* tree-inline.c (copy_tree_r): Don't duplicate constants, they're
[official-gcc.git] / gcc / dwarf2out.c
blobe269629d9d2a94f8f1e1eba69accc526fe1ebcd9
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 int flags;
130 flags = (! flag_pic
131 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
132 && (fde_encoding & 0x70) != DW_EH_PE_aligned
133 && (per_encoding & 0x70) != DW_EH_PE_absptr
134 && (per_encoding & 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
137 ? 0 : SECTION_WRITE;
138 named_section_flags (EH_FRAME_SECTION_NAME, flags);
139 #else
140 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
141 #endif
142 #endif
145 /* Version of targetm.eh_frame_section for systems using collect2. */
146 void
147 collect2_eh_frame_section (void)
149 tree label = get_file_function_name ('F');
151 data_section ();
152 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
153 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
154 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
157 /* Default version of targetm.eh_frame_section. */
158 void
159 default_eh_frame_section (void)
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
163 #else
164 collect2_eh_frame_section ();
165 #endif
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray;
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types;
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table;
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
187 #endif
189 typedef struct dw_cfi_struct *dw_cfi_ref;
190 typedef struct dw_fde_struct *dw_fde_ref;
191 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
198 enum dw_cfi_oprnd_type {
199 dw_cfi_oprnd_unused,
200 dw_cfi_oprnd_reg_num,
201 dw_cfi_oprnd_offset,
202 dw_cfi_oprnd_addr,
203 dw_cfi_oprnd_loc
206 typedef union dw_cfi_oprnd_struct GTY(())
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
209 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
211 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
213 dw_cfi_oprnd;
215 typedef struct dw_cfi_struct GTY(())
217 dw_cfi_ref dw_cfi_next;
218 enum dwarf_call_frame_info dw_cfi_opc;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd1;
221 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
222 dw_cfi_oprnd2;
224 dw_cfi_node;
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc GTY(())
233 unsigned long reg;
234 HOST_WIDE_INT offset;
235 HOST_WIDE_INT base_offset;
236 int indirect; /* 1 if CFA is accessed via a dereference. */
237 } dw_cfa_location;
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
245 typedef struct dw_fde_struct GTY(())
247 tree decl;
248 const char *dw_fde_begin;
249 const char *dw_fde_current_label;
250 const char *dw_fde_end;
251 dw_cfi_ref dw_fde_cfi;
252 unsigned funcdef_number;
253 unsigned all_throwers_are_sibcalls : 1;
254 unsigned nothrow : 1;
255 unsigned uses_eh_lsda : 1;
257 dw_fde_node;
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
266 pointers. */
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
269 #endif
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
274 as PTR_SIZE. */
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
278 #endif
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
283 bytes.
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
290 #endif
292 #define DWARF_VERSION 2
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #else
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
304 #endif
305 #endif
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated;
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use;
317 /* Size (in elements) of increments by which we may expand the
318 fde_table. */
319 #define FDE_TABLE_INCREMENT 256
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head;
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde;
330 #endif
332 struct indirect_string_node GTY(())
334 const char *str;
335 unsigned int refcount;
336 unsigned int form;
337 char *label;
340 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
342 static GTY(()) int dw2_string_counter;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num;
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
347 /* Forward declarations for functions defined in this file. */
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref new_cfi (void);
352 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
353 static void add_fde_cfi (const char *, dw_cfi_ref);
354 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
355 static void lookup_cfa (dw_cfa_location *);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
357 static void initial_return_save (rtx);
358 static HOST_WIDE_INT stack_adjust_offset (rtx);
359 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
432 /* Hook used by __throw. */
435 expand_builtin_dwarf_sp_column (void)
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
443 static inline char *
444 stripattributes (const char *s)
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
449 *p++ = '*';
451 while (*s && *s != ',')
452 *p++ = *s++;
454 *p = '\0';
455 return stripped;
458 /* Generate code to initialize the register size table. */
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 gcc_assert (wrote_return_column);
493 i = DWARF_ALT_FRAME_RETURN_COLUMN;
494 wrote_return_column = false;
495 #else
496 i = DWARF_FRAME_RETURN_COLUMN;
497 #endif
499 if (! wrote_return_column)
501 enum machine_mode save_mode = Pmode;
502 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
503 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
504 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
508 /* Convert a DWARF call frame info. operation to its string name */
510 static const char *
511 dwarf_cfi_name (unsigned int cfi_opc)
513 switch (cfi_opc)
515 case DW_CFA_advance_loc:
516 return "DW_CFA_advance_loc";
517 case DW_CFA_offset:
518 return "DW_CFA_offset";
519 case DW_CFA_restore:
520 return "DW_CFA_restore";
521 case DW_CFA_nop:
522 return "DW_CFA_nop";
523 case DW_CFA_set_loc:
524 return "DW_CFA_set_loc";
525 case DW_CFA_advance_loc1:
526 return "DW_CFA_advance_loc1";
527 case DW_CFA_advance_loc2:
528 return "DW_CFA_advance_loc2";
529 case DW_CFA_advance_loc4:
530 return "DW_CFA_advance_loc4";
531 case DW_CFA_offset_extended:
532 return "DW_CFA_offset_extended";
533 case DW_CFA_restore_extended:
534 return "DW_CFA_restore_extended";
535 case DW_CFA_undefined:
536 return "DW_CFA_undefined";
537 case DW_CFA_same_value:
538 return "DW_CFA_same_value";
539 case DW_CFA_register:
540 return "DW_CFA_register";
541 case DW_CFA_remember_state:
542 return "DW_CFA_remember_state";
543 case DW_CFA_restore_state:
544 return "DW_CFA_restore_state";
545 case DW_CFA_def_cfa:
546 return "DW_CFA_def_cfa";
547 case DW_CFA_def_cfa_register:
548 return "DW_CFA_def_cfa_register";
549 case DW_CFA_def_cfa_offset:
550 return "DW_CFA_def_cfa_offset";
552 /* DWARF 3 */
553 case DW_CFA_def_cfa_expression:
554 return "DW_CFA_def_cfa_expression";
555 case DW_CFA_expression:
556 return "DW_CFA_expression";
557 case DW_CFA_offset_extended_sf:
558 return "DW_CFA_offset_extended_sf";
559 case DW_CFA_def_cfa_sf:
560 return "DW_CFA_def_cfa_sf";
561 case DW_CFA_def_cfa_offset_sf:
562 return "DW_CFA_def_cfa_offset_sf";
564 /* SGI/MIPS specific */
565 case DW_CFA_MIPS_advance_loc8:
566 return "DW_CFA_MIPS_advance_loc8";
568 /* GNU extensions */
569 case DW_CFA_GNU_window_save:
570 return "DW_CFA_GNU_window_save";
571 case DW_CFA_GNU_args_size:
572 return "DW_CFA_GNU_args_size";
573 case DW_CFA_GNU_negative_offset_extended:
574 return "DW_CFA_GNU_negative_offset_extended";
576 default:
577 return "DW_CFA_<unknown>";
581 /* Return a pointer to a newly allocated Call Frame Instruction. */
583 static inline dw_cfi_ref
584 new_cfi (void)
586 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
588 cfi->dw_cfi_next = NULL;
589 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
590 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
592 return cfi;
595 /* Add a Call Frame Instruction to list of instructions. */
597 static inline void
598 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
600 dw_cfi_ref *p;
602 /* Find the end of the chain. */
603 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
606 *p = cfi;
609 /* Generate a new label for the CFI info to refer to. */
611 char *
612 dwarf2out_cfi_label (void)
614 static char label[20];
616 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
617 ASM_OUTPUT_LABEL (asm_out_file, label);
618 return label;
621 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
622 or to the CIE if LABEL is NULL. */
624 static void
625 add_fde_cfi (const char *label, dw_cfi_ref cfi)
627 if (label)
629 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
631 if (*label == 0)
632 label = dwarf2out_cfi_label ();
634 if (fde->dw_fde_current_label == NULL
635 || strcmp (label, fde->dw_fde_current_label) != 0)
637 dw_cfi_ref xcfi;
639 fde->dw_fde_current_label = label = xstrdup (label);
641 /* Set the location counter to the new label. */
642 xcfi = new_cfi ();
643 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
644 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
645 add_cfi (&fde->dw_fde_cfi, xcfi);
648 add_cfi (&fde->dw_fde_cfi, cfi);
651 else
652 add_cfi (&cie_cfi_head, cfi);
655 /* Subroutine of lookup_cfa. */
657 static inline void
658 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
660 switch (cfi->dw_cfi_opc)
662 case DW_CFA_def_cfa_offset:
663 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
664 break;
665 case DW_CFA_def_cfa_register:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 break;
668 case DW_CFA_def_cfa:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
671 break;
672 case DW_CFA_def_cfa_expression:
673 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
674 break;
675 default:
676 break;
680 /* Find the previous value for the CFA. */
682 static void
683 lookup_cfa (dw_cfa_location *loc)
685 dw_cfi_ref cfi;
687 loc->reg = (unsigned long) -1;
688 loc->offset = 0;
689 loc->indirect = 0;
690 loc->base_offset = 0;
692 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
693 lookup_cfa_1 (cfi, loc);
695 if (fde_table_in_use)
697 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
698 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
699 lookup_cfa_1 (cfi, loc);
703 /* The current rule for calculating the DWARF2 canonical frame address. */
704 static dw_cfa_location cfa;
706 /* The register used for saving registers to the stack, and its offset
707 from the CFA. */
708 static dw_cfa_location cfa_store;
710 /* The running total of the size of arguments pushed onto the stack. */
711 static HOST_WIDE_INT args_size;
713 /* The last args_size we actually output. */
714 static HOST_WIDE_INT old_args_size;
716 /* Entry point to update the canonical frame address (CFA).
717 LABEL is passed to add_fde_cfi. The value of CFA is now to be
718 calculated from REG+OFFSET. */
720 void
721 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
723 dw_cfa_location loc;
724 loc.indirect = 0;
725 loc.base_offset = 0;
726 loc.reg = reg;
727 loc.offset = offset;
728 def_cfa_1 (label, &loc);
731 /* This routine does the actual work. The CFA is now calculated from
732 the dw_cfa_location structure. */
734 static void
735 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
737 dw_cfi_ref cfi;
738 dw_cfa_location old_cfa, loc;
740 cfa = *loc_p;
741 loc = *loc_p;
743 if (cfa_store.reg == loc.reg && loc.indirect == 0)
744 cfa_store.offset = loc.offset;
746 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
747 lookup_cfa (&old_cfa);
749 /* If nothing changed, no need to issue any call frame instructions. */
750 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
751 && loc.indirect == old_cfa.indirect
752 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
753 return;
755 cfi = new_cfi ();
757 if (loc.reg == old_cfa.reg && !loc.indirect)
759 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
760 indicating the CFA register did not change but the offset
761 did. */
762 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
763 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
766 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
767 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
768 && !loc.indirect)
770 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
771 indicating the CFA register has changed to <register> but the
772 offset has not changed. */
773 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
776 #endif
778 else if (loc.indirect == 0)
780 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
781 indicating the CFA register has changed to <register> with
782 the specified offset. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
785 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
787 else
789 /* Construct a DW_CFA_def_cfa_expression instruction to
790 calculate the CFA using a full location expression since no
791 register-offset pair is available. */
792 struct dw_loc_descr_struct *loc_list;
794 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
795 loc_list = build_cfa_loc (&loc);
796 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
799 add_fde_cfi (label, cfi);
802 /* Add the CFI for saving a register. REG is the CFA column number.
803 LABEL is passed to add_fde_cfi.
804 If SREG is -1, the register is saved at OFFSET from the CFA;
805 otherwise it is saved in SREG. */
807 static void
808 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
810 dw_cfi_ref cfi = new_cfi ();
812 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
814 if (sreg == INVALID_REGNUM)
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
823 #ifdef ENABLE_CHECKING
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
831 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 else if (sreg == reg)
841 cfi->dw_cfi_opc = DW_CFA_same_value;
842 else
844 cfi->dw_cfi_opc = DW_CFA_register;
845 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 add_fde_cfi (label, cfi);
851 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
852 This CFI tells the unwinder that it needs to restore the window registers
853 from the previous frame's window save area.
855 ??? Perhaps we should note in the CIE where windows are saved (instead of
856 assuming 0(cfa)) and what registers are in the window. */
858 void
859 dwarf2out_window_save (const char *label)
861 dw_cfi_ref cfi = new_cfi ();
863 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
864 add_fde_cfi (label, cfi);
867 /* Add a CFI to update the running total of the size of arguments
868 pushed onto the stack. */
870 void
871 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 dw_cfi_ref cfi;
875 if (size == old_args_size)
876 return;
878 old_args_size = size;
880 cfi = new_cfi ();
881 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
882 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
883 add_fde_cfi (label, cfi);
886 /* Entry point for saving a register to the stack. REG is the GCC register
887 number. LABEL and OFFSET are passed to reg_save. */
889 void
890 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
895 /* Entry point for saving the return address in the stack.
896 LABEL and OFFSET are passed to reg_save. */
898 void
899 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
904 /* Entry point for saving the return address in a register.
905 LABEL and SREG are passed to reg_save. */
907 void
908 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
913 /* Record the initial position of the return address. RTL is
914 INCOMING_RETURN_ADDR_RTX. */
916 static void
917 initial_return_save (rtx rtl)
919 unsigned int reg = INVALID_REGNUM;
920 HOST_WIDE_INT offset = 0;
922 switch (GET_CODE (rtl))
924 case REG:
925 /* RA is in a register. */
926 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
927 break;
929 case MEM:
930 /* RA is on the stack. */
931 rtl = XEXP (rtl, 0);
932 switch (GET_CODE (rtl))
934 case REG:
935 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
936 offset = 0;
937 break;
939 case PLUS:
940 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
941 offset = INTVAL (XEXP (rtl, 1));
942 break;
944 case MINUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = -INTVAL (XEXP (rtl, 1));
947 break;
949 default:
950 gcc_unreachable ();
953 break;
955 case PLUS:
956 /* The return address is at some offset from any value we can
957 actually load. For instance, on the SPARC it is in %i7+8. Just
958 ignore the offset for now; it doesn't matter for unwinding frames. */
959 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
960 initial_return_save (XEXP (rtl, 0));
961 return;
963 default:
964 gcc_unreachable ();
967 if (reg != DWARF_FRAME_RETURN_COLUMN)
968 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
971 /* Given a SET, calculate the amount of stack adjustment it
972 contains. */
974 static HOST_WIDE_INT
975 stack_adjust_offset (rtx pattern)
977 rtx src = SET_SRC (pattern);
978 rtx dest = SET_DEST (pattern);
979 HOST_WIDE_INT offset = 0;
980 enum rtx_code code;
982 if (dest == stack_pointer_rtx)
984 /* (set (reg sp) (plus (reg sp) (const_int))) */
985 code = GET_CODE (src);
986 if (! (code == PLUS || code == MINUS)
987 || XEXP (src, 0) != stack_pointer_rtx
988 || GET_CODE (XEXP (src, 1)) != CONST_INT)
989 return 0;
991 offset = INTVAL (XEXP (src, 1));
992 if (code == PLUS)
993 offset = -offset;
995 else if (MEM_P (dest))
997 /* (set (mem (pre_dec (reg sp))) (foo)) */
998 src = XEXP (dest, 0);
999 code = GET_CODE (src);
1001 switch (code)
1003 case PRE_MODIFY:
1004 case POST_MODIFY:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1007 rtx val = XEXP (XEXP (src, 1), 1);
1008 /* We handle only adjustments by constant amount. */
1009 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1010 && GET_CODE (val) == CONST_INT);
1011 offset = -INTVAL (val);
1012 break;
1014 return 0;
1016 case PRE_DEC:
1017 case POST_DEC:
1018 if (XEXP (src, 0) == stack_pointer_rtx)
1020 offset = GET_MODE_SIZE (GET_MODE (dest));
1021 break;
1023 return 0;
1025 case PRE_INC:
1026 case POST_INC:
1027 if (XEXP (src, 0) == stack_pointer_rtx)
1029 offset = -GET_MODE_SIZE (GET_MODE (dest));
1030 break;
1032 return 0;
1034 default:
1035 return 0;
1038 else
1039 return 0;
1041 return offset;
1044 /* Check INSN to see if it looks like a push or a stack adjustment, and
1045 make a note of it if it does. EH uses this information to find out how
1046 much extra space it needs to pop off the stack. */
1048 static void
1049 dwarf2out_stack_adjust (rtx insn)
1051 HOST_WIDE_INT offset;
1052 const char *label;
1053 int i;
1055 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1056 with this function. Proper support would require all frame-related
1057 insns to be marked, and to be able to handle saving state around
1058 epilogues textually in the middle of the function. */
1059 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1060 return;
1062 if (!flag_asynchronous_unwind_tables && CALL_P (insn))
1064 /* Extract the size of the args from the CALL rtx itself. */
1065 insn = PATTERN (insn);
1066 if (GET_CODE (insn) == PARALLEL)
1067 insn = XVECEXP (insn, 0, 0);
1068 if (GET_CODE (insn) == SET)
1069 insn = SET_SRC (insn);
1070 gcc_assert (GET_CODE (insn) == CALL);
1072 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1073 return;
1076 /* If only calls can throw, and we have a frame pointer,
1077 save up adjustments until we see the CALL_INSN. */
1078 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1079 return;
1081 if (BARRIER_P (insn))
1083 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1084 the compiler will have already emitted a stack adjustment, but
1085 doesn't bother for calls to noreturn functions. */
1086 #ifdef STACK_GROWS_DOWNWARD
1087 offset = -args_size;
1088 #else
1089 offset = args_size;
1090 #endif
1092 else if (GET_CODE (PATTERN (insn)) == SET)
1093 offset = stack_adjust_offset (PATTERN (insn));
1094 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1095 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1097 /* There may be stack adjustments inside compound insns. Search
1098 for them. */
1099 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1100 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1101 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1103 else
1104 return;
1106 if (offset == 0)
1107 return;
1109 if (cfa.reg == STACK_POINTER_REGNUM)
1110 cfa.offset += offset;
1112 #ifndef STACK_GROWS_DOWNWARD
1113 offset = -offset;
1114 #endif
1116 args_size += offset;
1117 if (args_size < 0)
1118 args_size = 0;
1120 label = dwarf2out_cfi_label ();
1121 def_cfa_1 (label, &cfa);
1122 dwarf2out_args_size (label, args_size);
1125 #endif
1127 /* We delay emitting a register save until either (a) we reach the end
1128 of the prologue or (b) the register is clobbered. This clusters
1129 register saves so that there are fewer pc advances. */
1131 struct queued_reg_save GTY(())
1133 struct queued_reg_save *next;
1134 rtx reg;
1135 HOST_WIDE_INT cfa_offset;
1136 rtx saved_reg;
1139 static GTY(()) struct queued_reg_save *queued_reg_saves;
1141 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1142 struct reg_saved_in_data GTY(()) {
1143 rtx orig_reg;
1144 rtx saved_in_reg;
1147 /* A list of registers saved in other registers.
1148 The list intentionally has a small maximum capacity of 4; if your
1149 port needs more than that, you might consider implementing a
1150 more efficient data structure. */
1151 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1152 static GTY(()) size_t num_regs_saved_in_regs;
1154 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1155 static const char *last_reg_save_label;
1157 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1158 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1160 static void
1161 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1163 struct queued_reg_save *q;
1165 /* Duplicates waste space, but it's also necessary to remove them
1166 for correctness, since the queue gets output in reverse
1167 order. */
1168 for (q = queued_reg_saves; q != NULL; q = q->next)
1169 if (REGNO (q->reg) == REGNO (reg))
1170 break;
1172 if (q == NULL)
1174 q = ggc_alloc (sizeof (*q));
1175 q->next = queued_reg_saves;
1176 queued_reg_saves = q;
1179 q->reg = reg;
1180 q->cfa_offset = offset;
1181 q->saved_reg = sreg;
1183 last_reg_save_label = label;
1186 /* Output all the entries in QUEUED_REG_SAVES. */
1188 static void
1189 flush_queued_reg_saves (void)
1191 struct queued_reg_save *q;
1193 for (q = queued_reg_saves; q; q = q->next)
1195 size_t i;
1196 unsigned int reg, sreg;
1198 for (i = 0; i < num_regs_saved_in_regs; i++)
1199 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1200 break;
1201 if (q->saved_reg && i == num_regs_saved_in_regs)
1203 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1204 num_regs_saved_in_regs++;
1206 if (i != num_regs_saved_in_regs)
1208 regs_saved_in_regs[i].orig_reg = q->reg;
1209 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1212 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1213 if (q->saved_reg)
1214 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1215 else
1216 sreg = INVALID_REGNUM;
1217 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1220 queued_reg_saves = NULL;
1221 last_reg_save_label = NULL;
1224 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1225 location for? Or, does it clobber a register which we've previously
1226 said that some other register is saved in, and for which we now
1227 have a new location for? */
1229 static bool
1230 clobbers_queued_reg_save (rtx insn)
1232 struct queued_reg_save *q;
1234 for (q = queued_reg_saves; q; q = q->next)
1236 size_t i;
1237 if (modified_in_p (q->reg, insn))
1238 return true;
1239 for (i = 0; i < num_regs_saved_in_regs; i++)
1240 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1241 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1242 return true;
1245 return false;
1248 /* What register, if any, is currently saved in REG? */
1250 static rtx
1251 reg_saved_in (rtx reg)
1253 unsigned int regn = REGNO (reg);
1254 size_t i;
1255 struct queued_reg_save *q;
1257 for (q = queued_reg_saves; q; q = q->next)
1258 if (q->saved_reg && regn == REGNO (q->saved_reg))
1259 return q->reg;
1261 for (i = 0; i < num_regs_saved_in_regs; i++)
1262 if (regs_saved_in_regs[i].saved_in_reg
1263 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1264 return regs_saved_in_regs[i].orig_reg;
1266 return NULL_RTX;
1270 /* A temporary register holding an integral value used in adjusting SP
1271 or setting up the store_reg. The "offset" field holds the integer
1272 value, not an offset. */
1273 static dw_cfa_location cfa_temp;
1275 /* Record call frame debugging information for an expression EXPR,
1276 which either sets SP or FP (adjusting how we calculate the frame
1277 address) or saves a register to the stack or another register.
1278 LABEL indicates the address of EXPR.
1280 This function encodes a state machine mapping rtxes to actions on
1281 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1282 users need not read the source code.
1284 The High-Level Picture
1286 Changes in the register we use to calculate the CFA: Currently we
1287 assume that if you copy the CFA register into another register, we
1288 should take the other one as the new CFA register; this seems to
1289 work pretty well. If it's wrong for some target, it's simple
1290 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1292 Changes in the register we use for saving registers to the stack:
1293 This is usually SP, but not always. Again, we deduce that if you
1294 copy SP into another register (and SP is not the CFA register),
1295 then the new register is the one we will be using for register
1296 saves. This also seems to work.
1298 Register saves: There's not much guesswork about this one; if
1299 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1300 register save, and the register used to calculate the destination
1301 had better be the one we think we're using for this purpose.
1302 It's also assumed that a copy from a call-saved register to another
1303 register is saving that register if RTX_FRAME_RELATED_P is set on
1304 that instruction. If the copy is from a call-saved register to
1305 the *same* register, that means that the register is now the same
1306 value as in the caller.
1308 Except: If the register being saved is the CFA register, and the
1309 offset is nonzero, we are saving the CFA, so we assume we have to
1310 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1311 the intent is to save the value of SP from the previous frame.
1313 In addition, if a register has previously been saved to a different
1314 register,
1316 Invariants / Summaries of Rules
1318 cfa current rule for calculating the CFA. It usually
1319 consists of a register and an offset.
1320 cfa_store register used by prologue code to save things to the stack
1321 cfa_store.offset is the offset from the value of
1322 cfa_store.reg to the actual CFA
1323 cfa_temp register holding an integral value. cfa_temp.offset
1324 stores the value, which will be used to adjust the
1325 stack pointer. cfa_temp is also used like cfa_store,
1326 to track stores to the stack via fp or a temp reg.
1328 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1329 with cfa.reg as the first operand changes the cfa.reg and its
1330 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1331 cfa_temp.offset.
1333 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1334 expression yielding a constant. This sets cfa_temp.reg
1335 and cfa_temp.offset.
1337 Rule 5: Create a new register cfa_store used to save items to the
1338 stack.
1340 Rules 10-14: Save a register to the stack. Define offset as the
1341 difference of the original location and cfa_store's
1342 location (or cfa_temp's location if cfa_temp is used).
1344 The Rules
1346 "{a,b}" indicates a choice of a xor b.
1347 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1349 Rule 1:
1350 (set <reg1> <reg2>:cfa.reg)
1351 effects: cfa.reg = <reg1>
1352 cfa.offset unchanged
1353 cfa_temp.reg = <reg1>
1354 cfa_temp.offset = cfa.offset
1356 Rule 2:
1357 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1358 {<const_int>,<reg>:cfa_temp.reg}))
1359 effects: cfa.reg = sp if fp used
1360 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1361 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1362 if cfa_store.reg==sp
1364 Rule 3:
1365 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1366 effects: cfa.reg = fp
1367 cfa_offset += +/- <const_int>
1369 Rule 4:
1370 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1371 constraints: <reg1> != fp
1372 <reg1> != sp
1373 effects: cfa.reg = <reg1>
1374 cfa_temp.reg = <reg1>
1375 cfa_temp.offset = cfa.offset
1377 Rule 5:
1378 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1379 constraints: <reg1> != fp
1380 <reg1> != sp
1381 effects: cfa_store.reg = <reg1>
1382 cfa_store.offset = cfa.offset - cfa_temp.offset
1384 Rule 6:
1385 (set <reg> <const_int>)
1386 effects: cfa_temp.reg = <reg>
1387 cfa_temp.offset = <const_int>
1389 Rule 7:
1390 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1391 effects: cfa_temp.reg = <reg1>
1392 cfa_temp.offset |= <const_int>
1394 Rule 8:
1395 (set <reg> (high <exp>))
1396 effects: none
1398 Rule 9:
1399 (set <reg> (lo_sum <exp> <const_int>))
1400 effects: cfa_temp.reg = <reg>
1401 cfa_temp.offset = <const_int>
1403 Rule 10:
1404 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1405 effects: cfa_store.offset -= <const_int>
1406 cfa.offset = cfa_store.offset if cfa.reg == sp
1407 cfa.reg = sp
1408 cfa.base_offset = -cfa_store.offset
1410 Rule 11:
1411 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1412 effects: cfa_store.offset += -/+ mode_size(mem)
1413 cfa.offset = cfa_store.offset if cfa.reg == sp
1414 cfa.reg = sp
1415 cfa.base_offset = -cfa_store.offset
1417 Rule 12:
1418 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1420 <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1424 Rule 13:
1425 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1426 effects: cfa.reg = <reg1>
1427 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1429 Rule 14:
1430 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1431 effects: cfa.reg = <reg1>
1432 cfa.base_offset = -cfa_temp.offset
1433 cfa_temp.offset -= mode_size(mem) */
1435 static void
1436 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1438 rtx src, dest;
1439 HOST_WIDE_INT offset;
1441 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1442 the PARALLEL independently. The first element is always processed if
1443 it is a SET. This is for backward compatibility. Other elements
1444 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1445 flag is set in them. */
1446 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1448 int par_index;
1449 int limit = XVECLEN (expr, 0);
1451 for (par_index = 0; par_index < limit; par_index++)
1452 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1453 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1454 || par_index == 0))
1455 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1457 return;
1460 gcc_assert (GET_CODE (expr) == SET);
1462 src = SET_SRC (expr);
1463 dest = SET_DEST (expr);
1465 if (GET_CODE (src) == REG)
1467 rtx rsi = reg_saved_in (src);
1468 if (rsi)
1469 src = rsi;
1472 switch (GET_CODE (dest))
1474 case REG:
1475 switch (GET_CODE (src))
1477 /* Setting FP from SP. */
1478 case REG:
1479 if (cfa.reg == (unsigned) REGNO (src))
1481 /* Rule 1 */
1482 /* Update the CFA rule wrt SP or FP. Make sure src is
1483 relative to the current CFA register.
1485 We used to require that dest be either SP or FP, but the
1486 ARM copies SP to a temporary register, and from there to
1487 FP. So we just rely on the backends to only set
1488 RTX_FRAME_RELATED_P on appropriate insns. */
1489 cfa.reg = REGNO (dest);
1490 cfa_temp.reg = cfa.reg;
1491 cfa_temp.offset = cfa.offset;
1493 else
1495 /* Saving a register in a register. */
1496 gcc_assert (call_used_regs [REGNO (dest)]
1497 && !fixed_regs [REGNO (dest)]);
1498 queue_reg_save (label, src, dest, 0);
1500 break;
1502 case PLUS:
1503 case MINUS:
1504 case LO_SUM:
1505 if (dest == stack_pointer_rtx)
1507 /* Rule 2 */
1508 /* Adjusting SP. */
1509 switch (GET_CODE (XEXP (src, 1)))
1511 case CONST_INT:
1512 offset = INTVAL (XEXP (src, 1));
1513 break;
1514 case REG:
1515 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1516 == cfa_temp.reg);
1517 offset = cfa_temp.offset;
1518 break;
1519 default:
1520 gcc_unreachable ();
1523 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1525 /* Restoring SP from FP in the epilogue. */
1526 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1527 cfa.reg = STACK_POINTER_REGNUM;
1529 else if (GET_CODE (src) == LO_SUM)
1530 /* Assume we've set the source reg of the LO_SUM from sp. */
1532 else
1533 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1535 if (GET_CODE (src) != MINUS)
1536 offset = -offset;
1537 if (cfa.reg == STACK_POINTER_REGNUM)
1538 cfa.offset += offset;
1539 if (cfa_store.reg == STACK_POINTER_REGNUM)
1540 cfa_store.offset += offset;
1542 else if (dest == hard_frame_pointer_rtx)
1544 /* Rule 3 */
1545 /* Either setting the FP from an offset of the SP,
1546 or adjusting the FP */
1547 gcc_assert (frame_pointer_needed);
1549 gcc_assert (REG_P (XEXP (src, 0))
1550 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1551 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1552 offset = INTVAL (XEXP (src, 1));
1553 if (GET_CODE (src) != MINUS)
1554 offset = -offset;
1555 cfa.offset += offset;
1556 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1558 else
1560 gcc_assert (GET_CODE (src) != MINUS);
1562 /* Rule 4 */
1563 if (REG_P (XEXP (src, 0))
1564 && REGNO (XEXP (src, 0)) == cfa.reg
1565 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1567 /* Setting a temporary CFA register that will be copied
1568 into the FP later on. */
1569 offset = - INTVAL (XEXP (src, 1));
1570 cfa.offset += offset;
1571 cfa.reg = REGNO (dest);
1572 /* Or used to save regs to the stack. */
1573 cfa_temp.reg = cfa.reg;
1574 cfa_temp.offset = cfa.offset;
1577 /* Rule 5 */
1578 else if (REG_P (XEXP (src, 0))
1579 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1580 && XEXP (src, 1) == stack_pointer_rtx)
1582 /* Setting a scratch register that we will use instead
1583 of SP for saving registers to the stack. */
1584 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1585 cfa_store.reg = REGNO (dest);
1586 cfa_store.offset = cfa.offset - cfa_temp.offset;
1589 /* Rule 9 */
1590 else if (GET_CODE (src) == LO_SUM
1591 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1593 cfa_temp.reg = REGNO (dest);
1594 cfa_temp.offset = INTVAL (XEXP (src, 1));
1596 else
1597 gcc_unreachable ();
1599 break;
1601 /* Rule 6 */
1602 case CONST_INT:
1603 cfa_temp.reg = REGNO (dest);
1604 cfa_temp.offset = INTVAL (src);
1605 break;
1607 /* Rule 7 */
1608 case IOR:
1609 gcc_assert (REG_P (XEXP (src, 0))
1610 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1611 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1613 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1614 cfa_temp.reg = REGNO (dest);
1615 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1616 break;
1618 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1619 which will fill in all of the bits. */
1620 /* Rule 8 */
1621 case HIGH:
1622 break;
1624 default:
1625 gcc_unreachable ();
1628 def_cfa_1 (label, &cfa);
1629 break;
1631 case MEM:
1632 gcc_assert (REG_P (src));
1634 /* Saving a register to the stack. Make sure dest is relative to the
1635 CFA register. */
1636 switch (GET_CODE (XEXP (dest, 0)))
1638 /* Rule 10 */
1639 /* With a push. */
1640 case PRE_MODIFY:
1641 /* We can't handle variable size modifications. */
1642 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1643 == CONST_INT);
1644 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1646 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1647 && cfa_store.reg == STACK_POINTER_REGNUM);
1649 cfa_store.offset += offset;
1650 if (cfa.reg == STACK_POINTER_REGNUM)
1651 cfa.offset = cfa_store.offset;
1653 offset = -cfa_store.offset;
1654 break;
1656 /* Rule 11 */
1657 case PRE_INC:
1658 case PRE_DEC:
1659 offset = GET_MODE_SIZE (GET_MODE (dest));
1660 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1661 offset = -offset;
1663 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1664 && cfa_store.reg == STACK_POINTER_REGNUM);
1666 cfa_store.offset += offset;
1667 if (cfa.reg == STACK_POINTER_REGNUM)
1668 cfa.offset = cfa_store.offset;
1670 offset = -cfa_store.offset;
1671 break;
1673 /* Rule 12 */
1674 /* With an offset. */
1675 case PLUS:
1676 case MINUS:
1677 case LO_SUM:
1679 int regno;
1681 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1682 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1683 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1684 offset = -offset;
1686 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1688 if (cfa_store.reg == (unsigned) regno)
1689 offset -= cfa_store.offset;
1690 else
1692 gcc_assert (cfa_temp.reg == (unsigned) regno);
1693 offset -= cfa_temp.offset;
1696 break;
1698 /* Rule 13 */
1699 /* Without an offset. */
1700 case REG:
1702 int regno = REGNO (XEXP (dest, 0));
1704 if (cfa_store.reg == (unsigned) regno)
1705 offset = -cfa_store.offset;
1706 else
1708 gcc_assert (cfa_temp.reg == (unsigned) regno);
1709 offset = -cfa_temp.offset;
1712 break;
1714 /* Rule 14 */
1715 case POST_INC:
1716 gcc_assert (cfa_temp.reg
1717 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1718 offset = -cfa_temp.offset;
1719 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1720 break;
1722 default:
1723 gcc_unreachable ();
1726 if (REGNO (src) != STACK_POINTER_REGNUM
1727 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1728 && (unsigned) REGNO (src) == cfa.reg)
1730 /* We're storing the current CFA reg into the stack. */
1732 if (cfa.offset == 0)
1734 /* If the source register is exactly the CFA, assume
1735 we're saving SP like any other register; this happens
1736 on the ARM. */
1737 def_cfa_1 (label, &cfa);
1738 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1739 break;
1741 else
1743 /* Otherwise, we'll need to look in the stack to
1744 calculate the CFA. */
1745 rtx x = XEXP (dest, 0);
1747 if (!REG_P (x))
1748 x = XEXP (x, 0);
1749 gcc_assert (REG_P (x));
1751 cfa.reg = REGNO (x);
1752 cfa.base_offset = offset;
1753 cfa.indirect = 1;
1754 def_cfa_1 (label, &cfa);
1755 break;
1759 def_cfa_1 (label, &cfa);
1760 queue_reg_save (label, src, NULL_RTX, offset);
1761 break;
1763 default:
1764 gcc_unreachable ();
1768 /* Record call frame debugging information for INSN, which either
1769 sets SP or FP (adjusting how we calculate the frame address) or saves a
1770 register to the stack. If INSN is NULL_RTX, initialize our state. */
1772 void
1773 dwarf2out_frame_debug (rtx insn)
1775 const char *label;
1776 rtx src;
1778 if (insn == NULL_RTX)
1780 size_t i;
1782 /* Flush any queued register saves. */
1783 flush_queued_reg_saves ();
1785 /* Set up state for generating call frame debug info. */
1786 lookup_cfa (&cfa);
1787 gcc_assert (cfa.reg
1788 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1790 cfa.reg = STACK_POINTER_REGNUM;
1791 cfa_store = cfa;
1792 cfa_temp.reg = -1;
1793 cfa_temp.offset = 0;
1795 for (i = 0; i < num_regs_saved_in_regs; i++)
1797 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1798 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1800 num_regs_saved_in_regs = 0;
1801 return;
1804 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1805 flush_queued_reg_saves ();
1807 if (! RTX_FRAME_RELATED_P (insn))
1809 if (!ACCUMULATE_OUTGOING_ARGS)
1810 dwarf2out_stack_adjust (insn);
1812 return;
1815 label = dwarf2out_cfi_label ();
1816 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1817 if (src)
1818 insn = XEXP (src, 0);
1819 else
1820 insn = PATTERN (insn);
1822 dwarf2out_frame_debug_expr (insn, label);
1825 #endif
1827 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1828 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1829 (enum dwarf_call_frame_info cfi);
1831 static enum dw_cfi_oprnd_type
1832 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1834 switch (cfi)
1836 case DW_CFA_nop:
1837 case DW_CFA_GNU_window_save:
1838 return dw_cfi_oprnd_unused;
1840 case DW_CFA_set_loc:
1841 case DW_CFA_advance_loc1:
1842 case DW_CFA_advance_loc2:
1843 case DW_CFA_advance_loc4:
1844 case DW_CFA_MIPS_advance_loc8:
1845 return dw_cfi_oprnd_addr;
1847 case DW_CFA_offset:
1848 case DW_CFA_offset_extended:
1849 case DW_CFA_def_cfa:
1850 case DW_CFA_offset_extended_sf:
1851 case DW_CFA_def_cfa_sf:
1852 case DW_CFA_restore_extended:
1853 case DW_CFA_undefined:
1854 case DW_CFA_same_value:
1855 case DW_CFA_def_cfa_register:
1856 case DW_CFA_register:
1857 return dw_cfi_oprnd_reg_num;
1859 case DW_CFA_def_cfa_offset:
1860 case DW_CFA_GNU_args_size:
1861 case DW_CFA_def_cfa_offset_sf:
1862 return dw_cfi_oprnd_offset;
1864 case DW_CFA_def_cfa_expression:
1865 case DW_CFA_expression:
1866 return dw_cfi_oprnd_loc;
1868 default:
1869 gcc_unreachable ();
1873 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1874 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1875 (enum dwarf_call_frame_info cfi);
1877 static enum dw_cfi_oprnd_type
1878 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1880 switch (cfi)
1882 case DW_CFA_def_cfa:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_offset:
1885 case DW_CFA_offset_extended_sf:
1886 case DW_CFA_offset_extended:
1887 return dw_cfi_oprnd_offset;
1889 case DW_CFA_register:
1890 return dw_cfi_oprnd_reg_num;
1892 default:
1893 return dw_cfi_oprnd_unused;
1897 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1899 /* Map register numbers held in the call frame info that gcc has
1900 collected using DWARF_FRAME_REGNUM to those that should be output in
1901 .debug_frame and .eh_frame. */
1902 #ifndef DWARF2_FRAME_REG_OUT
1903 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1904 #endif
1906 /* Output a Call Frame Information opcode and its operand(s). */
1908 static void
1909 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1911 unsigned long r;
1912 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1913 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1914 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1915 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1916 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1917 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1919 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1920 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1921 "DW_CFA_offset, column 0x%lx", r);
1922 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1924 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1926 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1927 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1928 "DW_CFA_restore, column 0x%lx", r);
1930 else
1932 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1933 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1935 switch (cfi->dw_cfi_opc)
1937 case DW_CFA_set_loc:
1938 if (for_eh)
1939 dw2_asm_output_encoded_addr_rtx (
1940 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1941 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1942 NULL);
1943 else
1944 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1945 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1946 break;
1948 case DW_CFA_advance_loc1:
1949 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1950 fde->dw_fde_current_label, NULL);
1951 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1952 break;
1954 case DW_CFA_advance_loc2:
1955 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1956 fde->dw_fde_current_label, NULL);
1957 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1958 break;
1960 case DW_CFA_advance_loc4:
1961 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1962 fde->dw_fde_current_label, NULL);
1963 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1964 break;
1966 case DW_CFA_MIPS_advance_loc8:
1967 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1968 fde->dw_fde_current_label, NULL);
1969 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1970 break;
1972 case DW_CFA_offset_extended:
1973 case DW_CFA_def_cfa:
1974 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1975 dw2_asm_output_data_uleb128 (r, NULL);
1976 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1977 break;
1979 case DW_CFA_offset_extended_sf:
1980 case DW_CFA_def_cfa_sf:
1981 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1982 dw2_asm_output_data_uleb128 (r, NULL);
1983 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1984 break;
1986 case DW_CFA_restore_extended:
1987 case DW_CFA_undefined:
1988 case DW_CFA_same_value:
1989 case DW_CFA_def_cfa_register:
1990 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1991 dw2_asm_output_data_uleb128 (r, NULL);
1992 break;
1994 case DW_CFA_register:
1995 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1996 dw2_asm_output_data_uleb128 (r, NULL);
1997 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1998 dw2_asm_output_data_uleb128 (r, NULL);
1999 break;
2001 case DW_CFA_def_cfa_offset:
2002 case DW_CFA_GNU_args_size:
2003 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2004 break;
2006 case DW_CFA_def_cfa_offset_sf:
2007 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2008 break;
2010 case DW_CFA_GNU_window_save:
2011 break;
2013 case DW_CFA_def_cfa_expression:
2014 case DW_CFA_expression:
2015 output_cfa_loc (cfi);
2016 break;
2018 case DW_CFA_GNU_negative_offset_extended:
2019 /* Obsoleted by DW_CFA_offset_extended_sf. */
2020 gcc_unreachable ();
2022 default:
2023 break;
2028 /* Output the call frame information used to record information
2029 that relates to calculating the frame pointer, and records the
2030 location of saved registers. */
2032 static void
2033 output_call_frame_info (int for_eh)
2035 unsigned int i;
2036 dw_fde_ref fde;
2037 dw_cfi_ref cfi;
2038 char l1[20], l2[20], section_start_label[20];
2039 bool any_lsda_needed = false;
2040 char augmentation[6];
2041 int augmentation_size;
2042 int fde_encoding = DW_EH_PE_absptr;
2043 int per_encoding = DW_EH_PE_absptr;
2044 int lsda_encoding = DW_EH_PE_absptr;
2046 /* Don't emit a CIE if there won't be any FDEs. */
2047 if (fde_table_in_use == 0)
2048 return;
2050 /* If we make FDEs linkonce, we may have to emit an empty label for
2051 an FDE that wouldn't otherwise be emitted. We want to avoid
2052 having an FDE kept around when the function it refers to is
2053 discarded. (Example where this matters: a primary function
2054 template in C++ requires EH information, but an explicit
2055 specialization doesn't. */
2056 if (TARGET_USES_WEAK_UNWIND_INFO
2057 && ! flag_asynchronous_unwind_tables
2058 && for_eh)
2059 for (i = 0; i < fde_table_in_use; i++)
2060 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2061 && !fde_table[i].uses_eh_lsda
2062 && ! DECL_ONE_ONLY (fde_table[i].decl))
2063 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2064 for_eh, /* empty */ 1);
2066 /* If we don't have any functions we'll want to unwind out of, don't
2067 emit any EH unwind information. Note that if exceptions aren't
2068 enabled, we won't have collected nothrow information, and if we
2069 asked for asynchronous tables, we always want this info. */
2070 if (for_eh)
2072 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2074 for (i = 0; i < fde_table_in_use; i++)
2075 if (fde_table[i].uses_eh_lsda)
2076 any_eh_needed = any_lsda_needed = true;
2077 else if (TARGET_USES_WEAK_UNWIND_INFO
2078 && DECL_ONE_ONLY (fde_table[i].decl))
2079 any_eh_needed = true;
2080 else if (! fde_table[i].nothrow
2081 && ! fde_table[i].all_throwers_are_sibcalls)
2082 any_eh_needed = true;
2084 if (! any_eh_needed)
2085 return;
2088 /* We're going to be generating comments, so turn on app. */
2089 if (flag_debug_asm)
2090 app_enable ();
2092 if (for_eh)
2093 targetm.asm_out.eh_frame_section ();
2094 else
2095 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2097 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2098 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2100 /* Output the CIE. */
2101 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2102 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2103 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2104 "Length of Common Information Entry");
2105 ASM_OUTPUT_LABEL (asm_out_file, l1);
2107 /* Now that the CIE pointer is PC-relative for EH,
2108 use 0 to identify the CIE. */
2109 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2110 (for_eh ? 0 : DW_CIE_ID),
2111 "CIE Identifier Tag");
2113 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2115 augmentation[0] = 0;
2116 augmentation_size = 0;
2117 if (for_eh)
2119 char *p;
2121 /* Augmentation:
2122 z Indicates that a uleb128 is present to size the
2123 augmentation section.
2124 L Indicates the encoding (and thus presence) of
2125 an LSDA pointer in the FDE augmentation.
