_Integer);
1593 return;
1594 end if;
1596 -- Cases where we cannot make runtime call
1598 -- For (a <= b) we convert to not (a > b)
1600 if Chars (N) = Name_Op_Le then
1601 Rewrite (N,
1602 Make_Op_Not (Loc,
1603 Right_Opnd =>
1604 Make_Op_Gt (Loc,
1605 Left_Opnd => Op1,
1606 Right_Opnd => Op2)));
1607 Analyze_And_Resolve (N, Standard_Boolean);
1608 return;
1610 -- For < the Boolean expression is
1611 -- greater__nn (op2, op1)
1613 elsif Chars (N) = Name_Op_Lt then
1614 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1616 -- Switch operands
1618 Op1 := Right_Opnd (N);
1619 Op2 := Left_Opnd (N);
1621 -- For (a >= b) we convert to not (a < b)
1623 elsif Chars (N) = Name_Op_Ge then
1624 Rewrite (N,
1625 Make_Op_Not (Loc,
1626 Right_Opnd =>
1627 Make_Op_Lt (Loc,
1628 Left_Opnd => Op1,
1629 Right_Opnd => Op2)));
1630 Analyze_And_Resolve (N, Standard_Boolean);
1631 return;
1633 -- For > the Boolean expression is
1634 -- greater__nn (op1, op2)
1636 else
1637 pragma Assert (Chars (N) = Name_Op_Gt);
1638 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1639 end if;
1641 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1642 Expr :=
1643 Make_Function_Call (Loc,
1644 Name => New_Occurrence_Of (Func_Name, Loc),
1645 Parameter_Associations => New_List (Op1, Op2));
1647 Insert_Action (N, Func_Body);
1648 Rewrite (N, Expr);
1649 Analyze_And_Resolve (N, Standard_Boolean);
1651 exception
1652 when RE_Not_Available =>
1653 return;
1654 end Expand_Array_Comparison;
1656 ---------------------------
1657 -- Expand_Array_Equality --
1658 ---------------------------
1660 -- Expand an equality function for multi-dimensional arrays. Here is an
1661 -- example of such a function for Nb_Dimension = 2
1663 -- function Enn (A : atyp; B : btyp) return boolean is
1664 -- begin
1665 -- if (A'length (1) = 0 or else A'length (2) = 0)
1666 -- and then
1667 -- (B'length (1) = 0 or else B'length (2) = 0)
1668 -- then
1669 -- return True; -- RM 4.5.2(22)
1670 -- end if;
1672 -- if A'length (1) /= B'length (1)
1673 -- or else
1674 -- A'length (2) /= B'length (2)
1675 -- then
1676 -- return False; -- RM 4.5.2(23)
1677 -- end if;
1679 -- declare
1680 -- A1 : Index_T1 := A'first (1);
1681 -- B1 : Index_T1 := B'first (1);
1682 -- begin
1683 -- loop
1684 -- declare
1685 -- A2 : Index_T2 := A'first (2);
1686 -- B2 : Index_T2 := B'first (2);
1687 -- begin
1688 -- loop
1689 -- if A (A1, A2) /= B (B1, B2) then
1690 -- return False;
1691 -- end if;
1693 -- exit when A2 = A'last (2);
1694 -- A2 := Index_T2'succ (A2);
1695 -- B2 := Index_T2'succ (B2);
1696 -- end loop;
1697 -- end;
1699 -- exit when A1 = A'last (1);
1700 -- A1 := Index_T1'succ (A1);
1701 -- B1 := Index_T1'succ (B1);
1702 -- end loop;
1703 -- end;
1705 -- return true;
1706 -- end Enn;
1708 -- Note on the formal types used (atyp and btyp). If either of the arrays
1709 -- is of a private type, we use the underlying type, and do an unchecked
1710 -- conversion of the actual. If either of the arrays has a bound depending
1711 -- on a discriminant, then we use the base type since otherwise we have an
1712 -- escaped discriminant in the function.
1714 -- If both arrays are constrained and have the same bounds, we can generate
1715 -- a loop with an explicit iteration scheme using a 'Range attribute over
1716 -- the first array.
1718 function Expand_Array_Equality
1719 (Nod : Node_Id;
1720 Lhs : Node_Id;
1721 Rhs : Node_Id;
1722 Bodies : List_Id;
1723 Typ : Entity_Id) return Node_Id
1725 Loc : constant Source_Ptr := Sloc (Nod);
1726 Decls : constant List_Id := New_List;
1727 Index_List1 : constant List_Id := New_List;
1728 Index_List2 : constant List_Id := New_List;
1730 Actuals : List_Id;
1731 Formals : List_Id;
1732 Func_Name : Entity_Id;
1733 Func_Body : Node_Id;
1735 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1736 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1738 Ltyp : Entity_Id;
1739 Rtyp : Entity_Id;
1740 -- The parameter types to be used for the formals
1742 function Arr_Attr
1743 (Arr : Entity_Id;
1744 Nam : Name_Id;
1745 Num : Int) return Node_Id;
1746 -- This builds the attribute reference Arr'Nam (Expr)
1748 function Component_Equality (Typ : Entity_Id) return Node_Id;
1749 -- Create one statement to compare corresponding components, designated
1750 -- by a full set of indexes.
1752 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1753 -- Given one of the arguments, computes the appropriate type to be used
1754 -- for that argument in the corresponding function formal
1756 function Handle_One_Dimension
1757 (N : Int;
1758 Index : Node_Id) return Node_Id;
1759 -- This procedure returns the following code
1761 -- declare
1762 -- Bn : Index_T := B'First (N);
1763 -- begin
1764 -- loop
1765 -- xxx
1766 -- exit when An = A'Last (N);
1767 -- An := Index_T'Succ (An)
1768 -- Bn := Index_T'Succ (Bn)
1769 -- end loop;
1770 -- end;
1772 -- If both indexes are constrained and identical, the procedure
1773 -- returns a simpler loop:
1775 -- for An in A'Range (N) loop
1776 -- xxx
1777 -- end loop
1779 -- N is the dimension for which we are generating a loop. Index is the
1780 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1781 -- xxx statement is either the loop or declare for the next dimension
1782 -- or if this is the last dimension the comparison of corresponding
1783 -- components of the arrays.
1785 -- The actual way the code works is to return the comparison of
1786 -- corresponding components for the N+1 call. That's neater.
1788 function Test_Empty_Arrays return Node_Id;
1789 -- This function constructs the test for both arrays being empty
1790 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1791 -- and then
1792 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1794 function Test_Lengths_Correspond return Node_Id;
1795 -- This function constructs the test for arrays having different lengths
1796 -- in at least one index position, in which case the resulting code is:
1798 -- A'length (1) /= B'length (1)
1799 -- or else
1800 -- A'length (2) /= B'length (2)
1801 -- or else
1802 -- ...
1804 --------------
1805 -- Arr_Attr --
1806 --------------
1808 function Arr_Attr
1809 (Arr : Entity_Id;
1810 Nam : Name_Id;
1811 Num : Int) return Node_Id
1813 begin
1814 return
1815 Make_Attribute_Reference (Loc,
1816 Attribute_Name => Nam,
1817 Prefix => New_Occurrence_Of (Arr, Loc),
1818 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1819 end Arr_Attr;
1821 ------------------------
1822 -- Component_Equality --
1823 ------------------------
1825 function Component_Equality (Typ : Entity_Id) return Node_Id is
1826 Test : Node_Id;
1827 L, R : Node_Id;
1829 begin
1830 -- if a(i1...) /= b(j1...) then return false; end if;
1832 L :=
1833 Make_Indexed_Component (Loc,
1834 Prefix => Make_Identifier (Loc, Chars (A)),
1835 Expressions => Index_List1);
1837 R :=
1838 Make_Indexed_Component (Loc,
1839 Prefix => Make_Identifier (Loc, Chars (B)),
1840 Expressions => Index_List2);
1842 Test := Expand_Composite_Equality
1843 (Nod, Component_Type (Typ), L, R, Decls);
1845 -- If some (sub)component is an unchecked_union, the whole operation
1846 -- will raise program error.
1848 if Nkind (Test) = N_Raise_Program_Error then
1850 -- This node is going to be inserted at a location where a
1851 -- statement is expected: clear its Etype so analysis will set
1852 -- it to the expected Standard_Void_Type.
1854 Set_Etype (Test, Empty);
1855 return Test;
1857 else
1858 return
1859 Make_Implicit_If_Statement (Nod,
1860 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1861 Then_Statements => New_List (
1862 Make_Simple_Return_Statement (Loc,
1863 Expression => New_Occurrence_Of (Standard_False, Loc))));
1864 end if;
1865 end Component_Equality;
1867 ------------------
1868 -- Get_Arg_Type --
1869 ------------------
1871 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1872 T : Entity_Id;
1873 X : Node_Id;
1875 begin
1876 T := Etype (N);
1878 if No (T) then
1879 return Typ;
1881 else
1882 T := Underlying_Type (T);
1884 X := First_Index (T);
1885 while Present (X) loop
1886 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1887 or else
1888 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1889 then
1890 T := Base_Type (T);
1891 exit;
1892 end if;
1894 Next_Index (X);
1895 end loop;
1897 return T;
1898 end if;
1899 end Get_Arg_Type;
1901 --------------------------
1902 -- Handle_One_Dimension --
1903 ---------------------------
1905 function Handle_One_Dimension
1906 (N : Int;
1907 Index : Node_Id) return Node_Id
1909 Need_Separate_Indexes : constant Boolean :=
1910 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
1911 -- If the index types are identical, and we are working with
1912 -- constrained types, then we can use the same index for both
1913 -- of the arrays.
1915 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1917 Bn : Entity_Id;
1918 Index_T : Entity_Id;
1919 Stm_List : List_Id;
1920 Loop_Stm : Node_Id;
1922 begin
1923 if N > Number_Dimensions (Ltyp) then
1924 return Component_Equality (Ltyp);
1925 end if;
1927 -- Case where we generate a loop
1929 Index_T := Base_Type (Etype (Index));
1931 if Need_Separate_Indexes then
1932 Bn := Make_Temporary (Loc, 'B');
1933 else
1934 Bn := An;
1935 end if;
1937 Append (New_Occurrence_Of (An, Loc), Index_List1);
1938 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
1940 Stm_List := New_List (
1941 Handle_One_Dimension (N + 1, Next_Index (Index)));
1943 if Need_Separate_Indexes then
1945 -- Generate guard for loop, followed by increments of indexes
1947 Append_To (Stm_List,
1948 Make_Exit_Statement (Loc,
1949 Condition =>
1950 Make_Op_Eq (Loc,
1951 Left_Opnd => New_Occurrence_Of (An, Loc),
1952 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1954 Append_To (Stm_List,
1955 Make_Assignment_Statement (Loc,
1956 Name => New_Occurrence_Of (An, Loc),
1957 Expression =>
1958 Make_Attribute_Reference (Loc,
1959 Prefix => New_Occurrence_Of (Index_T, Loc),
1960 Attribute_Name => Name_Succ,
1961 Expressions => New_List (
1962 New_Occurrence_Of (An, Loc)))));
1964 Append_To (Stm_List,
1965 Make_Assignment_Statement (Loc,
1966 Name => New_Occurrence_Of (Bn, Loc),
1967 Expression =>
1968 Make_Attribute_Reference (Loc,
1969 Prefix => New_Occurrence_Of (Index_T, Loc),
1970 Attribute_Name => Name_Succ,
1971 Expressions => New_List (
1972 New_Occurrence_Of (Bn, Loc)))));
1973 end if;
1975 -- If separate indexes, we need a declare block for An and Bn, and a
1976 -- loop without an iteration scheme.
1978 if Need_Separate_Indexes then
1979 Loop_Stm :=
1980 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1982 return
1983 Make_Block_Statement (Loc,
1984 Declarations => New_List (
1985 Make_Object_Declaration (Loc,
1986 Defining_Identifier => An,
1987 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1988 Expression => Arr_Attr (A, Name_First, N)),
1990 Make_Object_Declaration (Loc,
1991 Defining_Identifier => Bn,
1992 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1993 Expression => Arr_Attr (B, Name_First, N))),
1995 Handled_Statement_Sequence =>
1996 Make_Handled_Sequence_Of_Statements (Loc,
1997 Statements => New_List (Loop_Stm)));
1999 -- If no separate indexes, return loop statement with explicit
2000 -- iteration scheme on its own
2002 else
2003 Loop_Stm :=
2004 Make_Implicit_Loop_Statement (Nod,
2005 Statements => Stm_List,
2006 Iteration_Scheme =>
2007 Make_Iteration_Scheme (Loc,
2008 Loop_Parameter_Specification =>
2009 Make_Loop_Parameter_Specification (Loc,
2010 Defining_Identifier => An,
2011 Discrete_Subtype_Definition =>
2012 Arr_Attr (A, Name_Range, N))));
2013 return Loop_Stm;
2014 end if;
2015 end Handle_One_Dimension;
2017 -----------------------
2018 -- Test_Empty_Arrays --
2019 -----------------------
2021 function Test_Empty_Arrays return Node_Id is
2022 Alist : Node_Id;
2023 Blist : Node_Id;
2025 Atest : Node_Id;
2026 Btest : Node_Id;
2028 begin
2029 Alist := Empty;
2030 Blist := Empty;
2031 for J in 1 .. Number_Dimensions (Ltyp) loop
2032 Atest :=
2033 Make_Op_Eq (Loc,
2034 Left_Opnd => Arr_Attr (A, Name_Length, J),
2035 Right_Opnd => Make_Integer_Literal (Loc, 0));
2037 Btest :=
2038 Make_Op_Eq (Loc,
2039 Left_Opnd => Arr_Attr (B, Name_Length, J),
2040 Right_Opnd => Make_Integer_Literal (Loc, 0));
2042 if No (Alist) then
2043 Alist := Atest;
2044 Blist := Btest;
2046 else
2047 Alist :=
2048 Make_Or_Else (Loc,
2049 Left_Opnd => Relocate_Node (Alist),
2050 Right_Opnd => Atest);
2052 Blist :=
2053 Make_Or_Else (Loc,
2054 Left_Opnd => Relocate_Node (Blist),
2055 Right_Opnd => Btest);
2056 end if;
2057 end loop;
2059 return
2060 Make_And_Then (Loc,
2061 Left_Opnd => Alist,
2062 Right_Opnd => Blist);
2063 end Test_Empty_Arrays;
2065 -----------------------------
2066 -- Test_Lengths_Correspond --
2067 -----------------------------
2069 function Test_Lengths_Correspond return Node_Id is
2070 Result : Node_Id;
2071 Rtest : Node_Id;
2073 begin
2074 Result := Empty;
2075 for J in 1 .. Number_Dimensions (Ltyp) loop
2076 Rtest :=
2077 Make_Op_Ne (Loc,
2078 Left_Opnd => Arr_Attr (A, Name_Length, J),
2079 Right_Opnd => Arr_Attr (B, Name_Length, J));
2081 if No (Result) then
2082 Result := Rtest;
2083 else
2084 Result :=
2085 Make_Or_Else (Loc,
2086 Left_Opnd => Relocate_Node (Result),
2087 Right_Opnd => Rtest);
2088 end if;
2089 end loop;
2091 return Result;
2092 end Test_Lengths_Correspond;
2094 -- Start of processing for Expand_Array_Equality
2096 begin
2097 Ltyp := Get_Arg_Type (Lhs);
2098 Rtyp := Get_Arg_Type (Rhs);
2100 -- For now, if the argument types are not the same, go to the base type,
2101 -- since the code assumes that the formals have the same type. This is
2102 -- fixable in future ???
2104 if Ltyp /= Rtyp then
2105 Ltyp := Base_Type (Ltyp);
2106 Rtyp := Base_Type (Rtyp);
2107 pragma Assert (Ltyp = Rtyp);
2108 end if;
2110 -- Build list of formals for function
2112 Formals := New_List (
2113 Make_Parameter_Specification (Loc,
2114 Defining_Identifier => A,
2115 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
2117 Make_Parameter_Specification (Loc,
2118 Defining_Identifier => B,
2119 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
2121 Func_Name := Make_Temporary (Loc, 'E');
2123 -- Build statement sequence for function
2125 Func_Body :=
2126 Make_Subprogram_Body (Loc,
2127 Specification =>
2128 Make_Function_Specification (Loc,
2129 Defining_Unit_Name => Func_Name,
2130 Parameter_Specifications => Formals,
2131 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
2133 Declarations => Decls,
2135 Handled_Statement_Sequence =>
2136 Make_Handled_Sequence_Of_Statements (Loc,
2137 Statements => New_List (
2139 Make_Implicit_If_Statement (Nod,
2140 Condition => Test_Empty_Arrays,
2141 Then_Statements => New_List (
2142 Make_Simple_Return_Statement (Loc,
2143 Expression =>
2144 New_Occurrence_Of (Standard_True, Loc)))),
2146 Make_Implicit_If_Statement (Nod,
2147 Condition => Test_Lengths_Correspond,
2148 Then_Statements => New_List (
2149 Make_Simple_Return_Statement (Loc,
2150 Expression => New_Occurrence_Of (Standard_False, Loc)))),
2152 Handle_One_Dimension (1, First_Index (Ltyp)),
2154 Make_Simple_Return_Statement (Loc,
2155 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2157 Set_Has_Completion (Func_Name, True);
2158 Set_Is_Inlined (Func_Name);
2160 -- If the array type is distinct from the type of the arguments, it
2161 -- is the full view of a private type. Apply an unchecked conversion
2162 -- to insure that analysis of the call succeeds.
2164 declare
2165 L, R : Node_Id;
2167 begin
2168 L := Lhs;
2169 R := Rhs;
2171 if No (Etype (Lhs))
2172 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2173 then
2174 L := OK_Convert_To (Ltyp, Lhs);
2175 end if;
2177 if No (Etype (Rhs))
2178 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2179 then
2180 R := OK_Convert_To (Rtyp, Rhs);
2181 end if;
2183 Actuals := New_List (L, R);
2184 end;
2186 Append_To (Bodies, Func_Body);
2188 return
2189 Make_Function_Call (Loc,
2190 Name => New_Occurrence_Of (Func_Name, Loc),
2191 Parameter_Associations => Actuals);
2192 end Expand_Array_Equality;
2194 -----------------------------
2195 -- Expand_Boolean_Operator --
2196 -----------------------------
2198 -- Note that we first get the actual subtypes of the operands, since we
2199 -- always want to deal with types that have bounds.
2201 procedure Expand_Boolean_Operator (N : Node_Id) is
2202 Typ : constant Entity_Id := Etype (N);
2204 begin
2205 -- Special case of bit packed array where both operands are known to be
2206 -- properly aligned. In this case we use an efficient run time routine
2207 -- to carry out the operation (see System.Bit_Ops).
2209 if Is_Bit_Packed_Array (Typ)
2210 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2211 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2212 then
2213 Expand_Packed_Boolean_Operator (N);
2214 return;
2215 end if;
2217 -- For the normal non-packed case, the general expansion is to build
2218 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2219 -- and then inserting it into the tree. The original operator node is
2220 -- then rewritten as a call to this function. We also use this in the
2221 -- packed case if either operand is a possibly unaligned object.
2223 declare
2224 Loc : constant Source_Ptr := Sloc (N);
2225 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2226 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2227 Func_Body : Node_Id;
2228 Func_Name : Entity_Id;
2230 begin
2231 Convert_To_Actual_Subtype (L);
2232 Convert_To_Actual_Subtype (R);
2233 Ensure_Defined (Etype (L), N);
2234 Ensure_Defined (Etype (R), N);
2235 Apply_Length_Check (R, Etype (L));
2237 if Nkind (N) = N_Op_Xor then
2238 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2239 end if;
2241 if Nkind (Parent (N)) = N_Assignment_Statement
2242 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2243 then
2244 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2246 elsif Nkind (Parent (N)) = N_Op_Not
2247 and then Nkind (N) = N_Op_And
2248 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2249 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2250 then
2251 return;
2252 else
2254 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2255 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2256 Insert_Action (N, Func_Body);
2258 -- Now rewrite the expression with a call
2260 Rewrite (N,
2261 Make_Function_Call (Loc,
2262 Name => New_Occurrence_Of (Func_Name, Loc),
2263 Parameter_Associations =>
2264 New_List (
2266 Make_Type_Conversion
2267 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
2269 Analyze_And_Resolve (N, Typ);
2270 end if;
2271 end;
2272 end Expand_Boolean_Operator;
2274 ------------------------------------------------
2275 -- Expand_Compare_Minimize_Eliminate_Overflow --
2276 ------------------------------------------------
2278 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2279 Loc : constant Source_Ptr := Sloc (N);
2281 Result_Type : constant Entity_Id := Etype (N);
2282 -- Capture result type (could be a derived boolean type)
2284 Llo, Lhi : Uint;
2285 Rlo, Rhi : Uint;
2287 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2288 -- Entity for Long_Long_Integer'Base
2290 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
2291 -- Current overflow checking mode
2293 procedure Set_True;
2294 procedure Set_False;
2295 -- These procedures rewrite N with an occurrence of Standard_True or
2296 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2298 ---------------
2299 -- Set_False --
2300 ---------------
2302 procedure Set_False is
2303 begin
2304 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2305 Warn_On_Known_Condition (N);
2306 end Set_False;
2308 --------------
2309 -- Set_True --
2310 --------------
2312 procedure Set_True is
2313 begin
2314 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2315 Warn_On_Known_Condition (N);
2316 end Set_True;
2318 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2320 begin
2321 -- Nothing to do unless we have a comparison operator with operands
2322 -- that are signed integer types, and we are operating in either
2323 -- MINIMIZED or ELIMINATED overflow checking mode.
2325 if Nkind (N) not in N_Op_Compare
2326 or else Check not in Minimized_Or_Eliminated
2327 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2328 then
2329 return;
2330 end if;
2332 -- OK, this is the case we are interested in. First step is to process
2333 -- our operands using the Minimize_Eliminate circuitry which applies
2334 -- this processing to the two operand subtrees.
2336 Minimize_Eliminate_Overflows
2337 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
2338 Minimize_Eliminate_Overflows
2339 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
2341 -- See if the range information decides the result of the comparison.
2342 -- We can only do this if we in fact have full range information (which
2343 -- won't be the case if either operand is bignum at this stage).
2345 if Llo /= No_Uint and then Rlo /= No_Uint then
2346 case N_Op_Compare (Nkind (N)) is
2347 when N_Op_Eq =>
2348 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2349 Set_True;
2350 elsif Llo > Rhi or else Lhi < Rlo then
2351 Set_False;
2352 end if;
2354 when N_Op_Ge =>
2355 if Llo >= Rhi then
2356 Set_True;
2357 elsif Lhi < Rlo then
2358 Set_False;
2359 end if;
2361 when N_Op_Gt =>
2362 if Llo > Rhi then
2363 Set_True;
2364 elsif Lhi <= Rlo then
2365 Set_False;
2366 end if;
2368 when N_Op_Le =>
2369 if Llo > Rhi then
2370 Set_False;
2371 elsif Lhi <= Rlo then
2372 Set_True;
2373 end if;
2375 when N_Op_Lt =>
2376 if Llo >= Rhi then
2377 Set_False;
2378 elsif Lhi < Rlo then
2379 Set_True;
2380 end if;
2382 when N_Op_Ne =>
2383 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2384 Set_False;
2385 elsif Llo > Rhi or else Lhi < Rlo then
2386 Set_True;
2387 end if;
2388 end case;
2390 -- All done if we did the rewrite
2392 if Nkind (N) not in N_Op_Compare then
2393 return;
2394 end if;
2395 end if;
2397 -- Otherwise, time to do the comparison
2399 declare
2400 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2401 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2403 begin
2404 -- If the two operands have the same signed integer type we are
2405 -- all set, nothing more to do. This is the case where either
2406 -- both operands were unchanged, or we rewrote both of them to
2407 -- be Long_Long_Integer.
2409 -- Note: Entity for the comparison may be wrong, but it's not worth
2410 -- the effort to change it, since the back end does not use it.
2412 if Is_Signed_Integer_Type (Ltype)
2413 and then Base_Type (Ltype) = Base_Type (Rtype)
2414 then
2415 return;
2417 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2419 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2420 declare
2421 Left : Node_Id := Left_Opnd (N);
2422 Right : Node_Id := Right_Opnd (N);
2423 -- Bignum references for left and right operands
2425 begin
2426 if not Is_RTE (Ltype, RE_Bignum) then
2427 Left := Convert_To_Bignum (Left);
2428 elsif not Is_RTE (Rtype, RE_Bignum) then
2429 Right := Convert_To_Bignum (Right);
2430 end if;
2432 -- We rewrite our node with:
2434 -- do
2435 -- Bnn : Result_Type;
2436 -- declare
2437 -- M : Mark_Id := SS_Mark;
2438 -- begin
2439 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2440 -- SS_Release (M);
2441 -- end;
2442 -- in
2443 -- Bnn
2444 -- end
2446 declare
2447 Blk : constant Node_Id := Make_Bignum_Block (Loc);
2448 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2449 Ent : RE_Id;
2451 begin
2452 case N_Op_Compare (Nkind (N)) is
2453 when N_Op_Eq => Ent := RE_Big_EQ;
2454 when N_Op_Ge => Ent := RE_Big_GE;
2455 when N_Op_Gt => Ent := RE_Big_GT;
2456 when N_Op_Le => Ent := RE_Big_LE;
2457 when N_Op_Lt => Ent := RE_Big_LT;
2458 when N_Op_Ne => Ent := RE_Big_NE;
2459 end case;
2461 -- Insert assignment to Bnn into the bignum block
2463 Insert_Before
2464 (First (Statements (Handled_Statement_Sequence (Blk))),
2465 Make_Assignment_Statement (Loc,
2466 Name => New_Occurrence_Of (Bnn, Loc),
2467 Expression =>
2468 Make_Function_Call (Loc,
2469 Name =>
2470 New_Occurrence_Of (RTE (Ent), Loc),
2471 Parameter_Associations => New_List (Left, Right))));
2473 -- Now do the rewrite with expression actions
2475 Rewrite (N,
2476 Make_Expression_With_Actions (Loc,
2477 Actions => New_List (
2478 Make_Object_Declaration (Loc,
2479 Defining_Identifier => Bnn,
2480 Object_Definition =>
2481 New_Occurrence_Of (Result_Type, Loc)),
2482 Blk),
2483 Expression => New_Occurrence_Of (Bnn, Loc)));
2484 Analyze_And_Resolve (N, Result_Type);
2485 end;
2486 end;
2488 -- No bignums involved, but types are different, so we must have
2489 -- rewritten one of the operands as a Long_Long_Integer but not
2490 -- the other one.
2492 -- If left operand is Long_Long_Integer, convert right operand
2493 -- and we are done (with a comparison of two Long_Long_Integers).
2495 elsif Ltype = LLIB then
2496 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2497 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2498 return;
2500 -- If right operand is Long_Long_Integer, convert left operand
2501 -- and we are done (with a comparison of two Long_Long_Integers).
2503 -- This is the only remaining possibility
2505 else pragma Assert (Rtype = LLIB);
2506 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2507 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2508 return;
2509 end if;
2510 end;
2511 end Expand_Compare_Minimize_Eliminate_Overflow;
2513 -------------------------------
2514 -- Expand_Composite_Equality --
2515 -------------------------------
2517 -- This function is only called for comparing internal fields of composite
2518 -- types when these fields are themselves composites. This is a special
2519 -- case because it is not possible to respect normal Ada visibility rules.
2521 function Expand_Composite_Equality
2522 (Nod : Node_Id;
2523 Typ : Entity_Id;
2524 Lhs : Node_Id;
2525 Rhs : Node_Id;
2526 Bodies : List_Id) return Node_Id
2528 Loc : constant Source_Ptr := Sloc (Nod);
2529 Full_Type : Entity_Id;
2530 Prim : Elmt_Id;
2531 Eq_Op : Entity_Id;
2533 function Find_Primitive_Eq return Node_Id;
2534 -- AI05-0123: Locate primitive equality for type if it exists, and
2535 -- build the corresponding call. If operation is abstract, replace
2536 -- call with an explicit raise. Return Empty if there is no primitive.
2538 -----------------------
2539 -- Find_Primitive_Eq --
2540 -----------------------
2542 function Find_Primitive_Eq return Node_Id is
2543 Prim_E : Elmt_Id;
2544 Prim : Node_Id;
2546 begin
2547 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2548 while Present (Prim_E) loop
2549 Prim := Node (Prim_E);
2551 -- Locate primitive equality with the right signature
2553 if Chars (Prim) = Name_Op_Eq
2554 and then Etype (First_Formal (Prim)) =
2555 Etype (Next_Formal (First_Formal (Prim)))
2556 and then Etype (Prim) = Standard_Boolean
2557 then
2558 if Is_Abstract_Subprogram (Prim) then
2559 return
2560 Make_Raise_Program_Error (Loc,
2561 Reason => PE_Explicit_Raise);
2563 else
2564 return
2565 Make_Function_Call (Loc,
2566 Name => New_Occurrence_Of (Prim, Loc),
2567 Parameter_Associations => New_List (Lhs, Rhs));
2568 end if;
2569 end if;
2571 Next_Elmt (Prim_E);
2572 end loop;
2574 -- If not found, predefined operation will be used
2576 return Empty;
2577 end Find_Primitive_Eq;
2579 -- Start of processing for Expand_Composite_Equality
2581 begin
2582 if Is_Private_Type (Typ) then
2583 Full_Type := Underlying_Type (Typ);
2584 else
2585 Full_Type := Typ;
2586 end if;
2588 -- If the private type has no completion the context may be the
2589 -- expansion of a composite equality for a composite type with some
2590 -- still incomplete components. The expression will not be analyzed
2591 -- until the enclosing type is completed, at which point this will be
2592 -- properly expanded, unless there is a bona fide completion error.
2594 if No (Full_Type) then
2595 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2596 end if;
2598 Full_Type := Base_Type (Full_Type);
2600 -- When the base type itself is private, use the full view to expand
2601 -- the composite equality.
2603 if Is_Private_Type (Full_Type) then
2604 Full_Type := Underlying_Type (Full_Type);
2605 end if;
2607 -- Case of array types
2609 if Is_Array_Type (Full_Type) then
2611 -- If the operand is an elementary type other than a floating-point
2612 -- type, then we can simply use the built-in block bitwise equality,
2613 -- since the predefined equality operators always apply and bitwise
2614 -- equality is fine for all these cases.
2616 if Is_Elementary_Type (Component_Type (Full_Type))
2617 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2618 then
2619 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2621 -- For composite component types, and floating-point types, use the
2622 -- expansion. This deals with tagged component types (where we use
2623 -- the applicable equality routine) and floating-point, (where we
2624 -- need to worry about negative zeroes), and also the case of any
2625 -- composite type recursively containing such fields.
2627 else
2628 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
2629 end if;
2631 -- Case of tagged record types
2633 elsif Is_Tagged_Type (Full_Type) then
2635 -- Call the primitive operation "=" of this type
2637 if Is_Class_Wide_Type (Full_Type) then
2638 Full_Type := Root_Type (Full_Type);
2639 end if;
2641 -- If this is derived from an untagged private type completed with a
2642 -- tagged type, it does not have a full view, so we use the primitive
2643 -- operations of the private type. This check should no longer be
2644 -- necessary when these types receive their full views ???
2646 if Is_Private_Type (Typ)
2647 and then not Is_Tagged_Type (Typ)
2648 and then not Is_Controlled (Typ)
2649 and then Is_Derived_Type (Typ)
2650 and then No (Full_View (Typ))
2651 then
2652 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2653 else
2654 Prim := First_Elmt (Primitive_Operations (Full_Type));
2655 end if;
2657 loop
2658 Eq_Op := Node (Prim);
2659 exit when Chars (Eq_Op) = Name_Op_Eq
2660 and then Etype (First_Formal (Eq_Op)) =
2661 Etype (Next_Formal (First_Formal (Eq_Op)))
2662 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
2663 Next_Elmt (Prim);
2664 pragma Assert (Present (Prim));
2665 end loop;
2667 Eq_Op := Node (Prim);
2669 return
2670 Make_Function_Call (Loc,
2671 Name => New_Occurrence_Of (Eq_Op, Loc),
2672 Parameter_Associations =>
2673 New_List
2674 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2675 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2677 -- Case of untagged record types
2679 elsif Is_Record_Type (Full_Type) then
2680 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2682 if Present (Eq_Op) then
2683 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2685 -- Inherited equality from parent type. Convert the actuals to
2686 -- match signature of operation.
2688 declare
2689 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2691 begin
2692 return
2693 Make_Function_Call (Loc,
2694 Name => New_Occurrence_Of (Eq_Op, Loc),
2695 Parameter_Associations => New_List (
2696 OK_Convert_To (T, Lhs),
2697 OK_Convert_To (T, Rhs)));
2698 end;
2700 else
2701 -- Comparison between Unchecked_Union components
2703 if Is_Unchecked_Union (Full_Type) then
2704 declare
2705 Lhs_Type : Node_Id := Full_Type;
2706 Rhs_Type : Node_Id := Full_Type;
2707 Lhs_Discr_Val : Node_Id;
2708 Rhs_Discr_Val : Node_Id;
2710 begin
2711 -- Lhs subtype
2713 if Nkind (Lhs) = N_Selected_Component then
2714 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2715 end if;
2717 -- Rhs subtype
2719 if Nkind (Rhs) = N_Selected_Component then
2720 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2721 end if;
2723 -- Lhs of the composite equality
2725 if Is_Constrained (Lhs_Type) then
2727 -- Since the enclosing record type can never be an
2728 -- Unchecked_Union (this code is executed for records
2729 -- that do not have variants), we may reference its
2730 -- discriminant(s).
2732 if Nkind (Lhs) = N_Selected_Component
2733 and then Has_Per_Object_Constraint
2734 (Entity (Selector_Name (Lhs)))
2735 then
2736 Lhs_Discr_Val :=
2737 Make_Selected_Component (Loc,
2738 Prefix => Prefix (Lhs),
2739 Selector_Name =>
2740 New_Copy
2741 (Get_Discriminant_Value
2742 (First_Discriminant (Lhs_Type),
2743 Lhs_Type,
2744 Stored_Constraint (Lhs_Type))));
2746 else
2747 Lhs_Discr_Val :=
2748 New_Copy
2749 (Get_Discriminant_Value
2750 (First_Discriminant (Lhs_Type),
2751 Lhs_Type,
2752 Stored_Constraint (Lhs_Type)));
2754 end if;
2755 else
2756 -- It is not possible to infer the discriminant since
2757 -- the subtype is not constrained.
2759 return
2760 Make_Raise_Program_Error (Loc,
2761 Reason => PE_Unchecked_Union_Restriction);
2762 end if;
2764 -- Rhs of the composite equality
2766 if Is_Constrained (Rhs_Type) then
2767 if Nkind (Rhs) = N_Selected_Component
2768 and then Has_Per_Object_Constraint
2769 (Entity (Selector_Name (Rhs)))
2770 then
2771 Rhs_Discr_Val :=
2772 Make_Selected_Component (Loc,
2773 Prefix => Prefix (Rhs),
2774 Selector_Name =>
2775 New_Copy
2776 (Get_Discriminant_Value
2777 (First_Discriminant (Rhs_Type),
2778 Rhs_Type,
2779 Stored_Constraint (Rhs_Type))));
2781 else
2782 Rhs_Discr_Val :=
2783 New_Copy
2784 (Get_Discriminant_Value
2785 (First_Discriminant (Rhs_Type),
2786 Rhs_Type,
2787 Stored_Constraint (Rhs_Type)));
2789 end if;
2790 else
2791 return
2792 Make_Raise_Program_Error (Loc,
2793 Reason => PE_Unchecked_Union_Restriction);
2794 end if;
2796 -- Call the TSS equality function with the inferred
2797 -- discriminant values.
2799 return
2800 Make_Function_Call (Loc,
2801 Name => New_Occurrence_Of (Eq_Op, Loc),
2802 Parameter_Associations => New_List (
2803 Lhs,
2804 Rhs,
2805 Lhs_Discr_Val,
2806 Rhs_Discr_Val));
2807 end;
2809 -- All cases other than comparing Unchecked_Union types
2811 else
2812 declare
2813 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2814 begin
2815 return
2816 Make_Function_Call (Loc,
2817 Name =>
2818 New_Occurrence_Of (Eq_Op, Loc),
2819 Parameter_Associations => New_List (
2820 OK_Convert_To (T, Lhs),
2821 OK_Convert_To (T, Rhs)));
2822 end;
2823 end if;
2824 end if;
2826 -- Equality composes in Ada 2012 for untagged record types. It also
2827 -- composes for bounded strings, because they are part of the
2828 -- predefined environment. We could make it compose for bounded
2829 -- strings by making them tagged, or by making sure all subcomponents
2830 -- are set to the same value, even when not used. Instead, we have
2831 -- this special case in the compiler, because it's more efficient.
2833 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
2835 -- If no TSS has been created for the type, check whether there is
2836 -- a primitive equality declared for it.
2838 declare
2839 Op : constant Node_Id := Find_Primitive_Eq;
2841 begin
2842 -- Use user-defined primitive if it exists, otherwise use
2843 -- predefined equality.
2845 if Present (Op) then
2846 return Op;
2847 else
2848 return Make_Op_Eq (Loc, Lhs, Rhs);
2849 end if;
2850 end;
2852 else
2853 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2854 end if;
2856 -- Non-composite types (always use predefined equality)
2858 else
2859 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2860 end if;
2861 end Expand_Composite_Equality;
2863 ------------------------
2864 -- Expand_Concatenate --
2865 ------------------------
2867 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2868 Loc : constant Source_Ptr := Sloc (Cnode);
2870 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2871 -- Result type of concatenation
2873 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2874 -- Component type. Elements of this component type can appear as one
2875 -- of the operands of concatenation as well as arrays.
2877 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2878 -- Index subtype
2880 Ityp : constant Entity_Id := Base_Type (Istyp);
2881 -- Index type. This is the base type of the index subtype, and is used
2882 -- for all computed bounds (which may be out of range of Istyp in the
2883 -- case of null ranges).
2885 Artyp : Entity_Id;
2886 -- This is the type we use to do arithmetic to compute the bounds and
2887 -- lengths of operands. The choice of this type is a little subtle and
2888 -- is discussed in a separate section at the start of the body code.
2890 Concatenation_Error : exception;
2891 -- Raised if concatenation is sure to raise a CE
2893 Result_May_Be_Null : Boolean := True;
2894 -- Reset to False if at least one operand is encountered which is known
2895 -- at compile time to be non-null. Used for handling the special case
2896 -- of setting the high bound to the last operand high bound for a null
2897 -- result, thus ensuring a proper high bound in the super-flat case.
2899 N : constant Nat := List_Length (Opnds);
2900 -- Number of concatenation operands including possibly null operands
2902 NN : Nat := 0;
2903 -- Number of operands excluding any known to be null, except that the
2904 -- last operand is always retained, in case it provides the bounds for
2905 -- a null result.
2907 Opnd : Node_Id;
2908 -- Current operand being processed in the loop through operands. After
2909 -- this loop is complete, always contains the last operand (which is not
2910 -- the same as Operands (NN), since null operands are skipped).
2912 -- Arrays describing the operands, only the first NN entries of each
2913 -- array are set (NN < N when we exclude known null operands).
2915 Is_Fixed_Length : array (1 .. N) of Boolean;
2916 -- True if length of corresponding operand known at compile time
2918 Operands : array (1 .. N) of Node_Id;
2919 -- Set to the corresponding entry in the Opnds list (but note that null
2920 -- operands are excluded, so not all entries in the list are stored).
2922 Fixed_Length : array (1 .. N) of Uint;
2923 -- Set to length of operand. Entries in this array are set only if the
2924 -- corresponding entry in Is_Fixed_Length is True.
2926 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2927 -- Set to lower bound of operand. Either an integer literal in the case
2928 -- where the bound is known at compile time, else actual lower bound.
2929 -- The operand low bound is of type Ityp.
2931 Var_Length : array (1 .. N) of Entity_Id;
2932 -- Set to an entity of type Natural that contains the length of an
2933 -- operand whose length is not known at compile time. Entries in this
2934 -- array are set only if the corresponding entry in Is_Fixed_Length
2935 -- is False. The entity is of type Artyp.
2937 Aggr_Length : array (0 .. N) of Node_Id;
2938 -- The J'th entry in an expression node that represents the total length
2939 -- of operands 1 through J. It is either an integer literal node, or a
2940 -- reference to a constant entity with the right value, so it is fine
2941 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2942 -- entry always is set to zero. The length is of type Artyp.
2944 Low_Bound : Node_Id;
2945 -- A tree node representing the low bound of the result (of type Ityp).
2946 -- This is either an integer literal node, or an identifier reference to
2947 -- a constant entity initialized to the appropriate value.
2949 Last_Opnd_Low_Bound : Node_Id;
2950 -- A tree node representing the low bound of the last operand. This
2951 -- need only be set if the result could be null. It is used for the
2952 -- special case of setting the right low bound for a null result.
2953 -- This is of type Ityp.
2955 Last_Opnd_High_Bound : Node_Id;
2956 -- A tree node representing the high bound of the last operand. This
2957 -- need only be set if the result could be null. It is used for the
2958 -- special case of setting the right high bound for a null result.
2959 -- This is of type Ityp.
2961 High_Bound : Node_Id;
2962 -- A tree node representing the high bound of the result (of type Ityp)
2964 Result : Node_Id;
2965 -- Result of the concatenation (of type Ityp)
2967 Actions : constant List_Id := New_List;
2968 -- Collect actions to be inserted
2970 Known_Non_Null_Operand_Seen : Boolean;
2971 -- Set True during generation of the assignments of operands into
2972 -- result once an operand known to be non-null has been seen.
2974 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2975 -- This function makes an N_Integer_Literal node that is returned in
2976 -- analyzed form with the type set to Artyp. Importantly this literal
2977 -- is not flagged as static, so that if we do computations with it that
2978 -- result in statically detected out of range conditions, we will not
2979 -- generate error messages but instead warning messages.
2981 function To_Artyp (X : Node_Id) return Node_Id;
2982 -- Given a node of type Ityp, returns the corresponding value of type
2983 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2984 -- For enum types, the Pos of the value is returned.
2986 function To_Ityp (X : Node_Id) return Node_Id;
2987 -- The inverse function (uses Val in the case of enumeration types)
2989 ------------------------
2990 -- Make_Artyp_Literal --
2991 ------------------------
2993 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2994 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2995 begin
2996 Set_Etype (Result, Artyp);
2997 Set_Analyzed (Result, True);
2998 Set_Is_Static_Expression (Result, False);
2999 return Result;
3000 end Make_Artyp_Literal;
3002 --------------
3003 -- To_Artyp --
3004 --------------
3006 function To_Artyp (X : Node_Id) return Node_Id is
3007 begin
3008 if Ityp = Base_Type (Artyp) then
3009 return X;
3011 elsif Is_Enumeration_Type (Ityp) then
3012 return
3013 Make_Attribute_Reference (Loc,
3014 Prefix => New_Occurrence_Of (Ityp, Loc),
3015 Attribute_Name => Name_Pos,
3016 Expressions => New_List (X));
3018 else
3019 return Convert_To (Artyp, X);
3020 end if;
3021 end To_Artyp;
3023 -------------
3024 -- To_Ityp --
3025 -------------
3027 function To_Ityp (X : Node_Id) return Node_Id is
3028 begin
3029 if Is_Enumeration_Type (Ityp) then
3030 return
3031 Make_Attribute_Reference (Loc,
3032 Prefix => New_Occurrence_Of (Ityp, Loc),
3033 Attribute_Name => Name_Val,
3034 Expressions => New_List (X));
3036 -- Case where we will do a type conversion
3038 else
3039 if Ityp = Base_Type (Artyp) then
3040 return X;
3041 else
3042 return Convert_To (Ityp, X);
3043 end if;
3044 end if;
3045 end To_Ityp;
3047 -- Local Declarations
3049 Lib_Level_Target : constant Boolean :=
3050 Nkind (Parent (Cnode)) = N_Object_Declaration
3051 and then
3052 Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3054 -- If the concatenation declares a library level entity, we call the
3055 -- built-in concatenation routines to prevent code bloat, regardless
3056 -- of optimization level. This is space-efficient, and prevent linking
3057 -- problems when units are compiled with different optimizations.
3059 Opnd_Typ : Entity_Id;
3060 Ent : Entity_Id;
3061 Len : Uint;
3062 J : Nat;
3063 Clen : Node_Id;
3064 Set : Boolean;
3066 -- Start of processing for Expand_Concatenate
3068 begin
3069 -- Choose an appropriate computational type
3071 -- We will be doing calculations of lengths and bounds in this routine
3072 -- and computing one from the other in some cases, e.g. getting the high
3073 -- bound by adding the length-1 to the low bound.
3075 -- We can't just use the index type, or even its base type for this
3076 -- purpose for two reasons. First it might be an enumeration type which
3077 -- is not suitable for computations of any kind, and second it may
3078 -- simply not have enough range. For example if the index type is
3079 -- -128..+127 then lengths can be up to 256, which is out of range of
3080 -- the type.
3082 -- For enumeration types, we can simply use Standard_Integer, this is
3083 -- sufficient since the actual number of enumeration literals cannot
3084 -- possibly exceed the range of integer (remember we will be doing the
3085 -- arithmetic with POS values, not representation values).
3087 if Is_Enumeration_Type (Ityp) then
3088 Artyp := Standard_Integer;
3090 -- If index type is Positive, we use the standard unsigned type, to give
3091 -- more room on the top of the range, obviating the need for an overflow
3092 -- check when creating the upper bound. This is needed to avoid junk
3093 -- overflow checks in the common case of String types.
