2016-04-21 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob6c5e56a666c051fd61a87b23513eaae597c44581
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Inline; use Inline;
46 with Itypes; use Itypes;
47 with Lib.Xref; use Lib.Xref;
48 with Layout; use Layout;
49 with Namet; use Namet;
50 with Lib; use Lib;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Output; use Output;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Cat; use Sem_Cat;
61 with Sem_Ch3; use Sem_Ch3;
62 with Sem_Ch4; use Sem_Ch4;
63 with Sem_Ch5; use Sem_Ch5;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 Set_Is_Abstract_Subprogram (Subp_Id);
230 New_Overloaded_Entity (Subp_Id);
231 Check_Delayed_Subprogram (Subp_Id);
233 Set_Categorization_From_Scope (Subp_Id, Scop);
235 -- An abstract subprogram declared within a Ghost region is rendered
236 -- Ghost (SPARK RM 6.9(2)).
238 if Ghost_Mode > None then
239 Set_Is_Ghost_Entity (Subp_Id);
240 end if;
242 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
243 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
245 -- Issue a warning if the abstract subprogram is neither a dispatching
246 -- operation nor an operation that overrides an inherited subprogram or
247 -- predefined operator, since this most likely indicates a mistake.
249 elsif Warn_On_Redundant_Constructs
250 and then not Is_Dispatching_Operation (Subp_Id)
251 and then not Present (Overridden_Operation (Subp_Id))
252 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
253 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
254 then
255 Error_Msg_N
256 ("abstract subprogram is not dispatching or overriding?r?", N);
257 end if;
259 Generate_Reference_To_Formals (Subp_Id);
260 Check_Eliminated (Subp_Id);
262 if Has_Aspects (N) then
263 Analyze_Aspect_Specifications (N, Subp_Id);
264 end if;
265 end Analyze_Abstract_Subprogram_Declaration;
267 ---------------------------------
268 -- Analyze_Expression_Function --
269 ---------------------------------
271 procedure Analyze_Expression_Function (N : Node_Id) is
272 Expr : constant Node_Id := Expression (N);
273 Loc : constant Source_Ptr := Sloc (N);
274 LocX : constant Source_Ptr := Sloc (Expr);
275 Spec : constant Node_Id := Specification (N);
277 Def_Id : Entity_Id;
279 Prev : Entity_Id;
280 -- If the expression is a completion, Prev is the entity whose
281 -- declaration is completed. Def_Id is needed to analyze the spec.
283 New_Body : Node_Id;
284 New_Spec : Node_Id;
285 Ret : Node_Id;
286 Asp : Node_Id;
288 begin
289 -- This is one of the occasions on which we transform the tree during
290 -- semantic analysis. If this is a completion, transform the expression
291 -- function into an equivalent subprogram body, and analyze it.
293 -- Expression functions are inlined unconditionally. The back-end will
294 -- determine whether this is possible.
296 Inline_Processing_Required := True;
298 -- Create a specification for the generated body. This must be done
299 -- prior to the analysis of the initial declaration.
301 New_Spec := Copy_Subprogram_Spec (Spec);
302 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
304 -- If there are previous overloadable entities with the same name,
305 -- check whether any of them is completed by the expression function.
306 -- In a generic context a formal subprogram has no completion.
308 if Present (Prev)
309 and then Is_Overloadable (Prev)
310 and then not Is_Formal_Subprogram (Prev)
311 then
312 Def_Id := Analyze_Subprogram_Specification (Spec);
313 Prev := Find_Corresponding_Spec (N);
315 -- The previous entity may be an expression function as well, in
316 -- which case the redeclaration is illegal.
318 if Present (Prev)
319 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
320 N_Expression_Function
321 then
322 Error_Msg_Sloc := Sloc (Prev);
323 Error_Msg_N ("& conflicts with declaration#", Def_Id);
324 return;
325 end if;
326 end if;
328 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
330 New_Body :=
331 Make_Subprogram_Body (Loc,
332 Specification => New_Spec,
333 Declarations => Empty_List,
334 Handled_Statement_Sequence =>
335 Make_Handled_Sequence_Of_Statements (LocX,
336 Statements => New_List (Ret)));
337 Set_Was_Expression_Function (New_Body);
339 -- If the expression completes a generic subprogram, we must create a
340 -- separate node for the body, because at instantiation the original
341 -- node of the generic copy must be a generic subprogram body, and
342 -- cannot be a expression function. Otherwise we just rewrite the
343 -- expression with the non-generic body.
345 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
346 Insert_After (N, New_Body);
348 -- Propagate any aspects or pragmas that apply to the expression
349 -- function to the proper body when the expression function acts
350 -- as a completion.
352 if Has_Aspects (N) then
353 Move_Aspects (N, To => New_Body);
354 end if;
356 Relocate_Pragmas_To_Body (New_Body);
358 Rewrite (N, Make_Null_Statement (Loc));
359 Set_Has_Completion (Prev, False);
360 Analyze (N);
361 Analyze (New_Body);
362 Set_Is_Inlined (Prev);
364 -- If the expression function is a completion, the previous declaration
365 -- must come from source. We know already that it appears in the current
366 -- scope. The entity itself may be internally created if within a body
367 -- to be inlined.
369 elsif Present (Prev)
370 and then Comes_From_Source (Parent (Prev))
371 and then not Is_Formal_Subprogram (Prev)
372 then
373 Set_Has_Completion (Prev, False);
374 Set_Is_Inlined (Prev);
376 -- An expression function that is a completion freezes the
377 -- expression. This means freezing the return type, and if it is
378 -- an access type, freezing its designated type as well.
380 -- Note that we cannot defer this freezing to the analysis of the
381 -- expression itself, because a freeze node might appear in a nested
382 -- scope, leading to an elaboration order issue in gigi.
384 Freeze_Before (N, Etype (Prev));
386 if Is_Access_Type (Etype (Prev)) then
387 Freeze_Before (N, Designated_Type (Etype (Prev)));
388 end if;
390 -- For navigation purposes, indicate that the function is a body
392 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
393 Rewrite (N, New_Body);
395 -- Correct the parent pointer of the aspect specification list to
396 -- reference the rewritten node.
398 if Has_Aspects (N) then
399 Set_Parent (Aspect_Specifications (N), N);
400 end if;
402 -- Propagate any pragmas that apply to the expression function to the
403 -- proper body when the expression function acts as a completion.
404 -- Aspects are automatically transfered because of node rewriting.
406 Relocate_Pragmas_To_Body (N);
407 Analyze (N);
409 -- Prev is the previous entity with the same name, but it is can
410 -- be an unrelated spec that is not completed by the expression
411 -- function. In that case the relevant entity is the one in the body.
412 -- Not clear that the backend can inline it in this case ???
414 if Has_Completion (Prev) then
416 -- The formals of the expression function are body formals,
417 -- and do not appear in the ali file, which will only contain
418 -- references to the formals of the original subprogram spec.
420 declare
421 F1 : Entity_Id;
422 F2 : Entity_Id;
424 begin
425 F1 := First_Formal (Def_Id);
426 F2 := First_Formal (Prev);
428 while Present (F1) loop
429 Set_Spec_Entity (F1, F2);
430 Next_Formal (F1);
431 Next_Formal (F2);
432 end loop;
433 end;
435 else
436 Set_Is_Inlined (Defining_Entity (New_Body));
437 end if;
439 -- If this is not a completion, create both a declaration and a body, so
440 -- that the expression can be inlined whenever possible.
442 else
443 -- An expression function that is not a completion is not a
444 -- subprogram declaration, and thus cannot appear in a protected
445 -- definition.
447 if Nkind (Parent (N)) = N_Protected_Definition then
448 Error_Msg_N
449 ("an expression function is not a legal protected operation", N);
450 end if;
452 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
454 -- Correct the parent pointer of the aspect specification list to
455 -- reference the rewritten node.
457 if Has_Aspects (N) then
458 Set_Parent (Aspect_Specifications (N), N);
459 end if;
461 Analyze (N);
462 Def_Id := Defining_Entity (N);
464 -- If aspect SPARK_Mode was specified on the body, it needs to be
465 -- repeated both on the generated spec and the body.
467 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
469 if Present (Asp) then
470 Asp := New_Copy_Tree (Asp);
471 Set_Analyzed (Asp, False);
472 Set_Aspect_Specifications (New_Body, New_List (Asp));
473 end if;
475 -- Within a generic pre-analyze the original expression for name
476 -- capture. The body is also generated but plays no role in
477 -- this because it is not part of the original source.
479 if Inside_A_Generic then
480 Set_Has_Completion (Def_Id);
481 Push_Scope (Def_Id);
482 Install_Formals (Def_Id);
483 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
484 End_Scope;
485 end if;
487 Set_Is_Inlined (Defining_Entity (N));
489 -- Establish the linkages between the spec and the body. These are
490 -- used when the expression function acts as the prefix of attribute
491 -- 'Access in order to freeze the original expression which has been
492 -- moved to the generated body.
494 Set_Corresponding_Body (N, Defining_Entity (New_Body));
495 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
497 -- To prevent premature freeze action, insert the new body at the end
498 -- of the current declarations, or at the end of the package spec.
499 -- However, resolve usage names now, to prevent spurious visibility
500 -- on later entities. Note that the function can now be called in
501 -- the current declarative part, which will appear to be prior to
502 -- the presence of the body in the code. There are nevertheless no
503 -- order of elaboration issues because all name resolution has taken
504 -- place at the point of declaration.
506 declare
507 Decls : List_Id := List_Containing (N);
508 Expr : constant Node_Id := Expression (Ret);
509 Par : constant Node_Id := Parent (Decls);
510 Typ : constant Entity_Id := Etype (Def_Id);
512 begin
513 -- If this is a wrapper created for in an instance for a formal
514 -- subprogram, insert body after declaration, to be analyzed when
515 -- the enclosing instance is analyzed.
517 if GNATprove_Mode
518 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
519 then
520 Insert_After (N, New_Body);
522 else
523 if Nkind (Par) = N_Package_Specification
524 and then Decls = Visible_Declarations (Par)
525 and then Present (Private_Declarations (Par))
526 and then not Is_Empty_List (Private_Declarations (Par))
527 then
528 Decls := Private_Declarations (Par);
529 end if;
531 Insert_After (Last (Decls), New_Body);
533 -- Preanalyze the expression for name capture, except in an
534 -- instance, where this has been done during generic analysis,
535 -- and will be redone when analyzing the body.
537 Set_Parent (Expr, Ret);
538 Push_Scope (Def_Id);
539 Install_Formals (Def_Id);
541 if not In_Instance then
542 Preanalyze_Spec_Expression (Expr, Typ);
543 Check_Limited_Return (Original_Node (N), Expr, Typ);
544 end if;
546 End_Scope;
547 end if;
548 end;
549 end if;
551 -- If the return expression is a static constant, we suppress warning
552 -- messages on unused formals, which in most cases will be noise.
554 Set_Is_Trivial_Subprogram
555 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
556 end Analyze_Expression_Function;
558 ----------------------------------------
559 -- Analyze_Extended_Return_Statement --
560 ----------------------------------------
562 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
563 begin
564 Check_Compiler_Unit ("extended return statement", N);
565 Analyze_Return_Statement (N);
566 end Analyze_Extended_Return_Statement;
568 ----------------------------
569 -- Analyze_Function_Call --
570 ----------------------------
572 procedure Analyze_Function_Call (N : Node_Id) is
573 Actuals : constant List_Id := Parameter_Associations (N);
574 Func_Nam : constant Node_Id := Name (N);
575 Actual : Node_Id;
577 begin
578 Analyze (Func_Nam);
580 -- A call of the form A.B (X) may be an Ada 2005 call, which is
581 -- rewritten as B (A, X). If the rewriting is successful, the call
582 -- has been analyzed and we just return.
584 if Nkind (Func_Nam) = N_Selected_Component
585 and then Name (N) /= Func_Nam
586 and then Is_Rewrite_Substitution (N)
587 and then Present (Etype (N))
588 then
589 return;
590 end if;
592 -- If error analyzing name, then set Any_Type as result type and return
594 if Etype (Func_Nam) = Any_Type then
595 Set_Etype (N, Any_Type);
596 return;
597 end if;
599 -- Otherwise analyze the parameters
601 if Present (Actuals) then
602 Actual := First (Actuals);
603 while Present (Actual) loop
604 Analyze (Actual);
605 Check_Parameterless_Call (Actual);
606 Next (Actual);
607 end loop;
608 end if;
610 Analyze_Call (N);
611 end Analyze_Function_Call;
613 -----------------------------
614 -- Analyze_Function_Return --
615 -----------------------------
617 procedure Analyze_Function_Return (N : Node_Id) is
618 Loc : constant Source_Ptr := Sloc (N);
619 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
620 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
622 R_Type : constant Entity_Id := Etype (Scope_Id);
623 -- Function result subtype
625 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
626 -- Apply legality rule of 6.5 (8.2) to the access discriminants of an
627 -- aggregate in a return statement.
629 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
630 -- Check that the return_subtype_indication properly matches the result
631 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
633 -----------------------------------
634 -- Check_Aggregate_Accessibility --
635 -----------------------------------
637 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
638 Typ : constant Entity_Id := Etype (Aggr);
639 Assoc : Node_Id;
640 Discr : Entity_Id;
641 Expr : Node_Id;
642 Obj : Node_Id;
644 begin
645 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
646 Discr := First_Discriminant (Typ);
647 Assoc := First (Component_Associations (Aggr));
648 while Present (Discr) loop
649 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
650 Expr := Expression (Assoc);
651 if Nkind (Expr) = N_Attribute_Reference
652 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
653 then
654 Obj := Prefix (Expr);
655 while Nkind_In (Obj, N_Indexed_Component,
656 N_Selected_Component)
657 loop
658 Obj := Prefix (Obj);
659 end loop;
661 -- No check needed for an aliased formal.
662 -- A run-time check may still be needed ???
664 if Is_Entity_Name (Obj)
665 and then Is_Formal (Entity (Obj))
666 and then Is_Aliased (Entity (Obj))
667 then
668 null;
670 elsif Object_Access_Level (Obj) >
671 Scope_Depth (Scope (Scope_Id))
672 then
673 Error_Msg_N
674 ("access discriminant in return aggregate would be "
675 & "a dangling reference", Obj);
676 end if;
677 end if;
678 end if;
680 Next_Discriminant (Discr);
681 end loop;
682 end if;
683 end Check_Aggregate_Accessibility;
685 -------------------------------------
686 -- Check_Return_Subtype_Indication --
687 -------------------------------------
689 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
690 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
692 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
693 -- Subtype given in the extended return statement (must match R_Type)
695 Subtype_Ind : constant Node_Id :=
696 Object_Definition (Original_Node (Obj_Decl));
698 R_Type_Is_Anon_Access : constant Boolean :=
699 Ekind_In (R_Type,
700 E_Anonymous_Access_Subprogram_Type,
701 E_Anonymous_Access_Protected_Subprogram_Type,
702 E_Anonymous_Access_Type);
703 -- True if return type of the function is an anonymous access type
704 -- Can't we make Is_Anonymous_Access_Type in einfo ???
706 R_Stm_Type_Is_Anon_Access : constant Boolean :=
707 Ekind_In (R_Stm_Type,
708 E_Anonymous_Access_Subprogram_Type,
709 E_Anonymous_Access_Protected_Subprogram_Type,
710 E_Anonymous_Access_Type);
711 -- True if type of the return object is an anonymous access type
713 procedure Error_No_Match (N : Node_Id);
714 -- Output error messages for case where types do not statically
715 -- match. N is the location for the messages.
717 --------------------
718 -- Error_No_Match --
719 --------------------
721 procedure Error_No_Match (N : Node_Id) is
722 begin
723 Error_Msg_N
724 ("subtype must statically match function result subtype", N);
726 if not Predicates_Match (R_Stm_Type, R_Type) then
727 Error_Msg_Node_2 := R_Type;
728 Error_Msg_NE
729 ("\predicate of& does not match predicate of&",
730 N, R_Stm_Type);
731 end if;
732 end Error_No_Match;
734 -- Start of processing for Check_Return_Subtype_Indication
736 begin
737 -- First, avoid cascaded errors
739 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
740 return;
741 end if;
743 -- "return access T" case; check that the return statement also has
744 -- "access T", and that the subtypes statically match:
745 -- if this is an access to subprogram the signatures must match.
747 if R_Type_Is_Anon_Access then
748 if R_Stm_Type_Is_Anon_Access then
750 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
751 then
752 if Base_Type (Designated_Type (R_Stm_Type)) /=
753 Base_Type (Designated_Type (R_Type))
754 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
755 then
756 Error_No_Match (Subtype_Mark (Subtype_Ind));
757 end if;
759 else
760 -- For two anonymous access to subprogram types, the
761 -- types themselves must be type conformant.
763 if not Conforming_Types
764 (R_Stm_Type, R_Type, Fully_Conformant)
765 then
766 Error_No_Match (Subtype_Ind);
767 end if;
768 end if;
770 else
771 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
772 end if;
774 -- If the return object is of an anonymous access type, then report
775 -- an error if the function's result type is not also anonymous.
777 elsif R_Stm_Type_Is_Anon_Access
778 and then not R_Type_Is_Anon_Access
779 then
780 Error_Msg_N ("anonymous access not allowed for function with "
781 & "named access result", Subtype_Ind);
783 -- Subtype indication case: check that the return object's type is
784 -- covered by the result type, and that the subtypes statically match
785 -- when the result subtype is constrained. Also handle record types
786 -- with unknown discriminants for which we have built the underlying
787 -- record view. Coverage is needed to allow specific-type return
788 -- objects when the result type is class-wide (see AI05-32).
790 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
791 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
792 and then
793 Covers
794 (Base_Type (R_Type),
795 Underlying_Record_View (Base_Type (R_Stm_Type))))
796 then
797 -- A null exclusion may be present on the return type, on the
798 -- function specification, on the object declaration or on the
799 -- subtype itself.
801 if Is_Access_Type (R_Type)
802 and then
803 (Can_Never_Be_Null (R_Type)
804 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
805 Can_Never_Be_Null (R_Stm_Type)
806 then
807 Error_No_Match (Subtype_Ind);
808 end if;
810 -- AI05-103: for elementary types, subtypes must statically match
812 if Is_Constrained (R_Type)
813 or else Is_Access_Type (R_Type)
814 then
815 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
816 Error_No_Match (Subtype_Ind);
817 end if;
818 end if;
820 -- All remaining cases are illegal
822 -- Note: previous versions of this subprogram allowed the return
823 -- value to be the ancestor of the return type if the return type
824 -- was a null extension. This was plainly incorrect.