2126 R Indicates a non-default pointer encoding for
2127 FDE code pointers.
2128 P Indicates the presence of an encoding + language
2129 personality routine in the CIE augmentation. */
2131 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2132 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2133 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2135 p = augmentation + 1;
2136 if (eh_personality_libfunc)
2138 *p++ = 'P';
2139 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2141 if (any_lsda_needed)
2143 *p++ = 'L';
2144 augmentation_size += 1;
2146 if (fde_encoding != DW_EH_PE_absptr)
2148 *p++ = 'R';
2149 augmentation_size += 1;
2151 if (p > augmentation + 1)
2153 augmentation[0] = 'z';
2154 *p = '\0';
2157 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2158 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2160 int offset = ( 4 /* Length */
2161 + 4 /* CIE Id */
2162 + 1 /* CIE version */
2163 + strlen (augmentation) + 1 /* Augmentation */
2164 + size_of_uleb128 (1) /* Code alignment */
2165 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2166 + 1 /* RA column */
2167 + 1 /* Augmentation size */
2168 + 1 /* Personality encoding */ );
2169 int pad = -offset & (PTR_SIZE - 1);
2171 augmentation_size += pad;
2173 /* Augmentations should be small, so there's scarce need to
2174 iterate for a solution. Die if we exceed one uleb128 byte. */
2175 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2179 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2180 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2181 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2182 "CIE Data Alignment Factor");
2184 if (DW_CIE_VERSION == 1)
2185 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2186 else
2187 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2189 if (augmentation[0])
2191 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2192 if (eh_personality_libfunc)
2194 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2195 eh_data_format_name (per_encoding));
2196 dw2_asm_output_encoded_addr_rtx (per_encoding,
2197 eh_personality_libfunc, NULL);
2200 if (any_lsda_needed)
2201 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2202 eh_data_format_name (lsda_encoding));
2204 if (fde_encoding != DW_EH_PE_absptr)
2205 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2206 eh_data_format_name (fde_encoding));
2209 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2210 output_cfi (cfi, NULL, for_eh);
2212 /* Pad the CIE out to an address sized boundary. */
2213 ASM_OUTPUT_ALIGN (asm_out_file,
2214 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2215 ASM_OUTPUT_LABEL (asm_out_file, l2);
2217 /* Loop through all of the FDE's. */
2218 for (i = 0; i < fde_table_in_use; i++)
2220 fde = &fde_table[i];
2222 /* Don't emit EH unwind info for leaf functions that don't need it. */
2223 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2224 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2225 && (! TARGET_USES_WEAK_UNWIND_INFO || ! DECL_ONE_ONLY (fde->decl))
2226 && !fde->uses_eh_lsda)
2227 continue;
2229 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2230 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2231 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2232 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2233 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2234 "FDE Length");
2235 ASM_OUTPUT_LABEL (asm_out_file, l1);
2237 if (for_eh)
2238 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2239 else
2240 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2241 "FDE CIE offset");
2243 if (for_eh)
2245 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2246 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2247 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2248 sym_ref,
2249 "FDE initial location");
2250 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2251 fde->dw_fde_end, fde->dw_fde_begin,
2252 "FDE address range");
2254 else
2256 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2257 "FDE initial location");
2258 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2259 fde->dw_fde_end, fde->dw_fde_begin,
2260 "FDE address range");
2263 if (augmentation[0])
2265 if (any_lsda_needed)
2267 int size = size_of_encoded_value (lsda_encoding);
2269 if (lsda_encoding == DW_EH_PE_aligned)
2271 int offset = ( 4 /* Length */
2272 + 4 /* CIE offset */
2273 + 2 * size_of_encoded_value (fde_encoding)
2274 + 1 /* Augmentation size */ );
2275 int pad = -offset & (PTR_SIZE - 1);
2277 size += pad;
2278 gcc_assert (size_of_uleb128 (size) == 1);
2281 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2283 if (fde->uses_eh_lsda)
2285 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2286 fde->funcdef_number);
2287 dw2_asm_output_encoded_addr_rtx (
2288 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2289 "Language Specific Data Area");
2291 else
2293 if (lsda_encoding == DW_EH_PE_aligned)
2294 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2295 dw2_asm_output_data
2296 (size_of_encoded_value (lsda_encoding), 0,
2297 "Language Specific Data Area (none)");
2300 else
2301 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2304 /* Loop through the Call Frame Instructions associated with
2305 this FDE. */
2306 fde->dw_fde_current_label = fde->dw_fde_begin;
2307 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2308 output_cfi (cfi, fde, for_eh);
2310 /* Pad the FDE out to an address sized boundary. */
2311 ASM_OUTPUT_ALIGN (asm_out_file,
2312 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2313 ASM_OUTPUT_LABEL (asm_out_file, l2);
2316 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2317 dw2_asm_output_data (4, 0, "End of Table");
2318 #ifdef MIPS_DEBUGGING_INFO
2319 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2320 get a value of 0. Putting .align 0 after the label fixes it. */
2321 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2322 #endif
2324 /* Turn off app to make assembly quicker. */
2325 if (flag_debug_asm)
2326 app_disable ();
2329 /* Output a marker (i.e. a label) for the beginning of a function, before
2330 the prologue. */
2332 void
2333 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2334 const char *file ATTRIBUTE_UNUSED)
2336 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2337 char * dup_label;
2338 dw_fde_ref fde;
2340 current_function_func_begin_label = NULL;
2342 #ifdef TARGET_UNWIND_INFO
2343 /* ??? current_function_func_begin_label is also used by except.c
2344 for call-site information. We must emit this label if it might
2345 be used. */
2346 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2347 && ! dwarf2out_do_frame ())
2348 return;
2349 #else
2350 if (! dwarf2out_do_frame ())
2351 return;
2352 #endif
2354 function_section (current_function_decl);
2355 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2356 current_function_funcdef_no);
2357 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2358 current_function_funcdef_no);
2359 dup_label = xstrdup (label);
2360 current_function_func_begin_label = dup_label;
2362 #ifdef TARGET_UNWIND_INFO
2363 /* We can elide the fde allocation if we're not emitting debug info. */
2364 if (! dwarf2out_do_frame ())
2365 return;
2366 #endif
2368 /* Expand the fde table if necessary. */
2369 if (fde_table_in_use == fde_table_allocated)
2371 fde_table_allocated += FDE_TABLE_INCREMENT;
2372 fde_table = ggc_realloc (fde_table,
2373 fde_table_allocated * sizeof (dw_fde_node));
2374 memset (fde_table + fde_table_in_use, 0,
2375 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2378 /* Record the FDE associated with this function. */
2379 current_funcdef_fde = fde_table_in_use;
2381 /* Add the new FDE at the end of the fde_table. */
2382 fde = &fde_table[fde_table_in_use++];
2383 fde->decl = current_function_decl;
2384 fde->dw_fde_begin = dup_label;
2385 fde->dw_fde_current_label = NULL;
2386 fde->dw_fde_end = NULL;
2387 fde->dw_fde_cfi = NULL;
2388 fde->funcdef_number = current_function_funcdef_no;
2389 fde->nothrow = TREE_NOTHROW (current_function_decl);
2390 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2391 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2393 args_size = old_args_size = 0;
2395 /* We only want to output line number information for the genuine dwarf2
2396 prologue case, not the eh frame case. */
2397 #ifdef DWARF2_DEBUGGING_INFO
2398 if (file)
2399 dwarf2out_source_line (line, file);
2400 #endif
2403 /* Output a marker (i.e. a label) for the absolute end of the generated code
2404 for a function definition. This gets called *after* the epilogue code has
2405 been generated. */
2407 void
2408 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2409 const char *file ATTRIBUTE_UNUSED)
2411 dw_fde_ref fde;
2412 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2414 /* Output a label to mark the endpoint of the code generated for this
2415 function. */
2416 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2417 current_function_funcdef_no);
2418 ASM_OUTPUT_LABEL (asm_out_file, label);
2419 fde = &fde_table[fde_table_in_use - 1];
2420 fde->dw_fde_end = xstrdup (label);
2423 void
2424 dwarf2out_frame_init (void)
2426 /* Allocate the initial hunk of the fde_table. */
2427 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2428 fde_table_allocated = FDE_TABLE_INCREMENT;
2429 fde_table_in_use = 0;
2431 /* Generate the CFA instructions common to all FDE's. Do it now for the
2432 sake of lookup_cfa. */
2434 #ifdef DWARF2_UNWIND_INFO
2435 /* On entry, the Canonical Frame Address is at SP. */
2436 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2437 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2438 #endif
2441 void
2442 dwarf2out_frame_finish (void)
2444 /* Output call frame information. */
2445 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2446 output_call_frame_info (0);
2448 #ifndef TARGET_UNWIND_INFO
2449 /* Output another copy for the unwinder. */
2450 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2451 output_call_frame_info (1);
2452 #endif
2454 #endif
2456 /* And now, the subset of the debugging information support code necessary
2457 for emitting location expressions. */
2459 /* We need some way to distinguish DW_OP_addr with a direct symbol
2460 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2461 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2464 typedef struct dw_val_struct *dw_val_ref;
2465 typedef struct die_struct *dw_die_ref;
2466 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2467 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2469 /* Each DIE may have a series of attribute/value pairs. Values
2470 can take on several forms. The forms that are used in this
2471 implementation are listed below. */
2473 enum dw_val_class
2475 dw_val_class_addr,
2476 dw_val_class_offset,
2477 dw_val_class_loc,
2478 dw_val_class_loc_list,
2479 dw_val_class_range_list,
2480 dw_val_class_const,
2481 dw_val_class_unsigned_const,
2482 dw_val_class_long_long,
2483 dw_val_class_vec,
2484 dw_val_class_flag,
2485 dw_val_class_die_ref,
2486 dw_val_class_fde_ref,
2487 dw_val_class_lbl_id,
2488 dw_val_class_lbl_offset,
2489 dw_val_class_str
2492 /* Describe a double word constant value. */
2493 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2495 typedef struct dw_long_long_struct GTY(())
2497 unsigned long hi;
2498 unsigned long low;
2500 dw_long_long_const;
2502 /* Describe a floating point constant value, or a vector constant value. */
2504 typedef struct dw_vec_struct GTY(())
2506 unsigned char * GTY((length ("%h.length"))) array;
2507 unsigned length;
2508 unsigned elt_size;
2510 dw_vec_const;
2512 /* The dw_val_node describes an attribute's value, as it is
2513 represented internally. */
2515 typedef struct dw_val_struct GTY(())
2517 enum dw_val_class val_class;
2518 union dw_val_struct_union
2520 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2521 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2522 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2523 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2524 HOST_WIDE_INT GTY ((default)) val_int;
2525 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2526 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2527 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2528 struct dw_val_die_union
2530 dw_die_ref die;
2531 int external;
2532 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2533 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2534 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2535 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2536 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2538 GTY ((desc ("%1.val_class"))) v;
2540 dw_val_node;
2542 /* Locations in memory are described using a sequence of stack machine
2543 operations. */
2545 typedef struct dw_loc_descr_struct GTY(())
2547 dw_loc_descr_ref dw_loc_next;
2548 enum dwarf_location_atom dw_loc_opc;
2549 dw_val_node dw_loc_oprnd1;
2550 dw_val_node dw_loc_oprnd2;
2551 int dw_loc_addr;
2553 dw_loc_descr_node;
2555 /* Location lists are ranges + location descriptions for that range,
2556 so you can track variables that are in different places over
2557 their entire life. */
2558 typedef struct dw_loc_list_struct GTY(())
2560 dw_loc_list_ref dw_loc_next;
2561 const char *begin; /* Label for begin address of range */
2562 const char *end; /* Label for end address of range */
2563 char *ll_symbol; /* Label for beginning of location list.
2564 Only on head of list */
2565 const char *section; /* Section this loclist is relative to */
2566 dw_loc_descr_ref expr;
2567 } dw_loc_list_node;
2569 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2571 static const char *dwarf_stack_op_name (unsigned);
2572 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2573 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2574 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2575 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2576 static unsigned long size_of_locs (dw_loc_descr_ref);
2577 static void output_loc_operands (dw_loc_descr_ref);
2578 static void output_loc_sequence (dw_loc_descr_ref);
2580 /* Convert a DWARF stack opcode into its string name. */
2582 static const char *
2583 dwarf_stack_op_name (unsigned int op)
2585 switch (op)
2587 case DW_OP_addr:
2588 case INTERNAL_DW_OP_tls_addr:
2589 return "DW_OP_addr";
2590 case DW_OP_deref:
2591 return "DW_OP_deref";
2592 case DW_OP_const1u:
2593 return "DW_OP_const1u";
2594 case DW_OP_const1s:
2595 return "DW_OP_const1s";
2596 case DW_OP_const2u:
2597 return "DW_OP_const2u";
2598 case DW_OP_const2s:
2599 return "DW_OP_const2s";
2600 case DW_OP_const4u:
2601 return "DW_OP_const4u";
2602 case DW_OP_const4s:
2603 return "DW_OP_const4s";
2604 case DW_OP_const8u:
2605 return "DW_OP_const8u";
2606 case DW_OP_const8s:
2607 return "DW_OP_const8s";
2608 case DW_OP_constu:
2609 return "DW_OP_constu";
2610 case DW_OP_consts:
2611 return "DW_OP_consts";
2612 case DW_OP_dup:
2613 return "DW_OP_dup";
2614 case DW_OP_drop:
2615 return "DW_OP_drop";
2616 case DW_OP_over:
2617 return "DW_OP_over";
2618 case DW_OP_pick:
2619 return "DW_OP_pick";
2620 case DW_OP_swap:
2621 return "DW_OP_swap";
2622 case DW_OP_rot:
2623 return "DW_OP_rot";
2624 case DW_OP_xderef:
2625 return "DW_OP_xderef";
2626 case DW_OP_abs:
2627 return "DW_OP_abs";
2628 case DW_OP_and:
2629 return "DW_OP_and";
2630 case DW_OP_div:
2631 return "DW_OP_div";
2632 case DW_OP_minus:
2633 return "DW_OP_minus";
2634 case DW_OP_mod:
2635 return "DW_OP_mod";
2636 case DW_OP_mul:
2637 return "DW_OP_mul";
2638 case DW_OP_neg:
2639 return "DW_OP_neg";
2640 case DW_OP_not:
2641 return "DW_OP_not";
2642 case DW_OP_or:
2643 return "DW_OP_or";
2644 case DW_OP_plus:
2645 return "DW_OP_plus";
2646 case DW_OP_plus_uconst:
2647 return "DW_OP_plus_uconst";
2648 case DW_OP_shl:
2649 return "DW_OP_shl";
2650 case DW_OP_shr:
2651 return "DW_OP_shr";
2652 case DW_OP_shra:
2653 return "DW_OP_shra";
2654 case DW_OP_xor:
2655 return "DW_OP_xor";
2656 case DW_OP_bra:
2657 return "DW_OP_bra";
2658 case DW_OP_eq:
2659 return "DW_OP_eq";
2660 case DW_OP_ge:
2661 return "DW_OP_ge";
2662 case DW_OP_gt:
2663 return "DW_OP_gt";
2664 case DW_OP_le:
2665 return "DW_OP_le";
2666 case DW_OP_lt:
2667 return "DW_OP_lt";
2668 case DW_OP_ne:
2669 return "DW_OP_ne";
2670 case DW_OP_skip:
2671 return "DW_OP_skip";
2672 case DW_OP_lit0:
2673 return "DW_OP_lit0";
2674 case DW_OP_lit1:
2675 return "DW_OP_lit1";
2676 case DW_OP_lit2:
2677 return "DW_OP_lit2";
2678 case DW_OP_lit3:
2679 return "DW_OP_lit3";
2680 case DW_OP_lit4:
2681 return "DW_OP_lit4";
2682 case DW_OP_lit5:
2683 return "DW_OP_lit5";
2684 case DW_OP_lit6:
2685 return "DW_OP_lit6";
2686 case DW_OP_lit7:
2687 return "DW_OP_lit7";
2688 case DW_OP_lit8:
2689 return "DW_OP_lit8";
2690 case DW_OP_lit9:
2691 return "DW_OP_lit9";
2692 case DW_OP_lit10:
2693 return "DW_OP_lit10";
2694 case DW_OP_lit11:
2695 return "DW_OP_lit11";
2696 case DW_OP_lit12:
2697 return "DW_OP_lit12";
2698 case DW_OP_lit13:
2699 return "DW_OP_lit13";
2700 case DW_OP_lit14:
2701 return "DW_OP_lit14";
2702 case DW_OP_lit15:
2703 return "DW_OP_lit15";
2704 case DW_OP_lit16:
2705 return "DW_OP_lit16";
2706 case DW_OP_lit17:
2707 return "DW_OP_lit17";
2708 case DW_OP_lit18:
2709 return "DW_OP_lit18";
2710 case DW_OP_lit19:
2711 return "DW_OP_lit19";
2712 case DW_OP_lit20:
2713 return "DW_OP_lit20";
2714 case DW_OP_lit21:
2715 return "DW_OP_lit21";
2716 case DW_OP_lit22:
2717 return "DW_OP_lit22";
2718 case DW_OP_lit23:
2719 return "DW_OP_lit23";
2720 case DW_OP_lit24:
2721 return "DW_OP_lit24";
2722 case DW_OP_lit25:
2723 return "DW_OP_lit25";
2724 case DW_OP_lit26:
2725 return "DW_OP_lit26";
2726 case DW_OP_lit27:
2727 return "DW_OP_lit27";
2728 case DW_OP_lit28:
2729 return "DW_OP_lit28";
2730 case DW_OP_lit29:
2731 return "DW_OP_lit29";
2732 case DW_OP_lit30:
2733 return "DW_OP_lit30";
2734 case DW_OP_lit31:
2735 return "DW_OP_lit31";
2736 case DW_OP_reg0:
2737 return "DW_OP_reg0";
2738 case DW_OP_reg1:
2739 return "DW_OP_reg1";
2740 case DW_OP_reg2:
2741 return "DW_OP_reg2";
2742 case DW_OP_reg3:
2743 return "DW_OP_reg3";
2744 case DW_OP_reg4:
2745 return "DW_OP_reg4";
2746 case DW_OP_reg5:
2747 return "DW_OP_reg5";
2748 case DW_OP_reg6:
2749 return "DW_OP_reg6";
2750 case DW_OP_reg7:
2751 return "DW_OP_reg7";
2752 case DW_OP_reg8:
2753 return "DW_OP_reg8";
2754 case DW_OP_reg9:
2755 return "DW_OP_reg9";
2756 case DW_OP_reg10:
2757 return "DW_OP_reg10";
2758 case DW_OP_reg11:
2759 return "DW_OP_reg11";
2760 case DW_OP_reg12:
2761 return "DW_OP_reg12";
2762 case DW_OP_reg13:
2763 return "DW_OP_reg13";
2764 case DW_OP_reg14:
2765 return "DW_OP_reg14";
2766 case DW_OP_reg15:
2767 return "DW_OP_reg15";
2768 case DW_OP_reg16:
2769 return "DW_OP_reg16";
2770 case DW_OP_reg17:
2771 return "DW_OP_reg17";
2772 case DW_OP_reg18:
2773 return "DW_OP_reg18";
2774 case DW_OP_reg19:
2775 return "DW_OP_reg19";
2776 case DW_OP_reg20:
2777 return "DW_OP_reg20";
2778 case DW_OP_reg21:
2779 return "DW_OP_reg21";
2780 case DW_OP_reg22:
2781 return "DW_OP_reg22";
2782 case DW_OP_reg23:
2783 return "DW_OP_reg23";
2784 case DW_OP_reg24:
2785 return "DW_OP_reg24";
2786 case DW_OP_reg25:
2787 return "DW_OP_reg25";
2788 case DW_OP_reg26:
2789 return "DW_OP_reg26";
2790 case DW_OP_reg27:
2791 return "DW_OP_reg27";
2792 case DW_OP_reg28:
2793 return "DW_OP_reg28";
2794 case DW_OP_reg29:
2795 return "DW_OP_reg29";
2796 case DW_OP_reg30:
2797 return "DW_OP_reg30";
2798 case DW_OP_reg31:
2799 return "DW_OP_reg31";
2800 case DW_OP_breg0:
2801 return "DW_OP_breg0";
2802 case DW_OP_breg1:
2803 return "DW_OP_breg1";
2804 case DW_OP_breg2:
2805 return "DW_OP_breg2";
2806 case DW_OP_breg3:
2807 return "DW_OP_breg3";
2808 case DW_OP_breg4:
2809 return "DW_OP_breg4";
2810 case DW_OP_breg5:
2811 return "DW_OP_breg5";
2812 case DW_OP_breg6:
2813 return "DW_OP_breg6";
2814 case DW_OP_breg7:
2815 return "DW_OP_breg7";
2816 case DW_OP_breg8:
2817 return "DW_OP_breg8";
2818 case DW_OP_breg9:
2819 return "DW_OP_breg9";
2820 case DW_OP_breg10:
2821 return "DW_OP_breg10";
2822 case DW_OP_breg11:
2823 return "DW_OP_breg11";
2824 case DW_OP_breg12:
2825 return "DW_OP_breg12";
2826 case DW_OP_breg13:
2827 return "DW_OP_breg13";
2828 case DW_OP_breg14:
2829 return "DW_OP_breg14";
2830 case DW_OP_breg15:
2831 return "DW_OP_breg15";
2832 case DW_OP_breg16:
2833 return "DW_OP_breg16";
2834 case DW_OP_breg17:
2835 return "DW_OP_breg17";
2836 case DW_OP_breg18:
2837 return "DW_OP_breg18";
2838 case DW_OP_breg19:
2839 return "DW_OP_breg19";
2840 case DW_OP_breg20:
2841 return "DW_OP_breg20";
2842 case DW_OP_breg21:
2843 return "DW_OP_breg21";
2844 case DW_OP_breg22:
2845 return "DW_OP_breg22";
2846 case DW_OP_breg23:
2847 return "DW_OP_breg23";
2848 case DW_OP_breg24:
2849 return "DW_OP_breg24";
2850 case DW_OP_breg25:
2851 return "DW_OP_breg25";
2852 case DW_OP_breg26:
2853 return "DW_OP_breg26";
2854 case DW_OP_breg27:
2855 return "DW_OP_breg27";
2856 case DW_OP_breg28:
2857 return "DW_OP_breg28";
2858 case DW_OP_breg29:
2859 return "DW_OP_breg29";
2860 case DW_OP_breg30:
2861 return "DW_OP_breg30";
2862 case DW_OP_breg31:
2863 return "DW_OP_breg31";
2864 case DW_OP_regx:
2865 return "DW_OP_regx";
2866 case DW_OP_fbreg:
2867 return "DW_OP_fbreg";
2868 case DW_OP_bregx:
2869 return "DW_OP_bregx";
2870 case DW_OP_piece:
2871 return "DW_OP_piece";
2872 case DW_OP_deref_size:
2873 return "DW_OP_deref_size";
2874 case DW_OP_xderef_size:
2875 return "DW_OP_xderef_size";
2876 case DW_OP_nop:
2877 return "DW_OP_nop";
2878 case DW_OP_push_object_address:
2879 return "DW_OP_push_object_address";
2880 case DW_OP_call2:
2881 return "DW_OP_call2";
2882 case DW_OP_call4:
2883 return "DW_OP_call4";
2884 case DW_OP_call_ref:
2885 return "DW_OP_call_ref";
2886 case DW_OP_GNU_push_tls_address:
2887 return "DW_OP_GNU_push_tls_address";
2888 default:
2889 return "OP_<unknown>";
2893 /* Return a pointer to a newly allocated location description. Location
2894 descriptions are simple expression terms that can be strung
2895 together to form more complicated location (address) descriptions. */
2897 static inline dw_loc_descr_ref
2898 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2899 unsigned HOST_WIDE_INT oprnd2)
2901 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2903 descr->dw_loc_opc = op;
2904 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2905 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2906 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2907 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2909 return descr;
2913 /* Add a location description term to a location description expression. */
2915 static inline void
2916 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2918 dw_loc_descr_ref *d;
2920 /* Find the end of the chain. */
2921 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2924 *d = descr;
2927 /* Return the size of a location descriptor. */
2929 static unsigned long
2930 size_of_loc_descr (dw_loc_descr_ref loc)
2932 unsigned long size = 1;
2934 switch (loc->dw_loc_opc)
2936 case DW_OP_addr:
2937 case INTERNAL_DW_OP_tls_addr:
2938 size += DWARF2_ADDR_SIZE;
2939 break;
2940 case DW_OP_const1u:
2941 case DW_OP_const1s:
2942 size += 1;
2943 break;
2944 case DW_OP_const2u:
2945 case DW_OP_const2s:
2946 size += 2;
2947 break;
2948 case DW_OP_const4u:
2949 case DW_OP_const4s:
2950 size += 4;
2951 break;
2952 case DW_OP_const8u:
2953 case DW_OP_const8s:
2954 size += 8;
2955 break;
2956 case DW_OP_constu:
2957 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2958 break;
2959 case DW_OP_consts:
2960 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2961 break;
2962 case DW_OP_pick:
2963 size += 1;
2964 break;
2965 case DW_OP_plus_uconst:
2966 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2967 break;
2968 case DW_OP_skip:
2969 case DW_OP_bra:
2970 size += 2;
2971 break;
2972 case DW_OP_breg0:
2973 case DW_OP_breg1:
2974 case DW_OP_breg2:
2975 case DW_OP_breg3:
2976 case DW_OP_breg4:
2977 case DW_OP_breg5:
2978 case DW_OP_breg6:
2979 case DW_OP_breg7:
2980 case DW_OP_breg8:
2981 case DW_OP_breg9:
2982 case DW_OP_breg10:
2983 case DW_OP_breg11:
2984 case DW_OP_breg12:
2985 case DW_OP_breg13:
2986 case DW_OP_breg14:
2987 case DW_OP_breg15:
2988 case DW_OP_breg16:
2989 case DW_OP_breg17:
2990 case DW_OP_breg18:
2991 case DW_OP_breg19:
2992 case DW_OP_breg20:
2993 case DW_OP_breg21:
2994 case DW_OP_breg22:
2995 case DW_OP_breg23:
2996 case DW_OP_breg24:
2997 case DW_OP_breg25:
2998 case DW_OP_breg26:
2999 case DW_OP_breg27:
3000 case DW_OP_breg28:
3001 case DW_OP_breg29:
3002 case DW_OP_breg30:
3003 case DW_OP_breg31:
3004 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3005 break;
3006 case DW_OP_regx:
3007 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3008 break;
3009 case DW_OP_fbreg:
3010 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3011 break;
3012 case DW_OP_bregx:
3013 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3014 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3015 break;
3016 case DW_OP_piece:
3017 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3018 break;
3019 case DW_OP_deref_size:
3020 case DW_OP_xderef_size:
3021 size += 1;
3022 break;
3023 case DW_OP_call2:
3024 size += 2;
3025 break;
3026 case DW_OP_call4:
3027 size += 4;
3028 break;
3029 case DW_OP_call_ref:
3030 size += DWARF2_ADDR_SIZE;
3031 break;
3032 default:
3033 break;
3036 return size;
3039 /* Return the size of a series of location descriptors. */
3041 static unsigned long
3042 size_of_locs (dw_loc_descr_ref loc)
3044 unsigned long size;
3046 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3048 loc->dw_loc_addr = size;
3049 size += size_of_loc_descr (loc);
3052 return size;
3055 /* Output location description stack opcode's operands (if any). */
3057 static void
3058 output_loc_operands (dw_loc_descr_ref loc)
3060 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3061 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3063 switch (loc->dw_loc_opc)
3065 #ifdef DWARF2_DEBUGGING_INFO
3066 case DW_OP_addr:
3067 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3068 break;
3069 case DW_OP_const2u:
3070 case DW_OP_const2s:
3071 dw2_asm_output_data (2, val1->v.val_int, NULL);
3072 break;
3073 case DW_OP_const4u:
3074 case DW_OP_const4s:
3075 dw2_asm_output_data (4, val1->v.val_int, NULL);
3076 break;
3077 case DW_OP_const8u:
3078 case DW_OP_const8s:
3079 gcc_assert (HOST_BITS_PER_LONG >= 64);
3080 dw2_asm_output_data (8, val1->v.val_int, NULL);
3081 break;
3082 case DW_OP_skip:
3083 case DW_OP_bra:
3085 int offset;
3087 gcc_assert (val1->val_class == dw_val_class_loc);
3088 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3090 dw2_asm_output_data (2, offset, NULL);
3092 break;
3093 #else
3094 case DW_OP_addr:
3095 case DW_OP_const2u:
3096 case DW_OP_const2s:
3097 case DW_OP_const4u:
3098 case DW_OP_const4s:
3099 case DW_OP_const8u:
3100 case DW_OP_const8s:
3101 case DW_OP_skip:
3102 case DW_OP_bra:
3103 /* We currently don't make any attempt to make sure these are
3104 aligned properly like we do for the main unwind info, so
3105 don't support emitting things larger than a byte if we're
3106 only doing unwinding. */
3107 gcc_unreachable ();
3108 #endif
3109 case DW_OP_const1u:
3110 case DW_OP_const1s:
3111 dw2_asm_output_data (1, val1->v.val_int, NULL);
3112 break;
3113 case DW_OP_constu:
3114 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3115 break;
3116 case DW_OP_consts:
3117 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3118 break;
3119 case DW_OP_pick:
3120 dw2_asm_output_data (1, val1->v.val_int, NULL);
3121 break;
3122 case DW_OP_plus_uconst:
3123 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3124 break;
3125 case DW_OP_breg0:
3126 case DW_OP_breg1:
3127 case DW_OP_breg2:
3128 case DW_OP_breg3:
3129 case DW_OP_breg4:
3130 case DW_OP_breg5:
3131 case DW_OP_breg6:
3132 case DW_OP_breg7:
3133 case DW_OP_breg8:
3134 case DW_OP_breg9:
3135 case DW_OP_breg10:
3136 case DW_OP_breg11:
3137 case DW_OP_breg12:
3138 case DW_OP_breg13:
3139 case DW_OP_breg14:
3140 case DW_OP_breg15:
3141 case DW_OP_breg16:
3142 case DW_OP_breg17:
3143 case DW_OP_breg18:
3144 case DW_OP_breg19:
3145 case DW_OP_breg20:
3146 case DW_OP_breg21:
3147 case DW_OP_breg22:
3148 case DW_OP_breg23:
3149 case DW_OP_breg24:
3150 case DW_OP_breg25:
3151 case DW_OP_breg26:
3152 case DW_OP_breg27:
3153 case DW_OP_breg28:
3154 case DW_OP_breg29:
3155 case DW_OP_breg30:
3156 case DW_OP_breg31:
3157 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3158 break;
3159 case DW_OP_regx:
3160 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3161 break;
3162 case DW_OP_fbreg:
3163 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3164 break;
3165 case DW_OP_bregx:
3166 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3167 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3168 break;
3169 case DW_OP_piece:
3170 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3171 break;
3172 case DW_OP_deref_size:
3173 case DW_OP_xderef_size:
3174 dw2_asm_output_data (1, val1->v.val_int, NULL);
3175 break;
3177 case INTERNAL_DW_OP_tls_addr:
3178 #ifdef ASM_OUTPUT_DWARF_DTPREL
3179 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3180 val1->v.val_addr);
3181 fputc ('\n', asm_out_file);
3182 #else
3183 gcc_unreachable ();
3184 #endif
3185 break;
3187 default:
3188 /* Other codes have no operands. */
3189 break;
3193 /* Output a sequence of location operations. */
3195 static void
3196 output_loc_sequence (dw_loc_descr_ref loc)
3198 for (; loc != NULL; loc = loc->dw_loc_next)
3200 /* Output the opcode. */
3201 dw2_asm_output_data (1, loc->dw_loc_opc,
3202 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3204 /* Output the operand(s) (if any). */
3205 output_loc_operands (loc);
3209 /* This routine will generate the correct assembly data for a location
3210 description based on a cfi entry with a complex address. */
3212 static void
3213 output_cfa_loc (dw_cfi_ref cfi)
3215 dw_loc_descr_ref loc;
3216 unsigned long size;
3218 /* Output the size of the block. */
3219 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3220 size = size_of_locs (loc);
3221 dw2_asm_output_data_uleb128 (size, NULL);
3223 /* Now output the operations themselves. */
3224 output_loc_sequence (loc);
3227 /* This function builds a dwarf location descriptor sequence from
3228 a dw_cfa_location. */
3230 static struct dw_loc_descr_struct *
3231 build_cfa_loc (dw_cfa_location *cfa)
3233 struct dw_loc_descr_struct *head, *tmp;
3235 gcc_assert (cfa->indirect);
3237 if (cfa->base_offset)
3239 if (cfa->reg <= 31)
3240 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3241 else
3242 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3244 else if (cfa->reg <= 31)
3245 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3246 else
3247 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3249 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3250 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3251 add_loc_descr (&head, tmp);
3252 if (cfa->offset != 0)
3254 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3255 add_loc_descr (&head, tmp);
3258 return head;
3261 /* This function fills in aa dw_cfa_location structure from a dwarf location
3262 descriptor sequence. */
3264 static void
3265 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3267 struct dw_loc_descr_struct *ptr;
3268 cfa->offset = 0;
3269 cfa->base_offset = 0;
3270 cfa->indirect = 0;
3271 cfa->reg = -1;
3273 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3275 enum dwarf_location_atom op = ptr->dw_loc_opc;
3277 switch (op)
3279 case DW_OP_reg0:
3280 case DW_OP_reg1:
3281 case DW_OP_reg2:
3282 case DW_OP_reg3:
3283 case DW_OP_reg4:
3284 case DW_OP_reg5:
3285 case DW_OP_reg6:
3286 case DW_OP_reg7:
3287 case DW_OP_reg8:
3288 case DW_OP_reg9:
3289 case DW_OP_reg10:
3290 case DW_OP_reg11:
3291 case DW_OP_reg12:
3292 case DW_OP_reg13:
3293 case DW_OP_reg14:
3294 case DW_OP_reg15:
3295 case DW_OP_reg16:
3296 case DW_OP_reg17:
3297 case DW_OP_reg18:
3298 case DW_OP_reg19:
3299 case DW_OP_reg20:
3300 case DW_OP_reg21:
3301 case DW_OP_reg22:
3302 case DW_OP_reg23:
3303 case DW_OP_reg24:
3304 case DW_OP_reg25:
3305 case DW_OP_reg26:
3306 case DW_OP_reg27:
3307 case DW_OP_reg28:
3308 case DW_OP_reg29:
3309 case DW_OP_reg30:
3310 case DW_OP_reg31:
3311 cfa->reg = op - DW_OP_reg0;
3312 break;
3313 case DW_OP_regx:
3314 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3315 break;
3316 case DW_OP_breg0:
3317 case DW_OP_breg1:
3318 case DW_OP_breg2:
3319 case DW_OP_breg3:
3320 case DW_OP_breg4:
3321 case DW_OP_breg5:
3322 case DW_OP_breg6:
3323 case DW_OP_breg7:
3324 case DW_OP_breg8:
3325 case DW_OP_breg9:
3326 case DW_OP_breg10:
3327 case DW_OP_breg11:
3328 case DW_OP_breg12:
3329 case DW_OP_breg13:
3330 case DW_OP_breg14:
3331 case DW_OP_breg15:
3332 case DW_OP_breg16:
3333 case DW_OP_breg17:
3334 case DW_OP_breg18:
3335 case DW_OP_breg19:
3336 case DW_OP_breg20:
3337 case DW_OP_breg21:
3338 case DW_OP_breg22:
3339 case DW_OP_breg23:
3340 case DW_OP_breg24:
3341 case DW_OP_breg25:
3342 case DW_OP_breg26:
3343 case DW_OP_breg27:
3344 case DW_OP_breg28:
3345 case DW_OP_breg29:
3346 case DW_OP_breg30:
3347 case DW_OP_breg31:
3348 cfa->reg = op - DW_OP_breg0;
3349 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3350 break;
3351 case DW_OP_bregx:
3352 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3353 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3354 break;
3355 case DW_OP_deref:
3356 cfa->indirect = 1;
3357 break;
3358 case DW_OP_plus_uconst:
3359 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3360 break;
3361 default:
3362 internal_error ("DW_LOC_OP %s not implemented\n",
3363 dwarf_stack_op_name (ptr->dw_loc_opc));
3367 #endif /* .debug_frame support */
3369 /* And now, the support for symbolic debugging information. */
3370 #ifdef DWARF2_DEBUGGING_INFO
3372 /* .debug_str support. */
3373 static int output_indirect_string (void **, void *);
3375 static void dwarf2out_init (const char *);
3376 static void dwarf2out_finish (const char *);
3377 static void dwarf2out_define (unsigned int, const char *);
3378 static void dwarf2out_undef (unsigned int, const char *);
3379 static void dwarf2out_start_source_file (unsigned, const char *);
3380 static void dwarf2out_end_source_file (unsigned);
3381 static void dwarf2out_begin_block (unsigned, unsigned);
3382 static void dwarf2out_end_block (unsigned, unsigned);
3383 static bool dwarf2out_ignore_block (tree);
3384 static void dwarf2out_global_decl (tree);
3385 static void dwarf2out_type_decl (tree, int);
3386 static void dwarf2out_imported_module_or_decl (tree, tree);
3387 static void dwarf2out_abstract_function (tree);
3388 static void dwarf2out_var_location (rtx);
3389 static void dwarf2out_begin_function (tree);
3391 /* The debug hooks structure. */
3393 const struct gcc_debug_hooks dwarf2_debug_hooks =
3395 dwarf2out_init,
3396 dwarf2out_finish,
3397 dwarf2out_define,
3398 dwarf2out_undef,
3399 dwarf2out_start_source_file,
3400 dwarf2out_end_source_file,
3401 dwarf2out_begin_block,
3402 dwarf2out_end_block,
3403 dwarf2out_ignore_block,
3404 dwarf2out_source_line,
3405 dwarf2out_begin_prologue,
3406 debug_nothing_int_charstar, /* end_prologue */
3407 dwarf2out_end_epilogue,
3408 dwarf2out_begin_function,
3409 debug_nothing_int, /* end_function */
3410 dwarf2out_decl, /* function_decl */
3411 dwarf2out_global_decl,
3412 dwarf2out_type_decl, /* type_decl */
3413 dwarf2out_imported_module_or_decl,
3414 debug_nothing_tree, /* deferred_inline_function */
3415 /* The DWARF 2 backend tries to reduce debugging bloat by not
3416 emitting the abstract description of inline functions until
3417 something tries to reference them. */
3418 dwarf2out_abstract_function, /* outlining_inline_function */
3419 debug_nothing_rtx, /* label */
3420 debug_nothing_int, /* handle_pch */
3421 dwarf2out_var_location
3423 #endif
3425 /* NOTE: In the comments in this file, many references are made to
3426 "Debugging Information Entries". This term is abbreviated as `DIE'
3427 throughout the remainder of this file. */
3429 /* An internal representation of the DWARF output is built, and then
3430 walked to generate the DWARF debugging info. The walk of the internal
3431 representation is done after the entire program has been compiled.
3432 The types below are used to describe the internal representation. */
3434 /* Various DIE's use offsets relative to the beginning of the
3435 .debug_info section to refer to each other. */
3437 typedef long int dw_offset;
3439 /* Define typedefs here to avoid circular dependencies. */
3441 typedef struct dw_attr_struct *dw_attr_ref;
3442 typedef struct dw_line_info_struct *dw_line_info_ref;
3443 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3444 typedef struct pubname_struct *pubname_ref;
3445 typedef struct dw_ranges_struct *dw_ranges_ref;
3447 /* Each entry in the line_info_table maintains the file and
3448 line number associated with the label generated for that
3449 entry. The label gives the PC value associated with
3450 the line number entry. */
3452 typedef struct dw_line_info_struct GTY(())
3454 unsigned long dw_file_num;
3455 unsigned long dw_line_num;
3457 dw_line_info_entry;
3459 /* Line information for functions in separate sections; each one gets its
3460 own sequence. */
3461 typedef struct dw_separate_line_info_struct GTY(())
3463 unsigned long dw_file_num;
3464 unsigned long dw_line_num;
3465 unsigned long function;
3467 dw_separate_line_info_entry;
3469 /* Each DIE attribute has a field specifying the attribute kind,
3470 a link to the next attribute in the chain, and an attribute value.
3471 Attributes are typically linked below the DIE they modify. */
3473 typedef struct dw_attr_struct GTY(())
3475 enum dwarf_attribute dw_attr;
3476 dw_attr_ref dw_attr_next;
3477 dw_val_node dw_attr_val;
3479 dw_attr_node;
3481 /* The Debugging Information Entry (DIE) structure */
3483 typedef struct die_struct GTY(())
3485 enum dwarf_tag die_tag;
3486 char *die_symbol;
3487 dw_attr_ref die_attr;
3488 dw_die_ref die_parent;
3489 dw_die_ref die_child;
3490 dw_die_ref die_sib;
3491 dw_die_ref die_definition; /* ref from a specification to its definition */
3492 dw_offset die_offset;
3493 unsigned long die_abbrev;
3494 int die_mark;
3495 unsigned int decl_id;
3497 die_node;
3499 /* The pubname structure */
3501 typedef struct pubname_struct GTY(())
3503 dw_die_ref die;
3504 char *name;
3506 pubname_entry;
3508 struct dw_ranges_struct GTY(())
3510 int block_num;
3513 /* The limbo die list structure. */
3514 typedef struct limbo_die_struct GTY(())
3516 dw_die_ref die;
3517 tree created_for;
3518 struct limbo_die_struct *next;
3520 limbo_die_node;
3522 /* How to start an assembler comment. */
3523 #ifndef ASM_COMMENT_START
3524 #define ASM_COMMENT_START ";#"
3525 #endif
3527 /* Define a macro which returns nonzero for a TYPE_DECL which was
3528 implicitly generated for a tagged type.
3530 Note that unlike the gcc front end (which generates a NULL named
3531 TYPE_DECL node for each complete tagged type, each array type, and
3532 each function type node created) the g++ front end generates a
3533 _named_ TYPE_DECL node for each tagged type node created.
3534 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3535 generate a DW_TAG_typedef DIE for them. */
3537 #define TYPE_DECL_IS_STUB(decl) \
3538 (DECL_NAME (decl) == NULL_TREE \
3539 || (DECL_ARTIFICIAL (decl) \
3540 && is_tagged_type (TREE_TYPE (decl)) \
3541 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3542 /* This is necessary for stub decls that \
3543 appear in nested inline functions. */ \
3544 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3545 && (decl_ultimate_origin (decl) \
3546 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3548 /* Information concerning the compilation unit's programming
3549 language, and compiler version. */
3551 /* Fixed size portion of the DWARF compilation unit header. */
3552 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3553 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3555 /* Fixed size portion of public names info. */
3556 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3558 /* Fixed size portion of the address range info. */
3559 #define DWARF_ARANGES_HEADER_SIZE \
3560 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3561 DWARF2_ADDR_SIZE * 2) \
3562 - DWARF_INITIAL_LENGTH_SIZE)
3564 /* Size of padding portion in the address range info. It must be
3565 aligned to twice the pointer size. */
3566 #define DWARF_ARANGES_PAD_SIZE \
3567 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3568 DWARF2_ADDR_SIZE * 2) \
3569 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3571 /* Use assembler line directives if available. */
3572 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3573 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3574 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3575 #else
3576 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3577 #endif
3578 #endif
3580 /* Minimum line offset in a special line info. opcode.
3581 This value was chosen to give a reasonable range of values. */
3582 #define DWARF_LINE_BASE -10
3584 /* First special line opcode - leave room for the standard opcodes. */
3585 #define DWARF_LINE_OPCODE_BASE 10
3587 /* Range of line offsets in a special line info. opcode. */
3588 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3590 /* Flag that indicates the initial value of the is_stmt_start flag.
3591 In the present implementation, we do not mark any lines as
3592 the beginning of a source statement, because that information
3593 is not made available by the GCC front-end. */
3594 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3596 #ifdef DWARF2_DEBUGGING_INFO
3597 /* This location is used by calc_die_sizes() to keep track
3598 the offset of each DIE within the .debug_info section. */
3599 static unsigned long next_die_offset;
3600 #endif
3602 /* Record the root of the DIE's built for the current compilation unit. */
3603 static GTY(()) dw_die_ref comp_unit_die;
3605 /* A list of DIEs with a NULL parent waiting to be relocated. */
3606 static GTY(()) limbo_die_node *limbo_die_list;
3608 /* Filenames referenced by this compilation unit. */
3609 static GTY(()) varray_type file_table;
3610 static GTY(()) varray_type file_table_emitted;
3611 static GTY(()) size_t file_table_last_lookup_index;
3613 /* A hash table of references to DIE's that describe declarations.