3095 -- ??? Disabled for now
3097 -- elsif Istyp = Standard_Positive then
3098 -- Artyp := Standard_Unsigned;
3100 -- For modular types, we use a 32-bit modular type for types whose size
3101 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3102 -- identity type, and for larger unsigned types we use 64-bits.
3104 elsif Is_Modular_Integer_Type (Ityp) then
3105 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
3106 Artyp := Standard_Unsigned;
3107 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
3108 Artyp := Ityp;
3109 else
3110 Artyp := RTE (RE_Long_Long_Unsigned);
3111 end if;
3113 -- Similar treatment for signed types
3115 else
3116 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
3117 Artyp := Standard_Integer;
3118 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
3119 Artyp := Ityp;
3120 else
3121 Artyp := Standard_Long_Long_Integer;
3122 end if;
3123 end if;
3125 -- Supply dummy entry at start of length array
3127 Aggr_Length (0) := Make_Artyp_Literal (0);
3129 -- Go through operands setting up the above arrays
3131 J := 1;
3132 while J <= N loop
3133 Opnd := Remove_Head (Opnds);
3134 Opnd_Typ := Etype (Opnd);
3136 -- The parent got messed up when we put the operands in a list,
3137 -- so now put back the proper parent for the saved operand, that
3138 -- is to say the concatenation node, to make sure that each operand
3139 -- is seen as a subexpression, e.g. if actions must be inserted.
3141 Set_Parent (Opnd, Cnode);
3143 -- Set will be True when we have setup one entry in the array
3145 Set := False;
3147 -- Singleton element (or character literal) case
3149 if Base_Type (Opnd_Typ) = Ctyp then
3150 NN := NN + 1;
3151 Operands (NN) := Opnd;
3152 Is_Fixed_Length (NN) := True;
3153 Fixed_Length (NN) := Uint_1;
3154 Result_May_Be_Null := False;
3156 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3157 -- since we know that the result cannot be null).
3159 Opnd_Low_Bound (NN) :=
3160 Make_Attribute_Reference (Loc,
3161 Prefix => New_Occurrence_Of (Istyp, Loc),
3162 Attribute_Name => Name_First);
3164 Set := True;
3166 -- String literal case (can only occur for strings of course)
3168 elsif Nkind (Opnd) = N_String_Literal then
3169 Len := String_Literal_Length (Opnd_Typ);
3171 if Len /= 0 then
3172 Result_May_Be_Null := False;
3173 end if;
3175 -- Capture last operand low and high bound if result could be null
3177 if J = N and then Result_May_Be_Null then
3178 Last_Opnd_Low_Bound :=
3179 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3181 Last_Opnd_High_Bound :=
3182 Make_Op_Subtract (Loc,
3183 Left_Opnd =>
3184 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
3185 Right_Opnd => Make_Integer_Literal (Loc, 1));
3186 end if;
3188 -- Skip null string literal
3190 if J < N and then Len = 0 then
3191 goto Continue;
3192 end if;
3194 NN := NN + 1;
3195 Operands (NN) := Opnd;
3196 Is_Fixed_Length (NN) := True;
3198 -- Set length and bounds
3200 Fixed_Length (NN) := Len;
3202 Opnd_Low_Bound (NN) :=
3203 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3205 Set := True;
3207 -- All other cases
3209 else
3210 -- Check constrained case with known bounds
3212 if Is_Constrained (Opnd_Typ) then
3213 declare
3214 Index : constant Node_Id := First_Index (Opnd_Typ);
3215 Indx_Typ : constant Entity_Id := Etype (Index);
3216 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3217 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3219 begin
3220 -- Fixed length constrained array type with known at compile
3221 -- time bounds is last case of fixed length operand.
3223 if Compile_Time_Known_Value (Lo)
3224 and then
3225 Compile_Time_Known_Value (Hi)
3226 then
3227 declare
3228 Loval : constant Uint := Expr_Value (Lo);
3229 Hival : constant Uint := Expr_Value (Hi);
3230 Len : constant Uint :=
3231 UI_Max (Hival - Loval + 1, Uint_0);
3233 begin
3234 if Len > 0 then
3235 Result_May_Be_Null := False;
3236 end if;
3238 -- Capture last operand bounds if result could be null
3240 if J = N and then Result_May_Be_Null then
3241 Last_Opnd_Low_Bound :=
3242 Convert_To (Ityp,
3243 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3245 Last_Opnd_High_Bound :=
3246 Convert_To (Ityp,
3247 Make_Integer_Literal (Loc, Expr_Value (Hi)));
3248 end if;
3250 -- Exclude null length case unless last operand
3252 if J < N and then Len = 0 then
3253 goto Continue;
3254 end if;
3256 NN := NN + 1;
3257 Operands (NN) := Opnd;
3258 Is_Fixed_Length (NN) := True;
3259 Fixed_Length (NN) := Len;
3261 Opnd_Low_Bound (NN) :=
3262 To_Ityp
3263 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
3264 Set := True;
3265 end;
3266 end if;
3267 end;
3268 end if;
3270 -- All cases where the length is not known at compile time, or the
3271 -- special case of an operand which is known to be null but has a
3272 -- lower bound other than 1 or is other than a string type.
3274 if not Set then
3275 NN := NN + 1;
3277 -- Capture operand bounds
3279 Opnd_Low_Bound (NN) :=
3280 Make_Attribute_Reference (Loc,
3281 Prefix =>
3282 Duplicate_Subexpr (Opnd, Name_Req => True),
3283 Attribute_Name => Name_First);
3285 -- Capture last operand bounds if result could be null
3287 if J = N and Result_May_Be_Null then
3288 Last_Opnd_Low_Bound :=
3289 Convert_To (Ityp,
3290 Make_Attribute_Reference (Loc,
3291 Prefix =>
3292 Duplicate_Subexpr (Opnd, Name_Req => True),
3293 Attribute_Name => Name_First));
3295 Last_Opnd_High_Bound :=
3296 Convert_To (Ityp,
3297 Make_Attribute_Reference (Loc,
3298 Prefix =>
3299 Duplicate_Subexpr (Opnd, Name_Req => True),
3300 Attribute_Name => Name_Last));
3301 end if;
3303 -- Capture length of operand in entity
3305 Operands (NN) := Opnd;
3306 Is_Fixed_Length (NN) := False;
3308 Var_Length (NN) := Make_Temporary (Loc, 'L');
3310 Append_To (Actions,
3311 Make_Object_Declaration (Loc,
3312 Defining_Identifier => Var_Length (NN),
3313 Constant_Present => True,
3314 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3315 Expression =>
3316 Make_Attribute_Reference (Loc,
3317 Prefix =>
3318 Duplicate_Subexpr (Opnd, Name_Req => True),
3319 Attribute_Name => Name_Length)));
3320 end if;
3321 end if;
3323 -- Set next entry in aggregate length array
3325 -- For first entry, make either integer literal for fixed length
3326 -- or a reference to the saved length for variable length.
3328 if NN = 1 then
3329 if Is_Fixed_Length (1) then
3330 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
3331 else
3332 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
3333 end if;
3335 -- If entry is fixed length and only fixed lengths so far, make
3336 -- appropriate new integer literal adding new length.
3338 elsif Is_Fixed_Length (NN)
3339 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3340 then
3341 Aggr_Length (NN) :=
3342 Make_Integer_Literal (Loc,
3343 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3345 -- All other cases, construct an addition node for the length and
3346 -- create an entity initialized to this length.
3348 else
3349 Ent := Make_Temporary (Loc, 'L');
3351 if Is_Fixed_Length (NN) then
3352 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3353 else
3354 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
3355 end if;
3357 Append_To (Actions,
3358 Make_Object_Declaration (Loc,
3359 Defining_Identifier => Ent,
3360 Constant_Present => True,
3361 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3362 Expression =>
3363 Make_Op_Add (Loc,
3364 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
3365 Right_Opnd => Clen)));
3367 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
3368 end if;
3370 <<Continue>>
3371 J := J + 1;
3372 end loop;
3374 -- If we have only skipped null operands, return the last operand
3376 if NN = 0 then
3377 Result := Opnd;
3378 goto Done;
3379 end if;
3381 -- If we have only one non-null operand, return it and we are done.
3382 -- There is one case in which this cannot be done, and that is when
3383 -- the sole operand is of the element type, in which case it must be
3384 -- converted to an array, and the easiest way of doing that is to go
3385 -- through the normal general circuit.
3387 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
3388 Result := Operands (1);
3389 goto Done;
3390 end if;
3392 -- Cases where we have a real concatenation
3394 -- Next step is to find the low bound for the result array that we
3395 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3397 -- If the ultimate ancestor of the index subtype is a constrained array
3398 -- definition, then the lower bound is that of the index subtype as
3399 -- specified by (RM 4.5.3(6)).
3401 -- The right test here is to go to the root type, and then the ultimate
3402 -- ancestor is the first subtype of this root type.
3404 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3405 Low_Bound :=
3406 Make_Attribute_Reference (Loc,
3407 Prefix =>
3408 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3409 Attribute_Name => Name_First);
3411 -- If the first operand in the list has known length we know that
3412 -- the lower bound of the result is the lower bound of this operand.
3414 elsif Is_Fixed_Length (1) then
3415 Low_Bound := Opnd_Low_Bound (1);
3417 -- OK, we don't know the lower bound, we have to build a horrible
3418 -- if expression node of the form
3420 -- if Cond1'Length /= 0 then
3421 -- Opnd1 low bound
3422 -- else
3423 -- if Opnd2'Length /= 0 then
3424 -- Opnd2 low bound
3425 -- else
3426 -- ...
3428 -- The nesting ends either when we hit an operand whose length is known
3429 -- at compile time, or on reaching the last operand, whose low bound we
3430 -- take unconditionally whether or not it is null. It's easiest to do
3431 -- this with a recursive procedure:
3433 else
3434 declare
3435 function Get_Known_Bound (J : Nat) return Node_Id;
3436 -- Returns the lower bound determined by operands J .. NN
3438 ---------------------
3439 -- Get_Known_Bound --
3440 ---------------------
3442 function Get_Known_Bound (J : Nat) return Node_Id is
3443 begin
3444 if Is_Fixed_Length (J) or else J = NN then
3445 return New_Copy (Opnd_Low_Bound (J));
3447 else
3448 return
3449 Make_If_Expression (Loc,
3450 Expressions => New_List (
3452 Make_Op_Ne (Loc,
3453 Left_Opnd =>
3454 New_Occurrence_Of (Var_Length (J), Loc),
3455 Right_Opnd =>
3456 Make_Integer_Literal (Loc, 0)),
3458 New_Copy (Opnd_Low_Bound (J)),
3459 Get_Known_Bound (J + 1)));
3460 end if;
3461 end Get_Known_Bound;
3463 begin
3464 Ent := Make_Temporary (Loc, 'L');
3466 Append_To (Actions,
3467 Make_Object_Declaration (Loc,
3468 Defining_Identifier => Ent,
3469 Constant_Present => True,
3470 Object_Definition => New_Occurrence_Of (Ityp, Loc),
3471 Expression => Get_Known_Bound (1)));
3473 Low_Bound := New_Occurrence_Of (Ent, Loc);
3474 end;
3475 end if;
3477 -- Now we can safely compute the upper bound, normally
3478 -- Low_Bound + Length - 1.
3480 High_Bound :=
3481 To_Ityp
3482 (Make_Op_Add (Loc,
3483 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3484 Right_Opnd =>
3485 Make_Op_Subtract (Loc,
3486 Left_Opnd => New_Copy (Aggr_Length (NN)),
3487 Right_Opnd => Make_Artyp_Literal (1))));
3489 -- Note that calculation of the high bound may cause overflow in some
3490 -- very weird cases, so in the general case we need an overflow check on
3491 -- the high bound. We can avoid this for the common case of string types
3492 -- and other types whose index is Positive, since we chose a wider range
3493 -- for the arithmetic type.
3495 if Istyp /= Standard_Positive then
3496 Activate_Overflow_Check (High_Bound);
3497 end if;
3499 -- Handle the exceptional case where the result is null, in which case
3500 -- case the bounds come from the last operand (so that we get the proper
3501 -- bounds if the last operand is super-flat).
3503 if Result_May_Be_Null then
3504 Low_Bound :=
3505 Make_If_Expression (Loc,
3506 Expressions => New_List (
3507 Make_Op_Eq (Loc,
3508 Left_Opnd => New_Copy (Aggr_Length (NN)),
3509 Right_Opnd => Make_Artyp_Literal (0)),
3510 Last_Opnd_Low_Bound,
3511 Low_Bound));
3513 High_Bound :=
3514 Make_If_Expression (Loc,
3515 Expressions => New_List (
3516 Make_Op_Eq (Loc,
3517 Left_Opnd => New_Copy (Aggr_Length (NN)),
3518 Right_Opnd => Make_Artyp_Literal (0)),
3519 Last_Opnd_High_Bound,
3520 High_Bound));
3521 end if;
3523 -- Here is where we insert the saved up actions
3525 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3527 -- Now we construct an array object with appropriate bounds. We mark
3528 -- the target as internal to prevent useless initialization when
3529 -- Initialize_Scalars is enabled. Also since this is the actual result
3530 -- entity, we make sure we have debug information for the result.
3532 Ent := Make_Temporary (Loc, 'S');
3533 Set_Is_Internal (Ent);
3534 Set_Needs_Debug_Info (Ent);
3536 -- If the bound is statically known to be out of range, we do not want
3537 -- to abort, we want a warning and a runtime constraint error. Note that
3538 -- we have arranged that the result will not be treated as a static
3539 -- constant, so we won't get an illegality during this insertion.
3541 Insert_Action (Cnode,
3542 Make_Object_Declaration (Loc,
3543 Defining_Identifier => Ent,
3544 Object_Definition =>
3545 Make_Subtype_Indication (Loc,
3546 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3547 Constraint =>
3548 Make_Index_Or_Discriminant_Constraint (Loc,
3549 Constraints => New_List (
3550 Make_Range (Loc,
3551 Low_Bound => Low_Bound,
3552 High_Bound => High_Bound))))),
3553 Suppress => All_Checks);
3555 -- If the result of the concatenation appears as the initializing
3556 -- expression of an object declaration, we can just rename the
3557 -- result, rather than copying it.
3559 Set_OK_To_Rename (Ent);
3561 -- Catch the static out of range case now
3563 if Raises_Constraint_Error (High_Bound) then
3564 raise Concatenation_Error;
3565 end if;
3567 -- Now we will generate the assignments to do the actual concatenation
3569 -- There is one case in which we will not do this, namely when all the
3570 -- following conditions are met:
3572 -- The result type is Standard.String
3574 -- There are nine or fewer retained (non-null) operands
3576 -- The optimization level is -O0
3578 -- The corresponding System.Concat_n.Str_Concat_n routine is
3579 -- available in the run time.
3581 -- The debug flag gnatd.c is not set
3583 -- If all these conditions are met then we generate a call to the
3584 -- relevant concatenation routine. The purpose of this is to avoid
3585 -- undesirable code bloat at -O0.
3587 if Atyp = Standard_String
3588 and then NN in 2 .. 9
3589 and then (Lib_Level_Target
3590 or else ((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3591 and then not Debug_Flag_Dot_C))
3592 then
3593 declare
3594 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3595 (RE_Str_Concat_2,
3596 RE_Str_Concat_3,
3597 RE_Str_Concat_4,
3598 RE_Str_Concat_5,
3599 RE_Str_Concat_6,
3600 RE_Str_Concat_7,
3601 RE_Str_Concat_8,
3602 RE_Str_Concat_9);
3604 begin
3605 if RTE_Available (RR (NN)) then
3606 declare
3607 Opnds : constant List_Id :=
3608 New_List (New_Occurrence_Of (Ent, Loc));
3610 begin
3611 for J in 1 .. NN loop
3612 if Is_List_Member (Operands (J)) then
3613 Remove (Operands (J));
3614 end if;
3616 if Base_Type (Etype (Operands (J))) = Ctyp then
3617 Append_To (Opnds,
3618 Make_Aggregate (Loc,
3619 Component_Associations => New_List (
3620 Make_Component_Association (Loc,
3621 Choices => New_List (
3622 Make_Integer_Literal (Loc, 1)),
3623 Expression => Operands (J)))));
3625 else
3626 Append_To (Opnds, Operands (J));
3627 end if;
3628 end loop;
3630 Insert_Action (Cnode,
3631 Make_Procedure_Call_Statement (Loc,
3632 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
3633 Parameter_Associations => Opnds));
3635 Result := New_Occurrence_Of (Ent, Loc);
3636 goto Done;
3637 end;
3638 end if;
3639 end;
3640 end if;
3642 -- Not special case so generate the assignments
3644 Known_Non_Null_Operand_Seen := False;
3646 for J in 1 .. NN loop
3647 declare
3648 Lo : constant Node_Id :=
3649 Make_Op_Add (Loc,
3650 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3651 Right_Opnd => Aggr_Length (J - 1));
3653 Hi : constant Node_Id :=
3654 Make_Op_Add (Loc,
3655 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3656 Right_Opnd =>
3657 Make_Op_Subtract (Loc,
3658 Left_Opnd => Aggr_Length (J),
3659 Right_Opnd => Make_Artyp_Literal (1)));
3661 begin
3662 -- Singleton case, simple assignment
3664 if Base_Type (Etype (Operands (J))) = Ctyp then
3665 Known_Non_Null_Operand_Seen := True;
3666 Insert_Action (Cnode,
3667 Make_Assignment_Statement (Loc,
3668 Name =>
3669 Make_Indexed_Component (Loc,
3670 Prefix => New_Occurrence_Of (Ent, Loc),
3671 Expressions => New_List (To_Ityp (Lo))),
3672 Expression => Operands (J)),
3673 Suppress => All_Checks);
3675 -- Array case, slice assignment, skipped when argument is fixed
3676 -- length and known to be null.
3678 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3679 declare
3680 Assign : Node_Id :=
3681 Make_Assignment_Statement (Loc,
3682 Name =>
3683 Make_Slice (Loc,
3684 Prefix =>
3685 New_Occurrence_Of (Ent, Loc),
3686 Discrete_Range =>
3687 Make_Range (Loc,
3688 Low_Bound => To_Ityp (Lo),
3689 High_Bound => To_Ityp (Hi))),
3690 Expression => Operands (J));
3691 begin
3692 if Is_Fixed_Length (J) then
3693 Known_Non_Null_Operand_Seen := True;
3695 elsif not Known_Non_Null_Operand_Seen then
3697 -- Here if operand length is not statically known and no
3698 -- operand known to be non-null has been processed yet.
3699 -- If operand length is 0, we do not need to perform the
3700 -- assignment, and we must avoid the evaluation of the
3701 -- high bound of the slice, since it may underflow if the
3702 -- low bound is Ityp'First.
3704 Assign :=
3705 Make_Implicit_If_Statement (Cnode,
3706 Condition =>
3707 Make_Op_Ne (Loc,
3708 Left_Opnd =>
3709 New_Occurrence_Of (Var_Length (J), Loc),
3710 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3711 Then_Statements => New_List (Assign));
3712 end if;
3714 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3715 end;
3716 end if;
3717 end;
3718 end loop;
3720 -- Finally we build the result, which is a reference to the array object
3722 Result := New_Occurrence_Of (Ent, Loc);
3724 <<Done>>
3725 Rewrite (Cnode, Result);
3726 Analyze_And_Resolve (Cnode, Atyp);
3728 exception
3729 when Concatenation_Error =>
3731 -- Kill warning generated for the declaration of the static out of
3732 -- range high bound, and instead generate a Constraint_Error with
3733 -- an appropriate specific message.
3735 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3736 Apply_Compile_Time_Constraint_Error
3737 (N => Cnode,
3738 Msg => "concatenation result upper bound out of range??",
3739 Reason => CE_Range_Check_Failed);
3740 end Expand_Concatenate;
3742 ---------------------------------------------------
3743 -- Expand_Membership_Minimize_Eliminate_Overflow --
3744 ---------------------------------------------------
3746 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3747 pragma Assert (Nkind (N) = N_In);
3748 -- Despite the name, this routine applies only to N_In, not to
3749 -- N_Not_In. The latter is always rewritten as not (X in Y).
3751 Result_Type : constant Entity_Id := Etype (N);
3752 -- Capture result type, may be a derived boolean type
3754 Loc : constant Source_Ptr := Sloc (N);
3755 Lop : constant Node_Id := Left_Opnd (N);
3756 Rop : constant Node_Id := Right_Opnd (N);
3758 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3759 -- is thus tempting to capture these values, but due to the rewrites
3760 -- that occur as a result of overflow checking, these values change
3761 -- as we go along, and it is safe just to always use Etype explicitly.
3763 Restype : constant Entity_Id := Etype (N);
3764 -- Save result type
3766 Lo, Hi : Uint;
3767 -- Bounds in Minimize calls, not used currently
3769 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3770 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3772 begin
3773 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
3775 -- If right operand is a subtype name, and the subtype name has no
3776 -- predicate, then we can just replace the right operand with an
3777 -- explicit range T'First .. T'Last, and use the explicit range code.
3779 if Nkind (Rop) /= N_Range
3780 and then No (Predicate_Function (Etype (Rop)))
3781 then
3782 declare
3783 Rtyp : constant Entity_Id := Etype (Rop);
3784 begin
3785 Rewrite (Rop,
3786 Make_Range (Loc,
3787 Low_Bound =>
3788 Make_Attribute_Reference (Loc,
3789 Attribute_Name => Name_First,
3790 Prefix => New_Occurrence_Of (Rtyp, Loc)),
3791 High_Bound =>
3792 Make_Attribute_Reference (Loc,
3793 Attribute_Name => Name_Last,
3794 Prefix => New_Occurrence_Of (Rtyp, Loc))));
3795 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3796 end;
3797 end if;
3799 -- Here for the explicit range case. Note that the bounds of the range
3800 -- have not been processed for minimized or eliminated checks.
3802 if Nkind (Rop) = N_Range then
3803 Minimize_Eliminate_Overflows
3804 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
3805 Minimize_Eliminate_Overflows
3806 (High_Bound (Rop), Lo, Hi, Top_Level => False);
3808 -- We have A in B .. C, treated as A >= B and then A <= C
3810 -- Bignum case
3812 if Is_RTE (Etype (Lop), RE_Bignum)
3813 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3814 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3815 then
3816 declare
3817 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3818 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3819 L : constant Entity_Id :=
3820 Make_Defining_Identifier (Loc, Name_uL);
3821 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3822 Lbound : constant Node_Id :=
3823 Convert_To_Bignum (Low_Bound (Rop));
3824 Hbound : constant Node_Id :=
3825 Convert_To_Bignum (High_Bound (Rop));
3827 -- Now we rewrite the membership test node to look like
3829 -- do
3830 -- Bnn : Result_Type;
3831 -- declare
3832 -- M : Mark_Id := SS_Mark;
3833 -- L : Bignum := Lopnd;
3834 -- begin
3835 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3836 -- SS_Release (M);
3837 -- end;
3838 -- in
3839 -- Bnn
3840 -- end
3842 begin
3843 -- Insert declaration of L into declarations of bignum block
3845 Insert_After
3846 (Last (Declarations (Blk)),
3847 Make_Object_Declaration (Loc,
3848 Defining_Identifier => L,
3849 Object_Definition =>
3850 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3851 Expression => Lopnd));
3853 -- Insert assignment to Bnn into expressions of bignum block
3855 Insert_Before
3856 (First (Statements (Handled_Statement_Sequence (Blk))),
3857 Make_Assignment_Statement (Loc,
3858 Name => New_Occurrence_Of (Bnn, Loc),
3859 Expression =>
3860 Make_And_Then (Loc,
3861 Left_Opnd =>
3862 Make_Function_Call (Loc,
3863 Name =>
3864 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
3865 Parameter_Associations => New_List (
3866 New_Occurrence_Of (L, Loc),
3867 Lbound)),
3869 Right_Opnd =>
3870 Make_Function_Call (Loc,
3871 Name =>
3872 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3873 Parameter_Associations => New_List (
3874 New_Occurrence_Of (L, Loc),
3875 Hbound)))));
3877 -- Now rewrite the node
3879 Rewrite (N,
3880 Make_Expression_With_Actions (Loc,
3881 Actions => New_List (
3882 Make_Object_Declaration (Loc,
3883 Defining_Identifier => Bnn,
3884 Object_Definition =>
3885 New_Occurrence_Of (Result_Type, Loc)),
3886 Blk),
3887 Expression => New_Occurrence_Of (Bnn, Loc)));
3888 Analyze_And_Resolve (N, Result_Type);
3889 return;
3890 end;
3892 -- Here if no bignums around
3894 else
3895 -- Case where types are all the same
3897 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
3898 and then
3899 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
3900 then
3901 null;
3903 -- If types are not all the same, it means that we have rewritten
3904 -- at least one of them to be of type Long_Long_Integer, and we
3905 -- will convert the other operands to Long_Long_Integer.
3907 else
3908 Convert_To_And_Rewrite (LLIB, Lop);
3909 Set_Analyzed (Lop, False);
3910 Analyze_And_Resolve (Lop, LLIB);
3912 -- For the right operand, avoid unnecessary recursion into
3913 -- this routine, we know that overflow is not possible.
3915 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3916 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3917 Set_Analyzed (Rop, False);
3918 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
3919 end if;
3921 -- Now the three operands are of the same signed integer type,
3922 -- so we can use the normal expansion routine for membership,
3923 -- setting the flag to prevent recursion into this procedure.
3925 Set_No_Minimize_Eliminate (N);
3926 Expand_N_In (N);
3927 end if;
3929 -- Right operand is a subtype name and the subtype has a predicate. We
3930 -- have to make sure the predicate is checked, and for that we need to
3931 -- use the standard N_In circuitry with appropriate types.
3933 else
3934 pragma Assert (Present (Predicate_Function (Etype (Rop))));
3936 -- If types are "right", just call Expand_N_In preventing recursion
3938 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
3939 Set_No_Minimize_Eliminate (N);
3940 Expand_N_In (N);
3942 -- Bignum case
3944 elsif Is_RTE (Etype (Lop), RE_Bignum) then
3946 -- For X in T, we want to rewrite our node as
3948 -- do
3949 -- Bnn : Result_Type;
3951 -- declare
3952 -- M : Mark_Id := SS_Mark;
3953 -- Lnn : Long_Long_Integer'Base
3954 -- Nnn : Bignum;
3956 -- begin
3957 -- Nnn := X;
3959 -- if not Bignum_In_LLI_Range (Nnn) then
3960 -- Bnn := False;
3961 -- else
3962 -- Lnn := From_Bignum (Nnn);
3963 -- Bnn :=
3964 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3965 -- and then T'Base (Lnn) in T;
3966 -- end if;
3968 -- SS_Release (M);
3969 -- end
3970 -- in
3971 -- Bnn
3972 -- end
3974 -- A bit gruesome, but there doesn't seem to be a simpler way
3976 declare
3977 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3978 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3979 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3980 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
3981 T : constant Entity_Id := Etype (Rop);
3982 TB : constant Entity_Id := Base_Type (T);
3983 Nin : Node_Id;
3985 begin
3986 -- Mark the last membership operation to prevent recursion
3988 Nin :=
3989 Make_In (Loc,
3990 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3991 Right_Opnd => New_Occurrence_Of (T, Loc));
3992 Set_No_Minimize_Eliminate (Nin);
3994 -- Now decorate the block
3996 Insert_After
3997 (Last (Declarations (Blk)),
3998 Make_Object_Declaration (Loc,
3999 Defining_Identifier => Lnn,
4000 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
4002 Insert_After
4003 (Last (Declarations (Blk)),
4004 Make_Object_Declaration (Loc,
4005 Defining_Identifier => Nnn,
4006 Object_Definition =>
4007 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4009 Insert_List_Before
4010 (First (Statements (Handled_Statement_Sequence (Blk))),
4011 New_List (
4012 Make_Assignment_Statement (Loc,
4013 Name => New_Occurrence_Of (Nnn, Loc),
4014 Expression => Relocate_Node (Lop)),
4016 Make_Implicit_If_Statement (N,
4017 Condition =>
4018 Make_Op_Not (Loc,
4019 Right_Opnd =>
4020 Make_Function_Call (Loc,
4021 Name =>
4022 New_Occurrence_Of
4023 (RTE (RE_Bignum_In_LLI_Range), Loc),
4024 Parameter_Associations => New_List (
4025 New_Occurrence_Of (Nnn, Loc)))),
4027 Then_Statements => New_List (
4028 Make_Assignment_Statement (Loc,
4029 Name => New_Occurrence_Of (Bnn, Loc),
4030 Expression =>
4031 New_Occurrence_Of (Standard_False, Loc))),
4033 Else_Statements => New_List (
4034 Make_Assignment_Statement (Loc,
4035 Name => New_Occurrence_Of (Lnn, Loc),
4036 Expression =>
4037 Make_Function_Call (Loc,
4038 Name =>
4039 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4040 Parameter_Associations => New_List (
4041 New_Occurrence_Of (Nnn, Loc)))),
4043 Make_Assignment_Statement (Loc,
4044 Name => New_Occurrence_Of (Bnn, Loc),
4045 Expression =>
4046 Make_And_Then (Loc,
4047 Left_Opnd =>
4048 Make_In (Loc,
4049 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4050 Right_Opnd =>
4051 Make_Range (Loc,
4052 Low_Bound =>
4053 Convert_To (LLIB,
4054 Make_Attribute_Reference (Loc,
4055 Attribute_Name => Name_First,
4056 Prefix =>
4057 New_Occurrence_Of (TB, Loc))),
4059 High_Bound =>
4060 Convert_To (LLIB,
4061 Make_Attribute_Reference (Loc,
4062 Attribute_Name => Name_Last,
4063 Prefix =>
4064 New_Occurrence_Of (TB, Loc))))),
4066 Right_Opnd => Nin))))));
4068 -- Now we can do the rewrite
4070 Rewrite (N,
4071 Make_Expression_With_Actions (Loc,
4072 Actions => New_List (
4073 Make_Object_Declaration (Loc,
4074 Defining_Identifier => Bnn,
4075 Object_Definition =>
4076 New_Occurrence_Of (Result_Type, Loc)),
4077 Blk),
4078 Expression => New_Occurrence_Of (Bnn, Loc)));
4079 Analyze_And_Resolve (N, Result_Type);
4080 return;
4081 end;
4083 -- Not bignum case, but types don't match (this means we rewrote the
4084 -- left operand to be Long_Long_Integer).
4086 else
4087 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
4089 -- We rewrite the membership test as (where T is the type with
4090 -- the predicate, i.e. the type of the right operand)
4092 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4093 -- and then T'Base (Lop) in T
4095 declare
4096 T : constant Entity_Id := Etype (Rop);
4097 TB : constant Entity_Id := Base_Type (T);
4098 Nin : Node_Id;
4100 begin
4101 -- The last membership test is marked to prevent recursion
4103 Nin :=
4104 Make_In (Loc,
4105 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
4106 Right_Opnd => New_Occurrence_Of (T, Loc));
4107 Set_No_Minimize_Eliminate (Nin);
4109 -- Now do the rewrite
4111 Rewrite (N,
4112 Make_And_Then (Loc,
4113 Left_Opnd =>
4114 Make_In (Loc,
4115 Left_Opnd => Lop,
4116 Right_Opnd =>
4117 Make_Range (Loc,
4118 Low_Bound =>
4119 Convert_To (LLIB,
4120 Make_Attribute_Reference (Loc,
4121 Attribute_Name => Name_First,
4122 Prefix =>
4123 New_Occurrence_Of (TB, Loc))),
4124 High_Bound =>
4125 Convert_To (LLIB,
4126 Make_Attribute_Reference (Loc,
4127 Attribute_Name => Name_Last,
4128 Prefix =>
4129 New_Occurrence_Of (TB, Loc))))),
4130 Right_Opnd => Nin));
4131 Set_Analyzed (N, False);
4132 Analyze_And_Resolve (N, Restype);
4133 end;
4134 end if;
4135 end if;
4136 end Expand_Membership_Minimize_Eliminate_Overflow;
4138 ------------------------
4139 -- Expand_N_Allocator --
4140 ------------------------
4142 procedure Expand_N_Allocator (N : Node_Id) is
4143 Etyp : constant Entity_Id := Etype (Expression (N));
4144 Loc : constant Source_Ptr := Sloc (N);
4145 PtrT : constant Entity_Id := Etype (N);
4147 procedure Rewrite_Coextension (N : Node_Id);
4148 -- Static coextensions have the same lifetime as the entity they
4149 -- constrain. Such occurrences can be rewritten as aliased objects
4150 -- and their unrestricted access used instead of the coextension.
4152 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
4153 -- Given a constrained array type E, returns a node representing the
4154 -- code to compute the size in storage elements for the given type.
4155 -- This is done without using the attribute (which malfunctions for
4156 -- large sizes ???)
4158 -------------------------
4159 -- Rewrite_Coextension --
4160 -------------------------
4162 procedure Rewrite_Coextension (N : Node_Id) is
4163 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4164 Temp_Decl : Node_Id;
4166 begin
4167 -- Generate:
4168 -- Cnn : aliased Etyp;
4170 Temp_Decl :=
4171 Make_Object_Declaration (Loc,
4172 Defining_Identifier => Temp_Id,
4173 Aliased_Present => True,
4174 Object_Definition => New_Occurrence_Of (Etyp, Loc));
4176 if Nkind (Expression (N)) = N_Qualified_Expression then
4177 Set_Expression (Temp_Decl, Expression (Expression (N)));
4178 end if;
4180 Insert_Action (N, Temp_Decl);
4181 Rewrite (N,
4182 Make_Attribute_Reference (Loc,
4183 Prefix => New_Occurrence_Of (Temp_Id, Loc),
4184 Attribute_Name => Name_Unrestricted_Access));
4186 Analyze_And_Resolve (N, PtrT);
4187 end Rewrite_Coextension;
4189 ------------------------------
4190 -- Size_In_Storage_Elements --
4191 ------------------------------
4193 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4194 begin
4195 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4196 -- However, the reason for the existence of this function is
4197 -- to construct a test for sizes too large, which means near the
4198 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4199 -- is that we get overflows when sizes are greater than 2**31.
4201 -- So what we end up doing for array types is to use the expression:
4203 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4205 -- which avoids this problem. All this is a bit bogus, but it does
4206 -- mean we catch common cases of trying to allocate arrays that
4207 -- are too large, and which in the absence of a check results in
4208 -- undetected chaos ???
4210 -- Note in particular that this is a pessimistic estimate in the
4211 -- case of packed array types, where an array element might occupy
4212 -- just a fraction of a storage element???
4214 declare
4215 Len : Node_Id;
4216 Res : Node_Id;
4218 begin
4219 for J in 1 .. Number_Dimensions (E) loop
4220 Len :=
4221 Make_Attribute_Reference (Loc,
4222 Prefix => New_Occurrence_Of (E, Loc),
4223 Attribute_Name => Name_Length,
4224 Expressions => New_List (Make_Integer_Literal (Loc, J)));
4226 if J = 1 then
4227 Res := Len;
4229 else
4230 Res :=
4231 Make_Op_Multiply (Loc,
4232 Left_Opnd => Res,
4233 Right_Opnd => Len);
4234 end if;
4235 end loop;
4237 return
4238 Make_Op_Multiply (Loc,
4239 Left_Opnd => Len,
4240 Right_Opnd =>
4241 Make_Attribute_Reference (Loc,
4242 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4243 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4244 end;
4245 end Size_In_Storage_Elements;
4247 -- Local variables
4249 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
4250 Desig : Entity_Id;
4251 Nod : Node_Id;
4252 Pool : Entity_Id;
4253 Rel_Typ : Entity_Id;
4254 Temp : Entity_Id;
4256 -- Start of processing for Expand_N_Allocator
4258 begin
4259 -- RM E.2.3(22). We enforce that the expected type of an allocator
4260 -- shall not be a remote access-to-class-wide-limited-private type
4262 -- Why is this being done at expansion time, seems clearly wrong ???
4264 Validate_Remote_Access_To_Class_Wide_Type (N);
4266 -- Processing for anonymous access-to-controlled types. These access
4267 -- types receive a special finalization master which appears in the
4268 -- declarations of the enclosing semantic unit. This expansion is done
4269 -- now to ensure that any additional types generated by this routine or
4270 -- Expand_Allocator_Expression inherit the proper type attributes.
4272 if (Ekind (PtrT) = E_Anonymous_Access_Type
4273 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
4274 and then Needs_Finalization (Dtyp)
4275 then
4276 -- Detect the allocation of an anonymous controlled object where the
4277 -- type of the context is named. For example:
4279 -- procedure Proc (Ptr : Named_Access_Typ);
4280 -- Proc (new Designated_Typ);
4282 -- Regardless of the anonymous-to-named access type conversion, the
4283 -- lifetime of the object must be associated with the named access
4284 -- type. Use the finalization-related attributes of this type.
4286 if Nkind_In (Parent (N), N_Type_Conversion,
4287 N_Unchecked_Type_Conversion)
4288 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4289 E_Access_Type,
4290 E_General_Access_Type)
4291 then
4292 Rel_Typ := Etype (Parent (N));
4293 else
4294 Rel_Typ := Empty;
4295 end if;
4297 -- Anonymous access-to-controlled types allocate on the global pool.
4298 -- Do not set this attribute on .NET/JVM since those targets do not
4299 -- support pools. Note that this is a "root type only" attribute.
4301 if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
4302 if Present (Rel_Typ) then
4303 Set_Associated_Storage_Pool
4304 (Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
4305 else
4306 Set_Associated_Storage_Pool
4307 (Root_Type (PtrT), RTE (RE_Global_Pool_Object));
4308 end if;
4309 end if;
4311 -- The finalization master must be inserted and analyzed as part of
4312 -- the current semantic unit. Note that the master is updated when
4313 -- analysis changes current units. Note that this is a "root type
4314 -- only" attribute.
4316 if Present (Rel_Typ) then
4317 Set_Finalization_Master
4318 (Root_Type (PtrT), Finalization_Master (Rel_Typ));
4319 else
4320 Set_Finalization_Master
4321 (Root_Type (PtrT), Current_Anonymous_Master);
4322 end if;
4323 end if;
4325 -- Set the storage pool and find the appropriate version of Allocate to
4326 -- call. Do not overwrite the storage pool if it is already set, which
4327 -- can happen for build-in-place function returns (see
4328 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4330 if No (Storage_Pool (N)) then
4331 Pool := Associated_Storage_Pool (Root_Type (PtrT));
4333 if Present (Pool) then
4334 Set_Storage_Pool (N, Pool);
4336 if Is_RTE (Pool, RE_SS_Pool) then
4337 if VM_Target = No_VM then
4338 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4339 end if;
4341 -- In the case of an allocator for a simple storage pool, locate
4342 -- and save a reference to the pool type's Allocate routine.
4344 elsif Present (Get_Rep_Pragma
4345 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4346 then
4347 declare
4348 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
4349 Alloc_Op : Entity_Id;
4350 begin
4351 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
4352 while Present (Alloc_Op) loop
4353 if Scope (Alloc_Op) = Scope (Pool_Type)
4354 and then Present (First_Formal (Alloc_Op))
4355 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4356 then
4357 Set_Procedure_To_Call (N, Alloc_Op);
4358 exit;
4359 else
4360 Alloc_Op := Homonym (Alloc_Op);
4361 end if;
4362 end loop;
4363 end;
4365 elsif Is_Class_Wide_Type (Etype (Pool)) then
4366 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4368 else
4369 Set_Procedure_To_Call (N,
4370 Find_Prim_Op (Etype (Pool), Name_Allocate));
4371 end if;
4372 end if;
4373 end if;
4375 -- Under certain circumstances we can replace an allocator by an access
4376 -- to statically allocated storage. The conditions, as noted in AARM
4377 -- 3.10 (10c) are as follows:
4379 -- Size and initial value is known at compile time
4380 -- Access type is access-to-constant
4382 -- The allocator is not part of a constraint on a record component,
4383 -- because in that case the inserted actions are delayed until the
4384 -- record declaration is fully analyzed, which is too late for the
4385 -- analysis of the rewritten allocator.
4387 if Is_Access_Constant (PtrT)
4388 and then Nkind (Expression (N)) = N_Qualified_Expression
4389 and then Compile_Time_Known_Value (Expression (Expression (N)))
4390 and then Size_Known_At_Compile_Time
4391 (Etype (Expression (Expression (N))))
4392 and then not Is_Record_Type (Current_Scope)
4393 then
4394 -- Here we can do the optimization. For the allocator
4396 -- new x'(y)
4398 -- We insert an object declaration
4400 -- Tnn : aliased x := y;
4402 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4403 -- marked as requiring static allocation.
4405 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
4406 Desig := Subtype_Mark (Expression (N));
4408 -- If context is constrained, use constrained subtype directly,
4409 -- so that the constant is not labelled as having a nominally
4410 -- unconstrained subtype.
4412 if Entity (Desig) = Base_Type (Dtyp) then
4413 Desig := New_Occurrence_Of (Dtyp, Loc);
4414 end if;
4416 Insert_Action (N,
4417 Make_Object_Declaration (Loc,
4418 Defining_Identifier => Temp,
4419 Aliased_Present => True,
4420 Constant_Present => Is_Access_Constant (PtrT),
4421 Object_Definition => Desig,
4422 Expression => Expression (Expression (N))));
4424 Rewrite (N,
4425 Make_Attribute_Reference (Loc,
4426 Prefix => New_Occurrence_Of (Temp, Loc),
4427 Attribute_Name => Name_Unrestricted_Access));
4429 Analyze_And_Resolve (N, PtrT);
4431 -- We set the variable as statically allocated, since we don't want
4432 -- it going on the stack of the current procedure.
4434 Set_Is_Statically_Allocated (Temp);
4435 return;
4436 end if;
4438 -- Same if the allocator is an access discriminant for a local object:
4439 -- instead of an allocator we create a local value and constrain the
4440 -- enclosing object with the corresponding access attribute.
4442 if Is_Static_Coextension (N) then
4443 Rewrite_Coextension (N);
4444 return;
4445 end if;
4447 -- Check for size too large, we do this because the back end misses
4448 -- proper checks here and can generate rubbish allocation calls when
4449 -- we are near the limit. We only do this for the 32-bit address case
4450 -- since that is from a practical point of view where we see a problem.
4452 if System_Address_Size = 32
4453 and then not Storage_Checks_Suppressed (PtrT)
4454 and then not Storage_Checks_Suppressed (Dtyp)
4455 and then not Storage_Checks_Suppressed (Etyp)
4456 then
4457 -- The check we want to generate should look like
4459 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4460 -- raise Storage_Error;
4461 -- end if;
4463 -- where 3.5 gigabytes is a constant large enough to accommodate any
4464 -- reasonable request for. But we can't do it this way because at
4465 -- least at the moment we don't compute this attribute right, and
4466 -- can silently give wrong results when the result gets large. Since
4467 -- this is all about large results, that's bad, so instead we only
4468 -- apply the check for constrained arrays, and manually compute the
4469 -- value of the attribute ???
4471 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4472 Insert_Action (N,
4473 Make_Raise_Storage_Error (Loc,
4474 Condition =>
4475 Make_Op_Gt (Loc,
4476 Left_Opnd => Size_In_Storage_Elements (Etyp),
4477 Right_Opnd =>
4478 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
4479 Reason => SE_Object_Too_Large));
4480 end if;
4481 end if;
4483 -- If no storage pool has been specified and we have the restriction
4484 -- No_Standard_Allocators_After_Elaboration is present, then generate
4485 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4487 if Nkind (N) = N_Allocator
4488 and then No (Storage_Pool (N))
4489 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4490 then
4491 Insert_Action (N,
4492 Make_Procedure_Call_Statement (Loc,
4493 Name =>
4494 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4495 end if;
4497 -- Handle case of qualified expression (other than optimization above)
4498 -- First apply constraint checks, because the bounds or discriminants
4499 -- in the aggregate might not match the subtype mark in the allocator.
4501 if Nkind (Expression (N)) = N_Qualified_Expression then
4502 Apply_Constraint_Check
4503 (Expression (Expression (N)), Etype (Expression (N)));
4505 Expand_Allocator_Expression (N);
4506 return;
4507 end if;
4509 -- If the allocator is for a type which requires initialization, and
4510 -- there is no initial value (i.e. operand is a subtype indication
4511 -- rather than a qualified expression), then we must generate a call to
4512 -- the initialization routine using an expressions action node:
4514 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4516 -- Here ptr_T is the pointer type for the allocator, and T is the
4517 -- subtype of the allocator. A special case arises if the designated
4518 -- type of the access type is a task or contains tasks. In this case
4519 -- the call to Init (Temp.all ...) is replaced by code that ensures
4520 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4521 -- for details). In addition, if the type T is a task type, then the
4522 -- first argument to Init must be converted to the task record type.
4524 declare
4525 T : constant Entity_Id := Entity (Expression (N));
4526 Args : List_Id;
4527 Decls : List_Id;
4528 Decl : Node_Id;
4529 Discr : Elmt_Id;
4530 Init : Entity_Id;
4531 Init_Arg1 : Node_Id;
4532 Temp_Decl : Node_Id;
4533 Temp_Type : Entity_Id;
4535 begin
4536 if No_Initialization (N) then
4538 -- Even though this might be a simple allocation, create a custom
4539 -- Allocate if the context requires it. Since .NET/JVM compilers
4540 -- do not support pools, this step is skipped.