826 else
827 Error_Msg_N
828 ("wrong type for return_subtype_indication", Subtype_Ind);
829 end if;
830 end Check_Return_Subtype_Indication;
832 ---------------------
833 -- Local Variables --
834 ---------------------
836 Expr : Node_Id;
837 Obj_Decl : Node_Id;
839 -- Start of processing for Analyze_Function_Return
841 begin
842 Set_Return_Present (Scope_Id);
844 if Nkind (N) = N_Simple_Return_Statement then
845 Expr := Expression (N);
847 -- Guard against a malformed expression. The parser may have tried to
848 -- recover but the node is not analyzable.
850 if Nkind (Expr) = N_Error then
851 Set_Etype (Expr, Any_Type);
852 Expander_Mode_Save_And_Set (False);
853 return;
855 else
856 -- The resolution of a controlled [extension] aggregate associated
857 -- with a return statement creates a temporary which needs to be
858 -- finalized on function exit. Wrap the return statement inside a
859 -- block so that the finalization machinery can detect this case.
860 -- This early expansion is done only when the return statement is
861 -- not part of a handled sequence of statements.
863 if Nkind_In (Expr, N_Aggregate,
864 N_Extension_Aggregate)
865 and then Needs_Finalization (R_Type)
866 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
867 then
868 Rewrite (N,
869 Make_Block_Statement (Loc,
870 Handled_Statement_Sequence =>
871 Make_Handled_Sequence_Of_Statements (Loc,
872 Statements => New_List (Relocate_Node (N)))));
874 Analyze (N);
875 return;
876 end if;
878 Analyze (Expr);
880 -- Ada 2005 (AI-251): If the type of the returned object is
881 -- an access to an interface type then we add an implicit type
882 -- conversion to force the displacement of the "this" pointer to
883 -- reference the secondary dispatch table. We cannot delay the
884 -- generation of this implicit conversion until the expansion
885 -- because in this case the type resolution changes the decoration
886 -- of the expression node to match R_Type; by contrast, if the
887 -- returned object is a class-wide interface type then it is too
888 -- early to generate here the implicit conversion since the return
889 -- statement may be rewritten by the expander into an extended
890 -- return statement whose expansion takes care of adding the
891 -- implicit type conversion to displace the pointer to the object.
893 if Expander_Active
894 and then Serious_Errors_Detected = 0
895 and then Is_Access_Type (R_Type)
896 and then Nkind (Expr) /= N_Null
897 and then Is_Interface (Designated_Type (R_Type))
898 and then Is_Progenitor (Designated_Type (R_Type),
899 Designated_Type (Etype (Expr)))
900 then
901 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
902 Analyze (Expr);
903 end if;
905 Resolve (Expr, R_Type);
906 Check_Limited_Return (N, Expr, R_Type);
908 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
909 Check_Aggregate_Accessibility (Expr);
910 end if;
911 end if;
913 -- RETURN only allowed in SPARK as the last statement in function
915 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
916 and then
917 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
918 or else Present (Next (N)))
919 then
920 Check_SPARK_05_Restriction
921 ("RETURN should be the last statement in function", N);
922 end if;
924 else
925 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
926 Obj_Decl := Last (Return_Object_Declarations (N));
928 -- Analyze parts specific to extended_return_statement:
930 declare
931 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
932 HSS : constant Node_Id := Handled_Statement_Sequence (N);
934 begin
935 Expr := Expression (Obj_Decl);
937 -- Note: The check for OK_For_Limited_Init will happen in
938 -- Analyze_Object_Declaration; we treat it as a normal
939 -- object declaration.
941 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
942 Analyze (Obj_Decl);
944 Check_Return_Subtype_Indication (Obj_Decl);
946 if Present (HSS) then
947 Analyze (HSS);
949 if Present (Exception_Handlers (HSS)) then
951 -- ???Has_Nested_Block_With_Handler needs to be set.
952 -- Probably by creating an actual N_Block_Statement.
953 -- Probably in Expand.
955 null;
956 end if;
957 end if;
959 -- Mark the return object as referenced, since the return is an
960 -- implicit reference of the object.
962 Set_Referenced (Defining_Identifier (Obj_Decl));
964 Check_References (Stm_Entity);
966 -- Check RM 6.5 (5.9/3)
968 if Has_Aliased then
969 if Ada_Version < Ada_2012 then
971 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
972 -- Can it really happen (extended return???)
974 Error_Msg_N
975 ("aliased only allowed for limited return objects "
976 & "in Ada 2012??", N);
978 elsif not Is_Limited_View (R_Type) then
979 Error_Msg_N
980 ("aliased only allowed for limited return objects", N);
981 end if;
982 end if;
983 end;
984 end if;
986 -- Case of Expr present
988 if Present (Expr)
990 -- Defend against previous errors
992 and then Nkind (Expr) /= N_Empty
993 and then Present (Etype (Expr))
994 then
995 -- Apply constraint check. Note that this is done before the implicit
996 -- conversion of the expression done for anonymous access types to
997 -- ensure correct generation of the null-excluding check associated
998 -- with null-excluding expressions found in return statements.
1000 Apply_Constraint_Check (Expr, R_Type);
1002 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1003 -- type, apply an implicit conversion of the expression to that type
1004 -- to force appropriate static and run-time accessibility checks.
1006 if Ada_Version >= Ada_2005
1007 and then Ekind (R_Type) = E_Anonymous_Access_Type
1008 then
1009 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1010 Analyze_And_Resolve (Expr, R_Type);
1012 -- If this is a local anonymous access to subprogram, the
1013 -- accessibility check can be applied statically. The return is
1014 -- illegal if the access type of the return expression is declared
1015 -- inside of the subprogram (except if it is the subtype indication
1016 -- of an extended return statement).
1018 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1019 if not Comes_From_Source (Current_Scope)
1020 or else Ekind (Current_Scope) = E_Return_Statement
1021 then
1022 null;
1024 elsif
1025 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1026 then
1027 Error_Msg_N ("cannot return local access to subprogram", N);
1028 end if;
1030 -- The expression cannot be of a formal incomplete type
1032 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1033 and then Is_Generic_Type (Etype (Expr))
1034 then
1035 Error_Msg_N
1036 ("cannot return expression of a formal incomplete type", N);
1037 end if;
1039 -- If the result type is class-wide, then check that the return
1040 -- expression's type is not declared at a deeper level than the
1041 -- function (RM05-6.5(5.6/2)).
1043 if Ada_Version >= Ada_2005
1044 and then Is_Class_Wide_Type (R_Type)
1045 then
1046 if Type_Access_Level (Etype (Expr)) >
1047 Subprogram_Access_Level (Scope_Id)
1048 then
1049 Error_Msg_N
1050 ("level of return expression type is deeper than "
1051 & "class-wide function!", Expr);
1052 end if;
1053 end if;
1055 -- Check incorrect use of dynamically tagged expression
1057 if Is_Tagged_Type (R_Type) then
1058 Check_Dynamically_Tagged_Expression
1059 (Expr => Expr,
1060 Typ => R_Type,
1061 Related_Nod => N);
1062 end if;
1064 -- ??? A real run-time accessibility check is needed in cases
1065 -- involving dereferences of access parameters. For now we just
1066 -- check the static cases.
1068 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1069 and then Is_Limited_View (Etype (Scope_Id))
1070 and then Object_Access_Level (Expr) >
1071 Subprogram_Access_Level (Scope_Id)
1072 then
1073 -- Suppress the message in a generic, where the rewriting
1074 -- is irrelevant.
1076 if Inside_A_Generic then
1077 null;
1079 else
1080 Rewrite (N,
1081 Make_Raise_Program_Error (Loc,
1082 Reason => PE_Accessibility_Check_Failed));
1083 Analyze (N);
1085 Error_Msg_Warn := SPARK_Mode /= On;
1086 Error_Msg_N ("cannot return a local value by reference<<", N);
1087 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1088 end if;
1089 end if;
1091 if Known_Null (Expr)
1092 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1093 and then Null_Exclusion_Present (Parent (Scope_Id))
1094 then
1095 Apply_Compile_Time_Constraint_Error
1096 (N => Expr,
1097 Msg => "(Ada 2005) null not allowed for "
1098 & "null-excluding return??",
1099 Reason => CE_Null_Not_Allowed);
1100 end if;
1102 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1103 -- has no initializing expression.
1105 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1106 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1107 Subprogram_Access_Level (Scope_Id)
1108 then
1109 Error_Msg_N
1110 ("level of return expression type is deeper than "
1111 & "class-wide function!", Obj_Decl);
1112 end if;
1113 end if;
1114 end Analyze_Function_Return;
1116 -------------------------------------
1117 -- Analyze_Generic_Subprogram_Body --
1118 -------------------------------------
1120 procedure Analyze_Generic_Subprogram_Body
1121 (N : Node_Id;
1122 Gen_Id : Entity_Id)
1124 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1125 Kind : constant Entity_Kind := Ekind (Gen_Id);
1126 Body_Id : Entity_Id;
1127 New_N : Node_Id;
1128 Spec : Node_Id;
1130 begin
1131 -- Copy body and disable expansion while analyzing the generic For a
1132 -- stub, do not copy the stub (which would load the proper body), this
1133 -- will be done when the proper body is analyzed.
1135 if Nkind (N) /= N_Subprogram_Body_Stub then
1136 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1137 Rewrite (N, New_N);
1139 -- Once the contents of the generic copy and the template are
1140 -- swapped, do the same for their respective aspect specifications.
1142 Exchange_Aspects (N, New_N);
1144 -- Collect all contract-related source pragmas found within the
1145 -- template and attach them to the contract of the subprogram body.
1146 -- This contract is used in the capture of global references within
1147 -- annotations.
1149 Create_Generic_Contract (N);
1151 Start_Generic;
1152 end if;
1154 Spec := Specification (N);
1156 -- Within the body of the generic, the subprogram is callable, and
1157 -- behaves like the corresponding non-generic unit.
1159 Body_Id := Defining_Entity (Spec);
1161 if Kind = E_Generic_Procedure
1162 and then Nkind (Spec) /= N_Procedure_Specification
1163 then
1164 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1165 return;
1167 elsif Kind = E_Generic_Function
1168 and then Nkind (Spec) /= N_Function_Specification
1169 then
1170 Error_Msg_N ("invalid body for generic function ", Body_Id);
1171 return;
1172 end if;
1174 Set_Corresponding_Body (Gen_Decl, Body_Id);
1176 if Has_Completion (Gen_Id)
1177 and then Nkind (Parent (N)) /= N_Subunit
1178 then
1179 Error_Msg_N ("duplicate generic body", N);
1180 return;
1181 else
1182 Set_Has_Completion (Gen_Id);
1183 end if;
1185 if Nkind (N) = N_Subprogram_Body_Stub then
1186 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1187 else
1188 Set_Corresponding_Spec (N, Gen_Id);
1189 end if;
1191 if Nkind (Parent (N)) = N_Compilation_Unit then
1192 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1193 end if;
1195 -- Make generic parameters immediately visible in the body. They are
1196 -- needed to process the formals declarations. Then make the formals
1197 -- visible in a separate step.
1199 Push_Scope (Gen_Id);
1201 declare
1202 E : Entity_Id;
1203 First_Ent : Entity_Id;
1205 begin
1206 First_Ent := First_Entity (Gen_Id);
1208 E := First_Ent;
1209 while Present (E) and then not Is_Formal (E) loop
1210 Install_Entity (E);
1211 Next_Entity (E);
1212 end loop;
1214 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1216 -- Now generic formals are visible, and the specification can be
1217 -- analyzed, for subsequent conformance check.
1219 Body_Id := Analyze_Subprogram_Specification (Spec);
1221 -- Make formal parameters visible
1223 if Present (E) then
1225 -- E is the first formal parameter, we loop through the formals
1226 -- installing them so that they will be visible.
1228 Set_First_Entity (Gen_Id, E);
1229 while Present (E) loop
1230 Install_Entity (E);
1231 Next_Formal (E);
1232 end loop;
1233 end if;
1235 -- Visible generic entity is callable within its own body
1237 Set_Ekind (Gen_Id, Ekind (Body_Id));
1238 Set_Ekind (Body_Id, E_Subprogram_Body);
1239 Set_Convention (Body_Id, Convention (Gen_Id));
1240 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1241 Set_Scope (Body_Id, Scope (Gen_Id));
1243 -- Inherit the "ghostness" of the generic spec. Note that this
1244 -- property is not directly inherited as the body may be subject
1245 -- to a different Ghost assertion policy.
1247 if Ghost_Mode > None or else Is_Ghost_Entity (Gen_Id) then
1248 Set_Is_Ghost_Entity (Body_Id);
1250 -- The Ghost policy in effect at the point of declaration and at
1251 -- the point of completion must match (SPARK RM 6.9(14)).
1253 Check_Ghost_Completion (Gen_Id, Body_Id);
1254 end if;
1256 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1258 if Nkind (N) = N_Subprogram_Body_Stub then
1260 -- No body to analyze, so restore state of generic unit
1262 Set_Ekind (Gen_Id, Kind);
1263 Set_Ekind (Body_Id, Kind);
1265 if Present (First_Ent) then
1266 Set_First_Entity (Gen_Id, First_Ent);
1267 end if;
1269 End_Scope;
1270 return;
1271 end if;
1273 -- If this is a compilation unit, it must be made visible explicitly,
1274 -- because the compilation of the declaration, unlike other library
1275 -- unit declarations, does not. If it is not a unit, the following
1276 -- is redundant but harmless.
1278 Set_Is_Immediately_Visible (Gen_Id);
1279 Reference_Body_Formals (Gen_Id, Body_Id);
1281 if Is_Child_Unit (Gen_Id) then
1282 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1283 end if;
1285 Set_Actual_Subtypes (N, Current_Scope);
1287 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1288 Set_SPARK_Pragma_Inherited (Body_Id);
1290 -- Analyze any aspect specifications that appear on the generic
1291 -- subprogram body.
1293 if Has_Aspects (N) then
1294 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1295 end if;
1297 Analyze_Declarations (Declarations (N));
1298 Check_Completion;
1300 -- Process the contract of the subprogram body after all declarations
1301 -- have been analyzed. This ensures that any contract-related pragmas
1302 -- are available through the N_Contract node of the body.
1304 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1306 Analyze (Handled_Statement_Sequence (N));
1307 Save_Global_References (Original_Node (N));
1309 -- Prior to exiting the scope, include generic formals again (if any
1310 -- are present) in the set of local entities.
1312 if Present (First_Ent) then
1313 Set_First_Entity (Gen_Id, First_Ent);
1314 end if;
1316 Check_References (Gen_Id);
1317 end;
1319 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1320 End_Scope;
1321 Check_Subprogram_Order (N);
1323 -- Outside of its body, unit is generic again
1325 Set_Ekind (Gen_Id, Kind);
1326 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1328 if Style_Check then
1329 Style.Check_Identifier (Body_Id, Gen_Id);
1330 end if;
1332 End_Generic;
1333 end Analyze_Generic_Subprogram_Body;
1335 ----------------------------
1336 -- Analyze_Null_Procedure --
1337 ----------------------------
1339 procedure Analyze_Null_Procedure
1340 (N : Node_Id;
1341 Is_Completion : out Boolean)
1343 Loc : constant Source_Ptr := Sloc (N);
1344 Spec : constant Node_Id := Specification (N);
1345 Designator : Entity_Id;
1346 Form : Node_Id;
1347 Null_Body : Node_Id := Empty;
1348 Prev : Entity_Id;
1350 begin
1351 -- Capture the profile of the null procedure before analysis, for
1352 -- expansion at the freeze point and at each point of call. The body is
1353 -- used if the procedure has preconditions, or if it is a completion. In
1354 -- the first case the body is analyzed at the freeze point, in the other
1355 -- it replaces the null procedure declaration.
1357 Null_Body :=
1358 Make_Subprogram_Body (Loc,
1359 Specification => New_Copy_Tree (Spec),
1360 Declarations => New_List,
1361 Handled_Statement_Sequence =>
1362 Make_Handled_Sequence_Of_Statements (Loc,
1363 Statements => New_List (Make_Null_Statement (Loc))));
1365 -- Create new entities for body and formals
1367 Set_Defining_Unit_Name (Specification (Null_Body),
1368 Make_Defining_Identifier
1369 (Sloc (Defining_Entity (N)),
1370 Chars (Defining_Entity (N))));
1372 Form := First (Parameter_Specifications (Specification (Null_Body)));
1373 while Present (Form) loop
1374 Set_Defining_Identifier (Form,
1375 Make_Defining_Identifier
1376 (Sloc (Defining_Identifier (Form)),
1377 Chars (Defining_Identifier (Form))));
1378 Next (Form);
1379 end loop;
1381 -- Determine whether the null procedure may be a completion of a generic
1382 -- suprogram, in which case we use the new null body as the completion
1383 -- and set minimal semantic information on the original declaration,
1384 -- which is rewritten as a null statement.
1386 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1388 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1389 Insert_Before (N, Null_Body);
1390 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1392 Rewrite (N, Make_Null_Statement (Loc));
1393 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1394 Is_Completion := True;
1395 return;
1397 else
1398 -- Resolve the types of the formals now, because the freeze point
1399 -- may appear in a different context, e.g. an instantiation.
1401 Form := First (Parameter_Specifications (Specification (Null_Body)));
1402 while Present (Form) loop
1403 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1404 Find_Type (Parameter_Type (Form));
1406 elsif
1407 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1408 then
1409 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1411 else
1412 -- The case of a null procedure with a formal that is an
1413 -- access_to_subprogram type, and that is used as an actual
1414 -- in an instantiation is left to the enthusiastic reader.
1416 null;
1417 end if;
1419 Next (Form);
1420 end loop;
1421 end if;
1423 -- If there are previous overloadable entities with the same name,
1424 -- check whether any of them is completed by the null procedure.