3614 The key is a DECL_UID() which is a unique number identifying each decl. */
3615 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3617 /* Node of the variable location list. */
3618 struct var_loc_node GTY ((chain_next ("%h.next")))
3620 rtx GTY (()) var_loc_note;
3621 const char * GTY (()) label;
3622 struct var_loc_node * GTY (()) next;
3625 /* Variable location list. */
3626 struct var_loc_list_def GTY (())
3628 struct var_loc_node * GTY (()) first;
3630 /* Do not mark the last element of the chained list because
3631 it is marked through the chain. */
3632 struct var_loc_node * GTY ((skip ("%h"))) last;
3634 /* DECL_UID of the variable decl. */
3635 unsigned int decl_id;
3637 typedef struct var_loc_list_def var_loc_list;
3640 /* Table of decl location linked lists. */
3641 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3643 /* A pointer to the base of a list of references to DIE's that
3644 are uniquely identified by their tag, presence/absence of
3645 children DIE's, and list of attribute/value pairs. */
3646 static GTY((length ("abbrev_die_table_allocated")))
3647 dw_die_ref *abbrev_die_table;
3649 /* Number of elements currently allocated for abbrev_die_table. */
3650 static GTY(()) unsigned abbrev_die_table_allocated;
3652 /* Number of elements in type_die_table currently in use. */
3653 static GTY(()) unsigned abbrev_die_table_in_use;
3655 /* Size (in elements) of increments by which we may expand the
3656 abbrev_die_table. */
3657 #define ABBREV_DIE_TABLE_INCREMENT 256
3659 /* A pointer to the base of a table that contains line information
3660 for each source code line in .text in the compilation unit. */
3661 static GTY((length ("line_info_table_allocated")))
3662 dw_line_info_ref line_info_table;
3664 /* Number of elements currently allocated for line_info_table. */
3665 static GTY(()) unsigned line_info_table_allocated;
3667 /* Number of elements in line_info_table currently in use. */
3668 static GTY(()) unsigned line_info_table_in_use;
3670 /* A pointer to the base of a table that contains line information
3671 for each source code line outside of .text in the compilation unit. */
3672 static GTY ((length ("separate_line_info_table_allocated")))
3673 dw_separate_line_info_ref separate_line_info_table;
3675 /* Number of elements currently allocated for separate_line_info_table. */
3676 static GTY(()) unsigned separate_line_info_table_allocated;
3678 /* Number of elements in separate_line_info_table currently in use. */
3679 static GTY(()) unsigned separate_line_info_table_in_use;
3681 /* Size (in elements) of increments by which we may expand the
3682 line_info_table. */
3683 #define LINE_INFO_TABLE_INCREMENT 1024
3685 /* A pointer to the base of a table that contains a list of publicly
3686 accessible names. */
3687 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3689 /* Number of elements currently allocated for pubname_table. */
3690 static GTY(()) unsigned pubname_table_allocated;
3692 /* Number of elements in pubname_table currently in use. */
3693 static GTY(()) unsigned pubname_table_in_use;
3695 /* Size (in elements) of increments by which we may expand the
3696 pubname_table. */
3697 #define PUBNAME_TABLE_INCREMENT 64
3699 /* Array of dies for which we should generate .debug_arange info. */
3700 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3702 /* Number of elements currently allocated for arange_table. */
3703 static GTY(()) unsigned arange_table_allocated;
3705 /* Number of elements in arange_table currently in use. */
3706 static GTY(()) unsigned arange_table_in_use;
3708 /* Size (in elements) of increments by which we may expand the
3709 arange_table. */
3710 #define ARANGE_TABLE_INCREMENT 64
3712 /* Array of dies for which we should generate .debug_ranges info. */
3713 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3715 /* Number of elements currently allocated for ranges_table. */
3716 static GTY(()) unsigned ranges_table_allocated;
3718 /* Number of elements in ranges_table currently in use. */
3719 static GTY(()) unsigned ranges_table_in_use;
3721 /* Size (in elements) of increments by which we may expand the
3722 ranges_table. */
3723 #define RANGES_TABLE_INCREMENT 64
3725 /* Whether we have location lists that need outputting */
3726 static GTY(()) unsigned have_location_lists;
3728 /* Unique label counter. */
3729 static GTY(()) unsigned int loclabel_num;
3731 #ifdef DWARF2_DEBUGGING_INFO
3732 /* Record whether the function being analyzed contains inlined functions. */
3733 static int current_function_has_inlines;
3734 #endif
3735 #if 0 && defined (MIPS_DEBUGGING_INFO)
3736 static int comp_unit_has_inlines;
3737 #endif
3739 /* Number of file tables emitted in maybe_emit_file(). */
3740 static GTY(()) int emitcount = 0;
3742 /* Number of internal labels generated by gen_internal_sym(). */
3743 static GTY(()) int label_num;
3745 #ifdef DWARF2_DEBUGGING_INFO
3747 /* Forward declarations for functions defined in this file. */
3749 static int is_pseudo_reg (rtx);
3750 static tree type_main_variant (tree);
3751 static int is_tagged_type (tree);
3752 static const char *dwarf_tag_name (unsigned);
3753 static const char *dwarf_attr_name (unsigned);
3754 static const char *dwarf_form_name (unsigned);
3755 #if 0
3756 static const char *dwarf_type_encoding_name (unsigned);
3757 #endif
3758 static tree decl_ultimate_origin (tree);
3759 static tree block_ultimate_origin (tree);
3760 static tree decl_class_context (tree);
3761 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3762 static inline enum dw_val_class AT_class (dw_attr_ref);
3763 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3764 static inline unsigned AT_flag (dw_attr_ref);
3765 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3766 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3767 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3768 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3769 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3770 unsigned long);
3771 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3772 unsigned int, unsigned char *);
3773 static hashval_t debug_str_do_hash (const void *);
3774 static int debug_str_eq (const void *, const void *);
3775 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3776 static inline const char *AT_string (dw_attr_ref);
3777 static int AT_string_form (dw_attr_ref);
3778 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3779 static void add_AT_specification (dw_die_ref, dw_die_ref);
3780 static inline dw_die_ref AT_ref (dw_attr_ref);
3781 static inline int AT_ref_external (dw_attr_ref);
3782 static inline void set_AT_ref_external (dw_attr_ref, int);
3783 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3784 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3785 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3786 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3787 dw_loc_list_ref);
3788 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3789 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3790 static inline rtx AT_addr (dw_attr_ref);
3791 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3792 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3793 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3794 unsigned HOST_WIDE_INT);
3795 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3796 unsigned long);
3797 static inline const char *AT_lbl (dw_attr_ref);
3798 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3799 static const char *get_AT_low_pc (dw_die_ref);
3800 static const char *get_AT_hi_pc (dw_die_ref);
3801 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3802 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3803 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3804 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3805 static bool is_c_family (void);
3806 static bool is_cxx (void);
3807 static bool is_java (void);
3808 static bool is_fortran (void);
3809 static bool is_ada (void);
3810 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3811 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3812 static inline void free_die (dw_die_ref);
3813 static void remove_children (dw_die_ref);
3814 static void add_child_die (dw_die_ref, dw_die_ref);
3815 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3816 static dw_die_ref lookup_type_die (tree);
3817 static void equate_type_number_to_die (tree, dw_die_ref);
3818 static hashval_t decl_die_table_hash (const void *);
3819 static int decl_die_table_eq (const void *, const void *);
3820 static dw_die_ref lookup_decl_die (tree);
3821 static hashval_t decl_loc_table_hash (const void *);
3822 static int decl_loc_table_eq (const void *, const void *);
3823 static var_loc_list *lookup_decl_loc (tree);
3824 static void equate_decl_number_to_die (tree, dw_die_ref);
3825 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3826 static void print_spaces (FILE *);
3827 static void print_die (dw_die_ref, FILE *);
3828 static void print_dwarf_line_table (FILE *);
3829 static void reverse_die_lists (dw_die_ref);
3830 static void reverse_all_dies (dw_die_ref);
3831 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3832 static dw_die_ref pop_compile_unit (dw_die_ref);
3833 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3834 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3835 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3836 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3837 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3838 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3839 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3840 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3841 static void compute_section_prefix (dw_die_ref);
3842 static int is_type_die (dw_die_ref);
3843 static int is_comdat_die (dw_die_ref);
3844 static int is_symbol_die (dw_die_ref);
3845 static void assign_symbol_names (dw_die_ref);
3846 static void break_out_includes (dw_die_ref);
3847 static hashval_t htab_cu_hash (const void *);
3848 static int htab_cu_eq (const void *, const void *);
3849 static void htab_cu_del (void *);
3850 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3851 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3852 static void add_sibling_attributes (dw_die_ref);
3853 static void build_abbrev_table (dw_die_ref);
3854 static void output_location_lists (dw_die_ref);
3855 static int constant_size (long unsigned);
3856 static unsigned long size_of_die (dw_die_ref);
3857 static void calc_die_sizes (dw_die_ref);
3858 static void mark_dies (dw_die_ref);
3859 static void unmark_dies (dw_die_ref);
3860 static void unmark_all_dies (dw_die_ref);
3861 static unsigned long size_of_pubnames (void);
3862 static unsigned long size_of_aranges (void);
3863 static enum dwarf_form value_format (dw_attr_ref);
3864 static void output_value_format (dw_attr_ref);
3865 static void output_abbrev_section (void);
3866 static void output_die_symbol (dw_die_ref);
3867 static void output_die (dw_die_ref);
3868 static void output_compilation_unit_header (void);
3869 static void output_comp_unit (dw_die_ref, int);
3870 static const char *dwarf2_name (tree, int);
3871 static void add_pubname (tree, dw_die_ref);
3872 static void output_pubnames (void);
3873 static void add_arange (tree, dw_die_ref);
3874 static void output_aranges (void);
3875 static unsigned int add_ranges (tree);
3876 static void output_ranges (void);
3877 static void output_line_info (void);
3878 static void output_file_names (void);
3879 static dw_die_ref base_type_die (tree);
3880 static tree root_type (tree);
3881 static int is_base_type (tree);
3882 static bool is_subrange_type (tree);
3883 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3884 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3885 static int type_is_enum (tree);
3886 static unsigned int dbx_reg_number (rtx);
3887 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3888 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3889 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3890 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3891 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3892 static int is_based_loc (rtx);
3893 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3894 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3895 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3896 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3897 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3898 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3899 static tree field_type (tree);
3900 static unsigned int simple_type_align_in_bits (tree);
3901 static unsigned int simple_decl_align_in_bits (tree);
3902 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3903 static HOST_WIDE_INT field_byte_offset (tree);
3904 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3905 dw_loc_descr_ref);
3906 static void add_data_member_location_attribute (dw_die_ref, tree);
3907 static void add_const_value_attribute (dw_die_ref, rtx);
3908 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3909 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3910 static void insert_float (rtx, unsigned char *);
3911 static rtx rtl_for_decl_location (tree);
3912 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3913 enum dwarf_attribute);
3914 static void tree_add_const_value_attribute (dw_die_ref, tree);
3915 static void add_name_attribute (dw_die_ref, const char *);
3916 static void add_comp_dir_attribute (dw_die_ref);
3917 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3918 static void add_subscript_info (dw_die_ref, tree);
3919 static void add_byte_size_attribute (dw_die_ref, tree);
3920 static void add_bit_offset_attribute (dw_die_ref, tree);
3921 static void add_bit_size_attribute (dw_die_ref, tree);
3922 static void add_prototyped_attribute (dw_die_ref, tree);
3923 static void add_abstract_origin_attribute (dw_die_ref, tree);
3924 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3925 static void add_src_coords_attributes (dw_die_ref, tree);
3926 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3927 static void push_decl_scope (tree);
3928 static void pop_decl_scope (void);
3929 static dw_die_ref scope_die_for (tree, dw_die_ref);
3930 static inline int local_scope_p (dw_die_ref);
3931 static inline int class_or_namespace_scope_p (dw_die_ref);
3932 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3933 static const char *type_tag (tree);
3934 static tree member_declared_type (tree);
3935 #if 0
3936 static const char *decl_start_label (tree);
3937 #endif
3938 static void gen_array_type_die (tree, dw_die_ref);
3939 static void gen_set_type_die (tree, dw_die_ref);
3940 #if 0
3941 static void gen_entry_point_die (tree, dw_die_ref);
3942 #endif
3943 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3944 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3945 static void gen_inlined_union_type_die (tree, dw_die_ref);
3946 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3947 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3948 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3949 static void gen_formal_types_die (tree, dw_die_ref);
3950 static void gen_subprogram_die (tree, dw_die_ref);
3951 static void gen_variable_die (tree, dw_die_ref);
3952 static void gen_label_die (tree, dw_die_ref);
3953 static void gen_lexical_block_die (tree, dw_die_ref, int);
3954 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3955 static void gen_field_die (tree, dw_die_ref);
3956 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3957 static dw_die_ref gen_compile_unit_die (const char *);
3958 static void gen_string_type_die (tree, dw_die_ref);
3959 static void gen_inheritance_die (tree, tree, dw_die_ref);
3960 static void gen_member_die (tree, dw_die_ref);
3961 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3962 static void gen_subroutine_type_die (tree, dw_die_ref);
3963 static void gen_typedef_die (tree, dw_die_ref);
3964 static void gen_type_die (tree, dw_die_ref);
3965 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3966 static void gen_block_die (tree, dw_die_ref, int);
3967 static void decls_for_scope (tree, dw_die_ref, int);
3968 static int is_redundant_typedef (tree);
3969 static void gen_namespace_die (tree);
3970 static void gen_decl_die (tree, dw_die_ref);
3971 static dw_die_ref force_decl_die (tree);
3972 static dw_die_ref force_type_die (tree);
3973 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3974 static void declare_in_namespace (tree, dw_die_ref);
3975 static unsigned lookup_filename (const char *);
3976 static void init_file_table (void);
3977 static void retry_incomplete_types (void);
3978 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3979 static void splice_child_die (dw_die_ref, dw_die_ref);
3980 static int file_info_cmp (const void *, const void *);
3981 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3982 const char *, const char *, unsigned);
3983 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3984 const char *, const char *,
3985 const char *);
3986 static void output_loc_list (dw_loc_list_ref);
3987 static char *gen_internal_sym (const char *);
3989 static void prune_unmark_dies (dw_die_ref);
3990 static void prune_unused_types_mark (dw_die_ref, int);
3991 static void prune_unused_types_walk (dw_die_ref);
3992 static void prune_unused_types_walk_attribs (dw_die_ref);
3993 static void prune_unused_types_prune (dw_die_ref);
3994 static void prune_unused_types (void);
3995 static int maybe_emit_file (int);
3997 /* Section names used to hold DWARF debugging information. */
3998 #ifndef DEBUG_INFO_SECTION
3999 #define DEBUG_INFO_SECTION ".debug_info"
4000 #endif
4001 #ifndef DEBUG_ABBREV_SECTION
4002 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4003 #endif
4004 #ifndef DEBUG_ARANGES_SECTION
4005 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4006 #endif
4007 #ifndef DEBUG_MACINFO_SECTION
4008 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4009 #endif
4010 #ifndef DEBUG_LINE_SECTION
4011 #define DEBUG_LINE_SECTION ".debug_line"
4012 #endif
4013 #ifndef DEBUG_LOC_SECTION
4014 #define DEBUG_LOC_SECTION ".debug_loc"
4015 #endif
4016 #ifndef DEBUG_PUBNAMES_SECTION
4017 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4018 #endif
4019 #ifndef DEBUG_STR_SECTION
4020 #define DEBUG_STR_SECTION ".debug_str"
4021 #endif
4022 #ifndef DEBUG_RANGES_SECTION
4023 #define DEBUG_RANGES_SECTION ".debug_ranges"
4024 #endif
4026 /* Standard ELF section names for compiled code and data. */
4027 #ifndef TEXT_SECTION_NAME
4028 #define TEXT_SECTION_NAME ".text"
4029 #endif
4031 /* Section flags for .debug_str section. */
4032 #define DEBUG_STR_SECTION_FLAGS \
4033 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4034 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4035 : SECTION_DEBUG)
4037 /* Labels we insert at beginning sections we can reference instead of
4038 the section names themselves. */
4040 #ifndef TEXT_SECTION_LABEL
4041 #define TEXT_SECTION_LABEL "Ltext"
4042 #endif
4043 #ifndef DEBUG_LINE_SECTION_LABEL
4044 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4045 #endif
4046 #ifndef DEBUG_INFO_SECTION_LABEL
4047 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4048 #endif
4049 #ifndef DEBUG_ABBREV_SECTION_LABEL
4050 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4051 #endif
4052 #ifndef DEBUG_LOC_SECTION_LABEL
4053 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4054 #endif
4055 #ifndef DEBUG_RANGES_SECTION_LABEL
4056 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4057 #endif
4058 #ifndef DEBUG_MACINFO_SECTION_LABEL
4059 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4060 #endif
4062 /* Definitions of defaults for formats and names of various special
4063 (artificial) labels which may be generated within this file (when the -g
4064 options is used and DWARF2_DEBUGGING_INFO is in effect.
4065 If necessary, these may be overridden from within the tm.h file, but
4066 typically, overriding these defaults is unnecessary. */
4068 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4069 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4070 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4071 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4072 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4073 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4074 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4075 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4077 #ifndef TEXT_END_LABEL
4078 #define TEXT_END_LABEL "Letext"
4079 #endif
4080 #ifndef BLOCK_BEGIN_LABEL
4081 #define BLOCK_BEGIN_LABEL "LBB"
4082 #endif
4083 #ifndef BLOCK_END_LABEL
4084 #define BLOCK_END_LABEL "LBE"
4085 #endif
4086 #ifndef LINE_CODE_LABEL
4087 #define LINE_CODE_LABEL "LM"
4088 #endif
4089 #ifndef SEPARATE_LINE_CODE_LABEL
4090 #define SEPARATE_LINE_CODE_LABEL "LSM"
4091 #endif
4093 /* We allow a language front-end to designate a function that is to be
4094 called to "demangle" any name before it it put into a DIE. */
4096 static const char *(*demangle_name_func) (const char *);
4098 void
4099 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4101 demangle_name_func = func;
4104 /* Test if rtl node points to a pseudo register. */
4106 static inline int
4107 is_pseudo_reg (rtx rtl)
4109 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4110 || (GET_CODE (rtl) == SUBREG
4111 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4114 /* Return a reference to a type, with its const and volatile qualifiers
4115 removed. */
4117 static inline tree
4118 type_main_variant (tree type)
4120 type = TYPE_MAIN_VARIANT (type);
4122 /* ??? There really should be only one main variant among any group of
4123 variants of a given type (and all of the MAIN_VARIANT values for all
4124 members of the group should point to that one type) but sometimes the C
4125 front-end messes this up for array types, so we work around that bug
4126 here. */
4127 if (TREE_CODE (type) == ARRAY_TYPE)
4128 while (type != TYPE_MAIN_VARIANT (type))
4129 type = TYPE_MAIN_VARIANT (type);
4131 return type;
4134 /* Return nonzero if the given type node represents a tagged type. */
4136 static inline int
4137 is_tagged_type (tree type)
4139 enum tree_code code = TREE_CODE (type);
4141 return (code == RECORD_TYPE || code == UNION_TYPE
4142 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4145 /* Convert a DIE tag into its string name. */
4147 static const char *
4148 dwarf_tag_name (unsigned int tag)
4150 switch (tag)
4152 case DW_TAG_padding:
4153 return "DW_TAG_padding";
4154 case DW_TAG_array_type:
4155 return "DW_TAG_array_type";
4156 case DW_TAG_class_type:
4157 return "DW_TAG_class_type";
4158 case DW_TAG_entry_point:
4159 return "DW_TAG_entry_point";
4160 case DW_TAG_enumeration_type:
4161 return "DW_TAG_enumeration_type";
4162 case DW_TAG_formal_parameter:
4163 return "DW_TAG_formal_parameter";
4164 case DW_TAG_imported_declaration:
4165 return "DW_TAG_imported_declaration";
4166 case DW_TAG_label:
4167 return "DW_TAG_label";
4168 case DW_TAG_lexical_block:
4169 return "DW_TAG_lexical_block";
4170 case DW_TAG_member:
4171 return "DW_TAG_member";
4172 case DW_TAG_pointer_type:
4173 return "DW_TAG_pointer_type";
4174 case DW_TAG_reference_type:
4175 return "DW_TAG_reference_type";
4176 case DW_TAG_compile_unit:
4177 return "DW_TAG_compile_unit";
4178 case DW_TAG_string_type:
4179 return "DW_TAG_string_type";
4180 case DW_TAG_structure_type:
4181 return "DW_TAG_structure_type";
4182 case DW_TAG_subroutine_type:
4183 return "DW_TAG_subroutine_type";
4184 case DW_TAG_typedef:
4185 return "DW_TAG_typedef";
4186 case DW_TAG_union_type:
4187 return "DW_TAG_union_type";
4188 case DW_TAG_unspecified_parameters:
4189 return "DW_TAG_unspecified_parameters";
4190 case DW_TAG_variant:
4191 return "DW_TAG_variant";
4192 case DW_TAG_common_block:
4193 return "DW_TAG_common_block";
4194 case DW_TAG_common_inclusion:
4195 return "DW_TAG_common_inclusion";
4196 case DW_TAG_inheritance:
4197 return "DW_TAG_inheritance";
4198 case DW_TAG_inlined_subroutine:
4199 return "DW_TAG_inlined_subroutine";
4200 case DW_TAG_module:
4201 return "DW_TAG_module";
4202 case DW_TAG_ptr_to_member_type:
4203 return "DW_TAG_ptr_to_member_type";
4204 case DW_TAG_set_type:
4205 return "DW_TAG_set_type";
4206 case DW_TAG_subrange_type:
4207 return "DW_TAG_subrange_type";
4208 case DW_TAG_with_stmt:
4209 return "DW_TAG_with_stmt";
4210 case DW_TAG_access_declaration:
4211 return "DW_TAG_access_declaration";
4212 case DW_TAG_base_type:
4213 return "DW_TAG_base_type";
4214 case DW_TAG_catch_block:
4215 return "DW_TAG_catch_block";
4216 case DW_TAG_const_type:
4217 return "DW_TAG_const_type";
4218 case DW_TAG_constant:
4219 return "DW_TAG_constant";
4220 case DW_TAG_enumerator:
4221 return "DW_TAG_enumerator";
4222 case DW_TAG_file_type:
4223 return "DW_TAG_file_type";
4224 case DW_TAG_friend:
4225 return "DW_TAG_friend";
4226 case DW_TAG_namelist:
4227 return "DW_TAG_namelist";
4228 case DW_TAG_namelist_item:
4229 return "DW_TAG_namelist_item";
4230 case DW_TAG_namespace:
4231 return "DW_TAG_namespace";
4232 case DW_TAG_packed_type:
4233 return "DW_TAG_packed_type";
4234 case DW_TAG_subprogram:
4235 return "DW_TAG_subprogram";
4236 case DW_TAG_template_type_param:
4237 return "DW_TAG_template_type_param";
4238 case DW_TAG_template_value_param:
4239 return "DW_TAG_template_value_param";
4240 case DW_TAG_thrown_type:
4241 return "DW_TAG_thrown_type";
4242 case DW_TAG_try_block:
4243 return "DW_TAG_try_block";
4244 case DW_TAG_variant_part:
4245 return "DW_TAG_variant_part";
4246 case DW_TAG_variable:
4247 return "DW_TAG_variable";
4248 case DW_TAG_volatile_type:
4249 return "DW_TAG_volatile_type";
4250 case DW_TAG_imported_module:
4251 return "DW_TAG_imported_module";
4252 case DW_TAG_MIPS_loop:
4253 return "DW_TAG_MIPS_loop";
4254 case DW_TAG_format_label:
4255 return "DW_TAG_format_label";
4256 case DW_TAG_function_template:
4257 return "DW_TAG_function_template";
4258 case DW_TAG_class_template:
4259 return "DW_TAG_class_template";
4260 case DW_TAG_GNU_BINCL:
4261 return "DW_TAG_GNU_BINCL";
4262 case DW_TAG_GNU_EINCL:
4263 return "DW_TAG_GNU_EINCL";
4264 default:
4265 return "DW_TAG_<unknown>";
4269 /* Convert a DWARF attribute code into its string name. */
4271 static const char *
4272 dwarf_attr_name (unsigned int attr)
4274 switch (attr)
4276 case DW_AT_sibling:
4277 return "DW_AT_sibling";
4278 case DW_AT_location:
4279 return "DW_AT_location";
4280 case DW_AT_name:
4281 return "DW_AT_name";
4282 case DW_AT_ordering:
4283 return "DW_AT_ordering";
4284 case DW_AT_subscr_data:
4285 return "DW_AT_subscr_data";
4286 case DW_AT_byte_size:
4287 return "DW_AT_byte_size";
4288 case DW_AT_bit_offset:
4289 return "DW_AT_bit_offset";
4290 case DW_AT_bit_size:
4291 return "DW_AT_bit_size";
4292 case DW_AT_element_list:
4293 return "DW_AT_element_list";
4294 case DW_AT_stmt_list:
4295 return "DW_AT_stmt_list";
4296 case DW_AT_low_pc:
4297 return "DW_AT_low_pc";
4298 case DW_AT_high_pc:
4299 return "DW_AT_high_pc";
4300 case DW_AT_language:
4301 return "DW_AT_language";
4302 case DW_AT_member:
4303 return "DW_AT_member";
4304 case DW_AT_discr:
4305 return "DW_AT_discr";
4306 case DW_AT_discr_value:
4307 return "DW_AT_discr_value";
4308 case DW_AT_visibility:
4309 return "DW_AT_visibility";
4310 case DW_AT_import:
4311 return "DW_AT_import";
4312 case DW_AT_string_length:
4313 return "DW_AT_string_length";
4314 case DW_AT_common_reference:
4315 return "DW_AT_common_reference";
4316 case DW_AT_comp_dir:
4317 return "DW_AT_comp_dir";
4318 case DW_AT_const_value:
4319 return "DW_AT_const_value";
4320 case DW_AT_containing_type:
4321 return "DW_AT_containing_type";
4322 case DW_AT_default_value:
4323 return "DW_AT_default_value";
4324 case DW_AT_inline:
4325 return "DW_AT_inline";
4326 case DW_AT_is_optional:
4327 return "DW_AT_is_optional";
4328 case DW_AT_lower_bound:
4329 return "DW_AT_lower_bound";
4330 case DW_AT_producer:
4331 return "DW_AT_producer";
4332 case DW_AT_prototyped:
4333 return "DW_AT_prototyped";
4334 case DW_AT_return_addr:
4335 return "DW_AT_return_addr";
4336 case DW_AT_start_scope:
4337 return "DW_AT_start_scope";
4338 case DW_AT_stride_size:
4339 return "DW_AT_stride_size";
4340 case DW_AT_upper_bound:
4341 return "DW_AT_upper_bound";
4342 case DW_AT_abstract_origin:
4343 return "DW_AT_abstract_origin";
4344 case DW_AT_accessibility:
4345 return "DW_AT_accessibility";
4346 case DW_AT_address_class:
4347 return "DW_AT_address_class";
4348 case DW_AT_artificial:
4349 return "DW_AT_artificial";
4350 case DW_AT_base_types:
4351 return "DW_AT_base_types";
4352 case DW_AT_calling_convention:
4353 return "DW_AT_calling_convention";
4354 case DW_AT_count:
4355 return "DW_AT_count";
4356 case DW_AT_data_member_location:
4357 return "DW_AT_data_member_location";
4358 case DW_AT_decl_column:
4359 return "DW_AT_decl_column";
4360 case DW_AT_decl_file:
4361 return "DW_AT_decl_file";
4362 case DW_AT_decl_line:
4363 return "DW_AT_decl_line";
4364 case DW_AT_declaration:
4365 return "DW_AT_declaration";
4366 case DW_AT_discr_list:
4367 return "DW_AT_discr_list";
4368 case DW_AT_encoding:
4369 return "DW_AT_encoding";
4370 case DW_AT_external:
4371 return "DW_AT_external";
4372 case DW_AT_frame_base:
4373 return "DW_AT_frame_base";
4374 case DW_AT_friend:
4375 return "DW_AT_friend";
4376 case DW_AT_identifier_case:
4377 return "DW_AT_identifier_case";
4378 case DW_AT_macro_info:
4379 return "DW_AT_macro_info";
4380 case DW_AT_namelist_items:
4381 return "DW_AT_namelist_items";
4382 case DW_AT_priority:
4383 return "DW_AT_priority";
4384 case DW_AT_segment:
4385 return "DW_AT_segment";
4386 case DW_AT_specification:
4387 return "DW_AT_specification";
4388 case DW_AT_static_link:
4389 return "DW_AT_static_link";
4390 case DW_AT_type:
4391 return "DW_AT_type";
4392 case DW_AT_use_location:
4393 return "DW_AT_use_location";
4394 case DW_AT_variable_parameter:
4395 return "DW_AT_variable_parameter";
4396 case DW_AT_virtuality:
4397 return "DW_AT_virtuality";
4398 case DW_AT_vtable_elem_location:
4399 return "DW_AT_vtable_elem_location";
4401 case DW_AT_allocated:
4402 return "DW_AT_allocated";
4403 case DW_AT_associated:
4404 return "DW_AT_associated";
4405 case DW_AT_data_location:
4406 return "DW_AT_data_location";
4407 case DW_AT_stride:
4408 return "DW_AT_stride";
4409 case DW_AT_entry_pc:
4410 return "DW_AT_entry_pc";
4411 case DW_AT_use_UTF8:
4412 return "DW_AT_use_UTF8";
4413 case DW_AT_extension:
4414 return "DW_AT_extension";
4415 case DW_AT_ranges:
4416 return "DW_AT_ranges";
4417 case DW_AT_trampoline:
4418 return "DW_AT_trampoline";
4419 case DW_AT_call_column:
4420 return "DW_AT_call_column";
4421 case DW_AT_call_file:
4422 return "DW_AT_call_file";
4423 case DW_AT_call_line:
4424 return "DW_AT_call_line";
4426 case DW_AT_MIPS_fde:
4427 return "DW_AT_MIPS_fde";
4428 case DW_AT_MIPS_loop_begin:
4429 return "DW_AT_MIPS_loop_begin";
4430 case DW_AT_MIPS_tail_loop_begin:
4431 return "DW_AT_MIPS_tail_loop_begin";
4432 case DW_AT_MIPS_epilog_begin:
4433 return "DW_AT_MIPS_epilog_begin";
4434 case DW_AT_MIPS_loop_unroll_factor:
4435 return "DW_AT_MIPS_loop_unroll_factor";
4436 case DW_AT_MIPS_software_pipeline_depth:
4437 return "DW_AT_MIPS_software_pipeline_depth";
4438 case DW_AT_MIPS_linkage_name:
4439 return "DW_AT_MIPS_linkage_name";
4440 case DW_AT_MIPS_stride:
4441 return "DW_AT_MIPS_stride";
4442 case DW_AT_MIPS_abstract_name:
4443 return "DW_AT_MIPS_abstract_name";
4444 case DW_AT_MIPS_clone_origin:
4445 return "DW_AT_MIPS_clone_origin";
4446 case DW_AT_MIPS_has_inlines:
4447 return "DW_AT_MIPS_has_inlines";
4449 case DW_AT_sf_names:
4450 return "DW_AT_sf_names";
4451 case DW_AT_src_info:
4452 return "DW_AT_src_info";
4453 case DW_AT_mac_info:
4454 return "DW_AT_mac_info";
4455 case DW_AT_src_coords:
4456 return "DW_AT_src_coords";
4457 case DW_AT_body_begin:
4458 return "DW_AT_body_begin";
4459 case DW_AT_body_end:
4460 return "DW_AT_body_end";
4461 case DW_AT_GNU_vector:
4462 return "DW_AT_GNU_vector";
4464 case DW_AT_VMS_rtnbeg_pd_address:
4465 return "DW_AT_VMS_rtnbeg_pd_address";
4467 default:
4468 return "DW_AT_<unknown>";
4472 /* Convert a DWARF value form code into its string name. */
4474 static const char *
4475 dwarf_form_name (unsigned int form)
4477 switch (form)
4479 case DW_FORM_addr:
4480 return "DW_FORM_addr";
4481 case DW_FORM_block2:
4482 return "DW_FORM_block2";
4483 case DW_FORM_block4:
4484 return "DW_FORM_block4";
4485 case DW_FORM_data2:
4486 return "DW_FORM_data2";
4487 case DW_FORM_data4:
4488 return "DW_FORM_data4";
4489 case DW_FORM_data8:
4490 return "DW_FORM_data8";
4491 case DW_FORM_string:
4492 return "DW_FORM_string";
4493 case DW_FORM_block:
4494 return "DW_FORM_block";
4495 case DW_FORM_block1:
4496 return "DW_FORM_block1";
4497 case DW_FORM_data1:
4498 return "DW_FORM_data1";
4499 case DW_FORM_flag:
4500 return "DW_FORM_flag";
4501 case DW_FORM_sdata:
4502 return "DW_FORM_sdata";
4503 case DW_FORM_strp:
4504 return "DW_FORM_strp";
4505 case DW_FORM_udata:
4506 return "DW_FORM_udata";
4507 case DW_FORM_ref_addr:
4508 return "DW_FORM_ref_addr";
4509 case DW_FORM_ref1:
4510 return "DW_FORM_ref1";
4511 case DW_FORM_ref2:
4512 return "DW_FORM_ref2";
4513 case DW_FORM_ref4:
4514 return "DW_FORM_ref4";
4515 case DW_FORM_ref8:
4516 return "DW_FORM_ref8";
4517 case DW_FORM_ref_udata:
4518 return "DW_FORM_ref_udata";
4519 case DW_FORM_indirect:
4520 return "DW_FORM_indirect";
4521 default:
4522 return "DW_FORM_<unknown>";
4526 /* Convert a DWARF type code into its string name. */
4528 #if 0
4529 static const char *
4530 dwarf_type_encoding_name (unsigned enc)
4532 switch (enc)
4534 case DW_ATE_address:
4535 return "DW_ATE_address";
4536 case DW_ATE_boolean:
4537 return "DW_ATE_boolean";
4538 case DW_ATE_complex_float:
4539 return "DW_ATE_complex_float";
4540 case DW_ATE_float:
4541 return "DW_ATE_float";
4542 case DW_ATE_signed:
4543 return "DW_ATE_signed";
4544 case DW_ATE_signed_char:
4545 return "DW_ATE_signed_char";
4546 case DW_ATE_unsigned:
4547 return "DW_ATE_unsigned";
4548 case DW_ATE_unsigned_char:
4549 return "DW_ATE_unsigned_char";
4550 default:
4551 return "DW_ATE_<unknown>";
4554 #endif
4556 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4557 instance of an inlined instance of a decl which is local to an inline
4558 function, so we have to trace all of the way back through the origin chain
4559 to find out what sort of node actually served as the original seed for the
4560 given block. */
4562 static tree
4563 decl_ultimate_origin (tree decl)
4565 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4566 nodes in the function to point to themselves; ignore that if
4567 we're trying to output the abstract instance of this function. */
4568 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4569 return NULL_TREE;
4571 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4572 most distant ancestor, this should never happen. */
4573 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4575 return DECL_ABSTRACT_ORIGIN (decl);
4578 /* Determine the "ultimate origin" of a block. The block may be an inlined
4579 instance of an inlined instance of a block which is local to an inline
4580 function, so we have to trace all of the way back through the origin chain
4581 to find out what sort of node actually served as the original seed for the
4582 given block. */
4584 static tree
4585 block_ultimate_origin (tree block)
4587 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4589 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4590 nodes in the function to point to themselves; ignore that if
4591 we're trying to output the abstract instance of this function. */
4592 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4593 return NULL_TREE;
4595 if (immediate_origin == NULL_TREE)
4596 return NULL_TREE;
4597 else
4599 tree ret_val;
4600 tree lookahead = immediate_origin;
4604 ret_val = lookahead;
4605 lookahead = (TREE_CODE (ret_val) == BLOCK
4606 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4608 while (lookahead != NULL && lookahead != ret_val);
4610 return ret_val;
4614 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4615 of a virtual function may refer to a base class, so we check the 'this'
4616 parameter. */
4618 static tree
4619 decl_class_context (tree decl)
4621 tree context = NULL_TREE;
4623 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4624 context = DECL_CONTEXT (decl);
4625 else
4626 context = TYPE_MAIN_VARIANT
4627 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4629 if (context && !TYPE_P (context))
4630 context = NULL_TREE;
4632 return context;
4635 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4636 addition order, and correct that in reverse_all_dies. */
4638 static inline void
4639 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4641 if (die != NULL && attr != NULL)
4643 attr->dw_attr_next = die->die_attr;
4644 die->die_attr = attr;
4648 static inline enum dw_val_class
4649 AT_class (dw_attr_ref a)
4651 return a->dw_attr_val.val_class;
4654 /* Add a flag value attribute to a DIE. */
4656 static inline void
4657 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4659 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4661 attr->dw_attr_next = NULL;
4662 attr->dw_attr = attr_kind;
4663 attr->dw_attr_val.val_class = dw_val_class_flag;
4664 attr->dw_attr_val.v.val_flag = flag;
4665 add_dwarf_attr (die, attr);
4668 static inline unsigned
4669 AT_flag (dw_attr_ref a)
4671 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4672 return a->dw_attr_val.v.val_flag;
4675 /* Add a signed integer attribute value to a DIE. */
4677 static inline void
4678 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4680 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682 attr->dw_attr_next = NULL;
4683 attr->dw_attr = attr_kind;
4684 attr->dw_attr_val.val_class = dw_val_class_const;
4685 attr->dw_attr_val.v.val_int = int_val;
4686 add_dwarf_attr (die, attr);
4689 static inline HOST_WIDE_INT
4690 AT_int (dw_attr_ref a)
4692 gcc_assert (a && AT_class (a) == dw_val_class_const);
4693 return a->dw_attr_val.v.val_int;
4696 /* Add an unsigned integer attribute value to a DIE. */
4698 static inline void
4699 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4700 unsigned HOST_WIDE_INT unsigned_val)
4702 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4704 attr->dw_attr_next = NULL;
4705 attr->dw_attr = attr_kind;
4706 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4707 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4708 add_dwarf_attr (die, attr);
4711 static inline unsigned HOST_WIDE_INT
4712 AT_unsigned (dw_attr_ref a)
4714 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4715 return a->dw_attr_val.v.val_unsigned;
4718 /* Add an unsigned double integer attribute value to a DIE. */
4720 static inline void
4721 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4722 long unsigned int val_hi, long unsigned int val_low)
4724 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4726 attr->dw_attr_next = NULL;
4727 attr->dw_attr = attr_kind;
4728 attr->dw_attr_val.val_class = dw_val_class_long_long;
4729 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4730 attr->dw_attr_val.v.val_long_long.low = val_low;
4731 add_dwarf_attr (die, attr);
4734 /* Add a floating point attribute value to a DIE and return it. */
4736 static inline void
4737 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4738 unsigned int length, unsigned int elt_size, unsigned char *array)
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_vec;
4745 attr->dw_attr_val.v.val_vec.length = length;
4746 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4747 attr->dw_attr_val.v.val_vec.array = array;
4748 add_dwarf_attr (die, attr);
4751 /* Hash and equality functions for debug_str_hash. */
4753 static hashval_t
4754 debug_str_do_hash (const void *x)
4756 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4759 static int
4760 debug_str_eq (const void *x1, const void *x2)
4762 return strcmp ((((const struct indirect_string_node *)x1)->str),
4763 (const char *)x2) == 0;
4766 /* Add a string attribute value to a DIE. */
4768 static inline void
4769 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4771 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4772 struct indirect_string_node *node;
4773 void **slot;
4775 if (! debug_str_hash)
4776 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4777 debug_str_eq, NULL);
4779 slot = htab_find_slot_with_hash (debug_str_hash, str,
4780 htab_hash_string (str), INSERT);
4781 if (*slot == NULL)
4782 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4783 node = (struct indirect_string_node *) *slot;
4784 node->str = ggc_strdup (str);
4785 node->refcount++;
4787 attr->dw_attr_next = NULL;
4788 attr->dw_attr = attr_kind;
4789 attr->dw_attr_val.val_class = dw_val_class_str;
4790 attr->dw_attr_val.v.val_str = node;
4791 add_dwarf_attr (die, attr);
4794 static inline const char *
4795 AT_string (dw_attr_ref a)
4797 gcc_assert (a && AT_class (a) == dw_val_class_str);
4798 return a->dw_attr_val.v.val_str->str;
4801 /* Find out whether a string should be output inline in DIE
4802 or out-of-line in .debug_str section. */
4804 static int
4805 AT_string_form (dw_attr_ref a)
4807 struct indirect_string_node *node;
4808 unsigned int len;
4809 char label[32];
4811 gcc_assert (a && AT_class (a) == dw_val_class_str);
4813 node = a->dw_attr_val.v.val_str;
4814 if (node->form)
4815 return node->form;
4817 len = strlen (node->str) + 1;
4819 /* If the string is shorter or equal to the size of the reference, it is
4820 always better to put it inline. */
4821 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4822 return node->form = DW_FORM_string;
4824 /* If we cannot expect the linker to merge strings in .debug_str
4825 section, only put it into .debug_str if it is worth even in this
4826 single module. */
4827 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4828 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4829 return node->form = DW_FORM_string;
4831 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4832 ++dw2_string_counter;
4833 node->label = xstrdup (label);
4835 return node->form = DW_FORM_strp;
4838 /* Add a DIE reference attribute value to a DIE. */
4840 static inline void
4841 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4843 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4845 attr->dw_attr_next = NULL;
4846 attr->dw_attr = attr_kind;
4847 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4848 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4849 attr->dw_attr_val.v.val_die_ref.external = 0;
4850 add_dwarf_attr (die, attr);
4853 /* Add an AT_specification attribute to a DIE, and also make the back
4854 pointer from the specification to the definition. */
4856 static inline void
4857 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4859 add_AT_die_ref (die, DW_AT_specification, targ_die);
4860 gcc_assert (!targ_die->die_definition);
4861 targ_die->die_definition = die;
4864 static inline dw_die_ref
4865 AT_ref (dw_attr_ref a)
4867 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4868 return a->dw_attr_val.v.val_die_ref.die;
4871 static inline int
4872 AT_ref_external (dw_attr_ref a)
4874 if (a && AT_class (a) == dw_val_class_die_ref)
4875 return a->dw_attr_val.v.val_die_ref.external;
4877 return 0;
4880 static inline void
4881 set_AT_ref_external (dw_attr_ref a, int i)
4883 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4884 a->dw_attr_val.v.val_die_ref.external = i;
4887 /* Add an FDE reference attribute value to a DIE. */
4889 static inline void
4890 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4892 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4894 attr->dw_attr_next = NULL;
4895 attr->dw_attr = attr_kind;
4896 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4897 attr->dw_attr_val.v.val_fde_index = targ_fde;
4898 add_dwarf_attr (die, attr);
4901 /* Add a location description attribute value to a DIE. */
4903 static inline void
4904 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4906 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4908 attr->dw_attr_next = NULL;
4909 attr->dw_attr = attr_kind;
4910 attr->dw_attr_val.val_class = dw_val_class_loc;
4911 attr->dw_attr_val.v.val_loc = loc;
4912 add_dwarf_attr (die, attr);
4915 static inline dw_loc_descr_ref
4916 AT_loc (dw_attr_ref a)
4918 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4919 return a->dw_attr_val.v.val_loc;
4922 static inline void
4923 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4925 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4927 attr->dw_attr_next = NULL;
4928 attr->dw_attr = attr_kind;
4929 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4930 attr->dw_attr_val.v.val_loc_list = loc_list;
4931 add_dwarf_attr (die, attr);
4932 have_location_lists = 1;
4935 static inline dw_loc_list_ref
4936 AT_loc_list (dw_attr_ref a)
4938 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4939 return a->dw_attr_val.v.val_loc_list;
4942 /* Add an address constant attribute value to a DIE. */
4944 static inline void
4945 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4947 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4949 attr->dw_attr_next = NULL;
4950 attr->dw_attr = attr_kind;
4951 attr->dw_attr_val.val_class = dw_val_class_addr;
4952 attr->dw_attr_val.v.val_addr = addr;
4953 add_dwarf_attr (die, attr);
4956 static inline rtx
4957 AT_addr (dw_attr_ref a)
4959 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4960 return a->dw_attr_val.v.val_addr;
4963 /* Add a label identifier attribute value to a DIE. */
4965 static inline void
4966 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4968 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4970 attr->dw_attr_next = NULL;
4971 attr->dw_attr = attr_kind;
4972 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4973 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4974 add_dwarf_attr (die, attr);
4977 /* Add a section offset attribute value to a DIE. */
4979 static inline void
4980 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4982 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4984 attr->dw_attr_next = NULL;
4985 attr->dw_attr = attr_kind;
4986 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4987 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4988 add_dwarf_attr (die, attr);
4991 /* Add an offset attribute value to a DIE. */
4993 static inline void
4994 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4995 unsigned HOST_WIDE_INT offset)
4997 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4999 attr->dw_attr_next = NULL;
5000 attr->dw_attr = attr_kind;
5001 attr->dw_attr_val.val_class = dw_val_class_offset;
5002 attr->dw_attr_val.v.val_offset = offset;
5003 add_dwarf_attr (die, attr);
5006 /* Add an range_list attribute value to a DIE. */
5008 static void
5009 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5010 long unsigned int offset)
5012 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5014 attr->dw_attr_next = NULL;
5015 attr->dw_attr = attr_kind;
5016 attr->dw_attr_val.val_class = dw_val_class_range_list;
5017 attr->dw_attr_val.v.val_offset = offset;
5018 add_dwarf_attr (die, attr);
5021 static inline const char *
5022 AT_lbl (dw_attr_ref a)
5024 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5025 || AT_class (a) == dw_val_class_lbl_offset));
5026 return a->dw_attr_val.v.val_lbl_id;
5029 /* Get the attribute of type attr_kind. */
5031 static dw_attr_ref
5032 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5034 dw_attr_ref a;
5035 dw_die_ref spec = NULL;
5037 if (die != NULL)
5039 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5040 if (a->dw_attr == attr_kind)
5041 return a;
5042 else if (a->dw_attr == DW_AT_specification
5043 || a->dw_attr == DW_AT_abstract_origin)
5044 spec = AT_ref (a);
5046 if (spec)
5047 return get_AT (spec, attr_kind);
5050 return NULL;
5053 /* Return the "low pc" attribute value, typically associated with a subprogram
5054 DIE. Return null if the "low pc" attribute is either not present, or if it
5055 cannot be represented as an assembler label identifier. */
5057 static inline const char *
5058 get_AT_low_pc (dw_die_ref die)
5060 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5062 return a ? AT_lbl (a) : NULL;
5065 /* Return the "high pc" attribute value, typically associated with a subprogram
5066 DIE. Return null if the "high pc" attribute is either not present, or if it
5067 cannot be represented as an assembler label identifier. */
5069 static inline const char *
5070 get_AT_hi_pc (dw_die_ref die)
5072 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5074 return a ? AT_lbl (a) : NULL;
5077 /* Return the value of the string attribute designated by ATTR_KIND, or
5078 NULL if it is not present. */
5080 static inline const char *
5081 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5083 dw_attr_ref a = get_AT (die, attr_kind);
5085 return a ? AT_string (a) : NULL;
5088 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5089 if it is not present. */
5091 static inline int
5092 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5094 dw_attr_ref a = get_AT (die, attr_kind);
5096 return a ? AT_flag (a) : 0;
5099 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5100 if it is not present. */
5102 static inline unsigned
5103 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5105 dw_attr_ref a = get_AT (die, attr_kind);
5107 return a ? AT_unsigned (a) : 0;
5110 static inline dw_die_ref
5111 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5113 dw_attr_ref a = get_AT (die, attr_kind);
5115 return a ? AT_ref (a) : NULL;
5118 /* Return TRUE if the language is C or C++. */
5120 static inline bool
5121 is_c_family (void)
5123 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5125 return (lang == DW_LANG_C || lang == DW_LANG_C89
5126 || lang == DW_LANG_C_plus_plus);
5129 /* Return TRUE if the language is C++. */
5131 static inline bool
5132 is_cxx (void)
5134 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5135 == DW_LANG_C_plus_plus);
5138 /* Return TRUE if the language is Fortran. */
5140 static inline bool
5141 is_fortran (void)
5143 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5145 return (lang == DW_LANG_Fortran77
5146 || lang == DW_LANG_Fortran90
5147 || lang == DW_LANG_Fortran95);
5150 /* Return TRUE if the language is Java. */
5152 static inline bool
5153 is_java (void)
5155 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5157 return lang == DW_LANG_Java;
5160 /* Return TRUE if the language is Ada. */
5162 static inline bool
5163 is_ada (void)
5165 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5167 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5170 /* Free up the memory used by A. */
5172 static inline void free_AT (dw_attr_ref);
5173 static inline void
5174 free_AT (dw_attr_ref a)
5176 if (AT_class (a) == dw_val_class_str)
5177 if (a->dw_attr_val.v.val_str->refcount)
5178 a->dw_attr_val.v.val_str->refcount--;
5181 /* Remove the specified attribute if present. */
5183 static void
5184 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5186 dw_attr_ref *p;
5187 dw_attr_ref removed = NULL;
5189 if (die != NULL)
5191 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5192 if ((*p)->dw_attr == attr_kind)
5194 removed = *p;
5195 *p = (*p)->dw_attr_next;
5196 break;
5199 if (removed != 0)
5200 free_AT (removed);
5204 /* Remove child die whose die_tag is specified tag. */
5206 static void
5207 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5209 dw_die_ref current, prev, next;
5210 current = die->die_child;
5211 prev = NULL;
5212 while (current != NULL)
5214 if (current->die_tag == tag)
5216 next = current->die_sib;
5217 if (prev == NULL)
5218 die->die_child = next;
5219 else
5220 prev->die_sib = next;
5221 free_die (current);
5222 current = next;
5224 else
5226 prev = current;
5227 current = current->die_sib;
5232 /* Free up the memory used by DIE. */
5234 static inline void
5235 free_die (dw_die_ref die)
5237 remove_children (die);
5240 /* Discard the children of this DIE. */
5242 static void
5243 remove_children (dw_die_ref die)
5245 dw_die_ref child_die = die->die_child;
5247 die->die_child = NULL;
5249 while (child_die != NULL)
5251 dw_die_ref tmp_die = child_die;
5252 dw_attr_ref a;
5254 child_die = child_die->die_sib;
5256 for (a = tmp_die->die_attr; a != NULL;)
5258 dw_attr_ref tmp_a = a;
5260 a = a->dw_attr_next;
5261 free_AT (tmp_a);
5264 free_die (tmp_die);
5268 /* Add a child DIE below its parent. We build the lists up in reverse
5269 addition order, and correct that in reverse_all_dies. */
5271 static inline void
5272 add_child_die (dw_die_ref die, dw_die_ref child_die)
5274 if (die != NULL && child_die != NULL)
5276 gcc_assert (die != child_die);
5278 child_die->die_parent = die;
5279 child_die->die_sib = die->die_child;
5280 die->die_child = child_die;
5284 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5285 is the specification, to the front of PARENT's list of children. */
5287 static void
5288 splice_child_die (dw_die_ref parent, dw_die_ref child)
5290 dw_die_ref *p;
5292 /* We want the declaration DIE from inside the class, not the
5293 specification DIE at toplevel. */
5294 if (child->die_parent != parent)
5296 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5298 if (tmp)
5299 child = tmp;
5302 gcc_assert (child->die_parent == parent
5303 || (child->die_parent
5304 == get_AT_ref (parent, DW_AT_specification)));
5306 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5307 if (*p == child)
5309 *p = child->die_sib;
5310 break;
5313 child->die_parent = parent;
5314 child->die_sib = parent->die_child;
5315 parent->die_child = child;
5318 /* Return a pointer to a newly created DIE node. */
5320 static inline dw_die_ref
5321 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5323 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5325 die->die_tag = tag_value;
5327 if (parent_die != NULL)
5328 add_child_die (parent_die, die);
5329 else
5331 limbo_die_node *limbo_node;
5333 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5334 limbo_node->die = die;
5335 limbo_node->created_for = t;
5336 limbo_node->next = limbo_die_list;
5337 limbo_die_list = limbo_node;
5340 return die;
5343 /* Return the DIE associated with the given type specifier. */
5345 static inline dw_die_ref
5346 lookup_type_die (tree type)
5348 return TYPE_SYMTAB_DIE (type);
5351 /* Equate a DIE to a given type specifier. */
5353 static inline void
5354 equate_type_number_to_die (tree type, dw_die_ref type_die)
5356 TYPE_SYMTAB_DIE (type) = type_die;
5359 /* Returns a hash value for X (which really is a die_struct). */
5361 static hashval_t
5362 decl_die_table_hash (const void *x)
5364 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5367 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5369 static int
5370 decl_die_table_eq (const void *x, const void *y)
5372 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5375 /* Return the DIE associated with a given declaration. */
5377 static inline dw_die_ref
5378 lookup_decl_die (tree decl)
5380 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5383 /* Returns a hash value for X (which really is a var_loc_list). */
5385 static hashval_t
5386 decl_loc_table_hash (const void *x)
5388 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5391 /* Return nonzero if decl_id of var_loc_list X is the same as
5392 UID of decl *Y. */
5394 static int
5395 decl_loc_table_eq (const void *x, const void *y)
5397 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5400 /* Return the var_loc list associated with a given declaration. */
5402 static inline var_loc_list *
5403 lookup_decl_loc (tree decl)
5405 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5408 /* Equate a DIE to a particular declaration. */
5410 static void
5411 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5413 unsigned int decl_id = DECL_UID (decl);
5414 void **slot;
5416 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5417 *slot = decl_die;
5418 decl_die->decl_id = decl_id;
5421 /* Add a variable location node to the linked list for DECL. */
5423 static void
5424 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5426 unsigned int decl_id = DECL_UID (decl);
5427 var_loc_list *temp;
5428 void **slot;
5430 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5431 if (*slot == NULL)
5433 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5434 temp->decl_id = decl_id;
5435 *slot = temp;
5437 else
5438 temp = *slot;
5440 if (temp->last)
5442 /* If the current location is the same as the end of the list,
5443 we have nothing to do. */
5444 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5445 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5447 /* Add LOC to the end of list and update LAST. */
5448 temp->last->next = loc;
5449 temp->last = loc;
5452 /* Do not add empty location to the beginning of the list. */
5453 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5455 temp->first = loc;
5456 temp->last = loc;
5460 /* Keep track of the number of spaces used to indent the
5461 output of the debugging routines that print the structure of
5462 the DIE internal representation. */
5463 static int print_indent;
5465 /* Indent the line the number of spaces given by print_indent. */
5467 static inline void
5468 print_spaces (FILE *outfile)
5470 fprintf (outfile, "%*s", print_indent, "");
5473 /* Print the information associated with a given DIE, and its children.