4542 if VM_Target = No_VM
4543 and then Present (Finalization_Master (PtrT))
4544 then
4545 Build_Allocate_Deallocate_Proc
4546 (N => N,
4547 Is_Allocate => True);
4548 end if;
4550 -- Case of no initialization procedure present
4552 elsif not Has_Non_Null_Base_Init_Proc (T) then
4554 -- Case of simple initialization required
4556 if Needs_Simple_Initialization (T) then
4557 Check_Restriction (No_Default_Initialization, N);
4558 Rewrite (Expression (N),
4559 Make_Qualified_Expression (Loc,
4560 Subtype_Mark => New_Occurrence_Of (T, Loc),
4561 Expression => Get_Simple_Init_Val (T, N)));
4563 Analyze_And_Resolve (Expression (Expression (N)), T);
4564 Analyze_And_Resolve (Expression (N), T);
4565 Set_Paren_Count (Expression (Expression (N)), 1);
4566 Expand_N_Allocator (N);
4568 -- No initialization required
4570 else
4571 null;
4572 end if;
4574 -- Case of initialization procedure present, must be called
4576 else
4577 Check_Restriction (No_Default_Initialization, N);
4579 if not Restriction_Active (No_Default_Initialization) then
4580 Init := Base_Init_Proc (T);
4581 Nod := N;
4582 Temp := Make_Temporary (Loc, 'P');
4584 -- Construct argument list for the initialization routine call
4586 Init_Arg1 :=
4587 Make_Explicit_Dereference (Loc,
4588 Prefix =>
4589 New_Occurrence_Of (Temp, Loc));
4591 Set_Assignment_OK (Init_Arg1);
4592 Temp_Type := PtrT;
4594 -- The initialization procedure expects a specific type. if the
4595 -- context is access to class wide, indicate that the object
4596 -- being allocated has the right specific type.
4598 if Is_Class_Wide_Type (Dtyp) then
4599 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
4600 end if;
4602 -- If designated type is a concurrent type or if it is private
4603 -- type whose definition is a concurrent type, the first
4604 -- argument in the Init routine has to be unchecked conversion
4605 -- to the corresponding record type. If the designated type is
4606 -- a derived type, also convert the argument to its root type.
4608 if Is_Concurrent_Type (T) then
4609 Init_Arg1 :=
4610 Unchecked_Convert_To (
4611 Corresponding_Record_Type (T), Init_Arg1);
4613 elsif Is_Private_Type (T)
4614 and then Present (Full_View (T))
4615 and then Is_Concurrent_Type (Full_View (T))
4616 then
4617 Init_Arg1 :=
4618 Unchecked_Convert_To
4619 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
4621 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4622 declare
4623 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
4625 begin
4626 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4627 Set_Etype (Init_Arg1, Ftyp);
4628 end;
4629 end if;
4631 Args := New_List (Init_Arg1);
4633 -- For the task case, pass the Master_Id of the access type as
4634 -- the value of the _Master parameter, and _Chain as the value
4635 -- of the _Chain parameter (_Chain will be defined as part of
4636 -- the generated code for the allocator).
4638 -- In Ada 2005, the context may be a function that returns an
4639 -- anonymous access type. In that case the Master_Id has been
4640 -- created when expanding the function declaration.
4642 if Has_Task (T) then
4643 if No (Master_Id (Base_Type (PtrT))) then
4645 -- The designated type was an incomplete type, and the
4646 -- access type did not get expanded. Salvage it now.
4648 if not Restriction_Active (No_Task_Hierarchy) then
4649 if Present (Parent (Base_Type (PtrT))) then
4650 Expand_N_Full_Type_Declaration
4651 (Parent (Base_Type (PtrT)));
4653 -- The only other possibility is an itype. For this
4654 -- case, the master must exist in the context. This is
4655 -- the case when the allocator initializes an access
4656 -- component in an init-proc.
4658 else
4659 pragma Assert (Is_Itype (PtrT));
4660 Build_Master_Renaming (PtrT, N);
4661 end if;
4662 end if;
4663 end if;
4665 -- If the context of the allocator is a declaration or an
4666 -- assignment, we can generate a meaningful image for it,
4667 -- even though subsequent assignments might remove the
4668 -- connection between task and entity. We build this image
4669 -- when the left-hand side is a simple variable, a simple
4670 -- indexed assignment or a simple selected component.
4672 if Nkind (Parent (N)) = N_Assignment_Statement then
4673 declare
4674 Nam : constant Node_Id := Name (Parent (N));
4676 begin
4677 if Is_Entity_Name (Nam) then
4678 Decls :=
4679 Build_Task_Image_Decls
4680 (Loc,
4681 New_Occurrence_Of
4682 (Entity (Nam), Sloc (Nam)), T);
4684 elsif Nkind_In (Nam, N_Indexed_Component,
4685 N_Selected_Component)
4686 and then Is_Entity_Name (Prefix (Nam))
4687 then
4688 Decls :=
4689 Build_Task_Image_Decls
4690 (Loc, Nam, Etype (Prefix (Nam)));
4691 else
4692 Decls := Build_Task_Image_Decls (Loc, T, T);
4693 end if;
4694 end;
4696 elsif Nkind (Parent (N)) = N_Object_Declaration then
4697 Decls :=
4698 Build_Task_Image_Decls
4699 (Loc, Defining_Identifier (Parent (N)), T);
4701 else
4702 Decls := Build_Task_Image_Decls (Loc, T, T);
4703 end if;
4705 if Restriction_Active (No_Task_Hierarchy) then
4706 Append_To (Args,
4707 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
4708 else
4709 Append_To (Args,
4710 New_Occurrence_Of
4711 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4712 end if;
4714 Append_To (Args, Make_Identifier (Loc, Name_uChain));
4716 Decl := Last (Decls);
4717 Append_To (Args,
4718 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
4720 -- Has_Task is false, Decls not used
4722 else
4723 Decls := No_List;
4724 end if;
4726 -- Add discriminants if discriminated type
4728 declare
4729 Dis : Boolean := False;
4730 Typ : Entity_Id;
4732 begin
4733 if Has_Discriminants (T) then
4734 Dis := True;
4735 Typ := T;
4737 elsif Is_Private_Type (T)
4738 and then Present (Full_View (T))
4739 and then Has_Discriminants (Full_View (T))
4740 then
4741 Dis := True;
4742 Typ := Full_View (T);
4743 end if;
4745 if Dis then
4747 -- If the allocated object will be constrained by the
4748 -- default values for discriminants, then build a subtype
4749 -- with those defaults, and change the allocated subtype
4750 -- to that. Note that this happens in fewer cases in Ada
4751 -- 2005 (AI-363).
4753 if not Is_Constrained (Typ)
4754 and then Present (Discriminant_Default_Value
4755 (First_Discriminant (Typ)))
4756 and then (Ada_Version < Ada_2005
4757 or else not
4758 Object_Type_Has_Constrained_Partial_View
4759 (Typ, Current_Scope))
4760 then
4761 Typ := Build_Default_Subtype (Typ, N);
4762 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
4763 end if;
4765 Discr := First_Elmt (Discriminant_Constraint (Typ));
4766 while Present (Discr) loop
4767 Nod := Node (Discr);
4768 Append (New_Copy_Tree (Node (Discr)), Args);
4770 -- AI-416: when the discriminant constraint is an
4771 -- anonymous access type make sure an accessibility
4772 -- check is inserted if necessary (3.10.2(22.q/2))
4774 if Ada_Version >= Ada_2005
4775 and then
4776 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4777 then
4778 Apply_Accessibility_Check
4779 (Nod, Typ, Insert_Node => Nod);
4780 end if;
4782 Next_Elmt (Discr);
4783 end loop;
4784 end if;
4785 end;
4787 -- We set the allocator as analyzed so that when we analyze
4788 -- the if expression node, we do not get an unwanted recursive
4789 -- expansion of the allocator expression.
4791 Set_Analyzed (N, True);
4792 Nod := Relocate_Node (N);
4794 -- Here is the transformation:
4795 -- input: new Ctrl_Typ
4796 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4797 -- Ctrl_TypIP (Temp.all, ...);
4798 -- [Deep_]Initialize (Temp.all);
4800 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4801 -- is the subtype of the allocator.
4803 Temp_Decl :=
4804 Make_Object_Declaration (Loc,
4805 Defining_Identifier => Temp,
4806 Constant_Present => True,
4807 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
4808 Expression => Nod);
4810 Set_Assignment_OK (Temp_Decl);
4811 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
4813 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
4815 -- If the designated type is a task type or contains tasks,
4816 -- create block to activate created tasks, and insert
4817 -- declaration for Task_Image variable ahead of call.
4819 if Has_Task (T) then
4820 declare
4821 L : constant List_Id := New_List;
4822 Blk : Node_Id;
4823 begin
4824 Build_Task_Allocate_Block (L, Nod, Args);
4825 Blk := Last (L);
4826 Insert_List_Before (First (Declarations (Blk)), Decls);
4827 Insert_Actions (N, L);
4828 end;
4830 else
4831 Insert_Action (N,
4832 Make_Procedure_Call_Statement (Loc,
4833 Name => New_Occurrence_Of (Init, Loc),
4834 Parameter_Associations => Args));
4835 end if;
4837 if Needs_Finalization (T) then
4839 -- Generate:
4840 -- [Deep_]Initialize (Init_Arg1);
4842 Insert_Action (N,
4843 Make_Init_Call
4844 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4845 Typ => T));
4847 -- Special processing for .NET/JVM, the allocated object is
4848 -- attached to the finalization master. Generate:
4850 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4852 -- Types derived from [Limited_]Controlled are the only ones
4853 -- considered since they have fields Prev and Next.
4855 if VM_Target /= No_VM
4856 and then Is_Controlled (T)
4857 and then Present (Finalization_Master (PtrT))
4858 then
4859 Insert_Action (N,
4860 Make_Attach_Call
4861 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4862 Ptr_Typ => PtrT));
4863 end if;
4864 end if;
4866 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4867 Analyze_And_Resolve (N, PtrT);
4868 end if;
4869 end if;
4870 end;
4872 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4873 -- object that has been rewritten as a reference, we displace "this"
4874 -- to reference properly its secondary dispatch table.
4876 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
4877 Displace_Allocator_Pointer (N);
4878 end if;
4880 exception
4881 when RE_Not_Available =>
4882 return;
4883 end Expand_N_Allocator;
4885 -----------------------
4886 -- Expand_N_And_Then --
4887 -----------------------
4889 procedure Expand_N_And_Then (N : Node_Id)
4890 renames Expand_Short_Circuit_Operator;
4892 ------------------------------
4893 -- Expand_N_Case_Expression --
4894 ------------------------------
4896 procedure Expand_N_Case_Expression (N : Node_Id) is
4897 Loc : constant Source_Ptr := Sloc (N);
4898 Typ : constant Entity_Id := Etype (N);
4899 Cstmt : Node_Id;
4900 Decl : Node_Id;
4901 Tnn : Entity_Id;
4902 Pnn : Entity_Id;
4903 Actions : List_Id;
4904 Ttyp : Entity_Id;
4905 Alt : Node_Id;
4906 Fexp : Node_Id;
4908 begin
4909 -- Check for MINIMIZED/ELIMINATED overflow mode
4911 if Minimized_Eliminated_Overflow_Check (N) then
4912 Apply_Arithmetic_Overflow_Check (N);
4913 return;
4914 end if;
4916 -- If the case expression is a predicate specification, do not
4917 -- expand, because it will be converted to the proper predicate
4918 -- form when building the predicate function.
4920 if Ekind_In (Current_Scope, E_Function, E_Procedure)
4921 and then Is_Predicate_Function (Current_Scope)
4922 then
4923 return;
4924 end if;
4926 -- We expand
4928 -- case X is when A => AX, when B => BX ...
4930 -- to
4932 -- do
4933 -- Tnn : typ;
4934 -- case X is
4935 -- when A =>
4936 -- Tnn := AX;
4937 -- when B =>
4938 -- Tnn := BX;
4939 -- ...
4940 -- end case;
4941 -- in Tnn end;
4943 -- However, this expansion is wrong for limited types, and also
4944 -- wrong for unconstrained types (since the bounds may not be the
4945 -- same in all branches). Furthermore it involves an extra copy
4946 -- for large objects. So we take care of this by using the following
4947 -- modified expansion for non-elementary types:
4949 -- do
4950 -- type Pnn is access all typ;
4951 -- Tnn : Pnn;
4952 -- case X is
4953 -- when A =>
4954 -- T := AX'Unrestricted_Access;
4955 -- when B =>
4956 -- T := BX'Unrestricted_Access;
4957 -- ...
4958 -- end case;
4959 -- in Tnn.all end;
4961 Cstmt :=
4962 Make_Case_Statement (Loc,
4963 Expression => Expression (N),
4964 Alternatives => New_List);
4966 -- Preserve the original context for which the case statement is being
4967 -- generated. This is needed by the finalization machinery to prevent
4968 -- the premature finalization of controlled objects found within the
4969 -- case statement.
4971 Set_From_Conditional_Expression (Cstmt);
4973 Actions := New_List;
4975 -- Scalar case
4977 if Is_Elementary_Type (Typ) then
4978 Ttyp := Typ;
4980 else
4981 Pnn := Make_Temporary (Loc, 'P');
4982 Append_To (Actions,
4983 Make_Full_Type_Declaration (Loc,
4984 Defining_Identifier => Pnn,
4985 Type_Definition =>
4986 Make_Access_To_Object_Definition (Loc,
4987 All_Present => True,
4988 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
4989 Ttyp := Pnn;
4990 end if;
4992 Tnn := Make_Temporary (Loc, 'T');
4994 -- Create declaration for target of expression, and indicate that it
4995 -- does not require initialization.
4997 Decl :=
4998 Make_Object_Declaration (Loc,
4999 Defining_Identifier => Tnn,
5000 Object_Definition => New_Occurrence_Of (Ttyp, Loc));
5001 Set_No_Initialization (Decl);
5002 Append_To (Actions, Decl);
5004 -- Now process the alternatives
5006 Alt := First (Alternatives (N));
5007 while Present (Alt) loop
5008 declare
5009 Aexp : Node_Id := Expression (Alt);
5010 Aloc : constant Source_Ptr := Sloc (Aexp);
5011 Stats : List_Id;
5013 begin
5014 -- As described above, take Unrestricted_Access for case of non-
5015 -- scalar types, to avoid big copies, and special cases.
5017 if not Is_Elementary_Type (Typ) then
5018 Aexp :=
5019 Make_Attribute_Reference (Aloc,
5020 Prefix => Relocate_Node (Aexp),
5021 Attribute_Name => Name_Unrestricted_Access);
5022 end if;
5024 Stats := New_List (
5025 Make_Assignment_Statement (Aloc,
5026 Name => New_Occurrence_Of (Tnn, Loc),
5027 Expression => Aexp));
5029 -- Propagate declarations inserted in the node by Insert_Actions
5030 -- (for example, temporaries generated to remove side effects).
5031 -- These actions must remain attached to the alternative, given
5032 -- that they are generated by the corresponding expression.
5034 if Present (Sinfo.Actions (Alt)) then
5035 Prepend_List (Sinfo.Actions (Alt), Stats);
5036 end if;
5038 Append_To
5039 (Alternatives (Cstmt),
5040 Make_Case_Statement_Alternative (Sloc (Alt),
5041 Discrete_Choices => Discrete_Choices (Alt),
5042 Statements => Stats));
5043 end;
5045 Next (Alt);
5046 end loop;
5048 Append_To (Actions, Cstmt);
5050 -- Construct and return final expression with actions
5052 if Is_Elementary_Type (Typ) then
5053 Fexp := New_Occurrence_Of (Tnn, Loc);
5054 else
5055 Fexp :=
5056 Make_Explicit_Dereference (Loc,
5057 Prefix => New_Occurrence_Of (Tnn, Loc));
5058 end if;
5060 Rewrite (N,
5061 Make_Expression_With_Actions (Loc,
5062 Expression => Fexp,
5063 Actions => Actions));
5065 Analyze_And_Resolve (N, Typ);
5066 end Expand_N_Case_Expression;
5068 -----------------------------------
5069 -- Expand_N_Explicit_Dereference --
5070 -----------------------------------
5072 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5073 begin
5074 -- Insert explicit dereference call for the checked storage pool case
5076 Insert_Dereference_Action (Prefix (N));
5078 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5079 -- we set the atomic sync flag.
5081 if Is_Atomic (Etype (N))
5082 and then not Atomic_Synchronization_Disabled (Etype (N))
5083 then
5084 Activate_Atomic_Synchronization (N);
5085 end if;
5086 end Expand_N_Explicit_Dereference;
5088 --------------------------------------
5089 -- Expand_N_Expression_With_Actions --
5090 --------------------------------------
5092 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
5094 function Process_Action (Act : Node_Id) return Traverse_Result;
5095 -- Inspect and process a single action of an expression_with_actions for
5096 -- transient controlled objects. If such objects are found, the routine
5097 -- generates code to clean them up when the context of the expression is
5098 -- evaluated or elaborated.
5100 --------------------
5101 -- Process_Action --
5102 --------------------
5104 function Process_Action (Act : Node_Id) return Traverse_Result is
5105 begin
5106 if Nkind (Act) = N_Object_Declaration
5107 and then Is_Finalizable_Transient (Act, N)
5108 then
5109 Process_Transient_Object (Act, N);
5110 return Abandon;
5112 -- Avoid processing temporary function results multiple times when
5113 -- dealing with nested expression_with_actions.
5115 elsif Nkind (Act) = N_Expression_With_Actions then
5116 return Abandon;
5118 -- Do not process temporary function results in loops. This is done
5119 -- by Expand_N_Loop_Statement and Build_Finalizer.
5121 elsif Nkind (Act) = N_Loop_Statement then
5122 return Abandon;
5123 end if;
5125 return OK;
5126 end Process_Action;
5128 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
5130 -- Local variables
5132 Act : Node_Id;
5134 -- Start of processing for Expand_N_Expression_With_Actions
5136 begin
5137 -- Process the actions as described above
5139 Act := First (Actions (N));
5140 while Present (Act) loop
5141 Process_Single_Action (Act);
5142 Next (Act);
5143 end loop;
5145 -- Deal with case where there are no actions. In this case we simply
5146 -- rewrite the node with its expression since we don't need the actions
5147 -- and the specification of this node does not allow a null action list.
5149 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5150 -- the expanded tree and relying on being able to retrieve the original
5151 -- tree in cases like this. This raises a whole lot of issues of whether
5152 -- we have problems elsewhere, which will be addressed in the future???
5154 if Is_Empty_List (Actions (N)) then
5155 Rewrite (N, Relocate_Node (Expression (N)));
5156 end if;
5157 end Expand_N_Expression_With_Actions;
5159 ----------------------------
5160 -- Expand_N_If_Expression --
5161 ----------------------------
5163 -- Deal with limited types and condition actions
5165 procedure Expand_N_If_Expression (N : Node_Id) is
5166 procedure Process_Actions (Actions : List_Id);
5167 -- Inspect and process a single action list of an if expression for
5168 -- transient controlled objects. If such objects are found, the routine
5169 -- generates code to clean them up when the context of the expression is
5170 -- evaluated or elaborated.
5172 ---------------------
5173 -- Process_Actions --
5174 ---------------------
5176 procedure Process_Actions (Actions : List_Id) is
5177 Act : Node_Id;
5179 begin
5180 Act := First (Actions);
5181 while Present (Act) loop
5182 if Nkind (Act) = N_Object_Declaration
5183 and then Is_Finalizable_Transient (Act, N)
5184 then
5185 Process_Transient_Object (Act, N);
5186 end if;
5188 Next (Act);
5189 end loop;
5190 end Process_Actions;
5192 -- Local variables
5194 Loc : constant Source_Ptr := Sloc (N);
5195 Cond : constant Node_Id := First (Expressions (N));
5196 Thenx : constant Node_Id := Next (Cond);
5197 Elsex : constant Node_Id := Next (Thenx);
5198 Typ : constant Entity_Id := Etype (N);
5200 Actions : List_Id;
5201 Cnn : Entity_Id;
5202 Decl : Node_Id;
5203 Expr : Node_Id;
5204 New_If : Node_Id;
5205 New_N : Node_Id;
5206 Ptr_Typ : Entity_Id;
5208 -- Start of processing for Expand_N_If_Expression
5210 begin
5211 -- Check for MINIMIZED/ELIMINATED overflow mode
5213 if Minimized_Eliminated_Overflow_Check (N) then
5214 Apply_Arithmetic_Overflow_Check (N);
5215 return;
5216 end if;
5218 -- Fold at compile time if condition known. We have already folded
5219 -- static if expressions, but it is possible to fold any case in which
5220 -- the condition is known at compile time, even though the result is
5221 -- non-static.
5223 -- Note that we don't do the fold of such cases in Sem_Elab because
5224 -- it can cause infinite loops with the expander adding a conditional
5225 -- expression, and Sem_Elab circuitry removing it repeatedly.
5227 if Compile_Time_Known_Value (Cond) then
5228 if Is_True (Expr_Value (Cond)) then
5229 Expr := Thenx;
5230 Actions := Then_Actions (N);
5231 else
5232 Expr := Elsex;
5233 Actions := Else_Actions (N);
5234 end if;
5236 Remove (Expr);
5238 if Present (Actions) then
5239 Rewrite (N,
5240 Make_Expression_With_Actions (Loc,
5241 Expression => Relocate_Node (Expr),
5242 Actions => Actions));
5243 Analyze_And_Resolve (N, Typ);
5244 else
5245 Rewrite (N, Relocate_Node (Expr));
5246 end if;
5248 -- Note that the result is never static (legitimate cases of static
5249 -- if expressions were folded in Sem_Eval).
5251 Set_Is_Static_Expression (N, False);
5252 return;
5253 end if;
5255 -- If the type is limited, and the back end does not handle limited
5256 -- types, then we expand as follows to avoid the possibility of
5257 -- improper copying.
5259 -- type Ptr is access all Typ;
5260 -- Cnn : Ptr;
5261 -- if cond then
5262 -- <<then actions>>
5263 -- Cnn := then-expr'Unrestricted_Access;
5264 -- else
5265 -- <<else actions>>
5266 -- Cnn := else-expr'Unrestricted_Access;
5267 -- end if;
5269 -- and replace the if expression by a reference to Cnn.all.
5271 -- This special case can be skipped if the back end handles limited
5272 -- types properly and ensures that no incorrect copies are made.
5274 if Is_By_Reference_Type (Typ)
5275 and then not Back_End_Handles_Limited_Types
5276 then
5277 -- When the "then" or "else" expressions involve controlled function
5278 -- calls, generated temporaries are chained on the corresponding list
5279 -- of actions. These temporaries need to be finalized after the if
5280 -- expression is evaluated.
5282 Process_Actions (Then_Actions (N));
5283 Process_Actions (Else_Actions (N));
5285 -- Generate:
5286 -- type Ann is access all Typ;
5288 Ptr_Typ := Make_Temporary (Loc, 'A');
5290 Insert_Action (N,
5291 Make_Full_Type_Declaration (Loc,
5292 Defining_Identifier => Ptr_Typ,
5293 Type_Definition =>
5294 Make_Access_To_Object_Definition (Loc,
5295 All_Present => True,
5296 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5298 -- Generate:
5299 -- Cnn : Ann;
5301 Cnn := Make_Temporary (Loc, 'C', N);
5303 Decl :=
5304 Make_Object_Declaration (Loc,
5305 Defining_Identifier => Cnn,
5306 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
5308 -- Generate:
5309 -- if Cond then
5310 -- Cnn := <Thenx>'Unrestricted_Access;
5311 -- else
5312 -- Cnn := <Elsex>'Unrestricted_Access;
5313 -- end if;
5315 New_If :=
5316 Make_Implicit_If_Statement (N,
5317 Condition => Relocate_Node (Cond),
5318 Then_Statements => New_List (
5319 Make_Assignment_Statement (Sloc (Thenx),
5320 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5321 Expression =>
5322 Make_Attribute_Reference (Loc,
5323 Prefix => Relocate_Node (Thenx),
5324 Attribute_Name => Name_Unrestricted_Access))),
5326 Else_Statements => New_List (
5327 Make_Assignment_Statement (Sloc (Elsex),
5328 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5329 Expression =>
5330 Make_Attribute_Reference (Loc,
5331 Prefix => Relocate_Node (Elsex),
5332 Attribute_Name => Name_Unrestricted_Access))));
5334 -- Preserve the original context for which the if statement is being
5335 -- generated. This is needed by the finalization machinery to prevent
5336 -- the premature finalization of controlled objects found within the
5337 -- if statement.
5339 Set_From_Conditional_Expression (New_If);
5341 New_N :=
5342 Make_Explicit_Dereference (Loc,
5343 Prefix => New_Occurrence_Of (Cnn, Loc));
5345 -- If the result is an unconstrained array and the if expression is in a
5346 -- context other than the initializing expression of the declaration of
5347 -- an object, then we pull out the if expression as follows:
5349 -- Cnn : constant typ := if-expression
5351 -- and then replace the if expression with an occurrence of Cnn. This
5352 -- avoids the need in the back end to create on-the-fly variable length
5353 -- temporaries (which it cannot do!)
5355 -- Note that the test for being in an object declaration avoids doing an
5356 -- unnecessary expansion, and also avoids infinite recursion.
5358 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5359 and then (Nkind (Parent (N)) /= N_Object_Declaration
5360 or else Expression (Parent (N)) /= N)
5361 then
5362 declare
5363 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5364 begin
5365 Insert_Action (N,
5366 Make_Object_Declaration (Loc,
5367 Defining_Identifier => Cnn,
5368 Constant_Present => True,
5369 Object_Definition => New_Occurrence_Of (Typ, Loc),
5370 Expression => Relocate_Node (N),
5371 Has_Init_Expression => True));
5373 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5374 return;
5375 end;
5377 -- For other types, we only need to expand if there are other actions
5378 -- associated with either branch.
5380 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
5382 -- We now wrap the actions into the appropriate expression
5384 if Present (Then_Actions (N)) then
5385 Rewrite (Thenx,
5386 Make_Expression_With_Actions (Sloc (Thenx),
5387 Actions => Then_Actions (N),
5388 Expression => Relocate_Node (Thenx)));
5390 Set_Then_Actions (N, No_List);
5391 Analyze_And_Resolve (Thenx, Typ);
5392 end if;
5394 if Present (Else_Actions (N)) then
5395 Rewrite (Elsex,
5396 Make_Expression_With_Actions (Sloc (Elsex),
5397 Actions => Else_Actions (N),
5398 Expression => Relocate_Node (Elsex)));
5400 Set_Else_Actions (N, No_List);
5401 Analyze_And_Resolve (Elsex, Typ);
5402 end if;
5404 return;
5406 -- If no actions then no expansion needed, gigi will handle it using the
5407 -- same approach as a C conditional expression.
5409 else
5410 return;
5411 end if;
5413 -- Fall through here for either the limited expansion, or the case of
5414 -- inserting actions for non-limited types. In both these cases, we must
5415 -- move the SLOC of the parent If statement to the newly created one and
5416 -- change it to the SLOC of the expression which, after expansion, will
5417 -- correspond to what is being evaluated.
5419 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
5420 Set_Sloc (New_If, Sloc (Parent (N)));
5421 Set_Sloc (Parent (N), Loc);
5422 end if;
5424 -- Make sure Then_Actions and Else_Actions are appropriately moved
5425 -- to the new if statement.
5427 if Present (Then_Actions (N)) then
5428 Insert_List_Before
5429 (First (Then_Statements (New_If)), Then_Actions (N));
5430 end if;
5432 if Present (Else_Actions (N)) then
5433 Insert_List_Before
5434 (First (Else_Statements (New_If)), Else_Actions (N));
5435 end if;
5437 Insert_Action (N, Decl);
5438 Insert_Action (N, New_If);
5439 Rewrite (N, New_N);
5440 Analyze_And_Resolve (N, Typ);
5441 end Expand_N_If_Expression;
5443 -----------------
5444 -- Expand_N_In --
5445 -----------------
5447 procedure Expand_N_In (N : Node_Id) is
5448 Loc : constant Source_Ptr := Sloc (N);
5449 Restyp : constant Entity_Id := Etype (N);
5450 Lop : constant Node_Id := Left_Opnd (N);
5451 Rop : constant Node_Id := Right_Opnd (N);
5452 Static : constant Boolean := Is_OK_Static_Expression (N);
5454 Ltyp : Entity_Id;
5455 Rtyp : Entity_Id;
5457 procedure Substitute_Valid_Check;
5458 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5459 -- test for the left operand being in range of its subtype.
5461 ----------------------------
5462 -- Substitute_Valid_Check --
5463 ----------------------------
5465 procedure Substitute_Valid_Check is
5466 begin
5467 Rewrite (N,
5468 Make_Attribute_Reference (Loc,
5469 Prefix => Relocate_Node (Lop),
5470 Attribute_Name => Name_Valid));
5472 Analyze_And_Resolve (N, Restyp);
5474 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5475 -- in which case, this usage makes sense, and in any case, we have
5476 -- actually eliminated the danger of optimization above.
5478 if Overflow_Check_Mode not in Minimized_Or_Eliminated then
5479 Error_Msg_N
5480 ("??explicit membership test may be optimized away", N);
5481 Error_Msg_N -- CODEFIX
5482 ("\??use ''Valid attribute instead", N);
5483 end if;
5485 return;
5486 end Substitute_Valid_Check;
5488 -- Start of processing for Expand_N_In
5490 begin
5491 -- If set membership case, expand with separate procedure
5493 if Present (Alternatives (N)) then
5494 Expand_Set_Membership (N);
5495 return;
5496 end if;
5498 -- Not set membership, proceed with expansion
5500 Ltyp := Etype (Left_Opnd (N));
5501 Rtyp := Etype (Right_Opnd (N));
5503 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5504 -- type, then expand with a separate procedure. Note the use of the
5505 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5507 if Overflow_Check_Mode in Minimized_Or_Eliminated
5508 and then Is_Signed_Integer_Type (Ltyp)
5509 and then not No_Minimize_Eliminate (N)
5510 then
5511 Expand_Membership_Minimize_Eliminate_Overflow (N);
5512 return;
5513 end if;
5515 -- Check case of explicit test for an expression in range of its
5516 -- subtype. This is suspicious usage and we replace it with a 'Valid
5517 -- test and give a warning for scalar types.
5519 if Is_Scalar_Type (Ltyp)
5521 -- Only relevant for source comparisons
5523 and then Comes_From_Source (N)
5525 -- In floating-point this is a standard way to check for finite values
5526 -- and using 'Valid would typically be a pessimization.
5528 and then not Is_Floating_Point_Type (Ltyp)
5530 -- Don't give the message unless right operand is a type entity and
5531 -- the type of the left operand matches this type. Note that this
5532 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5533 -- checks have changed the type of the left operand.
5535 and then Nkind (Rop) in N_Has_Entity
5536 and then Ltyp = Entity (Rop)
5538 -- Skip in VM mode, where we have no sense of invalid values. The
5539 -- warning still seems relevant, but not important enough to worry.
5541 and then VM_Target = No_VM
5543 -- Skip this for predicated types, where such expressions are a
5544 -- reasonable way of testing if something meets the predicate.
5546 and then not Present (Predicate_Function (Ltyp))
5547 then
5548 Substitute_Valid_Check;
5549 return;
5550 end if;
5552 -- Do validity check on operands
5554 if Validity_Checks_On and Validity_Check_Operands then
5555 Ensure_Valid (Left_Opnd (N));
5556 Validity_Check_Range (Right_Opnd (N));
5557 end if;
5559 -- Case of explicit range
5561 if Nkind (Rop) = N_Range then
5562 declare
5563 Lo : constant Node_Id := Low_Bound (Rop);
5564 Hi : constant Node_Id := High_Bound (Rop);
5566 Lo_Orig : constant Node_Id := Original_Node (Lo);
5567 Hi_Orig : constant Node_Id := Original_Node (Hi);
5569 Lcheck : Compare_Result;
5570 Ucheck : Compare_Result;
5572 Warn1 : constant Boolean :=
5573 Constant_Condition_Warnings
5574 and then Comes_From_Source (N)
5575 and then not In_Instance;
5576 -- This must be true for any of the optimization warnings, we
5577 -- clearly want to give them only for source with the flag on. We
5578 -- also skip these warnings in an instance since it may be the
5579 -- case that different instantiations have different ranges.
5581 Warn2 : constant Boolean :=
5582 Warn1
5583 and then Nkind (Original_Node (Rop)) = N_Range
5584 and then Is_Integer_Type (Etype (Lo));
5585 -- For the case where only one bound warning is elided, we also
5586 -- insist on an explicit range and an integer type. The reason is
5587 -- that the use of enumeration ranges including an end point is
5588 -- common, as is the use of a subtype name, one of whose bounds is
5589 -- the same as the type of the expression.
5591 begin
5592 -- If test is explicit x'First .. x'Last, replace by valid check
5594 -- Could use some individual comments for this complex test ???
5596 if Is_Scalar_Type (Ltyp)
5598 -- And left operand is X'First where X matches left operand
5599 -- type (this eliminates cases of type mismatch, including
5600 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5601 -- type of the left operand.
5603 and then Nkind (Lo_Orig) = N_Attribute_Reference
5604 and then Attribute_Name (Lo_Orig) = Name_First
5605 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
5606 and then Entity (Prefix (Lo_Orig)) = Ltyp
5608 -- Same tests for right operand
5610 and then Nkind (Hi_Orig) = N_Attribute_Reference
5611 and then Attribute_Name (Hi_Orig) = Name_Last
5612 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
5613 and then Entity (Prefix (Hi_Orig)) = Ltyp
5615 -- Relevant only for source cases
5617 and then Comes_From_Source (N)
5619 -- Omit for VM cases, where we don't have invalid values
5621 and then VM_Target = No_VM
5622 then
5623 Substitute_Valid_Check;
5624 goto Leave;
5625 end if;
5627 -- If bounds of type are known at compile time, and the end points
5628 -- are known at compile time and identical, this is another case
5629 -- for substituting a valid test. We only do this for discrete
5630 -- types, since it won't arise in practice for float types.
5632 if Comes_From_Source (N)
5633 and then Is_Discrete_Type (Ltyp)
5634 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5635 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
5636 and then Compile_Time_Known_Value (Lo)
5637 and then Compile_Time_Known_Value (Hi)
5638 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5639 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
5641 -- Kill warnings in instances, since they may be cases where we
5642 -- have a test in the generic that makes sense with some types
5643 -- and not with other types.
5645 and then not In_Instance
5646 then
5647 Substitute_Valid_Check;
5648 goto Leave;
5649 end if;
5651 -- If we have an explicit range, do a bit of optimization based on
5652 -- range analysis (we may be able to kill one or both checks).
5654 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5655 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5657 -- If either check is known to fail, replace result by False since
5658 -- the other check does not matter. Preserve the static flag for
5659 -- legality checks, because we are constant-folding beyond RM 4.9.
5661 if Lcheck = LT or else Ucheck = GT then
5662 if Warn1 then
5663 Error_Msg_N ("?c?range test optimized away", N);
5664 Error_Msg_N ("\?c?value is known to be out of range", N);
5665 end if;
5667 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5668 Analyze_And_Resolve (N, Restyp);
5669 Set_Is_Static_Expression (N, Static);
5670 goto Leave;
5672 -- If both checks are known to succeed, replace result by True,
5673 -- since we know we are in range.
5675 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5676 if Warn1 then
5677 Error_Msg_N ("?c?range test optimized away", N);
5678 Error_Msg_N ("\?c?value is known to be in range", N);
5679 end if;
5681 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5682 Analyze_And_Resolve (N, Restyp);
5683 Set_Is_Static_Expression (N, Static);
5684 goto Leave;
5686 -- If lower bound check succeeds and upper bound check is not
5687 -- known to succeed or fail, then replace the range check with
5688 -- a comparison against the upper bound.
5690 elsif Lcheck in Compare_GE then
5691 if Warn2 and then not In_Instance then
5692 Error_Msg_N ("??lower bound test optimized away", Lo);
5693 Error_Msg_N ("\??value is known to be in range", Lo);
5694 end if;
5696 Rewrite (N,
5697 Make_Op_Le (Loc,
5698 Left_Opnd => Lop,
5699 Right_Opnd => High_Bound (Rop)));
5700 Analyze_And_Resolve (N, Restyp);
5701 goto Leave;
5703 -- If upper bound check succeeds and lower bound check is not
5704 -- known to succeed or fail, then replace the range check with
5705 -- a comparison against the lower bound.
5707 elsif Ucheck in Compare_LE then
5708 if Warn2 and then not In_Instance then
5709 Error_Msg_N ("??upper bound test optimized away", Hi);
5710 Error_Msg_N ("\??value is known to be in range", Hi);
5711 end if;
5713 Rewrite (N,
5714 Make_Op_Ge (Loc,
5715 Left_Opnd => Lop,
5716 Right_Opnd => Low_Bound (Rop)));
5717 Analyze_And_Resolve (N, Restyp);
5718 goto Leave;
5719 end if;
5721 -- We couldn't optimize away the range check, but there is one
5722 -- more issue. If we are checking constant conditionals, then we
5723 -- see if we can determine the outcome assuming everything is
5724 -- valid, and if so give an appropriate warning.
5726 if Warn1 and then not Assume_No_Invalid_Values then
5727 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5728 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5730 -- Result is out of range for valid value
5732 if Lcheck = LT or else Ucheck = GT then
5733 Error_Msg_N
5734 ("?c?value can only be in range if it is invalid", N);
5736 -- Result is in range for valid value
5738 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5739 Error_Msg_N
5740 ("?c?value can only be out of range if it is invalid", N);
5742 -- Lower bound check succeeds if value is valid
5744 elsif Warn2 and then Lcheck in Compare_GE then
5745 Error_Msg_N
5746 ("?c?lower bound check only fails if it is invalid", Lo);
5748 -- Upper bound check succeeds if value is valid
5750 elsif Warn2 and then Ucheck in Compare_LE then
5751 Error_Msg_N
5752 ("?c?upper bound check only fails for invalid values", Hi);
5753 end if;
5754 end if;
5755 end;
5757 -- For all other cases of an explicit range, nothing to be done
5759 goto Leave;
5761 -- Here right operand is a subtype mark
5763 else
5764 declare
5765 Typ : Entity_Id := Etype (Rop);
5766 Is_Acc : constant Boolean := Is_Access_Type (Typ);
5767 Cond : Node_Id := Empty;
5768 New_N : Node_Id;
5769 Obj : Node_Id := Lop;
5770 SCIL_Node : Node_Id;
5772 begin
5773 Remove_Side_Effects (Obj);
5775 -- For tagged type, do tagged membership operation
5777 if Is_Tagged_Type (Typ) then
5779 -- No expansion will be performed when VM_Target, as the VM
5780 -- back-ends will handle the membership tests directly (tags
5781 -- are not explicitly represented in Java objects, so the
5782 -- normal tagged membership expansion is not what we want).
5784 if Tagged_Type_Expansion then
5785 Tagged_Membership (N, SCIL_Node, New_N);
5786 Rewrite (N, New_N);
5787 Analyze_And_Resolve (N, Restyp);
5789 -- Update decoration of relocated node referenced by the
5790 -- SCIL node.
5792 if Generate_SCIL and then Present (SCIL_Node) then
5793 Set_SCIL_Node (N, SCIL_Node);
5794 end if;
5795 end if;
5797 goto Leave;
5799 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5800 -- This reason we do this is that the bounds may have the wrong
5801 -- type if they come from the original type definition. Also this
5802 -- way we get all the processing above for an explicit range.
5804 -- Don't do this for predicated types, since in this case we
5805 -- want to check the predicate.
5807 elsif Is_Scalar_Type (Typ) then
5808 if No (Predicate_Function (Typ)) then
5809 Rewrite (Rop,
5810 Make_Range (Loc,
5811 Low_Bound =>
5812 Make_Attribute_Reference (Loc,
5813 Attribute_Name => Name_First,
5814 Prefix => New_Occurrence_Of (Typ, Loc)),
5816 High_Bound =>
5817 Make_Attribute_Reference (Loc,
5818 Attribute_Name => Name_Last,
5819 Prefix => New_Occurrence_Of (Typ, Loc))));
5820 Analyze_And_Resolve (N, Restyp);
5821 end if;
5823 goto Leave;
5825 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5826 -- a membership test if the subtype mark denotes a constrained
5827 -- Unchecked_Union subtype and the expression lacks inferable
5828 -- discriminants.
5830 elsif Is_Unchecked_Union (Base_Type (Typ))
5831 and then Is_Constrained (Typ)
5832 and then not Has_Inferable_Discriminants (Lop)
5833 then
5834 Insert_Action (N,
5835 Make_Raise_Program_Error (Loc,
5836 Reason => PE_Unchecked_Union_Restriction));
5838 -- Prevent Gigi from generating incorrect code by rewriting the
5839 -- test as False. What is this undocumented thing about ???
5841 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5842 goto Leave;
5843 end if;
5845 -- Here we have a non-scalar type
5847 if Is_Acc then
5848 Typ := Designated_Type (Typ);
5849 end if;
5851 if not Is_Constrained (Typ) then
5852 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5853 Analyze_And_Resolve (N, Restyp);
5855 -- For the constrained array case, we have to check the subscripts
5856 -- for an exact match if the lengths are non-zero (the lengths
5857 -- must match in any case).
5859 elsif Is_Array_Type (Typ) then
5860 Check_Subscripts : declare
5861 function Build_Attribute_Reference
5862 (E : Node_Id;
5863 Nam : Name_Id;
5864 Dim : Nat) return Node_Id;
5865 -- Build attribute reference E'Nam (Dim)
5867 -------------------------------
5868 -- Build_Attribute_Reference --
5869 -------------------------------
5871 function Build_Attribute_Reference
5872 (E : Node_Id;
5873 Nam : Name_Id;
5874 Dim : Nat) return Node_Id
5876 begin
5877 return
5878 Make_Attribute_Reference (Loc,
5879 Prefix => E,
5880 Attribute_Name => Nam,
5881 Expressions => New_List (
5882 Make_Integer_Literal (Loc, Dim)));
5883 end Build_Attribute_Reference;
5885 -- Start of processing for Check_Subscripts
5887 begin
5888 for J in 1 .. Number_Dimensions (Typ) loop
5889 Evolve_And_Then (Cond,
5890 Make_Op_Eq (Loc,
5891 Left_Opnd =>
5892 Build_Attribute_Reference
5893 (Duplicate_Subexpr_No_Checks (Obj),
5894 Name_First, J),
5895 Right_Opnd =>
5896 Build_Attribute_Reference
5897 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5899 Evolve_And_Then (Cond,
5900 Make_Op_Eq (Loc,
5901 Left_Opnd =>
5902 Build_Attribute_Reference
5903 (Duplicate_Subexpr_No_Checks (Obj),
5904 Name_Last, J),
5905 Right_Opnd =>
5906 Build_Attribute_Reference
5907 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5908 end loop;
5910 if Is_Acc then
5911 Cond :=
5912 Make_Or_Else (Loc,
5913 Left_Opnd =>
5914 Make_Op_Eq (Loc,
5915 Left_Opnd => Obj,
5916 Right_Opnd => Make_Null (Loc)),
5917 Right_Opnd => Cond);
5918 end if;
5920 Rewrite (N, Cond);
5921 Analyze_And_Resolve (N, Restyp);
5922 end Check_Subscripts;
5924 -- These are the cases where constraint checks may be required,
5925 -- e.g. records with possible discriminants
5927 else
5928 -- Expand the test into a series of discriminant comparisons.
5929 -- The expression that is built is the negation of the one that
5930 -- is used for checking discriminant constraints.
5932 Obj := Relocate_Node (Left_Opnd (N));
5934 if Has_Discriminants (Typ) then
5935 Cond := Make_Op_Not (Loc,
5936 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5938 if Is_Acc then
5939 Cond := Make_Or_Else (Loc,
5940 Left_Opnd =>
5941 Make_Op_Eq (Loc,
5942 Left_Opnd => Obj,
5943 Right_Opnd => Make_Null (Loc)),
5944 Right_Opnd => Cond);
5945 end if;
5947 else
5948 Cond := New_Occurrence_Of (Standard_True, Loc);
5949 end if;
5951 Rewrite (N, Cond);
5952 Analyze_And_Resolve (N, Restyp);
5953 end if;
5955 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5956 -- expression of an anonymous access type. This can involve an
5957 -- accessibility test and a tagged type membership test in the
5958 -- case of tagged designated types.
5960 if Ada_Version >= Ada_2012
5961 and then Is_Acc
5962 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5963 then
5964 declare
5965 Expr_Entity : Entity_Id := Empty;
5966 New_N : Node_Id;
5967 Param_Level : Node_Id;
5968 Type_Level : Node_Id;
5970 begin
5971 if Is_Entity_Name (Lop) then
5972 Expr_Entity := Param_Entity (Lop);
5974 if not Present (Expr_Entity) then
5975 Expr_Entity := Entity (Lop);
5976 end if;
5977 end if;
5979 -- If a conversion of the anonymous access value to the
5980 -- tested type would be illegal, then the result is False.
5982 if not Valid_Conversion
5983 (Lop, Rtyp, Lop, Report_Errs => False)
5984 then
5985 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5986 Analyze_And_Resolve (N, Restyp);
5988 -- Apply an accessibility check if the access object has an
5989 -- associated access level and when the level of the type is
5990 -- less deep than the level of the access parameter. This
5991 -- only occur for access parameters and stand-alone objects
5992 -- of an anonymous access type.