1426 if Present (Prev) and then Is_Overloadable (Prev) then
1427 Designator := Analyze_Subprogram_Specification (Spec);
1428 Prev := Find_Corresponding_Spec (N);
1429 end if;
1431 if No (Prev) or else not Comes_From_Source (Prev) then
1432 Designator := Analyze_Subprogram_Specification (Spec);
1433 Set_Has_Completion (Designator);
1435 -- Signal to caller that this is a procedure declaration
1437 Is_Completion := False;
1439 -- Null procedures are always inlined, but generic formal subprograms
1440 -- which appear as such in the internal instance of formal packages,
1441 -- need no completion and are not marked Inline.
1443 if Expander_Active
1444 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1445 then
1446 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1447 Set_Body_To_Inline (N, Null_Body);
1448 Set_Is_Inlined (Designator);
1449 end if;
1451 else
1452 -- The null procedure is a completion. We unconditionally rewrite
1453 -- this as a null body (even if expansion is not active), because
1454 -- there are various error checks that are applied on this body
1455 -- when it is analyzed (e.g. correct aspect placement).
1457 if Has_Completion (Prev) then
1458 Error_Msg_Sloc := Sloc (Prev);
1459 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1460 end if;
1462 Is_Completion := True;
1463 Rewrite (N, Null_Body);
1464 Analyze (N);
1465 end if;
1466 end Analyze_Null_Procedure;
1468 -----------------------------
1469 -- Analyze_Operator_Symbol --
1470 -----------------------------
1472 -- An operator symbol such as "+" or "and" may appear in context where the
1473 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1474 -- is just a string, as in (conjunction = "or"). In these cases the parser
1475 -- generates this node, and the semantics does the disambiguation. Other
1476 -- such case are actuals in an instantiation, the generic unit in an
1477 -- instantiation, and pragma arguments.
1479 procedure Analyze_Operator_Symbol (N : Node_Id) is
1480 Par : constant Node_Id := Parent (N);
1482 begin
1483 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1484 or else Nkind (Par) = N_Function_Instantiation
1485 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1486 or else (Nkind (Par) = N_Pragma_Argument_Association
1487 and then not Is_Pragma_String_Literal (Par))
1488 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1489 or else (Nkind (Par) = N_Attribute_Reference
1490 and then Attribute_Name (Par) /= Name_Value)
1491 then
1492 Find_Direct_Name (N);
1494 else
1495 Change_Operator_Symbol_To_String_Literal (N);
1496 Analyze (N);
1497 end if;
1498 end Analyze_Operator_Symbol;
1500 -----------------------------------
1501 -- Analyze_Parameter_Association --
1502 -----------------------------------
1504 procedure Analyze_Parameter_Association (N : Node_Id) is
1505 begin
1506 Analyze (Explicit_Actual_Parameter (N));
1507 end Analyze_Parameter_Association;
1509 ----------------------------
1510 -- Analyze_Procedure_Call --
1511 ----------------------------
1513 procedure Analyze_Procedure_Call (N : Node_Id) is
1514 procedure Analyze_Call_And_Resolve;
1515 -- Do Analyze and Resolve calls for procedure call
1516 -- At end, check illegal order dependence.
1518 ------------------------------
1519 -- Analyze_Call_And_Resolve --
1520 ------------------------------
1522 procedure Analyze_Call_And_Resolve is
1523 begin
1524 if Nkind (N) = N_Procedure_Call_Statement then
1525 Analyze_Call (N);
1526 Resolve (N, Standard_Void_Type);
1527 else
1528 Analyze (N);
1529 end if;
1530 end Analyze_Call_And_Resolve;
1532 -- Local variables
1534 Actuals : constant List_Id := Parameter_Associations (N);
1535 Loc : constant Source_Ptr := Sloc (N);
1536 P : constant Node_Id := Name (N);
1537 Actual : Node_Id;
1538 New_N : Node_Id;
1540 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1542 -- Start of processing for Analyze_Procedure_Call
1544 begin
1545 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1546 -- a procedure call or an entry call. The prefix may denote an access
1547 -- to subprogram type, in which case an implicit dereference applies.
1548 -- If the prefix is an indexed component (without implicit dereference)
1549 -- then the construct denotes a call to a member of an entire family.
1550 -- If the prefix is a simple name, it may still denote a call to a
1551 -- parameterless member of an entry family. Resolution of these various
1552 -- interpretations is delicate.
1554 -- Do not analyze machine code statements to avoid rejecting them in
1555 -- CodePeer mode.
1557 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1558 Set_Etype (P, Standard_Void_Type);
1559 else
1560 Analyze (P);
1561 end if;
1563 -- If this is a call of the form Obj.Op, the call may have been analyzed
1564 -- and possibly rewritten into a block, in which case we are done.
1566 if Analyzed (N) then
1567 return;
1568 end if;
1570 -- If there is an error analyzing the name (which may have been
1571 -- rewritten if the original call was in prefix notation) then error
1572 -- has been emitted already, mark node and return.
1574 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1575 Set_Etype (N, Any_Type);
1576 return;
1577 end if;
1579 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1580 -- Set the mode now to ensure that any nodes generated during analysis
1581 -- and expansion are properly marked as Ghost.
1583 Set_Ghost_Mode (N);
1585 -- Otherwise analyze the parameters
1587 if Present (Actuals) then
1588 Actual := First (Actuals);
1590 while Present (Actual) loop
1591 Analyze (Actual);
1592 Check_Parameterless_Call (Actual);
1593 Next (Actual);
1594 end loop;
1595 end if;
1597 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1599 if Nkind (P) = N_Attribute_Reference
1600 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1601 Name_Elab_Body,
1602 Name_Elab_Subp_Body)
1603 then
1604 if Present (Actuals) then
1605 Error_Msg_N
1606 ("no parameters allowed for this call", First (Actuals));
1607 return;
1608 end if;
1610 Set_Etype (N, Standard_Void_Type);
1611 Set_Analyzed (N);
1613 elsif Is_Entity_Name (P)
1614 and then Is_Record_Type (Etype (Entity (P)))
1615 and then Remote_AST_I_Dereference (P)
1616 then
1617 Ghost_Mode := Save_Ghost_Mode;
1618 return;
1620 elsif Is_Entity_Name (P)
1621 and then Ekind (Entity (P)) /= E_Entry_Family
1622 then
1623 if Is_Access_Type (Etype (P))
1624 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1625 and then No (Actuals)
1626 and then Comes_From_Source (N)
1627 then
1628 Error_Msg_N ("missing explicit dereference in call", N);
1629 end if;
1631 Analyze_Call_And_Resolve;
1633 -- If the prefix is the simple name of an entry family, this is a
1634 -- parameterless call from within the task body itself.
1636 elsif Is_Entity_Name (P)
1637 and then Nkind (P) = N_Identifier
1638 and then Ekind (Entity (P)) = E_Entry_Family
1639 and then Present (Actuals)
1640 and then No (Next (First (Actuals)))
1641 then
1642 -- Can be call to parameterless entry family. What appears to be the
1643 -- sole argument is in fact the entry index. Rewrite prefix of node
1644 -- accordingly. Source representation is unchanged by this
1645 -- transformation.
1647 New_N :=
1648 Make_Indexed_Component (Loc,
1649 Prefix =>
1650 Make_Selected_Component (Loc,
1651 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1652 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1653 Expressions => Actuals);
1654 Set_Name (N, New_N);
1655 Set_Etype (New_N, Standard_Void_Type);
1656 Set_Parameter_Associations (N, No_List);
1657 Analyze_Call_And_Resolve;
1659 elsif Nkind (P) = N_Explicit_Dereference then
1660 if Ekind (Etype (P)) = E_Subprogram_Type then
1661 Analyze_Call_And_Resolve;
1662 else
1663 Error_Msg_N ("expect access to procedure in call", P);
1664 end if;
1666 -- The name can be a selected component or an indexed component that
1667 -- yields an access to subprogram. Such a prefix is legal if the call
1668 -- has parameter associations.
1670 elsif Is_Access_Type (Etype (P))
1671 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1672 then
1673 if Present (Actuals) then
1674 Analyze_Call_And_Resolve;
1675 else
1676 Error_Msg_N ("missing explicit dereference in call ", N);
1677 end if;
1679 -- If not an access to subprogram, then the prefix must resolve to the
1680 -- name of an entry, entry family, or protected operation.
1682 -- For the case of a simple entry call, P is a selected component where
1683 -- the prefix is the task and the selector name is the entry. A call to
1684 -- a protected procedure will have the same syntax. If the protected
1685 -- object contains overloaded operations, the entity may appear as a
1686 -- function, the context will select the operation whose type is Void.
1688 elsif Nkind (P) = N_Selected_Component
1689 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1690 E_Procedure,
1691 E_Function)
1692 then
1693 Analyze_Call_And_Resolve;
1695 elsif Nkind (P) = N_Selected_Component
1696 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1697 and then Present (Actuals)
1698 and then No (Next (First (Actuals)))
1699 then
1700 -- Can be call to parameterless entry family. What appears to be the
1701 -- sole argument is in fact the entry index. Rewrite prefix of node
1702 -- accordingly. Source representation is unchanged by this
1703 -- transformation.
1705 New_N :=
1706 Make_Indexed_Component (Loc,
1707 Prefix => New_Copy (P),
1708 Expressions => Actuals);
1709 Set_Name (N, New_N);
1710 Set_Etype (New_N, Standard_Void_Type);
1711 Set_Parameter_Associations (N, No_List);
1712 Analyze_Call_And_Resolve;
1714 -- For the case of a reference to an element of an entry family, P is
1715 -- an indexed component whose prefix is a selected component (task and
1716 -- entry family), and whose index is the entry family index.
1718 elsif Nkind (P) = N_Indexed_Component
1719 and then Nkind (Prefix (P)) = N_Selected_Component
1720 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1721 then
1722 Analyze_Call_And_Resolve;
1724 -- If the prefix is the name of an entry family, it is a call from
1725 -- within the task body itself.
1727 elsif Nkind (P) = N_Indexed_Component
1728 and then Nkind (Prefix (P)) = N_Identifier
1729 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1730 then
1731 New_N :=
1732 Make_Selected_Component (Loc,
1733 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1734 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1735 Rewrite (Prefix (P), New_N);
1736 Analyze (P);
1737 Analyze_Call_And_Resolve;
1739 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1740 -- procedure name, so the construct can only be a qualified expression.
1742 elsif Nkind (P) = N_Qualified_Expression
1743 and then Ada_Version >= Ada_2012
1744 then
1745 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1746 Analyze (N);
1748 -- Anything else is an error
1750 else
1751 Error_Msg_N ("invalid procedure or entry call", N);
1752 end if;
1754 Ghost_Mode := Save_Ghost_Mode;
1755 end Analyze_Procedure_Call;
1757 ------------------------------
1758 -- Analyze_Return_Statement --
1759 ------------------------------
1761 procedure Analyze_Return_Statement (N : Node_Id) is
1763 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1764 N_Extended_Return_Statement));
1766 Returns_Object : constant Boolean :=
1767 Nkind (N) = N_Extended_Return_Statement
1768 or else
1769 (Nkind (N) = N_Simple_Return_Statement
1770 and then Present (Expression (N)));
1771 -- True if we're returning something; that is, "return <expression>;"
1772 -- or "return Result : T [:= ...]". False for "return;". Used for error
1773 -- checking: If Returns_Object is True, N should apply to a function
1774 -- body; otherwise N should apply to a procedure body, entry body,
1775 -- accept statement, or extended return statement.
1777 function Find_What_It_Applies_To return Entity_Id;
1778 -- Find the entity representing the innermost enclosing body, accept
1779 -- statement, or extended return statement. If the result is a callable
1780 -- construct or extended return statement, then this will be the value
1781 -- of the Return_Applies_To attribute. Otherwise, the program is
1782 -- illegal. See RM-6.5(4/2).
1784 -----------------------------
1785 -- Find_What_It_Applies_To --
1786 -----------------------------
1788 function Find_What_It_Applies_To return Entity_Id is
1789 Result : Entity_Id := Empty;
1791 begin
1792 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1793 -- and postconditions.
1795 for J in reverse 0 .. Scope_Stack.Last loop
1796 Result := Scope_Stack.Table (J).Entity;
1797 exit when not Ekind_In (Result, E_Block, E_Loop)
1798 and then Chars (Result) /= Name_uPostconditions;
1799 end loop;
1801 pragma Assert (Present (Result));
1802 return Result;
1803 end Find_What_It_Applies_To;
1805 -- Local declarations
1807 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1808 Kind : constant Entity_Kind := Ekind (Scope_Id);
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Stm_Entity : constant Entity_Id :=
1811 New_Internal_Entity
1812 (E_Return_Statement, Current_Scope, Loc, 'R');
1814 -- Start of processing for Analyze_Return_Statement
1816 begin
1817 Set_Return_Statement_Entity (N, Stm_Entity);
1819 Set_Etype (Stm_Entity, Standard_Void_Type);
1820 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1822 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1823 -- (4/2): an inner return statement will apply to this extended return.
1825 if Nkind (N) = N_Extended_Return_Statement then
1826 Push_Scope (Stm_Entity);
1827 end if;
1829 -- Check that pragma No_Return is obeyed. Don't complain about the
1830 -- implicitly-generated return that is placed at the end.
1832 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1833 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1834 end if;
1836 -- Warn on any unassigned OUT parameters if in procedure
1838 if Ekind (Scope_Id) = E_Procedure then
1839 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1840 end if;
1842 -- Check that functions return objects, and other things do not
1844 if Kind = E_Function or else Kind = E_Generic_Function then
1845 if not Returns_Object then
1846 Error_Msg_N ("missing expression in return from function", N);
1847 end if;
1849 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1850 if Returns_Object then
1851 Error_Msg_N ("procedure cannot return value (use function)", N);
1852 end if;
1854 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1855 if Returns_Object then
1856 if Is_Protected_Type (Scope (Scope_Id)) then
1857 Error_Msg_N ("entry body cannot return value", N);
1858 else
1859 Error_Msg_N ("accept statement cannot return value", N);
1860 end if;
1861 end if;
1863 elsif Kind = E_Return_Statement then
1865 -- We are nested within another return statement, which must be an
1866 -- extended_return_statement.
1868 if Returns_Object then
1869 if Nkind (N) = N_Extended_Return_Statement then
1870 Error_Msg_N
1871 ("extended return statement cannot be nested (use `RETURN;`)",
1874 -- Case of a simple return statement with a value inside extended
1875 -- return statement.
1877 else
1878 Error_Msg_N
1879 ("return nested in extended return statement cannot return "
1880 & "value (use `RETURN;`)", N);
1881 end if;
1882 end if;
1884 else
1885 Error_Msg_N ("illegal context for return statement", N);
1886 end if;
1888 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1889 Analyze_Function_Return (N);
1891 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1892 Set_Return_Present (Scope_Id);
1893 end if;
1895 if Nkind (N) = N_Extended_Return_Statement then
1896 End_Scope;
1897 end if;
1899 Kill_Current_Values (Last_Assignment_Only => True);
1900 Check_Unreachable_Code (N);
1902 Analyze_Dimension (N);
1903 end Analyze_Return_Statement;
1905 -------------------------------------
1906 -- Analyze_Simple_Return_Statement --
1907 -------------------------------------
1909 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1910 begin
1911 if Present (Expression (N)) then
1912 Mark_Coextensions (N, Expression (N));
1913 end if;
1915 Analyze_Return_Statement (N);
1916 end Analyze_Simple_Return_Statement;
1918 -------------------------
1919 -- Analyze_Return_Type --
1920 -------------------------
1922 procedure Analyze_Return_Type (N : Node_Id) is
1923 Designator : constant Entity_Id := Defining_Entity (N);
1924 Typ : Entity_Id := Empty;
1926 begin
1927 -- Normal case where result definition does not indicate an error
1929 if Result_Definition (N) /= Error then
1930 if Nkind (Result_Definition (N)) = N_Access_Definition then
1931 Check_SPARK_05_Restriction
1932 ("access result is not allowed", Result_Definition (N));
1934 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1936 declare
1937 AD : constant Node_Id :=
1938 Access_To_Subprogram_Definition (Result_Definition (N));
1939 begin
1940 if Present (AD) and then Protected_Present (AD) then
1941 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1942 else
1943 Typ := Access_Definition (N, Result_Definition (N));
1944 end if;
1945 end;
1947 Set_Parent (Typ, Result_Definition (N));
1948 Set_Is_Local_Anonymous_Access (Typ);
1949 Set_Etype (Designator, Typ);
1951 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1953 Null_Exclusion_Static_Checks (N);
1955 -- Subtype_Mark case
1957 else
1958 Find_Type (Result_Definition (N));
1959 Typ := Entity (Result_Definition (N));
1960 Set_Etype (Designator, Typ);
1962 -- Unconstrained array as result is not allowed in SPARK
1964 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1965 Check_SPARK_05_Restriction
1966 ("returning an unconstrained array is not allowed",
1967 Result_Definition (N));
1968 end if;
1970 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1972 Null_Exclusion_Static_Checks (N);
1974 -- If a null exclusion is imposed on the result type, then create
1975 -- a null-excluding itype (an access subtype) and use it as the
1976 -- function's Etype. Note that the null exclusion checks are done
1977 -- right before this, because they don't get applied to types that
1978 -- do not come from source.
1980 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1981 Set_Etype (Designator,
1982 Create_Null_Excluding_Itype
1983 (T => Typ,
1984 Related_Nod => N,
1985 Scope_Id => Scope (Current_Scope)));
1987 -- The new subtype must be elaborated before use because
1988 -- it is visible outside of the function. However its base
1989 -- type may not be frozen yet, so the reference that will
1990 -- force elaboration must be attached to the freezing of
1991 -- the base type.
1993 -- If the return specification appears on a proper body,
1994 -- the subtype will have been created already on the spec.
1996 if Is_Frozen (Typ) then
1997 if Nkind (Parent (N)) = N_Subprogram_Body
1998 and then Nkind (Parent (Parent (N))) = N_Subunit
1999 then
2000 null;
2001 else
2002 Build_Itype_Reference (Etype (Designator), Parent (N));
2003 end if;
2005 else
2006 Ensure_Freeze_Node (Typ);
2008 declare
2009 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2010 begin
2011 Set_Itype (IR, Etype (Designator));
2012 Append_Freeze_Actions (Typ, New_List (IR));
2013 end;
2014 end if;
2016 else
2017 Set_Etype (Designator, Typ);
2018 end if;
2020 if Ekind (Typ) = E_Incomplete_Type
2021 or else (Is_Class_Wide_Type (Typ)
2022 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2023 then
2024 -- AI05-0151: Tagged incomplete types are allowed in all formal
2025 -- parts. Untagged incomplete types are not allowed in bodies.