5474 This routine is a debugging aid only. */
5476 static void
5477 print_die (dw_die_ref die, FILE *outfile)
5479 dw_attr_ref a;
5480 dw_die_ref c;
5482 print_spaces (outfile);
5483 fprintf (outfile, "DIE %4lu: %s\n",
5484 die->die_offset, dwarf_tag_name (die->die_tag));
5485 print_spaces (outfile);
5486 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5487 fprintf (outfile, " offset: %lu\n", die->die_offset);
5489 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5491 print_spaces (outfile);
5492 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5494 switch (AT_class (a))
5496 case dw_val_class_addr:
5497 fprintf (outfile, "address");
5498 break;
5499 case dw_val_class_offset:
5500 fprintf (outfile, "offset");
5501 break;
5502 case dw_val_class_loc:
5503 fprintf (outfile, "location descriptor");
5504 break;
5505 case dw_val_class_loc_list:
5506 fprintf (outfile, "location list -> label:%s",
5507 AT_loc_list (a)->ll_symbol);
5508 break;
5509 case dw_val_class_range_list:
5510 fprintf (outfile, "range list");
5511 break;
5512 case dw_val_class_const:
5513 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5514 break;
5515 case dw_val_class_unsigned_const:
5516 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5517 break;
5518 case dw_val_class_long_long:
5519 fprintf (outfile, "constant (%lu,%lu)",
5520 a->dw_attr_val.v.val_long_long.hi,
5521 a->dw_attr_val.v.val_long_long.low);
5522 break;
5523 case dw_val_class_vec:
5524 fprintf (outfile, "floating-point or vector constant");
5525 break;
5526 case dw_val_class_flag:
5527 fprintf (outfile, "%u", AT_flag (a));
5528 break;
5529 case dw_val_class_die_ref:
5530 if (AT_ref (a) != NULL)
5532 if (AT_ref (a)->die_symbol)
5533 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5534 else
5535 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5537 else
5538 fprintf (outfile, "die -> <null>");
5539 break;
5540 case dw_val_class_lbl_id:
5541 case dw_val_class_lbl_offset:
5542 fprintf (outfile, "label: %s", AT_lbl (a));
5543 break;
5544 case dw_val_class_str:
5545 if (AT_string (a) != NULL)
5546 fprintf (outfile, "\"%s\"", AT_string (a));
5547 else
5548 fprintf (outfile, "<null>");
5549 break;
5550 default:
5551 break;
5554 fprintf (outfile, "\n");
5557 if (die->die_child != NULL)
5559 print_indent += 4;
5560 for (c = die->die_child; c != NULL; c = c->die_sib)
5561 print_die (c, outfile);
5563 print_indent -= 4;
5565 if (print_indent == 0)
5566 fprintf (outfile, "\n");
5569 /* Print the contents of the source code line number correspondence table.
5570 This routine is a debugging aid only. */
5572 static void
5573 print_dwarf_line_table (FILE *outfile)
5575 unsigned i;
5576 dw_line_info_ref line_info;
5578 fprintf (outfile, "\n\nDWARF source line information\n");
5579 for (i = 1; i < line_info_table_in_use; i++)
5581 line_info = &line_info_table[i];
5582 fprintf (outfile, "%5d: ", i);
5583 fprintf (outfile, "%-20s",
5584 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5585 fprintf (outfile, "%6ld", line_info->dw_line_num);
5586 fprintf (outfile, "\n");
5589 fprintf (outfile, "\n\n");
5592 /* Print the information collected for a given DIE. */
5594 void
5595 debug_dwarf_die (dw_die_ref die)
5597 print_die (die, stderr);
5600 /* Print all DWARF information collected for the compilation unit.
5601 This routine is a debugging aid only. */
5603 void
5604 debug_dwarf (void)
5606 print_indent = 0;
5607 print_die (comp_unit_die, stderr);
5608 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5609 print_dwarf_line_table (stderr);
5612 /* We build up the lists of children and attributes by pushing new ones
5613 onto the beginning of the list. Reverse the lists for DIE so that
5614 they are in order of addition. */
5616 static void
5617 reverse_die_lists (dw_die_ref die)
5619 dw_die_ref c, cp, cn;
5620 dw_attr_ref a, ap, an;
5622 for (a = die->die_attr, ap = 0; a; a = an)
5624 an = a->dw_attr_next;
5625 a->dw_attr_next = ap;
5626 ap = a;
5629 die->die_attr = ap;
5631 for (c = die->die_child, cp = 0; c; c = cn)
5633 cn = c->die_sib;
5634 c->die_sib = cp;
5635 cp = c;
5638 die->die_child = cp;
5641 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5642 reverse all dies in add_sibling_attributes, which runs through all the dies,
5643 it would reverse all the dies. Now, however, since we don't call
5644 reverse_die_lists in add_sibling_attributes, we need a routine to
5645 recursively reverse all the dies. This is that routine. */
5647 static void
5648 reverse_all_dies (dw_die_ref die)
5650 dw_die_ref c;
5652 reverse_die_lists (die);
5654 for (c = die->die_child; c; c = c->die_sib)
5655 reverse_all_dies (c);
5658 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5659 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5660 DIE that marks the start of the DIEs for this include file. */
5662 static dw_die_ref
5663 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5665 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5666 dw_die_ref new_unit = gen_compile_unit_die (filename);
5668 new_unit->die_sib = old_unit;
5669 return new_unit;
5672 /* Close an include-file CU and reopen the enclosing one. */
5674 static dw_die_ref
5675 pop_compile_unit (dw_die_ref old_unit)
5677 dw_die_ref new_unit = old_unit->die_sib;
5679 old_unit->die_sib = NULL;
5680 return new_unit;
5683 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5684 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5686 /* Calculate the checksum of a location expression. */
5688 static inline void
5689 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5691 CHECKSUM (loc->dw_loc_opc);
5692 CHECKSUM (loc->dw_loc_oprnd1);
5693 CHECKSUM (loc->dw_loc_oprnd2);
5696 /* Calculate the checksum of an attribute. */
5698 static void
5699 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5701 dw_loc_descr_ref loc;
5702 rtx r;
5704 CHECKSUM (at->dw_attr);
5706 /* We don't care about differences in file numbering. */
5707 if (at->dw_attr == DW_AT_decl_file
5708 /* Or that this was compiled with a different compiler snapshot; if
5709 the output is the same, that's what matters. */
5710 || at->dw_attr == DW_AT_producer)
5711 return;
5713 switch (AT_class (at))
5715 case dw_val_class_const:
5716 CHECKSUM (at->dw_attr_val.v.val_int);
5717 break;
5718 case dw_val_class_unsigned_const:
5719 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5720 break;
5721 case dw_val_class_long_long:
5722 CHECKSUM (at->dw_attr_val.v.val_long_long);
5723 break;
5724 case dw_val_class_vec:
5725 CHECKSUM (at->dw_attr_val.v.val_vec);
5726 break;
5727 case dw_val_class_flag:
5728 CHECKSUM (at->dw_attr_val.v.val_flag);
5729 break;
5730 case dw_val_class_str:
5731 CHECKSUM_STRING (AT_string (at));
5732 break;
5734 case dw_val_class_addr:
5735 r = AT_addr (at);
5736 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5737 CHECKSUM_STRING (XSTR (r, 0));
5738 break;
5740 case dw_val_class_offset:
5741 CHECKSUM (at->dw_attr_val.v.val_offset);
5742 break;
5744 case dw_val_class_loc:
5745 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5746 loc_checksum (loc, ctx);
5747 break;
5749 case dw_val_class_die_ref:
5750 die_checksum (AT_ref (at), ctx, mark);
5751 break;
5753 case dw_val_class_fde_ref:
5754 case dw_val_class_lbl_id:
5755 case dw_val_class_lbl_offset:
5756 break;
5758 default:
5759 break;
5763 /* Calculate the checksum of a DIE. */
5765 static void
5766 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5768 dw_die_ref c;
5769 dw_attr_ref a;
5771 /* To avoid infinite recursion. */
5772 if (die->die_mark)
5774 CHECKSUM (die->die_mark);
5775 return;
5777 die->die_mark = ++(*mark);
5779 CHECKSUM (die->die_tag);
5781 for (a = die->die_attr; a; a = a->dw_attr_next)
5782 attr_checksum (a, ctx, mark);
5784 for (c = die->die_child; c; c = c->die_sib)
5785 die_checksum (c, ctx, mark);
5788 #undef CHECKSUM
5789 #undef CHECKSUM_STRING
5791 /* Do the location expressions look same? */
5792 static inline int
5793 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5795 return loc1->dw_loc_opc == loc2->dw_loc_opc
5796 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5797 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5800 /* Do the values look the same? */
5801 static int
5802 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5804 dw_loc_descr_ref loc1, loc2;
5805 rtx r1, r2;
5807 if (v1->val_class != v2->val_class)
5808 return 0;
5810 switch (v1->val_class)
5812 case dw_val_class_const:
5813 return v1->v.val_int == v2->v.val_int;
5814 case dw_val_class_unsigned_const:
5815 return v1->v.val_unsigned == v2->v.val_unsigned;
5816 case dw_val_class_long_long:
5817 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5818 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5819 case dw_val_class_vec:
5820 if (v1->v.val_vec.length != v2->v.val_vec.length
5821 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5822 return 0;
5823 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5824 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5825 return 0;
5826 return 1;
5827 case dw_val_class_flag:
5828 return v1->v.val_flag == v2->v.val_flag;
5829 case dw_val_class_str:
5830 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5832 case dw_val_class_addr:
5833 r1 = v1->v.val_addr;
5834 r2 = v2->v.val_addr;
5835 if (GET_CODE (r1) != GET_CODE (r2))
5836 return 0;
5837 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5838 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5840 case dw_val_class_offset:
5841 return v1->v.val_offset == v2->v.val_offset;
5843 case dw_val_class_loc:
5844 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5845 loc1 && loc2;
5846 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5847 if (!same_loc_p (loc1, loc2, mark))
5848 return 0;
5849 return !loc1 && !loc2;
5851 case dw_val_class_die_ref:
5852 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5854 case dw_val_class_fde_ref:
5855 case dw_val_class_lbl_id:
5856 case dw_val_class_lbl_offset:
5857 return 1;
5859 default:
5860 return 1;
5864 /* Do the attributes look the same? */
5866 static int
5867 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5869 if (at1->dw_attr != at2->dw_attr)
5870 return 0;
5872 /* We don't care about differences in file numbering. */
5873 if (at1->dw_attr == DW_AT_decl_file
5874 /* Or that this was compiled with a different compiler snapshot; if
5875 the output is the same, that's what matters. */
5876 || at1->dw_attr == DW_AT_producer)
5877 return 1;
5879 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5882 /* Do the dies look the same? */
5884 static int
5885 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5887 dw_die_ref c1, c2;
5888 dw_attr_ref a1, a2;
5890 /* To avoid infinite recursion. */
5891 if (die1->die_mark)
5892 return die1->die_mark == die2->die_mark;
5893 die1->die_mark = die2->die_mark = ++(*mark);
5895 if (die1->die_tag != die2->die_tag)
5896 return 0;
5898 for (a1 = die1->die_attr, a2 = die2->die_attr;
5899 a1 && a2;
5900 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5901 if (!same_attr_p (a1, a2, mark))
5902 return 0;
5903 if (a1 || a2)
5904 return 0;
5906 for (c1 = die1->die_child, c2 = die2->die_child;
5907 c1 && c2;
5908 c1 = c1->die_sib, c2 = c2->die_sib)
5909 if (!same_die_p (c1, c2, mark))
5910 return 0;
5911 if (c1 || c2)
5912 return 0;
5914 return 1;
5917 /* Do the dies look the same? Wrapper around same_die_p. */
5919 static int
5920 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5922 int mark = 0;
5923 int ret = same_die_p (die1, die2, &mark);
5925 unmark_all_dies (die1);
5926 unmark_all_dies (die2);
5928 return ret;
5931 /* The prefix to attach to symbols on DIEs in the current comdat debug
5932 info section. */
5933 static char *comdat_symbol_id;
5935 /* The index of the current symbol within the current comdat CU. */
5936 static unsigned int comdat_symbol_number;
5938 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5939 children, and set comdat_symbol_id accordingly. */
5941 static void
5942 compute_section_prefix (dw_die_ref unit_die)
5944 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5945 const char *base = die_name ? lbasename (die_name) : "anonymous";
5946 char *name = alloca (strlen (base) + 64);
5947 char *p;
5948 int i, mark;
5949 unsigned char checksum[16];
5950 struct md5_ctx ctx;
5952 /* Compute the checksum of the DIE, then append part of it as hex digits to
5953 the name filename of the unit. */
5955 md5_init_ctx (&ctx);
5956 mark = 0;
5957 die_checksum (unit_die, &ctx, &mark);
5958 unmark_all_dies (unit_die);
5959 md5_finish_ctx (&ctx, checksum);
5961 sprintf (name, "%s.", base);
5962 clean_symbol_name (name);
5964 p = name + strlen (name);
5965 for (i = 0; i < 4; i++)
5967 sprintf (p, "%.2x", checksum[i]);
5968 p += 2;
5971 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5972 comdat_symbol_number = 0;
5975 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5977 static int
5978 is_type_die (dw_die_ref die)
5980 switch (die->die_tag)
5982 case DW_TAG_array_type:
5983 case DW_TAG_class_type:
5984 case DW_TAG_enumeration_type:
5985 case DW_TAG_pointer_type:
5986 case DW_TAG_reference_type:
5987 case DW_TAG_string_type:
5988 case DW_TAG_structure_type:
5989 case DW_TAG_subroutine_type:
5990 case DW_TAG_union_type:
5991 case DW_TAG_ptr_to_member_type:
5992 case DW_TAG_set_type:
5993 case DW_TAG_subrange_type:
5994 case DW_TAG_base_type:
5995 case DW_TAG_const_type:
5996 case DW_TAG_file_type:
5997 case DW_TAG_packed_type:
5998 case DW_TAG_volatile_type:
5999 case DW_TAG_typedef:
6000 return 1;
6001 default:
6002 return 0;
6006 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6007 Basically, we want to choose the bits that are likely to be shared between
6008 compilations (types) and leave out the bits that are specific to individual
6009 compilations (functions). */
6011 static int
6012 is_comdat_die (dw_die_ref c)
6014 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6015 we do for stabs. The advantage is a greater likelihood of sharing between
6016 objects that don't include headers in the same order (and therefore would
6017 put the base types in a different comdat). jason 8/28/00 */
6019 if (c->die_tag == DW_TAG_base_type)
6020 return 0;
6022 if (c->die_tag == DW_TAG_pointer_type
6023 || c->die_tag == DW_TAG_reference_type
6024 || c->die_tag == DW_TAG_const_type
6025 || c->die_tag == DW_TAG_volatile_type)
6027 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6029 return t ? is_comdat_die (t) : 0;
6032 return is_type_die (c);
6035 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6036 compilation unit. */
6038 static int
6039 is_symbol_die (dw_die_ref c)
6041 return (is_type_die (c)
6042 || (get_AT (c, DW_AT_declaration)
6043 && !get_AT (c, DW_AT_specification)));
6046 static char *
6047 gen_internal_sym (const char *prefix)
6049 char buf[256];
6051 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6052 return xstrdup (buf);
6055 /* Assign symbols to all worthy DIEs under DIE. */
6057 static void
6058 assign_symbol_names (dw_die_ref die)
6060 dw_die_ref c;
6062 if (is_symbol_die (die))
6064 if (comdat_symbol_id)
6066 char *p = alloca (strlen (comdat_symbol_id) + 64);
6068 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6069 comdat_symbol_id, comdat_symbol_number++);
6070 die->die_symbol = xstrdup (p);
6072 else
6073 die->die_symbol = gen_internal_sym ("LDIE");
6076 for (c = die->die_child; c != NULL; c = c->die_sib)
6077 assign_symbol_names (c);
6080 struct cu_hash_table_entry
6082 dw_die_ref cu;
6083 unsigned min_comdat_num, max_comdat_num;
6084 struct cu_hash_table_entry *next;
6087 /* Routines to manipulate hash table of CUs. */
6088 static hashval_t
6089 htab_cu_hash (const void *of)
6091 const struct cu_hash_table_entry *entry = of;
6093 return htab_hash_string (entry->cu->die_symbol);
6096 static int
6097 htab_cu_eq (const void *of1, const void *of2)
6099 const struct cu_hash_table_entry *entry1 = of1;
6100 const struct die_struct *entry2 = of2;
6102 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6105 static void
6106 htab_cu_del (void *what)
6108 struct cu_hash_table_entry *next, *entry = what;
6110 while (entry)
6112 next = entry->next;
6113 free (entry);
6114 entry = next;
6118 /* Check whether we have already seen this CU and set up SYM_NUM
6119 accordingly. */
6120 static int
6121 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6123 struct cu_hash_table_entry dummy;
6124 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6126 dummy.max_comdat_num = 0;
6128 slot = (struct cu_hash_table_entry **)
6129 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6130 INSERT);
6131 entry = *slot;
6133 for (; entry; last = entry, entry = entry->next)
6135 if (same_die_p_wrap (cu, entry->cu))
6136 break;
6139 if (entry)
6141 *sym_num = entry->min_comdat_num;
6142 return 1;
6145 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6146 entry->cu = cu;
6147 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6148 entry->next = *slot;
6149 *slot = entry;
6151 return 0;
6154 /* Record SYM_NUM to record of CU in HTABLE. */
6155 static void
6156 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6158 struct cu_hash_table_entry **slot, *entry;
6160 slot = (struct cu_hash_table_entry **)
6161 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6162 NO_INSERT);
6163 entry = *slot;
6165 entry->max_comdat_num = sym_num;
6168 /* Traverse the DIE (which is always comp_unit_die), and set up
6169 additional compilation units for each of the include files we see
6170 bracketed by BINCL/EINCL. */
6172 static void
6173 break_out_includes (dw_die_ref die)
6175 dw_die_ref *ptr;
6176 dw_die_ref unit = NULL;
6177 limbo_die_node *node, **pnode;
6178 htab_t cu_hash_table;
6180 for (ptr = &(die->die_child); *ptr;)
6182 dw_die_ref c = *ptr;
6184 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6185 || (unit && is_comdat_die (c)))
6187 /* This DIE is for a secondary CU; remove it from the main one. */
6188 *ptr = c->die_sib;
6190 if (c->die_tag == DW_TAG_GNU_BINCL)
6192 unit = push_new_compile_unit (unit, c);
6193 free_die (c);
6195 else if (c->die_tag == DW_TAG_GNU_EINCL)
6197 unit = pop_compile_unit (unit);
6198 free_die (c);
6200 else
6201 add_child_die (unit, c);
6203 else
6205 /* Leave this DIE in the main CU. */
6206 ptr = &(c->die_sib);
6207 continue;
6211 #if 0
6212 /* We can only use this in debugging, since the frontend doesn't check
6213 to make sure that we leave every include file we enter. */
6214 gcc_assert (!unit);
6215 #endif
6217 assign_symbol_names (die);
6218 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6219 for (node = limbo_die_list, pnode = &limbo_die_list;
6220 node;
6221 node = node->next)
6223 int is_dupl;
6225 compute_section_prefix (node->die);
6226 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6227 &comdat_symbol_number);
6228 assign_symbol_names (node->die);
6229 if (is_dupl)
6230 *pnode = node->next;
6231 else
6233 pnode = &node->next;
6234 record_comdat_symbol_number (node->die, cu_hash_table,
6235 comdat_symbol_number);
6238 htab_delete (cu_hash_table);
6241 /* Traverse the DIE and add a sibling attribute if it may have the
6242 effect of speeding up access to siblings. To save some space,
6243 avoid generating sibling attributes for DIE's without children. */
6245 static void
6246 add_sibling_attributes (dw_die_ref die)
6248 dw_die_ref c;
6250 if (die->die_tag != DW_TAG_compile_unit
6251 && die->die_sib && die->die_child != NULL)
6252 /* Add the sibling link to the front of the attribute list. */
6253 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6255 for (c = die->die_child; c != NULL; c = c->die_sib)
6256 add_sibling_attributes (c);
6259 /* Output all location lists for the DIE and its children. */
6261 static void
6262 output_location_lists (dw_die_ref die)
6264 dw_die_ref c;
6265 dw_attr_ref d_attr;
6267 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6268 if (AT_class (d_attr) == dw_val_class_loc_list)
6269 output_loc_list (AT_loc_list (d_attr));
6271 for (c = die->die_child; c != NULL; c = c->die_sib)
6272 output_location_lists (c);
6276 /* The format of each DIE (and its attribute value pairs) is encoded in an
6277 abbreviation table. This routine builds the abbreviation table and assigns
6278 a unique abbreviation id for each abbreviation entry. The children of each
6279 die are visited recursively. */
6281 static void
6282 build_abbrev_table (dw_die_ref die)
6284 unsigned long abbrev_id;
6285 unsigned int n_alloc;
6286 dw_die_ref c;
6287 dw_attr_ref d_attr, a_attr;
6289 /* Scan the DIE references, and mark as external any that refer to
6290 DIEs from other CUs (i.e. those which are not marked). */
6291 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6292 if (AT_class (d_attr) == dw_val_class_die_ref
6293 && AT_ref (d_attr)->die_mark == 0)
6295 gcc_assert (AT_ref (d_attr)->die_symbol);
6297 set_AT_ref_external (d_attr, 1);
6300 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6302 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6304 if (abbrev->die_tag == die->die_tag)
6306 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6308 a_attr = abbrev->die_attr;
6309 d_attr = die->die_attr;
6311 while (a_attr != NULL && d_attr != NULL)
6313 if ((a_attr->dw_attr != d_attr->dw_attr)
6314 || (value_format (a_attr) != value_format (d_attr)))
6315 break;
6317 a_attr = a_attr->dw_attr_next;
6318 d_attr = d_attr->dw_attr_next;
6321 if (a_attr == NULL && d_attr == NULL)
6322 break;
6327 if (abbrev_id >= abbrev_die_table_in_use)
6329 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6331 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6332 abbrev_die_table = ggc_realloc (abbrev_die_table,
6333 sizeof (dw_die_ref) * n_alloc);
6335 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6336 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6337 abbrev_die_table_allocated = n_alloc;
6340 ++abbrev_die_table_in_use;
6341 abbrev_die_table[abbrev_id] = die;
6344 die->die_abbrev = abbrev_id;
6345 for (c = die->die_child; c != NULL; c = c->die_sib)
6346 build_abbrev_table (c);
6349 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6351 static int
6352 constant_size (long unsigned int value)
6354 int log;
6356 if (value == 0)
6357 log = 0;
6358 else
6359 log = floor_log2 (value);
6361 log = log / 8;
6362 log = 1 << (floor_log2 (log) + 1);
6364 return log;
6367 /* Return the size of a DIE as it is represented in the
6368 .debug_info section. */
6370 static unsigned long
6371 size_of_die (dw_die_ref die)
6373 unsigned long size = 0;
6374 dw_attr_ref a;
6376 size += size_of_uleb128 (die->die_abbrev);
6377 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6379 switch (AT_class (a))
6381 case dw_val_class_addr:
6382 size += DWARF2_ADDR_SIZE;
6383 break;
6384 case dw_val_class_offset:
6385 size += DWARF_OFFSET_SIZE;
6386 break;
6387 case dw_val_class_loc:
6389 unsigned long lsize = size_of_locs (AT_loc (a));
6391 /* Block length. */
6392 size += constant_size (lsize);
6393 size += lsize;
6395 break;
6396 case dw_val_class_loc_list:
6397 size += DWARF_OFFSET_SIZE;
6398 break;
6399 case dw_val_class_range_list:
6400 size += DWARF_OFFSET_SIZE;
6401 break;
6402 case dw_val_class_const:
6403 size += size_of_sleb128 (AT_int (a));
6404 break;
6405 case dw_val_class_unsigned_const:
6406 size += constant_size (AT_unsigned (a));
6407 break;
6408 case dw_val_class_long_long:
6409 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6410 break;
6411 case dw_val_class_vec:
6412 size += 1 + (a->dw_attr_val.v.val_vec.length
6413 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6414 break;
6415 case dw_val_class_flag:
6416 size += 1;
6417 break;
6418 case dw_val_class_die_ref:
6419 if (AT_ref_external (a))
6420 size += DWARF2_ADDR_SIZE;
6421 else
6422 size += DWARF_OFFSET_SIZE;
6423 break;
6424 case dw_val_class_fde_ref:
6425 size += DWARF_OFFSET_SIZE;
6426 break;
6427 case dw_val_class_lbl_id:
6428 size += DWARF2_ADDR_SIZE;
6429 break;
6430 case dw_val_class_lbl_offset:
6431 size += DWARF_OFFSET_SIZE;
6432 break;
6433 case dw_val_class_str:
6434 if (AT_string_form (a) == DW_FORM_strp)
6435 size += DWARF_OFFSET_SIZE;
6436 else
6437 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6438 break;
6439 default:
6440 gcc_unreachable ();
6444 return size;
6447 /* Size the debugging information associated with a given DIE. Visits the
6448 DIE's children recursively. Updates the global variable next_die_offset, on
6449 each time through. Uses the current value of next_die_offset to update the
6450 die_offset field in each DIE. */
6452 static void
6453 calc_die_sizes (dw_die_ref die)
6455 dw_die_ref c;
6457 die->die_offset = next_die_offset;
6458 next_die_offset += size_of_die (die);
6460 for (c = die->die_child; c != NULL; c = c->die_sib)
6461 calc_die_sizes (c);
6463 if (die->die_child != NULL)
6464 /* Count the null byte used to terminate sibling lists. */
6465 next_die_offset += 1;
6468 /* Set the marks for a die and its children. We do this so
6469 that we know whether or not a reference needs to use FORM_ref_addr; only
6470 DIEs in the same CU will be marked. We used to clear out the offset
6471 and use that as the flag, but ran into ordering problems. */
6473 static void
6474 mark_dies (dw_die_ref die)
6476 dw_die_ref c;
6478 gcc_assert (!die->die_mark);
6480 die->die_mark = 1;
6481 for (c = die->die_child; c; c = c->die_sib)
6482 mark_dies (c);
6485 /* Clear the marks for a die and its children. */
6487 static void
6488 unmark_dies (dw_die_ref die)
6490 dw_die_ref c;
6492 gcc_assert (die->die_mark);
6494 die->die_mark = 0;
6495 for (c = die->die_child; c; c = c->die_sib)
6496 unmark_dies (c);
6499 /* Clear the marks for a die, its children and referred dies. */
6501 static void
6502 unmark_all_dies (dw_die_ref die)
6504 dw_die_ref c;
6505 dw_attr_ref a;
6507 if (!die->die_mark)
6508 return;
6509 die->die_mark = 0;
6511 for (c = die->die_child; c; c = c->die_sib)
6512 unmark_all_dies (c);
6514 for (a = die->die_attr; a; a = a->dw_attr_next)
6515 if (AT_class (a) == dw_val_class_die_ref)
6516 unmark_all_dies (AT_ref (a));
6519 /* Return the size of the .debug_pubnames table generated for the
6520 compilation unit. */
6522 static unsigned long
6523 size_of_pubnames (void)
6525 unsigned long size;
6526 unsigned i;
6528 size = DWARF_PUBNAMES_HEADER_SIZE;
6529 for (i = 0; i < pubname_table_in_use; i++)
6531 pubname_ref p = &pubname_table[i];
6532 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6535 size += DWARF_OFFSET_SIZE;
6536 return size;
6539 /* Return the size of the information in the .debug_aranges section. */
6541 static unsigned long
6542 size_of_aranges (void)
6544 unsigned long size;
6546 size = DWARF_ARANGES_HEADER_SIZE;
6548 /* Count the address/length pair for this compilation unit. */
6549 size += 2 * DWARF2_ADDR_SIZE;
6550 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6552 /* Count the two zero words used to terminated the address range table. */
6553 size += 2 * DWARF2_ADDR_SIZE;
6554 return size;
6557 /* Select the encoding of an attribute value. */
6559 static enum dwarf_form
6560 value_format (dw_attr_ref a)
6562 switch (a->dw_attr_val.val_class)
6564 case dw_val_class_addr:
6565 return DW_FORM_addr;
6566 case dw_val_class_range_list:
6567 case dw_val_class_offset:
6568 switch (DWARF_OFFSET_SIZE)
6570 case 4:
6571 return DW_FORM_data4;
6572 case 8:
6573 return DW_FORM_data8;
6574 default:
6575 gcc_unreachable ();
6577 case dw_val_class_loc_list:
6578 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6579 .debug_loc section */
6580 return DW_FORM_data4;
6581 case dw_val_class_loc:
6582 switch (constant_size (size_of_locs (AT_loc (a))))
6584 case 1:
6585 return DW_FORM_block1;
6586 case 2:
6587 return DW_FORM_block2;
6588 default:
6589 gcc_unreachable ();
6591 case dw_val_class_const:
6592 return DW_FORM_sdata;
6593 case dw_val_class_unsigned_const:
6594 switch (constant_size (AT_unsigned (a)))
6596 case 1:
6597 return DW_FORM_data1;
6598 case 2:
6599 return DW_FORM_data2;
6600 case 4:
6601 return DW_FORM_data4;
6602 case 8:
6603 return DW_FORM_data8;
6604 default:
6605 gcc_unreachable ();
6607 case dw_val_class_long_long:
6608 return DW_FORM_block1;
6609 case dw_val_class_vec:
6610 return DW_FORM_block1;
6611 case dw_val_class_flag:
6612 return DW_FORM_flag;
6613 case dw_val_class_die_ref:
6614 if (AT_ref_external (a))
6615 return DW_FORM_ref_addr;
6616 else
6617 return DW_FORM_ref;
6618 case dw_val_class_fde_ref:
6619 return DW_FORM_data;
6620 case dw_val_class_lbl_id:
6621 return DW_FORM_addr;
6622 case dw_val_class_lbl_offset:
6623 return DW_FORM_data;
6624 case dw_val_class_str:
6625 return AT_string_form (a);
6627 default:
6628 gcc_unreachable ();
6632 /* Output the encoding of an attribute value. */
6634 static void
6635 output_value_format (dw_attr_ref a)
6637 enum dwarf_form form = value_format (a);
6639 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6642 /* Output the .debug_abbrev section which defines the DIE abbreviation
6643 table. */
6645 static void
6646 output_abbrev_section (void)
6648 unsigned long abbrev_id;
6650 dw_attr_ref a_attr;
6652 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6654 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6656 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6657 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6658 dwarf_tag_name (abbrev->die_tag));
6660 if (abbrev->die_child != NULL)
6661 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6662 else
6663 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6665 for (a_attr = abbrev->die_attr; a_attr != NULL;
6666 a_attr = a_attr->dw_attr_next)
6668 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6669 dwarf_attr_name (a_attr->dw_attr));
6670 output_value_format (a_attr);
6673 dw2_asm_output_data (1, 0, NULL);
6674 dw2_asm_output_data (1, 0, NULL);
6677 /* Terminate the table. */
6678 dw2_asm_output_data (1, 0, NULL);
6681 /* Output a symbol we can use to refer to this DIE from another CU. */
6683 static inline void
6684 output_die_symbol (dw_die_ref die)
6686 char *sym = die->die_symbol;
6688 if (sym == 0)
6689 return;
6691 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6692 /* We make these global, not weak; if the target doesn't support
6693 .linkonce, it doesn't support combining the sections, so debugging
6694 will break. */
6695 targetm.asm_out.globalize_label (asm_out_file, sym);
6697 ASM_OUTPUT_LABEL (asm_out_file, sym);
6700 /* Return a new location list, given the begin and end range, and the
6701 expression. gensym tells us whether to generate a new internal symbol for
6702 this location list node, which is done for the head of the list only. */
6704 static inline dw_loc_list_ref
6705 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6706 const char *section, unsigned int gensym)
6708 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6710 retlist->begin = begin;
6711 retlist->end = end;
6712 retlist->expr = expr;
6713 retlist->section = section;
6714 if (gensym)
6715 retlist->ll_symbol = gen_internal_sym ("LLST");
6717 return retlist;
6720 /* Add a location description expression to a location list. */
6722 static inline void
6723 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6724 const char *begin, const char *end,
6725 const char *section)
6727 dw_loc_list_ref *d;
6729 /* Find the end of the chain. */
6730 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6733 /* Add a new location list node to the list. */
6734 *d = new_loc_list (descr, begin, end, section, 0);
6737 /* Output the location list given to us. */
6739 static void
6740 output_loc_list (dw_loc_list_ref list_head)
6742 dw_loc_list_ref curr = list_head;
6744 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6746 /* Walk the location list, and output each range + expression. */
6747 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6749 unsigned long size;
6750 if (separate_line_info_table_in_use == 0)
6752 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6753 "Location list begin address (%s)",
6754 list_head->ll_symbol);
6755 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6756 "Location list end address (%s)",
6757 list_head->ll_symbol);
6759 else
6761 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6762 "Location list begin address (%s)",
6763 list_head->ll_symbol);
6764 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6765 "Location list end address (%s)",
6766 list_head->ll_symbol);
6768 size = size_of_locs (curr->expr);
6770 /* Output the block length for this list of location operations. */
6771 gcc_assert (size <= 0xffff);
6772 dw2_asm_output_data (2, size, "%s", "Location expression size");
6774 output_loc_sequence (curr->expr);
6777 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6778 "Location list terminator begin (%s)",
6779 list_head->ll_symbol);
6780 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6781 "Location list terminator end (%s)",
6782 list_head->ll_symbol);
6785 /* Output the DIE and its attributes. Called recursively to generate
6786 the definitions of each child DIE. */
6788 static void
6789 output_die (dw_die_ref die)
6791 dw_attr_ref a;
6792 dw_die_ref c;
6793 unsigned long size;
6795 /* If someone in another CU might refer to us, set up a symbol for
6796 them to point to. */
6797 if (die->die_symbol)
6798 output_die_symbol (die);
6800 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6801 die->die_offset, dwarf_tag_name (die->die_tag));
6803 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6805 const char *name = dwarf_attr_name (a->dw_attr);
6807 switch (AT_class (a))
6809 case dw_val_class_addr:
6810 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6811 break;
6813 case dw_val_class_offset:
6814 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6815 "%s", name);
6816 break;
6818 case dw_val_class_range_list:
6820 char *p = strchr (ranges_section_label, '\0');
6822 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6823 a->dw_attr_val.v.val_offset);
6824 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6825 "%s", name);
6826 *p = '\0';
6828 break;
6830 case dw_val_class_loc:
6831 size = size_of_locs (AT_loc (a));
6833 /* Output the block length for this list of location operations. */
6834 dw2_asm_output_data (constant_size (size), size, "%s", name);
6836 output_loc_sequence (AT_loc (a));
6837 break;
6839 case dw_val_class_const:
6840 /* ??? It would be slightly more efficient to use a scheme like is
6841 used for unsigned constants below, but gdb 4.x does not sign
6842 extend. Gdb 5.x does sign extend. */
6843 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6844 break;
6846 case dw_val_class_unsigned_const:
6847 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6848 AT_unsigned (a), "%s", name);
6849 break;
6851 case dw_val_class_long_long:
6853 unsigned HOST_WIDE_INT first, second;
6855 dw2_asm_output_data (1,
6856 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6857 "%s", name);
6859 if (WORDS_BIG_ENDIAN)
6861 first = a->dw_attr_val.v.val_long_long.hi;
6862 second = a->dw_attr_val.v.val_long_long.low;
6864 else
6866 first = a->dw_attr_val.v.val_long_long.low;
6867 second = a->dw_attr_val.v.val_long_long.hi;
6870 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6871 first, "long long constant");
6872 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6873 second, NULL);
6875 break;
6877 case dw_val_class_vec:
6879 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6880 unsigned int len = a->dw_attr_val.v.val_vec.length;
6881 unsigned int i;
6882 unsigned char *p;
6884 dw2_asm_output_data (1, len * elt_size, "%s", name);
6885 if (elt_size > sizeof (HOST_WIDE_INT))
6887 elt_size /= 2;
6888 len *= 2;
6890 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6891 i < len;
6892 i++, p += elt_size)
6893 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6894 "fp or vector constant word %u", i);
6895 break;
6898 case dw_val_class_flag:
6899 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6900 break;
6902 case dw_val_class_loc_list:
6904 char *sym = AT_loc_list (a)->ll_symbol;
6906 gcc_assert (sym);
6907 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6909 break;
6911 case dw_val_class_die_ref:
6912 if (AT_ref_external (a))
6914 char *sym = AT_ref (a)->die_symbol;
6916 gcc_assert (sym);
6917 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6919 else
6921 gcc_assert (AT_ref (a)->die_offset);
6922 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6923 "%s", name);
6925 break;
6927 case dw_val_class_fde_ref:
6929 char l1[20];
6931 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6932 a->dw_attr_val.v.val_fde_index * 2);
6933 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6935 break;
6937 case dw_val_class_lbl_id:
6938 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6939 break;
6941 case dw_val_class_lbl_offset:
6942 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6943 break;
6945 case dw_val_class_str:
6946 if (AT_string_form (a) == DW_FORM_strp)
6947 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6948 a->dw_attr_val.v.val_str->label,
6949 "%s: \"%s\"", name, AT_string (a));
6950 else
6951 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6952 break;
6954 default:
6955 gcc_unreachable ();
6959 for (c = die->die_child; c != NULL; c = c->die_sib)
6960 output_die (c);
6962 /* Add null byte to terminate sibling list. */
6963 if (die->die_child != NULL)
6964 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6965 die->die_offset);
6968 /* Output the compilation unit that appears at the beginning of the
6969 .debug_info section, and precedes the DIE descriptions. */
6971 static void
6972 output_compilation_unit_header (void)
6974 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6975 dw2_asm_output_data (4, 0xffffffff,
6976 "Initial length escape value indicating 64-bit DWARF extension");
6977 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6978 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6979 "Length of Compilation Unit Info");
6980 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6981 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6982 "Offset Into Abbrev. Section");
6983 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6986 /* Output the compilation unit DIE and its children. */
6988 static void
6989 output_comp_unit (dw_die_ref die, int output_if_empty)
6991 const char *secname;
6992 char *oldsym, *tmp;
6994 /* Unless we are outputting main CU, we may throw away empty ones. */
6995 if (!output_if_empty && die->die_child == NULL)
6996 return;
6998 /* Even if there are no children of this DIE, we must output the information
6999 about the compilation unit. Otherwise, on an empty translation unit, we
7000 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7001 will then complain when examining the file. First mark all the DIEs in
7002 this CU so we know which get local refs. */
7003 mark_dies (die);
7005 build_abbrev_table (die);
7007 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7008 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7009 calc_die_sizes (die);
7011 oldsym = die->die_symbol;
7012 if (oldsym)
7014 tmp = alloca (strlen (oldsym) + 24);
7016 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7017 secname = tmp;
7018 die->die_symbol = NULL;
7020 else
7021 secname = (const char *) DEBUG_INFO_SECTION;
7023 /* Output debugging information. */
7024 named_section_flags (secname, SECTION_DEBUG);
7025 output_compilation_unit_header ();
7026 output_die (die);
7028 /* Leave the marks on the main CU, so we can check them in
7029 output_pubnames. */
7030 if (oldsym)
7032 unmark_dies (die);
7033 die->die_symbol = oldsym;
7037 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7038 output of lang_hooks.decl_printable_name for C++ looks like
7039 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7041 static const char *
7042 dwarf2_name (tree decl, int scope)
7044 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7047 /* Add a new entry to .debug_pubnames if appropriate. */
7049 static void
7050 add_pubname (tree decl, dw_die_ref die)
7052 pubname_ref p;
7054 if (! TREE_PUBLIC (decl))
7055 return;
7057 if (pubname_table_in_use == pubname_table_allocated)
7059 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7060 pubname_table
7061 = ggc_realloc (pubname_table,
7062 (pubname_table_allocated * sizeof (pubname_entry)));
7063 memset (pubname_table + pubname_table_in_use, 0,
7064 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7067 p = &pubname_table[pubname_table_in_use++];
7068 p->die = die;
7069 p->name = xstrdup (dwarf2_name (decl, 1));
7072 /* Output the public names table used to speed up access to externally
7073 visible names. For now, only generate entries for externally
7074 visible procedures. */
7076 static void
7077 output_pubnames (void)
7079 unsigned i;
7080 unsigned long pubnames_length = size_of_pubnames ();
7082 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7083 dw2_asm_output_data (4, 0xffffffff,
7084 "Initial length escape value indicating 64-bit DWARF extension");
7085 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7086 "Length of Public Names Info");
7087 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7089 "Offset of Compilation Unit Info");
7090 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7091 "Compilation Unit Length");
7093 for (i = 0; i < pubname_table_in_use; i++)
7095 pubname_ref pub = &pubname_table[i];
7097 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7098 gcc_assert (pub->die->die_mark);
7100 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7101 "DIE offset");
7103 dw2_asm_output_nstring (pub->name, -1, "external name");
7106 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7109 /* Add a new entry to .debug_aranges if appropriate. */
7111 static void
7112 add_arange (tree decl, dw_die_ref die)
7114 if (! DECL_SECTION_NAME (decl))
7115 return;
7117 if (arange_table_in_use == arange_table_allocated)
7119 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7120 arange_table = ggc_realloc (arange_table,
7121 (arange_table_allocated
7122 * sizeof (dw_die_ref)));
7123 memset (arange_table + arange_table_in_use, 0,
7124 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7127 arange_table[arange_table_in_use++] = die;
7130 /* Output the information that goes into the .debug_aranges table.