5994 else
5995 if Present (Expr_Entity)
5996 and then
5997 Present
5998 (Effective_Extra_Accessibility (Expr_Entity))
5999 and then UI_Gt (Object_Access_Level (Lop),
6000 Type_Access_Level (Rtyp))
6001 then
6002 Param_Level :=
6003 New_Occurrence_Of
6004 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6006 Type_Level :=
6007 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6009 -- Return True only if the accessibility level of the
6010 -- expression entity is not deeper than the level of
6011 -- the tested access type.
6013 Rewrite (N,
6014 Make_And_Then (Loc,
6015 Left_Opnd => Relocate_Node (N),
6016 Right_Opnd => Make_Op_Le (Loc,
6017 Left_Opnd => Param_Level,
6018 Right_Opnd => Type_Level)));
6020 Analyze_And_Resolve (N);
6021 end if;
6023 -- If the designated type is tagged, do tagged membership
6024 -- operation.
6026 -- *** NOTE: we have to check not null before doing the
6027 -- tagged membership test (but maybe that can be done
6028 -- inside Tagged_Membership?).
6030 if Is_Tagged_Type (Typ) then
6031 Rewrite (N,
6032 Make_And_Then (Loc,
6033 Left_Opnd => Relocate_Node (N),
6034 Right_Opnd =>
6035 Make_Op_Ne (Loc,
6036 Left_Opnd => Obj,
6037 Right_Opnd => Make_Null (Loc))));
6039 -- No expansion will be performed when VM_Target, as
6040 -- the VM back-ends will handle the membership tests
6041 -- directly (tags are not explicitly represented in
6042 -- Java objects, so the normal tagged membership
6043 -- expansion is not what we want).
6045 if Tagged_Type_Expansion then
6047 -- Note that we have to pass Original_Node, because
6048 -- the membership test might already have been
6049 -- rewritten by earlier parts of membership test.
6051 Tagged_Membership
6052 (Original_Node (N), SCIL_Node, New_N);
6054 -- Update decoration of relocated node referenced
6055 -- by the SCIL node.
6057 if Generate_SCIL and then Present (SCIL_Node) then
6058 Set_SCIL_Node (New_N, SCIL_Node);
6059 end if;
6061 Rewrite (N,
6062 Make_And_Then (Loc,
6063 Left_Opnd => Relocate_Node (N),
6064 Right_Opnd => New_N));
6066 Analyze_And_Resolve (N, Restyp);
6067 end if;
6068 end if;
6069 end if;
6070 end;
6071 end if;
6072 end;
6073 end if;
6075 -- At this point, we have done the processing required for the basic
6076 -- membership test, but not yet dealt with the predicate.
6078 <<Leave>>
6080 -- If a predicate is present, then we do the predicate test, but we
6081 -- most certainly want to omit this if we are within the predicate
6082 -- function itself, since otherwise we have an infinite recursion.
6083 -- The check should also not be emitted when testing against a range
6084 -- (the check is only done when the right operand is a subtype; see
6085 -- RM12-4.5.2 (28.1/3-30/3)).
6087 declare
6088 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
6090 begin
6091 if Present (PFunc)
6092 and then Current_Scope /= PFunc
6093 and then Nkind (Rop) /= N_Range
6094 then
6095 Rewrite (N,
6096 Make_And_Then (Loc,
6097 Left_Opnd => Relocate_Node (N),
6098 Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
6100 -- Analyze new expression, mark left operand as analyzed to
6101 -- avoid infinite recursion adding predicate calls. Similarly,
6102 -- suppress further range checks on the call.
6104 Set_Analyzed (Left_Opnd (N));
6105 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6107 -- All done, skip attempt at compile time determination of result
6109 return;
6110 end if;
6111 end;
6112 end Expand_N_In;
6114 --------------------------------
6115 -- Expand_N_Indexed_Component --
6116 --------------------------------
6118 procedure Expand_N_Indexed_Component (N : Node_Id) is
6119 Loc : constant Source_Ptr := Sloc (N);
6120 Typ : constant Entity_Id := Etype (N);
6121 P : constant Node_Id := Prefix (N);
6122 T : constant Entity_Id := Etype (P);
6123 Atp : Entity_Id;
6125 begin
6126 -- A special optimization, if we have an indexed component that is
6127 -- selecting from a slice, then we can eliminate the slice, since, for
6128 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6129 -- the range check required by the slice. The range check for the slice
6130 -- itself has already been generated. The range check for the
6131 -- subscripting operation is ensured by converting the subject to
6132 -- the subtype of the slice.
6134 -- This optimization not only generates better code, avoiding slice
6135 -- messing especially in the packed case, but more importantly bypasses
6136 -- some problems in handling this peculiar case, for example, the issue
6137 -- of dealing specially with object renamings.
6139 if Nkind (P) = N_Slice
6141 -- This optimization is disabled for CodePeer because it can transform
6142 -- an index-check constraint_error into a range-check constraint_error
6143 -- and CodePeer cares about that distinction.
6145 and then not CodePeer_Mode
6146 then
6147 Rewrite (N,
6148 Make_Indexed_Component (Loc,
6149 Prefix => Prefix (P),
6150 Expressions => New_List (
6151 Convert_To
6152 (Etype (First_Index (Etype (P))),
6153 First (Expressions (N))))));
6154 Analyze_And_Resolve (N, Typ);
6155 return;
6156 end if;
6158 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6159 -- function, then additional actuals must be passed.
6161 if Ada_Version >= Ada_2005
6162 and then Is_Build_In_Place_Function_Call (P)
6163 then
6164 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6165 end if;
6167 -- If the prefix is an access type, then we unconditionally rewrite if
6168 -- as an explicit dereference. This simplifies processing for several
6169 -- cases, including packed array cases and certain cases in which checks
6170 -- must be generated. We used to try to do this only when it was
6171 -- necessary, but it cleans up the code to do it all the time.
6173 if Is_Access_Type (T) then
6174 Insert_Explicit_Dereference (P);
6175 Analyze_And_Resolve (P, Designated_Type (T));
6176 Atp := Designated_Type (T);
6177 else
6178 Atp := T;
6179 end if;
6181 -- Generate index and validity checks
6183 Generate_Index_Checks (N);
6185 if Validity_Checks_On and then Validity_Check_Subscripts then
6186 Apply_Subscript_Validity_Checks (N);
6187 end if;
6189 -- If selecting from an array with atomic components, and atomic sync
6190 -- is not suppressed for this array type, set atomic sync flag.
6192 if (Has_Atomic_Components (Atp)
6193 and then not Atomic_Synchronization_Disabled (Atp))
6194 or else (Is_Atomic (Typ)
6195 and then not Atomic_Synchronization_Disabled (Typ))
6196 then
6197 Activate_Atomic_Synchronization (N);
6198 end if;
6200 -- All done for the non-packed case
6202 if not Is_Packed (Etype (Prefix (N))) then
6203 return;
6204 end if;
6206 -- For packed arrays that are not bit-packed (i.e. the case of an array
6207 -- with one or more index types with a non-contiguous enumeration type),
6208 -- we can always use the normal packed element get circuit.
6210 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6211 Expand_Packed_Element_Reference (N);
6212 return;
6213 end if;
6215 -- For a reference to a component of a bit packed array, we convert it
6216 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6217 -- want to do this for simple references, and not for:
6219 -- Left side of assignment, or prefix of left side of assignment, or
6220 -- prefix of the prefix, to handle packed arrays of packed arrays,
6221 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6223 -- Renaming objects in renaming associations
6224 -- This case is handled when a use of the renamed variable occurs
6226 -- Actual parameters for a procedure call
6227 -- This case is handled in Exp_Ch6.Expand_Actuals
6229 -- The second expression in a 'Read attribute reference
6231 -- The prefix of an address or bit or size attribute reference
6233 -- The following circuit detects these exceptions
6235 declare
6236 Child : Node_Id := N;
6237 Parnt : Node_Id := Parent (N);
6239 begin
6240 loop
6241 if Nkind (Parnt) = N_Unchecked_Expression then
6242 null;
6244 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6245 N_Procedure_Call_Statement)
6246 or else (Nkind (Parnt) = N_Parameter_Association
6247 and then
6248 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6249 then
6250 return;
6252 elsif Nkind (Parnt) = N_Attribute_Reference
6253 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6254 Name_Bit,
6255 Name_Size)
6256 and then Prefix (Parnt) = Child
6257 then
6258 return;
6260 elsif Nkind (Parnt) = N_Assignment_Statement
6261 and then Name (Parnt) = Child
6262 then
6263 return;
6265 -- If the expression is an index of an indexed component, it must
6266 -- be expanded regardless of context.
6268 elsif Nkind (Parnt) = N_Indexed_Component
6269 and then Child /= Prefix (Parnt)
6270 then
6271 Expand_Packed_Element_Reference (N);
6272 return;
6274 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6275 and then Name (Parent (Parnt)) = Parnt
6276 then
6277 return;
6279 elsif Nkind (Parnt) = N_Attribute_Reference
6280 and then Attribute_Name (Parnt) = Name_Read
6281 and then Next (First (Expressions (Parnt))) = Child
6282 then
6283 return;
6285 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
6286 and then Prefix (Parnt) = Child
6287 then
6288 null;
6290 else
6291 Expand_Packed_Element_Reference (N);
6292 return;
6293 end if;
6295 -- Keep looking up tree for unchecked expression, or if we are the
6296 -- prefix of a possible assignment left side.
6298 Child := Parnt;
6299 Parnt := Parent (Child);
6300 end loop;
6301 end;
6302 end Expand_N_Indexed_Component;
6304 ---------------------
6305 -- Expand_N_Not_In --
6306 ---------------------
6308 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6309 -- can be done. This avoids needing to duplicate this expansion code.
6311 procedure Expand_N_Not_In (N : Node_Id) is
6312 Loc : constant Source_Ptr := Sloc (N);
6313 Typ : constant Entity_Id := Etype (N);
6314 Cfs : constant Boolean := Comes_From_Source (N);
6316 begin
6317 Rewrite (N,
6318 Make_Op_Not (Loc,
6319 Right_Opnd =>
6320 Make_In (Loc,
6321 Left_Opnd => Left_Opnd (N),
6322 Right_Opnd => Right_Opnd (N))));
6324 -- If this is a set membership, preserve list of alternatives
6326 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6328 -- We want this to appear as coming from source if original does (see
6329 -- transformations in Expand_N_In).
6331 Set_Comes_From_Source (N, Cfs);
6332 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6334 -- Now analyze transformed node
6336 Analyze_And_Resolve (N, Typ);
6337 end Expand_N_Not_In;
6339 -------------------
6340 -- Expand_N_Null --
6341 -------------------
6343 -- The only replacement required is for the case of a null of a type that
6344 -- is an access to protected subprogram, or a subtype thereof. We represent
6345 -- such access values as a record, and so we must replace the occurrence of
6346 -- null by the equivalent record (with a null address and a null pointer in
6347 -- it), so that the backend creates the proper value.
6349 procedure Expand_N_Null (N : Node_Id) is
6350 Loc : constant Source_Ptr := Sloc (N);
6351 Typ : constant Entity_Id := Base_Type (Etype (N));
6352 Agg : Node_Id;
6354 begin
6355 if Is_Access_Protected_Subprogram_Type (Typ) then
6356 Agg :=
6357 Make_Aggregate (Loc,
6358 Expressions => New_List (
6359 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6360 Make_Null (Loc)));
6362 Rewrite (N, Agg);
6363 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6365 -- For subsequent semantic analysis, the node must retain its type.
6366 -- Gigi in any case replaces this type by the corresponding record
6367 -- type before processing the node.
6369 Set_Etype (N, Typ);
6370 end if;
6372 exception
6373 when RE_Not_Available =>
6374 return;
6375 end Expand_N_Null;
6377 ---------------------
6378 -- Expand_N_Op_Abs --
6379 ---------------------
6381 procedure Expand_N_Op_Abs (N : Node_Id) is
6382 Loc : constant Source_Ptr := Sloc (N);
6383 Expr : constant Node_Id := Right_Opnd (N);
6385 begin
6386 Unary_Op_Validity_Checks (N);
6388 -- Check for MINIMIZED/ELIMINATED overflow mode
6390 if Minimized_Eliminated_Overflow_Check (N) then
6391 Apply_Arithmetic_Overflow_Check (N);
6392 return;
6393 end if;
6395 -- Deal with software overflow checking
6397 if not Backend_Overflow_Checks_On_Target
6398 and then Is_Signed_Integer_Type (Etype (N))
6399 and then Do_Overflow_Check (N)
6400 then
6401 -- The only case to worry about is when the argument is equal to the
6402 -- largest negative number, so what we do is to insert the check:
6404 -- [constraint_error when Expr = typ'Base'First]
6406 -- with the usual Duplicate_Subexpr use coding for expr
6408 Insert_Action (N,
6409 Make_Raise_Constraint_Error (Loc,
6410 Condition =>
6411 Make_Op_Eq (Loc,
6412 Left_Opnd => Duplicate_Subexpr (Expr),
6413 Right_Opnd =>
6414 Make_Attribute_Reference (Loc,
6415 Prefix =>
6416 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6417 Attribute_Name => Name_First)),
6418 Reason => CE_Overflow_Check_Failed));
6419 end if;
6420 end Expand_N_Op_Abs;
6422 ---------------------
6423 -- Expand_N_Op_Add --
6424 ---------------------
6426 procedure Expand_N_Op_Add (N : Node_Id) is
6427 Typ : constant Entity_Id := Etype (N);
6429 begin
6430 Binary_Op_Validity_Checks (N);
6432 -- Check for MINIMIZED/ELIMINATED overflow mode
6434 if Minimized_Eliminated_Overflow_Check (N) then
6435 Apply_Arithmetic_Overflow_Check (N);
6436 return;
6437 end if;
6439 -- N + 0 = 0 + N = N for integer types
6441 if Is_Integer_Type (Typ) then
6442 if Compile_Time_Known_Value (Right_Opnd (N))
6443 and then Expr_Value (Right_Opnd (N)) = Uint_0
6444 then
6445 Rewrite (N, Left_Opnd (N));
6446 return;
6448 elsif Compile_Time_Known_Value (Left_Opnd (N))
6449 and then Expr_Value (Left_Opnd (N)) = Uint_0
6450 then
6451 Rewrite (N, Right_Opnd (N));
6452 return;
6453 end if;
6454 end if;
6456 -- Arithmetic overflow checks for signed integer/fixed point types
6458 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
6459 Apply_Arithmetic_Overflow_Check (N);
6460 return;
6461 end if;
6463 -- Overflow checks for floating-point if -gnateF mode active
6465 Check_Float_Op_Overflow (N);
6466 end Expand_N_Op_Add;
6468 ---------------------
6469 -- Expand_N_Op_And --
6470 ---------------------
6472 procedure Expand_N_Op_And (N : Node_Id) is
6473 Typ : constant Entity_Id := Etype (N);
6475 begin
6476 Binary_Op_Validity_Checks (N);
6478 if Is_Array_Type (Etype (N)) then
6479 Expand_Boolean_Operator (N);
6481 elsif Is_Boolean_Type (Etype (N)) then
6482 Adjust_Condition (Left_Opnd (N));
6483 Adjust_Condition (Right_Opnd (N));
6484 Set_Etype (N, Standard_Boolean);
6485 Adjust_Result_Type (N, Typ);
6487 elsif Is_Intrinsic_Subprogram (Entity (N)) then
6488 Expand_Intrinsic_Call (N, Entity (N));
6490 end if;
6491 end Expand_N_Op_And;
6493 ------------------------
6494 -- Expand_N_Op_Concat --
6495 ------------------------
6497 procedure Expand_N_Op_Concat (N : Node_Id) is
6498 Opnds : List_Id;
6499 -- List of operands to be concatenated
6501 Cnode : Node_Id;
6502 -- Node which is to be replaced by the result of concatenating the nodes
6503 -- in the list Opnds.
6505 begin
6506 -- Ensure validity of both operands
6508 Binary_Op_Validity_Checks (N);
6510 -- If we are the left operand of a concatenation higher up the tree,
6511 -- then do nothing for now, since we want to deal with a series of
6512 -- concatenations as a unit.
6514 if Nkind (Parent (N)) = N_Op_Concat
6515 and then N = Left_Opnd (Parent (N))
6516 then
6517 return;
6518 end if;
6520 -- We get here with a concatenation whose left operand may be a
6521 -- concatenation itself with a consistent type. We need to process
6522 -- these concatenation operands from left to right, which means
6523 -- from the deepest node in the tree to the highest node.
6525 Cnode := N;
6526 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6527 Cnode := Left_Opnd (Cnode);
6528 end loop;
6530 -- Now Cnode is the deepest concatenation, and its parents are the
6531 -- concatenation nodes above, so now we process bottom up, doing the
6532 -- operands.
6534 -- The outer loop runs more than once if more than one concatenation
6535 -- type is involved.
6537 Outer : loop
6538 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6539 Set_Parent (Opnds, N);
6541 -- The inner loop gathers concatenation operands
6543 Inner : while Cnode /= N
6544 and then Base_Type (Etype (Cnode)) =
6545 Base_Type (Etype (Parent (Cnode)))
6546 loop
6547 Cnode := Parent (Cnode);
6548 Append (Right_Opnd (Cnode), Opnds);
6549 end loop Inner;
6551 -- Note: The following code is a temporary workaround for N731-034
6552 -- and N829-028 and will be kept until the general issue of internal
6553 -- symbol serialization is addressed. The workaround is kept under a
6554 -- debug switch to avoid permiating into the general case.
6556 -- Wrap the node to concatenate into an expression actions node to
6557 -- keep it nicely packaged. This is useful in the case of an assert
6558 -- pragma with a concatenation where we want to be able to delete
6559 -- the concatenation and all its expansion stuff.
6561 if Debug_Flag_Dot_H then
6562 declare
6563 Cnod : constant Node_Id := Relocate_Node (Cnode);
6564 Typ : constant Entity_Id := Base_Type (Etype (Cnode));
6566 begin
6567 -- Note: use Rewrite rather than Replace here, so that for
6568 -- example Why_Not_Static can find the original concatenation
6569 -- node OK!
6571 Rewrite (Cnode,
6572 Make_Expression_With_Actions (Sloc (Cnode),
6573 Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
6574 Expression => Cnod));
6576 Expand_Concatenate (Cnod, Opnds);
6577 Analyze_And_Resolve (Cnode, Typ);
6578 end;
6580 -- Default case
6582 else
6583 Expand_Concatenate (Cnode, Opnds);
6584 end if;
6586 exit Outer when Cnode = N;
6587 Cnode := Parent (Cnode);
6588 end loop Outer;
6589 end Expand_N_Op_Concat;
6591 ------------------------
6592 -- Expand_N_Op_Divide --
6593 ------------------------
6595 procedure Expand_N_Op_Divide (N : Node_Id) is
6596 Loc : constant Source_Ptr := Sloc (N);
6597 Lopnd : constant Node_Id := Left_Opnd (N);
6598 Ropnd : constant Node_Id := Right_Opnd (N);
6599 Ltyp : constant Entity_Id := Etype (Lopnd);
6600 Rtyp : constant Entity_Id := Etype (Ropnd);
6601 Typ : Entity_Id := Etype (N);
6602 Rknow : constant Boolean := Is_Integer_Type (Typ)
6603 and then
6604 Compile_Time_Known_Value (Ropnd);
6605 Rval : Uint;
6607 begin
6608 Binary_Op_Validity_Checks (N);
6610 -- Check for MINIMIZED/ELIMINATED overflow mode
6612 if Minimized_Eliminated_Overflow_Check (N) then
6613 Apply_Arithmetic_Overflow_Check (N);
6614 return;
6615 end if;
6617 -- Otherwise proceed with expansion of division
6619 if Rknow then
6620 Rval := Expr_Value (Ropnd);
6621 end if;
6623 -- N / 1 = N for integer types
6625 if Rknow and then Rval = Uint_1 then
6626 Rewrite (N, Lopnd);
6627 return;
6628 end if;
6630 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6631 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6632 -- operand is an unsigned integer, as required for this to work.
6634 if Nkind (Ropnd) = N_Op_Expon
6635 and then Is_Power_Of_2_For_Shift (Ropnd)
6637 -- We cannot do this transformation in configurable run time mode if we
6638 -- have 64-bit integers and long shifts are not available.
6640 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
6641 then
6642 Rewrite (N,
6643 Make_Op_Shift_Right (Loc,
6644 Left_Opnd => Lopnd,
6645 Right_Opnd =>
6646 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
6647 Analyze_And_Resolve (N, Typ);
6648 return;
6649 end if;
6651 -- Do required fixup of universal fixed operation
6653 if Typ = Universal_Fixed then
6654 Fixup_Universal_Fixed_Operation (N);
6655 Typ := Etype (N);
6656 end if;
6658 -- Divisions with fixed-point results
6660 if Is_Fixed_Point_Type (Typ) then
6662 -- Deal with divide-by-zero check if back end cannot handle them
6663 -- and the flag is set indicating that we need such a check. Note
6664 -- that we don't need to bother here with the case of mixed-mode
6665 -- (Right operand an integer type), since these will be rewritten
6666 -- with conversions to a divide with a fixed-point right operand.
6668 if Do_Division_Check (N)
6669 and then not Backend_Divide_Checks_On_Target
6670 and then not Is_Integer_Type (Rtyp)
6671 then
6672 Set_Do_Division_Check (N, False);
6673 Insert_Action (N,
6674 Make_Raise_Constraint_Error (Loc,
6675 Condition =>
6676 Make_Op_Eq (Loc,
6677 Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
6678 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
6679 Reason => CE_Divide_By_Zero));
6680 end if;
6682 -- No special processing if Treat_Fixed_As_Integer is set, since
6683 -- from a semantic point of view such operations are simply integer
6684 -- operations and will be treated that way.
6686 if not Treat_Fixed_As_Integer (N) then
6687 if Is_Integer_Type (Rtyp) then
6688 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6689 else
6690 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6691 end if;
6692 end if;
6694 -- Other cases of division of fixed-point operands. Again we exclude the
6695 -- case where Treat_Fixed_As_Integer is set.
6697 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
6698 and then not Treat_Fixed_As_Integer (N)
6699 then
6700 if Is_Integer_Type (Typ) then
6701 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6702 else
6703 pragma Assert (Is_Floating_Point_Type (Typ));
6704 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6705 end if;
6707 -- Mixed-mode operations can appear in a non-static universal context,
6708 -- in which case the integer argument must be converted explicitly.
6710 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
6711 Rewrite (Ropnd,
6712 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
6714 Analyze_And_Resolve (Ropnd, Universal_Real);
6716 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
6717 Rewrite (Lopnd,
6718 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
6720 Analyze_And_Resolve (Lopnd, Universal_Real);
6722 -- Non-fixed point cases, do integer zero divide and overflow checks
6724 elsif Is_Integer_Type (Typ) then
6725 Apply_Divide_Checks (N);
6726 end if;
6728 -- Overflow checks for floating-point if -gnateF mode active
6730 Check_Float_Op_Overflow (N);
6731 end Expand_N_Op_Divide;
6733 --------------------
6734 -- Expand_N_Op_Eq --
6735 --------------------
6737 procedure Expand_N_Op_Eq (N : Node_Id) is
6738 Loc : constant Source_Ptr := Sloc (N);
6739 Typ : constant Entity_Id := Etype (N);
6740 Lhs : constant Node_Id := Left_Opnd (N);
6741 Rhs : constant Node_Id := Right_Opnd (N);
6742 Bodies : constant List_Id := New_List;
6743 A_Typ : constant Entity_Id := Etype (Lhs);
6745 Typl : Entity_Id := A_Typ;
6746 Op_Name : Entity_Id;
6747 Prim : Elmt_Id;
6749 procedure Build_Equality_Call (Eq : Entity_Id);
6750 -- If a constructed equality exists for the type or for its parent,
6751 -- build and analyze call, adding conversions if the operation is
6752 -- inherited.
6754 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
6755 -- Determines whether a type has a subcomponent of an unconstrained
6756 -- Unchecked_Union subtype. Typ is a record type.
6758 -------------------------
6759 -- Build_Equality_Call --
6760 -------------------------
6762 procedure Build_Equality_Call (Eq : Entity_Id) is
6763 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
6764 L_Exp : Node_Id := Relocate_Node (Lhs);
6765 R_Exp : Node_Id := Relocate_Node (Rhs);
6767 begin
6768 -- Adjust operands if necessary to comparison type
6770 if Base_Type (Op_Type) /= Base_Type (A_Typ)
6771 and then not Is_Class_Wide_Type (A_Typ)
6772 then
6773 L_Exp := OK_Convert_To (Op_Type, L_Exp);
6774 R_Exp := OK_Convert_To (Op_Type, R_Exp);
6775 end if;
6777 -- If we have an Unchecked_Union, we need to add the inferred
6778 -- discriminant values as actuals in the function call. At this
6779 -- point, the expansion has determined that both operands have
6780 -- inferable discriminants.
6782 if Is_Unchecked_Union (Op_Type) then
6783 declare
6784 Lhs_Type : constant Node_Id := Etype (L_Exp);
6785 Rhs_Type : constant Node_Id := Etype (R_Exp);
6787 Lhs_Discr_Vals : Elist_Id;
6788 -- List of inferred discriminant values for left operand.
6790 Rhs_Discr_Vals : Elist_Id;
6791 -- List of inferred discriminant values for right operand.
6793 Discr : Entity_Id;
6795 begin
6796 Lhs_Discr_Vals := New_Elmt_List;
6797 Rhs_Discr_Vals := New_Elmt_List;
6799 -- Per-object constrained selected components require special
6800 -- attention. If the enclosing scope of the component is an
6801 -- Unchecked_Union, we cannot reference its discriminants
6802 -- directly. This is why we use the extra parameters of the
6803 -- equality function of the enclosing Unchecked_Union.
6805 -- type UU_Type (Discr : Integer := 0) is
6806 -- . . .
6807 -- end record;
6808 -- pragma Unchecked_Union (UU_Type);
6810 -- 1. Unchecked_Union enclosing record:
6812 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6813 -- . . .
6814 -- Comp : UU_Type (Discr);
6815 -- . . .
6816 -- end Enclosing_UU_Type;
6817 -- pragma Unchecked_Union (Enclosing_UU_Type);
6819 -- Obj1 : Enclosing_UU_Type;
6820 -- Obj2 : Enclosing_UU_Type (1);
6822 -- [. . .] Obj1 = Obj2 [. . .]
6824 -- Generated code:
6826 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6828 -- A and B are the formal parameters of the equality function
6829 -- of Enclosing_UU_Type. The function always has two extra
6830 -- formals to capture the inferred discriminant values for
6831 -- each discriminant of the type.
6833 -- 2. Non-Unchecked_Union enclosing record:
6835 -- type
6836 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6837 -- is record
6838 -- . . .
6839 -- Comp : UU_Type (Discr);
6840 -- . . .
6841 -- end Enclosing_Non_UU_Type;
6843 -- Obj1 : Enclosing_Non_UU_Type;
6844 -- Obj2 : Enclosing_Non_UU_Type (1);
6846 -- ... Obj1 = Obj2 ...
6848 -- Generated code:
6850 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6851 -- obj1.discr, obj2.discr)) then
6853 -- In this case we can directly reference the discriminants of
6854 -- the enclosing record.
6856 -- Process left operand of equality
6858 if Nkind (Lhs) = N_Selected_Component
6859 and then
6860 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
6861 then
6862 -- If enclosing record is an Unchecked_Union, use formals
6863 -- corresponding to each discriminant. The name of the
6864 -- formal is that of the discriminant, with added suffix,
6865 -- see Exp_Ch3.Build_Record_Equality for details.
6867 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
6868 then
6869 Discr :=
6870 First_Discriminant
6871 (Scope (Entity (Selector_Name (Lhs))));
6872 while Present (Discr) loop
6873 Append_Elmt
6874 (Make_Identifier (Loc,
6875 Chars => New_External_Name (Chars (Discr), 'A')),
6876 To => Lhs_Discr_Vals);
6877 Next_Discriminant (Discr);
6878 end loop;
6880 -- If enclosing record is of a non-Unchecked_Union type, it
6881 -- is possible to reference its discriminants directly.
6883 else
6884 Discr := First_Discriminant (Lhs_Type);
6885 while Present (Discr) loop
6886 Append_Elmt
6887 (Make_Selected_Component (Loc,
6888 Prefix => Prefix (Lhs),
6889 Selector_Name =>
6890 New_Copy
6891 (Get_Discriminant_Value (Discr,
6892 Lhs_Type,
6893 Stored_Constraint (Lhs_Type)))),
6894 To => Lhs_Discr_Vals);
6895 Next_Discriminant (Discr);
6896 end loop;
6897 end if;
6899 -- Otherwise operand is on object with a constrained type.
6900 -- Infer the discriminant values from the constraint.
6902 else
6904 Discr := First_Discriminant (Lhs_Type);
6905 while Present (Discr) loop
6906 Append_Elmt
6907 (New_Copy
6908 (Get_Discriminant_Value (Discr,
6909 Lhs_Type,
6910 Stored_Constraint (Lhs_Type))),
6911 To => Lhs_Discr_Vals);
6912 Next_Discriminant (Discr);
6913 end loop;
6914 end if;
6916 -- Similar processing for right operand of equality
6918 if Nkind (Rhs) = N_Selected_Component
6919 and then
6920 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
6921 then
6922 if Is_Unchecked_Union
6923 (Scope (Entity (Selector_Name (Rhs))))
6924 then
6925 Discr :=
6926 First_Discriminant
6927 (Scope (Entity (Selector_Name (Rhs))));
6928 while Present (Discr) loop
6929 Append_Elmt
6930 (Make_Identifier (Loc,
6931 Chars => New_External_Name (Chars (Discr), 'B')),
6932 To => Rhs_Discr_Vals);
6933 Next_Discriminant (Discr);
6934 end loop;
6936 else
6937 Discr := First_Discriminant (Rhs_Type);
6938 while Present (Discr) loop
6939 Append_Elmt
6940 (Make_Selected_Component (Loc,
6941 Prefix => Prefix (Rhs),
6942 Selector_Name =>
6943 New_Copy (Get_Discriminant_Value
6944 (Discr,
6945 Rhs_Type,
6946 Stored_Constraint (Rhs_Type)))),
6947 To => Rhs_Discr_Vals);
6948 Next_Discriminant (Discr);
6949 end loop;
6950 end if;
6952 else
6953 Discr := First_Discriminant (Rhs_Type);
6954 while Present (Discr) loop
6955 Append_Elmt
6956 (New_Copy (Get_Discriminant_Value
6957 (Discr,
6958 Rhs_Type,
6959 Stored_Constraint (Rhs_Type))),
6960 To => Rhs_Discr_Vals);
6961 Next_Discriminant (Discr);
6962 end loop;
6963 end if;
6965 -- Now merge the list of discriminant values so that values
6966 -- of corresponding discriminants are adjacent.
6968 declare
6969 Params : List_Id;
6970 L_Elmt : Elmt_Id;
6971 R_Elmt : Elmt_Id;
6973 begin
6974 Params := New_List (L_Exp, R_Exp);
6975 L_Elmt := First_Elmt (Lhs_Discr_Vals);
6976 R_Elmt := First_Elmt (Rhs_Discr_Vals);
6977 while Present (L_Elmt) loop
6978 Append_To (Params, Node (L_Elmt));
6979 Append_To (Params, Node (R_Elmt));
6980 Next_Elmt (L_Elmt);
6981 Next_Elmt (R_Elmt);
6982 end loop;
6984 Rewrite (N,
6985 Make_Function_Call (Loc,
6986 Name => New_Occurrence_Of (Eq, Loc),
6987 Parameter_Associations => Params));
6988 end;
6989 end;
6991 -- Normal case, not an unchecked union
6993 else
6994 Rewrite (N,
6995 Make_Function_Call (Loc,
6996 Name => New_Occurrence_Of (Eq, Loc),
6997 Parameter_Associations => New_List (L_Exp, R_Exp)));
6998 end if;
7000 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7001 end Build_Equality_Call;
7003 ------------------------------------
7004 -- Has_Unconstrained_UU_Component --
7005 ------------------------------------
7007 function Has_Unconstrained_UU_Component
7008 (Typ : Node_Id) return Boolean
7010 Tdef : constant Node_Id :=
7011 Type_Definition (Declaration_Node (Base_Type (Typ)));
7012 Clist : Node_Id;
7013 Vpart : Node_Id;
7015 function Component_Is_Unconstrained_UU
7016 (Comp : Node_Id) return Boolean;
7017 -- Determines whether the subtype of the component is an
7018 -- unconstrained Unchecked_Union.
7020 function Variant_Is_Unconstrained_UU
7021 (Variant : Node_Id) return Boolean;
7022 -- Determines whether a component of the variant has an unconstrained
7023 -- Unchecked_Union subtype.
7025 -----------------------------------
7026 -- Component_Is_Unconstrained_UU --
7027 -----------------------------------
7029 function Component_Is_Unconstrained_UU
7030 (Comp : Node_Id) return Boolean
7032 begin
7033 if Nkind (Comp) /= N_Component_Declaration then
7034 return False;
7035 end if;
7037 declare
7038 Sindic : constant Node_Id :=
7039 Subtype_Indication (Component_Definition (Comp));
7041 begin
7042 -- Unconstrained nominal type. In the case of a constraint
7043 -- present, the node kind would have been N_Subtype_Indication.
7045 if Nkind (Sindic) = N_Identifier then
7046 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7047 end if;
7049 return False;
7050 end;
7051 end Component_Is_Unconstrained_UU;
7053 ---------------------------------
7054 -- Variant_Is_Unconstrained_UU --
7055 ---------------------------------
7057 function Variant_Is_Unconstrained_UU
7058 (Variant : Node_Id) return Boolean
7060 Clist : constant Node_Id := Component_List (Variant);
7062 begin
7063 if Is_Empty_List (Component_Items (Clist)) then
7064 return False;
7065 end if;
7067 -- We only need to test one component
7069 declare
7070 Comp : Node_Id := First (Component_Items (Clist));
7072 begin
7073 while Present (Comp) loop
7074 if Component_Is_Unconstrained_UU (Comp) then
7075 return True;
7076 end if;
7078 Next (Comp);
7079 end loop;
7080 end;
7082 -- None of the components withing the variant were of
7083 -- unconstrained Unchecked_Union type.
7085 return False;
7086 end Variant_Is_Unconstrained_UU;
7088 -- Start of processing for Has_Unconstrained_UU_Component
7090 begin
7091 if Null_Present (Tdef) then
7092 return False;
7093 end if;
7095 Clist := Component_List (Tdef);
7096 Vpart := Variant_Part (Clist);
7098 -- Inspect available components
7100 if Present (Component_Items (Clist)) then
7101 declare
7102 Comp : Node_Id := First (Component_Items (Clist));
7104 begin
7105 while Present (Comp) loop
7107 -- One component is sufficient
7109 if Component_Is_Unconstrained_UU (Comp) then
7110 return True;
7111 end if;
7113 Next (Comp);
7114 end loop;
7115 end;
7116 end if;
7118 -- Inspect available components withing variants
7120 if Present (Vpart) then
7121 declare
7122 Variant : Node_Id := First (Variants (Vpart));
7124 begin
7125 while Present (Variant) loop
7127 -- One component within a variant is sufficient
7129 if Variant_Is_Unconstrained_UU (Variant) then
7130 return True;
7131 end if;
7133 Next (Variant);
7134 end loop;
7135 end;
7136 end if;
7138 -- Neither the available components, nor the components inside the
7139 -- variant parts were of an unconstrained Unchecked_Union subtype.
7141 return False;
7142 end Has_Unconstrained_UU_Component;
7144 -- Start of processing for Expand_N_Op_Eq
7146 begin
7147 Binary_Op_Validity_Checks (N);
7149 -- Deal with private types
7151 if Ekind (Typl) = E_Private_Type then
7152 Typl := Underlying_Type (Typl);
7153 elsif Ekind (Typl) = E_Private_Subtype then
7154 Typl := Underlying_Type (Base_Type (Typl));
7155 else
7156 null;
7157 end if;
7159 -- It may happen in error situations that the underlying type is not
7160 -- set. The error will be detected later, here we just defend the
7161 -- expander code.
7163 if No (Typl) then
7164 return;
7165 end if;
7167 -- Now get the implementation base type (note that plain Base_Type here
7168 -- might lead us back to the private type, which is not what we want!)
7170 Typl := Implementation_Base_Type (Typl);
7172 -- Equality between variant records results in a call to a routine
7173 -- that has conditional tests of the discriminant value(s), and hence
7174 -- violates the No_Implicit_Conditionals restriction.
7176 if Has_Variant_Part (Typl) then
7177 declare
7178 Msg : Boolean;
7180 begin
7181 Check_Restriction (Msg, No_Implicit_Conditionals, N);
7183 if Msg then
7184 Error_Msg_N
7185 ("\comparison of variant records tests discriminants", N);
7186 return;
7187 end if;
7188 end;
7189 end if;
7191 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7192 -- means we no longer have a comparison operation, we are all done.
7194 Expand_Compare_Minimize_Eliminate_Overflow (N);
7196 if Nkind (N) /= N_Op_Eq then
7197 return;
7198 end if;
7200 -- Boolean types (requiring handling of non-standard case)
7202 if Is_Boolean_Type (Typl) then
7203 Adjust_Condition (Left_Opnd (N));
7204 Adjust_Condition (Right_Opnd (N));
7205 Set_Etype (N, Standard_Boolean);
7206 Adjust_Result_Type (N, Typ);
7208 -- Array types
7210 elsif Is_Array_Type (Typl) then
7212 -- If we are doing full validity checking, and it is possible for the
7213 -- array elements to be invalid then expand out array comparisons to
7214 -- make sure that we check the array elements.
7216 if Validity_Check_Operands
7217 and then not Is_Known_Valid (Component_Type (Typl))
7218 then
7219 declare
7220 Save_Force_Validity_Checks : constant Boolean :=
7221 Force_Validity_Checks;
7222 begin
7223 Force_Validity_Checks := True;
7224 Rewrite (N,
7225 Expand_Array_Equality
7227 Relocate_Node (Lhs),
7228 Relocate_Node (Rhs),
7229 Bodies,
7230 Typl));
7231 Insert_Actions (N, Bodies);
7232 Analyze_And_Resolve (N, Standard_Boolean);
7233 Force_Validity_Checks := Save_Force_Validity_Checks;
7234 end;
7236 -- Packed case where both operands are known aligned
7238 elsif Is_Bit_Packed_Array (Typl)
7239 and then not Is_Possibly_Unaligned_Object (Lhs)
7240 and then not Is_Possibly_Unaligned_Object (Rhs)
7241 then
7242 Expand_Packed_Eq (N);
7244 -- Where the component type is elementary we can use a block bit
7245 -- comparison (if supported on the target) exception in the case
7246 -- of floating-point (negative zero issues require element by
7247 -- element comparison), and atomic types (where we must be sure
7248 -- to load elements independently) and possibly unaligned arrays.
7250 elsif Is_Elementary_Type (Component_Type (Typl))
7251 and then not Is_Floating_Point_Type (Component_Type (Typl))
7252 and then not Is_Atomic (Component_Type (Typl))
7253 and then not Is_Possibly_Unaligned_Object (Lhs)
7254 and then not Is_Possibly_Unaligned_Object (Rhs)
7255 and then Support_Composite_Compare_On_Target
7256 then
7257 null;
7259 -- For composite and floating-point cases, expand equality loop to
7260 -- make sure of using proper comparisons for tagged types, and
7261 -- correctly handling the floating-point case.
7263 else
7264 Rewrite (N,
7265 Expand_Array_Equality
7267 Relocate_Node (Lhs),
7268 Relocate_Node (Rhs),
7269 Bodies,
7270 Typl));
7271 Insert_Actions (N, Bodies, Suppress => All_Checks);
7272 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7273 end if;
7275 -- Record Types
7277 elsif Is_Record_Type (Typl) then
7279 -- For tagged types, use the primitive "="
7281 if Is_Tagged_Type (Typl) then
7283 -- No need to do anything else compiling under restriction
7284 -- No_Dispatching_Calls. During the semantic analysis we
7285 -- already notified such violation.
7287 if Restriction_Active (No_Dispatching_Calls) then
7288 return;
7289 end if;
7291 -- If this is derived from an untagged private type completed with
7292 -- a tagged type, it does not have a full view, so we use the
7293 -- primitive operations of the private type. This check should no
7294 -- longer be necessary when these types get their full views???
7296 if Is_Private_Type (A_Typ)
7297 and then not Is_Tagged_Type (A_Typ)
7298 and then Is_Derived_Type (A_Typ)
7299 and then No (Full_View (A_Typ))
7300 then
7301 -- Search for equality operation, checking that the operands
7302 -- have the same type. Note that we must find a matching entry,
7303 -- or something is very wrong.
7305 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7307 while Present (Prim) loop
7308 exit when Chars (Node (Prim)) = Name_Op_Eq
7309 and then Etype (First_Formal (Node (Prim))) =
7310 Etype (Next_Formal (First_Formal (Node (Prim))))
7311 and then
7312 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7314 Next_Elmt (Prim);
7315 end loop;
7317 pragma Assert (Present (Prim));
7318 Op_Name := Node (Prim);
7320 -- Find the type's predefined equality or an overriding
7321 -- user-defined equality. The reason for not simply calling
7322 -- Find_Prim_Op here is that there may be a user-defined
7323 -- overloaded equality op that precedes the equality that we
7324 -- want, so we have to explicitly search (e.g., there could be
7325 -- an equality with two different parameter types).
7327 else
7328 if Is_Class_Wide_Type (Typl) then
7329 Typl := Find_Specific_Type (Typl);
7330 end if;
7332 Prim := First_Elmt (Primitive_Operations (Typl));
7333 while Present (Prim) loop
7334 exit when Chars (Node (Prim)) = Name_Op_Eq
7335 and then Etype (First_Formal (Node (Prim))) =
7336 Etype (Next_Formal (First_Formal (Node (Prim))))
7337 and then
7338 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7340 Next_Elmt (Prim);
7341 end loop;
7343 pragma Assert (Present (Prim));
7344 Op_Name := Node (Prim);
7345 end if;
7347 Build_Equality_Call (Op_Name);
7349 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7350 -- predefined equality operator for a type which has a subcomponent
7351 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7353 elsif Has_Unconstrained_UU_Component (Typl) then
7354 Insert_Action (N,
7355 Make_Raise_Program_Error (Loc,
7356 Reason => PE_Unchecked_Union_Restriction));
7358 -- Prevent Gigi from generating incorrect code by rewriting the
7359 -- equality as a standard False. (is this documented somewhere???)
7361 Rewrite (N,
7362 New_Occurrence_Of (Standard_False, Loc));
7364 elsif Is_Unchecked_Union (Typl) then
7366 -- If we can infer the discriminants of the operands, we make a
7367 -- call to the TSS equality function.
7369 if Has_Inferable_Discriminants (Lhs)
7370 and then
7371 Has_Inferable_Discriminants (Rhs)
7372 then
7373 Build_Equality_Call
7374 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7376 else
7377 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7378 -- the predefined equality operator for an Unchecked_Union type
7379 -- if either of the operands lack inferable discriminants.
7381 Insert_Action (N,
7382 Make_Raise_Program_Error (Loc,
7383 Reason => PE_Unchecked_Union_Restriction));
7385 -- Emit a warning on source equalities only, otherwise the
7386 -- message may appear out of place due to internal use. The
7387 -- warning is unconditional because it is required by the
7388 -- language.
7390 if Comes_From_Source (N) then
7391 Error_Msg_N
7392 ("Unchecked_Union discriminants cannot be determined??",
7394 Error_Msg_N
7395 ("\Program_Error will be raised for equality operation??",
7397 end if;
7399 -- Prevent Gigi from generating incorrect code by rewriting
7400 -- the equality as a standard False (documented where???).
7402 Rewrite (N,
7403 New_Occurrence_Of (Standard_False, Loc));
7404 end if;
7406 -- If a type support function is present (for complex cases), use it
7408 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7409 Build_Equality_Call
7410 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7412 -- When comparing two Bounded_Strings, use the primitive equality of
7413 -- the root Super_String type.
7415 elsif Is_Bounded_String (Typl) then
7416 Prim :=
7417 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7419 while Present (Prim) loop
7420 exit when Chars (Node (Prim)) = Name_Op_Eq
7421 and then Etype (First_Formal (Node (Prim))) =
7422 Etype (Next_Formal (First_Formal (Node (Prim))))
7423 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7425 Next_Elmt (Prim);
7426 end loop;
7428 -- A Super_String type should always have a primitive equality
7430 pragma Assert (Present (Prim));
7431 Build_Equality_Call (Node (Prim));
7433 -- Otherwise expand the component by component equality. Note that
7434 -- we never use block-bit comparisons for records, because of the
7435 -- problems with gaps. The backend will often be able to recombine
7436 -- the separate comparisons that we generate here.