2026 -- As a consequence, limited views cannot appear in a basic
2027 -- declaration that is itself within a body, because there is
2028 -- no point at which the non-limited view will become visible.
2030 if Ada_Version >= Ada_2012 then
2031 if From_Limited_With (Typ) and then In_Package_Body then
2032 Error_Msg_NE
2033 ("invalid use of incomplete type&",
2034 Result_Definition (N), Typ);
2036 -- The return type of a subprogram body cannot be of a
2037 -- formal incomplete type.
2039 elsif Is_Generic_Type (Typ)
2040 and then Nkind (Parent (N)) = N_Subprogram_Body
2041 then
2042 Error_Msg_N
2043 ("return type cannot be a formal incomplete type",
2044 Result_Definition (N));
2046 elsif Is_Class_Wide_Type (Typ)
2047 and then Is_Generic_Type (Root_Type (Typ))
2048 and then Nkind (Parent (N)) = N_Subprogram_Body
2049 then
2050 Error_Msg_N
2051 ("return type cannot be a formal incomplete type",
2052 Result_Definition (N));
2054 elsif Is_Tagged_Type (Typ) then
2055 null;
2057 -- Use is legal in a thunk generated for an operation
2058 -- inherited from a progenitor.
2060 elsif Is_Thunk (Designator)
2061 and then Present (Non_Limited_View (Typ))
2062 then
2063 null;
2065 elsif Nkind (Parent (N)) = N_Subprogram_Body
2066 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2067 N_Entry_Body)
2068 then
2069 Error_Msg_NE
2070 ("invalid use of untagged incomplete type&",
2071 Designator, Typ);
2072 end if;
2074 -- The type must be completed in the current package. This
2075 -- is checked at the end of the package declaration when
2076 -- Taft-amendment types are identified. If the return type
2077 -- is class-wide, there is no required check, the type can
2078 -- be a bona fide TAT.
2080 if Ekind (Scope (Current_Scope)) = E_Package
2081 and then In_Private_Part (Scope (Current_Scope))
2082 and then not Is_Class_Wide_Type (Typ)
2083 then
2084 Append_Elmt (Designator, Private_Dependents (Typ));
2085 end if;
2087 else
2088 Error_Msg_NE
2089 ("invalid use of incomplete type&", Designator, Typ);
2090 end if;
2091 end if;
2092 end if;
2094 -- Case where result definition does indicate an error
2096 else
2097 Set_Etype (Designator, Any_Type);
2098 end if;
2099 end Analyze_Return_Type;
2101 -----------------------------
2102 -- Analyze_Subprogram_Body --
2103 -----------------------------
2105 procedure Analyze_Subprogram_Body (N : Node_Id) is
2106 Loc : constant Source_Ptr := Sloc (N);
2107 Body_Spec : constant Node_Id := Specification (N);
2108 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2110 begin
2111 if Debug_Flag_C then
2112 Write_Str ("==> subprogram body ");
2113 Write_Name (Chars (Body_Id));
2114 Write_Str (" from ");
2115 Write_Location (Loc);
2116 Write_Eol;
2117 Indent;
2118 end if;
2120 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2122 -- The real work is split out into the helper, so it can do "return;"
2123 -- without skipping the debug output:
2125 Analyze_Subprogram_Body_Helper (N);
2127 if Debug_Flag_C then
2128 Outdent;
2129 Write_Str ("<== subprogram body ");
2130 Write_Name (Chars (Body_Id));
2131 Write_Str (" from ");
2132 Write_Location (Loc);
2133 Write_Eol;
2134 end if;
2135 end Analyze_Subprogram_Body;
2137 ------------------------------------
2138 -- Analyze_Subprogram_Body_Helper --
2139 ------------------------------------
2141 -- This procedure is called for regular subprogram bodies, generic bodies,
2142 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2143 -- specification matters, and is used to create a proper declaration for
2144 -- the subprogram, or to perform conformance checks.
2146 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2147 Loc : constant Source_Ptr := Sloc (N);
2148 Body_Spec : Node_Id := Specification (N);
2149 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2150 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2151 Conformant : Boolean;
2152 HSS : Node_Id;
2153 Prot_Typ : Entity_Id := Empty;
2154 Spec_Id : Entity_Id;
2155 Spec_Decl : Node_Id := Empty;
2157 Last_Real_Spec_Entity : Entity_Id := Empty;
2158 -- When we analyze a separate spec, the entity chain ends up containing
2159 -- the formals, as well as any itypes generated during analysis of the
2160 -- default expressions for parameters, or the arguments of associated
2161 -- precondition/postcondition pragmas (which are analyzed in the context
2162 -- of the spec since they have visibility on formals).
2164 -- These entities belong with the spec and not the body. However we do
2165 -- the analysis of the body in the context of the spec (again to obtain
2166 -- visibility to the formals), and all the entities generated during
2167 -- this analysis end up also chained to the entity chain of the spec.
2168 -- But they really belong to the body, and there is circuitry to move
2169 -- them from the spec to the body.
2171 -- However, when we do this move, we don't want to move the real spec
2172 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2173 -- variable points to the last real spec entity, so we only move those
2174 -- chained beyond that point. It is initialized to Empty to deal with
2175 -- the case where there is no separate spec.
2177 function Body_Has_Contract return Boolean;
2178 -- Check whether unanalyzed body has an aspect or pragma that may
2179 -- generate a SPARK contract.
2181 function Body_Has_SPARK_Mode_On return Boolean;
2182 -- Check whether SPARK_Mode On applies to the subprogram body, either
2183 -- because it is specified directly on the body, or because it is
2184 -- inherited from the enclosing subprogram or package.
2186 procedure Build_Subprogram_Declaration;
2187 -- Create a matching subprogram declaration for subprogram body N
2189 procedure Check_Anonymous_Return;
2190 -- Ada 2005: if a function returns an access type that denotes a task,
2191 -- or a type that contains tasks, we must create a master entity for
2192 -- the anonymous type, which typically will be used in an allocator
2193 -- in the body of the function.
2195 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2196 -- Look ahead to recognize a pragma that may appear after the body.
2197 -- If there is a previous spec, check that it appears in the same
2198 -- declarative part. If the pragma is Inline_Always, perform inlining
2199 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2200 -- If the body acts as a spec, and inlining is required, we create a
2201 -- subprogram declaration for it, in order to attach the body to inline.
2202 -- If pragma does not appear after the body, check whether there is
2203 -- an inline pragma before any local declarations.
2205 procedure Check_Missing_Return;
2206 -- Checks for a function with a no return statements, and also performs
2207 -- the warning checks implemented by Check_Returns. In formal mode, also
2208 -- verify that a function ends with a RETURN and that a procedure does
2209 -- not contain any RETURN.
2211 function Disambiguate_Spec return Entity_Id;
2212 -- When a primitive is declared between the private view and the full
2213 -- view of a concurrent type which implements an interface, a special
2214 -- mechanism is used to find the corresponding spec of the primitive
2215 -- body.
2217 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2218 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2219 -- incomplete types coming from a limited context and swap their limited
2220 -- views with the non-limited ones.
2222 function Is_Private_Concurrent_Primitive
2223 (Subp_Id : Entity_Id) return Boolean;
2224 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2225 -- type that implements an interface and has a private view.
2227 procedure Set_Trivial_Subprogram (N : Node_Id);
2228 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2229 -- subprogram whose body is being analyzed. N is the statement node
2230 -- causing the flag to be set, if the following statement is a return
2231 -- of an entity, we mark the entity as set in source to suppress any
2232 -- warning on the stylized use of function stubs with a dummy return.
2234 procedure Verify_Overriding_Indicator;
2235 -- If there was a previous spec, the entity has been entered in the
2236 -- current scope previously. If the body itself carries an overriding
2237 -- indicator, check that it is consistent with the known status of the
2238 -- entity.
2240 -----------------------
2241 -- Body_Has_Contract --
2242 -----------------------
2244 function Body_Has_Contract return Boolean is
2245 Decls : constant List_Id := Declarations (N);
2246 Item : Node_Id;
2248 begin
2249 -- Check for aspects that may generate a contract
2251 if Present (Aspect_Specifications (N)) then
2252 Item := First (Aspect_Specifications (N));
2253 while Present (Item) loop
2254 if Is_Subprogram_Contract_Annotation (Item) then
2255 return True;
2256 end if;
2258 Next (Item);
2259 end loop;
2260 end if;
2262 -- Check for pragmas that may generate a contract
2264 if Present (Decls) then
2265 Item := First (Decls);
2266 while Present (Item) loop
2267 if Nkind (Item) = N_Pragma
2268 and then Is_Subprogram_Contract_Annotation (Item)
2269 then
2270 return True;
2271 end if;
2273 Next (Item);
2274 end loop;
2275 end if;
2277 return False;
2278 end Body_Has_Contract;
2280 ----------------------------
2281 -- Body_Has_SPARK_Mode_On --
2282 ----------------------------
2284 function Body_Has_SPARK_Mode_On return Boolean is
2285 Decls : constant List_Id := Declarations (N);
2286 Item : Node_Id;
2288 begin
2289 -- Check for SPARK_Mode aspect
2291 if Present (Aspect_Specifications (N)) then
2292 Item := First (Aspect_Specifications (N));
2293 while Present (Item) loop
2294 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2295 return Get_SPARK_Mode_From_Annotation (Item) = On;
2296 end if;
2298 Next (Item);
2299 end loop;
2300 end if;
2302 -- Check for SPARK_Mode pragma
2304 if Present (Decls) then
2305 Item := First (Decls);
2306 while Present (Item) loop
2308 -- Pragmas that apply to a subprogram body are usually grouped
2309 -- together. Look for a potential pragma SPARK_Mode among them.
2311 if Nkind (Item) = N_Pragma then
2312 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2313 return Get_SPARK_Mode_From_Annotation (Item) = On;
2314 end if;
2316 -- Otherwise the first non-pragma declarative item terminates
2317 -- the region where pragma SPARK_Mode may appear.
2319 else
2320 exit;
2321 end if;
2323 Next (Item);
2324 end loop;
2325 end if;
2327 -- Otherwise, the applicable SPARK_Mode is inherited from the
2328 -- enclosing subprogram or package.
2330 return SPARK_Mode = On;
2331 end Body_Has_SPARK_Mode_On;
2333 ----------------------------------
2334 -- Build_Subprogram_Declaration --
2335 ----------------------------------
2337 procedure Build_Subprogram_Declaration is
2338 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2339 -- Relocate certain categorization pragmas from the declarative list
2340 -- of subprogram body From and insert them after node To. The pragmas
2341 -- in question are:
2342 -- Ghost
2343 -- SPARK_Mode
2344 -- Volatile_Function
2346 ------------------
2347 -- Move_Pragmas --
2348 ------------------
2350 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2351 Decl : Node_Id;
2352 Next_Decl : Node_Id;
2354 begin
2355 pragma Assert (Nkind (From) = N_Subprogram_Body);
2357 -- The destination node must be part of a list, as the pragmas are
2358 -- inserted after it.
2360 pragma Assert (Is_List_Member (To));
2362 -- Inspect the declarations of the subprogram body looking for
2363 -- specific pragmas.
2365 Decl := First (Declarations (N));
2366 while Present (Decl) loop
2367 Next_Decl := Next (Decl);
2369 if Nkind (Decl) = N_Pragma
2370 and then Nam_In (Pragma_Name (Decl), Name_Ghost,
2371 Name_SPARK_Mode,
2372 Name_Volatile_Function)
2373 then
2374 Remove (Decl);
2375 Insert_After (To, Decl);
2376 end if;
2378 Decl := Next_Decl;
2379 end loop;
2380 end Move_Pragmas;
2382 -- Local variables
2384 Decl : Node_Id;
2385 Subp_Decl : Node_Id;
2387 -- Start of processing for Build_Subprogram_Declaration
2389 begin
2390 -- Create a matching subprogram spec using the profile of the body.
2391 -- The structure of the tree is identical, but has new entities for
2392 -- the defining unit name and formal parameters.
2394 Subp_Decl :=
2395 Make_Subprogram_Declaration (Loc,
2396 Specification => Copy_Subprogram_Spec (Body_Spec));
2397 Set_Comes_From_Source (Subp_Decl, True);
2399 -- Relocate the aspects and relevant pragmas from the subprogram body
2400 -- to the generated spec because it acts as the initial declaration.
2402 Insert_Before (N, Subp_Decl);
2403 Move_Aspects (N, To => Subp_Decl);
2404 Move_Pragmas (N, To => Subp_Decl);
2406 Analyze (Subp_Decl);
2408 -- Propagate the attribute Rewritten_For_C to the body since the
2409 -- expander may generate calls using that entity. Required to ensure
2410 -- that Expand_Call rewrites calls to this function by calls to the
2411 -- built procedure.
2413 if Nkind (Body_Spec) = N_Function_Specification then
2414 Set_Rewritten_For_C (Defining_Entity (Body_Spec),
2415 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl))));
2416 end if;
2418 -- Analyze any relocated source pragmas or pragmas created for aspect
2419 -- specifications.
2421 Decl := Next (Subp_Decl);
2422 while Present (Decl) loop
2424 -- Stop the search for pragmas once the body has been reached as
2425 -- this terminates the region where pragmas may appear.
2427 if Decl = N then
2428 exit;
2430 elsif Nkind (Decl) = N_Pragma then
2431 Analyze (Decl);
2432 end if;
2434 Next (Decl);
2435 end loop;
2437 Spec_Id := Defining_Entity (Subp_Decl);
2438 Set_Corresponding_Spec (N, Spec_Id);
2440 -- Mark the generated spec as a source construct to ensure that all
2441 -- calls to it are properly registered in ALI files for GNATprove.
2443 Set_Comes_From_Source (Spec_Id, True);
2445 -- Ensure that the specs of the subprogram declaration and its body
2446 -- are identical, otherwise they will appear non-conformant due to
2447 -- rewritings in the default values of formal parameters.
2449 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2450 Set_Specification (N, Body_Spec);
2451 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2453 -- Ensure that the generated corresponding spec and original body
2454 -- share the same Ghost and SPARK_Mode attributes.
2456 Set_Is_Checked_Ghost_Entity
2457 (Body_Id, Is_Checked_Ghost_Entity (Spec_Id));
2458 Set_Is_Ignored_Ghost_Entity
2459 (Body_Id, Is_Ignored_Ghost_Entity (Spec_Id));
2461 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
2462 Set_SPARK_Pragma_Inherited
2463 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
2464 end Build_Subprogram_Declaration;
2466 ----------------------------
2467 -- Check_Anonymous_Return --
2468 ----------------------------
2470 procedure Check_Anonymous_Return is
2471 Decl : Node_Id;
2472 Par : Node_Id;
2473 Scop : Entity_Id;
2475 begin
2476 if Present (Spec_Id) then
2477 Scop := Spec_Id;
2478 else
2479 Scop := Body_Id;
2480 end if;
2482 if Ekind (Scop) = E_Function
2483 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2484 and then not Is_Thunk (Scop)
2486 -- Skip internally built functions which handle the case of
2487 -- a null access (see Expand_Interface_Conversion)
2489 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2490 and then not Comes_From_Source (Parent (Scop)))
2492 and then (Has_Task (Designated_Type (Etype (Scop)))
2493 or else
2494 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2495 and then
2496 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2497 and then Expander_Active
2499 -- Avoid cases with no tasking support
2501 and then RTE_Available (RE_Current_Master)
2502 and then not Restriction_Active (No_Task_Hierarchy)
2503 then
2504 Decl :=
2505 Make_Object_Declaration (Loc,
2506 Defining_Identifier =>
2507 Make_Defining_Identifier (Loc, Name_uMaster),
2508 Constant_Present => True,
2509 Object_Definition =>
2510 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2511 Expression =>
2512 Make_Explicit_Dereference (Loc,
2513 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2515 if Present (Declarations (N)) then
2516 Prepend (Decl, Declarations (N));
2517 else
2518 Set_Declarations (N, New_List (Decl));
2519 end if;
2521 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2522 Set_Has_Master_Entity (Scop);
2524 -- Now mark the containing scope as a task master
2526 Par := N;
2527 while Nkind (Par) /= N_Compilation_Unit loop
2528 Par := Parent (Par);
2529 pragma Assert (Present (Par));
2531 -- If we fall off the top, we are at the outer level, and
2532 -- the environment task is our effective master, so nothing
2533 -- to mark.
2535 if Nkind_In
2536 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2537 then
2538 Set_Is_Task_Master (Par, True);
2539 exit;
2540 end if;
2541 end loop;
2542 end if;
2543 end Check_Anonymous_Return;
2545 -------------------------
2546 -- Check_Inline_Pragma --
2547 -------------------------
2549 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2550 Prag : Node_Id;
2551 Plist : List_Id;
2553 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2554 -- True when N is a pragma Inline or Inline_Always that applies
2555 -- to this subprogram.
2557 -----------------------
2558 -- Is_Inline_Pragma --
2559 -----------------------
2561 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2562 begin
2563 if Nkind (N) = N_Pragma
2564 and then
2565 (Pragma_Name (N) = Name_Inline_Always
2566 or else (Pragma_Name (N) = Name_Inline
2567 and then
2568 (Front_End_Inlining or else Optimization_Level > 0)))
2569 and then Present (Pragma_Argument_Associations (N))
2570 then
2571 declare
2572 Pragma_Arg : Node_Id :=
2573 Expression (First (Pragma_Argument_Associations (N)));
2574 begin
2575 if Nkind (Pragma_Arg) = N_Selected_Component then
2576 Pragma_Arg := Selector_Name (Pragma_Arg);
2577 end if;
2579 return Chars (Pragma_Arg) = Chars (Body_Id);
2580 end;
2582 else
2583 return False;
2584 end if;
2585 end Is_Inline_Pragma;
2587 -- Start of processing for Check_Inline_Pragma
2589 begin
2590 if not Expander_Active then
2591 return;
2592 end if;
2594 if Is_List_Member (N)
2595 and then Present (Next (N))
2596 and then Is_Inline_Pragma (Next (N))
2597 then
2598 Prag := Next (N);
2600 elsif Nkind (N) /= N_Subprogram_Body_Stub
2601 and then Present (Declarations (N))
2602 and then Is_Inline_Pragma (First (Declarations (N)))
2603 then
2604 Prag := First (Declarations (N));
2606 else
2607 Prag := Empty;
2608 end if;
2610 if Present (Prag) then
2611 if Present (Spec_Id) then
2612 if Is_List_Member (N)
2613 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2614 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2615 then
2616 Analyze (Prag);
2617 end if;
2619 else
2620 -- Create a subprogram declaration, to make treatment uniform.