7131 Namely, define the beginning and ending address range of the
7132 text section generated for this compilation unit. */
7134 static void
7135 output_aranges (void)
7137 unsigned i;
7138 unsigned long aranges_length = size_of_aranges ();
7140 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7141 dw2_asm_output_data (4, 0xffffffff,
7142 "Initial length escape value indicating 64-bit DWARF extension");
7143 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7144 "Length of Address Ranges Info");
7145 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7146 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7147 "Offset of Compilation Unit Info");
7148 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7149 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7151 /* We need to align to twice the pointer size here. */
7152 if (DWARF_ARANGES_PAD_SIZE)
7154 /* Pad using a 2 byte words so that padding is correct for any
7155 pointer size. */
7156 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7157 2 * DWARF2_ADDR_SIZE);
7158 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7159 dw2_asm_output_data (2, 0, NULL);
7162 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7163 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7164 text_section_label, "Length");
7166 for (i = 0; i < arange_table_in_use; i++)
7168 dw_die_ref die = arange_table[i];
7170 /* We shouldn't see aranges for DIEs outside of the main CU. */
7171 gcc_assert (die->die_mark);
7173 if (die->die_tag == DW_TAG_subprogram)
7175 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7176 "Address");
7177 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7178 get_AT_low_pc (die), "Length");
7180 else
7182 /* A static variable; extract the symbol from DW_AT_location.
7183 Note that this code isn't currently hit, as we only emit
7184 aranges for functions (jason 9/23/99). */
7185 dw_attr_ref a = get_AT (die, DW_AT_location);
7186 dw_loc_descr_ref loc;
7188 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7190 loc = AT_loc (a);
7191 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7193 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7194 loc->dw_loc_oprnd1.v.val_addr, "Address");
7195 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7196 get_AT_unsigned (die, DW_AT_byte_size),
7197 "Length");
7201 /* Output the terminator words. */
7202 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7203 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7206 /* Add a new entry to .debug_ranges. Return the offset at which it
7207 was placed. */
7209 static unsigned int
7210 add_ranges (tree block)
7212 unsigned int in_use = ranges_table_in_use;
7214 if (in_use == ranges_table_allocated)
7216 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7217 ranges_table
7218 = ggc_realloc (ranges_table, (ranges_table_allocated
7219 * sizeof (struct dw_ranges_struct)));
7220 memset (ranges_table + ranges_table_in_use, 0,
7221 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7224 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7225 ranges_table_in_use = in_use + 1;
7227 return in_use * 2 * DWARF2_ADDR_SIZE;
7230 static void
7231 output_ranges (void)
7233 unsigned i;
7234 static const char *const start_fmt = "Offset 0x%x";
7235 const char *fmt = start_fmt;
7237 for (i = 0; i < ranges_table_in_use; i++)
7239 int block_num = ranges_table[i].block_num;
7241 if (block_num)
7243 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7244 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7246 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7247 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7249 /* If all code is in the text section, then the compilation
7250 unit base address defaults to DW_AT_low_pc, which is the
7251 base of the text section. */
7252 if (separate_line_info_table_in_use == 0)
7254 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7255 text_section_label,
7256 fmt, i * 2 * DWARF2_ADDR_SIZE);
7257 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7258 text_section_label, NULL);
7261 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7262 compilation unit base address to zero, which allows us to
7263 use absolute addresses, and not worry about whether the
7264 target supports cross-section arithmetic. */
7265 else
7267 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7268 fmt, i * 2 * DWARF2_ADDR_SIZE);
7269 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7272 fmt = NULL;
7274 else
7276 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7277 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7278 fmt = start_fmt;
7283 /* Data structure containing information about input files. */
7284 struct file_info
7286 char *path; /* Complete file name. */
7287 char *fname; /* File name part. */
7288 int length; /* Length of entire string. */
7289 int file_idx; /* Index in input file table. */
7290 int dir_idx; /* Index in directory table. */
7293 /* Data structure containing information about directories with source
7294 files. */
7295 struct dir_info
7297 char *path; /* Path including directory name. */
7298 int length; /* Path length. */
7299 int prefix; /* Index of directory entry which is a prefix. */
7300 int count; /* Number of files in this directory. */
7301 int dir_idx; /* Index of directory used as base. */
7302 int used; /* Used in the end? */
7305 /* Callback function for file_info comparison. We sort by looking at
7306 the directories in the path. */
7308 static int
7309 file_info_cmp (const void *p1, const void *p2)
7311 const struct file_info *s1 = p1;
7312 const struct file_info *s2 = p2;
7313 unsigned char *cp1;
7314 unsigned char *cp2;
7316 /* Take care of file names without directories. We need to make sure that
7317 we return consistent values to qsort since some will get confused if
7318 we return the same value when identical operands are passed in opposite
7319 orders. So if neither has a directory, return 0 and otherwise return
7320 1 or -1 depending on which one has the directory. */
7321 if ((s1->path == s1->fname || s2->path == s2->fname))
7322 return (s2->path == s2->fname) - (s1->path == s1->fname);
7324 cp1 = (unsigned char *) s1->path;
7325 cp2 = (unsigned char *) s2->path;
7327 while (1)
7329 ++cp1;
7330 ++cp2;
7331 /* Reached the end of the first path? If so, handle like above. */
7332 if ((cp1 == (unsigned char *) s1->fname)
7333 || (cp2 == (unsigned char *) s2->fname))
7334 return ((cp2 == (unsigned char *) s2->fname)
7335 - (cp1 == (unsigned char *) s1->fname));
7337 /* Character of current path component the same? */
7338 else if (*cp1 != *cp2)
7339 return *cp1 - *cp2;
7343 /* Output the directory table and the file name table. We try to minimize
7344 the total amount of memory needed. A heuristic is used to avoid large
7345 slowdowns with many input files. */
7347 static void
7348 output_file_names (void)
7350 struct file_info *files;
7351 struct dir_info *dirs;
7352 int *saved;
7353 int *savehere;
7354 int *backmap;
7355 size_t ndirs;
7356 int idx_offset;
7357 size_t i;
7358 int idx;
7360 /* Handle the case where file_table is empty. */
7361 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7363 dw2_asm_output_data (1, 0, "End directory table");
7364 dw2_asm_output_data (1, 0, "End file name table");
7365 return;
7368 /* Allocate the various arrays we need. */
7369 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7370 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7372 /* Sort the file names. */
7373 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7375 char *f;
7377 /* Skip all leading "./". */
7378 f = VARRAY_CHAR_PTR (file_table, i);
7379 while (f[0] == '.' && f[1] == '/')
7380 f += 2;
7382 /* Create a new array entry. */
7383 files[i].path = f;
7384 files[i].length = strlen (f);
7385 files[i].file_idx = i;
7387 /* Search for the file name part. */
7388 f = strrchr (f, '/');
7389 files[i].fname = f == NULL ? files[i].path : f + 1;
7392 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7393 sizeof (files[0]), file_info_cmp);
7395 /* Find all the different directories used. */
7396 dirs[0].path = files[1].path;
7397 dirs[0].length = files[1].fname - files[1].path;
7398 dirs[0].prefix = -1;
7399 dirs[0].count = 1;
7400 dirs[0].dir_idx = 0;
7401 dirs[0].used = 0;
7402 files[1].dir_idx = 0;
7403 ndirs = 1;
7405 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7406 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7407 && memcmp (dirs[ndirs - 1].path, files[i].path,
7408 dirs[ndirs - 1].length) == 0)
7410 /* Same directory as last entry. */
7411 files[i].dir_idx = ndirs - 1;
7412 ++dirs[ndirs - 1].count;
7414 else
7416 size_t j;
7418 /* This is a new directory. */
7419 dirs[ndirs].path = files[i].path;
7420 dirs[ndirs].length = files[i].fname - files[i].path;
7421 dirs[ndirs].count = 1;
7422 dirs[ndirs].dir_idx = ndirs;
7423 dirs[ndirs].used = 0;
7424 files[i].dir_idx = ndirs;
7426 /* Search for a prefix. */
7427 dirs[ndirs].prefix = -1;
7428 for (j = 0; j < ndirs; j++)
7429 if (dirs[j].length < dirs[ndirs].length
7430 && dirs[j].length > 1
7431 && (dirs[ndirs].prefix == -1
7432 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7433 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7434 dirs[ndirs].prefix = j;
7436 ++ndirs;
7439 /* Now to the actual work. We have to find a subset of the directories which
7440 allow expressing the file name using references to the directory table
7441 with the least amount of characters. We do not do an exhaustive search
7442 where we would have to check out every combination of every single
7443 possible prefix. Instead we use a heuristic which provides nearly optimal
7444 results in most cases and never is much off. */
7445 saved = alloca (ndirs * sizeof (int));
7446 savehere = alloca (ndirs * sizeof (int));
7448 memset (saved, '\0', ndirs * sizeof (saved[0]));
7449 for (i = 0; i < ndirs; i++)
7451 size_t j;
7452 int total;
7454 /* We can always save some space for the current directory. But this
7455 does not mean it will be enough to justify adding the directory. */
7456 savehere[i] = dirs[i].length;
7457 total = (savehere[i] - saved[i]) * dirs[i].count;
7459 for (j = i + 1; j < ndirs; j++)
7461 savehere[j] = 0;
7462 if (saved[j] < dirs[i].length)
7464 /* Determine whether the dirs[i] path is a prefix of the
7465 dirs[j] path. */
7466 int k;
7468 k = dirs[j].prefix;
7469 while (k != -1 && k != (int) i)
7470 k = dirs[k].prefix;
7472 if (k == (int) i)
7474 /* Yes it is. We can possibly safe some memory but
7475 writing the filenames in dirs[j] relative to
7476 dirs[i]. */
7477 savehere[j] = dirs[i].length;
7478 total += (savehere[j] - saved[j]) * dirs[j].count;
7483 /* Check whether we can safe enough to justify adding the dirs[i]
7484 directory. */
7485 if (total > dirs[i].length + 1)
7487 /* It's worthwhile adding. */
7488 for (j = i; j < ndirs; j++)
7489 if (savehere[j] > 0)
7491 /* Remember how much we saved for this directory so far. */
7492 saved[j] = savehere[j];
7494 /* Remember the prefix directory. */
7495 dirs[j].dir_idx = i;
7500 /* We have to emit them in the order they appear in the file_table array
7501 since the index is used in the debug info generation. To do this
7502 efficiently we generate a back-mapping of the indices first. */
7503 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7504 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7506 backmap[files[i].file_idx] = i;
7508 /* Mark this directory as used. */
7509 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7512 /* That was it. We are ready to emit the information. First emit the
7513 directory name table. We have to make sure the first actually emitted
7514 directory name has index one; zero is reserved for the current working
7515 directory. Make sure we do not confuse these indices with the one for the
7516 constructed table (even though most of the time they are identical). */
7517 idx = 1;
7518 idx_offset = dirs[0].length > 0 ? 1 : 0;
7519 for (i = 1 - idx_offset; i < ndirs; i++)
7520 if (dirs[i].used != 0)
7522 dirs[i].used = idx++;
7523 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7524 "Directory Entry: 0x%x", dirs[i].used);
7527 dw2_asm_output_data (1, 0, "End directory table");
7529 /* Correct the index for the current working directory entry if it
7530 exists. */
7531 if (idx_offset == 0)
7532 dirs[0].used = 0;
7534 /* Now write all the file names. */
7535 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7537 int file_idx = backmap[i];
7538 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7540 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7541 "File Entry: 0x%lx", (unsigned long) i);
7543 /* Include directory index. */
7544 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7546 /* Modification time. */
7547 dw2_asm_output_data_uleb128 (0, NULL);
7549 /* File length in bytes. */
7550 dw2_asm_output_data_uleb128 (0, NULL);
7553 dw2_asm_output_data (1, 0, "End file name table");
7557 /* Output the source line number correspondence information. This
7558 information goes into the .debug_line section. */
7560 static void
7561 output_line_info (void)
7563 char l1[20], l2[20], p1[20], p2[20];
7564 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7565 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7566 unsigned opc;
7567 unsigned n_op_args;
7568 unsigned long lt_index;
7569 unsigned long current_line;
7570 long line_offset;
7571 long line_delta;
7572 unsigned long current_file;
7573 unsigned long function;
7575 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7576 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7577 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7578 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7580 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7581 dw2_asm_output_data (4, 0xffffffff,
7582 "Initial length escape value indicating 64-bit DWARF extension");
7583 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7584 "Length of Source Line Info");
7585 ASM_OUTPUT_LABEL (asm_out_file, l1);
7587 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7588 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7589 ASM_OUTPUT_LABEL (asm_out_file, p1);
7591 /* Define the architecture-dependent minimum instruction length (in
7592 bytes). In this implementation of DWARF, this field is used for
7593 information purposes only. Since GCC generates assembly language,
7594 we have no a priori knowledge of how many instruction bytes are
7595 generated for each source line, and therefore can use only the
7596 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7597 commands. Accordingly, we fix this as `1', which is "correct
7598 enough" for all architectures, and don't let the target override. */
7599 dw2_asm_output_data (1, 1,
7600 "Minimum Instruction Length");
7602 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7603 "Default is_stmt_start flag");
7604 dw2_asm_output_data (1, DWARF_LINE_BASE,
7605 "Line Base Value (Special Opcodes)");
7606 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7607 "Line Range Value (Special Opcodes)");
7608 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7609 "Special Opcode Base");
7611 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7613 switch (opc)
7615 case DW_LNS_advance_pc:
7616 case DW_LNS_advance_line:
7617 case DW_LNS_set_file:
7618 case DW_LNS_set_column:
7619 case DW_LNS_fixed_advance_pc:
7620 n_op_args = 1;
7621 break;
7622 default:
7623 n_op_args = 0;
7624 break;
7627 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7628 opc, n_op_args);
7631 /* Write out the information about the files we use. */
7632 output_file_names ();
7633 ASM_OUTPUT_LABEL (asm_out_file, p2);
7635 /* We used to set the address register to the first location in the text
7636 section here, but that didn't accomplish anything since we already
7637 have a line note for the opening brace of the first function. */
7639 /* Generate the line number to PC correspondence table, encoded as
7640 a series of state machine operations. */
7641 current_file = 1;
7642 current_line = 1;
7643 strcpy (prev_line_label, text_section_label);
7644 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7646 dw_line_info_ref line_info = &line_info_table[lt_index];
7648 #if 0
7649 /* Disable this optimization for now; GDB wants to see two line notes
7650 at the beginning of a function so it can find the end of the
7651 prologue. */
7653 /* Don't emit anything for redundant notes. Just updating the
7654 address doesn't accomplish anything, because we already assume
7655 that anything after the last address is this line. */
7656 if (line_info->dw_line_num == current_line
7657 && line_info->dw_file_num == current_file)
7658 continue;
7659 #endif
7661 /* Emit debug info for the address of the current line.
7663 Unfortunately, we have little choice here currently, and must always
7664 use the most general form. GCC does not know the address delta
7665 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7666 attributes which will give an upper bound on the address range. We
7667 could perhaps use length attributes to determine when it is safe to
7668 use DW_LNS_fixed_advance_pc. */
7670 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7671 if (0)
7673 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7674 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7675 "DW_LNS_fixed_advance_pc");
7676 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7678 else
7680 /* This can handle any delta. This takes
7681 4+DWARF2_ADDR_SIZE bytes. */
7682 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7683 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7684 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7685 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7688 strcpy (prev_line_label, line_label);
7690 /* Emit debug info for the source file of the current line, if
7691 different from the previous line. */
7692 if (line_info->dw_file_num != current_file)
7694 current_file = line_info->dw_file_num;
7695 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7696 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7697 VARRAY_CHAR_PTR (file_table,
7698 current_file));
7701 /* Emit debug info for the current line number, choosing the encoding
7702 that uses the least amount of space. */
7703 if (line_info->dw_line_num != current_line)
7705 line_offset = line_info->dw_line_num - current_line;
7706 line_delta = line_offset - DWARF_LINE_BASE;
7707 current_line = line_info->dw_line_num;
7708 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7709 /* This can handle deltas from -10 to 234, using the current
7710 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7711 takes 1 byte. */
7712 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7713 "line %lu", current_line);
7714 else
7716 /* This can handle any delta. This takes at least 4 bytes,
7717 depending on the value being encoded. */
7718 dw2_asm_output_data (1, DW_LNS_advance_line,
7719 "advance to line %lu", current_line);
7720 dw2_asm_output_data_sleb128 (line_offset, NULL);
7721 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7724 else
7725 /* We still need to start a new row, so output a copy insn. */
7726 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7729 /* Emit debug info for the address of the end of the function. */
7730 if (0)
7732 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7733 "DW_LNS_fixed_advance_pc");
7734 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7736 else
7738 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7739 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7740 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7741 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7744 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7745 dw2_asm_output_data_uleb128 (1, NULL);
7746 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7748 function = 0;
7749 current_file = 1;
7750 current_line = 1;
7751 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7753 dw_separate_line_info_ref line_info
7754 = &separate_line_info_table[lt_index];
7756 #if 0
7757 /* Don't emit anything for redundant notes. */
7758 if (line_info->dw_line_num == current_line
7759 && line_info->dw_file_num == current_file
7760 && line_info->function == function)
7761 goto cont;
7762 #endif
7764 /* Emit debug info for the address of the current line. If this is
7765 a new function, or the first line of a function, then we need
7766 to handle it differently. */
7767 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7768 lt_index);
7769 if (function != line_info->function)
7771 function = line_info->function;
7773 /* Set the address register to the first line in the function. */
7774 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7775 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7776 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7777 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7779 else
7781 /* ??? See the DW_LNS_advance_pc comment above. */
7782 if (0)
7784 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7785 "DW_LNS_fixed_advance_pc");
7786 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7788 else
7790 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7791 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7792 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7793 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7797 strcpy (prev_line_label, line_label);
7799 /* Emit debug info for the source file of the current line, if
7800 different from the previous line. */
7801 if (line_info->dw_file_num != current_file)
7803 current_file = line_info->dw_file_num;
7804 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7805 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7806 VARRAY_CHAR_PTR (file_table,
7807 current_file));
7810 /* Emit debug info for the current line number, choosing the encoding
7811 that uses the least amount of space. */
7812 if (line_info->dw_line_num != current_line)
7814 line_offset = line_info->dw_line_num - current_line;
7815 line_delta = line_offset - DWARF_LINE_BASE;
7816 current_line = line_info->dw_line_num;
7817 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7818 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7819 "line %lu", current_line);
7820 else
7822 dw2_asm_output_data (1, DW_LNS_advance_line,
7823 "advance to line %lu", current_line);
7824 dw2_asm_output_data_sleb128 (line_offset, NULL);
7825 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7828 else
7829 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7831 #if 0
7832 cont:
7833 #endif
7835 lt_index++;
7837 /* If we're done with a function, end its sequence. */
7838 if (lt_index == separate_line_info_table_in_use
7839 || separate_line_info_table[lt_index].function != function)
7841 current_file = 1;
7842 current_line = 1;
7844 /* Emit debug info for the address of the end of the function. */
7845 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7846 if (0)
7848 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7849 "DW_LNS_fixed_advance_pc");
7850 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7852 else
7854 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7855 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7856 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7857 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7860 /* Output the marker for the end of this sequence. */
7861 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7862 dw2_asm_output_data_uleb128 (1, NULL);
7863 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7867 /* Output the marker for the end of the line number info. */
7868 ASM_OUTPUT_LABEL (asm_out_file, l2);
7871 /* Given a pointer to a tree node for some base type, return a pointer to
7872 a DIE that describes the given type.
7874 This routine must only be called for GCC type nodes that correspond to
7875 Dwarf base (fundamental) types. */
7877 static dw_die_ref
7878 base_type_die (tree type)
7880 dw_die_ref base_type_result;
7881 const char *type_name;
7882 enum dwarf_type encoding;
7883 tree name = TYPE_NAME (type);
7885 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7886 return 0;
7888 if (name)
7890 if (TREE_CODE (name) == TYPE_DECL)
7891 name = DECL_NAME (name);
7893 type_name = IDENTIFIER_POINTER (name);
7895 else
7896 type_name = "__unknown__";
7898 switch (TREE_CODE (type))
7900 case INTEGER_TYPE:
7901 /* Carefully distinguish the C character types, without messing
7902 up if the language is not C. Note that we check only for the names
7903 that contain spaces; other names might occur by coincidence in other
7904 languages. */
7905 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7906 && (type == char_type_node
7907 || ! strcmp (type_name, "signed char")
7908 || ! strcmp (type_name, "unsigned char"))))
7910 if (TYPE_UNSIGNED (type))
7911 encoding = DW_ATE_unsigned;
7912 else
7913 encoding = DW_ATE_signed;
7914 break;
7916 /* else fall through. */
7918 case CHAR_TYPE:
7919 /* GNU Pascal/Ada CHAR type. Not used in C. */
7920 if (TYPE_UNSIGNED (type))
7921 encoding = DW_ATE_unsigned_char;
7922 else
7923 encoding = DW_ATE_signed_char;
7924 break;
7926 case REAL_TYPE:
7927 encoding = DW_ATE_float;
7928 break;
7930 /* Dwarf2 doesn't know anything about complex ints, so use
7931 a user defined type for it. */
7932 case COMPLEX_TYPE:
7933 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7934 encoding = DW_ATE_complex_float;
7935 else
7936 encoding = DW_ATE_lo_user;
7937 break;
7939 case BOOLEAN_TYPE:
7940 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7941 encoding = DW_ATE_boolean;
7942 break;
7944 default:
7945 /* No other TREE_CODEs are Dwarf fundamental types. */
7946 gcc_unreachable ();
7949 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7950 if (demangle_name_func)
7951 type_name = (*demangle_name_func) (type_name);
7953 add_AT_string (base_type_result, DW_AT_name, type_name);
7954 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7955 int_size_in_bytes (type));
7956 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7958 return base_type_result;
7961 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7962 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7963 a given type is generally the same as the given type, except that if the
7964 given type is a pointer or reference type, then the root type of the given
7965 type is the root type of the "basis" type for the pointer or reference
7966 type. (This definition of the "root" type is recursive.) Also, the root
7967 type of a `const' qualified type or a `volatile' qualified type is the
7968 root type of the given type without the qualifiers. */
7970 static tree
7971 root_type (tree type)
7973 if (TREE_CODE (type) == ERROR_MARK)
7974 return error_mark_node;
7976 switch (TREE_CODE (type))
7978 case ERROR_MARK:
7979 return error_mark_node;
7981 case POINTER_TYPE:
7982 case REFERENCE_TYPE:
7983 return type_main_variant (root_type (TREE_TYPE (type)));
7985 default:
7986 return type_main_variant (type);
7990 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7991 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7993 static inline int
7994 is_base_type (tree type)
7996 switch (TREE_CODE (type))
7998 case ERROR_MARK:
7999 case VOID_TYPE:
8000 case INTEGER_TYPE:
8001 case REAL_TYPE:
8002 case COMPLEX_TYPE:
8003 case BOOLEAN_TYPE:
8004 case CHAR_TYPE:
8005 return 1;
8007 case SET_TYPE:
8008 case ARRAY_TYPE:
8009 case RECORD_TYPE:
8010 case UNION_TYPE:
8011 case QUAL_UNION_TYPE:
8012 case ENUMERAL_TYPE:
8013 case FUNCTION_TYPE:
8014 case METHOD_TYPE:
8015 case POINTER_TYPE:
8016 case REFERENCE_TYPE:
8017 case FILE_TYPE:
8018 case OFFSET_TYPE:
8019 case LANG_TYPE:
8020 case VECTOR_TYPE:
8021 return 0;
8023 default:
8024 gcc_unreachable ();
8027 return 0;
8030 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8031 node, return the size in bits for the type if it is a constant, or else
8032 return the alignment for the type if the type's size is not constant, or
8033 else return BITS_PER_WORD if the type actually turns out to be an
8034 ERROR_MARK node. */
8036 static inline unsigned HOST_WIDE_INT
8037 simple_type_size_in_bits (tree type)
8039 if (TREE_CODE (type) == ERROR_MARK)
8040 return BITS_PER_WORD;
8041 else if (TYPE_SIZE (type) == NULL_TREE)
8042 return 0;
8043 else if (host_integerp (TYPE_SIZE (type), 1))
8044 return tree_low_cst (TYPE_SIZE (type), 1);
8045 else
8046 return TYPE_ALIGN (type);
8049 /* Return true if the debug information for the given type should be
8050 emitted as a subrange type. */
8052 static inline bool
8053 is_subrange_type (tree type)
8055 tree subtype = TREE_TYPE (type);
8057 /* Subrange types are identified by the fact that they are integer
8058 types, and that they have a subtype which is either an integer type
8059 or an enumeral type. */
8061 if (TREE_CODE (type) != INTEGER_TYPE
8062 || subtype == NULL_TREE)
8063 return false;
8065 if (TREE_CODE (subtype) != INTEGER_TYPE
8066 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8067 return false;
8069 if (TREE_CODE (type) == TREE_CODE (subtype)
8070 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8071 && TYPE_MIN_VALUE (type) != NULL
8072 && TYPE_MIN_VALUE (subtype) != NULL
8073 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8074 && TYPE_MAX_VALUE (type) != NULL
8075 && TYPE_MAX_VALUE (subtype) != NULL
8076 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8078 /* The type and its subtype have the same representation. If in
8079 addition the two types also have the same name, then the given
8080 type is not a subrange type, but rather a plain base type. */
8081 /* FIXME: brobecker/2004-03-22:
8082 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8083 therefore be sufficient to check the TYPE_SIZE node pointers
8084 rather than checking the actual size. Unfortunately, we have
8085 found some cases, such as in the Ada "integer" type, where
8086 this is not the case. Until this problem is solved, we need to
8087 keep checking the actual size. */
8088 tree type_name = TYPE_NAME (type);
8089 tree subtype_name = TYPE_NAME (subtype);
8091 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8092 type_name = DECL_NAME (type_name);
8094 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8095 subtype_name = DECL_NAME (subtype_name);
8097 if (type_name == subtype_name)
8098 return false;
8101 return true;
8104 /* Given a pointer to a tree node for a subrange type, return a pointer
8105 to a DIE that describes the given type. */
8107 static dw_die_ref
8108 subrange_type_die (tree type, dw_die_ref context_die)
8110 dw_die_ref subtype_die;
8111 dw_die_ref subrange_die;
8112 tree name = TYPE_NAME (type);
8113 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8114 tree subtype = TREE_TYPE (type);
8116 if (context_die == NULL)
8117 context_die = comp_unit_die;
8119 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8120 subtype_die = gen_enumeration_type_die (subtype, context_die);
8121 else
8122 subtype_die = base_type_die (subtype);
8124 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8126 if (name != NULL)
8128 if (TREE_CODE (name) == TYPE_DECL)
8129 name = DECL_NAME (name);
8130 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8133 if (int_size_in_bytes (subtype) != size_in_bytes)
8135 /* The size of the subrange type and its base type do not match,
8136 so we need to generate a size attribute for the subrange type. */
8137 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8140 if (TYPE_MIN_VALUE (type) != NULL)
8141 add_bound_info (subrange_die, DW_AT_lower_bound,
8142 TYPE_MIN_VALUE (type));
8143 if (TYPE_MAX_VALUE (type) != NULL)
8144 add_bound_info (subrange_die, DW_AT_upper_bound,
8145 TYPE_MAX_VALUE (type));
8146 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8148 return subrange_die;
8151 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8152 entry that chains various modifiers in front of the given type. */
8154 static dw_die_ref
8155 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8156 dw_die_ref context_die)
8158 enum tree_code code = TREE_CODE (type);
8159 dw_die_ref mod_type_die = NULL;
8160 dw_die_ref sub_die = NULL;
8161 tree item_type = NULL;
8163 if (code != ERROR_MARK)
8165 tree qualified_type;
8167 /* See if we already have the appropriately qualified variant of
8168 this type. */
8169 qualified_type
8170 = get_qualified_type (type,
8171 ((is_const_type ? TYPE_QUAL_CONST : 0)
8172 | (is_volatile_type
8173 ? TYPE_QUAL_VOLATILE : 0)));
8175 /* If we do, then we can just use its DIE, if it exists. */
8176 if (qualified_type)
8178 mod_type_die = lookup_type_die (qualified_type);
8179 if (mod_type_die)
8180 return mod_type_die;
8183 /* Handle C typedef types. */
8184 if (qualified_type && TYPE_NAME (qualified_type)
8185 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8186 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8188 tree type_name = TYPE_NAME (qualified_type);
8189 tree dtype = TREE_TYPE (type_name);
8191 if (qualified_type == dtype)
8193 /* For a named type, use the typedef. */
8194 gen_type_die (qualified_type, context_die);
8195 mod_type_die = lookup_type_die (qualified_type);
8197 else if (is_const_type < TYPE_READONLY (dtype)
8198 || is_volatile_type < TYPE_VOLATILE (dtype))
8199 /* cv-unqualified version of named type. Just use the unnamed
8200 type to which it refers. */
8201 mod_type_die
8202 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8203 is_const_type, is_volatile_type,
8204 context_die);
8206 /* Else cv-qualified version of named type; fall through. */
8209 if (mod_type_die)
8210 /* OK. */
8212 else if (is_const_type)
8214 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8215 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8217 else if (is_volatile_type)
8219 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8220 sub_die = modified_type_die (type, 0, 0, context_die);
8222 else if (code == POINTER_TYPE)
8224 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8225 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8226 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8227 #if 0
8228 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8229 #endif
8230 item_type = TREE_TYPE (type);
8232 else if (code == REFERENCE_TYPE)
8234 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8235 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8236 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8237 #if 0
8238 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8239 #endif
8240 item_type = TREE_TYPE (type);
8242 else if (is_subrange_type (type))
8243 mod_type_die = subrange_type_die (type, context_die);
8244 else if (is_base_type (type))
8245 mod_type_die = base_type_die (type);
8246 else
8248 gen_type_die (type, context_die);
8250 /* We have to get the type_main_variant here (and pass that to the
8251 `lookup_type_die' routine) because the ..._TYPE node we have
8252 might simply be a *copy* of some original type node (where the
8253 copy was created to help us keep track of typedef names) and
8254 that copy might have a different TYPE_UID from the original
8255 ..._TYPE node. */
8256 if (TREE_CODE (type) != VECTOR_TYPE)
8257 mod_type_die = lookup_type_die (type_main_variant (type));
8258 else
8259 /* Vectors have the debugging information in the type,
8260 not the main variant. */
8261 mod_type_die = lookup_type_die (type);
8262 gcc_assert (mod_type_die);
8265 /* We want to equate the qualified type to the die below. */
8266 type = qualified_type;
8269 if (type)
8270 equate_type_number_to_die (type, mod_type_die);
8271 if (item_type)
8272 /* We must do this after the equate_type_number_to_die call, in case
8273 this is a recursive type. This ensures that the modified_type_die
8274 recursion will terminate even if the type is recursive. Recursive
8275 types are possible in Ada. */
8276 sub_die = modified_type_die (item_type,
8277 TYPE_READONLY (item_type),
8278 TYPE_VOLATILE (item_type),
8279 context_die);
8281 if (sub_die != NULL)
8282 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8284 return mod_type_die;
8287 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8288 an enumerated type. */
8290 static inline int
8291 type_is_enum (tree type)
8293 return TREE_CODE (type) == ENUMERAL_TYPE;
8296 /* Return the DBX register number described by a given RTL node. */
8298 static unsigned int
8299 dbx_reg_number (rtx rtl)
8301 unsigned regno = REGNO (rtl);
8303 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8305 return DBX_REGISTER_NUMBER (regno);
8308 /* Return a location descriptor that designates a machine register or
8309 zero if there is none. */
8311 static dw_loc_descr_ref
8312 reg_loc_descriptor (rtx rtl)
8314 unsigned reg;
8315 rtx regs;
8317 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8318 return 0;
8320 reg = dbx_reg_number (rtl);
8321 regs = targetm.dwarf_register_span (rtl);
8323 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8324 || regs)
8325 return multiple_reg_loc_descriptor (rtl, regs);
8326 else
8327 return one_reg_loc_descriptor (reg);
8330 /* Return a location descriptor that designates a machine register for
8331 a given hard register number. */
8333 static dw_loc_descr_ref
8334 one_reg_loc_descriptor (unsigned int regno)
8336 if (regno <= 31)
8337 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8338 else
8339 return new_loc_descr (DW_OP_regx, regno, 0);
8342 /* Given an RTL of a register, return a location descriptor that
8343 designates a value that spans more than one register. */
8345 static dw_loc_descr_ref
8346 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8348 int nregs, size, i;
8349 unsigned reg;
8350 dw_loc_descr_ref loc_result = NULL;
8352 reg = dbx_reg_number (rtl);
8353 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8355 /* Simple, contiguous registers. */
8356 if (regs == NULL_RTX)
8358 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8360 loc_result = NULL;
8361 while (nregs--)
8363 dw_loc_descr_ref t;
8365 t = one_reg_loc_descriptor (reg);
8366 add_loc_descr (&loc_result, t);
8367 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8368 ++reg;
8370 return loc_result;
8373 /* Now onto stupid register sets in non contiguous locations. */
8375 gcc_assert (GET_CODE (regs) == PARALLEL);
8377 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8378 loc_result = NULL;
8380 for (i = 0; i < XVECLEN (regs, 0); ++i)
8382 dw_loc_descr_ref t;
8384 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8385 add_loc_descr (&loc_result, t);
8386 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8387 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8389 return loc_result;
8392 /* Return a location descriptor that designates a constant. */
8394 static dw_loc_descr_ref
8395 int_loc_descriptor (HOST_WIDE_INT i)
8397 enum dwarf_location_atom op;
8399 /* Pick the smallest representation of a constant, rather than just
8400 defaulting to the LEB encoding. */
8401 if (i >= 0)
8403 if (i <= 31)
8404 op = DW_OP_lit0 + i;
8405 else if (i <= 0xff)
8406 op = DW_OP_const1u;
8407 else if (i <= 0xffff)
8408 op = DW_OP_const2u;
8409 else if (HOST_BITS_PER_WIDE_INT == 32
8410 || i <= 0xffffffff)
8411 op = DW_OP_const4u;
8412 else
8413 op = DW_OP_constu;
8415 else
8417 if (i >= -0x80)
8418 op = DW_OP_const1s;
8419 else if (i >= -0x8000)
8420 op = DW_OP_const2s;
8421 else if (HOST_BITS_PER_WIDE_INT == 32
8422 || i >= -0x80000000)
8423 op = DW_OP_const4s;
8424 else
8425 op = DW_OP_consts;
8428 return new_loc_descr (op, i, 0);
8431 /* Return a location descriptor that designates a base+offset location. */
8433 static dw_loc_descr_ref
8434 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8436 dw_loc_descr_ref loc_result;
8437 /* For the "frame base", we use the frame pointer or stack pointer
8438 registers, since the RTL for local variables is relative to one of
8439 them. */
8440 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8441 ? HARD_FRAME_POINTER_REGNUM
8442 : STACK_POINTER_REGNUM);
8444 if (reg == fp_reg && can_use_fbreg)
8445 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8446 else if (reg <= 31)
8447 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8448 else
8449 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8451 return loc_result;
8454 /* Return true if this RTL expression describes a base+offset calculation. */
8456 static inline int
8457 is_based_loc (rtx rtl)
8459 return (GET_CODE (rtl) == PLUS
8460 && ((REG_P (XEXP (rtl, 0))
8461 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8462 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8465 /* The following routine converts the RTL for a variable or parameter
8466 (resident in memory) into an equivalent Dwarf representation of a
8467 mechanism for getting the address of that same variable onto the top of a
8468 hypothetical "address evaluation" stack.
8470 When creating memory location descriptors, we are effectively transforming
8471 the RTL for a memory-resident object into its Dwarf postfix expression
8472 equivalent. This routine recursively descends an RTL tree, turning
8473 it into Dwarf postfix code as it goes.
8475 MODE is the mode of the memory reference, needed to handle some
8476 autoincrement addressing modes.
8478 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8479 list for RTL. We can't use it when we are emitting location list for
8480 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8481 which describes how frame base changes when !frame_pointer_needed.
8483 Return 0 if we can't represent the location. */
8485 static dw_loc_descr_ref
8486 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8488 dw_loc_descr_ref mem_loc_result = NULL;
8489 enum dwarf_location_atom op;
8491 /* Note that for a dynamically sized array, the location we will generate a
8492 description of here will be the lowest numbered location which is
8493 actually within the array. That's *not* necessarily the same as the
8494 zeroth element of the array. */
8496 rtl = targetm.delegitimize_address (rtl);
8498 switch (GET_CODE (rtl))
8500 case POST_INC:
8501 case POST_DEC:
8502 case POST_MODIFY:
8503 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8504 just fall into the SUBREG code. */
8506 /* ... fall through ... */
8508 case SUBREG:
8509 /* The case of a subreg may arise when we have a local (register)
8510 variable or a formal (register) parameter which doesn't quite fill
8511 up an entire register. For now, just assume that it is
8512 legitimate to make the Dwarf info refer to the whole register which
8513 contains the given subreg. */
8514 rtl = SUBREG_REG (rtl);
8516 /* ... fall through ... */
8518 case REG:
8519 /* Whenever a register number forms a part of the description of the
8520 method for calculating the (dynamic) address of a memory resident
8521 object, DWARF rules require the register number be referred to as
8522 a "base register". This distinction is not based in any way upon
8523 what category of register the hardware believes the given register
8524 belongs to. This is strictly DWARF terminology we're dealing with
8525 here. Note that in cases where the location of a memory-resident
8526 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8527 OP_CONST (0)) the actual DWARF location descriptor that we generate
8528 may just be OP_BASEREG (basereg). This may look deceptively like
8529 the object in question was allocated to a register (rather than in
8530 memory) so DWARF consumers need to be aware of the subtle
8531 distinction between OP_REG and OP_BASEREG. */
8532 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8533 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8534 can_use_fbreg);
8535 break;
8537 case MEM:
8538 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8539 can_use_fbreg);
8540 if (mem_loc_result != 0)
8541 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8542 break;
8544 case LO_SUM:
8545 rtl = XEXP (rtl, 1);
8547 /* ... fall through ... */
8549 case LABEL_REF:
8550 /* Some ports can transform a symbol ref into a label ref, because
8551 the symbol ref is too far away and has to be dumped into a constant
8552 pool. */
8553 case CONST:
8554 case SYMBOL_REF:
8555 /* Alternatively, the symbol in the constant pool might be referenced
8556 by a different symbol. */
8557 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8559 bool marked;
8560 rtx tmp = get_pool_constant_mark (rtl, &marked);
8562 if (GET_CODE (tmp) == SYMBOL_REF)
8564 rtl = tmp;
8565 if (CONSTANT_POOL_ADDRESS_P (tmp))
8566 get_pool_constant_mark (tmp, &marked);
8567 else
8568 marked = true;
8571 /* If all references to this pool constant were optimized away,
8572 it was not output and thus we can't represent it.
8573 FIXME: might try to use DW_OP_const_value here, though
8574 DW_OP_piece complicates it. */
8575 if (!marked)
8576 return 0;
8579 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8580 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8581 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8582 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8583 break;
8585 case PRE_MODIFY:
8586 /* Extract the PLUS expression nested inside and fall into
8587 PLUS code below. */
8588 rtl = XEXP (rtl, 1);
8589 goto plus;
8591 case PRE_INC:
8592 case PRE_DEC:
8593 /* Turn these into a PLUS expression and fall into the PLUS code
8594 below. */
8595 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8596 GEN_INT (GET_CODE (rtl) == PRE_INC
8597 ? GET_MODE_UNIT_SIZE (mode)
8598 : -GET_MODE_UNIT_SIZE (mode)));
8600 /* ... fall through ... */
8602 case PLUS:
8603 plus:
8604 if (is_based_loc (rtl))
8605 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8606 INTVAL (XEXP (rtl, 1)),
8607 can_use_fbreg);
8608 else
8610 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8611 can_use_fbreg);
8612 if (mem_loc_result == 0)
8613 break;
8615 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8616 && INTVAL (XEXP (rtl, 1)) >= 0)
8617 add_loc_descr (&mem_loc_result,
8618 new_loc_descr (DW_OP_plus_uconst,
8619 INTVAL (XEXP (rtl, 1)), 0));
8620 else
8622 add_loc_descr (&mem_loc_result,
8623 mem_loc_descriptor (XEXP (rtl, 1), mode,
8624 can_use_fbreg));
8625 add_loc_descr (&mem_loc_result,
8626 new_loc_descr (DW_OP_plus, 0, 0));
8629 break;
8631 /* If a pseudo-reg is optimized away, it is possible for it to
8632 be replaced with a MEM containing a multiply or shift. */
8633 case MULT:
8634 op = DW_OP_mul;
8635 goto do_binop;
8637 case ASHIFT:
8638 op = DW_OP_shl;
8639 goto do_binop;
8641 case ASHIFTRT:
8642 op = DW_OP_shra;
8643 goto do_binop;
8645 case LSHIFTRT:
8646 op = DW_OP_shr;
8647 goto do_binop;
8649 do_binop:
8651 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8652 can_use_fbreg);
8653 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8654 can_use_fbreg);
8656 if (op0 == 0 || op1 == 0)
8657 break;
8659 mem_loc_result = op0;
8660 add_loc_descr (&mem_loc_result, op1);
8661 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8662 break;
8665 case CONST_INT:
8666 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8667 break;
8669 default:
8670 gcc_unreachable ();
8673 return mem_loc_result;
8676 /* Return a descriptor that describes the concatenation of two locations.
8677 This is typically a complex variable. */
8679 static dw_loc_descr_ref
8680 concat_loc_descriptor (rtx x0, rtx x1)
8682 dw_loc_descr_ref cc_loc_result = NULL;
8683 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8684 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8686 if (x0_ref == 0 || x1_ref == 0)
8687 return 0;
8689 cc_loc_result = x0_ref;
8690 add_loc_descr (&cc_loc_result,
8691 new_loc_descr (DW_OP_piece,
8692 GET_MODE_SIZE (GET_MODE (x0)), 0));
8694 add_loc_descr (&cc_loc_result, x1_ref);
8695 add_loc_descr (&cc_loc_result,
8696 new_loc_descr (DW_OP_piece,
8697 GET_MODE_SIZE (GET_MODE (x1)), 0));
8699 return cc_loc_result;
8702 /* Output a proper Dwarf location descriptor for a variable or parameter
8703 which is either allocated in a register or in a memory location. For a
8704 register, we just generate an OP_REG and the register number. For a
8705 memory location we provide a Dwarf postfix expression describing how to
8706 generate the (dynamic) address of the object onto the address stack.