7438 else
7439 Remove_Side_Effects (Lhs);
7440 Remove_Side_Effects (Rhs);
7441 Rewrite (N,
7442 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7444 Insert_Actions (N, Bodies, Suppress => All_Checks);
7445 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7446 end if;
7447 end if;
7449 -- Test if result is known at compile time
7451 Rewrite_Comparison (N);
7453 Optimize_Length_Comparison (N);
7454 end Expand_N_Op_Eq;
7456 -----------------------
7457 -- Expand_N_Op_Expon --
7458 -----------------------
7460 procedure Expand_N_Op_Expon (N : Node_Id) is
7461 Loc : constant Source_Ptr := Sloc (N);
7462 Typ : constant Entity_Id := Etype (N);
7463 Rtyp : constant Entity_Id := Root_Type (Typ);
7464 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
7465 Bastyp : constant Node_Id := Etype (Base);
7466 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
7467 Exptyp : constant Entity_Id := Etype (Exp);
7468 Ovflo : constant Boolean := Do_Overflow_Check (N);
7469 Expv : Uint;
7470 Temp : Node_Id;
7471 Rent : RE_Id;
7472 Ent : Entity_Id;
7473 Etyp : Entity_Id;
7474 Xnode : Node_Id;
7476 begin
7477 Binary_Op_Validity_Checks (N);
7479 -- CodePeer wants to see the unexpanded N_Op_Expon node
7481 if CodePeer_Mode then
7482 return;
7483 end if;
7485 -- If either operand is of a private type, then we have the use of an
7486 -- intrinsic operator, and we get rid of the privateness, by using root
7487 -- types of underlying types for the actual operation. Otherwise the
7488 -- private types will cause trouble if we expand multiplications or
7489 -- shifts etc. We also do this transformation if the result type is
7490 -- different from the base type.
7492 if Is_Private_Type (Etype (Base))
7493 or else Is_Private_Type (Typ)
7494 or else Is_Private_Type (Exptyp)
7495 or else Rtyp /= Root_Type (Bastyp)
7496 then
7497 declare
7498 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7499 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
7500 begin
7501 Rewrite (N,
7502 Unchecked_Convert_To (Typ,
7503 Make_Op_Expon (Loc,
7504 Left_Opnd => Unchecked_Convert_To (Bt, Base),
7505 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7506 Analyze_And_Resolve (N, Typ);
7507 return;
7508 end;
7509 end if;
7511 -- Check for MINIMIZED/ELIMINATED overflow mode
7513 if Minimized_Eliminated_Overflow_Check (N) then
7514 Apply_Arithmetic_Overflow_Check (N);
7515 return;
7516 end if;
7518 -- Test for case of known right argument where we can replace the
7519 -- exponentiation by an equivalent expression using multiplication.
7521 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7522 -- configurable run-time mode, we may not have the exponentiation
7523 -- routine available, and we don't want the legality of the program
7524 -- to depend on how clever the compiler is in knowing values.
7526 if CRT_Safe_Compile_Time_Known_Value (Exp) then
7527 Expv := Expr_Value (Exp);
7529 -- We only fold small non-negative exponents. You might think we
7530 -- could fold small negative exponents for the real case, but we
7531 -- can't because we are required to raise Constraint_Error for
7532 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7533 -- See ACVC test C4A012B.
7535 if Expv >= 0 and then Expv <= 4 then
7537 -- X ** 0 = 1 (or 1.0)
7539 if Expv = 0 then
7541 -- Call Remove_Side_Effects to ensure that any side effects
7542 -- in the ignored left operand (in particular function calls
7543 -- to user defined functions) are properly executed.
7545 Remove_Side_Effects (Base);
7547 if Ekind (Typ) in Integer_Kind then
7548 Xnode := Make_Integer_Literal (Loc, Intval => 1);
7549 else
7550 Xnode := Make_Real_Literal (Loc, Ureal_1);
7551 end if;
7553 -- X ** 1 = X
7555 elsif Expv = 1 then
7556 Xnode := Base;
7558 -- X ** 2 = X * X
7560 elsif Expv = 2 then
7561 Xnode :=
7562 Make_Op_Multiply (Loc,
7563 Left_Opnd => Duplicate_Subexpr (Base),
7564 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
7566 -- X ** 3 = X * X * X
7568 elsif Expv = 3 then
7569 Xnode :=
7570 Make_Op_Multiply (Loc,
7571 Left_Opnd =>
7572 Make_Op_Multiply (Loc,
7573 Left_Opnd => Duplicate_Subexpr (Base),
7574 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7575 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
7577 -- X ** 4 ->
7579 -- do
7580 -- En : constant base'type := base * base;
7581 -- in
7582 -- En * En
7584 else
7585 pragma Assert (Expv = 4);
7586 Temp := Make_Temporary (Loc, 'E', Base);
7588 Xnode :=
7589 Make_Expression_With_Actions (Loc,
7590 Actions => New_List (
7591 Make_Object_Declaration (Loc,
7592 Defining_Identifier => Temp,
7593 Constant_Present => True,
7594 Object_Definition => New_Occurrence_Of (Typ, Loc),
7595 Expression =>
7596 Make_Op_Multiply (Loc,
7597 Left_Opnd =>
7598 Duplicate_Subexpr (Base),
7599 Right_Opnd =>
7600 Duplicate_Subexpr_No_Checks (Base)))),
7602 Expression =>
7603 Make_Op_Multiply (Loc,
7604 Left_Opnd => New_Occurrence_Of (Temp, Loc),
7605 Right_Opnd => New_Occurrence_Of (Temp, Loc)));
7606 end if;
7608 Rewrite (N, Xnode);
7609 Analyze_And_Resolve (N, Typ);
7610 return;
7611 end if;
7612 end if;
7614 -- Case of (2 ** expression) appearing as an argument of an integer
7615 -- multiplication, or as the right argument of a division of a non-
7616 -- negative integer. In such cases we leave the node untouched, setting
7617 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7618 -- of the higher level node converts it into a shift.
7620 -- Another case is 2 ** N in any other context. We simply convert
7621 -- this to 1 * 2 ** N, and then the above transformation applies.
7623 -- Note: this transformation is not applicable for a modular type with
7624 -- a non-binary modulus in the multiplication case, since we get a wrong
7625 -- result if the shift causes an overflow before the modular reduction.
7627 -- Note: we used to check that Exptyp was an unsigned type. But that is
7628 -- an unnecessary check, since if Exp is negative, we have a run-time
7629 -- error that is either caught (so we get the right result) or we have
7630 -- suppressed the check, in which case the code is erroneous anyway.
7632 if Nkind (Base) = N_Integer_Literal
7633 and then CRT_Safe_Compile_Time_Known_Value (Base)
7634 and then Expr_Value (Base) = Uint_2
7635 and then Is_Integer_Type (Root_Type (Exptyp))
7636 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
7637 and then not Ovflo
7638 then
7639 -- First the multiply and divide cases
7641 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7642 declare
7643 P : constant Node_Id := Parent (N);
7644 L : constant Node_Id := Left_Opnd (P);
7645 R : constant Node_Id := Right_Opnd (P);
7647 begin
7648 if (Nkind (P) = N_Op_Multiply
7649 and then not Non_Binary_Modulus (Typ)
7650 and then
7651 ((Is_Integer_Type (Etype (L)) and then R = N)
7652 or else
7653 (Is_Integer_Type (Etype (R)) and then L = N))
7654 and then not Do_Overflow_Check (P))
7655 or else
7656 (Nkind (P) = N_Op_Divide
7657 and then Is_Integer_Type (Etype (L))
7658 and then Is_Unsigned_Type (Etype (L))
7659 and then R = N
7660 and then not Do_Overflow_Check (P))
7661 then
7662 Set_Is_Power_Of_2_For_Shift (N);
7663 return;
7664 end if;
7665 end;
7667 -- Now the other cases
7669 elsif not Non_Binary_Modulus (Typ) then
7670 Rewrite (N,
7671 Make_Op_Multiply (Loc,
7672 Left_Opnd => Make_Integer_Literal (Loc, 1),
7673 Right_Opnd => Relocate_Node (N)));
7674 Analyze_And_Resolve (N, Typ);
7675 return;
7676 end if;
7677 end if;
7679 -- Fall through if exponentiation must be done using a runtime routine
7681 -- First deal with modular case
7683 if Is_Modular_Integer_Type (Rtyp) then
7685 -- Non-binary case, we call the special exponentiation routine for
7686 -- the non-binary case, converting the argument to Long_Long_Integer
7687 -- and passing the modulus value. Then the result is converted back
7688 -- to the base type.
7690 if Non_Binary_Modulus (Rtyp) then
7691 Rewrite (N,
7692 Convert_To (Typ,
7693 Make_Function_Call (Loc,
7694 Name =>
7695 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
7696 Parameter_Associations => New_List (
7697 Convert_To (RTE (RE_Unsigned), Base),
7698 Make_Integer_Literal (Loc, Modulus (Rtyp)),
7699 Exp))));
7701 -- Binary case, in this case, we call one of two routines, either the
7702 -- unsigned integer case, or the unsigned long long integer case,
7703 -- with a final "and" operation to do the required mod.
7705 else
7706 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7707 Ent := RTE (RE_Exp_Unsigned);
7708 else
7709 Ent := RTE (RE_Exp_Long_Long_Unsigned);
7710 end if;
7712 Rewrite (N,
7713 Convert_To (Typ,
7714 Make_Op_And (Loc,
7715 Left_Opnd =>
7716 Make_Function_Call (Loc,
7717 Name => New_Occurrence_Of (Ent, Loc),
7718 Parameter_Associations => New_List (
7719 Convert_To (Etype (First_Formal (Ent)), Base),
7720 Exp)),
7721 Right_Opnd =>
7722 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7724 end if;
7726 -- Common exit point for modular type case
7728 Analyze_And_Resolve (N, Typ);
7729 return;
7731 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7732 -- It is not worth having routines for Short_[Short_]Integer, since for
7733 -- most machines it would not help, and it would generate more code that
7734 -- might need certification when a certified run time is required.
7736 -- In the integer cases, we have two routines, one for when overflow
7737 -- checks are required, and one when they are not required, since there
7738 -- is a real gain in omitting checks on many machines.
7740 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7741 or else (Rtyp = Base_Type (Standard_Long_Integer)
7742 and then
7743 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7744 or else Rtyp = Universal_Integer
7745 then
7746 Etyp := Standard_Long_Long_Integer;
7748 -- Overflow checking is the only choice on the AAMP target, where
7749 -- arithmetic instructions check overflow automatically, so only
7750 -- one version of the exponentiation unit is needed.
7752 if Ovflo or AAMP_On_Target then
7753 Rent := RE_Exp_Long_Long_Integer;
7754 else
7755 Rent := RE_Exn_Long_Long_Integer;
7756 end if;
7758 elsif Is_Signed_Integer_Type (Rtyp) then
7759 Etyp := Standard_Integer;
7761 -- Overflow checking is the only choice on the AAMP target, where
7762 -- arithmetic instructions check overflow automatically, so only
7763 -- one version of the exponentiation unit is needed.
7765 if Ovflo or AAMP_On_Target then
7766 Rent := RE_Exp_Integer;
7767 else
7768 Rent := RE_Exn_Integer;
7769 end if;
7771 -- Floating-point cases, always done using Long_Long_Float. We do not
7772 -- need separate routines for the overflow case here, since in the case
7773 -- of floating-point, we generate infinities anyway as a rule (either
7774 -- that or we automatically trap overflow), and if there is an infinity
7775 -- generated and a range check is required, the check will fail anyway.
7777 else
7778 pragma Assert (Is_Floating_Point_Type (Rtyp));
7779 Etyp := Standard_Long_Long_Float;
7780 Rent := RE_Exn_Long_Long_Float;
7781 end if;
7783 -- Common processing for integer cases and floating-point cases.
7784 -- If we are in the right type, we can call runtime routine directly
7786 if Typ = Etyp
7787 and then Rtyp /= Universal_Integer
7788 and then Rtyp /= Universal_Real
7789 then
7790 Rewrite (N,
7791 Make_Function_Call (Loc,
7792 Name => New_Occurrence_Of (RTE (Rent), Loc),
7793 Parameter_Associations => New_List (Base, Exp)));
7795 -- Otherwise we have to introduce conversions (conversions are also
7796 -- required in the universal cases, since the runtime routine is
7797 -- typed using one of the standard types).
7799 else
7800 Rewrite (N,
7801 Convert_To (Typ,
7802 Make_Function_Call (Loc,
7803 Name => New_Occurrence_Of (RTE (Rent), Loc),
7804 Parameter_Associations => New_List (
7805 Convert_To (Etyp, Base),
7806 Exp))));
7807 end if;
7809 Analyze_And_Resolve (N, Typ);
7810 return;
7812 exception
7813 when RE_Not_Available =>
7814 return;
7815 end Expand_N_Op_Expon;
7817 --------------------
7818 -- Expand_N_Op_Ge --
7819 --------------------
7821 procedure Expand_N_Op_Ge (N : Node_Id) is
7822 Typ : constant Entity_Id := Etype (N);
7823 Op1 : constant Node_Id := Left_Opnd (N);
7824 Op2 : constant Node_Id := Right_Opnd (N);
7825 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7827 begin
7828 Binary_Op_Validity_Checks (N);
7830 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7831 -- means we no longer have a comparison operation, we are all done.
7833 Expand_Compare_Minimize_Eliminate_Overflow (N);
7835 if Nkind (N) /= N_Op_Ge then
7836 return;
7837 end if;
7839 -- Array type case
7841 if Is_Array_Type (Typ1) then
7842 Expand_Array_Comparison (N);
7843 return;
7844 end if;
7846 -- Deal with boolean operands
7848 if Is_Boolean_Type (Typ1) then
7849 Adjust_Condition (Op1);
7850 Adjust_Condition (Op2);
7851 Set_Etype (N, Standard_Boolean);
7852 Adjust_Result_Type (N, Typ);
7853 end if;
7855 Rewrite_Comparison (N);
7857 Optimize_Length_Comparison (N);
7858 end Expand_N_Op_Ge;
7860 --------------------
7861 -- Expand_N_Op_Gt --
7862 --------------------
7864 procedure Expand_N_Op_Gt (N : Node_Id) is
7865 Typ : constant Entity_Id := Etype (N);
7866 Op1 : constant Node_Id := Left_Opnd (N);
7867 Op2 : constant Node_Id := Right_Opnd (N);
7868 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7870 begin
7871 Binary_Op_Validity_Checks (N);
7873 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7874 -- means we no longer have a comparison operation, we are all done.
7876 Expand_Compare_Minimize_Eliminate_Overflow (N);
7878 if Nkind (N) /= N_Op_Gt then
7879 return;
7880 end if;
7882 -- Deal with array type operands
7884 if Is_Array_Type (Typ1) then
7885 Expand_Array_Comparison (N);
7886 return;
7887 end if;
7889 -- Deal with boolean type operands
7891 if Is_Boolean_Type (Typ1) then
7892 Adjust_Condition (Op1);
7893 Adjust_Condition (Op2);
7894 Set_Etype (N, Standard_Boolean);
7895 Adjust_Result_Type (N, Typ);
7896 end if;
7898 Rewrite_Comparison (N);
7900 Optimize_Length_Comparison (N);
7901 end Expand_N_Op_Gt;
7903 --------------------
7904 -- Expand_N_Op_Le --
7905 --------------------
7907 procedure Expand_N_Op_Le (N : Node_Id) is
7908 Typ : constant Entity_Id := Etype (N);
7909 Op1 : constant Node_Id := Left_Opnd (N);
7910 Op2 : constant Node_Id := Right_Opnd (N);
7911 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7913 begin
7914 Binary_Op_Validity_Checks (N);
7916 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7917 -- means we no longer have a comparison operation, we are all done.
7919 Expand_Compare_Minimize_Eliminate_Overflow (N);
7921 if Nkind (N) /= N_Op_Le then
7922 return;
7923 end if;
7925 -- Deal with array type operands
7927 if Is_Array_Type (Typ1) then
7928 Expand_Array_Comparison (N);
7929 return;
7930 end if;
7932 -- Deal with Boolean type operands
7934 if Is_Boolean_Type (Typ1) then
7935 Adjust_Condition (Op1);
7936 Adjust_Condition (Op2);
7937 Set_Etype (N, Standard_Boolean);
7938 Adjust_Result_Type (N, Typ);
7939 end if;
7941 Rewrite_Comparison (N);
7943 Optimize_Length_Comparison (N);
7944 end Expand_N_Op_Le;
7946 --------------------
7947 -- Expand_N_Op_Lt --
7948 --------------------
7950 procedure Expand_N_Op_Lt (N : Node_Id) is
7951 Typ : constant Entity_Id := Etype (N);
7952 Op1 : constant Node_Id := Left_Opnd (N);
7953 Op2 : constant Node_Id := Right_Opnd (N);
7954 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7956 begin
7957 Binary_Op_Validity_Checks (N);
7959 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7960 -- means we no longer have a comparison operation, we are all done.
7962 Expand_Compare_Minimize_Eliminate_Overflow (N);
7964 if Nkind (N) /= N_Op_Lt then
7965 return;
7966 end if;
7968 -- Deal with array type operands
7970 if Is_Array_Type (Typ1) then
7971 Expand_Array_Comparison (N);
7972 return;
7973 end if;
7975 -- Deal with Boolean type operands
7977 if Is_Boolean_Type (Typ1) then
7978 Adjust_Condition (Op1);
7979 Adjust_Condition (Op2);
7980 Set_Etype (N, Standard_Boolean);
7981 Adjust_Result_Type (N, Typ);
7982 end if;
7984 Rewrite_Comparison (N);
7986 Optimize_Length_Comparison (N);
7987 end Expand_N_Op_Lt;
7989 -----------------------
7990 -- Expand_N_Op_Minus --
7991 -----------------------
7993 procedure Expand_N_Op_Minus (N : Node_Id) is
7994 Loc : constant Source_Ptr := Sloc (N);
7995 Typ : constant Entity_Id := Etype (N);
7997 begin
7998 Unary_Op_Validity_Checks (N);
8000 -- Check for MINIMIZED/ELIMINATED overflow mode
8002 if Minimized_Eliminated_Overflow_Check (N) then
8003 Apply_Arithmetic_Overflow_Check (N);
8004 return;
8005 end if;
8007 if not Backend_Overflow_Checks_On_Target
8008 and then Is_Signed_Integer_Type (Etype (N))
8009 and then Do_Overflow_Check (N)
8010 then
8011 -- Software overflow checking expands -expr into (0 - expr)
8013 Rewrite (N,
8014 Make_Op_Subtract (Loc,
8015 Left_Opnd => Make_Integer_Literal (Loc, 0),
8016 Right_Opnd => Right_Opnd (N)));
8018 Analyze_And_Resolve (N, Typ);
8019 end if;
8020 end Expand_N_Op_Minus;
8022 ---------------------
8023 -- Expand_N_Op_Mod --
8024 ---------------------
8026 procedure Expand_N_Op_Mod (N : Node_Id) is
8027 Loc : constant Source_Ptr := Sloc (N);
8028 Typ : constant Entity_Id := Etype (N);
8029 DDC : constant Boolean := Do_Division_Check (N);
8031 Left : Node_Id;
8032 Right : Node_Id;
8034 LLB : Uint;
8035 Llo : Uint;
8036 Lhi : Uint;
8037 LOK : Boolean;
8038 Rlo : Uint;
8039 Rhi : Uint;
8040 ROK : Boolean;
8042 pragma Warnings (Off, Lhi);
8044 begin
8045 Binary_Op_Validity_Checks (N);
8047 -- Check for MINIMIZED/ELIMINATED overflow mode
8049 if Minimized_Eliminated_Overflow_Check (N) then
8050 Apply_Arithmetic_Overflow_Check (N);
8051 return;
8052 end if;
8054 if Is_Integer_Type (Etype (N)) then
8055 Apply_Divide_Checks (N);
8057 -- All done if we don't have a MOD any more, which can happen as a
8058 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8060 if Nkind (N) /= N_Op_Mod then
8061 return;
8062 end if;
8063 end if;
8065 -- Proceed with expansion of mod operator
8067 Left := Left_Opnd (N);
8068 Right := Right_Opnd (N);
8070 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
8071 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
8073 -- Convert mod to rem if operands are both known to be non-negative, or
8074 -- both known to be non-positive (these are the cases in which rem and
8075 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8076 -- likely that this will improve the quality of code, (the operation now
8077 -- corresponds to the hardware remainder), and it does not seem likely
8078 -- that it could be harmful. It also avoids some cases of the elaborate
8079 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8081 if (LOK and ROK)
8082 and then ((Llo >= 0 and then Rlo >= 0)
8083 or else
8084 (Lhi <= 0 and then Rhi <= 0))
8085 then
8086 Rewrite (N,
8087 Make_Op_Rem (Sloc (N),
8088 Left_Opnd => Left_Opnd (N),
8089 Right_Opnd => Right_Opnd (N)));
8091 -- Instead of reanalyzing the node we do the analysis manually. This
8092 -- avoids anomalies when the replacement is done in an instance and
8093 -- is epsilon more efficient.
8095 Set_Entity (N, Standard_Entity (S_Op_Rem));
8096 Set_Etype (N, Typ);
8097 Set_Do_Division_Check (N, DDC);
8098 Expand_N_Op_Rem (N);
8099 Set_Analyzed (N);
8100 return;
8102 -- Otherwise, normal mod processing
8104 else
8105 -- Apply optimization x mod 1 = 0. We don't really need that with
8106 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8107 -- certainly harmless.
8109 if Is_Integer_Type (Etype (N))
8110 and then Compile_Time_Known_Value (Right)
8111 and then Expr_Value (Right) = Uint_1
8112 then
8113 -- Call Remove_Side_Effects to ensure that any side effects in
8114 -- the ignored left operand (in particular function calls to
8115 -- user defined functions) are properly executed.
8117 Remove_Side_Effects (Left);
8119 Rewrite (N, Make_Integer_Literal (Loc, 0));
8120 Analyze_And_Resolve (N, Typ);
8121 return;
8122 end if;
8124 -- If we still have a mod operator and we are in Modify_Tree_For_C
8125 -- mode, and we have a signed integer type, then here is where we do
8126 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8127 -- for the special handling of the annoying case of largest negative
8128 -- number mod minus one.
8130 if Nkind (N) = N_Op_Mod
8131 and then Is_Signed_Integer_Type (Typ)
8132 and then Modify_Tree_For_C
8133 then
8134 -- In the general case, we expand A mod B as
8136 -- Tnn : constant typ := A rem B;
8137 -- ..
8138 -- (if (A >= 0) = (B >= 0) then Tnn
8139 -- elsif Tnn = 0 then 0
8140 -- else Tnn + B)
8142 -- The comparison can be written simply as A >= 0 if we know that
8143 -- B >= 0 which is a very common case.
8145 -- An important optimization is when B is known at compile time
8146 -- to be 2**K for some constant. In this case we can simply AND
8147 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8148 -- and that works for both the positive and negative cases.
8150 declare
8151 P2 : constant Nat := Power_Of_Two (Right);
8153 begin
8154 if P2 /= 0 then
8155 Rewrite (N,
8156 Unchecked_Convert_To (Typ,
8157 Make_Op_And (Loc,
8158 Left_Opnd =>
8159 Unchecked_Convert_To
8160 (Corresponding_Unsigned_Type (Typ), Left),
8161 Right_Opnd =>
8162 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8163 Analyze_And_Resolve (N, Typ);
8164 return;
8165 end if;
8166 end;
8168 -- Here for the full rewrite
8170 declare
8171 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8172 Cmp : Node_Id;
8174 begin
8175 Cmp :=
8176 Make_Op_Ge (Loc,
8177 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8178 Right_Opnd => Make_Integer_Literal (Loc, 0));
8180 if not LOK or else Rlo < 0 then
8181 Cmp :=
8182 Make_Op_Eq (Loc,
8183 Left_Opnd => Cmp,
8184 Right_Opnd =>
8185 Make_Op_Ge (Loc,
8186 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8187 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8188 end if;
8190 Insert_Action (N,
8191 Make_Object_Declaration (Loc,
8192 Defining_Identifier => Tnn,
8193 Constant_Present => True,
8194 Object_Definition => New_Occurrence_Of (Typ, Loc),
8195 Expression =>
8196 Make_Op_Rem (Loc,
8197 Left_Opnd => Left,
8198 Right_Opnd => Right)));
8200 Rewrite (N,
8201 Make_If_Expression (Loc,
8202 Expressions => New_List (
8203 Cmp,
8204 New_Occurrence_Of (Tnn, Loc),
8205 Make_If_Expression (Loc,
8206 Is_Elsif => True,
8207 Expressions => New_List (
8208 Make_Op_Eq (Loc,
8209 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8210 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8211 Make_Integer_Literal (Loc, 0),
8212 Make_Op_Add (Loc,
8213 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8214 Right_Opnd =>
8215 Duplicate_Subexpr_No_Checks (Right)))))));
8217 Analyze_And_Resolve (N, Typ);
8218 return;
8219 end;
8220 end if;
8222 -- Deal with annoying case of largest negative number mod minus one.
8223 -- Gigi may not handle this case correctly, because on some targets,
8224 -- the mod value is computed using a divide instruction which gives
8225 -- an overflow trap for this case.
8227 -- It would be a bit more efficient to figure out which targets
8228 -- this is really needed for, but in practice it is reasonable
8229 -- to do the following special check in all cases, since it means
8230 -- we get a clearer message, and also the overhead is minimal given
8231 -- that division is expensive in any case.
8233 -- In fact the check is quite easy, if the right operand is -1, then
8234 -- the mod value is always 0, and we can just ignore the left operand
8235 -- completely in this case.
8237 -- This only applies if we still have a mod operator. Skip if we
8238 -- have already rewritten this (e.g. in the case of eliminated
8239 -- overflow checks which have driven us into bignum mode).
8241 if Nkind (N) = N_Op_Mod then
8243 -- The operand type may be private (e.g. in the expansion of an
8244 -- intrinsic operation) so we must use the underlying type to get
8245 -- the bounds, and convert the literals explicitly.
8247 LLB :=
8248 Expr_Value
8249 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8251 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
8252 and then ((not LOK) or else (Llo = LLB))
8253 then
8254 Rewrite (N,
8255 Make_If_Expression (Loc,
8256 Expressions => New_List (
8257 Make_Op_Eq (Loc,
8258 Left_Opnd => Duplicate_Subexpr (Right),
8259 Right_Opnd =>
8260 Unchecked_Convert_To (Typ,
8261 Make_Integer_Literal (Loc, -1))),
8262 Unchecked_Convert_To (Typ,
8263 Make_Integer_Literal (Loc, Uint_0)),
8264 Relocate_Node (N))));
8266 Set_Analyzed (Next (Next (First (Expressions (N)))));
8267 Analyze_And_Resolve (N, Typ);
8268 end if;
8269 end if;
8270 end if;
8271 end Expand_N_Op_Mod;
8273 --------------------------
8274 -- Expand_N_Op_Multiply --
8275 --------------------------
8277 procedure Expand_N_Op_Multiply (N : Node_Id) is
8278 Loc : constant Source_Ptr := Sloc (N);
8279 Lop : constant Node_Id := Left_Opnd (N);
8280 Rop : constant Node_Id := Right_Opnd (N);
8282 Lp2 : constant Boolean :=
8283 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
8284 Rp2 : constant Boolean :=
8285 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
8287 Ltyp : constant Entity_Id := Etype (Lop);
8288 Rtyp : constant Entity_Id := Etype (Rop);
8289 Typ : Entity_Id := Etype (N);
8291 begin
8292 Binary_Op_Validity_Checks (N);
8294 -- Check for MINIMIZED/ELIMINATED overflow mode
8296 if Minimized_Eliminated_Overflow_Check (N) then
8297 Apply_Arithmetic_Overflow_Check (N);
8298 return;
8299 end if;
8301 -- Special optimizations for integer types
8303 if Is_Integer_Type (Typ) then
8305 -- N * 0 = 0 for integer types
8307 if Compile_Time_Known_Value (Rop)
8308 and then Expr_Value (Rop) = Uint_0
8309 then
8310 -- Call Remove_Side_Effects to ensure that any side effects in
8311 -- the ignored left operand (in particular function calls to
8312 -- user defined functions) are properly executed.
8314 Remove_Side_Effects (Lop);
8316 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8317 Analyze_And_Resolve (N, Typ);
8318 return;
8319 end if;
8321 -- Similar handling for 0 * N = 0
8323 if Compile_Time_Known_Value (Lop)
8324 and then Expr_Value (Lop) = Uint_0
8325 then
8326 Remove_Side_Effects (Rop);
8327 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8328 Analyze_And_Resolve (N, Typ);
8329 return;
8330 end if;
8332 -- N * 1 = 1 * N = N for integer types
8334 -- This optimisation is not done if we are going to
8335 -- rewrite the product 1 * 2 ** N to a shift.
8337 if Compile_Time_Known_Value (Rop)
8338 and then Expr_Value (Rop) = Uint_1
8339 and then not Lp2
8340 then
8341 Rewrite (N, Lop);
8342 return;
8344 elsif Compile_Time_Known_Value (Lop)
8345 and then Expr_Value (Lop) = Uint_1
8346 and then not Rp2
8347 then
8348 Rewrite (N, Rop);
8349 return;
8350 end if;
8351 end if;
8353 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8354 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8355 -- operand is an integer, as required for this to work.
8357 if Rp2 then
8358 if Lp2 then
8360 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8362 Rewrite (N,
8363 Make_Op_Expon (Loc,
8364 Left_Opnd => Make_Integer_Literal (Loc, 2),
8365 Right_Opnd =>
8366 Make_Op_Add (Loc,
8367 Left_Opnd => Right_Opnd (Lop),
8368 Right_Opnd => Right_Opnd (Rop))));
8369 Analyze_And_Resolve (N, Typ);
8370 return;
8372 else
8373 -- If the result is modular, perform the reduction of the result
8374 -- appropriately.
8376 if Is_Modular_Integer_Type (Typ)
8377 and then not Non_Binary_Modulus (Typ)
8378 then
8379 Rewrite (N,
8380 Make_Op_And (Loc,
8381 Left_Opnd =>
8382 Make_Op_Shift_Left (Loc,
8383 Left_Opnd => Lop,
8384 Right_Opnd =>
8385 Convert_To (Standard_Natural, Right_Opnd (Rop))),
8386 Right_Opnd =>
8387 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8389 else
8390 Rewrite (N,
8391 Make_Op_Shift_Left (Loc,
8392 Left_Opnd => Lop,
8393 Right_Opnd =>
8394 Convert_To (Standard_Natural, Right_Opnd (Rop))));
8395 end if;
8397 Analyze_And_Resolve (N, Typ);
8398 return;
8399 end if;
8401 -- Same processing for the operands the other way round
8403 elsif Lp2 then
8404 if Is_Modular_Integer_Type (Typ)
8405 and then not Non_Binary_Modulus (Typ)
8406 then
8407 Rewrite (N,
8408 Make_Op_And (Loc,
8409 Left_Opnd =>
8410 Make_Op_Shift_Left (Loc,
8411 Left_Opnd => Rop,
8412 Right_Opnd =>
8413 Convert_To (Standard_Natural, Right_Opnd (Lop))),
8414 Right_Opnd =>
8415 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8417 else
8418 Rewrite (N,
8419 Make_Op_Shift_Left (Loc,
8420 Left_Opnd => Rop,
8421 Right_Opnd =>
8422 Convert_To (Standard_Natural, Right_Opnd (Lop))));
8423 end if;
8425 Analyze_And_Resolve (N, Typ);
8426 return;
8427 end if;
8429 -- Do required fixup of universal fixed operation
8431 if Typ = Universal_Fixed then
8432 Fixup_Universal_Fixed_Operation (N);
8433 Typ := Etype (N);
8434 end if;
8436 -- Multiplications with fixed-point results
8438 if Is_Fixed_Point_Type (Typ) then
8440 -- No special processing if Treat_Fixed_As_Integer is set, since from
8441 -- a semantic point of view such operations are simply integer
8442 -- operations and will be treated that way.
8444 if not Treat_Fixed_As_Integer (N) then
8446 -- Case of fixed * integer => fixed
8448 if Is_Integer_Type (Rtyp) then
8449 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8451 -- Case of integer * fixed => fixed
8453 elsif Is_Integer_Type (Ltyp) then
8454 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8456 -- Case of fixed * fixed => fixed
8458 else
8459 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8460 end if;
8461 end if;
8463 -- Other cases of multiplication of fixed-point operands. Again we
8464 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8466 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8467 and then not Treat_Fixed_As_Integer (N)
8468 then
8469 if Is_Integer_Type (Typ) then
8470 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8471 else
8472 pragma Assert (Is_Floating_Point_Type (Typ));
8473 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8474 end if;
8476 -- Mixed-mode operations can appear in a non-static universal context,
8477 -- in which case the integer argument must be converted explicitly.
8479 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
8480 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
8481 Analyze_And_Resolve (Rop, Universal_Real);
8483 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
8484 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
8485 Analyze_And_Resolve (Lop, Universal_Real);
8487 -- Non-fixed point cases, check software overflow checking required
8489 elsif Is_Signed_Integer_Type (Etype (N)) then
8490 Apply_Arithmetic_Overflow_Check (N);
8491 end if;
8493 -- Overflow checks for floating-point if -gnateF mode active
8495 Check_Float_Op_Overflow (N);
8496 end Expand_N_Op_Multiply;
8498 --------------------
8499 -- Expand_N_Op_Ne --
8500 --------------------
8502 procedure Expand_N_Op_Ne (N : Node_Id) is
8503 Typ : constant Entity_Id := Etype (Left_Opnd (N));
8505 begin
8506 -- Case of elementary type with standard operator
8508 if Is_Elementary_Type (Typ)
8509 and then Sloc (Entity (N)) = Standard_Location
8510 then
8511 Binary_Op_Validity_Checks (N);
8513 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8514 -- means we no longer have a /= operation, we are all done.
8516 Expand_Compare_Minimize_Eliminate_Overflow (N);
8518 if Nkind (N) /= N_Op_Ne then
8519 return;
8520 end if;
8522 -- Boolean types (requiring handling of non-standard case)
8524 if Is_Boolean_Type (Typ) then
8525 Adjust_Condition (Left_Opnd (N));
8526 Adjust_Condition (Right_Opnd (N));
8527 Set_Etype (N, Standard_Boolean);
8528 Adjust_Result_Type (N, Typ);
8529 end if;
8531 Rewrite_Comparison (N);
8533 -- For all cases other than elementary types, we rewrite node as the
8534 -- negation of an equality operation, and reanalyze. The equality to be
8535 -- used is defined in the same scope and has the same signature. This
8536 -- signature must be set explicitly since in an instance it may not have
8537 -- the same visibility as in the generic unit. This avoids duplicating
8538 -- or factoring the complex code for record/array equality tests etc.
8540 else
8541 declare
8542 Loc : constant Source_Ptr := Sloc (N);
8543 Neg : Node_Id;
8544 Ne : constant Entity_Id := Entity (N);
8546 begin
8547 Binary_Op_Validity_Checks (N);
8549 Neg :=
8550 Make_Op_Not (Loc,
8551 Right_Opnd =>
8552 Make_Op_Eq (Loc,
8553 Left_Opnd => Left_Opnd (N),
8554 Right_Opnd => Right_Opnd (N)));
8555 Set_Paren_Count (Right_Opnd (Neg), 1);
8557 if Scope (Ne) /= Standard_Standard then
8558 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8559 end if;
8561 -- For navigation purposes, we want to treat the inequality as an
8562 -- implicit reference to the corresponding equality. Preserve the
8563 -- Comes_From_ source flag to generate proper Xref entries.
8565 Preserve_Comes_From_Source (Neg, N);
8566 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8567 Rewrite (N, Neg);
8568 Analyze_And_Resolve (N, Standard_Boolean);
8569 end;
8570 end if;
8572 Optimize_Length_Comparison (N);
8573 end Expand_N_Op_Ne;
8575 ---------------------
8576 -- Expand_N_Op_Not --
8577 ---------------------
8579 -- If the argument is other than a Boolean array type, there is no special
8580 -- expansion required, except for dealing with validity checks, and non-
8581 -- standard boolean representations.
8583 -- For the packed array case, we call the special routine in Exp_Pakd,
8584 -- except that if the component size is greater than one, we use the
8585 -- standard routine generating a gruesome loop (it is so peculiar to have
8586 -- packed arrays with non-standard Boolean representations anyway, so it
8587 -- does not matter that we do not handle this case efficiently).
8589 -- For the unpacked array case (and for the special packed case where we
8590 -- have non standard Booleans, as discussed above), we generate and insert
8591 -- into the tree the following function definition:
8593 -- function Nnnn (A : arr) is
8594 -- B : arr;
8595 -- begin
8596 -- for J in a'range loop
8597 -- B (J) := not A (J);
8598 -- end loop;
8599 -- return B;
8600 -- end Nnnn;
8602 -- Here arr is the actual subtype of the parameter (and hence always
8603 -- constrained). Then we replace the not with a call to this function.
8605 procedure Expand_N_Op_Not (N : Node_Id) is
8606 Loc : constant Source_Ptr := Sloc (N);
8607 Typ : constant Entity_Id := Etype (N);
8608 Opnd : Node_Id;
8609 Arr : Entity_Id;
8610 A : Entity_Id;
8611 B : Entity_Id;
8612 J : Entity_Id;
8613 A_J : Node_Id;
8614 B_J : Node_Id;
8616 Func_Name : Entity_Id;
8617 Loop_Statement : Node_Id;
8619 begin
8620 Unary_Op_Validity_Checks (N);
8622 -- For boolean operand, deal with non-standard booleans
8624 if Is_Boolean_Type (Typ) then
8625 Adjust_Condition (Right_Opnd (N));
8626 Set_Etype (N, Standard_Boolean);
8627 Adjust_Result_Type (N, Typ);
8628 return;
8629 end if;
8631 -- Only array types need any other processing
8633 if not Is_Array_Type (Typ) then
8634 return;
8635 end if;
8637 -- Case of array operand. If bit packed with a component size of 1,
8638 -- handle it in Exp_Pakd if the operand is known to be aligned.
8640 if Is_Bit_Packed_Array (Typ)
8641 and then Component_Size (Typ) = 1
8642 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8643 then
8644 Expand_Packed_Not (N);
8645 return;
8646 end if;
8648 -- Case of array operand which is not bit-packed. If the context is
8649 -- a safe assignment, call in-place operation, If context is a larger
8650 -- boolean expression in the context of a safe assignment, expansion is
8651 -- done by enclosing operation.
8653 Opnd := Relocate_Node (Right_Opnd (N));
8654 Convert_To_Actual_Subtype (Opnd);
8655 Arr := Etype (Opnd);
8656 Ensure_Defined (Arr, N);
8657 Silly_Boolean_Array_Not_Test (N, Arr);
8659 if Nkind (Parent (N)) = N_Assignment_Statement then
8660 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8661 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8662 return;
8664 -- Special case the negation of a binary operation
8666 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
8667 and then Safe_In_Place_Array_Op
8668 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
8669 then
8670 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8671 return;
8672 end if;
8674 elsif Nkind (Parent (N)) in N_Binary_Op
8675 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8676 then
8677 declare
8678 Op1 : constant Node_Id := Left_Opnd (Parent (N));
8679 Op2 : constant Node_Id := Right_Opnd (Parent (N));
8680 Lhs : constant Node_Id := Name (Parent (Parent (N)));
8682 begin
8683 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
8685 -- (not A) op (not B) can be reduced to a single call
8687 if N = Op1 and then Nkind (Op2) = N_Op_Not then
8688 return;
8690 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8691 return;
8693 -- A xor (not B) can also be special-cased
8695 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
8696 return;
8697 end if;
8698 end if;
8699 end;
8700 end if;
8702 A := Make_Defining_Identifier (Loc, Name_uA);
8703 B := Make_Defining_Identifier (Loc, Name_uB);
8704 J := Make_Defining_Identifier (Loc, Name_uJ);
8706 A_J :=
8707 Make_Indexed_Component (Loc,
8708 Prefix => New_Occurrence_Of (A, Loc),
8709 Expressions => New_List (New_Occurrence_Of (J, Loc)));
8711 B_J :=
8712 Make_Indexed_Component (Loc,
8713 Prefix => New_Occurrence_Of (B, Loc),
8714 Expressions => New_List (New_Occurrence_Of (J, Loc)));
8716 Loop_Statement :=
8717 Make_Implicit_Loop_Statement (N,
8718 Identifier => Empty,
8720 Iteration_Scheme =>
8721 Make_Iteration_Scheme (Loc,
8722 Loop_Parameter_Specification =>
8723 Make_Loop_Parameter_Specification (Loc,
8724 Defining_Identifier => J,
8725 Discrete_Subtype_Definition =>
8726 Make_Attribute_Reference (Loc,
8727 Prefix => Make_Identifier (Loc, Chars (A)),
8728 Attribute_Name => Name_Range))),
8730 Statements => New_List (
8731 Make_Assignment_Statement (Loc,
8732 Name => B_J,
8733 Expression => Make_Op_Not (Loc, A_J))));
8735 Func_Name := Make_Temporary (Loc, 'N');
8736 Set_Is_Inlined (Func_Name);
8738 Insert_Action (N,
8739 Make_Subprogram_Body (Loc,
8740 Specification =>
8741 Make_Function_Specification (Loc,
8742 Defining_Unit_Name => Func_Name,
8743 Parameter_Specifications => New_List (
8744 Make_Parameter_Specification (Loc,
8745 Defining_Identifier => A,
8746 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8747 Result_Definition => New_Occurrence_Of (Typ, Loc)),
8749 Declarations => New_List (
8750 Make_Object_Declaration (Loc,
8751 Defining_Identifier => B,
8752 Object_Definition => New_Occurrence_Of (Arr, Loc))),
8754 Handled_Statement_Sequence =>
8755 Make_Handled_Sequence_Of_Statements (Loc,
8756 Statements => New_List (
8757 Loop_Statement,
8758 Make_Simple_Return_Statement (Loc,
8759 Expression => Make_Identifier (Loc, Chars (B)))))));
8761 Rewrite (N,
8762 Make_Function_Call (Loc,
8763 Name => New_Occurrence_Of (Func_Name, Loc),
8764 Parameter_Associations => New_List (Opnd)));
8766 Analyze_And_Resolve (N, Typ);
8767 end Expand_N_Op_Not;
8769 --------------------
8770 -- Expand_N_Op_Or --
8771 --------------------
8773 procedure Expand_N_Op_Or (N : Node_Id) is
8774 Typ : constant Entity_Id := Etype (N);
8776 begin
8777 Binary_Op_Validity_Checks (N);
8779 if Is_Array_Type (Etype (N)) then
8780 Expand_Boolean_Operator (N);
8782 elsif Is_Boolean_Type (Etype (N)) then
8783 Adjust_Condition (Left_Opnd (N));
8784 Adjust_Condition (Right_Opnd (N));
8785 Set_Etype (N, Standard_Boolean);
8786 Adjust_Result_Type (N, Typ);
8788 elsif Is_Intrinsic_Subprogram (Entity (N)) then
8789 Expand_Intrinsic_Call (N, Entity (N));
8791 end if;
8792 end Expand_N_Op_Or;
8794 ----------------------
8795 -- Expand_N_Op_Plus --
8796 ----------------------
8798 procedure Expand_N_Op_Plus (N : Node_Id) is
8799 begin
8800 Unary_Op_Validity_Checks (N);
8802 -- Check for MINIMIZED/ELIMINATED overflow mode
8804 if Minimized_Eliminated_Overflow_Check (N) then
8805 Apply_Arithmetic_Overflow_Check (N);
8806 return;
8807 end if;
8808 end Expand_N_Op_Plus;
8810 ---------------------
8811 -- Expand_N_Op_Rem --
8812 ---------------------
8814 procedure Expand_N_Op_Rem (N : Node_Id) is
8815 Loc : constant Source_Ptr := Sloc (N);
8816 Typ : constant Entity_Id := Etype (N);
8818 Left : Node_Id;
8819 Right : Node_Id;
8821 Lo : Uint;
8822 Hi : Uint;
8823 OK : Boolean;
8825 Lneg : Boolean;
8826 Rneg : Boolean;
8827 -- Set if corresponding operand can be negative
8829 pragma Unreferenced (Hi);
8831 begin
8832 Binary_Op_Validity_Checks (N);
8834 -- Check for MINIMIZED/ELIMINATED overflow mode
8836 if Minimized_Eliminated_Overflow_Check (N) then
8837 Apply_Arithmetic_Overflow_Check (N);
8838 return;
8839 end if;
8841 if Is_Integer_Type (Etype (N)) then
8842 Apply_Divide_Checks (N);
8844 -- All done if we don't have a REM any more, which can happen as a
8845 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8847 if Nkind (N) /= N_Op_Rem then
8848 return;
8849 end if;
8850 end if;
8852 -- Proceed with expansion of REM
8854 Left := Left_Opnd (N);
8855 Right := Right_Opnd (N);
8857 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8858 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8859 -- harmless.
8861 if Is_Integer_Type (Etype (N))
8862 and then Compile_Time_Known_Value (Right)
8863 and then Expr_Value (Right) = Uint_1
8864 then
8865 -- Call Remove_Side_Effects to ensure that any side effects in the
8866 -- ignored left operand (in particular function calls to user defined
8867 -- functions) are properly executed.
8869 Remove_Side_Effects (Left);
8871 Rewrite (N, Make_Integer_Literal (Loc, 0));
8872 Analyze_And_Resolve (N, Typ);
8873 return;
8874 end if;
8876 -- Deal with annoying case of largest negative number remainder minus
8877 -- one. Gigi may not handle this case correctly, because on some
8878 -- targets, the mod value is computed using a divide instruction
8879 -- which gives an overflow trap for this case.
8881 -- It would be a bit more efficient to figure out which targets this
8882 -- is really needed for, but in practice it is reasonable to do the
8883 -- following special check in all cases, since it means we get a clearer
8884 -- message, and also the overhead is minimal given that division is
8885 -- expensive in any case.
8887 -- In fact the check is quite easy, if the right operand is -1, then
8888 -- the remainder is always 0, and we can just ignore the left operand
8889 -- completely in this case.