2621 -- Make the sloc of the subprogram name that of the entity in
2622 -- the body, so that style checks find identical strings.
2624 declare
2625 Subp : constant Entity_Id :=
2626 Make_Defining_Identifier
2627 (Sloc (Body_Id), Chars (Body_Id));
2628 Decl : constant Node_Id :=
2629 Make_Subprogram_Declaration (Loc,
2630 Specification =>
2631 New_Copy_Tree (Specification (N)));
2633 begin
2634 Set_Defining_Unit_Name (Specification (Decl), Subp);
2636 -- To ensure proper coverage when body is inlined, indicate
2637 -- whether the subprogram comes from source.
2639 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2641 if Present (First_Formal (Body_Id)) then
2642 Plist := Copy_Parameter_List (Body_Id);
2643 Set_Parameter_Specifications
2644 (Specification (Decl), Plist);
2645 end if;
2647 Insert_Before (N, Decl);
2648 Analyze (Decl);
2649 Analyze (Prag);
2650 Set_Has_Pragma_Inline (Subp);
2652 if Pragma_Name (Prag) = Name_Inline_Always then
2653 Set_Is_Inlined (Subp);
2654 Set_Has_Pragma_Inline_Always (Subp);
2655 end if;
2657 -- Prior to copying the subprogram body to create a template
2658 -- for it for subsequent inlining, remove the pragma from
2659 -- the current body so that the copy that will produce the
2660 -- new body will start from a completely unanalyzed tree.
2662 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2663 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2664 end if;
2666 Spec := Subp;
2667 end;
2668 end if;
2669 end if;
2670 end Check_Inline_Pragma;
2672 --------------------------
2673 -- Check_Missing_Return --
2674 --------------------------
2676 procedure Check_Missing_Return is
2677 Id : Entity_Id;
2678 Missing_Ret : Boolean;
2680 begin
2681 if Nkind (Body_Spec) = N_Function_Specification then
2682 if Present (Spec_Id) then
2683 Id := Spec_Id;
2684 else
2685 Id := Body_Id;
2686 end if;
2688 if Return_Present (Id) then
2689 Check_Returns (HSS, 'F', Missing_Ret);
2691 if Missing_Ret then
2692 Set_Has_Missing_Return (Id);
2693 end if;
2695 -- Within a premature instantiation of a package with no body, we
2696 -- build completions of the functions therein, with a Raise
2697 -- statement. No point in complaining about a missing return in
2698 -- this case.
2700 elsif Ekind (Id) = E_Function
2701 and then In_Instance
2702 and then Present (Statements (HSS))
2703 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2704 then
2705 null;
2707 elsif Is_Generic_Subprogram (Id)
2708 or else not Is_Machine_Code_Subprogram (Id)
2709 then
2710 Error_Msg_N ("missing RETURN statement in function body", N);
2711 end if;
2713 -- If procedure with No_Return, check returns
2715 elsif Nkind (Body_Spec) = N_Procedure_Specification
2716 and then Present (Spec_Id)
2717 and then No_Return (Spec_Id)
2718 then
2719 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2720 end if;
2722 -- Special checks in SPARK mode
2724 if Nkind (Body_Spec) = N_Function_Specification then
2726 -- In SPARK mode, last statement of a function should be a return
2728 declare
2729 Stat : constant Node_Id := Last_Source_Statement (HSS);
2730 begin
2731 if Present (Stat)
2732 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2733 N_Extended_Return_Statement)
2734 then
2735 Check_SPARK_05_Restriction
2736 ("last statement in function should be RETURN", Stat);
2737 end if;
2738 end;
2740 -- In SPARK mode, verify that a procedure has no return
2742 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2743 if Present (Spec_Id) then
2744 Id := Spec_Id;
2745 else
2746 Id := Body_Id;
2747 end if;
2749 -- Would be nice to point to return statement here, can we
2750 -- borrow the Check_Returns procedure here ???
2752 if Return_Present (Id) then
2753 Check_SPARK_05_Restriction
2754 ("procedure should not have RETURN", N);
2755 end if;
2756 end if;
2757 end Check_Missing_Return;
2759 -----------------------
2760 -- Disambiguate_Spec --
2761 -----------------------
2763 function Disambiguate_Spec return Entity_Id is
2764 Priv_Spec : Entity_Id;
2765 Spec_N : Entity_Id;
2767 procedure Replace_Types (To_Corresponding : Boolean);
2768 -- Depending on the flag, replace the type of formal parameters of
2769 -- Body_Id if it is a concurrent type implementing interfaces with
2770 -- the corresponding record type or the other way around.
2772 procedure Replace_Types (To_Corresponding : Boolean) is
2773 Formal : Entity_Id;
2774 Formal_Typ : Entity_Id;
2776 begin
2777 Formal := First_Formal (Body_Id);
2778 while Present (Formal) loop
2779 Formal_Typ := Etype (Formal);
2781 if Is_Class_Wide_Type (Formal_Typ) then
2782 Formal_Typ := Root_Type (Formal_Typ);
2783 end if;
2785 -- From concurrent type to corresponding record
2787 if To_Corresponding then
2788 if Is_Concurrent_Type (Formal_Typ)
2789 and then Present (Corresponding_Record_Type (Formal_Typ))
2790 and then
2791 Present (Interfaces
2792 (Corresponding_Record_Type (Formal_Typ)))
2793 then
2794 Set_Etype (Formal,
2795 Corresponding_Record_Type (Formal_Typ));
2796 end if;
2798 -- From corresponding record to concurrent type
2800 else
2801 if Is_Concurrent_Record_Type (Formal_Typ)
2802 and then Present (Interfaces (Formal_Typ))
2803 then
2804 Set_Etype (Formal,
2805 Corresponding_Concurrent_Type (Formal_Typ));
2806 end if;
2807 end if;
2809 Next_Formal (Formal);
2810 end loop;
2811 end Replace_Types;
2813 -- Start of processing for Disambiguate_Spec
2815 begin
2816 -- Try to retrieve the specification of the body as is. All error
2817 -- messages are suppressed because the body may not have a spec in
2818 -- its current state.
2820 Spec_N := Find_Corresponding_Spec (N, False);
2822 -- It is possible that this is the body of a primitive declared
2823 -- between a private and a full view of a concurrent type. The
2824 -- controlling parameter of the spec carries the concurrent type,
2825 -- not the corresponding record type as transformed by Analyze_
2826 -- Subprogram_Specification. In such cases, we undo the change
2827 -- made by the analysis of the specification and try to find the
2828 -- spec again.
2830 -- Note that wrappers already have their corresponding specs and
2831 -- bodies set during their creation, so if the candidate spec is
2832 -- a wrapper, then we definitely need to swap all types to their
2833 -- original concurrent status.
2835 if No (Spec_N)
2836 or else Is_Primitive_Wrapper (Spec_N)
2837 then
2838 -- Restore all references of corresponding record types to the
2839 -- original concurrent types.
2841 Replace_Types (To_Corresponding => False);
2842 Priv_Spec := Find_Corresponding_Spec (N, False);
2844 -- The current body truly belongs to a primitive declared between
2845 -- a private and a full view. We leave the modified body as is,
2846 -- and return the true spec.
2848 if Present (Priv_Spec)
2849 and then Is_Private_Primitive (Priv_Spec)
2850 then
2851 return Priv_Spec;
2852 end if;
2854 -- In case that this is some sort of error, restore the original
2855 -- state of the body.
2857 Replace_Types (To_Corresponding => True);
2858 end if;
2860 return Spec_N;
2861 end Disambiguate_Spec;
2863 ----------------------------
2864 -- Exchange_Limited_Views --
2865 ----------------------------
2867 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2868 procedure Detect_And_Exchange (Id : Entity_Id);
2869 -- Determine whether Id's type denotes an incomplete type associated
2870 -- with a limited with clause and exchange the limited view with the
2871 -- non-limited one when available. Note that the non-limited view
2872 -- may exist because of a with_clause in another unit in the context,
2873 -- but cannot be used because the current view of the enclosing unit
2874 -- is still a limited view.
2876 -------------------------
2877 -- Detect_And_Exchange --
2878 -------------------------
2880 procedure Detect_And_Exchange (Id : Entity_Id) is
2881 Typ : constant Entity_Id := Etype (Id);
2882 begin
2883 if From_Limited_With (Typ)
2884 and then Has_Non_Limited_View (Typ)
2885 and then not From_Limited_With (Scope (Typ))
2886 then
2887 Set_Etype (Id, Non_Limited_View (Typ));
2888 end if;
2889 end Detect_And_Exchange;
2891 -- Local variables
2893 Formal : Entity_Id;
2895 -- Start of processing for Exchange_Limited_Views
2897 begin
2898 if No (Subp_Id) then
2899 return;
2901 -- Do not process subprogram bodies as they already use the non-
2902 -- limited view of types.
2904 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2905 return;
2906 end if;
2908 -- Examine all formals and swap views when applicable
2910 Formal := First_Formal (Subp_Id);
2911 while Present (Formal) loop
2912 Detect_And_Exchange (Formal);
2914 Next_Formal (Formal);
2915 end loop;
2917 -- Process the return type of a function
2919 if Ekind (Subp_Id) = E_Function then
2920 Detect_And_Exchange (Subp_Id);
2921 end if;
2922 end Exchange_Limited_Views;
2924 -------------------------------------
2925 -- Is_Private_Concurrent_Primitive --
2926 -------------------------------------
2928 function Is_Private_Concurrent_Primitive
2929 (Subp_Id : Entity_Id) return Boolean
2931 Formal_Typ : Entity_Id;
2933 begin
2934 if Present (First_Formal (Subp_Id)) then
2935 Formal_Typ := Etype (First_Formal (Subp_Id));
2937 if Is_Concurrent_Record_Type (Formal_Typ) then
2938 if Is_Class_Wide_Type (Formal_Typ) then
2939 Formal_Typ := Root_Type (Formal_Typ);
2940 end if;
2942 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2943 end if;
2945 -- The type of the first formal is a concurrent tagged type with
2946 -- a private view.
2948 return
2949 Is_Concurrent_Type (Formal_Typ)
2950 and then Is_Tagged_Type (Formal_Typ)
2951 and then Has_Private_Declaration (Formal_Typ);
2952 end if;
2954 return False;
2955 end Is_Private_Concurrent_Primitive;
2957 ----------------------------
2958 -- Set_Trivial_Subprogram --
2959 ----------------------------
2961 procedure Set_Trivial_Subprogram (N : Node_Id) is
2962 Nxt : constant Node_Id := Next (N);
2964 begin
2965 Set_Is_Trivial_Subprogram (Body_Id);
2967 if Present (Spec_Id) then
2968 Set_Is_Trivial_Subprogram (Spec_Id);
2969 end if;
2971 if Present (Nxt)
2972 and then Nkind (Nxt) = N_Simple_Return_Statement
2973 and then No (Next (Nxt))
2974 and then Present (Expression (Nxt))
2975 and then Is_Entity_Name (Expression (Nxt))
2976 then
2977 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2978 end if;
2979 end Set_Trivial_Subprogram;
2981 ---------------------------------
2982 -- Verify_Overriding_Indicator --
2983 ---------------------------------
2985 procedure Verify_Overriding_Indicator is
2986 begin
2987 if Must_Override (Body_Spec) then
2988 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2989 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2990 then
2991 null;
2993 elsif not Present (Overridden_Operation (Spec_Id)) then
2994 Error_Msg_NE
2995 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2997 -- Overriding indicators aren't allowed for protected subprogram
2998 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2999 -- this to a warning if -gnatd.E is enabled.
3001 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3002 Error_Msg_Warn := Error_To_Warning;
3003 Error_Msg_N
3004 ("<<overriding indicator not allowed for protected "
3005 & "subprogram body", Body_Spec);
3006 end if;
3008 elsif Must_Not_Override (Body_Spec) then
3009 if Present (Overridden_Operation (Spec_Id)) then
3010 Error_Msg_NE
3011 ("subprogram& overrides inherited operation",
3012 Body_Spec, Spec_Id);
3014 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3015 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3016 then
3017 Error_Msg_NE
3018 ("subprogram& overrides predefined operator ",
3019 Body_Spec, Spec_Id);
3021 -- Overriding indicators aren't allowed for protected subprogram
3022 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3023 -- this to a warning if -gnatd.E is enabled.
3025 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3026 Error_Msg_Warn := Error_To_Warning;
3028 Error_Msg_N
3029 ("<<overriding indicator not allowed "
3030 & "for protected subprogram body", Body_Spec);
3032 -- If this is not a primitive operation, then the overriding
3033 -- indicator is altogether illegal.
3035 elsif not Is_Primitive (Spec_Id) then
3036 Error_Msg_N
3037 ("overriding indicator only allowed "
3038 & "if subprogram is primitive", Body_Spec);
3039 end if;
3041 -- If checking the style rule and the operation overrides, then
3042 -- issue a warning about a missing overriding_indicator. Protected
3043 -- subprogram bodies are excluded from this style checking, since
3044 -- they aren't primitives (even though their declarations can
3045 -- override) and aren't allowed to have an overriding_indicator.
3047 elsif Style_Check
3048 and then Present (Overridden_Operation (Spec_Id))
3049 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3050 then
3051 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3052 Style.Missing_Overriding (N, Body_Id);
3054 elsif Style_Check
3055 and then Can_Override_Operator (Spec_Id)
3056 and then not Is_Predefined_File_Name
3057 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3058 then
3059 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3060 Style.Missing_Overriding (N, Body_Id);
3061 end if;
3062 end Verify_Overriding_Indicator;
3064 -- Local variables
3066 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3068 -- Start of processing for Analyze_Subprogram_Body_Helper
3070 begin
3071 -- A [generic] subprogram body "freezes" the contract of the nearest
3072 -- enclosing package body and all other contracts encountered in the
3073 -- same declarative part up to and excluding the subprogram body:
3075 -- package body Nearest_Enclosing_Package
3076 -- with Refined_State => (State => Constit)
3077 -- is
3078 -- Constit : ...;
3080 -- procedure Freezes_Enclosing_Package_Body
3081 -- with Refined_Depends => (Input => Constit) ...
3083 -- This ensures that any annotations referenced by the contract of the
3084 -- [generic] subprogram body are available. This form of "freezing" is
3085 -- decoupled from the usual Freeze_xxx mechanism because it must also
3086 -- work in the context of generics where normal freezing is disabled.
3088 -- Only bodies coming from source should cause this type of "freezing".
3089 -- Expression functions that act as bodies and complete an initial
3090 -- declaration must be included in this category, hence the use of
3091 -- Original_Node.
3093 if Comes_From_Source (Original_Node (N)) then
3094 Analyze_Previous_Contracts (N);
3095 end if;
3097 -- Generic subprograms are handled separately. They always have a
3098 -- generic specification. Determine whether current scope has a
3099 -- previous declaration.
3101 -- If the subprogram body is defined within an instance of the same
3102 -- name, the instance appears as a package renaming, and will be hidden
3103 -- within the subprogram.
3105 if Present (Prev_Id)
3106 and then not Is_Overloadable (Prev_Id)
3107 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3108 or else Comes_From_Source (Prev_Id))
3109 then
3110 if Is_Generic_Subprogram (Prev_Id) then
3111 Spec_Id := Prev_Id;
3113 -- A subprogram body is Ghost when it is stand alone and subject
3114 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3115 -- the mode now to ensure that any nodes generated during analysis
3116 -- and expansion are properly marked as Ghost.
3118 Set_Ghost_Mode (N, Spec_Id);
3119 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3120 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3122 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3124 if Nkind (N) = N_Subprogram_Body then
3125 HSS := Handled_Statement_Sequence (N);
3126 Check_Missing_Return;
3127 end if;
3129 Ghost_Mode := Save_Ghost_Mode;
3130 return;
3132 else
3133 -- Previous entity conflicts with subprogram name. Attempting to
3134 -- enter name will post error.
3136 Enter_Name (Body_Id);
3137 Ghost_Mode := Save_Ghost_Mode;
3138 return;
3139 end if;
3141 -- Non-generic case, find the subprogram declaration, if one was seen,
3142 -- or enter new overloaded entity in the current scope. If the
3143 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3144 -- part of the context of one of its subunits. No need to redo the
3145 -- analysis.
3147 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3148 Ghost_Mode := Save_Ghost_Mode;
3149 return;
3151 else
3152 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3154 if Nkind (N) = N_Subprogram_Body_Stub
3155 or else No (Corresponding_Spec (N))
3156 then
3157 if Is_Private_Concurrent_Primitive (Body_Id) then
3158 Spec_Id := Disambiguate_Spec;
3160 -- A subprogram body is Ghost when it is stand alone and
3161 -- subject to pragma Ghost or when the corresponding spec is
3162 -- Ghost. Set the mode now to ensure that any nodes generated
3163 -- during analysis and expansion are properly marked as Ghost.
3165 Set_Ghost_Mode (N, Spec_Id);
3167 else
3168 Spec_Id := Find_Corresponding_Spec (N);
3170 -- A subprogram body is Ghost when it is stand alone and
3171 -- subject to pragma Ghost or when the corresponding spec is
3172 -- Ghost. Set the mode now to ensure that any nodes generated
3173 -- during analysis and expansion are properly marked as Ghost.
3175 Set_Ghost_Mode (N, Spec_Id);
3177 -- In GNATprove mode, if the body has no previous spec, create
3178 -- one so that the inlining machinery can operate properly.
3179 -- Transfer aspects, if any, to the new spec, so that they
3180 -- are legal and can be processed ahead of the body.
3181 -- We make two copies of the given spec, one for the new
3182 -- declaration, and one for the body.
3184 if No (Spec_Id) and then GNATprove_Mode
3186 -- Inlining does not apply during pre-analysis of code
3188 and then Full_Analysis
3190 -- Inlining only applies to full bodies, not stubs
3192 and then Nkind (N) /= N_Subprogram_Body_Stub
3194 -- Inlining only applies to bodies in the source code, not to
3195 -- those generated by the compiler. In particular, expression
3196 -- functions, whose body is generated by the compiler, are
3197 -- treated specially by GNATprove.