8708 If we don't know how to describe it, return 0. */
8710 static dw_loc_descr_ref
8711 loc_descriptor (rtx rtl, bool can_use_fbreg)
8713 dw_loc_descr_ref loc_result = NULL;
8715 switch (GET_CODE (rtl))
8717 case SUBREG:
8718 /* The case of a subreg may arise when we have a local (register)
8719 variable or a formal (register) parameter which doesn't quite fill
8720 up an entire register. For now, just assume that it is
8721 legitimate to make the Dwarf info refer to the whole register which
8722 contains the given subreg. */
8723 rtl = SUBREG_REG (rtl);
8725 /* ... fall through ... */
8727 case REG:
8728 loc_result = reg_loc_descriptor (rtl);
8729 break;
8731 case MEM:
8732 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8733 can_use_fbreg);
8734 break;
8736 case CONCAT:
8737 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8738 break;
8740 case VAR_LOCATION:
8741 /* Single part. */
8742 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8744 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8745 break;
8748 rtl = XEXP (rtl, 1);
8749 /* FALLTHRU */
8751 case PARALLEL:
8753 rtvec par_elems = XVEC (rtl, 0);
8754 int num_elem = GET_NUM_ELEM (par_elems);
8755 enum machine_mode mode;
8756 int i;
8758 /* Create the first one, so we have something to add to. */
8759 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8760 can_use_fbreg);
8761 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8762 add_loc_descr (&loc_result,
8763 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8764 for (i = 1; i < num_elem; i++)
8766 dw_loc_descr_ref temp;
8768 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8769 can_use_fbreg);
8770 add_loc_descr (&loc_result, temp);
8771 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8772 add_loc_descr (&loc_result,
8773 new_loc_descr (DW_OP_piece,
8774 GET_MODE_SIZE (mode), 0));
8777 break;
8779 default:
8780 gcc_unreachable ();
8783 return loc_result;
8786 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8787 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8788 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8789 top-level invocation, and we require the address of LOC; is 0 if we require
8790 the value of LOC. */
8792 static dw_loc_descr_ref
8793 loc_descriptor_from_tree_1 (tree loc, int want_address)
8795 dw_loc_descr_ref ret, ret1;
8796 int have_address = 0;
8797 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8798 enum dwarf_location_atom op;
8800 /* ??? Most of the time we do not take proper care for sign/zero
8801 extending the values properly. Hopefully this won't be a real
8802 problem... */
8804 switch (TREE_CODE (loc))
8806 case ERROR_MARK:
8807 return 0;
8809 case PLACEHOLDER_EXPR:
8810 /* This case involves extracting fields from an object to determine the
8811 position of other fields. We don't try to encode this here. The
8812 only user of this is Ada, which encodes the needed information using
8813 the names of types. */
8814 return 0;
8816 case CALL_EXPR:
8817 return 0;
8819 case PREINCREMENT_EXPR:
8820 case PREDECREMENT_EXPR:
8821 case POSTINCREMENT_EXPR:
8822 case POSTDECREMENT_EXPR:
8823 /* There are no opcodes for these operations. */
8824 return 0;
8826 case ADDR_EXPR:
8827 /* If we already want an address, there's nothing we can do. */
8828 if (want_address)
8829 return 0;
8831 /* Otherwise, process the argument and look for the address. */
8832 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8834 case VAR_DECL:
8835 if (DECL_THREAD_LOCAL (loc))
8837 rtx rtl;
8839 #ifndef ASM_OUTPUT_DWARF_DTPREL
8840 /* If this is not defined, we have no way to emit the data. */
8841 return 0;
8842 #endif
8844 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8845 look up addresses of objects in the current module. */
8846 if (DECL_EXTERNAL (loc))
8847 return 0;
8849 rtl = rtl_for_decl_location (loc);
8850 if (rtl == NULL_RTX)
8851 return 0;
8853 if (!MEM_P (rtl))
8854 return 0;
8855 rtl = XEXP (rtl, 0);
8856 if (! CONSTANT_P (rtl))
8857 return 0;
8859 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8860 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8861 ret->dw_loc_oprnd1.v.val_addr = rtl;
8863 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8864 add_loc_descr (&ret, ret1);
8866 have_address = 1;
8867 break;
8869 /* FALLTHRU */
8871 case PARM_DECL:
8872 if (DECL_VALUE_EXPR (loc))
8873 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8874 /* FALLTHRU */
8876 case RESULT_DECL:
8878 rtx rtl = rtl_for_decl_location (loc);
8880 if (rtl == NULL_RTX)
8881 return 0;
8882 else if (GET_CODE (rtl) == CONST_INT)
8884 HOST_WIDE_INT val = INTVAL (rtl);
8885 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8886 val &= GET_MODE_MASK (DECL_MODE (loc));
8887 ret = int_loc_descriptor (val);
8889 else if (GET_CODE (rtl) == CONST_STRING)
8890 return 0;
8891 else if (CONSTANT_P (rtl))
8893 ret = new_loc_descr (DW_OP_addr, 0, 0);
8894 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8895 ret->dw_loc_oprnd1.v.val_addr = rtl;
8897 else
8899 enum machine_mode mode;
8901 /* Certain constructs can only be represented at top-level. */
8902 if (want_address == 2)
8903 return loc_descriptor (rtl, true);
8905 mode = GET_MODE (rtl);
8906 if (MEM_P (rtl))
8908 rtl = XEXP (rtl, 0);
8909 have_address = 1;
8911 ret = mem_loc_descriptor (rtl, mode, true);
8914 break;
8916 case INDIRECT_REF:
8917 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
8918 have_address = 1;
8919 break;
8921 case COMPOUND_EXPR:
8922 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
8924 case NOP_EXPR:
8925 case CONVERT_EXPR:
8926 case NON_LVALUE_EXPR:
8927 case VIEW_CONVERT_EXPR:
8928 case SAVE_EXPR:
8929 case MODIFY_EXPR:
8930 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
8932 case COMPONENT_REF:
8933 case BIT_FIELD_REF:
8934 case ARRAY_REF:
8935 case ARRAY_RANGE_REF:
8937 tree obj, offset;
8938 HOST_WIDE_INT bitsize, bitpos, bytepos;
8939 enum machine_mode mode;
8940 int volatilep;
8942 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8943 &unsignedp, &volatilep);
8945 if (obj == loc)
8946 return 0;
8948 ret = loc_descriptor_from_tree_1 (obj, 1);
8949 if (ret == 0
8950 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8951 return 0;
8953 if (offset != NULL_TREE)
8955 /* Variable offset. */
8956 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
8957 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8960 bytepos = bitpos / BITS_PER_UNIT;
8961 if (bytepos > 0)
8962 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8963 else if (bytepos < 0)
8965 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8966 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8969 have_address = 1;
8970 break;
8973 case INTEGER_CST:
8974 if (host_integerp (loc, 0))
8975 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8976 else
8977 return 0;
8978 break;
8980 case CONSTRUCTOR:
8982 /* Get an RTL for this, if something has been emitted. */
8983 rtx rtl = lookup_constant_def (loc);
8984 enum machine_mode mode;
8986 if (!rtl || !MEM_P (rtl))
8987 return 0;
8988 mode = GET_MODE (rtl);
8989 rtl = XEXP (rtl, 0);
8990 ret = mem_loc_descriptor (rtl, mode, true);
8991 have_address = 1;
8992 break;
8995 case TRUTH_AND_EXPR:
8996 case TRUTH_ANDIF_EXPR:
8997 case BIT_AND_EXPR:
8998 op = DW_OP_and;
8999 goto do_binop;
9001 case TRUTH_XOR_EXPR:
9002 case BIT_XOR_EXPR:
9003 op = DW_OP_xor;
9004 goto do_binop;
9006 case TRUTH_OR_EXPR:
9007 case TRUTH_ORIF_EXPR:
9008 case BIT_IOR_EXPR:
9009 op = DW_OP_or;
9010 goto do_binop;
9012 case FLOOR_DIV_EXPR:
9013 case CEIL_DIV_EXPR:
9014 case ROUND_DIV_EXPR:
9015 case TRUNC_DIV_EXPR:
9016 op = DW_OP_div;
9017 goto do_binop;
9019 case MINUS_EXPR:
9020 op = DW_OP_minus;
9021 goto do_binop;
9023 case FLOOR_MOD_EXPR:
9024 case CEIL_MOD_EXPR:
9025 case ROUND_MOD_EXPR:
9026 case TRUNC_MOD_EXPR:
9027 op = DW_OP_mod;
9028 goto do_binop;
9030 case MULT_EXPR:
9031 op = DW_OP_mul;
9032 goto do_binop;
9034 case LSHIFT_EXPR:
9035 op = DW_OP_shl;
9036 goto do_binop;
9038 case RSHIFT_EXPR:
9039 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9040 goto do_binop;
9042 case PLUS_EXPR:
9043 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9044 && host_integerp (TREE_OPERAND (loc, 1), 0))
9046 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9047 if (ret == 0)
9048 return 0;
9050 add_loc_descr (&ret,
9051 new_loc_descr (DW_OP_plus_uconst,
9052 tree_low_cst (TREE_OPERAND (loc, 1),
9054 0));
9055 break;
9058 op = DW_OP_plus;
9059 goto do_binop;
9061 case LE_EXPR:
9062 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9063 return 0;
9065 op = DW_OP_le;
9066 goto do_binop;
9068 case GE_EXPR:
9069 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9070 return 0;
9072 op = DW_OP_ge;
9073 goto do_binop;
9075 case LT_EXPR:
9076 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9077 return 0;
9079 op = DW_OP_lt;
9080 goto do_binop;
9082 case GT_EXPR:
9083 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9084 return 0;
9086 op = DW_OP_gt;
9087 goto do_binop;
9089 case EQ_EXPR:
9090 op = DW_OP_eq;
9091 goto do_binop;
9093 case NE_EXPR:
9094 op = DW_OP_ne;
9095 goto do_binop;
9097 do_binop:
9098 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9099 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9100 if (ret == 0 || ret1 == 0)
9101 return 0;
9103 add_loc_descr (&ret, ret1);
9104 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9105 break;
9107 case TRUTH_NOT_EXPR:
9108 case BIT_NOT_EXPR:
9109 op = DW_OP_not;
9110 goto do_unop;
9112 case ABS_EXPR:
9113 op = DW_OP_abs;
9114 goto do_unop;
9116 case NEGATE_EXPR:
9117 op = DW_OP_neg;
9118 goto do_unop;
9120 do_unop:
9121 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9122 if (ret == 0)
9123 return 0;
9125 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9126 break;
9128 case MIN_EXPR:
9129 case MAX_EXPR:
9131 const enum tree_code code =
9132 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9134 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9135 build2 (code, integer_type_node,
9136 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9137 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9140 /* ... fall through ... */
9142 case COND_EXPR:
9144 dw_loc_descr_ref lhs
9145 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9146 dw_loc_descr_ref rhs
9147 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9148 dw_loc_descr_ref bra_node, jump_node, tmp;
9150 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9151 if (ret == 0 || lhs == 0 || rhs == 0)
9152 return 0;
9154 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9155 add_loc_descr (&ret, bra_node);
9157 add_loc_descr (&ret, rhs);
9158 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9159 add_loc_descr (&ret, jump_node);
9161 add_loc_descr (&ret, lhs);
9162 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9163 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9165 /* ??? Need a node to point the skip at. Use a nop. */
9166 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9167 add_loc_descr (&ret, tmp);
9168 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9169 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9171 break;
9173 default:
9174 /* Leave front-end specific codes as simply unknown. This comes
9175 up, for instance, with the C STMT_EXPR. */
9176 if ((unsigned int) TREE_CODE (loc)
9177 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9178 return 0;
9180 #ifdef ENABLE_CHECKING
9181 /* Otherwise this is a generic code; we should just lists all of
9182 these explicitly. Aborting means we forgot one. */
9183 gcc_unreachable ();
9184 #else
9185 /* In a release build, we want to degrade gracefully: better to
9186 generate incomplete debugging information than to crash. */
9187 return NULL;
9188 #endif
9191 /* Show if we can't fill the request for an address. */
9192 if (want_address && !have_address)
9193 return 0;
9195 /* If we've got an address and don't want one, dereference. */
9196 if (!want_address && have_address)
9198 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9200 if (size > DWARF2_ADDR_SIZE || size == -1)
9201 return 0;
9202 else if (size == DWARF2_ADDR_SIZE)
9203 op = DW_OP_deref;
9204 else
9205 op = DW_OP_deref_size;
9207 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9210 return ret;
9213 static inline dw_loc_descr_ref
9214 loc_descriptor_from_tree (tree loc)
9216 return loc_descriptor_from_tree_1 (loc, 2);
9219 /* Given a value, round it up to the lowest multiple of `boundary'
9220 which is not less than the value itself. */
9222 static inline HOST_WIDE_INT
9223 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9225 return (((value + boundary - 1) / boundary) * boundary);
9228 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9229 pointer to the declared type for the relevant field variable, or return
9230 `integer_type_node' if the given node turns out to be an
9231 ERROR_MARK node. */
9233 static inline tree
9234 field_type (tree decl)
9236 tree type;
9238 if (TREE_CODE (decl) == ERROR_MARK)
9239 return integer_type_node;
9241 type = DECL_BIT_FIELD_TYPE (decl);
9242 if (type == NULL_TREE)
9243 type = TREE_TYPE (decl);
9245 return type;
9248 /* Given a pointer to a tree node, return the alignment in bits for
9249 it, or else return BITS_PER_WORD if the node actually turns out to
9250 be an ERROR_MARK node. */
9252 static inline unsigned
9253 simple_type_align_in_bits (tree type)
9255 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9258 static inline unsigned
9259 simple_decl_align_in_bits (tree decl)
9261 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9264 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9265 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9266 or return 0 if we are unable to determine what that offset is, either
9267 because the argument turns out to be a pointer to an ERROR_MARK node, or
9268 because the offset is actually variable. (We can't handle the latter case
9269 just yet). */
9271 static HOST_WIDE_INT
9272 field_byte_offset (tree decl)
9274 unsigned int type_align_in_bits;
9275 unsigned int decl_align_in_bits;
9276 unsigned HOST_WIDE_INT type_size_in_bits;
9277 HOST_WIDE_INT object_offset_in_bits;
9278 tree type;
9279 tree field_size_tree;
9280 HOST_WIDE_INT bitpos_int;
9281 HOST_WIDE_INT deepest_bitpos;
9282 unsigned HOST_WIDE_INT field_size_in_bits;
9284 if (TREE_CODE (decl) == ERROR_MARK)
9285 return 0;
9287 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9289 type = field_type (decl);
9290 field_size_tree = DECL_SIZE (decl);
9292 /* The size could be unspecified if there was an error, or for
9293 a flexible array member. */
9294 if (! field_size_tree)
9295 field_size_tree = bitsize_zero_node;
9297 /* We cannot yet cope with fields whose positions are variable, so
9298 for now, when we see such things, we simply return 0. Someday, we may
9299 be able to handle such cases, but it will be damn difficult. */
9300 if (! host_integerp (bit_position (decl), 0))
9301 return 0;
9303 bitpos_int = int_bit_position (decl);
9305 /* If we don't know the size of the field, pretend it's a full word. */
9306 if (host_integerp (field_size_tree, 1))
9307 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9308 else
9309 field_size_in_bits = BITS_PER_WORD;
9311 type_size_in_bits = simple_type_size_in_bits (type);
9312 type_align_in_bits = simple_type_align_in_bits (type);
9313 decl_align_in_bits = simple_decl_align_in_bits (decl);
9315 /* The GCC front-end doesn't make any attempt to keep track of the starting
9316 bit offset (relative to the start of the containing structure type) of the
9317 hypothetical "containing object" for a bit-field. Thus, when computing
9318 the byte offset value for the start of the "containing object" of a
9319 bit-field, we must deduce this information on our own. This can be rather
9320 tricky to do in some cases. For example, handling the following structure
9321 type definition when compiling for an i386/i486 target (which only aligns
9322 long long's to 32-bit boundaries) can be very tricky:
9324 struct S { int field1; long long field2:31; };
9326 Fortunately, there is a simple rule-of-thumb which can be used in such
9327 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9328 structure shown above. It decides to do this based upon one simple rule
9329 for bit-field allocation. GCC allocates each "containing object" for each
9330 bit-field at the first (i.e. lowest addressed) legitimate alignment
9331 boundary (based upon the required minimum alignment for the declared type
9332 of the field) which it can possibly use, subject to the condition that
9333 there is still enough available space remaining in the containing object
9334 (when allocated at the selected point) to fully accommodate all of the
9335 bits of the bit-field itself.
9337 This simple rule makes it obvious why GCC allocates 8 bytes for each
9338 object of the structure type shown above. When looking for a place to
9339 allocate the "containing object" for `field2', the compiler simply tries
9340 to allocate a 64-bit "containing object" at each successive 32-bit
9341 boundary (starting at zero) until it finds a place to allocate that 64-
9342 bit field such that at least 31 contiguous (and previously unallocated)
9343 bits remain within that selected 64 bit field. (As it turns out, for the
9344 example above, the compiler finds it is OK to allocate the "containing
9345 object" 64-bit field at bit-offset zero within the structure type.)
9347 Here we attempt to work backwards from the limited set of facts we're
9348 given, and we try to deduce from those facts, where GCC must have believed
9349 that the containing object started (within the structure type). The value
9350 we deduce is then used (by the callers of this routine) to generate
9351 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9352 and, in the case of DW_AT_location, regular fields as well). */
9354 /* Figure out the bit-distance from the start of the structure to the
9355 "deepest" bit of the bit-field. */
9356 deepest_bitpos = bitpos_int + field_size_in_bits;
9358 /* This is the tricky part. Use some fancy footwork to deduce where the
9359 lowest addressed bit of the containing object must be. */
9360 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9362 /* Round up to type_align by default. This works best for bitfields. */
9363 object_offset_in_bits += type_align_in_bits - 1;
9364 object_offset_in_bits /= type_align_in_bits;
9365 object_offset_in_bits *= type_align_in_bits;
9367 if (object_offset_in_bits > bitpos_int)
9369 /* Sigh, the decl must be packed. */
9370 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9372 /* Round up to decl_align instead. */
9373 object_offset_in_bits += decl_align_in_bits - 1;
9374 object_offset_in_bits /= decl_align_in_bits;
9375 object_offset_in_bits *= decl_align_in_bits;
9378 return object_offset_in_bits / BITS_PER_UNIT;
9381 /* The following routines define various Dwarf attributes and any data
9382 associated with them. */
9384 /* Add a location description attribute value to a DIE.
9386 This emits location attributes suitable for whole variables and
9387 whole parameters. Note that the location attributes for struct fields are
9388 generated by the routine `data_member_location_attribute' below. */
9390 static inline void
9391 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9392 dw_loc_descr_ref descr)
9394 if (descr != 0)
9395 add_AT_loc (die, attr_kind, descr);
9398 /* Attach the specialized form of location attribute used for data members of
9399 struct and union types. In the special case of a FIELD_DECL node which
9400 represents a bit-field, the "offset" part of this special location
9401 descriptor must indicate the distance in bytes from the lowest-addressed
9402 byte of the containing struct or union type to the lowest-addressed byte of
9403 the "containing object" for the bit-field. (See the `field_byte_offset'
9404 function above).
9406 For any given bit-field, the "containing object" is a hypothetical object
9407 (of some integral or enum type) within which the given bit-field lives. The
9408 type of this hypothetical "containing object" is always the same as the
9409 declared type of the individual bit-field itself (for GCC anyway... the
9410 DWARF spec doesn't actually mandate this). Note that it is the size (in
9411 bytes) of the hypothetical "containing object" which will be given in the
9412 DW_AT_byte_size attribute for this bit-field. (See the
9413 `byte_size_attribute' function below.) It is also used when calculating the
9414 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9415 function below.) */
9417 static void
9418 add_data_member_location_attribute (dw_die_ref die, tree decl)
9420 HOST_WIDE_INT offset;
9421 dw_loc_descr_ref loc_descr = 0;
9423 if (TREE_CODE (decl) == TREE_BINFO)
9425 /* We're working on the TAG_inheritance for a base class. */
9426 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9428 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9429 aren't at a fixed offset from all (sub)objects of the same
9430 type. We need to extract the appropriate offset from our
9431 vtable. The following dwarf expression means
9433 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9435 This is specific to the V3 ABI, of course. */
9437 dw_loc_descr_ref tmp;
9439 /* Make a copy of the object address. */
9440 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9441 add_loc_descr (&loc_descr, tmp);
9443 /* Extract the vtable address. */
9444 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9445 add_loc_descr (&loc_descr, tmp);
9447 /* Calculate the address of the offset. */
9448 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9449 gcc_assert (offset < 0);
9451 tmp = int_loc_descriptor (-offset);
9452 add_loc_descr (&loc_descr, tmp);
9453 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9454 add_loc_descr (&loc_descr, tmp);
9456 /* Extract the offset. */
9457 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9458 add_loc_descr (&loc_descr, tmp);
9460 /* Add it to the object address. */
9461 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9462 add_loc_descr (&loc_descr, tmp);
9464 else
9465 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9467 else
9468 offset = field_byte_offset (decl);
9470 if (! loc_descr)
9472 enum dwarf_location_atom op;
9474 /* The DWARF2 standard says that we should assume that the structure
9475 address is already on the stack, so we can specify a structure field
9476 address by using DW_OP_plus_uconst. */
9478 #ifdef MIPS_DEBUGGING_INFO
9479 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9480 operator correctly. It works only if we leave the offset on the
9481 stack. */
9482 op = DW_OP_constu;
9483 #else
9484 op = DW_OP_plus_uconst;
9485 #endif
9487 loc_descr = new_loc_descr (op, offset, 0);
9490 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9493 /* Writes integer values to dw_vec_const array. */
9495 static void
9496 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9498 while (size != 0)
9500 *dest++ = val & 0xff;
9501 val >>= 8;
9502 --size;
9506 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9508 static HOST_WIDE_INT
9509 extract_int (const unsigned char *src, unsigned int size)
9511 HOST_WIDE_INT val = 0;
9513 src += size;
9514 while (size != 0)
9516 val <<= 8;
9517 val |= *--src & 0xff;
9518 --size;
9520 return val;
9523 /* Writes floating point values to dw_vec_const array. */
9525 static void
9526 insert_float (rtx rtl, unsigned char *array)
9528 REAL_VALUE_TYPE rv;
9529 long val[4];
9530 int i;
9532 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9533 real_to_target (val, &rv, GET_MODE (rtl));
9535 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9536 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9538 insert_int (val[i], 4, array);
9539 array += 4;
9543 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9544 does not have a "location" either in memory or in a register. These
9545 things can arise in GNU C when a constant is passed as an actual parameter
9546 to an inlined function. They can also arise in C++ where declared
9547 constants do not necessarily get memory "homes". */
9549 static void
9550 add_const_value_attribute (dw_die_ref die, rtx rtl)
9552 switch (GET_CODE (rtl))
9554 case CONST_INT:
9556 HOST_WIDE_INT val = INTVAL (rtl);
9558 if (val < 0)
9559 add_AT_int (die, DW_AT_const_value, val);
9560 else
9561 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9563 break;
9565 case CONST_DOUBLE:
9566 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9567 floating-point constant. A CONST_DOUBLE is used whenever the
9568 constant requires more than one word in order to be adequately
9569 represented. We output CONST_DOUBLEs as blocks. */
9571 enum machine_mode mode = GET_MODE (rtl);
9573 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9575 unsigned int length = GET_MODE_SIZE (mode);
9576 unsigned char *array = ggc_alloc (length);
9578 insert_float (rtl, array);
9579 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9581 else
9583 /* ??? We really should be using HOST_WIDE_INT throughout. */
9584 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9586 add_AT_long_long (die, DW_AT_const_value,
9587 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9590 break;
9592 case CONST_VECTOR:
9594 enum machine_mode mode = GET_MODE (rtl);
9595 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9596 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9597 unsigned char *array = ggc_alloc (length * elt_size);
9598 unsigned int i;
9599 unsigned char *p;
9601 switch (GET_MODE_CLASS (mode))
9603 case MODE_VECTOR_INT:
9604 for (i = 0, p = array; i < length; i++, p += elt_size)
9606 rtx elt = CONST_VECTOR_ELT (rtl, i);
9607 HOST_WIDE_INT lo, hi;
9609 switch (GET_CODE (elt))
9611 case CONST_INT:
9612 lo = INTVAL (elt);
9613 hi = -(lo < 0);
9614 break;
9616 case CONST_DOUBLE:
9617 lo = CONST_DOUBLE_LOW (elt);
9618 hi = CONST_DOUBLE_HIGH (elt);
9619 break;
9621 default:
9622 gcc_unreachable ();
9625 if (elt_size <= sizeof (HOST_WIDE_INT))
9626 insert_int (lo, elt_size, p);
9627 else
9629 unsigned char *p0 = p;
9630 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9632 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9633 if (WORDS_BIG_ENDIAN)
9635 p0 = p1;
9636 p1 = p;
9638 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9639 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9642 break;
9644 case MODE_VECTOR_FLOAT:
9645 for (i = 0, p = array; i < length; i++, p += elt_size)
9647 rtx elt = CONST_VECTOR_ELT (rtl, i);
9648 insert_float (elt, p);
9650 break;
9652 default:
9653 gcc_unreachable ();
9656 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9658 break;
9660 case CONST_STRING:
9661 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9662 break;
9664 case SYMBOL_REF:
9665 case LABEL_REF:
9666 case CONST:
9667 add_AT_addr (die, DW_AT_const_value, rtl);
9668 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9669 break;
9671 case PLUS:
9672 /* In cases where an inlined instance of an inline function is passed
9673 the address of an `auto' variable (which is local to the caller) we
9674 can get a situation where the DECL_RTL of the artificial local
9675 variable (for the inlining) which acts as a stand-in for the
9676 corresponding formal parameter (of the inline function) will look
9677 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9678 exactly a compile-time constant expression, but it isn't the address
9679 of the (artificial) local variable either. Rather, it represents the
9680 *value* which the artificial local variable always has during its
9681 lifetime. We currently have no way to represent such quasi-constant
9682 values in Dwarf, so for now we just punt and generate nothing. */
9683 break;
9685 default:
9686 /* No other kinds of rtx should be possible here. */
9687 gcc_unreachable ();
9692 static rtx
9693 rtl_for_decl_location (tree decl)
9695 rtx rtl;
9697 /* Here we have to decide where we are going to say the parameter "lives"
9698 (as far as the debugger is concerned). We only have a couple of
9699 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9701 DECL_RTL normally indicates where the parameter lives during most of the
9702 activation of the function. If optimization is enabled however, this
9703 could be either NULL or else a pseudo-reg. Both of those cases indicate
9704 that the parameter doesn't really live anywhere (as far as the code
9705 generation parts of GCC are concerned) during most of the function's
9706 activation. That will happen (for example) if the parameter is never
9707 referenced within the function.
9709 We could just generate a location descriptor here for all non-NULL
9710 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9711 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9712 where DECL_RTL is NULL or is a pseudo-reg.
9714 Note however that we can only get away with using DECL_INCOMING_RTL as
9715 a backup substitute for DECL_RTL in certain limited cases. In cases
9716 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9717 we can be sure that the parameter was passed using the same type as it is
9718 declared to have within the function, and that its DECL_INCOMING_RTL
9719 points us to a place where a value of that type is passed.
9721 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9722 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9723 because in these cases DECL_INCOMING_RTL points us to a value of some
9724 type which is *different* from the type of the parameter itself. Thus,
9725 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9726 such cases, the debugger would end up (for example) trying to fetch a
9727 `float' from a place which actually contains the first part of a
9728 `double'. That would lead to really incorrect and confusing
9729 output at debug-time.
9731 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9732 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9733 are a couple of exceptions however. On little-endian machines we can
9734 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9735 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9736 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9737 when (on a little-endian machine) a non-prototyped function has a
9738 parameter declared to be of type `short' or `char'. In such cases,
9739 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9740 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9741 passed `int' value. If the debugger then uses that address to fetch
9742 a `short' or a `char' (on a little-endian machine) the result will be
9743 the correct data, so we allow for such exceptional cases below.
9745 Note that our goal here is to describe the place where the given formal
9746 parameter lives during most of the function's activation (i.e. between the
9747 end of the prologue and the start of the epilogue). We'll do that as best
9748 as we can. Note however that if the given formal parameter is modified
9749 sometime during the execution of the function, then a stack backtrace (at
9750 debug-time) will show the function as having been called with the *new*
9751 value rather than the value which was originally passed in. This happens
9752 rarely enough that it is not a major problem, but it *is* a problem, and
9753 I'd like to fix it.
9755 A future version of dwarf2out.c may generate two additional attributes for
9756 any given DW_TAG_formal_parameter DIE which will describe the "passed
9757 type" and the "passed location" for the given formal parameter in addition
9758 to the attributes we now generate to indicate the "declared type" and the
9759 "active location" for each parameter. This additional set of attributes
9760 could be used by debuggers for stack backtraces. Separately, note that
9761 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9762 This happens (for example) for inlined-instances of inline function formal
9763 parameters which are never referenced. This really shouldn't be
9764 happening. All PARM_DECL nodes should get valid non-NULL
9765 DECL_INCOMING_RTL values. FIXME. */
9767 /* Use DECL_RTL as the "location" unless we find something better. */
9768 rtl = DECL_RTL_IF_SET (decl);
9770 /* When generating abstract instances, ignore everything except
9771 constants, symbols living in memory, and symbols living in
9772 fixed registers. */
9773 if (! reload_completed)
9775 if (rtl
9776 && (CONSTANT_P (rtl)
9777 || (MEM_P (rtl)
9778 && CONSTANT_P (XEXP (rtl, 0)))
9779 || (REG_P (rtl)
9780 && TREE_CODE (decl) == VAR_DECL
9781 && TREE_STATIC (decl))))
9783 rtl = targetm.delegitimize_address (rtl);
9784 return rtl;
9786 rtl = NULL_RTX;
9788 else if (TREE_CODE (decl) == PARM_DECL)
9790 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9792 tree declared_type = type_main_variant (TREE_TYPE (decl));
9793 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9795 /* This decl represents a formal parameter which was optimized out.
9796 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9797 all cases where (rtl == NULL_RTX) just below. */
9798 if (declared_type == passed_type)
9799 rtl = DECL_INCOMING_RTL (decl);
9800 else if (! BYTES_BIG_ENDIAN
9801 && TREE_CODE (declared_type) == INTEGER_TYPE
9802 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9803 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9804 rtl = DECL_INCOMING_RTL (decl);
9807 /* If the parm was passed in registers, but lives on the stack, then
9808 make a big endian correction if the mode of the type of the
9809 parameter is not the same as the mode of the rtl. */
9810 /* ??? This is the same series of checks that are made in dbxout.c before
9811 we reach the big endian correction code there. It isn't clear if all
9812 of these checks are necessary here, but keeping them all is the safe
9813 thing to do. */
9814 else if (MEM_P (rtl)
9815 && XEXP (rtl, 0) != const0_rtx
9816 && ! CONSTANT_P (XEXP (rtl, 0))
9817 /* Not passed in memory. */
9818 && !MEM_P (DECL_INCOMING_RTL (decl))
9819 /* Not passed by invisible reference. */
9820 && (!REG_P (XEXP (rtl, 0))
9821 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9822 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9823 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9824 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9825 #endif
9827 /* Big endian correction check. */
9828 && BYTES_BIG_ENDIAN
9829 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9830 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9831 < UNITS_PER_WORD))
9833 int offset = (UNITS_PER_WORD
9834 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9836 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9837 plus_constant (XEXP (rtl, 0), offset));
9840 else if (TREE_CODE (decl) == VAR_DECL
9841 && rtl
9842 && MEM_P (rtl)
9843 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9844 && BYTES_BIG_ENDIAN)
9846 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9847 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9849 /* If a variable is declared "register" yet is smaller than
9850 a register, then if we store the variable to memory, it
9851 looks like we're storing a register-sized value, when in
9852 fact we are not. We need to adjust the offset of the
9853 storage location to reflect the actual value's bytes,
9854 else gdb will not be able to display it. */
9855 if (rsize > dsize)
9856 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9857 plus_constant (XEXP (rtl, 0), rsize-dsize));
9860 if (rtl != NULL_RTX)
9862 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9863 #ifdef LEAF_REG_REMAP
9864 if (current_function_uses_only_leaf_regs)
9865 leaf_renumber_regs_insn (rtl);
9866 #endif
9869 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9870 and will have been substituted directly into all expressions that use it.
9871 C does not have such a concept, but C++ and other languages do. */
9872 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9874 /* If a variable is initialized with a string constant without embedded
9875 zeros, build CONST_STRING. */
9876 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9877 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9879 tree arrtype = TREE_TYPE (decl);
9880 tree enttype = TREE_TYPE (arrtype);
9881 tree domain = TYPE_DOMAIN (arrtype);
9882 tree init = DECL_INITIAL (decl);
9883 enum machine_mode mode = TYPE_MODE (enttype);
9885 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9886 && domain
9887 && integer_zerop (TYPE_MIN_VALUE (domain))
9888 && compare_tree_int (TYPE_MAX_VALUE (domain),
9889 TREE_STRING_LENGTH (init) - 1) == 0
9890 && ((size_t) TREE_STRING_LENGTH (init)
9891 == strlen (TREE_STRING_POINTER (init)) + 1))
9892 rtl = gen_rtx_CONST_STRING (VOIDmode,
9893 ggc_strdup (TREE_STRING_POINTER (init)));
9895 /* If the initializer is something that we know will expand into an
9896 immediate RTL constant, expand it now. Expanding anything else
9897 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9898 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9899 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9901 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9902 EXPAND_INITIALIZER);
9903 /* If expand_expr returns a MEM, it wasn't immediate. */
9904 gcc_assert (!rtl || !MEM_P (rtl));
9908 if (rtl)
9909 rtl = targetm.delegitimize_address (rtl);
9911 /* If we don't look past the constant pool, we risk emitting a
9912 reference to a constant pool entry that isn't referenced from
9913 code, and thus is not emitted. */
9914 if (rtl)
9915 rtl = avoid_constant_pool_reference (rtl);
9917 return rtl;
9920 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9921 data attribute for a variable or a parameter. We generate the
9922 DW_AT_const_value attribute only in those cases where the given variable
9923 or parameter does not have a true "location" either in memory or in a
9924 register. This can happen (for example) when a constant is passed as an
9925 actual argument in a call to an inline function. (It's possible that
9926 these things can crop up in other ways also.) Note that one type of
9927 constant value which can be passed into an inlined function is a constant
9928 pointer. This can happen for example if an actual argument in an inlined
9929 function call evaluates to a compile-time constant address. */
9931 static void
9932 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9933 enum dwarf_attribute attr)
9935 rtx rtl;
9936 dw_loc_descr_ref descr;
9937 var_loc_list *loc_list;
9939 if (TREE_CODE (decl) == ERROR_MARK)
9940 return;
9942 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
9943 || TREE_CODE (decl) == RESULT_DECL);
9945 /* See if we possibly have multiple locations for this variable. */
9946 loc_list = lookup_decl_loc (decl);
9948 /* If it truly has multiple locations, the first and last node will
9949 differ. */
9950 if (loc_list && loc_list->first != loc_list->last)
9952 const char *secname;
9953 const char *endname;
9954 dw_loc_list_ref list;
9955 rtx varloc;
9956 struct var_loc_node *node;
9958 /* We need to figure out what section we should use as the base
9959 for the address ranges where a given location is valid.
9960 1. If this particular DECL has a section associated with it,
9961 use that.
9962 2. If this function has a section associated with it, use
9963 that.
9964 3. Otherwise, use the text section.
9965 XXX: If you split a variable across multiple sections, this
9966 won't notice. */
9968 if (DECL_SECTION_NAME (decl))
9970 tree sectree = DECL_SECTION_NAME (decl);
9971 secname = TREE_STRING_POINTER (sectree);
9973 else if (current_function_decl
9974 && DECL_SECTION_NAME (current_function_decl))
9976 tree sectree = DECL_SECTION_NAME (current_function_decl);
9977 secname = TREE_STRING_POINTER (sectree);
9979 else
9980 secname = text_section_label;
9982 /* Now that we know what section we are using for a base,
9983 actually construct the list of locations.
9984 The first location information is what is passed to the
9985 function that creates the location list, and the remaining
9986 locations just get added on to that list.
9987 Note that we only know the start address for a location
9988 (IE location changes), so to build the range, we use
9989 the range [current location start, next location start].
9990 This means we have to special case the last node, and generate
9991 a range of [last location start, end of function label]. */
9993 node = loc_list->first;
9994 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9995 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9996 node->label, node->next->label, secname, 1);
9997 node = node->next;
9999 for (; node->next; node = node->next)
10000 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10002 /* The variable has a location between NODE->LABEL and
10003 NODE->NEXT->LABEL. */
10004 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10005 add_loc_descr_to_loc_list (&list,
10006 loc_descriptor (varloc,
10007 attr != DW_AT_frame_base),
10008 node->label, node->next->label, secname);
10011 /* If the variable has a location at the last label
10012 it keeps its location until the end of function. */
10013 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10015 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10017 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10018 if (!current_function_decl)
10019 endname = text_end_label;
10020 else
10022 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10023 current_function_funcdef_no);
10024 endname = ggc_strdup (label_id);
10026 add_loc_descr_to_loc_list (&list,
10027 loc_descriptor (varloc,
10028 attr != DW_AT_frame_base),
10029 node->label, endname, secname);
10032 /* Finally, add the location list to the DIE, and we are done. */
10033 add_AT_loc_list (die, attr, list);
10034 return;
10037 rtl = rtl_for_decl_location (decl);
10038 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10040 add_const_value_attribute (die, rtl);
10041 return;
10044 descr = loc_descriptor_from_tree (decl);
10045 if (descr)
10046 add_AT_location_description (die, attr, descr);
10049 /* If we don't have a copy of this variable in memory for some reason (such
10050 as a C++ member constant that doesn't have an out-of-line definition),
10051 we should tell the debugger about the constant value. */
10053 static void
10054 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10056 tree init = DECL_INITIAL (decl);
10057 tree type = TREE_TYPE (decl);
10059 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10060 && initializer_constant_valid_p (init, type) == null_pointer_node)
10061 /* OK */;
10062 else
10063 return;
10065 switch (TREE_CODE (type))
10067 case INTEGER_TYPE:
10068 if (host_integerp (init, 0))
10069 add_AT_unsigned (var_die, DW_AT_const_value,
10070 tree_low_cst (init, 0));
10071 else
10072 add_AT_long_long (var_die, DW_AT_const_value,
10073 TREE_INT_CST_HIGH (init),
10074 TREE_INT_CST_LOW (init));
10075 break;
10077 default:;
10081 /* Generate a DW_AT_name attribute given some string value to be included as
10082 the value of the attribute. */
10084 static void
10085 add_name_attribute (dw_die_ref die, const char *name_string)
10087 if (name_string != NULL && *name_string != 0)
10089 if (demangle_name_func)
10090 name_string = (*demangle_name_func) (name_string);
10092 add_AT_string (die, DW_AT_name, name_string);
10096 /* Generate a DW_AT_comp_dir attribute for DIE. */
10098 static void
10099 add_comp_dir_attribute (dw_die_ref die)
10101 const char *wd = get_src_pwd ();
10102 if (wd != NULL)
10103 add_AT_string (die, DW_AT_comp_dir, wd);
10106 /* Given a tree node describing an array bound (either lower or upper) output
10107 a representation for that bound. */
10109 static void
10110 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10112 switch (TREE_CODE (bound))
10114 case ERROR_MARK:
10115 return;
10117 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10118 case INTEGER_CST:
10119 if (! host_integerp (bound, 0)
10120 || (bound_attr == DW_AT_lower_bound
10121 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10122 || (is_fortran () && integer_onep (bound)))))
10123 /* Use the default. */
10125 else
10126 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10127 break;
10129 case CONVERT_EXPR:
10130 case NOP_EXPR:
10131 case NON_LVALUE_EXPR:
10132 case VIEW_CONVERT_EXPR:
10133 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10134 break;
10136 case SAVE_EXPR:
10137 break;
10139 case VAR_DECL:
10140 case PARM_DECL:
10141 case RESULT_DECL:
10143 dw_die_ref decl_die = lookup_decl_die (bound);
10145 /* ??? Can this happen, or should the variable have been bound
10146 first? Probably it can, since I imagine that we try to create
10147 the types of parameters in the order in which they exist in
10148 the list, and won't have created a forward reference to a
10149 later parameter. */
10150 if (decl_die != NULL)
10151 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10152 break;
10155 default:
10157 /* Otherwise try to create a stack operation procedure to
10158 evaluate the value of the array bound. */
10160 dw_die_ref ctx, decl_die;
10161 dw_loc_descr_ref loc;
10163 loc = loc_descriptor_from_tree (bound);
10164 if (loc == NULL)
10165 break;
10167 if (current_function_decl == 0)
10168 ctx = comp_unit_die;
10169 else
10170 ctx = lookup_decl_die (current_function_decl);
10172 decl_die = new_die (DW_TAG_variable, ctx, bound);
10173 add_AT_flag (decl_die, DW_AT_artificial, 1);
10174 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10175 add_AT_loc (decl_die, DW_AT_location, loc);
10177 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10178 break;
10183 /* Note that the block of subscript information for an array type also
10184 includes information about the element type of type given array type. */
10186 static void
10187 add_subscript_info (dw_die_ref type_die, tree type)
10189 #ifndef MIPS_DEBUGGING_INFO
10190 unsigned dimension_number;
10191 #endif
10192 tree lower, upper;
10193 dw_die_ref subrange_die;
10195 /* The GNU compilers represent multidimensional array types as sequences of
10196 one dimensional array types whose element types are themselves array
10197 types. Here we squish that down, so that each multidimensional array
10198 type gets only one array_type DIE in the Dwarf debugging info. The draft
10199 Dwarf specification say that we are allowed to do this kind of
10200 compression in C (because there is no difference between an array or
10201 arrays and a multidimensional array in C) but for other source languages
10202 (e.g. Ada) we probably shouldn't do this. */
10204 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10205 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10206 We work around this by disabling this feature. See also
10207 gen_array_type_die. */
10208 #ifndef MIPS_DEBUGGING_INFO
10209 for (dimension_number = 0;
10210 TREE_CODE (type) == ARRAY_TYPE;
10211 type = TREE_TYPE (type), dimension_number++)
10212 #endif
10214 tree domain = TYPE_DOMAIN (type);
10216 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10217 and (in GNU C only) variable bounds. Handle all three forms
10218 here. */
10219 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10220 if (domain)
10222 /* We have an array type with specified bounds. */
10223 lower = TYPE_MIN_VALUE (domain);
10224 upper = TYPE_MAX_VALUE (domain);
10226 /* Define the index type. */
10227 if (TREE_TYPE (domain))
10229 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10230 TREE_TYPE field. We can't emit debug info for this
10231 because it is an unnamed integral type. */
10232 if (TREE_CODE (domain) == INTEGER_TYPE
10233 && TYPE_NAME (domain) == NULL_TREE
10234 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10235 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10237 else
10238 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10239 type_die);
10242 /* ??? If upper is NULL, the array has unspecified length,
10243 but it does have a lower bound. This happens with Fortran
10244 dimension arr(N:*)
10245 Since the debugger is definitely going to need to know N
10246 to produce useful results, go ahead and output the lower
10247 bound solo, and hope the debugger can cope. */
10249 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10250 if (upper)
10251 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10254 /* Otherwise we have an array type with an unspecified length. The
10255 DWARF-2 spec does not say how to handle this; let's just leave out the
10256 bounds. */
10260 static void
10261 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10263 unsigned size;
10265 switch (TREE_CODE (tree_node))
10267 case ERROR_MARK:
10268 size = 0;
10269 break;
10270 case ENUMERAL_TYPE:
10271 case RECORD_TYPE:
10272 case UNION_TYPE:
10273 case QUAL_UNION_TYPE:
10274 size = int_size_in_bytes (tree_node);
10275 break;
10276 case FIELD_DECL:
10277 /* For a data member of a struct or union, the DW_AT_byte_size is
10278 generally given as the number of bytes normally allocated for an
10279 object of the *declared* type of the member itself. This is true
10280 even for bit-fields. */
10281 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10282 break;
10283 default:
10284 gcc_unreachable ();
10287 /* Note that `size' might be -1 when we get to this point. If it is, that
10288 indicates that the byte size of the entity in question is variable. We
10289 have no good way of expressing this fact in Dwarf at the present time,
10290 so just let the -1 pass on through. */
10291 add_AT_unsigned (die, DW_AT_byte_size, size);
10294 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10295 which specifies the distance in bits from the highest order bit of the
10296 "containing object" for the bit-field to the highest order bit of the
10297 bit-field itself.
10299 For any given bit-field, the "containing object" is a hypothetical object
10300 (of some integral or enum type) within which the given bit-field lives. The
10301 type of this hypothetical "containing object" is always the same as the
10302 declared type of the individual bit-field itself. The determination of the
10303 exact location of the "containing object" for a bit-field is rather
10304 complicated. It's handled by the `field_byte_offset' function (above).
10306 Note that it is the size (in bytes) of the hypothetical "containing object"
10307 which will be given in the DW_AT_byte_size attribute for this bit-field.
10308 (See `byte_size_attribute' above). */
10310 static inline void
10311 add_bit_offset_attribute (dw_die_ref die, tree decl)
10313 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10314 tree type = DECL_BIT_FIELD_TYPE (decl);
10315 HOST_WIDE_INT bitpos_int;
10316 HOST_WIDE_INT highest_order_object_bit_offset;
10317 HOST_WIDE_INT highest_order_field_bit_offset;
10318 HOST_WIDE_INT unsigned bit_offset;
10320 /* Must be a field and a bit field. */
10321 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10323 /* We can't yet handle bit-fields whose offsets are variable, so if we
10324 encounter such things, just return without generating any attribute
10325 whatsoever. Likewise for variable or too large size. */
10326 if (! host_integerp (bit_position (decl), 0)
10327 || ! host_integerp (DECL_SIZE (decl), 1))
10328 return;
10330 bitpos_int = int_bit_position (decl);
10332 /* Note that the bit offset is always the distance (in bits) from the
10333 highest-order bit of the "containing object" to the highest-order bit of
10334 the bit-field itself. Since the "high-order end" of any object or field
10335 is different on big-endian and little-endian machines, the computation
10336 below must take account of these differences. */
10337 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10338 highest_order_field_bit_offset = bitpos_int;
10340 if (! BYTES_BIG_ENDIAN)
10342 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10343 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10346 bit_offset
10347 = (! BYTES_BIG_ENDIAN
10348 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10349 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10351 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10354 /* For a FIELD_DECL node which represents a bit field, output an attribute
10355 which specifies the length in bits of the given field. */
10357 static inline void
10358 add_bit_size_attribute (dw_die_ref die, tree decl)
10360 /* Must be a field and a bit field. */
10361 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10362 && DECL_BIT_FIELD_TYPE (decl));
10364 if (host_integerp (DECL_SIZE (decl), 1))
10365 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10368 /* If the compiled language is ANSI C, then add a 'prototyped'
10369 attribute, if arg types are given for the parameters of a function. */
10371 static inline void
10372 add_prototyped_attribute (dw_die_ref die, tree func_type)
10374 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10375 && TYPE_ARG_TYPES (func_type) != NULL)
10376 add_AT_flag (die, DW_AT_prototyped, 1);
10379 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10380 by looking in either the type declaration or object declaration
10381 equate table. */
10383 static inline void
10384 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10386 dw_die_ref origin_die = NULL;
10388 if (TREE_CODE (origin) != FUNCTION_DECL)
10390 /* We may have gotten separated from the block for the inlined
10391 function, if we're in an exception handler or some such; make
10392 sure that the abstract function has been written out.