8891 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8892 Lneg := (not OK) or else Lo < 0;
8894 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
8895 Rneg := (not OK) or else Lo < 0;
8897 -- We won't mess with trying to find out if the left operand can really
8898 -- be the largest negative number (that's a pain in the case of private
8899 -- types and this is really marginal). We will just assume that we need
8900 -- the test if the left operand can be negative at all.
8902 if Lneg and Rneg then
8903 Rewrite (N,
8904 Make_If_Expression (Loc,
8905 Expressions => New_List (
8906 Make_Op_Eq (Loc,
8907 Left_Opnd => Duplicate_Subexpr (Right),
8908 Right_Opnd =>
8909 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
8911 Unchecked_Convert_To (Typ,
8912 Make_Integer_Literal (Loc, Uint_0)),
8914 Relocate_Node (N))));
8916 Set_Analyzed (Next (Next (First (Expressions (N)))));
8917 Analyze_And_Resolve (N, Typ);
8918 end if;
8919 end Expand_N_Op_Rem;
8921 -----------------------------
8922 -- Expand_N_Op_Rotate_Left --
8923 -----------------------------
8925 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8926 begin
8927 Binary_Op_Validity_Checks (N);
8929 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8930 -- so we rewrite in terms of logical shifts
8932 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8934 -- where Bits is the shift count mod Esize (the mod operation here
8935 -- deals with ludicrous large shift counts, which are apparently OK).
8937 -- What about non-binary modulus ???
8939 declare
8940 Loc : constant Source_Ptr := Sloc (N);
8941 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8942 Typ : constant Entity_Id := Etype (N);
8944 begin
8945 if Modify_Tree_For_C then
8946 Rewrite (Right_Opnd (N),
8947 Make_Op_Rem (Loc,
8948 Left_Opnd => Relocate_Node (Right_Opnd (N)),
8949 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8951 Analyze_And_Resolve (Right_Opnd (N), Rtp);
8953 Rewrite (N,
8954 Make_Op_Or (Loc,
8955 Left_Opnd =>
8956 Make_Op_Shift_Left (Loc,
8957 Left_Opnd => Left_Opnd (N),
8958 Right_Opnd => Right_Opnd (N)),
8960 Right_Opnd =>
8961 Make_Op_Shift_Right (Loc,
8962 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8963 Right_Opnd =>
8964 Make_Op_Subtract (Loc,
8965 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
8966 Right_Opnd =>
8967 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8969 Analyze_And_Resolve (N, Typ);
8970 end if;
8971 end;
8972 end Expand_N_Op_Rotate_Left;
8974 ------------------------------
8975 -- Expand_N_Op_Rotate_Right --
8976 ------------------------------
8978 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
8979 begin
8980 Binary_Op_Validity_Checks (N);
8982 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8983 -- so we rewrite in terms of logical shifts
8985 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8987 -- where Bits is the shift count mod Esize (the mod operation here
8988 -- deals with ludicrous large shift counts, which are apparently OK).
8990 -- What about non-binary modulus ???
8992 declare
8993 Loc : constant Source_Ptr := Sloc (N);
8994 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
8995 Typ : constant Entity_Id := Etype (N);
8997 begin
8998 Rewrite (Right_Opnd (N),
8999 Make_Op_Rem (Loc,
9000 Left_Opnd => Relocate_Node (Right_Opnd (N)),
9001 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
9003 Analyze_And_Resolve (Right_Opnd (N), Rtp);
9005 if Modify_Tree_For_C then
9006 Rewrite (N,
9007 Make_Op_Or (Loc,
9008 Left_Opnd =>
9009 Make_Op_Shift_Right (Loc,
9010 Left_Opnd => Left_Opnd (N),
9011 Right_Opnd => Right_Opnd (N)),
9013 Right_Opnd =>
9014 Make_Op_Shift_Left (Loc,
9015 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
9016 Right_Opnd =>
9017 Make_Op_Subtract (Loc,
9018 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
9019 Right_Opnd =>
9020 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
9022 Analyze_And_Resolve (N, Typ);
9023 end if;
9024 end;
9025 end Expand_N_Op_Rotate_Right;
9027 ----------------------------
9028 -- Expand_N_Op_Shift_Left --
9029 ----------------------------
9031 -- Note: nothing in this routine depends on left as opposed to right shifts
9032 -- so we share the routine for expanding shift right operations.
9034 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
9035 begin
9036 Binary_Op_Validity_Checks (N);
9038 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9039 -- operand is not greater than the word size (since that would not
9040 -- be defined properly by the corresponding C shift operator).
9042 if Modify_Tree_For_C then
9043 declare
9044 Right : constant Node_Id := Right_Opnd (N);
9045 Loc : constant Source_Ptr := Sloc (Right);
9046 Typ : constant Entity_Id := Etype (N);
9047 Siz : constant Uint := Esize (Typ);
9048 Orig : Node_Id;
9049 OK : Boolean;
9050 Lo : Uint;
9051 Hi : Uint;
9053 begin
9054 if Compile_Time_Known_Value (Right) then
9055 if Expr_Value (Right) >= Siz then
9056 Rewrite (N, Make_Integer_Literal (Loc, 0));
9057 Analyze_And_Resolve (N, Typ);
9058 end if;
9060 -- Not compile time known, find range
9062 else
9063 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9065 -- Nothing to do if known to be OK range, otherwise expand
9067 if not OK or else Hi >= Siz then
9069 -- Prevent recursion on copy of shift node
9071 Orig := Relocate_Node (N);
9072 Set_Analyzed (Orig);
9074 -- Now do the rewrite
9076 Rewrite (N,
9077 Make_If_Expression (Loc,
9078 Expressions => New_List (
9079 Make_Op_Ge (Loc,
9080 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9081 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9082 Make_Integer_Literal (Loc, 0),
9083 Orig)));
9084 Analyze_And_Resolve (N, Typ);
9085 end if;
9086 end if;
9087 end;
9088 end if;
9089 end Expand_N_Op_Shift_Left;
9091 -----------------------------
9092 -- Expand_N_Op_Shift_Right --
9093 -----------------------------
9095 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9096 begin
9097 -- Share shift left circuit
9099 Expand_N_Op_Shift_Left (N);
9100 end Expand_N_Op_Shift_Right;
9102 ----------------------------------------
9103 -- Expand_N_Op_Shift_Right_Arithmetic --
9104 ----------------------------------------
9106 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9107 begin
9108 Binary_Op_Validity_Checks (N);
9110 -- If we are in Modify_Tree_For_C mode, there is no shift right
9111 -- arithmetic in C, so we rewrite in terms of logical shifts.
9113 -- Shift_Right (Num, Bits) or
9114 -- (if Num >= Sign
9115 -- then not (Shift_Right (Mask, bits))
9116 -- else 0)
9118 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9120 -- Note: in almost all C compilers it would work to just shift a
9121 -- signed integer right, but it's undefined and we cannot rely on it.
9123 -- Note: the above works fine for shift counts greater than or equal
9124 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9125 -- generates all 1'bits.
9127 -- What about non-binary modulus ???
9129 declare
9130 Loc : constant Source_Ptr := Sloc (N);
9131 Typ : constant Entity_Id := Etype (N);
9132 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9133 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9134 Left : constant Node_Id := Left_Opnd (N);
9135 Right : constant Node_Id := Right_Opnd (N);
9136 Maskx : Node_Id;
9138 begin
9139 if Modify_Tree_For_C then
9141 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9142 -- compile time as a single constant.
9144 if Compile_Time_Known_Value (Right) then
9145 declare
9146 Val : constant Uint := Expr_Value (Right);
9148 begin
9149 if Val >= Esize (Typ) then
9150 Maskx := Make_Integer_Literal (Loc, Mask);
9152 else
9153 Maskx :=
9154 Make_Integer_Literal (Loc,
9155 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9156 end if;
9157 end;
9159 else
9160 Maskx :=
9161 Make_Op_Not (Loc,
9162 Right_Opnd =>
9163 Make_Op_Shift_Right (Loc,
9164 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9165 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9166 end if;
9168 -- Now do the rewrite
9170 Rewrite (N,
9171 Make_Op_Or (Loc,
9172 Left_Opnd =>
9173 Make_Op_Shift_Right (Loc,
9174 Left_Opnd => Left,
9175 Right_Opnd => Right),
9176 Right_Opnd =>
9177 Make_If_Expression (Loc,
9178 Expressions => New_List (
9179 Make_Op_Ge (Loc,
9180 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9181 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9182 Maskx,
9183 Make_Integer_Literal (Loc, 0)))));
9184 Analyze_And_Resolve (N, Typ);
9185 end if;
9186 end;
9187 end Expand_N_Op_Shift_Right_Arithmetic;
9189 --------------------------
9190 -- Expand_N_Op_Subtract --
9191 --------------------------
9193 procedure Expand_N_Op_Subtract (N : Node_Id) is
9194 Typ : constant Entity_Id := Etype (N);
9196 begin
9197 Binary_Op_Validity_Checks (N);
9199 -- Check for MINIMIZED/ELIMINATED overflow mode
9201 if Minimized_Eliminated_Overflow_Check (N) then
9202 Apply_Arithmetic_Overflow_Check (N);
9203 return;
9204 end if;
9206 -- N - 0 = N for integer types
9208 if Is_Integer_Type (Typ)
9209 and then Compile_Time_Known_Value (Right_Opnd (N))
9210 and then Expr_Value (Right_Opnd (N)) = 0
9211 then
9212 Rewrite (N, Left_Opnd (N));
9213 return;
9214 end if;
9216 -- Arithmetic overflow checks for signed integer/fixed point types
9218 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
9219 Apply_Arithmetic_Overflow_Check (N);
9220 end if;
9222 -- Overflow checks for floating-point if -gnateF mode active
9224 Check_Float_Op_Overflow (N);
9225 end Expand_N_Op_Subtract;
9227 ---------------------
9228 -- Expand_N_Op_Xor --
9229 ---------------------
9231 procedure Expand_N_Op_Xor (N : Node_Id) is
9232 Typ : constant Entity_Id := Etype (N);
9234 begin
9235 Binary_Op_Validity_Checks (N);
9237 if Is_Array_Type (Etype (N)) then
9238 Expand_Boolean_Operator (N);
9240 elsif Is_Boolean_Type (Etype (N)) then
9241 Adjust_Condition (Left_Opnd (N));
9242 Adjust_Condition (Right_Opnd (N));
9243 Set_Etype (N, Standard_Boolean);
9244 Adjust_Result_Type (N, Typ);
9246 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9247 Expand_Intrinsic_Call (N, Entity (N));
9249 end if;
9250 end Expand_N_Op_Xor;
9252 ----------------------
9253 -- Expand_N_Or_Else --
9254 ----------------------
9256 procedure Expand_N_Or_Else (N : Node_Id)
9257 renames Expand_Short_Circuit_Operator;
9259 -----------------------------------
9260 -- Expand_N_Qualified_Expression --
9261 -----------------------------------
9263 procedure Expand_N_Qualified_Expression (N : Node_Id) is
9264 Operand : constant Node_Id := Expression (N);
9265 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9267 begin
9268 -- Do validity check if validity checking operands
9270 if Validity_Checks_On and Validity_Check_Operands then
9271 Ensure_Valid (Operand);
9272 end if;
9274 -- Apply possible constraint check
9276 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
9278 if Do_Range_Check (Operand) then
9279 Set_Do_Range_Check (Operand, False);
9280 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9281 end if;
9282 end Expand_N_Qualified_Expression;
9284 ------------------------------------
9285 -- Expand_N_Quantified_Expression --
9286 ------------------------------------
9288 -- We expand:
9290 -- for all X in range => Cond
9292 -- into:
9294 -- T := True;
9295 -- for X in range loop
9296 -- if not Cond then
9297 -- T := False;
9298 -- exit;
9299 -- end if;
9300 -- end loop;
9302 -- Similarly, an existentially quantified expression:
9304 -- for some X in range => Cond
9306 -- becomes:
9308 -- T := False;
9309 -- for X in range loop
9310 -- if Cond then
9311 -- T := True;
9312 -- exit;
9313 -- end if;
9314 -- end loop;
9316 -- In both cases, the iteration may be over a container in which case it is
9317 -- given by an iterator specification, not a loop parameter specification.
9319 procedure Expand_N_Quantified_Expression (N : Node_Id) is
9320 Actions : constant List_Id := New_List;
9321 For_All : constant Boolean := All_Present (N);
9322 Iter_Spec : constant Node_Id := Iterator_Specification (N);
9323 Loc : constant Source_Ptr := Sloc (N);
9324 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
9325 Cond : Node_Id;
9326 Flag : Entity_Id;
9327 Scheme : Node_Id;
9328 Stmts : List_Id;
9330 begin
9331 -- Create the declaration of the flag which tracks the status of the
9332 -- quantified expression. Generate:
9334 -- Flag : Boolean := (True | False);
9336 Flag := Make_Temporary (Loc, 'T', N);
9338 Append_To (Actions,
9339 Make_Object_Declaration (Loc,
9340 Defining_Identifier => Flag,
9341 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
9342 Expression =>
9343 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9345 -- Construct the circuitry which tracks the status of the quantified
9346 -- expression. Generate:
9348 -- if [not] Cond then
9349 -- Flag := (False | True);
9350 -- exit;
9351 -- end if;
9353 Cond := Relocate_Node (Condition (N));
9355 if For_All then
9356 Cond := Make_Op_Not (Loc, Cond);
9357 end if;
9359 Stmts := New_List (
9360 Make_Implicit_If_Statement (N,
9361 Condition => Cond,
9362 Then_Statements => New_List (
9363 Make_Assignment_Statement (Loc,
9364 Name => New_Occurrence_Of (Flag, Loc),
9365 Expression =>
9366 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9367 Make_Exit_Statement (Loc))));
9369 -- Build the loop equivalent of the quantified expression
9371 if Present (Iter_Spec) then
9372 Scheme :=
9373 Make_Iteration_Scheme (Loc,
9374 Iterator_Specification => Iter_Spec);
9375 else
9376 Scheme :=
9377 Make_Iteration_Scheme (Loc,
9378 Loop_Parameter_Specification => Loop_Spec);
9379 end if;
9381 Append_To (Actions,
9382 Make_Loop_Statement (Loc,
9383 Iteration_Scheme => Scheme,
9384 Statements => Stmts,
9385 End_Label => Empty));
9387 -- Transform the quantified expression
9389 Rewrite (N,
9390 Make_Expression_With_Actions (Loc,
9391 Expression => New_Occurrence_Of (Flag, Loc),
9392 Actions => Actions));
9393 Analyze_And_Resolve (N, Standard_Boolean);
9394 end Expand_N_Quantified_Expression;
9396 ---------------------------------
9397 -- Expand_N_Selected_Component --
9398 ---------------------------------
9400 procedure Expand_N_Selected_Component (N : Node_Id) is
9401 Loc : constant Source_Ptr := Sloc (N);
9402 Par : constant Node_Id := Parent (N);
9403 P : constant Node_Id := Prefix (N);
9404 S : constant Node_Id := Selector_Name (N);
9405 Ptyp : Entity_Id := Underlying_Type (Etype (P));
9406 Disc : Entity_Id;
9407 New_N : Node_Id;
9408 Dcon : Elmt_Id;
9409 Dval : Node_Id;
9411 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9412 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9413 -- unless the context of an assignment can provide size information.
9414 -- Don't we have a general routine that does this???
9416 function Is_Subtype_Declaration return Boolean;
9417 -- The replacement of a discriminant reference by its value is required
9418 -- if this is part of the initialization of an temporary generated by a
9419 -- change of representation. This shows up as the construction of a
9420 -- discriminant constraint for a subtype declared at the same point as
9421 -- the entity in the prefix of the selected component. We recognize this
9422 -- case when the context of the reference is:
9423 -- subtype ST is T(Obj.D);
9424 -- where the entity for Obj comes from source, and ST has the same sloc.
9426 -----------------------
9427 -- In_Left_Hand_Side --
9428 -----------------------
9430 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9431 begin
9432 return (Nkind (Parent (Comp)) = N_Assignment_Statement
9433 and then Comp = Name (Parent (Comp)))
9434 or else (Present (Parent (Comp))
9435 and then Nkind (Parent (Comp)) in N_Subexpr
9436 and then In_Left_Hand_Side (Parent (Comp)));
9437 end In_Left_Hand_Side;
9439 -----------------------------
9440 -- Is_Subtype_Declaration --
9441 -----------------------------
9443 function Is_Subtype_Declaration return Boolean is
9444 Par : constant Node_Id := Parent (N);
9445 begin
9446 return
9447 Nkind (Par) = N_Index_Or_Discriminant_Constraint
9448 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9449 and then Comes_From_Source (Entity (Prefix (N)))
9450 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9451 end Is_Subtype_Declaration;
9453 -- Start of processing for Expand_N_Selected_Component
9455 begin
9456 -- Insert explicit dereference if required
9458 if Is_Access_Type (Ptyp) then
9460 -- First set prefix type to proper access type, in case it currently
9461 -- has a private (non-access) view of this type.
9463 Set_Etype (P, Ptyp);
9465 Insert_Explicit_Dereference (P);
9466 Analyze_And_Resolve (P, Designated_Type (Ptyp));
9468 if Ekind (Etype (P)) = E_Private_Subtype
9469 and then Is_For_Access_Subtype (Etype (P))
9470 then
9471 Set_Etype (P, Base_Type (Etype (P)));
9472 end if;
9474 Ptyp := Etype (P);
9475 end if;
9477 -- Deal with discriminant check required
9479 if Do_Discriminant_Check (N) then
9480 if Present (Discriminant_Checking_Func
9481 (Original_Record_Component (Entity (S))))
9482 then
9483 -- Present the discriminant checking function to the backend, so
9484 -- that it can inline the call to the function.
9486 Add_Inlined_Body
9487 (Discriminant_Checking_Func
9488 (Original_Record_Component (Entity (S))));
9490 -- Now reset the flag and generate the call
9492 Set_Do_Discriminant_Check (N, False);
9493 Generate_Discriminant_Check (N);
9495 -- In the case of Unchecked_Union, no discriminant checking is
9496 -- actually performed.
9498 else
9499 Set_Do_Discriminant_Check (N, False);
9500 end if;
9501 end if;
9503 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9504 -- function, then additional actuals must be passed.
9506 if Ada_Version >= Ada_2005
9507 and then Is_Build_In_Place_Function_Call (P)
9508 then
9509 Make_Build_In_Place_Call_In_Anonymous_Context (P);
9510 end if;
9512 -- Gigi cannot handle unchecked conversions that are the prefix of a
9513 -- selected component with discriminants. This must be checked during
9514 -- expansion, because during analysis the type of the selector is not
9515 -- known at the point the prefix is analyzed. If the conversion is the
9516 -- target of an assignment, then we cannot force the evaluation.
9518 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9519 and then Has_Discriminants (Etype (N))
9520 and then not In_Left_Hand_Side (N)
9521 then
9522 Force_Evaluation (Prefix (N));
9523 end if;
9525 -- Remaining processing applies only if selector is a discriminant
9527 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9529 -- If the selector is a discriminant of a constrained record type,
9530 -- we may be able to rewrite the expression with the actual value
9531 -- of the discriminant, a useful optimization in some cases.
9533 if Is_Record_Type (Ptyp)
9534 and then Has_Discriminants (Ptyp)
9535 and then Is_Constrained (Ptyp)
9536 then
9537 -- Do this optimization for discrete types only, and not for
9538 -- access types (access discriminants get us into trouble).
9540 if not Is_Discrete_Type (Etype (N)) then
9541 null;
9543 -- Don't do this on the left hand of an assignment statement.
9544 -- Normally one would think that references like this would not
9545 -- occur, but they do in generated code, and mean that we really
9546 -- do want to assign the discriminant.
9548 elsif Nkind (Par) = N_Assignment_Statement
9549 and then Name (Par) = N
9550 then
9551 null;
9553 -- Don't do this optimization for the prefix of an attribute or
9554 -- the name of an object renaming declaration since these are
9555 -- contexts where we do not want the value anyway.
9557 elsif (Nkind (Par) = N_Attribute_Reference
9558 and then Prefix (Par) = N)
9559 or else Is_Renamed_Object (N)
9560 then
9561 null;
9563 -- Don't do this optimization if we are within the code for a
9564 -- discriminant check, since the whole point of such a check may
9565 -- be to verify the condition on which the code below depends.
9567 elsif Is_In_Discriminant_Check (N) then
9568 null;
9570 -- Green light to see if we can do the optimization. There is
9571 -- still one condition that inhibits the optimization below but
9572 -- now is the time to check the particular discriminant.
9574 else
9575 -- Loop through discriminants to find the matching discriminant
9576 -- constraint to see if we can copy it.
9578 Disc := First_Discriminant (Ptyp);
9579 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9580 Discr_Loop : while Present (Dcon) loop
9581 Dval := Node (Dcon);
9583 -- Check if this is the matching discriminant and if the
9584 -- discriminant value is simple enough to make sense to
9585 -- copy. We don't want to copy complex expressions, and
9586 -- indeed to do so can cause trouble (before we put in
9587 -- this guard, a discriminant expression containing an
9588 -- AND THEN was copied, causing problems for coverage
9589 -- analysis tools).
9591 -- However, if the reference is part of the initialization
9592 -- code generated for an object declaration, we must use
9593 -- the discriminant value from the subtype constraint,
9594 -- because the selected component may be a reference to the
9595 -- object being initialized, whose discriminant is not yet
9596 -- set. This only happens in complex cases involving changes
9597 -- or representation.
9599 if Disc = Entity (Selector_Name (N))
9600 and then (Is_Entity_Name (Dval)
9601 or else Compile_Time_Known_Value (Dval)
9602 or else Is_Subtype_Declaration)
9603 then
9604 -- Here we have the matching discriminant. Check for
9605 -- the case of a discriminant of a component that is
9606 -- constrained by an outer discriminant, which cannot
9607 -- be optimized away.
9609 if Denotes_Discriminant
9610 (Dval, Check_Concurrent => True)
9611 then
9612 exit Discr_Loop;
9614 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9615 and then
9616 Denotes_Discriminant
9617 (Selector_Name (Original_Node (Dval)), True)
9618 then
9619 exit Discr_Loop;
9621 -- Do not retrieve value if constraint is not static. It
9622 -- is generally not useful, and the constraint may be a
9623 -- rewritten outer discriminant in which case it is in
9624 -- fact incorrect.
9626 elsif Is_Entity_Name (Dval)
9627 and then
9628 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9629 and then Present (Expression (Parent (Entity (Dval))))
9630 and then not
9631 Is_OK_Static_Expression
9632 (Expression (Parent (Entity (Dval))))
9633 then
9634 exit Discr_Loop;
9636 -- In the context of a case statement, the expression may
9637 -- have the base type of the discriminant, and we need to
9638 -- preserve the constraint to avoid spurious errors on
9639 -- missing cases.
9641 elsif Nkind (Parent (N)) = N_Case_Statement
9642 and then Etype (Dval) /= Etype (Disc)
9643 then
9644 Rewrite (N,
9645 Make_Qualified_Expression (Loc,
9646 Subtype_Mark =>
9647 New_Occurrence_Of (Etype (Disc), Loc),
9648 Expression =>
9649 New_Copy_Tree (Dval)));
9650 Analyze_And_Resolve (N, Etype (Disc));
9652 -- In case that comes out as a static expression,
9653 -- reset it (a selected component is never static).
9655 Set_Is_Static_Expression (N, False);
9656 return;
9658 -- Otherwise we can just copy the constraint, but the
9659 -- result is certainly not static. In some cases the
9660 -- discriminant constraint has been analyzed in the
9661 -- context of the original subtype indication, but for
9662 -- itypes the constraint might not have been analyzed
9663 -- yet, and this must be done now.
9665 else
9666 Rewrite (N, New_Copy_Tree (Dval));
9667 Analyze_And_Resolve (N);
9668 Set_Is_Static_Expression (N, False);
9669 return;
9670 end if;
9671 end if;
9673 Next_Elmt (Dcon);
9674 Next_Discriminant (Disc);
9675 end loop Discr_Loop;
9677 -- Note: the above loop should always find a matching
9678 -- discriminant, but if it does not, we just missed an
9679 -- optimization due to some glitch (perhaps a previous
9680 -- error), so ignore.
9682 end if;
9683 end if;
9685 -- The only remaining processing is in the case of a discriminant of
9686 -- a concurrent object, where we rewrite the prefix to denote the
9687 -- corresponding record type. If the type is derived and has renamed
9688 -- discriminants, use corresponding discriminant, which is the one
9689 -- that appears in the corresponding record.
9691 if not Is_Concurrent_Type (Ptyp) then
9692 return;
9693 end if;
9695 Disc := Entity (Selector_Name (N));
9697 if Is_Derived_Type (Ptyp)
9698 and then Present (Corresponding_Discriminant (Disc))
9699 then
9700 Disc := Corresponding_Discriminant (Disc);
9701 end if;
9703 New_N :=
9704 Make_Selected_Component (Loc,
9705 Prefix =>
9706 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9707 New_Copy_Tree (P)),
9708 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9710 Rewrite (N, New_N);
9711 Analyze (N);
9712 end if;
9714 -- Set Atomic_Sync_Required if necessary for atomic component
9716 if Nkind (N) = N_Selected_Component then
9717 declare
9718 E : constant Entity_Id := Entity (Selector_Name (N));
9719 Set : Boolean;
9721 begin
9722 -- If component is atomic, but type is not, setting depends on
9723 -- disable/enable state for the component.
9725 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9726 Set := not Atomic_Synchronization_Disabled (E);
9728 -- If component is not atomic, but its type is atomic, setting
9729 -- depends on disable/enable state for the type.
9731 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9732 Set := not Atomic_Synchronization_Disabled (Etype (E));
9734 -- If both component and type are atomic, we disable if either
9735 -- component or its type have sync disabled.
9737 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9738 Set := (not Atomic_Synchronization_Disabled (E))
9739 and then
9740 (not Atomic_Synchronization_Disabled (Etype (E)));
9742 else
9743 Set := False;
9744 end if;
9746 -- Set flag if required
9748 if Set then
9749 Activate_Atomic_Synchronization (N);
9750 end if;
9751 end;
9752 end if;
9753 end Expand_N_Selected_Component;
9755 --------------------
9756 -- Expand_N_Slice --
9757 --------------------
9759 procedure Expand_N_Slice (N : Node_Id) is
9760 Loc : constant Source_Ptr := Sloc (N);
9761 Typ : constant Entity_Id := Etype (N);
9763 function Is_Procedure_Actual (N : Node_Id) return Boolean;
9764 -- Check whether the argument is an actual for a procedure call, in
9765 -- which case the expansion of a bit-packed slice is deferred until the
9766 -- call itself is expanded. The reason this is required is that we might
9767 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9768 -- that copy out would be missed if we created a temporary here in
9769 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9770 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9771 -- is harmless to defer expansion in the IN case, since the call
9772 -- processing will still generate the appropriate copy in operation,
9773 -- which will take care of the slice.
9775 procedure Make_Temporary_For_Slice;
9776 -- Create a named variable for the value of the slice, in cases where
9777 -- the back-end cannot handle it properly, e.g. when packed types or
9778 -- unaligned slices are involved.
9780 -------------------------
9781 -- Is_Procedure_Actual --
9782 -------------------------
9784 function Is_Procedure_Actual (N : Node_Id) return Boolean is
9785 Par : Node_Id := Parent (N);
9787 begin
9788 loop
9789 -- If our parent is a procedure call we can return
9791 if Nkind (Par) = N_Procedure_Call_Statement then
9792 return True;
9794 -- If our parent is a type conversion, keep climbing the tree,
9795 -- since a type conversion can be a procedure actual. Also keep
9796 -- climbing if parameter association or a qualified expression,
9797 -- since these are additional cases that do can appear on
9798 -- procedure actuals.
9800 elsif Nkind_In (Par, N_Type_Conversion,
9801 N_Parameter_Association,
9802 N_Qualified_Expression)
9803 then
9804 Par := Parent (Par);
9806 -- Any other case is not what we are looking for
9808 else
9809 return False;
9810 end if;
9811 end loop;
9812 end Is_Procedure_Actual;
9814 ------------------------------
9815 -- Make_Temporary_For_Slice --
9816 ------------------------------
9818 procedure Make_Temporary_For_Slice is
9819 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9820 Decl : Node_Id;
9822 begin
9823 Decl :=
9824 Make_Object_Declaration (Loc,
9825 Defining_Identifier => Ent,
9826 Object_Definition => New_Occurrence_Of (Typ, Loc));
9828 Set_No_Initialization (Decl);
9830 Insert_Actions (N, New_List (
9831 Decl,
9832 Make_Assignment_Statement (Loc,
9833 Name => New_Occurrence_Of (Ent, Loc),
9834 Expression => Relocate_Node (N))));
9836 Rewrite (N, New_Occurrence_Of (Ent, Loc));
9837 Analyze_And_Resolve (N, Typ);
9838 end Make_Temporary_For_Slice;
9840 -- Local variables
9842 Pref : constant Node_Id := Prefix (N);
9843 Pref_Typ : Entity_Id := Etype (Pref);
9845 -- Start of processing for Expand_N_Slice
9847 begin
9848 -- Special handling for access types
9850 if Is_Access_Type (Pref_Typ) then
9851 Pref_Typ := Designated_Type (Pref_Typ);
9853 Rewrite (Pref,
9854 Make_Explicit_Dereference (Sloc (N),
9855 Prefix => Relocate_Node (Pref)));
9857 Analyze_And_Resolve (Pref, Pref_Typ);
9858 end if;
9860 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9861 -- function, then additional actuals must be passed.
9863 if Ada_Version >= Ada_2005
9864 and then Is_Build_In_Place_Function_Call (Pref)
9865 then
9866 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
9867 end if;
9869 -- The remaining case to be handled is packed slices. We can leave
9870 -- packed slices as they are in the following situations:
9872 -- 1. Right or left side of an assignment (we can handle this
9873 -- situation correctly in the assignment statement expansion).
9875 -- 2. Prefix of indexed component (the slide is optimized away in this
9876 -- case, see the start of Expand_N_Slice.)
9878 -- 3. Object renaming declaration, since we want the name of the
9879 -- slice, not the value.
9881 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9882 -- be required, and this is handled in the expansion of call
9883 -- itself.
9885 -- 5. Prefix of an address attribute (this is an error which is caught
9886 -- elsewhere, and the expansion would interfere with generating the
9887 -- error message).
9889 if not Is_Packed (Typ) then
9891 -- Apply transformation for actuals of a function call, where
9892 -- Expand_Actuals is not used.
9894 if Nkind (Parent (N)) = N_Function_Call
9895 and then Is_Possibly_Unaligned_Slice (N)
9896 then
9897 Make_Temporary_For_Slice;
9898 end if;
9900 elsif Nkind (Parent (N)) = N_Assignment_Statement
9901 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
9902 and then Parent (N) = Name (Parent (Parent (N))))
9903 then
9904 return;
9906 elsif Nkind (Parent (N)) = N_Indexed_Component
9907 or else Is_Renamed_Object (N)
9908 or else Is_Procedure_Actual (N)
9909 then
9910 return;
9912 elsif Nkind (Parent (N)) = N_Attribute_Reference
9913 and then Attribute_Name (Parent (N)) = Name_Address
9914 then
9915 return;
9917 else
9918 Make_Temporary_For_Slice;
9919 end if;
9920 end Expand_N_Slice;
9922 ------------------------------
9923 -- Expand_N_Type_Conversion --
9924 ------------------------------
9926 procedure Expand_N_Type_Conversion (N : Node_Id) is
9927 Loc : constant Source_Ptr := Sloc (N);
9928 Operand : constant Node_Id := Expression (N);
9929 Target_Type : constant Entity_Id := Etype (N);
9930 Operand_Type : Entity_Id := Etype (Operand);
9932 procedure Handle_Changed_Representation;
9933 -- This is called in the case of record and array type conversions to
9934 -- see if there is a change of representation to be handled. Change of
9935 -- representation is actually handled at the assignment statement level,
9936 -- and what this procedure does is rewrite node N conversion as an
9937 -- assignment to temporary. If there is no change of representation,
9938 -- then the conversion node is unchanged.
9940 procedure Raise_Accessibility_Error;
9941 -- Called when we know that an accessibility check will fail. Rewrites
9942 -- node N to an appropriate raise statement and outputs warning msgs.
9943 -- The Etype of the raise node is set to Target_Type. Note that in this
9944 -- case the rest of the processing should be skipped (i.e. the call to
9945 -- this procedure will be followed by "goto Done").
9947 procedure Real_Range_Check;
9948 -- Handles generation of range check for real target value
9950 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9951 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9952 -- evaluates to True.
9954 -----------------------------------
9955 -- Handle_Changed_Representation --
9956 -----------------------------------
9958 procedure Handle_Changed_Representation is
9959 Temp : Entity_Id;
9960 Decl : Node_Id;
9961 Odef : Node_Id;
9962 Disc : Node_Id;
9963 N_Ix : Node_Id;
9964 Cons : List_Id;
9966 begin
9967 -- Nothing else to do if no change of representation
9969 if Same_Representation (Operand_Type, Target_Type) then
9970 return;
9972 -- The real change of representation work is done by the assignment
9973 -- statement processing. So if this type conversion is appearing as
9974 -- the expression of an assignment statement, nothing needs to be
9975 -- done to the conversion.
9977 elsif Nkind (Parent (N)) = N_Assignment_Statement then
9978 return;
9980 -- Otherwise we need to generate a temporary variable, and do the
9981 -- change of representation assignment into that temporary variable.
9982 -- The conversion is then replaced by a reference to this variable.
9984 else
9985 Cons := No_List;
9987 -- If type is unconstrained we have to add a constraint, copied
9988 -- from the actual value of the left hand side.
9990 if not Is_Constrained (Target_Type) then
9991 if Has_Discriminants (Operand_Type) then
9992 Disc := First_Discriminant (Operand_Type);
9994 if Disc /= First_Stored_Discriminant (Operand_Type) then
9995 Disc := First_Stored_Discriminant (Operand_Type);
9996 end if;
9998 Cons := New_List;
9999 while Present (Disc) loop
10000 Append_To (Cons,
10001 Make_Selected_Component (Loc,
10002 Prefix =>
10003 Duplicate_Subexpr_Move_Checks (Operand),
10004 Selector_Name =>
10005 Make_Identifier (Loc, Chars (Disc))));
10006 Next_Discriminant (Disc);
10007 end loop;
10009 elsif Is_Array_Type (Operand_Type) then
10010 N_Ix := First_Index (Target_Type);
10011 Cons := New_List;
10013 for J in 1 .. Number_Dimensions (Operand_Type) loop
10015 -- We convert the bounds explicitly. We use an unchecked
10016 -- conversion because bounds checks are done elsewhere.
10018 Append_To (Cons,
10019 Make_Range (Loc,
10020 Low_Bound =>
10021 Unchecked_Convert_To (Etype (N_Ix),
10022 Make_Attribute_Reference (Loc,
10023 Prefix =>
10024 Duplicate_Subexpr_No_Checks
10025 (Operand, Name_Req => True),
10026 Attribute_Name => Name_First,
10027 Expressions => New_List (
10028 Make_Integer_Literal (Loc, J)))),
10030 High_Bound =>
10031 Unchecked_Convert_To (Etype (N_Ix),
10032 Make_Attribute_Reference (Loc,
10033 Prefix =>
10034 Duplicate_Subexpr_No_Checks
10035 (Operand, Name_Req => True),
10036 Attribute_Name => Name_Last,
10037 Expressions => New_List (
10038 Make_Integer_Literal (Loc, J))))));
10040 Next_Index (N_Ix);
10041 end loop;
10042 end if;
10043 end if;
10045 Odef := New_Occurrence_Of (Target_Type, Loc);
10047 if Present (Cons) then
10048 Odef :=
10049 Make_Subtype_Indication (Loc,
10050 Subtype_Mark => Odef,
10051 Constraint =>
10052 Make_Index_Or_Discriminant_Constraint (Loc,
10053 Constraints => Cons));
10054 end if;
10056 Temp := Make_Temporary (Loc, 'C');
10057 Decl :=
10058 Make_Object_Declaration (Loc,
10059 Defining_Identifier => Temp,
10060 Object_Definition => Odef);
10062 Set_No_Initialization (Decl, True);
10064 -- Insert required actions. It is essential to suppress checks
10065 -- since we have suppressed default initialization, which means
10066 -- that the variable we create may have no discriminants.
10068 Insert_Actions (N,
10069 New_List (
10070 Decl,
10071 Make_Assignment_Statement (Loc,
10072 Name => New_Occurrence_Of (Temp, Loc),
10073 Expression => Relocate_Node (N))),
10074 Suppress => All_Checks);
10076 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10077 return;
10078 end if;
10079 end Handle_Changed_Representation;
10081 -------------------------------
10082 -- Raise_Accessibility_Error --
10083 -------------------------------
10085 procedure Raise_Accessibility_Error is
10086 begin
10087 Error_Msg_Warn := SPARK_Mode /= On;
10088 Rewrite (N,
10089 Make_Raise_Program_Error (Sloc (N),
10090 Reason => PE_Accessibility_Check_Failed));
10091 Set_Etype (N, Target_Type);
10093 Error_Msg_N ("<<accessibility check failure", N);
10094 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
10095 end Raise_Accessibility_Error;
10097 ----------------------
10098 -- Real_Range_Check --
10099 ----------------------
10101 -- Case of conversions to floating-point or fixed-point. If range checks
10102 -- are enabled and the target type has a range constraint, we convert:
10104 -- typ (x)
10106 -- to
10108 -- Tnn : typ'Base := typ'Base (x);
10109 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10110 -- Tnn
10112 -- This is necessary when there is a conversion of integer to float or
10113 -- to fixed-point to ensure that the correct checks are made. It is not
10114 -- necessary for float to float where it is enough to simply set the
10115 -- Do_Range_Check flag.
10117 procedure Real_Range_Check is
10118 Btyp : constant Entity_Id := Base_Type (Target_Type);
10119 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10120 Hi : constant Node_Id := Type_High_Bound (Target_Type);
10121 Xtyp : constant Entity_Id := Etype (Operand);
10122 Conv : Node_Id;
10123 Tnn : Entity_Id;
10125 begin
10126 -- Nothing to do if conversion was rewritten
10128 if Nkind (N) /= N_Type_Conversion then
10129 return;
10130 end if;
10132 -- Nothing to do if range checks suppressed, or target has the same
10133 -- range as the base type (or is the base type).
10135 if Range_Checks_Suppressed (Target_Type)
10136 or else (Lo = Type_Low_Bound (Btyp)
10137 and then
10138 Hi = Type_High_Bound (Btyp))
10139 then
10140 return;
10141 end if;
10143 -- Nothing to do if expression is an entity on which checks have been
10144 -- suppressed.
10146 if Is_Entity_Name (Operand)
10147 and then Range_Checks_Suppressed (Entity (Operand))
10148 then
10149 return;
10150 end if;
10152 -- Nothing to do if bounds are all static and we can tell that the
10153 -- expression is within the bounds of the target. Note that if the
10154 -- operand is of an unconstrained floating-point type, then we do
10155 -- not trust it to be in range (might be infinite)
10157 declare
10158 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10159 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
10161 begin
10162 if (not Is_Floating_Point_Type (Xtyp)
10163 or else Is_Constrained (Xtyp))
10164 and then Compile_Time_Known_Value (S_Lo)
10165 and then Compile_Time_Known_Value (S_Hi)
10166 and then Compile_Time_Known_Value (Hi)
10167 and then Compile_Time_Known_Value (Lo)
10168 then
10169 declare
10170 D_Lov : constant Ureal := Expr_Value_R (Lo);
10171 D_Hiv : constant Ureal := Expr_Value_R (Hi);
10172 S_Lov : Ureal;
10173 S_Hiv : Ureal;
10175 begin
10176 if Is_Real_Type (Xtyp) then
10177 S_Lov := Expr_Value_R (S_Lo);
10178 S_Hiv := Expr_Value_R (S_Hi);
10179 else
10180 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10181 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10182 end if;
10184 if D_Hiv > D_Lov
10185 and then S_Lov >= D_Lov
10186 and then S_Hiv <= D_Hiv
10187 then
10188 -- Unset the range check flag on the current value of
10189 -- Expression (N), since the captured Operand may have
10190 -- been rewritten (such as for the case of a conversion
10191 -- to a fixed-point type).
10193 Set_Do_Range_Check (Expression (N), False);
10195 return;
10196 end if;
10197 end;
10198 end if;
10199 end;
10201 -- For float to float conversions, we are done
10203 if Is_Floating_Point_Type (Xtyp)
10204 and then
10205 Is_Floating_Point_Type (Btyp)
10206 then
10207 return;
10208 end if;
10210 -- Otherwise rewrite the conversion as described above
10212 Conv := Relocate_Node (N);
10213 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
10214 Set_Etype (Conv, Btyp);
10216 -- Enable overflow except for case of integer to float conversions,
10217 -- where it is never required, since we can never have overflow in
10218 -- this case.
10220 if not Is_Integer_Type (Etype (Operand)) then
10221 Enable_Overflow_Check (Conv);
10222 end if;
10224 Tnn := Make_Temporary (Loc, 'T', Conv);
10226 Insert_Actions (N, New_List (
10227 Make_Object_Declaration (Loc,
10228 Defining_Identifier => Tnn,
10229 Object_Definition => New_Occurrence_Of (Btyp, Loc),
10230 Constant_Present => True,
10231 Expression => Conv),
10233 Make_Raise_Constraint_Error (Loc,
10234 Condition =>
10235 Make_Or_Else (Loc,
10236 Left_Opnd =>
10237 Make_Op_Lt (Loc,
10238 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10239 Right_Opnd =>
10240 Make_Attribute_Reference (Loc,
10241 Attribute_Name => Name_First,
10242 Prefix =>
10243 New_Occurrence_Of (Target_Type, Loc))),
10245 Right_Opnd =>
10246 Make_Op_Gt (Loc,
10247 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
10248 Right_Opnd =>
10249 Make_Attribute_Reference (Loc,
10250 Attribute_Name => Name_Last,
10251 Prefix =>
10252 New_Occurrence_Of (Target_Type, Loc)))),
10253 Reason => CE_Range_Check_Failed)));
10255 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10256 Analyze_And_Resolve (N, Btyp);
10257 end Real_Range_Check;
10259 -----------------------------
10260 -- Has_Extra_Accessibility --
10261 -----------------------------
10263 -- Returns true for a formal of an anonymous access type or for
10264 -- an Ada 2012-style stand-alone object of an anonymous access type.
10266 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10267 begin
10268 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10269 return Present (Effective_Extra_Accessibility (Id));
10270 else
10271 return False;
10272 end if;
10273 end Has_Extra_Accessibility;
10275 -- Start of processing for Expand_N_Type_Conversion
10277 begin
10278 -- First remove check marks put by the semantic analysis on the type
10279 -- conversion between array types. We need these checks, and they will
10280 -- be generated by this expansion routine, but we do not depend on these
10281 -- flags being set, and since we do intend to expand the checks in the
10282 -- front end, we don't want them on the tree passed to the back end.
10284 if Is_Array_Type (Target_Type) then
10285 if Is_Constrained (Target_Type) then
10286 Set_Do_Length_Check (N, False);
10287 else
10288 Set_Do_Range_Check (Operand, False);
10289 end if;
10290 end if;
10292 -- Nothing at all to do if conversion is to the identical type so remove
10293 -- the conversion completely, it is useless, except that it may carry
10294 -- an Assignment_OK attribute, which must be propagated to the operand.
10296 if Operand_Type = Target_Type then
10297 if Assignment_OK (N) then
10298 Set_Assignment_OK (Operand);
10299 end if;
10301 Rewrite (N, Relocate_Node (Operand));
10302 goto Done;
10303 end if;
10305 -- Nothing to do if this is the second argument of read. This is a
10306 -- "backwards" conversion that will be handled by the specialized code
10307 -- in attribute processing.
10309 if Nkind (Parent (N)) = N_Attribute_Reference
10310 and then Attribute_Name (Parent (N)) = Name_Read
10311 and then Next (First (Expressions (Parent (N)))) = N
10312 then
10313 goto Done;
10314 end if;
10316 -- Check for case of converting to a type that has an invariant
10317 -- associated with it. This required an invariant check. We convert
10319 -- typ (expr)
10321 -- into
10323 -- do invariant_check (typ (expr)) in typ (expr);
10325 -- using Duplicate_Subexpr to avoid multiple side effects
10327 -- Note: the Comes_From_Source check, and then the resetting of this
10328 -- flag prevents what would otherwise be an infinite recursion.
10330 if Has_Invariants (Target_Type)
10331 and then Present (Invariant_Procedure (Target_Type))
10332 and then Comes_From_Source (N)
10333 then
10334 Set_Comes_From_Source (N, False);
10335 Rewrite (N,
10336 Make_Expression_With_Actions (Loc,
10337 Actions => New_List (
10338 Make_Invariant_Call (Duplicate_Subexpr (N))),
10339 Expression => Duplicate_Subexpr_No_Checks (N)));
10340 Analyze_And_Resolve (N, Target_Type);
10341 goto Done;
10342 end if;
10344 -- Here if we may need to expand conversion
10346 -- If the operand of the type conversion is an arithmetic operation on
10347 -- signed integers, and the based type of the signed integer type in
10348 -- question is smaller than Standard.Integer, we promote both of the
10349 -- operands to type Integer.