3199 and then Comes_From_Source (Body_Id)
3201 -- This cannot be done for a compilation unit, which is not
3202 -- in a context where we can insert a new spec.
3204 and then Is_List_Member (N)
3206 -- Inlining only applies to subprograms without contracts,
3207 -- as a contract is a sign that GNATprove should perform a
3208 -- modular analysis of the subprogram instead of a contextual
3209 -- analysis at each call site. The same test is performed in
3210 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3211 -- here in another form (because the contract has not
3212 -- been attached to the body) to avoid frontend errors in
3213 -- case pragmas are used instead of aspects, because the
3214 -- corresponding pragmas in the body would not be transferred
3215 -- to the spec, leading to legality errors.
3217 and then not Body_Has_Contract
3218 and then not Inside_A_Generic
3219 then
3220 Build_Subprogram_Declaration;
3222 -- If this is a function that returns a constrained array, and
3223 -- we are generating SPARK_For_C, create subprogram declaration
3224 -- to simplify subsequent C generation.
3226 elsif No (Spec_Id)
3227 and then Modify_Tree_For_C
3228 and then Nkind (Body_Spec) = N_Function_Specification
3229 and then Is_Array_Type (Etype (Body_Id))
3230 and then Is_Constrained (Etype (Body_Id))
3231 then
3232 Build_Subprogram_Declaration;
3233 end if;
3234 end if;
3236 -- If this is a duplicate body, no point in analyzing it
3238 if Error_Posted (N) then
3239 Ghost_Mode := Save_Ghost_Mode;
3240 return;
3241 end if;
3243 -- A subprogram body should cause freezing of its own declaration,
3244 -- but if there was no previous explicit declaration, then the
3245 -- subprogram will get frozen too late (there may be code within
3246 -- the body that depends on the subprogram having been frozen,
3247 -- such as uses of extra formals), so we force it to be frozen
3248 -- here. Same holds if the body and spec are compilation units.
3249 -- Finally, if the return type is an anonymous access to protected
3250 -- subprogram, it must be frozen before the body because its
3251 -- expansion has generated an equivalent type that is used when
3252 -- elaborating the body.
3254 -- An exception in the case of Ada 2012, AI05-177: The bodies
3255 -- created for expression functions do not freeze.
3257 if No (Spec_Id)
3258 and then Nkind (Original_Node (N)) /= N_Expression_Function
3259 then
3260 Freeze_Before (N, Body_Id);
3262 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3263 Freeze_Before (N, Spec_Id);
3265 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3266 Freeze_Before (N, Etype (Body_Id));
3267 end if;
3269 else
3270 Spec_Id := Corresponding_Spec (N);
3272 -- A subprogram body is Ghost when it is stand alone and subject
3273 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3274 -- the mode now to ensure that any nodes generated during analysis
3275 -- and expansion are properly marked as Ghost.
3277 Set_Ghost_Mode (N, Spec_Id);
3278 end if;
3279 end if;
3281 -- Previously we scanned the body to look for nested subprograms, and
3282 -- rejected an inline directive if nested subprograms were present,
3283 -- because the back-end would generate conflicting symbols for the
3284 -- nested bodies. This is now unnecessary.
3286 -- Look ahead to recognize a pragma Inline that appears after the body
3288 Check_Inline_Pragma (Spec_Id);
3290 -- Deal with special case of a fully private operation in the body of
3291 -- the protected type. We must create a declaration for the subprogram,
3292 -- in order to attach the protected subprogram that will be used in
3293 -- internal calls. We exclude compiler generated bodies from the
3294 -- expander since the issue does not arise for those cases.
3296 if No (Spec_Id)
3297 and then Comes_From_Source (N)
3298 and then Is_Protected_Type (Current_Scope)
3299 then
3300 Spec_Id := Build_Private_Protected_Declaration (N);
3301 end if;
3303 -- If we are generating C and this is a function returning a constrained
3304 -- array type for which we must create a procedure with an extra out
3305 -- parameter, build and analyze the body now. The procedure declaration
3306 -- has already been created. We reuse the source body of the function,
3307 -- because in an instance it may contain global references that cannot
3308 -- be reanalyzed. The source function itself is not used any further,
3309 -- so we mark it as having a completion.
3311 if Expander_Active
3312 and then Modify_Tree_For_C
3313 and then Present (Spec_Id)
3314 and then Ekind (Spec_Id) = E_Function
3315 and then Rewritten_For_C (Spec_Id)
3316 then
3317 Set_Has_Completion (Spec_Id);
3319 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3320 Analyze (N);
3322 -- The entity for the created procedure must remain invisible, so it
3323 -- does not participate in resolution of subsequent references to the
3324 -- function.
3326 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3327 return;
3328 end if;
3330 -- If a separate spec is present, then deal with freezing issues
3332 if Present (Spec_Id) then
3333 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3334 Verify_Overriding_Indicator;
3336 -- In general, the spec will be frozen when we start analyzing the
3337 -- body. However, for internally generated operations, such as
3338 -- wrapper functions for inherited operations with controlling
3339 -- results, the spec may not have been frozen by the time we expand
3340 -- the freeze actions that include the bodies. In particular, extra
3341 -- formals for accessibility or for return-in-place may need to be
3342 -- generated. Freeze nodes, if any, are inserted before the current
3343 -- body. These freeze actions are also needed in ASIS mode and in
3344 -- Compile_Only mode to enable the proper back-end type annotations.
3345 -- They are necessary in any case to insure order of elaboration
3346 -- in gigi.
3348 if not Is_Frozen (Spec_Id)
3349 and then (Expander_Active
3350 or else ASIS_Mode
3351 or else (Operating_Mode = Check_Semantics
3352 and then Serious_Errors_Detected = 0))
3353 then
3354 Set_Has_Delayed_Freeze (Spec_Id);
3355 Freeze_Before (N, Spec_Id);
3356 end if;
3357 end if;
3359 -- Place subprogram on scope stack, and make formals visible. If there
3360 -- is a spec, the visible entity remains that of the spec.
3362 if Present (Spec_Id) then
3363 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3365 if Is_Child_Unit (Spec_Id) then
3366 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3367 end if;
3369 if Style_Check then
3370 Style.Check_Identifier (Body_Id, Spec_Id);
3371 end if;
3373 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3374 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3376 if Is_Abstract_Subprogram (Spec_Id) then
3377 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3378 Ghost_Mode := Save_Ghost_Mode;
3379 return;
3381 else
3382 Set_Convention (Body_Id, Convention (Spec_Id));
3383 Set_Has_Completion (Spec_Id);
3385 -- Inherit the "ghostness" of the subprogram spec. Note that this
3386 -- property is not directly inherited as the body may be subject
3387 -- to a different Ghost assertion policy.
3389 if Ghost_Mode > None or else Is_Ghost_Entity (Spec_Id) then
3390 Set_Is_Ghost_Entity (Body_Id);
3392 -- The Ghost policy in effect at the point of declaration and
3393 -- at the point of completion must match (SPARK RM 6.9(14)).
3395 Check_Ghost_Completion (Spec_Id, Body_Id);
3396 end if;
3398 if Is_Protected_Type (Scope (Spec_Id)) then
3399 Prot_Typ := Scope (Spec_Id);
3400 end if;
3402 -- If this is a body generated for a renaming, do not check for
3403 -- full conformance. The check is redundant, because the spec of
3404 -- the body is a copy of the spec in the renaming declaration,
3405 -- and the test can lead to spurious errors on nested defaults.
3407 if Present (Spec_Decl)
3408 and then not Comes_From_Source (N)
3409 and then
3410 (Nkind (Original_Node (Spec_Decl)) =
3411 N_Subprogram_Renaming_Declaration
3412 or else (Present (Corresponding_Body (Spec_Decl))
3413 and then
3414 Nkind (Unit_Declaration_Node
3415 (Corresponding_Body (Spec_Decl))) =
3416 N_Subprogram_Renaming_Declaration))
3417 then
3418 Conformant := True;
3420 -- Conversely, the spec may have been generated for specless body
3421 -- with an inline pragma. The entity comes from source, which is
3422 -- both semantically correct and necessary for proper inlining.
3423 -- The subprogram declaration itself is not in the source.
3425 elsif Comes_From_Source (N)
3426 and then Present (Spec_Decl)
3427 and then not Comes_From_Source (Spec_Decl)
3428 and then Has_Pragma_Inline (Spec_Id)
3429 then
3430 Conformant := True;
3432 else
3433 Check_Conformance
3434 (Body_Id, Spec_Id,
3435 Fully_Conformant, True, Conformant, Body_Id);
3436 end if;
3438 -- If the body is not fully conformant, we have to decide if we
3439 -- should analyze it or not. If it has a really messed up profile
3440 -- then we probably should not analyze it, since we will get too
3441 -- many bogus messages.
3443 -- Our decision is to go ahead in the non-fully conformant case
3444 -- only if it is at least mode conformant with the spec. Note
3445 -- that the call to Check_Fully_Conformant has issued the proper
3446 -- error messages to complain about the lack of conformance.
3448 if not Conformant
3449 and then not Mode_Conformant (Body_Id, Spec_Id)
3450 then
3451 Ghost_Mode := Save_Ghost_Mode;
3452 return;
3453 end if;
3454 end if;
3456 if Spec_Id /= Body_Id then
3457 Reference_Body_Formals (Spec_Id, Body_Id);
3458 end if;
3460 Set_Ekind (Body_Id, E_Subprogram_Body);
3462 if Nkind (N) = N_Subprogram_Body_Stub then
3463 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3465 -- Regular body
3467 else
3468 Set_Corresponding_Spec (N, Spec_Id);
3470 -- Ada 2005 (AI-345): If the operation is a primitive operation
3471 -- of a concurrent type, the type of the first parameter has been
3472 -- replaced with the corresponding record, which is the proper
3473 -- run-time structure to use. However, within the body there may
3474 -- be uses of the formals that depend on primitive operations
3475 -- of the type (in particular calls in prefixed form) for which
3476 -- we need the original concurrent type. The operation may have
3477 -- several controlling formals, so the replacement must be done
3478 -- for all of them.
3480 if Comes_From_Source (Spec_Id)
3481 and then Present (First_Entity (Spec_Id))
3482 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3483 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3484 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3485 and then Present (Corresponding_Concurrent_Type
3486 (Etype (First_Entity (Spec_Id))))
3487 then
3488 declare
3489 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3490 Form : Entity_Id;
3492 begin
3493 Form := First_Formal (Spec_Id);
3494 while Present (Form) loop
3495 if Etype (Form) = Typ then
3496 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3497 end if;
3499 Next_Formal (Form);
3500 end loop;
3501 end;
3502 end if;
3504 -- Make the formals visible, and place subprogram on scope stack.
3505 -- This is also the point at which we set Last_Real_Spec_Entity
3506 -- to mark the entities which will not be moved to the body.
3508 Install_Formals (Spec_Id);
3509 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3511 -- Within an instance, add local renaming declarations so that
3512 -- gdb can retrieve the values of actuals more easily. This is
3513 -- only relevant if generating code (and indeed we definitely
3514 -- do not want these definitions -gnatc mode, because that would
3515 -- confuse ASIS).
3517 if Is_Generic_Instance (Spec_Id)
3518 and then Is_Wrapper_Package (Current_Scope)
3519 and then Expander_Active
3520 then
3521 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3522 end if;
3524 Push_Scope (Spec_Id);
3526 -- Make sure that the subprogram is immediately visible. For
3527 -- child units that have no separate spec this is indispensable.
3528 -- Otherwise it is safe albeit redundant.
3530 Set_Is_Immediately_Visible (Spec_Id);
3531 end if;
3533 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3534 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3535 Set_Scope (Body_Id, Scope (Spec_Id));
3537 -- Case of subprogram body with no previous spec
3539 else
3540 -- Check for style warning required
3542 if Style_Check
3544 -- Only apply check for source level subprograms for which checks
3545 -- have not been suppressed.
3547 and then Comes_From_Source (Body_Id)
3548 and then not Suppress_Style_Checks (Body_Id)
3550 -- No warnings within an instance
3552 and then not In_Instance
3554 -- No warnings for expression functions
3556 and then Nkind (Original_Node (N)) /= N_Expression_Function
3557 then
3558 Style.Body_With_No_Spec (N);
3559 end if;
3561 New_Overloaded_Entity (Body_Id);
3563 -- A subprogram body declared within a Ghost region is automatically
3564 -- Ghost (SPARK RM 6.9(2)).
3566 if Ghost_Mode > None then
3567 Set_Is_Ghost_Entity (Body_Id);
3568 end if;
3570 if Nkind (N) /= N_Subprogram_Body_Stub then
3571 Set_Acts_As_Spec (N);
3572 Generate_Definition (Body_Id);
3573 Generate_Reference
3574 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3575 Install_Formals (Body_Id);
3577 Push_Scope (Body_Id);
3578 end if;
3580 -- For stubs and bodies with no previous spec, generate references to
3581 -- formals.
3583 Generate_Reference_To_Formals (Body_Id);
3584 end if;
3586 -- Entry barrier functions are generated outside the protected type and
3587 -- should not carry the SPARK_Mode of the enclosing context.
3589 if Nkind (N) = N_Subprogram_Body
3590 and then Is_Entry_Barrier_Function (N)
3591 then
3592 null;
3594 -- The body is generated as part of expression function expansion. When
3595 -- the expression function appears in the visible declarations of a
3596 -- package, the body is added to the private declarations. Since both
3597 -- declarative lists may be subject to a different SPARK_Mode, inherit
3598 -- the mode of the spec.
3600 -- package P with SPARK_Mode is
3601 -- function Expr_Func ... is (...); -- original
3602 -- [function Expr_Func ...;] -- generated spec
3603 -- -- mode is ON
3604 -- private
3605 -- pragma SPARK_Mode (Off);
3606 -- [function Expr_Func ... is return ...;] -- generated body
3607 -- end P; -- mode is ON
3609 elsif not Comes_From_Source (N)
3610 and then Present (Prev_Id)
3611 and then Is_Expression_Function (Prev_Id)
3612 then
3613 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Prev_Id));
3614 Set_SPARK_Pragma_Inherited
3615 (Body_Id, SPARK_Pragma_Inherited (Prev_Id));
3617 -- Set the SPARK_Mode from the current context (may be overwritten later
3618 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
3619 -- initially on a stand-alone subprogram body, but is then relocated to
3620 -- a generated corresponding spec. In this scenario the mode is shared
3621 -- between the spec and body.
3623 elsif No (SPARK_Pragma (Body_Id)) then
3624 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3625 Set_SPARK_Pragma_Inherited (Body_Id);
3626 end if;
3628 -- If the return type is an anonymous access type whose designated type
3629 -- is the limited view of a class-wide type and the non-limited view is
3630 -- available, update the return type accordingly.
3632 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3633 declare
3634 Etyp : Entity_Id;
3635 Rtyp : Entity_Id;
3637 begin
3638 Rtyp := Etype (Current_Scope);
3640 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3641 Etyp := Directly_Designated_Type (Rtyp);
3643 if Is_Class_Wide_Type (Etyp)
3644 and then From_Limited_With (Etyp)
3645 then
3646 Set_Directly_Designated_Type
3647 (Etype (Current_Scope), Available_View (Etyp));
3648 end if;
3649 end if;
3650 end;
3651 end if;
3653 -- If this is the proper body of a stub, we must verify that the stub
3654 -- conforms to the body, and to the previous spec if one was present.
3655 -- We know already that the body conforms to that spec. This test is
3656 -- only required for subprograms that come from source.
3658 if Nkind (Parent (N)) = N_Subunit
3659 and then Comes_From_Source (N)
3660 and then not Error_Posted (Body_Id)
3661 and then Nkind (Corresponding_Stub (Parent (N))) =
3662 N_Subprogram_Body_Stub
3663 then
3664 declare
3665 Old_Id : constant Entity_Id :=
3666 Defining_Entity
3667 (Specification (Corresponding_Stub (Parent (N))));
3669 Conformant : Boolean := False;
3671 begin
3672 if No (Spec_Id) then
3673 Check_Fully_Conformant (Body_Id, Old_Id);
3675 else
3676 Check_Conformance
3677 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3679 if not Conformant then
3681 -- The stub was taken to be a new declaration. Indicate that
3682 -- it lacks a body.
3684 Set_Has_Completion (Old_Id, False);
3685 end if;
3686 end if;
3687 end;
3688 end if;
3690 Set_Has_Completion (Body_Id);
3691 Check_Eliminated (Body_Id);
3693 -- Analyze any aspect specifications that appear on the subprogram body
3694 -- stub. Stop the analysis now as the stub does not have a declarative
3695 -- or a statement part, and it cannot be inlined.
3697 if Nkind (N) = N_Subprogram_Body_Stub then
3698 if Has_Aspects (N) then
3699 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3700 end if;
3702 Ghost_Mode := Save_Ghost_Mode;
3703 return;
3704 end if;
3706 -- Handle frontend inlining
3708 -- Note: Normally we don't do any inlining if expansion is off, since
3709 -- we won't generate code in any case. An exception arises in GNATprove
3710 -- mode where we want to expand some calls in place, even with expansion
3711 -- disabled, since the inlining eases formal verification.
3713 if not GNATprove_Mode
3714 and then Expander_Active
3715 and then Serious_Errors_Detected = 0
3716 and then Present (Spec_Id)
3717 and then Has_Pragma_Inline (Spec_Id)
3718 then
3719 -- Legacy implementation (relying on frontend inlining)
3721 if not Back_End_Inlining then
3722 if (Has_Pragma_Inline_Always (Spec_Id)
3723 and then not Opt.Disable_FE_Inline_Always)
3724 or else
3725 (Has_Pragma_Inline (Spec_Id) and then Front_End_Inlining
3726 and then not Opt.Disable_FE_Inline)
3727 then
3728 Build_Body_To_Inline (N, Spec_Id);
3729 end if;
3731 -- New implementation (relying on backend inlining)
3733 else
3734 if Has_Pragma_Inline_Always (Spec_Id)
3735 or else Optimization_Level > 0
3736 then
3737 -- Handle function returning an unconstrained type
3739 if Comes_From_Source (Body_Id)
3740 and then Ekind (Spec_Id) = E_Function
3741 and then Returns_Unconstrained_Type (Spec_Id)
3743 -- If function builds in place, i.e. returns a limited type,
3744 -- inlining cannot be done.