10394 Doing this for nested functions is wrong, however; functions are
10395 distinct units, and our context might not even be inline. */
10396 tree fn = origin;
10398 if (TYPE_P (fn))
10399 fn = TYPE_STUB_DECL (fn);
10401 fn = decl_function_context (fn);
10402 if (fn)
10403 dwarf2out_abstract_function (fn);
10406 if (DECL_P (origin))
10407 origin_die = lookup_decl_die (origin);
10408 else if (TYPE_P (origin))
10409 origin_die = lookup_type_die (origin);
10411 gcc_assert (origin_die);
10413 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10416 /* We do not currently support the pure_virtual attribute. */
10418 static inline void
10419 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10421 if (DECL_VINDEX (func_decl))
10423 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10425 if (host_integerp (DECL_VINDEX (func_decl), 0))
10426 add_AT_loc (die, DW_AT_vtable_elem_location,
10427 new_loc_descr (DW_OP_constu,
10428 tree_low_cst (DECL_VINDEX (func_decl), 0),
10429 0));
10431 /* GNU extension: Record what type this method came from originally. */
10432 if (debug_info_level > DINFO_LEVEL_TERSE)
10433 add_AT_die_ref (die, DW_AT_containing_type,
10434 lookup_type_die (DECL_CONTEXT (func_decl)));
10438 /* Add source coordinate attributes for the given decl. */
10440 static void
10441 add_src_coords_attributes (dw_die_ref die, tree decl)
10443 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10444 unsigned file_index = lookup_filename (s.file);
10446 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10447 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10450 /* Add a DW_AT_name attribute and source coordinate attribute for the
10451 given decl, but only if it actually has a name. */
10453 static void
10454 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10456 tree decl_name;
10458 decl_name = DECL_NAME (decl);
10459 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10461 add_name_attribute (die, dwarf2_name (decl, 0));
10462 if (! DECL_ARTIFICIAL (decl))
10463 add_src_coords_attributes (die, decl);
10465 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10466 && TREE_PUBLIC (decl)
10467 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10468 && !DECL_ABSTRACT (decl))
10469 add_AT_string (die, DW_AT_MIPS_linkage_name,
10470 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10473 #ifdef VMS_DEBUGGING_INFO
10474 /* Get the function's name, as described by its RTL. This may be different
10475 from the DECL_NAME name used in the source file. */
10476 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10478 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10479 XEXP (DECL_RTL (decl), 0));
10480 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10482 #endif
10485 /* Push a new declaration scope. */
10487 static void
10488 push_decl_scope (tree scope)
10490 VARRAY_PUSH_TREE (decl_scope_table, scope);
10493 /* Pop a declaration scope. */
10495 static inline void
10496 pop_decl_scope (void)
10498 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10500 VARRAY_POP (decl_scope_table);
10503 /* Return the DIE for the scope that immediately contains this type.
10504 Non-named types get global scope. Named types nested in other
10505 types get their containing scope if it's open, or global scope
10506 otherwise. All other types (i.e. function-local named types) get
10507 the current active scope. */
10509 static dw_die_ref
10510 scope_die_for (tree t, dw_die_ref context_die)
10512 dw_die_ref scope_die = NULL;
10513 tree containing_scope;
10514 int i;
10516 /* Non-types always go in the current scope. */
10517 gcc_assert (TYPE_P (t));
10519 containing_scope = TYPE_CONTEXT (t);
10521 /* Use the containing namespace if it was passed in (for a declaration). */
10522 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10524 if (context_die == lookup_decl_die (containing_scope))
10525 /* OK */;
10526 else
10527 containing_scope = NULL_TREE;
10530 /* Ignore function type "scopes" from the C frontend. They mean that
10531 a tagged type is local to a parmlist of a function declarator, but
10532 that isn't useful to DWARF. */
10533 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10534 containing_scope = NULL_TREE;
10536 if (containing_scope == NULL_TREE)
10537 scope_die = comp_unit_die;
10538 else if (TYPE_P (containing_scope))
10540 /* For types, we can just look up the appropriate DIE. But
10541 first we check to see if we're in the middle of emitting it
10542 so we know where the new DIE should go. */
10543 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10544 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10545 break;
10547 if (i < 0)
10549 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10550 || TREE_ASM_WRITTEN (containing_scope));
10552 /* If none of the current dies are suitable, we get file scope. */
10553 scope_die = comp_unit_die;
10555 else
10556 scope_die = lookup_type_die (containing_scope);
10558 else
10559 scope_die = context_die;
10561 return scope_die;
10564 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10566 static inline int
10567 local_scope_p (dw_die_ref context_die)
10569 for (; context_die; context_die = context_die->die_parent)
10570 if (context_die->die_tag == DW_TAG_inlined_subroutine
10571 || context_die->die_tag == DW_TAG_subprogram)
10572 return 1;
10574 return 0;
10577 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10578 whether or not to treat a DIE in this context as a declaration. */
10580 static inline int
10581 class_or_namespace_scope_p (dw_die_ref context_die)
10583 return (context_die
10584 && (context_die->die_tag == DW_TAG_structure_type
10585 || context_die->die_tag == DW_TAG_union_type
10586 || context_die->die_tag == DW_TAG_namespace));
10589 /* Many forms of DIEs require a "type description" attribute. This
10590 routine locates the proper "type descriptor" die for the type given
10591 by 'type', and adds a DW_AT_type attribute below the given die. */
10593 static void
10594 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10595 int decl_volatile, dw_die_ref context_die)
10597 enum tree_code code = TREE_CODE (type);
10598 dw_die_ref type_die = NULL;
10600 /* ??? If this type is an unnamed subrange type of an integral or
10601 floating-point type, use the inner type. This is because we have no
10602 support for unnamed types in base_type_die. This can happen if this is
10603 an Ada subrange type. Correct solution is emit a subrange type die. */
10604 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10605 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10606 type = TREE_TYPE (type), code = TREE_CODE (type);
10608 if (code == ERROR_MARK
10609 /* Handle a special case. For functions whose return type is void, we
10610 generate *no* type attribute. (Note that no object may have type
10611 `void', so this only applies to function return types). */
10612 || code == VOID_TYPE)
10613 return;
10615 type_die = modified_type_die (type,
10616 decl_const || TYPE_READONLY (type),
10617 decl_volatile || TYPE_VOLATILE (type),
10618 context_die);
10620 if (type_die != NULL)
10621 add_AT_die_ref (object_die, DW_AT_type, type_die);
10624 /* Given a tree pointer to a struct, class, union, or enum type node, return
10625 a pointer to the (string) tag name for the given type, or zero if the type
10626 was declared without a tag. */
10628 static const char *
10629 type_tag (tree type)
10631 const char *name = 0;
10633 if (TYPE_NAME (type) != 0)
10635 tree t = 0;
10637 /* Find the IDENTIFIER_NODE for the type name. */
10638 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10639 t = TYPE_NAME (type);
10641 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10642 a TYPE_DECL node, regardless of whether or not a `typedef' was
10643 involved. */
10644 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10645 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10646 t = DECL_NAME (TYPE_NAME (type));
10648 /* Now get the name as a string, or invent one. */
10649 if (t != 0)
10650 name = IDENTIFIER_POINTER (t);
10653 return (name == 0 || *name == '\0') ? 0 : name;
10656 /* Return the type associated with a data member, make a special check
10657 for bit field types. */
10659 static inline tree
10660 member_declared_type (tree member)
10662 return (DECL_BIT_FIELD_TYPE (member)
10663 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10666 /* Get the decl's label, as described by its RTL. This may be different
10667 from the DECL_NAME name used in the source file. */
10669 #if 0
10670 static const char *
10671 decl_start_label (tree decl)
10673 rtx x;
10674 const char *fnname;
10676 x = DECL_RTL (decl);
10677 gcc_assert (MEM_P (x));
10679 x = XEXP (x, 0);
10680 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10682 fnname = XSTR (x, 0);
10683 return fnname;
10685 #endif
10687 /* These routines generate the internal representation of the DIE's for
10688 the compilation unit. Debugging information is collected by walking
10689 the declaration trees passed in from dwarf2out_decl(). */
10691 static void
10692 gen_array_type_die (tree type, dw_die_ref context_die)
10694 dw_die_ref scope_die = scope_die_for (type, context_die);
10695 dw_die_ref array_die;
10696 tree element_type;
10698 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10699 the inner array type comes before the outer array type. Thus we must
10700 call gen_type_die before we call new_die. See below also. */
10701 #ifdef MIPS_DEBUGGING_INFO
10702 gen_type_die (TREE_TYPE (type), context_die);
10703 #endif
10705 array_die = new_die (DW_TAG_array_type, scope_die, type);
10706 add_name_attribute (array_die, type_tag (type));
10707 equate_type_number_to_die (type, array_die);
10709 if (TREE_CODE (type) == VECTOR_TYPE)
10711 /* The frontend feeds us a representation for the vector as a struct
10712 containing an array. Pull out the array type. */
10713 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10714 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10717 #if 0
10718 /* We default the array ordering. SDB will probably do
10719 the right things even if DW_AT_ordering is not present. It's not even
10720 an issue until we start to get into multidimensional arrays anyway. If
10721 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10722 then we'll have to put the DW_AT_ordering attribute back in. (But if
10723 and when we find out that we need to put these in, we will only do so
10724 for multidimensional arrays. */
10725 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10726 #endif
10728 #ifdef MIPS_DEBUGGING_INFO
10729 /* The SGI compilers handle arrays of unknown bound by setting
10730 AT_declaration and not emitting any subrange DIEs. */
10731 if (! TYPE_DOMAIN (type))
10732 add_AT_flag (array_die, DW_AT_declaration, 1);
10733 else
10734 #endif
10735 add_subscript_info (array_die, type);
10737 /* Add representation of the type of the elements of this array type. */
10738 element_type = TREE_TYPE (type);
10740 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10741 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10742 We work around this by disabling this feature. See also
10743 add_subscript_info. */
10744 #ifndef MIPS_DEBUGGING_INFO
10745 while (TREE_CODE (element_type) == ARRAY_TYPE)
10746 element_type = TREE_TYPE (element_type);
10748 gen_type_die (element_type, context_die);
10749 #endif
10751 add_type_attribute (array_die, element_type, 0, 0, context_die);
10754 static void
10755 gen_set_type_die (tree type, dw_die_ref context_die)
10757 dw_die_ref type_die
10758 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10760 equate_type_number_to_die (type, type_die);
10761 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10764 #if 0
10765 static void
10766 gen_entry_point_die (tree decl, dw_die_ref context_die)
10768 tree origin = decl_ultimate_origin (decl);
10769 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10771 if (origin != NULL)
10772 add_abstract_origin_attribute (decl_die, origin);
10773 else
10775 add_name_and_src_coords_attributes (decl_die, decl);
10776 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10777 0, 0, context_die);
10780 if (DECL_ABSTRACT (decl))
10781 equate_decl_number_to_die (decl, decl_die);
10782 else
10783 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10785 #endif
10787 /* Walk through the list of incomplete types again, trying once more to
10788 emit full debugging info for them. */
10790 static void
10791 retry_incomplete_types (void)
10793 int i;
10795 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10796 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10799 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10801 static void
10802 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10804 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10806 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10807 be incomplete and such types are not marked. */
10808 add_abstract_origin_attribute (type_die, type);
10811 /* Generate a DIE to represent an inlined instance of a structure type. */
10813 static void
10814 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10816 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10818 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10819 be incomplete and such types are not marked. */
10820 add_abstract_origin_attribute (type_die, type);
10823 /* Generate a DIE to represent an inlined instance of a union type. */
10825 static void
10826 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10828 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10830 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10831 be incomplete and such types are not marked. */
10832 add_abstract_origin_attribute (type_die, type);
10835 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10836 include all of the information about the enumeration values also. Each
10837 enumerated type name/value is listed as a child of the enumerated type
10838 DIE. */
10840 static dw_die_ref
10841 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10843 dw_die_ref type_die = lookup_type_die (type);
10845 if (type_die == NULL)
10847 type_die = new_die (DW_TAG_enumeration_type,
10848 scope_die_for (type, context_die), type);
10849 equate_type_number_to_die (type, type_die);
10850 add_name_attribute (type_die, type_tag (type));
10852 else if (! TYPE_SIZE (type))
10853 return type_die;
10854 else
10855 remove_AT (type_die, DW_AT_declaration);
10857 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10858 given enum type is incomplete, do not generate the DW_AT_byte_size
10859 attribute or the DW_AT_element_list attribute. */
10860 if (TYPE_SIZE (type))
10862 tree link;
10864 TREE_ASM_WRITTEN (type) = 1;
10865 add_byte_size_attribute (type_die, type);
10866 if (TYPE_STUB_DECL (type) != NULL_TREE)
10867 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10869 /* If the first reference to this type was as the return type of an
10870 inline function, then it may not have a parent. Fix this now. */
10871 if (type_die->die_parent == NULL)
10872 add_child_die (scope_die_for (type, context_die), type_die);
10874 for (link = TYPE_VALUES (type);
10875 link != NULL; link = TREE_CHAIN (link))
10877 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10878 tree value = TREE_VALUE (link);
10880 add_name_attribute (enum_die,
10881 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10883 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10884 /* DWARF2 does not provide a way of indicating whether or
10885 not enumeration constants are signed or unsigned. GDB
10886 always assumes the values are signed, so we output all
10887 values as if they were signed. That means that
10888 enumeration constants with very large unsigned values
10889 will appear to have negative values in the debugger. */
10890 add_AT_int (enum_die, DW_AT_const_value,
10891 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10894 else
10895 add_AT_flag (type_die, DW_AT_declaration, 1);
10897 return type_die;
10900 /* Generate a DIE to represent either a real live formal parameter decl or to
10901 represent just the type of some formal parameter position in some function
10902 type.
10904 Note that this routine is a bit unusual because its argument may be a
10905 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10906 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10907 node. If it's the former then this function is being called to output a
10908 DIE to represent a formal parameter object (or some inlining thereof). If
10909 it's the latter, then this function is only being called to output a
10910 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10911 argument type of some subprogram type. */
10913 static dw_die_ref
10914 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10916 dw_die_ref parm_die
10917 = new_die (DW_TAG_formal_parameter, context_die, node);
10918 tree origin;
10920 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10922 case tcc_declaration:
10923 origin = decl_ultimate_origin (node);
10924 if (origin != NULL)
10925 add_abstract_origin_attribute (parm_die, origin);
10926 else
10928 add_name_and_src_coords_attributes (parm_die, node);
10929 add_type_attribute (parm_die, TREE_TYPE (node),
10930 TREE_READONLY (node),
10931 TREE_THIS_VOLATILE (node),
10932 context_die);
10933 if (DECL_ARTIFICIAL (node))
10934 add_AT_flag (parm_die, DW_AT_artificial, 1);
10937 equate_decl_number_to_die (node, parm_die);
10938 if (! DECL_ABSTRACT (node))
10939 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10941 break;
10943 case tcc_type:
10944 /* We were called with some kind of a ..._TYPE node. */
10945 add_type_attribute (parm_die, node, 0, 0, context_die);
10946 break;
10948 default:
10949 gcc_unreachable ();
10952 return parm_die;
10955 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10956 at the end of an (ANSI prototyped) formal parameters list. */
10958 static void
10959 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10961 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10964 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10965 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10966 parameters as specified in some function type specification (except for
10967 those which appear as part of a function *definition*). */
10969 static void
10970 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10972 tree link;
10973 tree formal_type = NULL;
10974 tree first_parm_type;
10975 tree arg;
10977 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10979 arg = DECL_ARGUMENTS (function_or_method_type);
10980 function_or_method_type = TREE_TYPE (function_or_method_type);
10982 else
10983 arg = NULL_TREE;
10985 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10987 /* Make our first pass over the list of formal parameter types and output a
10988 DW_TAG_formal_parameter DIE for each one. */
10989 for (link = first_parm_type; link; )
10991 dw_die_ref parm_die;
10993 formal_type = TREE_VALUE (link);
10994 if (formal_type == void_type_node)
10995 break;
10997 /* Output a (nameless) DIE to represent the formal parameter itself. */
10998 parm_die = gen_formal_parameter_die (formal_type, context_die);
10999 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11000 && link == first_parm_type)
11001 || (arg && DECL_ARTIFICIAL (arg)))
11002 add_AT_flag (parm_die, DW_AT_artificial, 1);
11004 link = TREE_CHAIN (link);
11005 if (arg)
11006 arg = TREE_CHAIN (arg);
11009 /* If this function type has an ellipsis, add a
11010 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11011 if (formal_type != void_type_node)
11012 gen_unspecified_parameters_die (function_or_method_type, context_die);
11014 /* Make our second (and final) pass over the list of formal parameter types
11015 and output DIEs to represent those types (as necessary). */
11016 for (link = TYPE_ARG_TYPES (function_or_method_type);
11017 link && TREE_VALUE (link);
11018 link = TREE_CHAIN (link))
11019 gen_type_die (TREE_VALUE (link), context_die);
11022 /* We want to generate the DIE for TYPE so that we can generate the
11023 die for MEMBER, which has been defined; we will need to refer back
11024 to the member declaration nested within TYPE. If we're trying to
11025 generate minimal debug info for TYPE, processing TYPE won't do the
11026 trick; we need to attach the member declaration by hand. */
11028 static void
11029 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11031 gen_type_die (type, context_die);
11033 /* If we're trying to avoid duplicate debug info, we may not have
11034 emitted the member decl for this function. Emit it now. */
11035 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11036 && ! lookup_decl_die (member))
11038 gcc_assert (!decl_ultimate_origin (member));
11040 push_decl_scope (type);
11041 if (TREE_CODE (member) == FUNCTION_DECL)
11042 gen_subprogram_die (member, lookup_type_die (type));
11043 else
11044 gen_variable_die (member, lookup_type_die (type));
11046 pop_decl_scope ();
11050 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11051 may later generate inlined and/or out-of-line instances of. */
11053 static void
11054 dwarf2out_abstract_function (tree decl)
11056 dw_die_ref old_die;
11057 tree save_fn;
11058 tree context;
11059 int was_abstract = DECL_ABSTRACT (decl);
11061 /* Make sure we have the actual abstract inline, not a clone. */
11062 decl = DECL_ORIGIN (decl);
11064 old_die = lookup_decl_die (decl);
11065 if (old_die && get_AT (old_die, DW_AT_inline))
11066 /* We've already generated the abstract instance. */
11067 return;
11069 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11070 we don't get confused by DECL_ABSTRACT. */
11071 if (debug_info_level > DINFO_LEVEL_TERSE)
11073 context = decl_class_context (decl);
11074 if (context)
11075 gen_type_die_for_member
11076 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11079 /* Pretend we've just finished compiling this function. */
11080 save_fn = current_function_decl;
11081 current_function_decl = decl;
11083 set_decl_abstract_flags (decl, 1);
11084 dwarf2out_decl (decl);
11085 if (! was_abstract)
11086 set_decl_abstract_flags (decl, 0);
11088 current_function_decl = save_fn;
11091 /* Generate a DIE to represent a declared function (either file-scope or
11092 block-local). */
11094 static void
11095 gen_subprogram_die (tree decl, dw_die_ref context_die)
11097 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11098 tree origin = decl_ultimate_origin (decl);
11099 dw_die_ref subr_die;
11100 rtx fp_reg;
11101 tree fn_arg_types;
11102 tree outer_scope;
11103 dw_die_ref old_die = lookup_decl_die (decl);
11104 int declaration = (current_function_decl != decl
11105 || class_or_namespace_scope_p (context_die));
11107 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11108 started to generate the abstract instance of an inline, decided to output
11109 its containing class, and proceeded to emit the declaration of the inline
11110 from the member list for the class. If so, DECLARATION takes priority;
11111 we'll get back to the abstract instance when done with the class. */
11113 /* The class-scope declaration DIE must be the primary DIE. */
11114 if (origin && declaration && class_or_namespace_scope_p (context_die))
11116 origin = NULL;
11117 gcc_assert (!old_die);
11120 if (origin != NULL)
11122 gcc_assert (!declaration || local_scope_p (context_die));
11124 /* Fixup die_parent for the abstract instance of a nested
11125 inline function. */
11126 if (old_die && old_die->die_parent == NULL)
11127 add_child_die (context_die, old_die);
11129 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11130 add_abstract_origin_attribute (subr_die, origin);
11132 else if (old_die)
11134 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11135 unsigned file_index = lookup_filename (s.file);
11137 if (!get_AT_flag (old_die, DW_AT_declaration)
11138 /* We can have a normal definition following an inline one in the
11139 case of redefinition of GNU C extern inlines.
11140 It seems reasonable to use AT_specification in this case. */
11141 && !get_AT (old_die, DW_AT_inline))
11143 /* ??? This can happen if there is a bug in the program, for
11144 instance, if it has duplicate function definitions. Ideally,
11145 we should detect this case and ignore it. For now, if we have
11146 already reported an error, any error at all, then assume that
11147 we got here because of an input error, not a dwarf2 bug. */
11148 gcc_assert (errorcount);
11149 return;
11152 /* If the definition comes from the same place as the declaration,
11153 maybe use the old DIE. We always want the DIE for this function
11154 that has the *_pc attributes to be under comp_unit_die so the
11155 debugger can find it. We also need to do this for abstract
11156 instances of inlines, since the spec requires the out-of-line copy
11157 to have the same parent. For local class methods, this doesn't
11158 apply; we just use the old DIE. */
11159 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11160 && (DECL_ARTIFICIAL (decl)
11161 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11162 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11163 == (unsigned) s.line))))
11165 subr_die = old_die;
11167 /* Clear out the declaration attribute and the formal parameters.
11168 Do not remove all children, because it is possible that this
11169 declaration die was forced using force_decl_die(). In such
11170 cases die that forced declaration die (e.g. TAG_imported_module)
11171 is one of the children that we do not want to remove. */
11172 remove_AT (subr_die, DW_AT_declaration);
11173 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11175 else
11177 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11178 add_AT_specification (subr_die, old_die);
11179 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11180 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11181 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11182 != (unsigned) s.line)
11183 add_AT_unsigned
11184 (subr_die, DW_AT_decl_line, s.line);
11187 else
11189 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11191 if (TREE_PUBLIC (decl))
11192 add_AT_flag (subr_die, DW_AT_external, 1);
11194 add_name_and_src_coords_attributes (subr_die, decl);
11195 if (debug_info_level > DINFO_LEVEL_TERSE)
11197 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11198 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11199 0, 0, context_die);
11202 add_pure_or_virtual_attribute (subr_die, decl);
11203 if (DECL_ARTIFICIAL (decl))
11204 add_AT_flag (subr_die, DW_AT_artificial, 1);
11206 if (TREE_PROTECTED (decl))
11207 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11208 else if (TREE_PRIVATE (decl))
11209 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11212 if (declaration)
11214 if (!old_die || !get_AT (old_die, DW_AT_inline))
11216 add_AT_flag (subr_die, DW_AT_declaration, 1);
11218 /* The first time we see a member function, it is in the context of
11219 the class to which it belongs. We make sure of this by emitting
11220 the class first. The next time is the definition, which is
11221 handled above. The two may come from the same source text.
11223 Note that force_decl_die() forces function declaration die. It is
11224 later reused to represent definition. */
11225 equate_decl_number_to_die (decl, subr_die);
11228 else if (DECL_ABSTRACT (decl))
11230 if (DECL_DECLARED_INLINE_P (decl))
11232 if (cgraph_function_possibly_inlined_p (decl))
11233 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11234 else
11235 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11237 else
11239 if (cgraph_function_possibly_inlined_p (decl))
11240 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11241 else
11242 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11245 equate_decl_number_to_die (decl, subr_die);
11247 else if (!DECL_EXTERNAL (decl))
11249 if (!old_die || !get_AT (old_die, DW_AT_inline))
11250 equate_decl_number_to_die (decl, subr_die);
11252 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11253 current_function_funcdef_no);
11254 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11255 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11256 current_function_funcdef_no);
11257 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11259 add_pubname (decl, subr_die);
11260 add_arange (decl, subr_die);
11262 #ifdef MIPS_DEBUGGING_INFO
11263 /* Add a reference to the FDE for this routine. */
11264 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11265 #endif
11267 /* Define the "frame base" location for this routine. We use the
11268 frame pointer or stack pointer registers, since the RTL for local
11269 variables is relative to one of them. */
11270 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11272 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11273 DW_AT_frame_base);
11275 else
11277 fp_reg
11278 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11279 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11282 if (cfun->static_chain_decl)
11283 add_AT_location_description (subr_die, DW_AT_static_link,
11284 loc_descriptor_from_tree (cfun->static_chain_decl));
11287 /* Now output descriptions of the arguments for this function. This gets
11288 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11289 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11290 `...' at the end of the formal parameter list. In order to find out if
11291 there was a trailing ellipsis or not, we must instead look at the type
11292 associated with the FUNCTION_DECL. This will be a node of type
11293 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11294 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11295 an ellipsis at the end. */
11297 /* In the case where we are describing a mere function declaration, all we
11298 need to do here (and all we *can* do here) is to describe the *types* of
11299 its formal parameters. */
11300 if (debug_info_level <= DINFO_LEVEL_TERSE)
11302 else if (declaration)
11303 gen_formal_types_die (decl, subr_die);
11304 else
11306 /* Generate DIEs to represent all known formal parameters. */
11307 tree arg_decls = DECL_ARGUMENTS (decl);
11308 tree parm;
11310 /* When generating DIEs, generate the unspecified_parameters DIE
11311 instead if we come across the arg "__builtin_va_alist" */
11312 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11313 if (TREE_CODE (parm) == PARM_DECL)
11315 if (DECL_NAME (parm)
11316 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11317 "__builtin_va_alist"))
11318 gen_unspecified_parameters_die (parm, subr_die);
11319 else
11320 gen_decl_die (parm, subr_die);
11323 /* Decide whether we need an unspecified_parameters DIE at the end.
11324 There are 2 more cases to do this for: 1) the ansi ... declaration -
11325 this is detectable when the end of the arg list is not a
11326 void_type_node 2) an unprototyped function declaration (not a
11327 definition). This just means that we have no info about the
11328 parameters at all. */
11329 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11330 if (fn_arg_types != NULL)
11332 /* This is the prototyped case, check for.... */
11333 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11334 gen_unspecified_parameters_die (decl, subr_die);
11336 else if (DECL_INITIAL (decl) == NULL_TREE)
11337 gen_unspecified_parameters_die (decl, subr_die);
11340 /* Output Dwarf info for all of the stuff within the body of the function
11341 (if it has one - it may be just a declaration). */
11342 outer_scope = DECL_INITIAL (decl);
11344 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11345 a function. This BLOCK actually represents the outermost binding contour
11346 for the function, i.e. the contour in which the function's formal
11347 parameters and labels get declared. Curiously, it appears that the front
11348 end doesn't actually put the PARM_DECL nodes for the current function onto
11349 the BLOCK_VARS list for this outer scope, but are strung off of the
11350 DECL_ARGUMENTS list for the function instead.
11352 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11353 the LABEL_DECL nodes for the function however, and we output DWARF info
11354 for those in decls_for_scope. Just within the `outer_scope' there will be
11355 a BLOCK node representing the function's outermost pair of curly braces,
11356 and any blocks used for the base and member initializers of a C++
11357 constructor function. */
11358 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11360 /* Emit a DW_TAG_variable DIE for a named return value. */
11361 if (DECL_NAME (DECL_RESULT (decl)))
11362 gen_decl_die (DECL_RESULT (decl), subr_die);
11364 current_function_has_inlines = 0;
11365 decls_for_scope (outer_scope, subr_die, 0);
11367 #if 0 && defined (MIPS_DEBUGGING_INFO)
11368 if (current_function_has_inlines)
11370 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11371 if (! comp_unit_has_inlines)
11373 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11374 comp_unit_has_inlines = 1;
11377 #endif
11381 /* Generate a DIE to represent a declared data object. */
11383 static void
11384 gen_variable_die (tree decl, dw_die_ref context_die)
11386 tree origin = decl_ultimate_origin (decl);
11387 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11389 dw_die_ref old_die = lookup_decl_die (decl);
11390 int declaration = (DECL_EXTERNAL (decl)
11391 || class_or_namespace_scope_p (context_die));
11393 if (origin != NULL)
11394 add_abstract_origin_attribute (var_die, origin);
11396 /* Loop unrolling can create multiple blocks that refer to the same
11397 static variable, so we must test for the DW_AT_declaration flag.
11399 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11400 copy decls and set the DECL_ABSTRACT flag on them instead of
11401 sharing them.
11403 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11404 else if (old_die && TREE_STATIC (decl)
11405 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11407 /* This is a definition of a C++ class level static. */
11408 add_AT_specification (var_die, old_die);
11409 if (DECL_NAME (decl))
11411 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11412 unsigned file_index = lookup_filename (s.file);
11414 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11415 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11417 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11418 != (unsigned) s.line)
11420 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11423 else
11425 add_name_and_src_coords_attributes (var_die, decl);
11426 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11427 TREE_THIS_VOLATILE (decl), context_die);
11429 if (TREE_PUBLIC (decl))
11430 add_AT_flag (var_die, DW_AT_external, 1);
11432 if (DECL_ARTIFICIAL (decl))
11433 add_AT_flag (var_die, DW_AT_artificial, 1);
11435 if (TREE_PROTECTED (decl))
11436 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11437 else if (TREE_PRIVATE (decl))
11438 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11441 if (declaration)
11442 add_AT_flag (var_die, DW_AT_declaration, 1);
11444 if (DECL_ABSTRACT (decl) || declaration)
11445 equate_decl_number_to_die (decl, var_die);
11447 if (! declaration && ! DECL_ABSTRACT (decl))
11449 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11450 add_pubname (decl, var_die);
11452 else
11453 tree_add_const_value_attribute (var_die, decl);
11456 /* Generate a DIE to represent a label identifier. */
11458 static void
11459 gen_label_die (tree decl, dw_die_ref context_die)
11461 tree origin = decl_ultimate_origin (decl);
11462 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11463 rtx insn;
11464 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11466 if (origin != NULL)
11467 add_abstract_origin_attribute (lbl_die, origin);
11468 else
11469 add_name_and_src_coords_attributes (lbl_die, decl);
11471 if (DECL_ABSTRACT (decl))
11472 equate_decl_number_to_die (decl, lbl_die);
11473 else
11475 insn = DECL_RTL_IF_SET (decl);
11477 /* Deleted labels are programmer specified labels which have been
11478 eliminated because of various optimizations. We still emit them
11479 here so that it is possible to put breakpoints on them. */
11480 if (insn
11481 && (LABEL_P (insn)
11482 || ((NOTE_P (insn)
11483 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11485 /* When optimization is enabled (via -O) some parts of the compiler
11486 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11487 represent source-level labels which were explicitly declared by
11488 the user. This really shouldn't be happening though, so catch
11489 it if it ever does happen. */
11490 gcc_assert (!INSN_DELETED_P (insn));
11492 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11493 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11498 /* Generate a DIE for a lexical block. */
11500 static void
11501 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11503 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11504 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11506 if (! BLOCK_ABSTRACT (stmt))
11508 if (BLOCK_FRAGMENT_CHAIN (stmt))
11510 tree chain;
11512 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11514 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11517 add_ranges (chain);
11518 chain = BLOCK_FRAGMENT_CHAIN (chain);
11520 while (chain);
11521 add_ranges (NULL);
11523 else
11525 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11526 BLOCK_NUMBER (stmt));
11527 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11528 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11529 BLOCK_NUMBER (stmt));
11530 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11534 decls_for_scope (stmt, stmt_die, depth);
11537 /* Generate a DIE for an inlined subprogram. */
11539 static void
11540 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11542 tree decl = block_ultimate_origin (stmt);
11544 /* Emit info for the abstract instance first, if we haven't yet. We
11545 must emit this even if the block is abstract, otherwise when we
11546 emit the block below (or elsewhere), we may end up trying to emit
11547 a die whose origin die hasn't been emitted, and crashing. */
11548 dwarf2out_abstract_function (decl);
11550 if (! BLOCK_ABSTRACT (stmt))
11552 dw_die_ref subr_die
11553 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11554 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11556 add_abstract_origin_attribute (subr_die, decl);
11557 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11558 BLOCK_NUMBER (stmt));
11559 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11560 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11561 BLOCK_NUMBER (stmt));
11562 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11563 decls_for_scope (stmt, subr_die, depth);
11564 current_function_has_inlines = 1;
11566 else
11567 /* We may get here if we're the outer block of function A that was
11568 inlined into function B that was inlined into function C. When
11569 generating debugging info for C, dwarf2out_abstract_function(B)
11570 would mark all inlined blocks as abstract, including this one.
11571 So, we wouldn't (and shouldn't) expect labels to be generated
11572 for this one. Instead, just emit debugging info for
11573 declarations within the block. This is particularly important
11574 in the case of initializers of arguments passed from B to us:
11575 if they're statement expressions containing declarations, we
11576 wouldn't generate dies for their abstract variables, and then,
11577 when generating dies for the real variables, we'd die (pun
11578 intended :-) */
11579 gen_lexical_block_die (stmt, context_die, depth);
11582 /* Generate a DIE for a field in a record, or structure. */
11584 static void
11585 gen_field_die (tree decl, dw_die_ref context_die)
11587 dw_die_ref decl_die;
11589 if (TREE_TYPE (decl) == error_mark_node)
11590 return;
11592 decl_die = new_die (DW_TAG_member, context_die, decl);
11593 add_name_and_src_coords_attributes (decl_die, decl);
11594 add_type_attribute (decl_die, member_declared_type (decl),
11595 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11596 context_die);
11598 if (DECL_BIT_FIELD_TYPE (decl))
11600 add_byte_size_attribute (decl_die, decl);
11601 add_bit_size_attribute (decl_die, decl);
11602 add_bit_offset_attribute (decl_die, decl);
11605 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11606 add_data_member_location_attribute (decl_die, decl);
11608 if (DECL_ARTIFICIAL (decl))
11609 add_AT_flag (decl_die, DW_AT_artificial, 1);
11611 if (TREE_PROTECTED (decl))
11612 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11613 else if (TREE_PRIVATE (decl))
11614 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11616 /* Equate decl number to die, so that we can look up this decl later on. */
11617 equate_decl_number_to_die (decl, decl_die);
11620 #if 0
11621 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11622 Use modified_type_die instead.
11623 We keep this code here just in case these types of DIEs may be needed to
11624 represent certain things in other languages (e.g. Pascal) someday. */
11626 static void
11627 gen_pointer_type_die (tree type, dw_die_ref context_die)
11629 dw_die_ref ptr_die
11630 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11632 equate_type_number_to_die (type, ptr_die);
11633 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11634 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11637 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11638 Use modified_type_die instead.
11639 We keep this code here just in case these types of DIEs may be needed to
11640 represent certain things in other languages (e.g. Pascal) someday. */
11642 static void
11643 gen_reference_type_die (tree type, dw_die_ref context_die)
11645 dw_die_ref ref_die
11646 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11648 equate_type_number_to_die (type, ref_die);
11649 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11650 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11652 #endif
11654 /* Generate a DIE for a pointer to a member type. */
11656 static void
11657 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11659 dw_die_ref ptr_die
11660 = new_die (DW_TAG_ptr_to_member_type,
11661 scope_die_for (type, context_die), type);
11663 equate_type_number_to_die (type, ptr_die);
11664 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11665 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11666 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11669 /* Generate the DIE for the compilation unit. */
11671 static dw_die_ref
11672 gen_compile_unit_die (const char *filename)
11674 dw_die_ref die;
11675 char producer[250];
11676 const char *language_string = lang_hooks.name;
11677 int language;
11679 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11681 if (filename)
11683 add_name_attribute (die, filename);
11684 /* Don't add cwd for <built-in>. */
11685 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11686 add_comp_dir_attribute (die);
11689 sprintf (producer, "%s %s", language_string, version_string);
11691 #ifdef MIPS_DEBUGGING_INFO
11692 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11693 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11694 not appear in the producer string, the debugger reaches the conclusion
11695 that the object file is stripped and has no debugging information.
11696 To get the MIPS/SGI debugger to believe that there is debugging
11697 information in the object file, we add a -g to the producer string. */
11698 if (debug_info_level > DINFO_LEVEL_TERSE)
11699 strcat (producer, " -g");
11700 #endif
11702 add_AT_string (die, DW_AT_producer, producer);
11704 if (strcmp (language_string, "GNU C++") == 0)
11705 language = DW_LANG_C_plus_plus;
11706 else if (strcmp (language_string, "GNU Ada") == 0)
11707 language = DW_LANG_Ada95;
11708 else if (strcmp (language_string, "GNU F77") == 0)
11709 language = DW_LANG_Fortran77;
11710 else if (strcmp (language_string, "GNU F95") == 0)
11711 language = DW_LANG_Fortran95;
11712 else if (strcmp (language_string, "GNU Pascal") == 0)
11713 language = DW_LANG_Pascal83;
11714 else if (strcmp (language_string, "GNU Java") == 0)
11715 language = DW_LANG_Java;
11716 else
11717 language = DW_LANG_C89;
11719 add_AT_unsigned (die, DW_AT_language, language);
11720 return die;
11723 /* Generate a DIE for a string type. */
11725 static void
11726 gen_string_type_die (tree type, dw_die_ref context_die)
11728 dw_die_ref type_die
11729 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11731 equate_type_number_to_die (type, type_die);
11733 /* ??? Fudge the string length attribute for now.
11734 TODO: add string length info. */
11735 #if 0
11736 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11737 bound_representation (upper_bound, 0, 'u');
11738 #endif
11741 /* Generate the DIE for a base class. */
11743 static void
11744 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11746 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11748 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11749 add_data_member_location_attribute (die, binfo);
11751 if (BINFO_VIRTUAL_P (binfo))
11752 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11754 if (access == access_public_node)
11755 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11756 else if (access == access_protected_node)
11757 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11760 /* Generate a DIE for a class member. */
11762 static void
11763 gen_member_die (tree type, dw_die_ref context_die)
11765 tree member;
11766 tree binfo = TYPE_BINFO (type);
11767 dw_die_ref child;
11769 /* If this is not an incomplete type, output descriptions of each of its
11770 members. Note that as we output the DIEs necessary to represent the
11771 members of this record or union type, we will also be trying to output
11772 DIEs to represent the *types* of those members. However the `type'
11773 function (above) will specifically avoid generating type DIEs for member
11774 types *within* the list of member DIEs for this (containing) type except
11775 for those types (of members) which are explicitly marked as also being
11776 members of this (containing) type themselves. The g++ front- end can
11777 force any given type to be treated as a member of some other (containing)
11778 type by setting the TYPE_CONTEXT of the given (member) type to point to
11779 the TREE node representing the appropriate (containing) type. */
11781 /* First output info about the base classes. */
11782 if (binfo)
11784 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11785 int i;
11786 tree base;
11788 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11789 gen_inheritance_die (base,
11790 (accesses ? VEC_index (tree, accesses, i)
11791 : access_public_node), context_die);
11794 /* Now output info about the data members and type members. */
11795 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11797 /* If we thought we were generating minimal debug info for TYPE
11798 and then changed our minds, some of the member declarations
11799 may have already been defined. Don't define them again, but
11800 do put them in the right order. */
11802 child = lookup_decl_die (member);
11803 if (child)
11804 splice_child_die (context_die, child);
11805 else
11806 gen_decl_die (member, context_die);
11809 /* Now output info about the function members (if any). */
11810 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11812 /* Don't include clones in the member list. */
11813 if (DECL_ABSTRACT_ORIGIN (member))
11814 continue;
11816 child = lookup_decl_die (member);
11817 if (child)
11818 splice_child_die (context_die, child);
11819 else
11820 gen_decl_die (member, context_die);
11824 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11825 is set, we pretend that the type was never defined, so we only get the
11826 member DIEs needed by later specification DIEs. */
11828 static void
11829 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11831 dw_die_ref type_die = lookup_type_die (type);
11832 dw_die_ref scope_die = 0;
11833 int nested = 0;
11834 int complete = (TYPE_SIZE (type)
11835 && (! TYPE_STUB_DECL (type)
11836 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11837 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11839 if (type_die && ! complete)
11840 return;
11842 if (TYPE_CONTEXT (type) != NULL_TREE
11843 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11844 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11845 nested = 1;
11847 scope_die = scope_die_for (type, context_die);
11849 if (! type_die || (nested && scope_die == comp_unit_die))
11850 /* First occurrence of type or toplevel definition of nested class. */
11852 dw_die_ref old_die = type_die;
11854 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11855 ? DW_TAG_structure_type : DW_TAG_union_type,
11856 scope_die, type);
11857 equate_type_number_to_die (type, type_die);
11858 if (old_die)
11859 add_AT_specification (type_die, old_die);
11860 else
11861 add_name_attribute (type_die, type_tag (type));
11863 else
11864 remove_AT (type_die, DW_AT_declaration);
11866 /* If this type has been completed, then give it a byte_size attribute and
11867 then give a list of members. */
11868 if (complete && !ns_decl)
11870 /* Prevent infinite recursion in cases where the type of some member of
11871 this type is expressed in terms of this type itself. */
11872 TREE_ASM_WRITTEN (type) = 1;
11873 add_byte_size_attribute (type_die, type);
11874 if (TYPE_STUB_DECL (type) != NULL_TREE)
11875 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11877 /* If the first reference to this type was as the return type of an
11878 inline function, then it may not have a parent. Fix this now. */
11879 if (type_die->die_parent == NULL)
11880 add_child_die (scope_die, type_die);
11882 push_decl_scope (type);
11883 gen_member_die (type, type_die);
11884 pop_decl_scope ();
11886 /* GNU extension: Record what type our vtable lives in. */
11887 if (TYPE_VFIELD (type))
11889 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11891 gen_type_die (vtype, context_die);
11892 add_AT_die_ref (type_die, DW_AT_containing_type,
11893 lookup_type_die (vtype));
11896 else
11898 add_AT_flag (type_die, DW_AT_declaration, 1);
11900 /* We don't need to do this for function-local types. */
11901 if (TYPE_STUB_DECL (type)
11902 && ! decl_function_context (TYPE_STUB_DECL (type)))
11903 VARRAY_PUSH_TREE (incomplete_types, type);
11907 /* Generate a DIE for a subroutine _type_. */
11909 static void
11910 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11912 tree return_type = TREE_TYPE (type);
11913 dw_die_ref subr_die
11914 = new_die (DW_TAG_subroutine_type,
11915 scope_die_for (type, context_die), type);
11917 equate_type_number_to_die (type, subr_die);
11918 add_prototyped_attribute (subr_die, type);
11919 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11920 gen_formal_types_die (type, subr_die);
11923 /* Generate a DIE for a type definition. */
11925 static void
11926 gen_typedef_die (tree decl, dw_die_ref context_die)
11928 dw_die_ref type_die;
11929 tree origin;
11931 if (TREE_ASM_WRITTEN (decl))
11932 return;
11934 TREE_ASM_WRITTEN (decl) = 1;
11935 type_die = new_die (DW_TAG_typedef, context_die, decl);
11936 origin = decl_ultimate_origin (decl);
11937 if (origin != NULL)
11938 add_abstract_origin_attribute (type_die, origin);
11939 else
11941 tree type;
11943 add_name_and_src_coords_attributes (type_die, decl);
11944 if (DECL_ORIGINAL_TYPE (decl))
11946 type = DECL_ORIGINAL_TYPE (decl);
11948 gcc_assert (type != TREE_TYPE (decl));
11949 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11951 else
11952 type = TREE_TYPE (decl);
11954 add_type_attribute (type_die, type, TREE_READONLY (decl),
11955 TREE_THIS_VOLATILE (decl), context_die);
11958 if (DECL_ABSTRACT (decl))
11959 equate_decl_number_to_die (decl, type_die);
11962 /* Generate a type description DIE. */
11964 static void
11965 gen_type_die (tree type, dw_die_ref context_die)
11967 int need_pop;
11969 if (type == NULL_TREE || type == error_mark_node)
11970 return;
11972 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11973 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11975 if (TREE_ASM_WRITTEN (type))
11976 return;
11978 /* Prevent broken recursion; we can't hand off to the same type. */
11979 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
11981 TREE_ASM_WRITTEN (type) = 1;
11982 gen_decl_die (TYPE_NAME (type), context_die);
11983 return;
11986 /* We are going to output a DIE to represent the unqualified version
11987 of this type (i.e. without any const or volatile qualifiers) so
11988 get the main variant (i.e. the unqualified version) of this type
11989 now. (Vectors are special because the debugging info is in the
11990 cloned type itself). */
11991 if (TREE_CODE (type) != VECTOR_TYPE)
11992 type = type_main_variant (type);
11994 if (TREE_ASM_WRITTEN (type))
11995 return;
11997 switch (TREE_CODE (type))
11999 case ERROR_MARK:
12000 break;
12002 case POINTER_TYPE:
12003 case REFERENCE_TYPE:
12004 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12005 ensures that the gen_type_die recursion will terminate even if the
12006 type is recursive. Recursive types are possible in Ada. */
12007 /* ??? We could perhaps do this for all types before the switch
12008 statement. */
12009 TREE_ASM_WRITTEN (type) = 1;
12011 /* For these types, all that is required is that we output a DIE (or a
12012 set of DIEs) to represent the "basis" type. */
12013 gen_type_die (TREE_TYPE (type), context_die);
12014 break;
12016 case OFFSET_TYPE:
12017 /* This code is used for C++ pointer-to-data-member types.