10351 -- For example, if we have
10353 -- target-type (opnd1 + opnd2)
10355 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10356 -- this as:
10358 -- target-type (integer(opnd1) + integer(opnd2))
10360 -- We do this because we are always allowed to compute in a larger type
10361 -- if we do the right thing with the result, and in this case we are
10362 -- going to do a conversion which will do an appropriate check to make
10363 -- sure that things are in range of the target type in any case. This
10364 -- avoids some unnecessary intermediate overflows.
10366 -- We might consider a similar transformation in the case where the
10367 -- target is a real type or a 64-bit integer type, and the operand
10368 -- is an arithmetic operation using a 32-bit integer type. However,
10369 -- we do not bother with this case, because it could cause significant
10370 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
10371 -- much cheaper, but we don't want different behavior on 32-bit and
10372 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10373 -- handles the configurable run-time cases where 64-bit arithmetic
10374 -- may simply be unavailable.
10376 -- Note: this circuit is partially redundant with respect to the circuit
10377 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10378 -- the processing here. Also we still need the Checks circuit, since we
10379 -- have to be sure not to generate junk overflow checks in the first
10380 -- place, since it would be trick to remove them here.
10382 if Integer_Promotion_Possible (N) then
10384 -- All conditions met, go ahead with transformation
10386 declare
10387 Opnd : Node_Id;
10388 L, R : Node_Id;
10390 begin
10391 R :=
10392 Make_Type_Conversion (Loc,
10393 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10394 Expression => Relocate_Node (Right_Opnd (Operand)));
10396 Opnd := New_Op_Node (Nkind (Operand), Loc);
10397 Set_Right_Opnd (Opnd, R);
10399 if Nkind (Operand) in N_Binary_Op then
10400 L :=
10401 Make_Type_Conversion (Loc,
10402 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10403 Expression => Relocate_Node (Left_Opnd (Operand)));
10405 Set_Left_Opnd (Opnd, L);
10406 end if;
10408 Rewrite (N,
10409 Make_Type_Conversion (Loc,
10410 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10411 Expression => Opnd));
10413 Analyze_And_Resolve (N, Target_Type);
10414 goto Done;
10415 end;
10416 end if;
10418 -- Do validity check if validity checking operands
10420 if Validity_Checks_On and Validity_Check_Operands then
10421 Ensure_Valid (Operand);
10422 end if;
10424 -- Special case of converting from non-standard boolean type
10426 if Is_Boolean_Type (Operand_Type)
10427 and then (Nonzero_Is_True (Operand_Type))
10428 then
10429 Adjust_Condition (Operand);
10430 Set_Etype (Operand, Standard_Boolean);
10431 Operand_Type := Standard_Boolean;
10432 end if;
10434 -- Case of converting to an access type
10436 if Is_Access_Type (Target_Type) then
10438 -- Apply an accessibility check when the conversion operand is an
10439 -- access parameter (or a renaming thereof), unless conversion was
10440 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10441 -- Note that other checks may still need to be applied below (such
10442 -- as tagged type checks).
10444 if Is_Entity_Name (Operand)
10445 and then Has_Extra_Accessibility (Entity (Operand))
10446 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
10447 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10448 or else Attribute_Name (Original_Node (N)) = Name_Access)
10449 then
10450 Apply_Accessibility_Check
10451 (Operand, Target_Type, Insert_Node => Operand);
10453 -- If the level of the operand type is statically deeper than the
10454 -- level of the target type, then force Program_Error. Note that this
10455 -- can only occur for cases where the attribute is within the body of
10456 -- an instantiation, otherwise the conversion will already have been
10457 -- rejected as illegal.
10459 -- Note: warnings are issued by the analyzer for the instance cases
10461 elsif In_Instance_Body
10463 -- The case where the target type is an anonymous access type of
10464 -- a discriminant is excluded, because the level of such a type
10465 -- depends on the context and currently the level returned for such
10466 -- types is zero, resulting in warnings about about check failures
10467 -- in certain legal cases involving class-wide interfaces as the
10468 -- designated type (some cases, such as return statements, are
10469 -- checked at run time, but not clear if these are handled right
10470 -- in general, see 3.10.2(12/2-12.5/3) ???).
10472 and then
10473 not (Ekind (Target_Type) = E_Anonymous_Access_Type
10474 and then Present (Associated_Node_For_Itype (Target_Type))
10475 and then Nkind (Associated_Node_For_Itype (Target_Type)) =
10476 N_Discriminant_Specification)
10477 and then
10478 Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
10479 then
10480 Raise_Accessibility_Error;
10481 goto Done;
10483 -- When the operand is a selected access discriminant the check needs
10484 -- to be made against the level of the object denoted by the prefix
10485 -- of the selected name. Force Program_Error for this case as well
10486 -- (this accessibility violation can only happen if within the body
10487 -- of an instantiation).
10489 elsif In_Instance_Body
10490 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10491 and then Nkind (Operand) = N_Selected_Component
10492 and then Object_Access_Level (Operand) >
10493 Type_Access_Level (Target_Type)
10494 then
10495 Raise_Accessibility_Error;
10496 goto Done;
10497 end if;
10498 end if;
10500 -- Case of conversions of tagged types and access to tagged types
10502 -- When needed, that is to say when the expression is class-wide, Add
10503 -- runtime a tag check for (strict) downward conversion by using the
10504 -- membership test, generating:
10506 -- [constraint_error when Operand not in Target_Type'Class]
10508 -- or in the access type case
10510 -- [constraint_error
10511 -- when Operand /= null
10512 -- and then Operand.all not in
10513 -- Designated_Type (Target_Type)'Class]
10515 if (Is_Access_Type (Target_Type)
10516 and then Is_Tagged_Type (Designated_Type (Target_Type)))
10517 or else Is_Tagged_Type (Target_Type)
10518 then
10519 -- Do not do any expansion in the access type case if the parent is a
10520 -- renaming, since this is an error situation which will be caught by
10521 -- Sem_Ch8, and the expansion can interfere with this error check.
10523 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
10524 goto Done;
10525 end if;
10527 -- Otherwise, proceed with processing tagged conversion
10529 Tagged_Conversion : declare
10530 Actual_Op_Typ : Entity_Id;
10531 Actual_Targ_Typ : Entity_Id;
10532 Make_Conversion : Boolean := False;
10533 Root_Op_Typ : Entity_Id;
10535 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10536 -- Create a membership check to test whether Operand is a member
10537 -- of Targ_Typ. If the original Target_Type is an access, include
10538 -- a test for null value. The check is inserted at N.
10540 --------------------
10541 -- Make_Tag_Check --
10542 --------------------
10544 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10545 Cond : Node_Id;
10547 begin
10548 -- Generate:
10549 -- [Constraint_Error
10550 -- when Operand /= null
10551 -- and then Operand.all not in Targ_Typ]
10553 if Is_Access_Type (Target_Type) then
10554 Cond :=
10555 Make_And_Then (Loc,
10556 Left_Opnd =>
10557 Make_Op_Ne (Loc,
10558 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10559 Right_Opnd => Make_Null (Loc)),
10561 Right_Opnd =>
10562 Make_Not_In (Loc,
10563 Left_Opnd =>
10564 Make_Explicit_Dereference (Loc,
10565 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
10566 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
10568 -- Generate:
10569 -- [Constraint_Error when Operand not in Targ_Typ]
10571 else
10572 Cond :=
10573 Make_Not_In (Loc,
10574 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
10575 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
10576 end if;
10578 Insert_Action (N,
10579 Make_Raise_Constraint_Error (Loc,
10580 Condition => Cond,
10581 Reason => CE_Tag_Check_Failed));
10582 end Make_Tag_Check;
10584 -- Start of processing for Tagged_Conversion
10586 begin
10587 -- Handle entities from the limited view
10589 if Is_Access_Type (Operand_Type) then
10590 Actual_Op_Typ :=
10591 Available_View (Designated_Type (Operand_Type));
10592 else
10593 Actual_Op_Typ := Operand_Type;
10594 end if;
10596 if Is_Access_Type (Target_Type) then
10597 Actual_Targ_Typ :=
10598 Available_View (Designated_Type (Target_Type));
10599 else
10600 Actual_Targ_Typ := Target_Type;
10601 end if;
10603 Root_Op_Typ := Root_Type (Actual_Op_Typ);
10605 -- Ada 2005 (AI-251): Handle interface type conversion
10607 if Is_Interface (Actual_Op_Typ)
10608 or else
10609 Is_Interface (Actual_Targ_Typ)
10610 then
10611 Expand_Interface_Conversion (N);
10612 goto Done;
10613 end if;
10615 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
10617 -- Create a runtime tag check for a downward class-wide type
10618 -- conversion.
10620 if Is_Class_Wide_Type (Actual_Op_Typ)
10621 and then Actual_Op_Typ /= Actual_Targ_Typ
10622 and then Root_Op_Typ /= Actual_Targ_Typ
10623 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10624 Use_Full_View => True)
10625 then
10626 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10627 Make_Conversion := True;
10628 end if;
10630 -- AI05-0073: If the result subtype of the function is defined
10631 -- by an access_definition designating a specific tagged type
10632 -- T, a check is made that the result value is null or the tag
10633 -- of the object designated by the result value identifies T.
10634 -- Constraint_Error is raised if this check fails.
10636 if Nkind (Parent (N)) = N_Simple_Return_Statement then
10637 declare
10638 Func : Entity_Id;
10639 Func_Typ : Entity_Id;
10641 begin
10642 -- Climb scope stack looking for the enclosing function
10644 Func := Current_Scope;
10645 while Present (Func)
10646 and then Ekind (Func) /= E_Function
10647 loop
10648 Func := Scope (Func);
10649 end loop;
10651 -- The function's return subtype must be defined using
10652 -- an access definition.
10654 if Nkind (Result_Definition (Parent (Func))) =
10655 N_Access_Definition
10656 then
10657 Func_Typ := Directly_Designated_Type (Etype (Func));
10659 -- The return subtype denotes a specific tagged type,
10660 -- in other words, a non class-wide type.
10662 if Is_Tagged_Type (Func_Typ)
10663 and then not Is_Class_Wide_Type (Func_Typ)
10664 then
10665 Make_Tag_Check (Actual_Targ_Typ);
10666 Make_Conversion := True;
10667 end if;
10668 end if;
10669 end;
10670 end if;
10672 -- We have generated a tag check for either a class-wide type
10673 -- conversion or for AI05-0073.
10675 if Make_Conversion then
10676 declare
10677 Conv : Node_Id;
10678 begin
10679 Conv :=
10680 Make_Unchecked_Type_Conversion (Loc,
10681 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10682 Expression => Relocate_Node (Expression (N)));
10683 Rewrite (N, Conv);
10684 Analyze_And_Resolve (N, Target_Type);
10685 end;
10686 end if;
10687 end if;
10688 end Tagged_Conversion;
10690 -- Case of other access type conversions
10692 elsif Is_Access_Type (Target_Type) then
10693 Apply_Constraint_Check (Operand, Target_Type);
10695 -- Case of conversions from a fixed-point type
10697 -- These conversions require special expansion and processing, found in
10698 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10699 -- since from a semantic point of view, these are simple integer
10700 -- conversions, which do not need further processing.
10702 elsif Is_Fixed_Point_Type (Operand_Type)
10703 and then not Conversion_OK (N)
10704 then
10705 -- We should never see universal fixed at this case, since the
10706 -- expansion of the constituent divide or multiply should have
10707 -- eliminated the explicit mention of universal fixed.
10709 pragma Assert (Operand_Type /= Universal_Fixed);
10711 -- Check for special case of the conversion to universal real that
10712 -- occurs as a result of the use of a round attribute. In this case,
10713 -- the real type for the conversion is taken from the target type of
10714 -- the Round attribute and the result must be marked as rounded.
10716 if Target_Type = Universal_Real
10717 and then Nkind (Parent (N)) = N_Attribute_Reference
10718 and then Attribute_Name (Parent (N)) = Name_Round
10719 then
10720 Set_Rounded_Result (N);
10721 Set_Etype (N, Etype (Parent (N)));
10722 end if;
10724 -- Otherwise do correct fixed-conversion, but skip these if the
10725 -- Conversion_OK flag is set, because from a semantic point of view
10726 -- these are simple integer conversions needing no further processing
10727 -- (the backend will simply treat them as integers).
10729 if not Conversion_OK (N) then
10730 if Is_Fixed_Point_Type (Etype (N)) then
10731 Expand_Convert_Fixed_To_Fixed (N);
10732 Real_Range_Check;
10734 elsif Is_Integer_Type (Etype (N)) then
10735 Expand_Convert_Fixed_To_Integer (N);
10737 else
10738 pragma Assert (Is_Floating_Point_Type (Etype (N)));
10739 Expand_Convert_Fixed_To_Float (N);
10740 Real_Range_Check;
10741 end if;
10742 end if;
10744 -- Case of conversions to a fixed-point type
10746 -- These conversions require special expansion and processing, found in
10747 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10748 -- since from a semantic point of view, these are simple integer
10749 -- conversions, which do not need further processing.
10751 elsif Is_Fixed_Point_Type (Target_Type)
10752 and then not Conversion_OK (N)
10753 then
10754 if Is_Integer_Type (Operand_Type) then
10755 Expand_Convert_Integer_To_Fixed (N);
10756 Real_Range_Check;
10757 else
10758 pragma Assert (Is_Floating_Point_Type (Operand_Type));
10759 Expand_Convert_Float_To_Fixed (N);
10760 Real_Range_Check;
10761 end if;
10763 -- Case of float-to-integer conversions
10765 -- We also handle float-to-fixed conversions with Conversion_OK set
10766 -- since semantically the fixed-point target is treated as though it
10767 -- were an integer in such cases.
10769 elsif Is_Floating_Point_Type (Operand_Type)
10770 and then
10771 (Is_Integer_Type (Target_Type)
10772 or else
10773 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10774 then
10775 -- One more check here, gcc is still not able to do conversions of
10776 -- this type with proper overflow checking, and so gigi is doing an
10777 -- approximation of what is required by doing floating-point compares
10778 -- with the end-point. But that can lose precision in some cases, and
10779 -- give a wrong result. Converting the operand to Universal_Real is
10780 -- helpful, but still does not catch all cases with 64-bit integers
10781 -- on targets with only 64-bit floats.
10783 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10784 -- Can this code be removed ???
10786 if Do_Range_Check (Operand) then
10787 Rewrite (Operand,
10788 Make_Type_Conversion (Loc,
10789 Subtype_Mark =>
10790 New_Occurrence_Of (Universal_Real, Loc),
10791 Expression =>
10792 Relocate_Node (Operand)));
10794 Set_Etype (Operand, Universal_Real);
10795 Enable_Range_Check (Operand);
10796 Set_Do_Range_Check (Expression (Operand), False);
10797 end if;
10799 -- Case of array conversions
10801 -- Expansion of array conversions, add required length/range checks but
10802 -- only do this if there is no change of representation. For handling of
10803 -- this case, see Handle_Changed_Representation.
10805 elsif Is_Array_Type (Target_Type) then
10806 if Is_Constrained (Target_Type) then
10807 Apply_Length_Check (Operand, Target_Type);
10808 else
10809 Apply_Range_Check (Operand, Target_Type);
10810 end if;
10812 Handle_Changed_Representation;
10814 -- Case of conversions of discriminated types
10816 -- Add required discriminant checks if target is constrained. Again this
10817 -- change is skipped if we have a change of representation.
10819 elsif Has_Discriminants (Target_Type)
10820 and then Is_Constrained (Target_Type)
10821 then
10822 Apply_Discriminant_Check (Operand, Target_Type);
10823 Handle_Changed_Representation;
10825 -- Case of all other record conversions. The only processing required
10826 -- is to check for a change of representation requiring the special
10827 -- assignment processing.
10829 elsif Is_Record_Type (Target_Type) then
10831 -- Ada 2005 (AI-216): Program_Error is raised when converting from
10832 -- a derived Unchecked_Union type to an unconstrained type that is
10833 -- not Unchecked_Union if the operand lacks inferable discriminants.
10835 if Is_Derived_Type (Operand_Type)
10836 and then Is_Unchecked_Union (Base_Type (Operand_Type))
10837 and then not Is_Constrained (Target_Type)
10838 and then not Is_Unchecked_Union (Base_Type (Target_Type))
10839 and then not Has_Inferable_Discriminants (Operand)
10840 then
10841 -- To prevent Gigi from generating illegal code, we generate a
10842 -- Program_Error node, but we give it the target type of the
10843 -- conversion (is this requirement documented somewhere ???)
10845 declare
10846 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10847 Reason => PE_Unchecked_Union_Restriction);
10849 begin
10850 Set_Etype (PE, Target_Type);
10851 Rewrite (N, PE);
10853 end;
10854 else
10855 Handle_Changed_Representation;
10856 end if;
10858 -- Case of conversions of enumeration types
10860 elsif Is_Enumeration_Type (Target_Type) then
10862 -- Special processing is required if there is a change of
10863 -- representation (from enumeration representation clauses).
10865 if not Same_Representation (Target_Type, Operand_Type) then
10867 -- Convert: x(y) to x'val (ytyp'val (y))
10869 Rewrite (N,
10870 Make_Attribute_Reference (Loc,
10871 Prefix => New_Occurrence_Of (Target_Type, Loc),
10872 Attribute_Name => Name_Val,
10873 Expressions => New_List (
10874 Make_Attribute_Reference (Loc,
10875 Prefix => New_Occurrence_Of (Operand_Type, Loc),
10876 Attribute_Name => Name_Pos,
10877 Expressions => New_List (Operand)))));
10879 Analyze_And_Resolve (N, Target_Type);
10880 end if;
10882 -- Case of conversions to floating-point
10884 elsif Is_Floating_Point_Type (Target_Type) then
10885 Real_Range_Check;
10886 end if;
10888 -- At this stage, either the conversion node has been transformed into
10889 -- some other equivalent expression, or left as a conversion that can be
10890 -- handled by Gigi, in the following cases:
10892 -- Conversions with no change of representation or type
10894 -- Numeric conversions involving integer, floating- and fixed-point
10895 -- values. Fixed-point values are allowed only if Conversion_OK is
10896 -- set, i.e. if the fixed-point values are to be treated as integers.
10898 -- No other conversions should be passed to Gigi
10900 -- Check: are these rules stated in sinfo??? if so, why restate here???
10902 -- The only remaining step is to generate a range check if we still have
10903 -- a type conversion at this stage and Do_Range_Check is set. For now we
10904 -- do this only for conversions of discrete types and for float-to-float
10905 -- conversions.
10907 if Nkind (N) = N_Type_Conversion then
10909 -- For now we only support floating-point cases where both source
10910 -- and target are floating-point types. Conversions where the source
10911 -- and target involve integer or fixed-point types are still TBD,
10912 -- though not clear whether those can even happen at this point, due
10913 -- to transformations above. ???
10915 if Is_Floating_Point_Type (Etype (N))
10916 and then Is_Floating_Point_Type (Etype (Expression (N)))
10917 then
10918 if Do_Range_Check (Expression (N))
10919 and then Is_Floating_Point_Type (Target_Type)
10920 then
10921 Generate_Range_Check
10922 (Expression (N), Target_Type, CE_Range_Check_Failed);
10923 end if;
10925 -- Discrete-to-discrete conversions
10927 elsif Is_Discrete_Type (Etype (N)) then
10928 declare
10929 Expr : constant Node_Id := Expression (N);
10930 Ftyp : Entity_Id;
10931 Ityp : Entity_Id;
10933 begin
10934 if Do_Range_Check (Expr)
10935 and then Is_Discrete_Type (Etype (Expr))
10936 then
10937 Set_Do_Range_Check (Expr, False);
10939 -- Before we do a range check, we have to deal with treating
10940 -- a fixed-point operand as an integer. The way we do this
10941 -- is simply to do an unchecked conversion to an appropriate
10942 -- integer type large enough to hold the result.
10944 -- This code is not active yet, because we are only dealing
10945 -- with discrete types so far ???
10947 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10948 and then Treat_Fixed_As_Integer (Expr)
10949 then
10950 Ftyp := Base_Type (Etype (Expr));
10952 if Esize (Ftyp) >= Esize (Standard_Integer) then
10953 Ityp := Standard_Long_Long_Integer;
10954 else
10955 Ityp := Standard_Integer;
10956 end if;
10958 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10959 end if;
10961 -- Reset overflow flag, since the range check will include
10962 -- dealing with possible overflow, and generate the check.
10963 -- If Address is either a source type or target type,
10964 -- suppress range check to avoid typing anomalies when
10965 -- it is a visible integer type.
10967 Set_Do_Overflow_Check (N, False);
10969 if not Is_Descendent_Of_Address (Etype (Expr))
10970 and then not Is_Descendent_Of_Address (Target_Type)
10971 then
10972 Generate_Range_Check
10973 (Expr, Target_Type, CE_Range_Check_Failed);
10974 end if;
10975 end if;
10976 end;
10977 end if;
10978 end if;
10980 -- Here at end of processing
10982 <<Done>>
10983 -- Apply predicate check if required. Note that we can't just call
10984 -- Apply_Predicate_Check here, because the type looks right after
10985 -- the conversion and it would omit the check. The Comes_From_Source
10986 -- guard is necessary to prevent infinite recursions when we generate
10987 -- internal conversions for the purpose of checking predicates.
10989 if Present (Predicate_Function (Target_Type))
10990 and then Target_Type /= Operand_Type
10991 and then Comes_From_Source (N)
10992 then
10993 declare
10994 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
10996 begin
10997 -- Avoid infinite recursion on the subsequent expansion of
10998 -- of the copy of the original type conversion.
11000 Set_Comes_From_Source (New_Expr, False);
11001 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
11002 end;
11003 end if;
11004 end Expand_N_Type_Conversion;
11006 -----------------------------------
11007 -- Expand_N_Unchecked_Expression --
11008 -----------------------------------
11010 -- Remove the unchecked expression node from the tree. Its job was simply
11011 -- to make sure that its constituent expression was handled with checks
11012 -- off, and now that that is done, we can remove it from the tree, and
11013 -- indeed must, since Gigi does not expect to see these nodes.
11015 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
11016 Exp : constant Node_Id := Expression (N);
11017 begin
11018 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
11019 Rewrite (N, Exp);
11020 end Expand_N_Unchecked_Expression;
11022 ----------------------------------------
11023 -- Expand_N_Unchecked_Type_Conversion --
11024 ----------------------------------------
11026 -- If this cannot be handled by Gigi and we haven't already made a
11027 -- temporary for it, do it now.
11029 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
11030 Target_Type : constant Entity_Id := Etype (N);
11031 Operand : constant Node_Id := Expression (N);
11032 Operand_Type : constant Entity_Id := Etype (Operand);
11034 begin
11035 -- Nothing at all to do if conversion is to the identical type so remove
11036 -- the conversion completely, it is useless, except that it may carry
11037 -- an Assignment_OK indication which must be propagated to the operand.
11039 if Operand_Type = Target_Type then
11041 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11043 if Assignment_OK (N) then
11044 Set_Assignment_OK (Operand);
11045 end if;
11047 Rewrite (N, Relocate_Node (Operand));
11048 return;
11049 end if;
11051 -- If we have a conversion of a compile time known value to a target
11052 -- type and the value is in range of the target type, then we can simply
11053 -- replace the construct by an integer literal of the correct type. We
11054 -- only apply this to integer types being converted. Possibly it may
11055 -- apply in other cases, but it is too much trouble to worry about.
11057 -- Note that we do not do this transformation if the Kill_Range_Check
11058 -- flag is set, since then the value may be outside the expected range.
11059 -- This happens in the Normalize_Scalars case.
11061 -- We also skip this if either the target or operand type is biased
11062 -- because in this case, the unchecked conversion is supposed to
11063 -- preserve the bit pattern, not the integer value.
11065 if Is_Integer_Type (Target_Type)
11066 and then not Has_Biased_Representation (Target_Type)
11067 and then Is_Integer_Type (Operand_Type)
11068 and then not Has_Biased_Representation (Operand_Type)
11069 and then Compile_Time_Known_Value (Operand)
11070 and then not Kill_Range_Check (N)
11071 then
11072 declare
11073 Val : constant Uint := Expr_Value (Operand);
11075 begin
11076 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
11077 and then
11078 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
11079 and then
11080 Val >= Expr_Value (Type_Low_Bound (Target_Type))
11081 and then
11082 Val <= Expr_Value (Type_High_Bound (Target_Type))
11083 then
11084 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
11086 -- If Address is the target type, just set the type to avoid a
11087 -- spurious type error on the literal when Address is a visible
11088 -- integer type.
11090 if Is_Descendent_Of_Address (Target_Type) then
11091 Set_Etype (N, Target_Type);
11092 else
11093 Analyze_And_Resolve (N, Target_Type);
11094 end if;
11096 return;
11097 end if;
11098 end;
11099 end if;
11101 -- Nothing to do if conversion is safe
11103 if Safe_Unchecked_Type_Conversion (N) then
11104 return;
11105 end if;
11107 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11108 -- flag indicates ??? More comments needed here)
11110 if Assignment_OK (N) then
11111 null;
11112 else
11113 Force_Evaluation (N);
11114 end if;
11115 end Expand_N_Unchecked_Type_Conversion;
11117 ----------------------------
11118 -- Expand_Record_Equality --
11119 ----------------------------
11121 -- For non-variant records, Equality is expanded when needed into:
11123 -- and then Lhs.Discr1 = Rhs.Discr1
11124 -- and then ...
11125 -- and then Lhs.Discrn = Rhs.Discrn
11126 -- and then Lhs.Cmp1 = Rhs.Cmp1
11127 -- and then ...
11128 -- and then Lhs.Cmpn = Rhs.Cmpn
11130 -- The expression is folded by the back-end for adjacent fields. This
11131 -- function is called for tagged record in only one occasion: for imple-
11132 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11133 -- otherwise the primitive "=" is used directly.
11135 function Expand_Record_Equality
11136 (Nod : Node_Id;
11137 Typ : Entity_Id;
11138 Lhs : Node_Id;
11139 Rhs : Node_Id;
11140 Bodies : List_Id) return Node_Id
11142 Loc : constant Source_Ptr := Sloc (Nod);
11144 Result : Node_Id;
11145 C : Entity_Id;
11147 First_Time : Boolean := True;
11149 function Element_To_Compare (C : Entity_Id) return Entity_Id;
11150 -- Return the next discriminant or component to compare, starting with
11151 -- C, skipping inherited components.
11153 ------------------------
11154 -- Element_To_Compare --
11155 ------------------------
11157 function Element_To_Compare (C : Entity_Id) return Entity_Id is
11158 Comp : Entity_Id;
11160 begin
11161 Comp := C;
11162 loop
11163 -- Exit loop when the next element to be compared is found, or
11164 -- there is no more such element.
11166 exit when No (Comp);
11168 exit when Ekind_In (Comp, E_Discriminant, E_Component)
11169 and then not (
11171 -- Skip inherited components
11173 -- Note: for a tagged type, we always generate the "=" primitive
11174 -- for the base type (not on the first subtype), so the test for
11175 -- Comp /= Original_Record_Component (Comp) is True for
11176 -- inherited components only.
11178 (Is_Tagged_Type (Typ)
11179 and then Comp /= Original_Record_Component (Comp))
11181 -- Skip _Tag
11183 or else Chars (Comp) = Name_uTag
11185 -- The .NET/JVM version of type Root_Controlled contains two
11186 -- fields which should not be considered part of the object. To
11187 -- achieve proper equiality between two controlled objects on
11188 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11190 or else (Chars (Comp) = Name_uParent
11191 and then VM_Target /= No_VM
11192 and then Etype (Comp) = RTE (RE_Root_Controlled))
11194 -- Skip interface elements (secondary tags???)
11196 or else Is_Interface (Etype (Comp)));
11198 Next_Entity (Comp);
11199 end loop;
11201 return Comp;
11202 end Element_To_Compare;
11204 -- Start of processing for Expand_Record_Equality
11206 begin
11207 -- Generates the following code: (assuming that Typ has one Discr and
11208 -- component C2 is also a record)
11210 -- True
11211 -- and then Lhs.Discr1 = Rhs.Discr1
11212 -- and then Lhs.C1 = Rhs.C1
11213 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11214 -- and then ...
11215 -- and then Lhs.Cmpn = Rhs.Cmpn
11217 Result := New_Occurrence_Of (Standard_True, Loc);
11218 C := Element_To_Compare (First_Entity (Typ));
11219 while Present (C) loop
11220 declare
11221 New_Lhs : Node_Id;
11222 New_Rhs : Node_Id;
11223 Check : Node_Id;
11225 begin
11226 if First_Time then
11227 First_Time := False;
11228 New_Lhs := Lhs;
11229 New_Rhs := Rhs;
11230 else
11231 New_Lhs := New_Copy_Tree (Lhs);
11232 New_Rhs := New_Copy_Tree (Rhs);
11233 end if;
11235 Check :=
11236 Expand_Composite_Equality (Nod, Etype (C),
11237 Lhs =>
11238 Make_Selected_Component (Loc,
11239 Prefix => New_Lhs,
11240 Selector_Name => New_Occurrence_Of (C, Loc)),
11241 Rhs =>
11242 Make_Selected_Component (Loc,
11243 Prefix => New_Rhs,
11244 Selector_Name => New_Occurrence_Of (C, Loc)),
11245 Bodies => Bodies);
11247 -- If some (sub)component is an unchecked_union, the whole
11248 -- operation will raise program error.
11250 if Nkind (Check) = N_Raise_Program_Error then
11251 Result := Check;
11252 Set_Etype (Result, Standard_Boolean);
11253 exit;
11254 else
11255 Result :=
11256 Make_And_Then (Loc,
11257 Left_Opnd => Result,
11258 Right_Opnd => Check);
11259 end if;
11260 end;
11262 C := Element_To_Compare (Next_Entity (C));
11263 end loop;
11265 return Result;
11266 end Expand_Record_Equality;
11268 ---------------------------
11269 -- Expand_Set_Membership --
11270 ---------------------------
11272 procedure Expand_Set_Membership (N : Node_Id) is
11273 Lop : constant Node_Id := Left_Opnd (N);
11274 Alt : Node_Id;
11275 Res : Node_Id;
11277 function Make_Cond (Alt : Node_Id) return Node_Id;
11278 -- If the alternative is a subtype mark, create a simple membership
11279 -- test. Otherwise create an equality test for it.
11281 ---------------
11282 -- Make_Cond --
11283 ---------------
11285 function Make_Cond (Alt : Node_Id) return Node_Id is
11286 Cond : Node_Id;
11287 L : constant Node_Id := New_Copy (Lop);
11288 R : constant Node_Id := Relocate_Node (Alt);
11290 begin
11291 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11292 or else Nkind (Alt) = N_Range
11293 then
11294 Cond :=
11295 Make_In (Sloc (Alt),
11296 Left_Opnd => L,
11297 Right_Opnd => R);
11298 else
11299 Cond :=
11300 Make_Op_Eq (Sloc (Alt),
11301 Left_Opnd => L,
11302 Right_Opnd => R);
11303 end if;
11305 return Cond;
11306 end Make_Cond;
11308 -- Start of processing for Expand_Set_Membership
11310 begin
11311 Remove_Side_Effects (Lop);
11313 Alt := Last (Alternatives (N));
11314 Res := Make_Cond (Alt);
11316 Prev (Alt);
11317 while Present (Alt) loop
11318 Res :=
11319 Make_Or_Else (Sloc (Alt),
11320 Left_Opnd => Make_Cond (Alt),
11321 Right_Opnd => Res);
11322 Prev (Alt);
11323 end loop;
11325 Rewrite (N, Res);
11326 Analyze_And_Resolve (N, Standard_Boolean);
11327 end Expand_Set_Membership;
11329 -----------------------------------
11330 -- Expand_Short_Circuit_Operator --
11331 -----------------------------------
11333 -- Deal with special expansion if actions are present for the right operand
11334 -- and deal with optimizing case of arguments being True or False. We also
11335 -- deal with the special case of non-standard boolean values.
11337 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11338 Loc : constant Source_Ptr := Sloc (N);
11339 Typ : constant Entity_Id := Etype (N);
11340 Left : constant Node_Id := Left_Opnd (N);
11341 Right : constant Node_Id := Right_Opnd (N);
11342 LocR : constant Source_Ptr := Sloc (Right);
11343 Actlist : List_Id;
11345 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11346 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11347 -- If Left = Shortcut_Value then Right need not be evaluated
11349 begin
11350 -- Deal with non-standard booleans
11352 if Is_Boolean_Type (Typ) then
11353 Adjust_Condition (Left);
11354 Adjust_Condition (Right);
11355 Set_Etype (N, Standard_Boolean);
11356 end if;
11358 -- Check for cases where left argument is known to be True or False
11360 if Compile_Time_Known_Value (Left) then
11362 -- Mark SCO for left condition as compile time known
11364 if Generate_SCO and then Comes_From_Source (Left) then
11365 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11366 end if;
11368 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11369 -- Any actions associated with Right will be executed unconditionally
11370 -- and can thus be inserted into the tree unconditionally.
11372 if Expr_Value_E (Left) /= Shortcut_Ent then
11373 if Present (Actions (N)) then
11374 Insert_Actions (N, Actions (N));
11375 end if;
11377 Rewrite (N, Right);
11379 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11380 -- In this case we can forget the actions associated with Right,
11381 -- since they will never be executed.
11383 else
11384 Kill_Dead_Code (Right);
11385 Kill_Dead_Code (Actions (N));
11386 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11387 end if;
11389 Adjust_Result_Type (N, Typ);
11390 return;
11391 end if;
11393 -- If Actions are present for the right operand, we have to do some
11394 -- special processing. We can't just let these actions filter back into
11395 -- code preceding the short circuit (which is what would have happened
11396 -- if we had not trapped them in the short-circuit form), since they
11397 -- must only be executed if the right operand of the short circuit is
11398 -- executed and not otherwise.
11400 if Present (Actions (N)) then
11401 Actlist := Actions (N);
11403 -- We now use an Expression_With_Actions node for the right operand
11404 -- of the short-circuit form. Note that this solves the traceability
11405 -- problems for coverage analysis.
11407 Rewrite (Right,
11408 Make_Expression_With_Actions (LocR,
11409 Expression => Relocate_Node (Right),
11410 Actions => Actlist));
11411 Set_Actions (N, No_List);
11412 Analyze_And_Resolve (Right, Standard_Boolean);
11414 Adjust_Result_Type (N, Typ);
11415 return;
11416 end if;
11418 -- No actions present, check for cases of right argument True/False
11420 if Compile_Time_Known_Value (Right) then
11422 -- Mark SCO for left condition as compile time known
11424 if Generate_SCO and then Comes_From_Source (Right) then
11425 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11426 end if;
11428 -- Change (Left and then True), (Left or else False) to Left.
11429 -- Note that we know there are no actions associated with the right
11430 -- operand, since we just checked for this case above.
11432 if Expr_Value_E (Right) /= Shortcut_Ent then
11433 Rewrite (N, Left);
11435 -- Change (Left and then False), (Left or else True) to Right,
11436 -- making sure to preserve any side effects associated with the Left
11437 -- operand.
11439 else
11440 Remove_Side_Effects (Left);
11441 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11442 end if;
11443 end if;
11445 Adjust_Result_Type (N, Typ);
11446 end Expand_Short_Circuit_Operator;
11448 -------------------------------------
11449 -- Fixup_Universal_Fixed_Operation --
11450 -------------------------------------
11452 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11453 Conv : constant Node_Id := Parent (N);
11455 begin
11456 -- We must have a type conversion immediately above us
11458 pragma Assert (Nkind (Conv) = N_Type_Conversion);
11460 -- Normally the type conversion gives our target type. The exception
11461 -- occurs in the case of the Round attribute, where the conversion
11462 -- will be to universal real, and our real type comes from the Round
11463 -- attribute (as well as an indication that we must round the result)
11465 if Nkind (Parent (Conv)) = N_Attribute_Reference
11466 and then Attribute_Name (Parent (Conv)) = Name_Round
11467 then
11468 Set_Etype (N, Etype (Parent (Conv)));
11469 Set_Rounded_Result (N);
11471 -- Normal case where type comes from conversion above us
11473 else
11474 Set_Etype (N, Etype (Conv));
11475 end if;
11476 end Fixup_Universal_Fixed_Operation;
11478 ---------------------------------
11479 -- Has_Inferable_Discriminants --
11480 ---------------------------------
11482 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11484 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11485 -- Determines whether the left-most prefix of a selected component is a
11486 -- formal parameter in a subprogram. Assumes N is a selected component.
11488 --------------------------------
11489 -- Prefix_Is_Formal_Parameter --
11490 --------------------------------
11492 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
11493 Sel_Comp : Node_Id;
11495 begin
11496 -- Move to the left-most prefix by climbing up the tree
11498 Sel_Comp := N;
11499 while Present (Parent (Sel_Comp))
11500 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11501 loop
11502 Sel_Comp := Parent (Sel_Comp);
11503 end loop;
11505 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11506 end Prefix_Is_Formal_Parameter;
11508 -- Start of processing for Has_Inferable_Discriminants
11510 begin
11511 -- For selected components, the subtype of the selector must be a
11512 -- constrained Unchecked_Union. If the component is subject to a
11513 -- per-object constraint, then the enclosing object must have inferable
11514 -- discriminants.
11516 if Nkind (N) = N_Selected_Component then
11517 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11519 -- A small hack. If we have a per-object constrained selected
11520 -- component of a formal parameter, return True since we do not
11521 -- know the actual parameter association yet.
11523 if Prefix_Is_Formal_Parameter (N) then
11524 return True;
11526 -- Otherwise, check the enclosing object and the selector
11528 else
11529 return Has_Inferable_Discriminants (Prefix (N))
11530 and then Has_Inferable_Discriminants (Selector_Name (N));
11531 end if;
11533 -- The call to Has_Inferable_Discriminants will determine whether
11534 -- the selector has a constrained Unchecked_Union nominal type.
11536 else
11537 return Has_Inferable_Discriminants (Selector_Name (N));
11538 end if;
11540 -- A qualified expression has inferable discriminants if its subtype
11541 -- mark is a constrained Unchecked_Union subtype.
11543 elsif Nkind (N) = N_Qualified_Expression then
11544 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
11545 and then Is_Constrained (Etype (Subtype_Mark (N)));
11547 -- For all other names, it is sufficient to have a constrained
11548 -- Unchecked_Union nominal subtype.
11550 else
11551 return Is_Unchecked_Union (Base_Type (Etype (N)))
11552 and then Is_Constrained (Etype (N));
11553 end if;
11554 end Has_Inferable_Discriminants;
11556 -------------------------------
11557 -- Insert_Dereference_Action --
11558 -------------------------------
11560 procedure Insert_Dereference_Action (N : Node_Id) is
11562 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
11563 -- Return true if type of P is derived from Checked_Pool;
11565 -----------------------------
11566 -- Is_Checked_Storage_Pool --
11567 -----------------------------
11569 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11570 T : Entity_Id;
11572 begin
11573 if No (P) then
11574 return False;
11575 end if;
11577 T := Etype (P);
11578 while T /= Etype (T) loop
11579 if Is_RTE (T, RE_Checked_Pool) then
11580 return True;
11581 else
11582 T := Etype (T);
11583 end if;
11584 end loop;
11586 return False;
11587 end Is_Checked_Storage_Pool;
11589 -- Local variables
11591 Typ : constant Entity_Id := Etype (N);
11592 Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
11593 Loc : constant Source_Ptr := Sloc (N);
11594 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
11595 Pnod : constant Node_Id := Parent (N);
11597 Addr : Entity_Id;
11598 Alig : Entity_Id;
11599 Deref : Node_Id;
11600 Size : Entity_Id;
11601 Size_Bits : Node_Id;
11602 Stmt : Node_Id;
11604 -- Start of processing for Insert_Dereference_Action
11606 begin
11607 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11609 -- Do not re-expand a dereference which has already been processed by
11610 -- this routine.
11612 if Has_Dereference_Action (Pnod) then
11613 return;
11615 -- Do not perform this type of expansion for internally-generated
11616 -- dereferences.
11618 elsif not Comes_From_Source (Original_Node (Pnod)) then
11619 return;
11621 -- A dereference action is only applicable to objects which have been
11622 -- allocated on a checked pool.
11624 elsif not Is_Checked_Storage_Pool (Pool) then
11625 return;
11626 end if;
11628 -- Extract the address of the dereferenced object. Generate:
11630 -- Addr : System.Address := <N>'Pool_Address;
11632 Addr := Make_Temporary (Loc, 'P');
11634 Insert_Action (N,
11635 Make_Object_Declaration (Loc,
11636 Defining_Identifier => Addr,
11637 Object_Definition =>
11638 New_Occurrence_Of (RTE (RE_Address), Loc),
11639 Expression =>
11640 Make_Attribute_Reference (Loc,
11641 Prefix => Duplicate_Subexpr_Move_Checks (N),
11642 Attribute_Name => Name_Pool_Address)));
11644 -- Calculate the size of the dereferenced object. Generate:
11646 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11648 Deref :=
11649 Make_Explicit_Dereference (Loc,
11650 Prefix => Duplicate_Subexpr_Move_Checks (N));
11651 Set_Has_Dereference_Action (Deref);
11653 Size_Bits :=
11654 Make_Attribute_Reference (Loc,
11655 Prefix => Deref,
11656 Attribute_Name => Name_Size);
11658 -- Special case of an unconstrained array: need to add descriptor size
11660 if Is_Array_Type (Desig)
11661 and then not Is_Constrained (First_Subtype (Desig))
11662 then
11663 Size_Bits :=
11664 Make_Op_Add (Loc,
11665 Left_Opnd =>
11666 Make_Attribute_Reference (Loc,
11667 Prefix =>
11668 New_Occurrence_Of (First_Subtype (Desig), Loc),
11669 Attribute_Name => Name_Descriptor_Size),
11670 Right_Opnd => Size_Bits);
11671 end if;
11673 Size := Make_Temporary (Loc, 'S');
11674 Insert_Action (N,
11675 Make_Object_Declaration (Loc,
11676 Defining_Identifier => Size,
11677 Object_Definition =>
11678 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11679 Expression =>
11680 Make_Op_Divide (Loc,
11681 Left_Opnd => Size_Bits,
11682 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
11684 -- Calculate the alignment of the dereferenced object. Generate:
11685 -- Alig : constant Storage_Count := <N>.all'Alignment;
11687 Deref :=
11688 Make_Explicit_Dereference (Loc,
11689 Prefix => Duplicate_Subexpr_Move_Checks (N));
11690 Set_Has_Dereference_Action (Deref);
11692 Alig := Make_Temporary (Loc, 'A');
11693 Insert_Action (N,
11694 Make_Object_Declaration (Loc,
11695 Defining_Identifier => Alig,
11696 Object_Definition =>
11697 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11698 Expression =>
11699 Make_Attribute_Reference (Loc,
11700 Prefix => Deref,
11701 Attribute_Name => Name_Alignment)));
11703 -- A dereference of a controlled object requires special processing. The
11704 -- finalization machinery requests additional space from the underlying
11705 -- pool to allocate and hide two pointers. As a result, a checked pool
11706 -- may mark the wrong memory as valid. Since checked pools do not have
11707 -- knowledge of hidden pointers, we have to bring the two pointers back
11708 -- in view in order to restore the original state of the object.
11710 if Needs_Finalization (Desig) then
11712 -- Adjust the address and size of the dereferenced object. Generate:
11713 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11715 Stmt :=
11716 Make_Procedure_Call_Statement (Loc,
11717 Name =>
11718 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
11719 Parameter_Associations => New_List (
11720 New_Occurrence_Of (Addr, Loc),
11721 New_Occurrence_Of (Size, Loc),
11722 New_Occurrence_Of (Alig, Loc)));
11724 -- Class-wide types complicate things because we cannot determine
11725 -- statically whether the actual object is truly controlled. We must
11726 -- generate a runtime check to detect this property. Generate:
11728 -- if Needs_Finalization (<N>.all'Tag) then
11729 -- <Stmt>;
11730 -- end if;
11732 if Is_Class_Wide_Type (Desig) then
11733 Deref :=
11734 Make_Explicit_Dereference (Loc,
11735 Prefix => Duplicate_Subexpr_Move_Checks (N));
11736 Set_Has_Dereference_Action (Deref);
11738 Stmt :=
11739 Make_Implicit_If_Statement (N,
11740 Condition =>
11741 Make_Function_Call (Loc,
11742 Name =>
11743 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
11744 Parameter_Associations => New_List (
11745 Make_Attribute_Reference (Loc,
11746 Prefix => Deref,
11747 Attribute_Name => Name_Tag))),
11748 Then_Statements => New_List (Stmt));
11749 end if;
11751 Insert_Action (N, Stmt);
11752 end if;
11754 -- Generate:
11755 -- Dereference (Pool, Addr, Size, Alig);
11757 Insert_Action (N,
11758 Make_Procedure_Call_Statement (Loc,
11759 Name =>
11760 New_Occurrence_Of
11761 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11762 Parameter_Associations => New_List (
11763 New_Occurrence_Of (Pool, Loc),
11764 New_Occurrence_Of (Addr, Loc),
11765 New_Occurrence_Of (Size, Loc),
11766 New_Occurrence_Of (Alig, Loc))));
11768 -- Mark the explicit dereference as processed to avoid potential
11769 -- infinite expansion.
11771 Set_Has_Dereference_Action (Pnod);
11773 exception
11774 when RE_Not_Available =>
11775 return;
11776 end Insert_Dereference_Action;
11778 --------------------------------
11779 -- Integer_Promotion_Possible --
11780 --------------------------------
11782 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11783 Operand : constant Node_Id := Expression (N);
11784 Operand_Type : constant Entity_Id := Etype (Operand);
11785 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11787 begin
11788 pragma Assert (Nkind (N) = N_Type_Conversion);
11790 return
11792 -- We only do the transformation for source constructs. We assume
11793 -- that the expander knows what it is doing when it generates code.