3746 and then not Is_Limited_Type (Etype (Spec_Id))
3747 then
3748 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3750 else
3751 declare
3752 Subp_Body : constant Node_Id :=
3753 Unit_Declaration_Node (Body_Id);
3754 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3756 begin
3757 -- Do not pass inlining to the backend if the subprogram
3758 -- has declarations or statements which cannot be inlined
3759 -- by the backend. This check is done here to emit an
3760 -- error instead of the generic warning message reported
3761 -- by the GCC backend (ie. "function might not be
3762 -- inlinable").
3764 if Present (Subp_Decl)
3765 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3766 then
3767 null;
3769 elsif Has_Excluded_Statement
3770 (Spec_Id,
3771 Statements
3772 (Handled_Statement_Sequence (Subp_Body)))
3773 then
3774 null;
3776 -- If the backend inlining is available then at this
3777 -- stage we only have to mark the subprogram as inlined.
3778 -- The expander will take care of registering it in the
3779 -- table of subprograms inlined by the backend a part of
3780 -- processing calls to it (cf. Expand_Call)
3782 else
3783 Set_Is_Inlined (Spec_Id);
3784 end if;
3785 end;
3786 end if;
3787 end if;
3788 end if;
3790 -- In GNATprove mode, inline only when there is a separate subprogram
3791 -- declaration for now, as inlining of subprogram bodies acting as
3792 -- declarations, or subprogram stubs, are not supported by frontend
3793 -- inlining. This inlining should occur after analysis of the body, so
3794 -- that it is known whether the value of SPARK_Mode, which can be
3795 -- defined by a pragma inside the body, is applicable to the body.
3797 elsif GNATprove_Mode
3798 and then Full_Analysis
3799 and then not Inside_A_Generic
3800 and then Present (Spec_Id)
3801 and then
3802 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
3803 and then Body_Has_SPARK_Mode_On
3804 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3805 and then not Body_Has_Contract
3806 then
3807 Build_Body_To_Inline (N, Spec_Id);
3808 end if;
3810 -- When generating code, inherited pre/postconditions are handled when
3811 -- expanding the corresponding contract.
3813 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3814 -- of the specification we have to install the private withed units.
3815 -- This holds for child units as well.
3817 if Is_Compilation_Unit (Body_Id)
3818 or else Nkind (Parent (N)) = N_Compilation_Unit
3819 then
3820 Install_Private_With_Clauses (Body_Id);
3821 end if;
3823 Check_Anonymous_Return;
3825 -- Set the Protected_Formal field of each extra formal of the protected
3826 -- subprogram to reference the corresponding extra formal of the
3827 -- subprogram that implements it. For regular formals this occurs when
3828 -- the protected subprogram's declaration is expanded, but the extra
3829 -- formals don't get created until the subprogram is frozen. We need to
3830 -- do this before analyzing the protected subprogram's body so that any
3831 -- references to the original subprogram's extra formals will be changed
3832 -- refer to the implementing subprogram's formals (see Expand_Formal).
3834 if Present (Spec_Id)
3835 and then Is_Protected_Type (Scope (Spec_Id))
3836 and then Present (Protected_Body_Subprogram (Spec_Id))
3837 then
3838 declare
3839 Impl_Subp : constant Entity_Id :=
3840 Protected_Body_Subprogram (Spec_Id);
3841 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3842 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3843 begin
3844 while Present (Prot_Ext_Formal) loop
3845 pragma Assert (Present (Impl_Ext_Formal));
3846 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3847 Next_Formal_With_Extras (Prot_Ext_Formal);
3848 Next_Formal_With_Extras (Impl_Ext_Formal);
3849 end loop;
3850 end;
3851 end if;
3853 -- Now we can go on to analyze the body
3855 HSS := Handled_Statement_Sequence (N);
3856 Set_Actual_Subtypes (N, Current_Scope);
3858 -- Add a declaration for the Protection object, renaming declarations
3859 -- for discriminals and privals and finally a declaration for the entry
3860 -- family index (if applicable). This form of early expansion is done
3861 -- when the Expander is active because Install_Private_Data_Declarations
3862 -- references entities which were created during regular expansion. The
3863 -- subprogram entity must come from source, and not be an internally
3864 -- generated subprogram.
3866 if Expander_Active
3867 and then Present (Prot_Typ)
3868 and then Present (Spec_Id)
3869 and then Comes_From_Source (Spec_Id)
3870 and then not Is_Eliminated (Spec_Id)
3871 then
3872 Install_Private_Data_Declarations
3873 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3874 end if;
3876 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3877 -- may now appear in parameter and result profiles. Since the analysis
3878 -- of a subprogram body may use the parameter and result profile of the
3879 -- spec, swap any limited views with their non-limited counterpart.
3881 if Ada_Version >= Ada_2012 then
3882 Exchange_Limited_Views (Spec_Id);
3883 end if;
3885 -- Analyze any aspect specifications that appear on the subprogram body
3887 if Has_Aspects (N) then
3888 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3889 end if;
3891 Analyze_Declarations (Declarations (N));
3893 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3895 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3896 if Present (SPARK_Pragma (Spec_Id)) then
3897 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
3898 and then
3899 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
3900 then
3901 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3902 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3903 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3904 Error_Msg_NE
3905 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3906 end if;
3908 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3909 null;
3911 else
3912 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3913 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3914 Error_Msg_Sloc := Sloc (Spec_Id);
3915 Error_Msg_NE
3916 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3917 end if;
3918 end if;
3920 -- A subprogram body "freezes" its own contract. Analyze the contract
3921 -- after the declarations of the body have been processed as pragmas
3922 -- are now chained on the contract of the subprogram body.
3924 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
3926 -- Check completion, and analyze the statements
3928 Check_Completion;
3929 Inspect_Deferred_Constant_Completion (Declarations (N));
3930 Analyze (HSS);
3932 -- Deal with end of scope processing for the body
3934 Process_End_Label (HSS, 't', Current_Scope);
3935 End_Scope;
3936 Check_Subprogram_Order (N);
3937 Set_Analyzed (Body_Id);
3939 -- If we have a separate spec, then the analysis of the declarations
3940 -- caused the entities in the body to be chained to the spec id, but
3941 -- we want them chained to the body id. Only the formal parameters
3942 -- end up chained to the spec id in this case.
3944 if Present (Spec_Id) then
3946 -- We must conform to the categorization of our spec
3948 Validate_Categorization_Dependency (N, Spec_Id);
3950 -- And if this is a child unit, the parent units must conform
3952 if Is_Child_Unit (Spec_Id) then
3953 Validate_Categorization_Dependency
3954 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3955 end if;
3957 -- Here is where we move entities from the spec to the body
3959 -- Case where there are entities that stay with the spec
3961 if Present (Last_Real_Spec_Entity) then
3963 -- No body entities (happens when the only real spec entities come
3964 -- from precondition and postcondition pragmas).
3966 if No (Last_Entity (Body_Id)) then
3967 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3969 -- Body entities present (formals), so chain stuff past them
3971 else
3972 Set_Next_Entity
3973 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3974 end if;
3976 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3977 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3978 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3980 -- Case where there are no spec entities, in this case there can be
3981 -- no body entities either, so just move everything.
3983 -- If the body is generated for an expression function, it may have
3984 -- been preanalyzed already, if 'access was applied to it.
3986 else
3987 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
3988 N_Expression_Function
3989 then
3990 pragma Assert (No (Last_Entity (Body_Id)));
3991 null;
3992 end if;
3994 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3995 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3996 Set_First_Entity (Spec_Id, Empty);
3997 Set_Last_Entity (Spec_Id, Empty);
3998 end if;
3999 end if;
4001 Check_Missing_Return;
4003 -- Now we are going to check for variables that are never modified in
4004 -- the body of the procedure. But first we deal with a special case
4005 -- where we want to modify this check. If the body of the subprogram
4006 -- starts with a raise statement or its equivalent, or if the body
4007 -- consists entirely of a null statement, then it is pretty obvious that
4008 -- it is OK to not reference the parameters. For example, this might be
4009 -- the following common idiom for a stubbed function: statement of the
4010 -- procedure raises an exception. In particular this deals with the
4011 -- common idiom of a stubbed function, which appears something like:
4013 -- function F (A : Integer) return Some_Type;
4014 -- X : Some_Type;
4015 -- begin
4016 -- raise Program_Error;
4017 -- return X;
4018 -- end F;
4020 -- Here the purpose of X is simply to satisfy the annoying requirement
4021 -- in Ada that there be at least one return, and we certainly do not
4022 -- want to go posting warnings on X that it is not initialized. On
4023 -- the other hand, if X is entirely unreferenced that should still
4024 -- get a warning.
4026 -- What we do is to detect these cases, and if we find them, flag the
4027 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4028 -- suppress unwanted warnings. For the case of the function stub above
4029 -- we have a special test to set X as apparently assigned to suppress
4030 -- the warning.
4032 declare
4033 Stm : Node_Id;
4035 begin
4036 -- Skip initial labels (for one thing this occurs when we are in
4037 -- front end ZCX mode, but in any case it is irrelevant), and also
4038 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4040 Stm := First (Statements (HSS));
4041 while Nkind (Stm) = N_Label
4042 or else Nkind (Stm) in N_Push_xxx_Label
4043 loop
4044 Next (Stm);
4045 end loop;
4047 -- Do the test on the original statement before expansion
4049 declare
4050 Ostm : constant Node_Id := Original_Node (Stm);
4052 begin
4053 -- If explicit raise statement, turn on flag
4055 if Nkind (Ostm) = N_Raise_Statement then
4056 Set_Trivial_Subprogram (Stm);
4058 -- If null statement, and no following statements, turn on flag
4060 elsif Nkind (Stm) = N_Null_Statement
4061 and then Comes_From_Source (Stm)
4062 and then No (Next (Stm))
4063 then
4064 Set_Trivial_Subprogram (Stm);
4066 -- Check for explicit call cases which likely raise an exception
4068 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4069 if Is_Entity_Name (Name (Ostm)) then
4070 declare
4071 Ent : constant Entity_Id := Entity (Name (Ostm));
4073 begin
4074 -- If the procedure is marked No_Return, then likely it
4075 -- raises an exception, but in any case it is not coming
4076 -- back here, so turn on the flag.
4078 if Present (Ent)
4079 and then Ekind (Ent) = E_Procedure
4080 and then No_Return (Ent)
4081 then
4082 Set_Trivial_Subprogram (Stm);
4083 end if;
4084 end;
4085 end if;
4086 end if;
4087 end;
4088 end;
4090 -- Check for variables that are never modified
4092 declare
4093 E1, E2 : Entity_Id;
4095 begin
4096 -- If there is a separate spec, then transfer Never_Set_In_Source
4097 -- flags from out parameters to the corresponding entities in the
4098 -- body. The reason we do that is we want to post error flags on
4099 -- the body entities, not the spec entities.
4101 if Present (Spec_Id) then
4102 E1 := First_Entity (Spec_Id);
4103 while Present (E1) loop
4104 if Ekind (E1) = E_Out_Parameter then
4105 E2 := First_Entity (Body_Id);
4106 while Present (E2) loop
4107 exit when Chars (E1) = Chars (E2);
4108 Next_Entity (E2);
4109 end loop;
4111 if Present (E2) then
4112 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4113 end if;
4114 end if;
4116 Next_Entity (E1);
4117 end loop;
4118 end if;
4120 -- Check references in body
4122 Check_References (Body_Id);
4123 end;
4125 -- Check for nested subprogram, and mark outer level subprogram if so
4127 declare
4128 Ent : Entity_Id;
4130 begin
4131 if Present (Spec_Id) then
4132 Ent := Spec_Id;
4133 else
4134 Ent := Body_Id;
4135 end if;
4137 loop
4138 Ent := Enclosing_Subprogram (Ent);
4139 exit when No (Ent) or else Is_Subprogram (Ent);
4140 end loop;
4142 if Present (Ent) then
4143 Set_Has_Nested_Subprogram (Ent);
4144 end if;
4145 end;
4147 Ghost_Mode := Save_Ghost_Mode;
4148 end Analyze_Subprogram_Body_Helper;
4150 ------------------------------------
4151 -- Analyze_Subprogram_Declaration --
4152 ------------------------------------
4154 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4155 Scop : constant Entity_Id := Current_Scope;
4156 Designator : Entity_Id;
4158 Is_Completion : Boolean;
4159 -- Indicates whether a null procedure declaration is a completion
4161 begin
4162 -- Null procedures are not allowed in SPARK
4164 if Nkind (Specification (N)) = N_Procedure_Specification
4165 and then Null_Present (Specification (N))
4166 then
4167 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4169 -- Null procedures are allowed in protected types, following the
4170 -- recent AI12-0147.
4172 if Is_Protected_Type (Current_Scope)
4173 and then Ada_Version < Ada_2012
4174 then
4175 Error_Msg_N ("protected operation cannot be a null procedure", N);
4176 end if;
4178 Analyze_Null_Procedure (N, Is_Completion);
4180 -- The null procedure acts as a body, nothing further is needed
4182 if Is_Completion then
4183 return;
4184 end if;
4185 end if;
4187 Designator := Analyze_Subprogram_Specification (Specification (N));
4189 -- A reference may already have been generated for the unit name, in
4190 -- which case the following call is redundant. However it is needed for
4191 -- declarations that are the rewriting of an expression function.
4193 Generate_Definition (Designator);
4195 -- Set the SPARK mode from the current context (may be overwritten later
4196 -- with explicit pragma). This is not done for entry barrier functions
4197 -- because they are generated outside the protected type and should not
4198 -- carry the mode of the enclosing context.
4200 if Nkind (N) = N_Subprogram_Declaration
4201 and then Is_Entry_Barrier_Function (N)
4202 then
4203 null;
4204 else
4205 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4206 Set_SPARK_Pragma_Inherited (Designator);
4207 end if;
4209 -- A subprogram declared within a Ghost region is automatically Ghost
4210 -- (SPARK RM 6.9(2)).
4212 if Ghost_Mode > None then
4213 Set_Is_Ghost_Entity (Designator);
4214 end if;
4216 if Debug_Flag_C then
4217 Write_Str ("==> subprogram spec ");
4218 Write_Name (Chars (Designator));
4219 Write_Str (" from ");
4220 Write_Location (Sloc (N));
4221 Write_Eol;
4222 Indent;
4223 end if;
4225 Validate_RCI_Subprogram_Declaration (N);
4226 New_Overloaded_Entity (Designator);
4227 Check_Delayed_Subprogram (Designator);
4229 -- If the type of the first formal of the current subprogram is a non-
4230 -- generic tagged private type, mark the subprogram as being a private
4231 -- primitive. Ditto if this is a function with controlling result, and
4232 -- the return type is currently private. In both cases, the type of the
4233 -- controlling argument or result must be in the current scope for the
4234 -- operation to be primitive.
4236 if Has_Controlling_Result (Designator)
4237 and then Is_Private_Type (Etype (Designator))
4238 and then Scope (Etype (Designator)) = Current_Scope
4239 and then not Is_Generic_Actual_Type (Etype (Designator))
4240 then
4241 Set_Is_Private_Primitive (Designator);
4243 elsif Present (First_Formal (Designator)) then
4244 declare
4245 Formal_Typ : constant Entity_Id :=
4246 Etype (First_Formal (Designator));
4247 begin
4248 Set_Is_Private_Primitive (Designator,
4249 Is_Tagged_Type (Formal_Typ)
4250 and then Scope (Formal_Typ) = Current_Scope
4251 and then Is_Private_Type (Formal_Typ)
4252 and then not Is_Generic_Actual_Type (Formal_Typ));
4253 end;
4254 end if;
4256 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4257 -- or null.
4259 if Ada_Version >= Ada_2005
4260 and then Comes_From_Source (N)
4261 and then Is_Dispatching_Operation (Designator)
4262 then
4263 declare
4264 E : Entity_Id;
4265 Etyp : Entity_Id;
4267 begin
4268 if Has_Controlling_Result (Designator) then
4269 Etyp := Etype (Designator);
4271 else
4272 E := First_Entity (Designator);
4273 while Present (E)
4274 and then Is_Formal (E)
4275 and then not Is_Controlling_Formal (E)
4276 loop
4277 Next_Entity (E);
4278 end loop;
4280 Etyp := Etype (E);
4281 end if;
4283 if Is_Access_Type (Etyp) then
4284 Etyp := Directly_Designated_Type (Etyp);
4285 end if;
4287 if Is_Interface (Etyp)
4288 and then not Is_Abstract_Subprogram (Designator)
4289 and then not (Ekind (Designator) = E_Procedure
4290 and then Null_Present (Specification (N)))
4291 then
4292 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4294 -- Specialize error message based on procedures vs. functions,
4295 -- since functions can't be null subprograms.
4297 if Ekind (Designator) = E_Procedure then
4298 Error_Msg_N
4299 ("interface procedure % must be abstract or null", N);
4300 else
4301 Error_Msg_N
4302 ("interface function % must be abstract", N);
4303 end if;
4304 end if;
4305 end;
4306 end if;
4308 -- What is the following code for, it used to be
4310 -- ??? Set_Suppress_Elaboration_Checks
4311 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4313 -- The following seems equivalent, but a bit dubious
4315 if Elaboration_Checks_Suppressed (Designator) then
4316 Set_Kill_Elaboration_Checks (Designator);
4317 end if;
4319 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4320 Set_Categorization_From_Scope (Designator, Scop);
4322 else
4323 -- For a compilation unit, check for library-unit pragmas
4325 Push_Scope (Designator);
4326 Set_Categorization_From_Pragmas (N);
4327 Validate_Categorization_Dependency (N, Designator);
4328 Pop_Scope;
4329 end if;
4331 -- For a compilation unit, set body required. This flag will only be
4332 -- reset if a valid Import or Interface pragma is processed later on.