12018 Output a description of the relevant class type. */
12019 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12021 /* Output a description of the type of the object pointed to. */
12022 gen_type_die (TREE_TYPE (type), context_die);
12024 /* Now output a DIE to represent this pointer-to-data-member type
12025 itself. */
12026 gen_ptr_to_mbr_type_die (type, context_die);
12027 break;
12029 case SET_TYPE:
12030 gen_type_die (TYPE_DOMAIN (type), context_die);
12031 gen_set_type_die (type, context_die);
12032 break;
12034 case FILE_TYPE:
12035 gen_type_die (TREE_TYPE (type), context_die);
12036 /* No way to represent these in Dwarf yet! */
12037 gcc_unreachable ();
12038 break;
12040 case FUNCTION_TYPE:
12041 /* Force out return type (in case it wasn't forced out already). */
12042 gen_type_die (TREE_TYPE (type), context_die);
12043 gen_subroutine_type_die (type, context_die);
12044 break;
12046 case METHOD_TYPE:
12047 /* Force out return type (in case it wasn't forced out already). */
12048 gen_type_die (TREE_TYPE (type), context_die);
12049 gen_subroutine_type_die (type, context_die);
12050 break;
12052 case ARRAY_TYPE:
12053 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12055 gen_type_die (TREE_TYPE (type), context_die);
12056 gen_string_type_die (type, context_die);
12058 else
12059 gen_array_type_die (type, context_die);
12060 break;
12062 case VECTOR_TYPE:
12063 gen_array_type_die (type, context_die);
12064 break;
12066 case ENUMERAL_TYPE:
12067 case RECORD_TYPE:
12068 case UNION_TYPE:
12069 case QUAL_UNION_TYPE:
12070 /* If this is a nested type whose containing class hasn't been written
12071 out yet, writing it out will cover this one, too. This does not apply
12072 to instantiations of member class templates; they need to be added to
12073 the containing class as they are generated. FIXME: This hurts the
12074 idea of combining type decls from multiple TUs, since we can't predict
12075 what set of template instantiations we'll get. */
12076 if (TYPE_CONTEXT (type)
12077 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12078 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12080 gen_type_die (TYPE_CONTEXT (type), context_die);
12082 if (TREE_ASM_WRITTEN (type))
12083 return;
12085 /* If that failed, attach ourselves to the stub. */
12086 push_decl_scope (TYPE_CONTEXT (type));
12087 context_die = lookup_type_die (TYPE_CONTEXT (type));
12088 need_pop = 1;
12090 else
12092 declare_in_namespace (type, context_die);
12093 need_pop = 0;
12096 if (TREE_CODE (type) == ENUMERAL_TYPE)
12097 gen_enumeration_type_die (type, context_die);
12098 else
12099 gen_struct_or_union_type_die (type, context_die);
12101 if (need_pop)
12102 pop_decl_scope ();
12104 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12105 it up if it is ever completed. gen_*_type_die will set it for us
12106 when appropriate. */
12107 return;
12109 case VOID_TYPE:
12110 case INTEGER_TYPE:
12111 case REAL_TYPE:
12112 case COMPLEX_TYPE:
12113 case BOOLEAN_TYPE:
12114 case CHAR_TYPE:
12115 /* No DIEs needed for fundamental types. */
12116 break;
12118 case LANG_TYPE:
12119 /* No Dwarf representation currently defined. */
12120 break;
12122 default:
12123 gcc_unreachable ();
12126 TREE_ASM_WRITTEN (type) = 1;
12129 /* Generate a DIE for a tagged type instantiation. */
12131 static void
12132 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12134 if (type == NULL_TREE || type == error_mark_node)
12135 return;
12137 /* We are going to output a DIE to represent the unqualified version of
12138 this type (i.e. without any const or volatile qualifiers) so make sure
12139 that we have the main variant (i.e. the unqualified version) of this
12140 type now. */
12141 gcc_assert (type == type_main_variant (type));
12143 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12144 an instance of an unresolved type. */
12146 switch (TREE_CODE (type))
12148 case ERROR_MARK:
12149 break;
12151 case ENUMERAL_TYPE:
12152 gen_inlined_enumeration_type_die (type, context_die);
12153 break;
12155 case RECORD_TYPE:
12156 gen_inlined_structure_type_die (type, context_die);
12157 break;
12159 case UNION_TYPE:
12160 case QUAL_UNION_TYPE:
12161 gen_inlined_union_type_die (type, context_die);
12162 break;
12164 default:
12165 gcc_unreachable ();
12169 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12170 things which are local to the given block. */
12172 static void
12173 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12175 int must_output_die = 0;
12176 tree origin;
12177 tree decl;
12178 enum tree_code origin_code;
12180 /* Ignore blocks never really used to make RTL. */
12181 if (stmt == NULL_TREE || !TREE_USED (stmt)
12182 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12183 return;
12185 /* If the block is one fragment of a non-contiguous block, do not
12186 process the variables, since they will have been done by the
12187 origin block. Do process subblocks. */
12188 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12190 tree sub;
12192 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12193 gen_block_die (sub, context_die, depth + 1);
12195 return;
12198 /* Determine the "ultimate origin" of this block. This block may be an
12199 inlined instance of an inlined instance of inline function, so we have
12200 to trace all of the way back through the origin chain to find out what
12201 sort of node actually served as the original seed for the creation of
12202 the current block. */
12203 origin = block_ultimate_origin (stmt);
12204 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12206 /* Determine if we need to output any Dwarf DIEs at all to represent this
12207 block. */
12208 if (origin_code == FUNCTION_DECL)
12209 /* The outer scopes for inlinings *must* always be represented. We
12210 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12211 must_output_die = 1;
12212 else
12214 /* In the case where the current block represents an inlining of the
12215 "body block" of an inline function, we must *NOT* output any DIE for
12216 this block because we have already output a DIE to represent the whole
12217 inlined function scope and the "body block" of any function doesn't
12218 really represent a different scope according to ANSI C rules. So we
12219 check here to make sure that this block does not represent a "body
12220 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12221 if (! is_body_block (origin ? origin : stmt))
12223 /* Determine if this block directly contains any "significant"
12224 local declarations which we will need to output DIEs for. */
12225 if (debug_info_level > DINFO_LEVEL_TERSE)
12226 /* We are not in terse mode so *any* local declaration counts
12227 as being a "significant" one. */
12228 must_output_die = (BLOCK_VARS (stmt) != NULL);
12229 else
12230 /* We are in terse mode, so only local (nested) function
12231 definitions count as "significant" local declarations. */
12232 for (decl = BLOCK_VARS (stmt);
12233 decl != NULL; decl = TREE_CHAIN (decl))
12234 if (TREE_CODE (decl) == FUNCTION_DECL
12235 && DECL_INITIAL (decl))
12237 must_output_die = 1;
12238 break;
12243 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12244 DIE for any block which contains no significant local declarations at
12245 all. Rather, in such cases we just call `decls_for_scope' so that any
12246 needed Dwarf info for any sub-blocks will get properly generated. Note
12247 that in terse mode, our definition of what constitutes a "significant"
12248 local declaration gets restricted to include only inlined function
12249 instances and local (nested) function definitions. */
12250 if (must_output_die)
12252 if (origin_code == FUNCTION_DECL)
12253 gen_inlined_subroutine_die (stmt, context_die, depth);
12254 else
12255 gen_lexical_block_die (stmt, context_die, depth);
12257 else
12258 decls_for_scope (stmt, context_die, depth);
12261 /* Generate all of the decls declared within a given scope and (recursively)
12262 all of its sub-blocks. */
12264 static void
12265 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12267 tree decl;
12268 tree subblocks;
12270 /* Ignore blocks never really used to make RTL. */
12271 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12272 return;
12274 /* Output the DIEs to represent all of the data objects and typedefs
12275 declared directly within this block but not within any nested
12276 sub-blocks. Also, nested function and tag DIEs have been
12277 generated with a parent of NULL; fix that up now. */
12278 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12280 dw_die_ref die;
12282 if (TREE_CODE (decl) == FUNCTION_DECL)
12283 die = lookup_decl_die (decl);
12284 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12285 die = lookup_type_die (TREE_TYPE (decl));
12286 else
12287 die = NULL;
12289 if (die != NULL && die->die_parent == NULL)
12290 add_child_die (context_die, die);
12291 else
12292 gen_decl_die (decl, context_die);
12295 /* If we're at -g1, we're not interested in subblocks. */
12296 if (debug_info_level <= DINFO_LEVEL_TERSE)
12297 return;
12299 /* Output the DIEs to represent all sub-blocks (and the items declared
12300 therein) of this block. */
12301 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12302 subblocks != NULL;
12303 subblocks = BLOCK_CHAIN (subblocks))
12304 gen_block_die (subblocks, context_die, depth + 1);
12307 /* Is this a typedef we can avoid emitting? */
12309 static inline int
12310 is_redundant_typedef (tree decl)
12312 if (TYPE_DECL_IS_STUB (decl))
12313 return 1;
12315 if (DECL_ARTIFICIAL (decl)
12316 && DECL_CONTEXT (decl)
12317 && is_tagged_type (DECL_CONTEXT (decl))
12318 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12319 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12320 /* Also ignore the artificial member typedef for the class name. */
12321 return 1;
12323 return 0;
12326 /* Returns the DIE for decl or aborts. */
12328 static dw_die_ref
12329 force_decl_die (tree decl)
12331 dw_die_ref decl_die;
12332 unsigned saved_external_flag;
12333 tree save_fn = NULL_TREE;
12334 decl_die = lookup_decl_die (decl);
12335 if (!decl_die)
12337 dw_die_ref context_die;
12338 tree decl_context = DECL_CONTEXT (decl);
12339 if (decl_context)
12341 /* Find die that represents this context. */
12342 if (TYPE_P (decl_context))
12343 context_die = force_type_die (decl_context);
12344 else
12345 context_die = force_decl_die (decl_context);
12347 else
12348 context_die = comp_unit_die;
12350 switch (TREE_CODE (decl))
12352 case FUNCTION_DECL:
12353 /* Clear current_function_decl, so that gen_subprogram_die thinks
12354 that this is a declaration. At this point, we just want to force
12355 declaration die. */
12356 save_fn = current_function_decl;
12357 current_function_decl = NULL_TREE;
12358 gen_subprogram_die (decl, context_die);
12359 current_function_decl = save_fn;
12360 break;
12362 case VAR_DECL:
12363 /* Set external flag to force declaration die. Restore it after
12364 gen_decl_die() call. */
12365 saved_external_flag = DECL_EXTERNAL (decl);
12366 DECL_EXTERNAL (decl) = 1;
12367 gen_decl_die (decl, context_die);
12368 DECL_EXTERNAL (decl) = saved_external_flag;
12369 break;
12371 case NAMESPACE_DECL:
12372 dwarf2out_decl (decl);
12373 break;
12375 default:
12376 gcc_unreachable ();
12379 /* See if we can find the die for this deci now.
12380 If not then abort. */
12381 if (!decl_die)
12382 decl_die = lookup_decl_die (decl);
12383 gcc_assert (decl_die);
12386 return decl_die;
12389 /* Returns the DIE for decl or aborts. */
12391 static dw_die_ref
12392 force_type_die (tree type)
12394 dw_die_ref type_die;
12396 type_die = lookup_type_die (type);
12397 if (!type_die)
12399 dw_die_ref context_die;
12400 if (TYPE_CONTEXT (type))
12401 if (TYPE_P (TYPE_CONTEXT (type)))
12402 context_die = force_type_die (TYPE_CONTEXT (type));
12403 else
12404 context_die = force_decl_die (TYPE_CONTEXT (type));
12405 else
12406 context_die = comp_unit_die;
12408 gen_type_die (type, context_die);
12409 type_die = lookup_type_die (type);
12410 gcc_assert (type_die);
12412 return type_die;
12415 /* Force out any required namespaces to be able to output DECL,
12416 and return the new context_die for it, if it's changed. */
12418 static dw_die_ref
12419 setup_namespace_context (tree thing, dw_die_ref context_die)
12421 tree context = (DECL_P (thing)
12422 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12423 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12424 /* Force out the namespace. */
12425 context_die = force_decl_die (context);
12427 return context_die;
12430 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12431 type) within its namespace, if appropriate.
12433 For compatibility with older debuggers, namespace DIEs only contain
12434 declarations; all definitions are emitted at CU scope. */
12436 static void
12437 declare_in_namespace (tree thing, dw_die_ref context_die)
12439 dw_die_ref ns_context;
12441 if (debug_info_level <= DINFO_LEVEL_TERSE)
12442 return;
12444 ns_context = setup_namespace_context (thing, context_die);
12446 if (ns_context != context_die)
12448 if (DECL_P (thing))
12449 gen_decl_die (thing, ns_context);
12450 else
12451 gen_type_die (thing, ns_context);
12455 /* Generate a DIE for a namespace or namespace alias. */
12457 static void
12458 gen_namespace_die (tree decl)
12460 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12462 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12463 they are an alias of. */
12464 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12466 /* Output a real namespace. */
12467 dw_die_ref namespace_die
12468 = new_die (DW_TAG_namespace, context_die, decl);
12469 add_name_and_src_coords_attributes (namespace_die, decl);
12470 equate_decl_number_to_die (decl, namespace_die);
12472 else
12474 /* Output a namespace alias. */
12476 /* Force out the namespace we are an alias of, if necessary. */
12477 dw_die_ref origin_die
12478 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12480 /* Now create the namespace alias DIE. */
12481 dw_die_ref namespace_die
12482 = new_die (DW_TAG_imported_declaration, context_die, decl);
12483 add_name_and_src_coords_attributes (namespace_die, decl);
12484 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12485 equate_decl_number_to_die (decl, namespace_die);
12489 /* Generate Dwarf debug information for a decl described by DECL. */
12491 static void
12492 gen_decl_die (tree decl, dw_die_ref context_die)
12494 tree origin;
12496 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12497 return;
12499 switch (TREE_CODE (decl))
12501 case ERROR_MARK:
12502 break;
12504 case CONST_DECL:
12505 /* The individual enumerators of an enum type get output when we output
12506 the Dwarf representation of the relevant enum type itself. */
12507 break;
12509 case FUNCTION_DECL:
12510 /* Don't output any DIEs to represent mere function declarations,
12511 unless they are class members or explicit block externs. */
12512 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12513 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12514 break;
12516 #if 0
12517 /* FIXME */
12518 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12519 on local redeclarations of global functions. That seems broken. */
12520 if (current_function_decl != decl)
12521 /* This is only a declaration. */;
12522 #endif
12524 /* If we're emitting a clone, emit info for the abstract instance. */
12525 if (DECL_ORIGIN (decl) != decl)
12526 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12528 /* If we're emitting an out-of-line copy of an inline function,
12529 emit info for the abstract instance and set up to refer to it. */
12530 else if (cgraph_function_possibly_inlined_p (decl)
12531 && ! DECL_ABSTRACT (decl)
12532 && ! class_or_namespace_scope_p (context_die)
12533 /* dwarf2out_abstract_function won't emit a die if this is just
12534 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12535 that case, because that works only if we have a die. */
12536 && DECL_INITIAL (decl) != NULL_TREE)
12538 dwarf2out_abstract_function (decl);
12539 set_decl_origin_self (decl);
12542 /* Otherwise we're emitting the primary DIE for this decl. */
12543 else if (debug_info_level > DINFO_LEVEL_TERSE)
12545 /* Before we describe the FUNCTION_DECL itself, make sure that we
12546 have described its return type. */
12547 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12549 /* And its virtual context. */
12550 if (DECL_VINDEX (decl) != NULL_TREE)
12551 gen_type_die (DECL_CONTEXT (decl), context_die);
12553 /* And its containing type. */
12554 origin = decl_class_context (decl);
12555 if (origin != NULL_TREE)
12556 gen_type_die_for_member (origin, decl, context_die);
12558 /* And its containing namespace. */
12559 declare_in_namespace (decl, context_die);
12562 /* Now output a DIE to represent the function itself. */
12563 gen_subprogram_die (decl, context_die);
12564 break;
12566 case TYPE_DECL:
12567 /* If we are in terse mode, don't generate any DIEs to represent any
12568 actual typedefs. */
12569 if (debug_info_level <= DINFO_LEVEL_TERSE)
12570 break;
12572 /* In the special case of a TYPE_DECL node representing the declaration
12573 of some type tag, if the given TYPE_DECL is marked as having been
12574 instantiated from some other (original) TYPE_DECL node (e.g. one which
12575 was generated within the original definition of an inline function) we
12576 have to generate a special (abbreviated) DW_TAG_structure_type,
12577 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12578 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12580 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12581 break;
12584 if (is_redundant_typedef (decl))
12585 gen_type_die (TREE_TYPE (decl), context_die);
12586 else
12587 /* Output a DIE to represent the typedef itself. */
12588 gen_typedef_die (decl, context_die);
12589 break;
12591 case LABEL_DECL:
12592 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12593 gen_label_die (decl, context_die);
12594 break;
12596 case VAR_DECL:
12597 case RESULT_DECL:
12598 /* If we are in terse mode, don't generate any DIEs to represent any
12599 variable declarations or definitions. */
12600 if (debug_info_level <= DINFO_LEVEL_TERSE)
12601 break;
12603 /* Output any DIEs that are needed to specify the type of this data
12604 object. */
12605 gen_type_die (TREE_TYPE (decl), context_die);
12607 /* And its containing type. */
12608 origin = decl_class_context (decl);
12609 if (origin != NULL_TREE)
12610 gen_type_die_for_member (origin, decl, context_die);
12612 /* And its containing namespace. */
12613 declare_in_namespace (decl, context_die);
12615 /* Now output the DIE to represent the data object itself. This gets
12616 complicated because of the possibility that the VAR_DECL really
12617 represents an inlined instance of a formal parameter for an inline
12618 function. */
12619 origin = decl_ultimate_origin (decl);
12620 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12621 gen_formal_parameter_die (decl, context_die);
12622 else
12623 gen_variable_die (decl, context_die);
12624 break;
12626 case FIELD_DECL:
12627 /* Ignore the nameless fields that are used to skip bits but handle C++
12628 anonymous unions and structs. */
12629 if (DECL_NAME (decl) != NULL_TREE
12630 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12631 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12633 gen_type_die (member_declared_type (decl), context_die);
12634 gen_field_die (decl, context_die);
12636 break;
12638 case PARM_DECL:
12639 gen_type_die (TREE_TYPE (decl), context_die);
12640 gen_formal_parameter_die (decl, context_die);
12641 break;
12643 case NAMESPACE_DECL:
12644 gen_namespace_die (decl);
12645 break;
12647 default:
12648 /* Probably some frontend-internal decl. Assume we don't care. */
12649 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12650 break;
12654 /* Add Ada "use" clause information for SGI Workshop debugger. */
12656 void
12657 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12659 unsigned int file_index;
12661 if (filename != NULL)
12663 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12664 tree context_list_decl
12665 = build_decl (LABEL_DECL, get_identifier (context_list),
12666 void_type_node);
12668 TREE_PUBLIC (context_list_decl) = TRUE;
12669 add_name_attribute (unit_die, context_list);
12670 file_index = lookup_filename (filename);
12671 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12672 add_pubname (context_list_decl, unit_die);
12676 /* Output debug information for global decl DECL. Called from toplev.c after
12677 compilation proper has finished. */
12679 static void
12680 dwarf2out_global_decl (tree decl)
12682 /* Output DWARF2 information for file-scope tentative data object
12683 declarations, file-scope (extern) function declarations (which had no
12684 corresponding body) and file-scope tagged type declarations and
12685 definitions which have not yet been forced out. */
12686 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12687 dwarf2out_decl (decl);
12690 /* Output debug information for type decl DECL. Called from toplev.c
12691 and from language front ends (to record built-in types). */
12692 static void
12693 dwarf2out_type_decl (tree decl, int local)
12695 if (!local)
12696 dwarf2out_decl (decl);
12699 /* Output debug information for imported module or decl. */
12701 static void
12702 dwarf2out_imported_module_or_decl (tree decl, tree context)
12704 dw_die_ref imported_die, at_import_die;
12705 dw_die_ref scope_die;
12706 unsigned file_index;
12707 expanded_location xloc;
12709 if (debug_info_level <= DINFO_LEVEL_TERSE)
12710 return;
12712 gcc_assert (decl);
12714 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12715 We need decl DIE for reference and scope die. First, get DIE for the decl
12716 itself. */
12718 /* Get the scope die for decl context. Use comp_unit_die for global module
12719 or decl. If die is not found for non globals, force new die. */
12720 if (!context)
12721 scope_die = comp_unit_die;
12722 else if (TYPE_P (context))
12723 scope_die = force_type_die (context);
12724 else
12725 scope_die = force_decl_die (context);
12727 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12728 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12729 at_import_die = force_type_die (TREE_TYPE (decl));
12730 else
12731 at_import_die = force_decl_die (decl);
12733 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12734 if (TREE_CODE (decl) == NAMESPACE_DECL)
12735 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12736 else
12737 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12739 xloc = expand_location (input_location);
12740 file_index = lookup_filename (xloc.file);
12741 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12742 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12743 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12746 /* Write the debugging output for DECL. */
12748 void
12749 dwarf2out_decl (tree decl)
12751 dw_die_ref context_die = comp_unit_die;
12753 switch (TREE_CODE (decl))
12755 case ERROR_MARK:
12756 return;
12758 case FUNCTION_DECL:
12759 /* What we would really like to do here is to filter out all mere
12760 file-scope declarations of file-scope functions which are never
12761 referenced later within this translation unit (and keep all of ones
12762 that *are* referenced later on) but we aren't clairvoyant, so we have
12763 no idea which functions will be referenced in the future (i.e. later
12764 on within the current translation unit). So here we just ignore all
12765 file-scope function declarations which are not also definitions. If
12766 and when the debugger needs to know something about these functions,
12767 it will have to hunt around and find the DWARF information associated
12768 with the definition of the function.
12770 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12771 nodes represent definitions and which ones represent mere
12772 declarations. We have to check DECL_INITIAL instead. That's because
12773 the C front-end supports some weird semantics for "extern inline"
12774 function definitions. These can get inlined within the current
12775 translation unit (an thus, we need to generate Dwarf info for their
12776 abstract instances so that the Dwarf info for the concrete inlined
12777 instances can have something to refer to) but the compiler never
12778 generates any out-of-lines instances of such things (despite the fact
12779 that they *are* definitions).
12781 The important point is that the C front-end marks these "extern
12782 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12783 them anyway. Note that the C++ front-end also plays some similar games
12784 for inline function definitions appearing within include files which
12785 also contain `#pragma interface' pragmas. */
12786 if (DECL_INITIAL (decl) == NULL_TREE)
12787 return;
12789 /* If we're a nested function, initially use a parent of NULL; if we're
12790 a plain function, this will be fixed up in decls_for_scope. If
12791 we're a method, it will be ignored, since we already have a DIE. */
12792 if (decl_function_context (decl)
12793 /* But if we're in terse mode, we don't care about scope. */
12794 && debug_info_level > DINFO_LEVEL_TERSE)
12795 context_die = NULL;
12796 break;
12798 case VAR_DECL:
12799 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12800 declaration and if the declaration was never even referenced from
12801 within this entire compilation unit. We suppress these DIEs in
12802 order to save space in the .debug section (by eliminating entries
12803 which are probably useless). Note that we must not suppress
12804 block-local extern declarations (whether used or not) because that
12805 would screw-up the debugger's name lookup mechanism and cause it to
12806 miss things which really ought to be in scope at a given point. */
12807 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12808 return;
12810 /* If we are in terse mode, don't generate any DIEs to represent any
12811 variable declarations or definitions. */
12812 if (debug_info_level <= DINFO_LEVEL_TERSE)
12813 return;
12814 break;
12816 case NAMESPACE_DECL:
12817 if (debug_info_level <= DINFO_LEVEL_TERSE)
12818 return;
12819 if (lookup_decl_die (decl) != NULL)
12820 return;
12821 break;
12823 case TYPE_DECL:
12824 /* Don't emit stubs for types unless they are needed by other DIEs. */
12825 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12826 return;
12828 /* Don't bother trying to generate any DIEs to represent any of the
12829 normal built-in types for the language we are compiling. */
12830 if (DECL_IS_BUILTIN (decl))
12832 /* OK, we need to generate one for `bool' so GDB knows what type
12833 comparisons have. */
12834 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12835 == DW_LANG_C_plus_plus)
12836 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12837 && ! DECL_IGNORED_P (decl))
12838 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12840 return;
12843 /* If we are in terse mode, don't generate any DIEs for types. */
12844 if (debug_info_level <= DINFO_LEVEL_TERSE)
12845 return;
12847 /* If we're a function-scope tag, initially use a parent of NULL;
12848 this will be fixed up in decls_for_scope. */
12849 if (decl_function_context (decl))
12850 context_die = NULL;
12852 break;
12854 default:
12855 return;
12858 gen_decl_die (decl, context_die);
12861 /* Output a marker (i.e. a label) for the beginning of the generated code for
12862 a lexical block. */
12864 static void
12865 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12866 unsigned int blocknum)
12868 function_section (current_function_decl);
12869 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12872 /* Output a marker (i.e. a label) for the end of the generated code for a
12873 lexical block. */
12875 static void
12876 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12878 function_section (current_function_decl);
12879 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12882 /* Returns nonzero if it is appropriate not to emit any debugging
12883 information for BLOCK, because it doesn't contain any instructions.
12885 Don't allow this for blocks with nested functions or local classes
12886 as we would end up with orphans, and in the presence of scheduling
12887 we may end up calling them anyway. */
12889 static bool
12890 dwarf2out_ignore_block (tree block)
12892 tree decl;
12894 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12895 if (TREE_CODE (decl) == FUNCTION_DECL
12896 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12897 return 0;
12899 return 1;
12902 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12903 dwarf2out.c) and return its "index". The index of each (known) filename is
12904 just a unique number which is associated with only that one filename. We
12905 need such numbers for the sake of generating labels (in the .debug_sfnames
12906 section) and references to those files numbers (in the .debug_srcinfo
12907 and.debug_macinfo sections). If the filename given as an argument is not
12908 found in our current list, add it to the list and assign it the next
12909 available unique index number. In order to speed up searches, we remember
12910 the index of the filename was looked up last. This handles the majority of
12911 all searches. */
12913 static unsigned
12914 lookup_filename (const char *file_name)
12916 size_t i, n;
12917 char *save_file_name;
12919 /* Check to see if the file name that was searched on the previous
12920 call matches this file name. If so, return the index. */
12921 if (file_table_last_lookup_index != 0)
12923 const char *last
12924 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12925 if (strcmp (file_name, last) == 0)
12926 return file_table_last_lookup_index;
12929 /* Didn't match the previous lookup, search the table */
12930 n = VARRAY_ACTIVE_SIZE (file_table);
12931 for (i = 1; i < n; i++)
12932 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12934 file_table_last_lookup_index = i;
12935 return i;
12938 /* Add the new entry to the end of the filename table. */
12939 file_table_last_lookup_index = n;
12940 save_file_name = (char *) ggc_strdup (file_name);
12941 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12942 VARRAY_PUSH_UINT (file_table_emitted, 0);
12944 return i;
12947 static int
12948 maybe_emit_file (int fileno)
12950 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12952 if (!VARRAY_UINT (file_table_emitted, fileno))
12954 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12955 fprintf (asm_out_file, "\t.file %u ",
12956 VARRAY_UINT (file_table_emitted, fileno));
12957 output_quoted_string (asm_out_file,
12958 VARRAY_CHAR_PTR (file_table, fileno));
12959 fputc ('\n', asm_out_file);
12961 return VARRAY_UINT (file_table_emitted, fileno);
12963 else
12964 return fileno;
12967 static void
12968 init_file_table (void)
12970 /* Allocate the initial hunk of the file_table. */
12971 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12972 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12974 /* Skip the first entry - file numbers begin at 1. */
12975 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12976 VARRAY_PUSH_UINT (file_table_emitted, 0);
12977 file_table_last_lookup_index = 0;
12980 /* Called by the final INSN scan whenever we see a var location. We
12981 use it to drop labels in the right places, and throw the location in
12982 our lookup table. */
12984 static void
12985 dwarf2out_var_location (rtx loc_note)
12987 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
12988 struct var_loc_node *newloc;
12989 rtx prev_insn;
12990 static rtx last_insn;
12991 static const char *last_label;
12993 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
12994 return;
12995 prev_insn = PREV_INSN (loc_note);
12997 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
12998 /* If the insn we processed last time is the previous insn
12999 and it is also a var location note, use the label we emitted
13000 last time. */
13001 if (last_insn != NULL_RTX
13002 && last_insn == prev_insn
13003 && NOTE_P (prev_insn)
13004 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13006 newloc->label = last_label;
13008 else
13010 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13011 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13012 loclabel_num++;
13013 newloc->label = ggc_strdup (loclabel);
13015 newloc->var_loc_note = loc_note;
13016 newloc->next = NULL;
13018 last_insn = loc_note;
13019 last_label = newloc->label;
13021 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13024 /* We need to reset the locations at the beginning of each
13025 function. We can't do this in the end_function hook, because the
13026 declarations that use the locations won't have been outputted when
13027 that hook is called. */
13029 static void
13030 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13032 htab_empty (decl_loc_table);
13035 /* Output a label to mark the beginning of a source code line entry
13036 and record information relating to this source line, in
13037 'line_info_table' for later output of the .debug_line section. */
13039 static void
13040 dwarf2out_source_line (unsigned int line, const char *filename)
13042 if (debug_info_level >= DINFO_LEVEL_NORMAL
13043 && line != 0)
13045 function_section (current_function_decl);
13047 /* If requested, emit something human-readable. */
13048 if (flag_debug_asm)
13049 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13050 filename, line);
13052 if (DWARF2_ASM_LINE_DEBUG_INFO)
13054 unsigned file_num = lookup_filename (filename);
13056 file_num = maybe_emit_file (file_num);
13058 /* Emit the .loc directive understood by GNU as. */
13059 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13061 /* Indicate that line number info exists. */
13062 line_info_table_in_use++;
13064 /* Indicate that multiple line number tables exist. */
13065 if (DECL_SECTION_NAME (current_function_decl))
13066 separate_line_info_table_in_use++;
13068 else if (DECL_SECTION_NAME (current_function_decl))
13070 dw_separate_line_info_ref line_info;
13071 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13072 separate_line_info_table_in_use);
13074 /* Expand the line info table if necessary. */
13075 if (separate_line_info_table_in_use
13076 == separate_line_info_table_allocated)
13078 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13079 separate_line_info_table
13080 = ggc_realloc (separate_line_info_table,
13081 separate_line_info_table_allocated
13082 * sizeof (dw_separate_line_info_entry));
13083 memset (separate_line_info_table
13084 + separate_line_info_table_in_use,
13086 (LINE_INFO_TABLE_INCREMENT
13087 * sizeof (dw_separate_line_info_entry)));
13090 /* Add the new entry at the end of the line_info_table. */
13091 line_info
13092 = &separate_line_info_table[separate_line_info_table_in_use++];
13093 line_info->dw_file_num = lookup_filename (filename);
13094 line_info->dw_line_num = line;
13095 line_info->function = current_function_funcdef_no;
13097 else
13099 dw_line_info_ref line_info;
13101 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13102 line_info_table_in_use);
13104 /* Expand the line info table if necessary. */
13105 if (line_info_table_in_use == line_info_table_allocated)
13107 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13108 line_info_table
13109 = ggc_realloc (line_info_table,
13110 (line_info_table_allocated
13111 * sizeof (dw_line_info_entry)));
13112 memset (line_info_table + line_info_table_in_use, 0,
13113 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13116 /* Add the new entry at the end of the line_info_table. */
13117 line_info = &line_info_table[line_info_table_in_use++];
13118 line_info->dw_file_num = lookup_filename (filename);
13119 line_info->dw_line_num = line;
13124 /* Record the beginning of a new source file. */
13126 static void
13127 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13129 if (flag_eliminate_dwarf2_dups)
13131 /* Record the beginning of the file for break_out_includes. */
13132 dw_die_ref bincl_die;
13134 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13135 add_AT_string (bincl_die, DW_AT_name, filename);
13138 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13140 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13141 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13142 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13143 lineno);
13144 maybe_emit_file (lookup_filename (filename));
13145 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13146 "Filename we just started");
13150 /* Record the end of a source file. */
13152 static void
13153 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13155 if (flag_eliminate_dwarf2_dups)
13156 /* Record the end of the file for break_out_includes. */
13157 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13159 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13161 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13162 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13166 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13167 the tail part of the directive line, i.e. the part which is past the
13168 initial whitespace, #, whitespace, directive-name, whitespace part. */
13170 static void
13171 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13172 const char *buffer ATTRIBUTE_UNUSED)
13174 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13176 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13177 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13178 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13179 dw2_asm_output_nstring (buffer, -1, "The macro");
13183 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13184 the tail part of the directive line, i.e. the part which is past the
13185 initial whitespace, #, whitespace, directive-name, whitespace part. */
13187 static void
13188 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13189 const char *buffer ATTRIBUTE_UNUSED)
13191 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13193 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13194 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13195 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13196 dw2_asm_output_nstring (buffer, -1, "The macro");
13200 /* Set up for Dwarf output at the start of compilation. */
13202 static void
13203 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13205 init_file_table ();
13207 /* Allocate the decl_die_table. */
13208 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13209 decl_die_table_eq, NULL);
13211 /* Allocate the decl_loc_table. */
13212 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13213 decl_loc_table_eq, NULL);
13215 /* Allocate the initial hunk of the decl_scope_table. */
13216 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13218 /* Allocate the initial hunk of the abbrev_die_table. */
13219 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13220 * sizeof (dw_die_ref));
13221 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13222 /* Zero-th entry is allocated, but unused */
13223 abbrev_die_table_in_use = 1;
13225 /* Allocate the initial hunk of the line_info_table. */
13226 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13227 * sizeof (dw_line_info_entry));
13228 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13230 /* Zero-th entry is allocated, but unused */
13231 line_info_table_in_use = 1;
13233 /* Generate the initial DIE for the .debug section. Note that the (string)
13234 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13235 will (typically) be a relative pathname and that this pathname should be
13236 taken as being relative to the directory from which the compiler was
13237 invoked when the given (base) source file was compiled. We will fill
13238 in this value in dwarf2out_finish. */
13239 comp_unit_die = gen_compile_unit_die (NULL);
13241 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13243 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13245 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13246 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13247 DEBUG_ABBREV_SECTION_LABEL, 0);
13248 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13249 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13250 else
13251 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13253 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13254 DEBUG_INFO_SECTION_LABEL, 0);
13255 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13256 DEBUG_LINE_SECTION_LABEL, 0);
13257 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13258 DEBUG_RANGES_SECTION_LABEL, 0);
13259 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13260 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13261 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13262 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13263 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13264 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13266 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13268 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13269 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13270 DEBUG_MACINFO_SECTION_LABEL, 0);
13271 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13274 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13276 text_section ();
13277 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13281 /* A helper function for dwarf2out_finish called through
13282 ht_forall. Emit one queued .debug_str string. */
13284 static int
13285 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13287 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13289 if (node->form == DW_FORM_strp)
13291 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13292 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13293 assemble_string (node->str, strlen (node->str) + 1);
13296 return 1;
13301 /* Clear the marks for a die and its children.
13302 Be cool if the mark isn't set. */
13304 static void
13305 prune_unmark_dies (dw_die_ref die)
13307 dw_die_ref c;
13308 die->die_mark = 0;
13309 for (c = die->die_child; c; c = c->die_sib)
13310 prune_unmark_dies (c);
13314 /* Given DIE that we're marking as used, find any other dies
13315 it references as attributes and mark them as used. */
13317 static void
13318 prune_unused_types_walk_attribs (dw_die_ref die)
13320 dw_attr_ref a;
13322 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13324 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13326 /* A reference to another DIE.
13327 Make sure that it will get emitted. */
13328 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13330 else if (a->dw_attr == DW_AT_decl_file)
13332 /* A reference to a file. Make sure the file name is emitted. */
13333 a->dw_attr_val.v.val_unsigned =
13334 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13340 /* Mark DIE as being used. If DOKIDS is true, then walk down
13341 to DIE's children. */
13343 static void
13344 prune_unused_types_mark (dw_die_ref die, int dokids)
13346 dw_die_ref c;
13348 if (die->die_mark == 0)
13350 /* We haven't done this node yet. Mark it as used. */
13351 die->die_mark = 1;
13353 /* We also have to mark its parents as used.
13354 (But we don't want to mark our parents' kids due to this.) */
13355 if (die->die_parent)
13356 prune_unused_types_mark (die->die_parent, 0);
13358 /* Mark any referenced nodes. */
13359 prune_unused_types_walk_attribs (die);
13361 /* If this node is a specification,
13362 also mark the definition, if it exists. */
13363 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13364 prune_unused_types_mark (die->die_definition, 1);
13367 if (dokids && die->die_mark != 2)
13369 /* We need to walk the children, but haven't done so yet.
13370 Remember that we've walked the kids. */
13371 die->die_mark = 2;
13373 /* Walk them. */
13374 for (c = die->die_child; c; c = c->die_sib)
13376 /* If this is an array type, we need to make sure our
13377 kids get marked, even if they're types. */
13378 if (die->die_tag == DW_TAG_array_type)
13379 prune_unused_types_mark (c, 1);
13380 else
13381 prune_unused_types_walk (c);
13387 /* Walk the tree DIE and mark types that we actually use. */
13389 static void
13390 prune_unused_types_walk (dw_die_ref die)
13392 dw_die_ref c;
13394 /* Don't do anything if this node is already marked. */
13395 if (die->die_mark)
13396 return;
13398 switch (die->die_tag) {
13399 case DW_TAG_const_type:
13400 case DW_TAG_packed_type:
13401 case DW_TAG_pointer_type:
13402 case DW_TAG_reference_type:
13403 case DW_TAG_volatile_type:
13404 case DW_TAG_typedef:
13405 case DW_TAG_array_type:
13406 case DW_TAG_structure_type:
13407 case DW_TAG_union_type:
13408 case DW_TAG_class_type:
13409 case DW_TAG_friend:
13410 case DW_TAG_variant_part:
13411 case DW_TAG_enumeration_type:
13412 case DW_TAG_subroutine_type:
13413 case DW_TAG_string_type:
13414 case DW_TAG_set_type:
13415 case DW_TAG_subrange_type:
13416 case DW_TAG_ptr_to_member_type:
13417 case DW_TAG_file_type:
13418 /* It's a type node --- don't mark it. */
13419 return;
13421 default:
13422 /* Mark everything else. */
13423 break;
13426 die->die_mark = 1;
13428 /* Now, mark any dies referenced from here. */
13429 prune_unused_types_walk_attribs (die);
13431 /* Mark children. */
13432 for (c = die->die_child; c; c = c->die_sib)
13433 prune_unused_types_walk (c);
13437 /* Remove from the tree DIE any dies that aren't marked. */
13439 static void
13440 prune_unused_types_prune (dw_die_ref die)
13442 dw_die_ref c, p, n;
13444 gcc_assert (die->die_mark);
13446 p = NULL;
13447 for (c = die->die_child; c; c = n)
13449 n = c->die_sib;
13450 if (c->die_mark)
13452 prune_unused_types_prune (c);
13453 p = c;
13455 else
13457 if (p)
13458 p->die_sib = n;
13459 else
13460 die->die_child = n;
13461 free_die (c);
13467 /* Remove dies representing declarations that we never use. */
13469 static void
13470 prune_unused_types (void)
13472 unsigned int i;
13473 limbo_die_node *node;
13475 /* Clear all the marks. */
13476 prune_unmark_dies (comp_unit_die);
13477 for (node = limbo_die_list; node; node = node->next)
13478 prune_unmark_dies (node->die);
13480 /* Set the mark on nodes that are actually used. */
13481 prune_unused_types_walk (comp_unit_die);
13482 for (node = limbo_die_list; node; node = node->next)
13483 prune_unused_types_walk (node->die);
13485 /* Also set the mark on nodes referenced from the
13486 pubname_table or arange_table. */
13487 for (i = 0; i < pubname_table_in_use; i++)
13488 prune_unused_types_mark (pubname_table[i].die, 1);
13489 for (i = 0; i < arange_table_in_use; i++)
13490 prune_unused_types_mark (arange_table[i], 1);
13492 /* Get rid of nodes that aren't marked. */
13493 prune_unused_types_prune (comp_unit_die);
13494 for (node = limbo_die_list; node; node = node->next)
13495 prune_unused_types_prune (node->die);
13497 /* Leave the marks clear. */
13498 prune_unmark_dies (comp_unit_die);
13499 for (node = limbo_die_list; node; node = node->next)
13500 prune_unmark_dies (node->die);
13503 /* Output stuff that dwarf requires at the end of every file,
13504 and generate the DWARF-2 debugging info. */
13506 static void
13507 dwarf2out_finish (const char *filename)
13509 limbo_die_node *node, *next_node;
13510 dw_die_ref die = 0;
13512 /* Add the name for the main input file now. We delayed this from
13513 dwarf2out_init to avoid complications with PCH. */
13514 add_name_attribute (comp_unit_die, filename);
13515 if (filename[0] != DIR_SEPARATOR)
13516 add_comp_dir_attribute (comp_unit_die);
13517 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13519 size_t i;
13520 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13521 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13522 /* Don't add cwd for <built-in>. */
13523 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13525 add_comp_dir_attribute (comp_unit_die);
13526 break;
13530 /* Traverse the limbo die list, and add parent/child links. The only
13531 dies without parents that should be here are concrete instances of
13532 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13533 For concrete instances, we can get the parent die from the abstract
13534 instance. */
13535 for (node = limbo_die_list; node; node = next_node)
13537 next_node = node->next;
13538 die = node->die;
13540 if (die->die_parent == NULL)
13542 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13544 if (origin)
13545 add_child_die (origin->die_parent, die);
13546 else if (die == comp_unit_die)
13548 else if (errorcount > 0 || sorrycount > 0)
13549 /* It's OK to be confused by errors in the input. */
13550 add_child_die (comp_unit_die, die);
13551 else
13553 /* In certain situations, the lexical block containing a
13554 nested function can be optimized away, which results
13555 in the nested function die being orphaned. Likewise
13556 with the return type of that nested function. Force
13557 this to be a child of the containing function. */
13558 tree context = NULL_TREE;
13560 gcc_assert (node->created_for);
13562 if (DECL_P (node->created_for))
13563 context = DECL_CONTEXT (node->created_for);
13564 else if (TYPE_P (node->created_for))
13565 context = TYPE_CONTEXT (node->created_for);
13567 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13569 origin = lookup_decl_die (context);
13570 gcc_assert (origin);
13571 add_child_die (origin, die);
13576 limbo_die_list = NULL;
13578 /* Walk through the list of incomplete types again, trying once more to
13579 emit full debugging info for them. */
13580 retry_incomplete_types ();
13582 /* We need to reverse all the dies before break_out_includes, or
13583 we'll see the end of an include file before the beginning. */
13584 reverse_all_dies (comp_unit_die);
13586 if (flag_eliminate_unused_debug_types)
13587 prune_unused_types ();
13589 /* Generate separate CUs for each of the include files we've seen.
13590 They will go into limbo_die_list. */
13591 if (flag_eliminate_dwarf2_dups)
13592 break_out_includes (comp_unit_die);
13594 /* Traverse the DIE's and add add sibling attributes to those DIE's
13595 that have children. */
13596 add_sibling_attributes (comp_unit_die);
13597 for (node = limbo_die_list; node; node = node->next)
13598 add_sibling_attributes (node->die);
13600 /* Output a terminator label for the .text section. */
13601 text_section ();
13602 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13604 /* Output the source line correspondence table. We must do this
13605 even if there is no line information. Otherwise, on an empty
13606 translation unit, we will generate a present, but empty,
13607 .debug_info section. IRIX 6.5 `nm' will then complain when
13608 examining the file. */
13609 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13611 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13612 output_line_info ();
13615 /* Output location list section if necessary. */
13616 if (have_location_lists)
13618 /* Output the location lists info. */
13619 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13620 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13621 DEBUG_LOC_SECTION_LABEL, 0);
13622 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13623 output_location_lists (die);
13624 have_location_lists = 0;
13627 /* We can only use the low/high_pc attributes if all of the code was
13628 in .text. */
13629 if (separate_line_info_table_in_use == 0)
13631 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13632 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13635 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13636 "base address". Use zero so that these addresses become absolute. */
13637 else if (have_location_lists || ranges_table_in_use)
13638 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13640 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13641 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13642 debug_line_section_label);
13644 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13645 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13647 /* Output all of the compilation units. We put the main one last so that
13648 the offsets are available to output_pubnames. */
13649 for (node = limbo_die_list; node; node = node->next)
13650 output_comp_unit (node->die, 0);
13652 output_comp_unit (comp_unit_die, 0);
13654 /* Output the abbreviation table. */
13655 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13656 output_abbrev_section ();
13658 /* Output public names table if necessary. */
13659 if (pubname_table_in_use)
13661 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13662 output_pubnames ();
13665 /* Output the address range information. We only put functions in the arange
13666 table, so don't write it out if we don't have any. */
13667 if (fde_table_in_use)
13669 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13670 output_aranges ();
13673 /* Output ranges section if necessary. */
13674 if (ranges_table_in_use)
13676 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13677 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13678 output_ranges ();
13681 /* Have to end the primary source file. */
13682 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13684 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13685 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13686 dw2_asm_output_data (1, 0, "End compilation unit");
13689 /* If we emitted any DW_FORM_strp form attribute, output the string
13690 table too. */
13691 if (debug_str_hash)
13692 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13694 #else
13696 /* This should never be used, but its address is needed for comparisons. */
13697 const struct gcc_debug_hooks dwarf2_debug_hooks;
13699 #endif /* DWARF2_DEBUGGING_INFO */
13701 #include "gt-dwarf2out.h"