11795 Comes_From_Source (N)
11797 -- If the operand type is Short_Integer or Short_Short_Integer,
11798 -- then we will promote to Integer, which is available on all
11799 -- targets, and is sufficient to ensure no intermediate overflow.
11800 -- Furthermore it is likely to be as efficient or more efficient
11801 -- than using the smaller type for the computation so we do this
11802 -- unconditionally.
11804 and then
11805 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
11806 or else
11807 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11809 -- Test for interesting operation, which includes addition,
11810 -- division, exponentiation, multiplication, subtraction, absolute
11811 -- value and unary negation. Unary "+" is omitted since it is a
11812 -- no-op and thus can't overflow.
11814 and then Nkind_In (Operand, N_Op_Abs,
11815 N_Op_Add,
11816 N_Op_Divide,
11817 N_Op_Expon,
11818 N_Op_Minus,
11819 N_Op_Multiply,
11820 N_Op_Subtract);
11821 end Integer_Promotion_Possible;
11823 ------------------------------
11824 -- Make_Array_Comparison_Op --
11825 ------------------------------
11827 -- This is a hand-coded expansion of the following generic function:
11829 -- generic
11830 -- type elem is (<>);
11831 -- type index is (<>);
11832 -- type a is array (index range <>) of elem;
11834 -- function Gnnn (X : a; Y: a) return boolean is
11835 -- J : index := Y'first;
11837 -- begin
11838 -- if X'length = 0 then
11839 -- return false;
11841 -- elsif Y'length = 0 then
11842 -- return true;
11844 -- else
11845 -- for I in X'range loop
11846 -- if X (I) = Y (J) then
11847 -- if J = Y'last then
11848 -- exit;
11849 -- else
11850 -- J := index'succ (J);
11851 -- end if;
11853 -- else
11854 -- return X (I) > Y (J);
11855 -- end if;
11856 -- end loop;
11858 -- return X'length > Y'length;
11859 -- end if;
11860 -- end Gnnn;
11862 -- Note that since we are essentially doing this expansion by hand, we
11863 -- do not need to generate an actual or formal generic part, just the
11864 -- instantiated function itself.
11866 -- Perhaps we could have the actual generic available in the run-time,
11867 -- obtained by rtsfind, and actually expand a real instantiation ???
11869 function Make_Array_Comparison_Op
11870 (Typ : Entity_Id;
11871 Nod : Node_Id) return Node_Id
11873 Loc : constant Source_Ptr := Sloc (Nod);
11875 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11876 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11877 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11878 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11880 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11882 Loop_Statement : Node_Id;
11883 Loop_Body : Node_Id;
11884 If_Stat : Node_Id;
11885 Inner_If : Node_Id;
11886 Final_Expr : Node_Id;
11887 Func_Body : Node_Id;
11888 Func_Name : Entity_Id;
11889 Formals : List_Id;
11890 Length1 : Node_Id;
11891 Length2 : Node_Id;
11893 begin
11894 -- if J = Y'last then
11895 -- exit;
11896 -- else
11897 -- J := index'succ (J);
11898 -- end if;
11900 Inner_If :=
11901 Make_Implicit_If_Statement (Nod,
11902 Condition =>
11903 Make_Op_Eq (Loc,
11904 Left_Opnd => New_Occurrence_Of (J, Loc),
11905 Right_Opnd =>
11906 Make_Attribute_Reference (Loc,
11907 Prefix => New_Occurrence_Of (Y, Loc),
11908 Attribute_Name => Name_Last)),
11910 Then_Statements => New_List (
11911 Make_Exit_Statement (Loc)),
11913 Else_Statements =>
11914 New_List (
11915 Make_Assignment_Statement (Loc,
11916 Name => New_Occurrence_Of (J, Loc),
11917 Expression =>
11918 Make_Attribute_Reference (Loc,
11919 Prefix => New_Occurrence_Of (Index, Loc),
11920 Attribute_Name => Name_Succ,
11921 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
11923 -- if X (I) = Y (J) then
11924 -- if ... end if;
11925 -- else
11926 -- return X (I) > Y (J);
11927 -- end if;
11929 Loop_Body :=
11930 Make_Implicit_If_Statement (Nod,
11931 Condition =>
11932 Make_Op_Eq (Loc,
11933 Left_Opnd =>
11934 Make_Indexed_Component (Loc,
11935 Prefix => New_Occurrence_Of (X, Loc),
11936 Expressions => New_List (New_Occurrence_Of (I, Loc))),
11938 Right_Opnd =>
11939 Make_Indexed_Component (Loc,
11940 Prefix => New_Occurrence_Of (Y, Loc),
11941 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
11943 Then_Statements => New_List (Inner_If),
11945 Else_Statements => New_List (
11946 Make_Simple_Return_Statement (Loc,
11947 Expression =>
11948 Make_Op_Gt (Loc,
11949 Left_Opnd =>
11950 Make_Indexed_Component (Loc,
11951 Prefix => New_Occurrence_Of (X, Loc),
11952 Expressions => New_List (New_Occurrence_Of (I, Loc))),
11954 Right_Opnd =>
11955 Make_Indexed_Component (Loc,
11956 Prefix => New_Occurrence_Of (Y, Loc),
11957 Expressions => New_List (
11958 New_Occurrence_Of (J, Loc)))))));
11960 -- for I in X'range loop
11961 -- if ... end if;
11962 -- end loop;
11964 Loop_Statement :=
11965 Make_Implicit_Loop_Statement (Nod,
11966 Identifier => Empty,
11968 Iteration_Scheme =>
11969 Make_Iteration_Scheme (Loc,
11970 Loop_Parameter_Specification =>
11971 Make_Loop_Parameter_Specification (Loc,
11972 Defining_Identifier => I,
11973 Discrete_Subtype_Definition =>
11974 Make_Attribute_Reference (Loc,
11975 Prefix => New_Occurrence_Of (X, Loc),
11976 Attribute_Name => Name_Range))),
11978 Statements => New_List (Loop_Body));
11980 -- if X'length = 0 then
11981 -- return false;
11982 -- elsif Y'length = 0 then
11983 -- return true;
11984 -- else
11985 -- for ... loop ... end loop;
11986 -- return X'length > Y'length;
11987 -- end if;
11989 Length1 :=
11990 Make_Attribute_Reference (Loc,
11991 Prefix => New_Occurrence_Of (X, Loc),
11992 Attribute_Name => Name_Length);
11994 Length2 :=
11995 Make_Attribute_Reference (Loc,
11996 Prefix => New_Occurrence_Of (Y, Loc),
11997 Attribute_Name => Name_Length);
11999 Final_Expr :=
12000 Make_Op_Gt (Loc,
12001 Left_Opnd => Length1,
12002 Right_Opnd => Length2);
12004 If_Stat :=
12005 Make_Implicit_If_Statement (Nod,
12006 Condition =>
12007 Make_Op_Eq (Loc,
12008 Left_Opnd =>
12009 Make_Attribute_Reference (Loc,
12010 Prefix => New_Occurrence_Of (X, Loc),
12011 Attribute_Name => Name_Length),
12012 Right_Opnd =>
12013 Make_Integer_Literal (Loc, 0)),
12015 Then_Statements =>
12016 New_List (
12017 Make_Simple_Return_Statement (Loc,
12018 Expression => New_Occurrence_Of (Standard_False, Loc))),
12020 Elsif_Parts => New_List (
12021 Make_Elsif_Part (Loc,
12022 Condition =>
12023 Make_Op_Eq (Loc,
12024 Left_Opnd =>
12025 Make_Attribute_Reference (Loc,
12026 Prefix => New_Occurrence_Of (Y, Loc),
12027 Attribute_Name => Name_Length),
12028 Right_Opnd =>
12029 Make_Integer_Literal (Loc, 0)),
12031 Then_Statements =>
12032 New_List (
12033 Make_Simple_Return_Statement (Loc,
12034 Expression => New_Occurrence_Of (Standard_True, Loc))))),
12036 Else_Statements => New_List (
12037 Loop_Statement,
12038 Make_Simple_Return_Statement (Loc,
12039 Expression => Final_Expr)));
12041 -- (X : a; Y: a)
12043 Formals := New_List (
12044 Make_Parameter_Specification (Loc,
12045 Defining_Identifier => X,
12046 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
12048 Make_Parameter_Specification (Loc,
12049 Defining_Identifier => Y,
12050 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
12052 -- function Gnnn (...) return boolean is
12053 -- J : index := Y'first;
12054 -- begin
12055 -- if ... end if;
12056 -- end Gnnn;
12058 Func_Name := Make_Temporary (Loc, 'G');
12060 Func_Body :=
12061 Make_Subprogram_Body (Loc,
12062 Specification =>
12063 Make_Function_Specification (Loc,
12064 Defining_Unit_Name => Func_Name,
12065 Parameter_Specifications => Formals,
12066 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
12068 Declarations => New_List (
12069 Make_Object_Declaration (Loc,
12070 Defining_Identifier => J,
12071 Object_Definition => New_Occurrence_Of (Index, Loc),
12072 Expression =>
12073 Make_Attribute_Reference (Loc,
12074 Prefix => New_Occurrence_Of (Y, Loc),
12075 Attribute_Name => Name_First))),
12077 Handled_Statement_Sequence =>
12078 Make_Handled_Sequence_Of_Statements (Loc,
12079 Statements => New_List (If_Stat)));
12081 return Func_Body;
12082 end Make_Array_Comparison_Op;
12084 ---------------------------
12085 -- Make_Boolean_Array_Op --
12086 ---------------------------
12088 -- For logical operations on boolean arrays, expand in line the following,
12089 -- replacing 'and' with 'or' or 'xor' where needed:
12091 -- function Annn (A : typ; B: typ) return typ is
12092 -- C : typ;
12093 -- begin
12094 -- for J in A'range loop
12095 -- C (J) := A (J) op B (J);
12096 -- end loop;
12097 -- return C;
12098 -- end Annn;
12100 -- Here typ is the boolean array type
12102 function Make_Boolean_Array_Op
12103 (Typ : Entity_Id;
12104 N : Node_Id) return Node_Id
12106 Loc : constant Source_Ptr := Sloc (N);
12108 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12109 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12110 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12111 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12113 A_J : Node_Id;
12114 B_J : Node_Id;
12115 C_J : Node_Id;
12116 Op : Node_Id;
12118 Formals : List_Id;
12119 Func_Name : Entity_Id;
12120 Func_Body : Node_Id;
12121 Loop_Statement : Node_Id;
12123 begin
12124 A_J :=
12125 Make_Indexed_Component (Loc,
12126 Prefix => New_Occurrence_Of (A, Loc),
12127 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12129 B_J :=
12130 Make_Indexed_Component (Loc,
12131 Prefix => New_Occurrence_Of (B, Loc),
12132 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12134 C_J :=
12135 Make_Indexed_Component (Loc,
12136 Prefix => New_Occurrence_Of (C, Loc),
12137 Expressions => New_List (New_Occurrence_Of (J, Loc)));
12139 if Nkind (N) = N_Op_And then
12140 Op :=
12141 Make_Op_And (Loc,
12142 Left_Opnd => A_J,
12143 Right_Opnd => B_J);
12145 elsif Nkind (N) = N_Op_Or then
12146 Op :=
12147 Make_Op_Or (Loc,
12148 Left_Opnd => A_J,
12149 Right_Opnd => B_J);
12151 else
12152 Op :=
12153 Make_Op_Xor (Loc,
12154 Left_Opnd => A_J,
12155 Right_Opnd => B_J);
12156 end if;
12158 Loop_Statement :=
12159 Make_Implicit_Loop_Statement (N,
12160 Identifier => Empty,
12162 Iteration_Scheme =>
12163 Make_Iteration_Scheme (Loc,
12164 Loop_Parameter_Specification =>
12165 Make_Loop_Parameter_Specification (Loc,
12166 Defining_Identifier => J,
12167 Discrete_Subtype_Definition =>
12168 Make_Attribute_Reference (Loc,
12169 Prefix => New_Occurrence_Of (A, Loc),
12170 Attribute_Name => Name_Range))),
12172 Statements => New_List (
12173 Make_Assignment_Statement (Loc,
12174 Name => C_J,
12175 Expression => Op)));
12177 Formals := New_List (
12178 Make_Parameter_Specification (Loc,
12179 Defining_Identifier => A,
12180 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
12182 Make_Parameter_Specification (Loc,
12183 Defining_Identifier => B,
12184 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
12186 Func_Name := Make_Temporary (Loc, 'A');
12187 Set_Is_Inlined (Func_Name);
12189 Func_Body :=
12190 Make_Subprogram_Body (Loc,
12191 Specification =>
12192 Make_Function_Specification (Loc,
12193 Defining_Unit_Name => Func_Name,
12194 Parameter_Specifications => Formals,
12195 Result_Definition => New_Occurrence_Of (Typ, Loc)),
12197 Declarations => New_List (
12198 Make_Object_Declaration (Loc,
12199 Defining_Identifier => C,
12200 Object_Definition => New_Occurrence_Of (Typ, Loc))),
12202 Handled_Statement_Sequence =>
12203 Make_Handled_Sequence_Of_Statements (Loc,
12204 Statements => New_List (
12205 Loop_Statement,
12206 Make_Simple_Return_Statement (Loc,
12207 Expression => New_Occurrence_Of (C, Loc)))));
12209 return Func_Body;
12210 end Make_Boolean_Array_Op;
12212 -----------------------------------------
12213 -- Minimized_Eliminated_Overflow_Check --
12214 -----------------------------------------
12216 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12217 begin
12218 return
12219 Is_Signed_Integer_Type (Etype (N))
12220 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
12221 end Minimized_Eliminated_Overflow_Check;
12223 --------------------------------
12224 -- Optimize_Length_Comparison --
12225 --------------------------------
12227 procedure Optimize_Length_Comparison (N : Node_Id) is
12228 Loc : constant Source_Ptr := Sloc (N);
12229 Typ : constant Entity_Id := Etype (N);
12230 Result : Node_Id;
12232 Left : Node_Id;
12233 Right : Node_Id;
12234 -- First and Last attribute reference nodes, which end up as left and
12235 -- right operands of the optimized result.
12237 Is_Zero : Boolean;
12238 -- True for comparison operand of zero
12240 Comp : Node_Id;
12241 -- Comparison operand, set only if Is_Zero is false
12243 Ent : Entity_Id;
12244 -- Entity whose length is being compared
12246 Index : Node_Id;
12247 -- Integer_Literal node for length attribute expression, or Empty
12248 -- if there is no such expression present.
12250 Ityp : Entity_Id;
12251 -- Type of array index to which 'Length is applied
12253 Op : Node_Kind := Nkind (N);
12254 -- Kind of comparison operator, gets flipped if operands backwards
12256 function Is_Optimizable (N : Node_Id) return Boolean;
12257 -- Tests N to see if it is an optimizable comparison value (defined as
12258 -- constant zero or one, or something else where the value is known to
12259 -- be positive and in the range of 32-bits, and where the corresponding
12260 -- Length value is also known to be 32-bits. If result is true, sets
12261 -- Is_Zero, Ityp, and Comp accordingly.
12263 function Is_Entity_Length (N : Node_Id) return Boolean;
12264 -- Tests if N is a length attribute applied to a simple entity. If so,
12265 -- returns True, and sets Ent to the entity, and Index to the integer
12266 -- literal provided as an attribute expression, or to Empty if none.
12267 -- Also returns True if the expression is a generated type conversion
12268 -- whose expression is of the desired form. This latter case arises
12269 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12270 -- to check for being in range, which is not needed in this context.
12271 -- Returns False if neither condition holds.
12273 function Prepare_64 (N : Node_Id) return Node_Id;
12274 -- Given a discrete expression, returns a Long_Long_Integer typed
12275 -- expression representing the underlying value of the expression.
12276 -- This is done with an unchecked conversion to the result type. We
12277 -- use unchecked conversion to handle the enumeration type case.
12279 ----------------------
12280 -- Is_Entity_Length --
12281 ----------------------
12283 function Is_Entity_Length (N : Node_Id) return Boolean is
12284 begin
12285 if Nkind (N) = N_Attribute_Reference
12286 and then Attribute_Name (N) = Name_Length
12287 and then Is_Entity_Name (Prefix (N))
12288 then
12289 Ent := Entity (Prefix (N));
12291 if Present (Expressions (N)) then
12292 Index := First (Expressions (N));
12293 else
12294 Index := Empty;
12295 end if;
12297 return True;
12299 elsif Nkind (N) = N_Type_Conversion
12300 and then not Comes_From_Source (N)
12301 then
12302 return Is_Entity_Length (Expression (N));
12304 else
12305 return False;
12306 end if;
12307 end Is_Entity_Length;
12309 --------------------
12310 -- Is_Optimizable --
12311 --------------------
12313 function Is_Optimizable (N : Node_Id) return Boolean is
12314 Val : Uint;
12315 OK : Boolean;
12316 Lo : Uint;
12317 Hi : Uint;
12318 Indx : Node_Id;
12320 begin
12321 if Compile_Time_Known_Value (N) then
12322 Val := Expr_Value (N);
12324 if Val = Uint_0 then
12325 Is_Zero := True;
12326 Comp := Empty;
12327 return True;
12329 elsif Val = Uint_1 then
12330 Is_Zero := False;
12331 Comp := Empty;
12332 return True;
12333 end if;
12334 end if;
12336 -- Here we have to make sure of being within 32-bits
12338 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12340 if not OK
12341 or else Lo < Uint_1
12342 or else Hi > UI_From_Int (Int'Last)
12343 then
12344 return False;
12345 end if;
12347 -- Comparison value was within range, so now we must check the index
12348 -- value to make sure it is also within 32-bits.
12350 Indx := First_Index (Etype (Ent));
12352 if Present (Index) then
12353 for J in 2 .. UI_To_Int (Intval (Index)) loop
12354 Next_Index (Indx);
12355 end loop;
12356 end if;
12358 Ityp := Etype (Indx);
12360 if Esize (Ityp) > 32 then
12361 return False;
12362 end if;
12364 Is_Zero := False;
12365 Comp := N;
12366 return True;
12367 end Is_Optimizable;
12369 ----------------
12370 -- Prepare_64 --
12371 ----------------
12373 function Prepare_64 (N : Node_Id) return Node_Id is
12374 begin
12375 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12376 end Prepare_64;
12378 -- Start of processing for Optimize_Length_Comparison
12380 begin
12381 -- Nothing to do if not a comparison
12383 if Op not in N_Op_Compare then
12384 return;
12385 end if;
12387 -- Nothing to do if special -gnatd.P debug flag set
12389 if Debug_Flag_Dot_PP then
12390 return;
12391 end if;
12393 -- Ent'Length op 0/1
12395 if Is_Entity_Length (Left_Opnd (N))
12396 and then Is_Optimizable (Right_Opnd (N))
12397 then
12398 null;
12400 -- 0/1 op Ent'Length
12402 elsif Is_Entity_Length (Right_Opnd (N))
12403 and then Is_Optimizable (Left_Opnd (N))
12404 then
12405 -- Flip comparison to opposite sense
12407 case Op is
12408 when N_Op_Lt => Op := N_Op_Gt;
12409 when N_Op_Le => Op := N_Op_Ge;
12410 when N_Op_Gt => Op := N_Op_Lt;
12411 when N_Op_Ge => Op := N_Op_Le;
12412 when others => null;
12413 end case;
12415 -- Else optimization not possible
12417 else
12418 return;
12419 end if;
12421 -- Fall through if we will do the optimization
12423 -- Cases to handle:
12425 -- X'Length = 0 => X'First > X'Last
12426 -- X'Length = 1 => X'First = X'Last
12427 -- X'Length = n => X'First + (n - 1) = X'Last
12429 -- X'Length /= 0 => X'First <= X'Last
12430 -- X'Length /= 1 => X'First /= X'Last
12431 -- X'Length /= n => X'First + (n - 1) /= X'Last
12433 -- X'Length >= 0 => always true, warn
12434 -- X'Length >= 1 => X'First <= X'Last
12435 -- X'Length >= n => X'First + (n - 1) <= X'Last
12437 -- X'Length > 0 => X'First <= X'Last
12438 -- X'Length > 1 => X'First < X'Last
12439 -- X'Length > n => X'First + (n - 1) < X'Last
12441 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12442 -- X'Length <= 1 => X'First >= X'Last
12443 -- X'Length <= n => X'First + (n - 1) >= X'Last
12445 -- X'Length < 0 => always false (warn)
12446 -- X'Length < 1 => X'First > X'Last
12447 -- X'Length < n => X'First + (n - 1) > X'Last
12449 -- Note: for the cases of n (not constant 0,1), we require that the
12450 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12451 -- and the same for the comparison value. Then we do the comparison
12452 -- using 64-bit arithmetic (actually long long integer), so that we
12453 -- cannot have overflow intefering with the result.
12455 -- First deal with warning cases
12457 if Is_Zero then
12458 case Op is
12460 -- X'Length >= 0
12462 when N_Op_Ge =>
12463 Rewrite (N,
12464 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12465 Analyze_And_Resolve (N, Typ);
12466 Warn_On_Known_Condition (N);
12467 return;
12469 -- X'Length < 0
12471 when N_Op_Lt =>
12472 Rewrite (N,
12473 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12474 Analyze_And_Resolve (N, Typ);
12475 Warn_On_Known_Condition (N);
12476 return;
12478 when N_Op_Le =>
12479 if Constant_Condition_Warnings
12480 and then Comes_From_Source (Original_Node (N))
12481 then
12482 Error_Msg_N ("could replace by ""'=""?c?", N);
12483 end if;
12485 Op := N_Op_Eq;
12487 when others =>
12488 null;
12489 end case;
12490 end if;
12492 -- Build the First reference we will use
12494 Left :=
12495 Make_Attribute_Reference (Loc,
12496 Prefix => New_Occurrence_Of (Ent, Loc),
12497 Attribute_Name => Name_First);
12499 if Present (Index) then
12500 Set_Expressions (Left, New_List (New_Copy (Index)));
12501 end if;
12503 -- If general value case, then do the addition of (n - 1), and
12504 -- also add the needed conversions to type Long_Long_Integer.
12506 if Present (Comp) then
12507 Left :=
12508 Make_Op_Add (Loc,
12509 Left_Opnd => Prepare_64 (Left),
12510 Right_Opnd =>
12511 Make_Op_Subtract (Loc,
12512 Left_Opnd => Prepare_64 (Comp),
12513 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12514 end if;
12516 -- Build the Last reference we will use
12518 Right :=
12519 Make_Attribute_Reference (Loc,
12520 Prefix => New_Occurrence_Of (Ent, Loc),
12521 Attribute_Name => Name_Last);
12523 if Present (Index) then
12524 Set_Expressions (Right, New_List (New_Copy (Index)));
12525 end if;
12527 -- If general operand, convert Last reference to Long_Long_Integer
12529 if Present (Comp) then
12530 Right := Prepare_64 (Right);
12531 end if;
12533 -- Check for cases to optimize
12535 -- X'Length = 0 => X'First > X'Last
12536 -- X'Length < 1 => X'First > X'Last
12537 -- X'Length < n => X'First + (n - 1) > X'Last
12539 if (Is_Zero and then Op = N_Op_Eq)
12540 or else (not Is_Zero and then Op = N_Op_Lt)
12541 then
12542 Result :=
12543 Make_Op_Gt (Loc,
12544 Left_Opnd => Left,
12545 Right_Opnd => Right);
12547 -- X'Length = 1 => X'First = X'Last
12548 -- X'Length = n => X'First + (n - 1) = X'Last
12550 elsif not Is_Zero and then Op = N_Op_Eq then
12551 Result :=
12552 Make_Op_Eq (Loc,
12553 Left_Opnd => Left,
12554 Right_Opnd => Right);
12556 -- X'Length /= 0 => X'First <= X'Last
12557 -- X'Length > 0 => X'First <= X'Last
12559 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12560 Result :=
12561 Make_Op_Le (Loc,
12562 Left_Opnd => Left,
12563 Right_Opnd => Right);
12565 -- X'Length /= 1 => X'First /= X'Last
12566 -- X'Length /= n => X'First + (n - 1) /= X'Last
12568 elsif not Is_Zero and then Op = N_Op_Ne then
12569 Result :=
12570 Make_Op_Ne (Loc,
12571 Left_Opnd => Left,
12572 Right_Opnd => Right);
12574 -- X'Length >= 1 => X'First <= X'Last
12575 -- X'Length >= n => X'First + (n - 1) <= X'Last
12577 elsif not Is_Zero and then Op = N_Op_Ge then
12578 Result :=
12579 Make_Op_Le (Loc,
12580 Left_Opnd => Left,
12581 Right_Opnd => Right);
12583 -- X'Length > 1 => X'First < X'Last
12584 -- X'Length > n => X'First + (n = 1) < X'Last
12586 elsif not Is_Zero and then Op = N_Op_Gt then
12587 Result :=
12588 Make_Op_Lt (Loc,
12589 Left_Opnd => Left,
12590 Right_Opnd => Right);
12592 -- X'Length <= 1 => X'First >= X'Last
12593 -- X'Length <= n => X'First + (n - 1) >= X'Last
12595 elsif not Is_Zero and then Op = N_Op_Le then
12596 Result :=
12597 Make_Op_Ge (Loc,
12598 Left_Opnd => Left,
12599 Right_Opnd => Right);
12601 -- Should not happen at this stage
12603 else
12604 raise Program_Error;
12605 end if;
12607 -- Rewrite and finish up
12609 Rewrite (N, Result);
12610 Analyze_And_Resolve (N, Typ);
12611 return;
12612 end Optimize_Length_Comparison;
12614 ------------------------------
12615 -- Process_Transient_Object --
12616 ------------------------------
12618 procedure Process_Transient_Object
12619 (Decl : Node_Id;
12620 Rel_Node : Node_Id)
12622 Loc : constant Source_Ptr := Sloc (Decl);
12623 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
12624 Obj_Typ : constant Node_Id := Etype (Obj_Id);
12625 Desig_Typ : Entity_Id;
12626 Expr : Node_Id;
12627 Fin_Stmts : List_Id;
12628 Ptr_Id : Entity_Id;
12629 Temp_Id : Entity_Id;
12630 Temp_Ins : Node_Id;
12632 Hook_Context : constant Node_Id := Find_Hook_Context (Rel_Node);
12633 -- Node on which to insert the hook pointer (as an action): the
12634 -- innermost enclosing non-transient scope.
12636 Finalization_Context : Node_Id;
12637 -- Node after which to insert finalization actions
12639 Finalize_Always : Boolean;
12640 -- If False, call to finalizer includes a test of whether the hook
12641 -- pointer is null.
12643 begin
12644 -- Step 0: determine where to attach finalization actions in the tree
12646 -- Special case for Boolean EWAs: capture expression in a temporary,
12647 -- whose declaration will serve as the context around which to insert
12648 -- finalization code. The finalization thus remains local to the
12649 -- specific condition being evaluated.
12651 if Is_Boolean_Type (Etype (Rel_Node)) then
12653 -- In this case, the finalization context is chosen so that we know
12654 -- at finalization point that the hook pointer is never null, so no
12655 -- need for a test, we can call the finalizer unconditionally, except
12656 -- in the case where the object is created in a specific branch of a
12657 -- conditional expression.
12659 Finalize_Always :=
12660 not Within_Case_Or_If_Expression (Rel_Node)
12661 and then not Nkind_In
12662 (Original_Node (Rel_Node), N_Case_Expression,
12663 N_If_Expression);
12665 declare
12666 Loc : constant Source_Ptr := Sloc (Rel_Node);
12667 Temp : constant Entity_Id := Make_Temporary (Loc, 'E', Rel_Node);
12669 begin
12670 Append_To (Actions (Rel_Node),
12671 Make_Object_Declaration (Loc,
12672 Defining_Identifier => Temp,
12673 Constant_Present => True,
12674 Object_Definition =>
12675 New_Occurrence_Of (Etype (Rel_Node), Loc),
12676 Expression => Expression (Rel_Node)));
12677 Finalization_Context := Last (Actions (Rel_Node));
12679 Analyze (Last (Actions (Rel_Node)));
12681 Set_Expression (Rel_Node, New_Occurrence_Of (Temp, Loc));
12682 Analyze (Expression (Rel_Node));
12683 end;
12685 else
12686 Finalize_Always := False;
12687 Finalization_Context := Hook_Context;
12688 end if;
12690 -- Step 1: Create the access type which provides a reference to the
12691 -- transient controlled object.
12693 if Is_Access_Type (Obj_Typ) then
12694 Desig_Typ := Directly_Designated_Type (Obj_Typ);
12695 else
12696 Desig_Typ := Obj_Typ;
12697 end if;
12699 Desig_Typ := Base_Type (Desig_Typ);
12701 -- Generate:
12702 -- Ann : access [all] <Desig_Typ>;
12704 Ptr_Id := Make_Temporary (Loc, 'A');
12706 Insert_Action (Hook_Context,
12707 Make_Full_Type_Declaration (Loc,
12708 Defining_Identifier => Ptr_Id,
12709 Type_Definition =>
12710 Make_Access_To_Object_Definition (Loc,
12711 All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
12712 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
12714 -- Step 2: Create a temporary which acts as a hook to the transient
12715 -- controlled object. Generate:
12717 -- Temp : Ptr_Id := null;
12719 Temp_Id := Make_Temporary (Loc, 'T');
12721 Insert_Action (Hook_Context,
12722 Make_Object_Declaration (Loc,
12723 Defining_Identifier => Temp_Id,
12724 Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
12726 -- Mark the temporary as created for the purposes of exporting the
12727 -- transient controlled object out of the expression_with_action or if
12728 -- expression. This signals the machinery in Build_Finalizer to treat
12729 -- this case specially.
12731 Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12733 -- Step 3: Hook the transient object to the temporary
12735 -- This must be inserted right after the object declaration, so that
12736 -- the assignment is executed if, and only if, the object is actually
12737 -- created (whereas the declaration of the hook pointer, and the
12738 -- finalization call, may be inserted at an outer level, and may
12739 -- remain unused for some executions, if the actual creation of
12740 -- the object is conditional).
12742 -- The use of unchecked conversion / unrestricted access is needed to
12743 -- avoid an accessibility violation. Note that the finalization code is
12744 -- structured in such a way that the "hook" is processed only when it
12745 -- points to an existing object.
12747 if Is_Access_Type (Obj_Typ) then
12748 Expr :=
12749 Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
12750 else
12751 Expr :=
12752 Make_Attribute_Reference (Loc,
12753 Prefix => New_Occurrence_Of (Obj_Id, Loc),
12754 Attribute_Name => Name_Unrestricted_Access);
12755 end if;
12757 -- Generate:
12758 -- Temp := Ptr_Id (Obj_Id);
12759 -- <or>
12760 -- Temp := Obj_Id'Unrestricted_Access;
12762 -- When the transient object is initialized by an aggregate, the hook
12763 -- must capture the object after the last component assignment takes
12764 -- place. Only then is the object fully initialized.
12766 if Ekind (Obj_Id) = E_Variable
12767 and then Present (Last_Aggregate_Assignment (Obj_Id))
12768 then
12769 Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12771 -- Otherwise the hook seizes the related object immediately
12773 else
12774 Temp_Ins := Decl;
12775 end if;
12777 Insert_After_And_Analyze (Temp_Ins,
12778 Make_Assignment_Statement (Loc,
12779 Name => New_Occurrence_Of (Temp_Id, Loc),
12780 Expression => Expr));
12782 -- Step 4: Finalize the transient controlled object after the context
12783 -- has been evaluated/elaborated. Generate:
12785 -- if Temp /= null then
12786 -- [Deep_]Finalize (Temp.all);
12787 -- Temp := null;
12788 -- end if;
12790 -- When the node is part of a return statement, there is no need to
12791 -- insert a finalization call, as the general finalization mechanism
12792 -- (see Build_Finalizer) would take care of the transient controlled
12793 -- object on subprogram exit. Note that it would also be impossible to
12794 -- insert the finalization code after the return statement as this will
12795 -- render it unreachable.
12797 if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12798 Fin_Stmts := New_List (
12799 Make_Final_Call
12800 (Obj_Ref =>
12801 Make_Explicit_Dereference (Loc,
12802 Prefix => New_Occurrence_Of (Temp_Id, Loc)),
12803 Typ => Desig_Typ),
12805 Make_Assignment_Statement (Loc,
12806 Name => New_Occurrence_Of (Temp_Id, Loc),
12807 Expression => Make_Null (Loc)));
12809 if not Finalize_Always then
12810 Fin_Stmts := New_List (
12811 Make_Implicit_If_Statement (Decl,
12812 Condition =>
12813 Make_Op_Ne (Loc,
12814 Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
12815 Right_Opnd => Make_Null (Loc)),
12816 Then_Statements => Fin_Stmts));
12817 end if;
12819 Insert_Actions_After (Finalization_Context, Fin_Stmts);
12820 end if;
12821 end Process_Transient_Object;
12823 ------------------------
12824 -- Rewrite_Comparison --
12825 ------------------------
12827 procedure Rewrite_Comparison (N : Node_Id) is
12828 Warning_Generated : Boolean := False;
12829 -- Set to True if first pass with Assume_Valid generates a warning in
12830 -- which case we skip the second pass to avoid warning overloaded.
12832 Result : Node_Id;
12833 -- Set to Standard_True or Standard_False
12835 begin
12836 if Nkind (N) = N_Type_Conversion then
12837 Rewrite_Comparison (Expression (N));
12838 return;
12840 elsif Nkind (N) not in N_Op_Compare then
12841 return;
12842 end if;
12844 -- Now start looking at the comparison in detail. We potentially go
12845 -- through this loop twice. The first time, Assume_Valid is set False
12846 -- in the call to Compile_Time_Compare. If this call results in a
12847 -- clear result of always True or Always False, that's decisive and
12848 -- we are done. Otherwise we repeat the processing with Assume_Valid
12849 -- set to True to generate additional warnings. We can skip that step
12850 -- if Constant_Condition_Warnings is False.
12852 for AV in False .. True loop
12853 declare
12854 Typ : constant Entity_Id := Etype (N);
12855 Op1 : constant Node_Id := Left_Opnd (N);
12856 Op2 : constant Node_Id := Right_Opnd (N);
12858 Res : constant Compare_Result :=
12859 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12860 -- Res indicates if compare outcome can be compile time determined
12862 True_Result : Boolean;
12863 False_Result : Boolean;
12865 begin
12866 case N_Op_Compare (Nkind (N)) is
12867 when N_Op_Eq =>
12868 True_Result := Res = EQ;
12869 False_Result := Res = LT or else Res = GT or else Res = NE;
12871 when N_Op_Ge =>
12872 True_Result := Res in Compare_GE;
12873 False_Result := Res = LT;
12875 if Res = LE
12876 and then Constant_Condition_Warnings
12877 and then Comes_From_Source (Original_Node (N))
12878 and then Nkind (Original_Node (N)) = N_Op_Ge
12879 and then not In_Instance
12880 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12881 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12882 then
12883 Error_Msg_N
12884 ("can never be greater than, could replace by ""'=""?c?",
12886 Warning_Generated := True;
12887 end if;
12889 when N_Op_Gt =>
12890 True_Result := Res = GT;
12891 False_Result := Res in Compare_LE;
12893 when N_Op_Lt =>
12894 True_Result := Res = LT;
12895 False_Result := Res in Compare_GE;
12897 when N_Op_Le =>
12898 True_Result := Res in Compare_LE;
12899 False_Result := Res = GT;
12901 if Res = GE
12902 and then Constant_Condition_Warnings
12903 and then Comes_From_Source (Original_Node (N))
12904 and then Nkind (Original_Node (N)) = N_Op_Le
12905 and then not In_Instance
12906 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12907 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12908 then
12909 Error_Msg_N
12910 ("can never be less than, could replace by ""'=""?c?", N);
12911 Warning_Generated := True;
12912 end if;
12914 when N_Op_Ne =>
12915 True_Result := Res = NE or else Res = GT or else Res = LT;
12916 False_Result := Res = EQ;
12917 end case;
12919 -- If this is the first iteration, then we actually convert the
12920 -- comparison into True or False, if the result is certain.
12922 if AV = False then
12923 if True_Result or False_Result then
12924 Result := Boolean_Literals (True_Result);
12925 Rewrite (N,
12926 Convert_To (Typ,
12927 New_Occurrence_Of (Result, Sloc (N))));
12928 Analyze_And_Resolve (N, Typ);
12929 Warn_On_Known_Condition (N);
12930 return;
12931 end if;
12933 -- If this is the second iteration (AV = True), and the original
12934 -- node comes from source and we are not in an instance, then give
12935 -- a warning if we know result would be True or False. Note: we
12936 -- know Constant_Condition_Warnings is set if we get here.
12938 elsif Comes_From_Source (Original_Node (N))
12939 and then not In_Instance
12940 then
12941 if True_Result then
12942 Error_Msg_N
12943 ("condition can only be False if invalid values present??",
12945 elsif False_Result then
12946 Error_Msg_N
12947 ("condition can only be True if invalid values present??",
12949 end if;
12950 end if;
12951 end;
12953 -- Skip second iteration if not warning on constant conditions or
12954 -- if the first iteration already generated a warning of some kind or
12955 -- if we are in any case assuming all values are valid (so that the
12956 -- first iteration took care of the valid case).
12958 exit when not Constant_Condition_Warnings;
12959 exit when Warning_Generated;
12960 exit when Assume_No_Invalid_Values;
12961 end loop;
12962 end Rewrite_Comparison;
12964 ----------------------------
12965 -- Safe_In_Place_Array_Op --
12966 ----------------------------
12968 function Safe_In_Place_Array_Op
12969 (Lhs : Node_Id;
12970 Op1 : Node_Id;
12971 Op2 : Node_Id) return Boolean
12973 Target : Entity_Id;
12975 function Is_Safe_Operand (Op : Node_Id) return Boolean;
12976 -- Operand is safe if it cannot overlap part of the target of the
12977 -- operation. If the operand and the target are identical, the operand
12978 -- is safe. The operand can be empty in the case of negation.
12980 function Is_Unaliased (N : Node_Id) return Boolean;
12981 -- Check that N is a stand-alone entity
12983 ------------------
12984 -- Is_Unaliased --
12985 ------------------
12987 function Is_Unaliased (N : Node_Id) return Boolean is
12988 begin
12989 return
12990 Is_Entity_Name (N)
12991 and then No (Address_Clause (Entity (N)))
12992 and then No (Renamed_Object (Entity (N)));
12993 end Is_Unaliased;
12995 ---------------------
12996 -- Is_Safe_Operand --
12997 ---------------------
12999 function Is_Safe_Operand (Op : Node_Id) return Boolean is
13000 begin
13001 if No (Op) then
13002 return True;
13004 elsif Is_Entity_Name (Op) then
13005 return Is_Unaliased (Op);
13007 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
13008 return Is_Unaliased (Prefix (Op));
13010 elsif Nkind (Op) = N_Slice then
13011 return
13012 Is_Unaliased (Prefix (Op))
13013 and then Entity (Prefix (Op)) /= Target;
13015 elsif Nkind (Op) = N_Op_Not then
13016 return Is_Safe_Operand (Right_Opnd (Op));
13018 else
13019 return False;
13020 end if;
13021 end Is_Safe_Operand;
13023 -- Start of processing for Safe_In_Place_Array_Op
13025 begin
13026 -- Skip this processing if the component size is different from system
13027 -- storage unit (since at least for NOT this would cause problems).
13029 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
13030 return False;
13032 -- Cannot do in place stuff on VM_Target since cannot pass addresses
13034 elsif VM_Target /= No_VM then
13035 return False;
13037 -- Cannot do in place stuff if non-standard Boolean representation
13039 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
13040 return False;
13042 elsif not Is_Unaliased (Lhs) then
13043 return False;
13045 else
13046 Target := Entity (Lhs);
13047 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
13048 end if;
13049 end Safe_In_Place_Array_Op;
13051 -----------------------
13052 -- Tagged_Membership --
13053 -----------------------
13055 -- There are two different cases to consider depending on whether the right
13056 -- operand is a class-wide type or not. If not we just compare the actual
13057 -- tag of the left expr to the target type tag:
13059 -- Left_Expr.Tag = Right_Type'Tag;
13061 -- If it is a class-wide type we use the RT function CW_Membership which is
13062 -- usually implemented by looking in the ancestor tables contained in the
13063 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13065 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13066 -- function IW_Membership which is usually implemented by looking in the
13067 -- table of abstract interface types plus the ancestor table contained in
13068 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13070 procedure Tagged_Membership
13071 (N : Node_Id;
13072 SCIL_Node : out Node_Id;
13073 Result : out Node_Id)
13075 Left : constant Node_Id := Left_Opnd (N);
13076 Right : constant Node_Id := Right_Opnd (N);
13077 Loc : constant Source_Ptr := Sloc (N);
13079 Full_R_Typ : Entity_Id;
13080 Left_Type : Entity_Id;
13081 New_Node : Node_Id;
13082 Right_Type : Entity_Id;
13083 Obj_Tag : Node_Id;
13085 begin
13086 SCIL_Node := Empty;
13088 -- Handle entities from the limited view
13090 Left_Type := Available_View (Etype (Left));
13091 Right_Type := Available_View (Etype (Right));
13093 -- In the case where the type is an access type, the test is applied
13094 -- using the designated types (needed in Ada 2012 for implicit anonymous
13095 -- access conversions, for AI05-0149).
13097 if Is_Access_Type (Right_Type) then
13098 Left_Type := Designated_Type (Left_Type);
13099 Right_Type := Designated_Type (Right_Type);
13100 end if;
13102 if Is_Class_Wide_Type (Left_Type) then
13103 Left_Type := Root_Type (Left_Type);
13104 end if;
13106 if Is_Class_Wide_Type (Right_Type) then
13107 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13108 else
13109 Full_R_Typ := Underlying_Type (Right_Type);
13110 end if;
13112 Obj_Tag :=
13113 Make_Selected_Component (Loc,
13114 Prefix => Relocate_Node (Left),
13115 Selector_Name =>
13116 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
13118 if Is_Class_Wide_Type (Right_Type) then
13120 -- No need to issue a run-time check if we statically know that the
13121 -- result of this membership test is always true. For example,
13122 -- considering the following declarations:
13124 -- type Iface is interface;
13125 -- type T is tagged null record;
13126 -- type DT is new T and Iface with null record;
13128 -- Obj1 : T;
13129 -- Obj2 : DT;
13131 -- These membership tests are always true:
13133 -- Obj1 in T'Class
13134 -- Obj2 in T'Class;
13135 -- Obj2 in Iface'Class;
13137 -- We do not need to handle cases where the membership is illegal.
13138 -- For example:
13140 -- Obj1 in DT'Class; -- Compile time error
13141 -- Obj1 in Iface'Class; -- Compile time error
13143 if not Is_Class_Wide_Type (Left_Type)
13144 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13145 Use_Full_View => True)
13146 or else (Is_Interface (Etype (Right_Type))
13147 and then Interface_Present_In_Ancestor
13148 (Typ => Left_Type,
13149 Iface => Etype (Right_Type))))
13150 then
13151 Result := New_Occurrence_Of (Standard_True, Loc);
13152 return;
13153 end if;
13155 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13157 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13159 -- Support to: "Iface_CW_Typ in Typ'Class"
13161 or else Is_Interface (Left_Type)
13162 then
13163 -- Issue error if IW_Membership operation not available in a
13164 -- configurable run time setting.
13166 if not RTE_Available (RE_IW_Membership) then
13167 Error_Msg_CRT
13168 ("dynamic membership test on interface types", N);
13169 Result := Empty;
13170 return;
13171 end if;
13173 Result :=
13174 Make_Function_Call (Loc,
13175 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13176 Parameter_Associations => New_List (
13177 Make_Attribute_Reference (Loc,
13178 Prefix => Obj_Tag,
13179 Attribute_Name => Name_Address),
13180 New_Occurrence_Of (
13181 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
13182 Loc)));
13184 -- Ada 95: Normal case
13186 else
13187 Build_CW_Membership (Loc,
13188 Obj_Tag_Node => Obj_Tag,
13189 Typ_Tag_Node =>
13190 New_Occurrence_Of (
13191 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
13192 Related_Nod => N,
13193 New_Node => New_Node);
13195 -- Generate the SCIL node for this class-wide membership test.
13196 -- Done here because the previous call to Build_CW_Membership
13197 -- relocates Obj_Tag.
13199 if Generate_SCIL then
13200 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13201 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13202 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13203 end if;
13205 Result := New_Node;
13206 end if;
13208 -- Right_Type is not a class-wide type
13210 else
13211 -- No need to check the tag of the object if Right_Typ is abstract
13213 if Is_Abstract_Type (Right_Type) then
13214 Result := New_Occurrence_Of (Standard_False, Loc);
13216 else
13217 Result :=
13218 Make_Op_Eq (Loc,
13219 Left_Opnd => Obj_Tag,
13220 Right_Opnd =>
13221 New_Occurrence_Of
13222 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
13223 end if;
13224 end if;
13225 end Tagged_Membership;
13227 ------------------------------
13228 -- Unary_Op_Validity_Checks --
13229 ------------------------------
13231 procedure Unary_Op_Validity_Checks (N : Node_Id) is
13232 begin
13233 if Validity_Checks_On and Validity_Check_Operands then
13234 Ensure_Valid (Right_Opnd (N));
13235 end if;
13236 end Unary_Op_Validity_Checks;
13238 end Exp_Ch4;