4334 if Nkind (Parent (N)) = N_Compilation_Unit then
4335 Set_Body_Required (Parent (N), True);
4337 if Ada_Version >= Ada_2005
4338 and then Nkind (Specification (N)) = N_Procedure_Specification
4339 and then Null_Present (Specification (N))
4340 then
4341 Error_Msg_N
4342 ("null procedure cannot be declared at library level", N);
4343 end if;
4344 end if;
4346 Generate_Reference_To_Formals (Designator);
4347 Check_Eliminated (Designator);
4349 if Debug_Flag_C then
4350 Outdent;
4351 Write_Str ("<== subprogram spec ");
4352 Write_Name (Chars (Designator));
4353 Write_Str (" from ");
4354 Write_Location (Sloc (N));
4355 Write_Eol;
4356 end if;
4358 if Is_Protected_Type (Current_Scope) then
4360 -- Indicate that this is a protected operation, because it may be
4361 -- used in subsequent declarations within the protected type.
4363 Set_Convention (Designator, Convention_Protected);
4364 end if;
4366 List_Inherited_Pre_Post_Aspects (Designator);
4368 if Has_Aspects (N) then
4369 Analyze_Aspect_Specifications (N, Designator);
4370 end if;
4371 end Analyze_Subprogram_Declaration;
4373 --------------------------------------
4374 -- Analyze_Subprogram_Specification --
4375 --------------------------------------
4377 -- Reminder: N here really is a subprogram specification (not a subprogram
4378 -- declaration). This procedure is called to analyze the specification in
4379 -- both subprogram bodies and subprogram declarations (specs).
4381 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4382 Designator : constant Entity_Id := Defining_Entity (N);
4383 Formals : constant List_Id := Parameter_Specifications (N);
4385 -- Start of processing for Analyze_Subprogram_Specification
4387 begin
4388 -- User-defined operator is not allowed in SPARK, except as a renaming
4390 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4391 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4392 then
4393 Check_SPARK_05_Restriction
4394 ("user-defined operator is not allowed", N);
4395 end if;
4397 -- Proceed with analysis. Do not emit a cross-reference entry if the
4398 -- specification comes from an expression function, because it may be
4399 -- the completion of a previous declaration. It is not, the cross-
4400 -- reference entry will be emitted for the new subprogram declaration.
4402 if Nkind (Parent (N)) /= N_Expression_Function then
4403 Generate_Definition (Designator);
4404 end if;
4406 if Nkind (N) = N_Function_Specification then
4407 Set_Ekind (Designator, E_Function);
4408 Set_Mechanism (Designator, Default_Mechanism);
4409 else
4410 Set_Ekind (Designator, E_Procedure);
4411 Set_Etype (Designator, Standard_Void_Type);
4412 end if;
4414 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4415 -- those subprograms which could be inlined in GNATprove mode (because
4416 -- Body_To_Inline is non-Empty) but should not be inlined.
4418 if GNATprove_Mode then
4419 Set_Is_Inlined_Always (Designator);
4420 end if;
4422 -- Introduce new scope for analysis of the formals and the return type
4424 Set_Scope (Designator, Current_Scope);
4426 if Present (Formals) then
4427 Push_Scope (Designator);
4428 Process_Formals (Formals, N);
4430 -- Check dimensions in N for formals with default expression
4432 Analyze_Dimension_Formals (N, Formals);
4434 -- Ada 2005 (AI-345): If this is an overriding operation of an
4435 -- inherited interface operation, and the controlling type is
4436 -- a synchronized type, replace the type with its corresponding
4437 -- record, to match the proper signature of an overriding operation.
4438 -- Same processing for an access parameter whose designated type is
4439 -- derived from a synchronized interface.
4441 if Ada_Version >= Ada_2005 then
4442 declare
4443 Formal : Entity_Id;
4444 Formal_Typ : Entity_Id;
4445 Rec_Typ : Entity_Id;
4446 Desig_Typ : Entity_Id;
4448 begin
4449 Formal := First_Formal (Designator);
4450 while Present (Formal) loop
4451 Formal_Typ := Etype (Formal);
4453 if Is_Concurrent_Type (Formal_Typ)
4454 and then Present (Corresponding_Record_Type (Formal_Typ))
4455 then
4456 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4458 if Present (Interfaces (Rec_Typ)) then
4459 Set_Etype (Formal, Rec_Typ);
4460 end if;
4462 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4463 Desig_Typ := Designated_Type (Formal_Typ);
4465 if Is_Concurrent_Type (Desig_Typ)
4466 and then Present (Corresponding_Record_Type (Desig_Typ))
4467 then
4468 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4470 if Present (Interfaces (Rec_Typ)) then
4471 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4472 end if;
4473 end if;
4474 end if;
4476 Next_Formal (Formal);
4477 end loop;
4478 end;
4479 end if;
4481 End_Scope;
4483 -- The subprogram scope is pushed and popped around the processing of
4484 -- the return type for consistency with call above to Process_Formals
4485 -- (which itself can call Analyze_Return_Type), and to ensure that any
4486 -- itype created for the return type will be associated with the proper
4487 -- scope.
4489 elsif Nkind (N) = N_Function_Specification then
4490 Push_Scope (Designator);
4491 Analyze_Return_Type (N);
4492 End_Scope;
4493 end if;
4495 -- Function case
4497 if Nkind (N) = N_Function_Specification then
4499 -- Deal with operator symbol case
4501 if Nkind (Designator) = N_Defining_Operator_Symbol then
4502 Valid_Operator_Definition (Designator);
4503 end if;
4505 May_Need_Actuals (Designator);
4507 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4508 -- the subprogram is abstract also. This does not apply to renaming
4509 -- declarations, where abstractness is inherited, and to subprogram
4510 -- bodies generated for stream operations, which become renamings as
4511 -- bodies.
4513 -- In case of primitives associated with abstract interface types
4514 -- the check is applied later (see Analyze_Subprogram_Declaration).
4516 if not Nkind_In (Original_Node (Parent (N)),
4517 N_Abstract_Subprogram_Declaration,
4518 N_Formal_Abstract_Subprogram_Declaration,
4519 N_Subprogram_Renaming_Declaration)
4520 then
4521 if Is_Abstract_Type (Etype (Designator))
4522 and then not Is_Interface (Etype (Designator))
4523 then
4524 Error_Msg_N
4525 ("function that returns abstract type must be abstract", N);
4527 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4528 -- access result whose designated type is abstract.
4530 elsif Ada_Version >= Ada_2012
4531 and then Nkind (Result_Definition (N)) = N_Access_Definition
4532 and then
4533 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4534 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4535 then
4536 Error_Msg_N
4537 ("function whose access result designates abstract type "
4538 & "must be abstract", N);
4539 end if;
4540 end if;
4541 end if;
4543 return Designator;
4544 end Analyze_Subprogram_Specification;
4546 -----------------------
4547 -- Check_Conformance --
4548 -----------------------
4550 procedure Check_Conformance
4551 (New_Id : Entity_Id;
4552 Old_Id : Entity_Id;
4553 Ctype : Conformance_Type;
4554 Errmsg : Boolean;
4555 Conforms : out Boolean;
4556 Err_Loc : Node_Id := Empty;
4557 Get_Inst : Boolean := False;
4558 Skip_Controlling_Formals : Boolean := False)
4560 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4561 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4562 -- If Errmsg is True, then processing continues to post an error message
4563 -- for conformance error on given node. Two messages are output. The
4564 -- first message points to the previous declaration with a general "no
4565 -- conformance" message. The second is the detailed reason, supplied as
4566 -- Msg. The parameter N provide information for a possible & insertion
4567 -- in the message, and also provides the location for posting the
4568 -- message in the absence of a specified Err_Loc location.
4570 -----------------------
4571 -- Conformance_Error --
4572 -----------------------
4574 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4575 Enode : Node_Id;
4577 begin
4578 Conforms := False;
4580 if Errmsg then
4581 if No (Err_Loc) then
4582 Enode := N;
4583 else
4584 Enode := Err_Loc;
4585 end if;
4587 Error_Msg_Sloc := Sloc (Old_Id);
4589 case Ctype is
4590 when Type_Conformant =>
4591 Error_Msg_N -- CODEFIX
4592 ("not type conformant with declaration#!", Enode);
4594 when Mode_Conformant =>
4595 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4596 Error_Msg_N
4597 ("not mode conformant with operation inherited#!",
4598 Enode);
4599 else
4600 Error_Msg_N
4601 ("not mode conformant with declaration#!", Enode);
4602 end if;
4604 when Subtype_Conformant =>
4605 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4606 Error_Msg_N
4607 ("not subtype conformant with operation inherited#!",
4608 Enode);
4609 else
4610 Error_Msg_N
4611 ("not subtype conformant with declaration#!", Enode);
4612 end if;
4614 when Fully_Conformant =>
4615 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4616 Error_Msg_N -- CODEFIX
4617 ("not fully conformant with operation inherited#!",
4618 Enode);
4619 else
4620 Error_Msg_N -- CODEFIX
4621 ("not fully conformant with declaration#!", Enode);
4622 end if;
4623 end case;
4625 Error_Msg_NE (Msg, Enode, N);
4626 end if;
4627 end Conformance_Error;
4629 -- Local Variables
4631 Old_Type : constant Entity_Id := Etype (Old_Id);
4632 New_Type : constant Entity_Id := Etype (New_Id);
4633 Old_Formal : Entity_Id;
4634 New_Formal : Entity_Id;
4635 Access_Types_Match : Boolean;
4636 Old_Formal_Base : Entity_Id;
4637 New_Formal_Base : Entity_Id;
4639 -- Start of processing for Check_Conformance
4641 begin
4642 Conforms := True;
4644 -- We need a special case for operators, since they don't appear
4645 -- explicitly.
4647 if Ctype = Type_Conformant then
4648 if Ekind (New_Id) = E_Operator
4649 and then Operator_Matches_Spec (New_Id, Old_Id)
4650 then
4651 return;
4652 end if;
4653 end if;
4655 -- If both are functions/operators, check return types conform
4657 if Old_Type /= Standard_Void_Type
4658 and then
4659 New_Type /= Standard_Void_Type
4660 then
4661 -- If we are checking interface conformance we omit controlling
4662 -- arguments and result, because we are only checking the conformance
4663 -- of the remaining parameters.
4665 if Has_Controlling_Result (Old_Id)
4666 and then Has_Controlling_Result (New_Id)
4667 and then Skip_Controlling_Formals
4668 then
4669 null;
4671 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4672 if Ctype >= Subtype_Conformant
4673 and then not Predicates_Match (Old_Type, New_Type)
4674 then
4675 Conformance_Error
4676 ("\predicate of return type does not match!", New_Id);
4677 else
4678 Conformance_Error
4679 ("\return type does not match!", New_Id);
4680 end if;
4682 return;
4683 end if;
4685 -- Ada 2005 (AI-231): In case of anonymous access types check the
4686 -- null-exclusion and access-to-constant attributes match.
4688 if Ada_Version >= Ada_2005
4689 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4690 and then
4691 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4692 or else Is_Access_Constant (Etype (Old_Type)) /=
4693 Is_Access_Constant (Etype (New_Type)))
4694 then
4695 Conformance_Error ("\return type does not match!", New_Id);
4696 return;
4697 end if;
4699 -- If either is a function/operator and the other isn't, error
4701 elsif Old_Type /= Standard_Void_Type
4702 or else New_Type /= Standard_Void_Type
4703 then
4704 Conformance_Error ("\functions can only match functions!", New_Id);
4705 return;
4706 end if;
4708 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4709 -- If this is a renaming as body, refine error message to indicate that
4710 -- the conflict is with the original declaration. If the entity is not
4711 -- frozen, the conventions don't have to match, the one of the renamed
4712 -- entity is inherited.
4714 if Ctype >= Subtype_Conformant then
4715 if Convention (Old_Id) /= Convention (New_Id) then
4716 if not Is_Frozen (New_Id) then
4717 null;
4719 elsif Present (Err_Loc)
4720 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4721 and then Present (Corresponding_Spec (Err_Loc))
4722 then
4723 Error_Msg_Name_1 := Chars (New_Id);
4724 Error_Msg_Name_2 :=
4725 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4726 Conformance_Error ("\prior declaration for% has convention %!");
4728 else
4729 Conformance_Error ("\calling conventions do not match!");
4730 end if;
4732 return;
4734 elsif Is_Formal_Subprogram (Old_Id)
4735 or else Is_Formal_Subprogram (New_Id)
4736 then
4737 Conformance_Error ("\formal subprograms not allowed!");
4738 return;
4739 end if;
4740 end if;
4742 -- Deal with parameters
4744 -- Note: we use the entity information, rather than going directly
4745 -- to the specification in the tree. This is not only simpler, but
4746 -- absolutely necessary for some cases of conformance tests between
4747 -- operators, where the declaration tree simply does not exist.
4749 Old_Formal := First_Formal (Old_Id);
4750 New_Formal := First_Formal (New_Id);
4751 while Present (Old_Formal) and then Present (New_Formal) loop
4752 if Is_Controlling_Formal (Old_Formal)
4753 and then Is_Controlling_Formal (New_Formal)
4754 and then Skip_Controlling_Formals
4755 then
4756 -- The controlling formals will have different types when
4757 -- comparing an interface operation with its match, but both
4758 -- or neither must be access parameters.
4760 if Is_Access_Type (Etype (Old_Formal))
4762 Is_Access_Type (Etype (New_Formal))
4763 then
4764 goto Skip_Controlling_Formal;
4765 else
4766 Conformance_Error
4767 ("\access parameter does not match!", New_Formal);
4768 end if;
4769 end if;
4771 -- Ada 2012: Mode conformance also requires that formal parameters
4772 -- be both aliased, or neither.
4774 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4775 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4776 Conformance_Error
4777 ("\aliased parameter mismatch!", New_Formal);
4778 end if;
4779 end if;
4781 if Ctype = Fully_Conformant then
4783 -- Names must match. Error message is more accurate if we do
4784 -- this before checking that the types of the formals match.
4786 if Chars (Old_Formal) /= Chars (New_Formal) then
4787 Conformance_Error ("\name& does not match!", New_Formal);
4789 -- Set error posted flag on new formal as well to stop
4790 -- junk cascaded messages in some cases.
4792 Set_Error_Posted (New_Formal);
4793 return;
4794 end if;
4796 -- Null exclusion must match
4798 if Null_Exclusion_Present (Parent (Old_Formal))
4800 Null_Exclusion_Present (Parent (New_Formal))
4801 then
4802 -- Only give error if both come from source. This should be
4803 -- investigated some time, since it should not be needed ???
4805 if Comes_From_Source (Old_Formal)
4806 and then
4807 Comes_From_Source (New_Formal)
4808 then
4809 Conformance_Error
4810 ("\null exclusion for& does not match", New_Formal);
4812 -- Mark error posted on the new formal to avoid duplicated
4813 -- complaint about types not matching.
4815 Set_Error_Posted (New_Formal);
4816 end if;
4817 end if;
4818 end if;
4820 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4821 -- case occurs whenever a subprogram is being renamed and one of its
4822 -- parameters imposes a null exclusion. For example:
4824 -- type T is null record;
4825 -- type Acc_T is access T;
4826 -- subtype Acc_T_Sub is Acc_T;
4828 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4829 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4830 -- renames P;
4832 Old_Formal_Base := Etype (Old_Formal);
4833 New_Formal_Base := Etype (New_Formal);
4835 if Get_Inst then
4836 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4837 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4838 end if;
4840 Access_Types_Match := Ada_Version >= Ada_2005
4842 -- Ensure that this rule is only applied when New_Id is a
4843 -- renaming of Old_Id.
4845 and then Nkind (Parent (Parent (New_Id))) =
4846 N_Subprogram_Renaming_Declaration
4847 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4848 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4849 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4851 -- Now handle the allowed access-type case
4853 and then Is_Access_Type (Old_Formal_Base)
4854 and then Is_Access_Type (New_Formal_Base)
4856 -- The type kinds must match. The only exception occurs with
4857 -- multiple generics of the form:
4859 -- generic generic
4860 -- type F is private; type A is private;
4861 -- type F_Ptr is access F; type A_Ptr is access A;
4862 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4863 -- package F_Pack is ... package A_Pack is
4864 -- package F_Inst is
4865 -- new F_Pack (A, A_Ptr, A_P);
4867 -- When checking for conformance between the parameters of A_P
4868 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4869 -- because the compiler has transformed A_Ptr into a subtype of
4870 -- F_Ptr. We catch this case in the code below.
4872 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4873 or else
4874 (Is_Generic_Type (Old_Formal_Base)
4875 and then Is_Generic_Type (New_Formal_Base)
4876 and then Is_Internal (New_Formal_Base)
4877 and then Etype (Etype (New_Formal_Base)) =
4878 Old_Formal_Base))
4879 and then Directly_Designated_Type (Old_Formal_Base) =
4880 Directly_Designated_Type (New_Formal_Base)
4881 and then ((Is_Itype (Old_Formal_Base)
4882 and then Can_Never_Be_Null (Old_Formal_Base))
4883 or else
4884 (Is_Itype (New_Formal_Base)
4885 and then Can_Never_Be_Null (New_Formal_Base)));
4887 -- Types must always match. In the visible part of an instance,
4888 -- usual overloading rules for dispatching operations apply, and
4889 -- we check base types (not the actual subtypes).
4891 if In_Instance_Visible_Part
4892 and then Is_Dispatching_Operation (New_Id)
4893 then
4894 if not Conforming_Types
4895 (T1 => Base_Type (Etype (Old_Formal)),
4896 T2 => Base_Type (Etype (New_Formal)),
4897 Ctype => Ctype,
4898 Get_Inst => Get_Inst)
4899 and then not Access_Types_Match
4900 then
4901 Conformance_Error ("\type of & does not match!", New_Formal);
4902 return;
4903 end if;
4905 elsif not Conforming_Types
4906 (T1 => Old_Formal_Base,
4907 T2 => New_Formal_Base,
4908 Ctype => Ctype,
4909 Get_Inst => Get_Inst)
4910 and then not Access_Types_Match
4911 then
4912 -- Don't give error message if old type is Any_Type. This test
4913 -- avoids some cascaded errors, e.g. in case of a bad spec.
4915 if Errmsg and then Old_Formal_Base = Any_Type then
4916 Conforms := False;
4917 else
4918 if Ctype >= Subtype_Conformant
4919 and then
4920 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4921 then
4922 Conformance_Error
4923 ("\predicate of & does not match!", New_Formal);
4924 else
4925 Conformance_Error
4926 ("\type of & does not match!", New_Formal);
4927 end if;
4928 end if;
4930 return;
4931 end if;
4933 -- For mode conformance, mode must match
4935 if Ctype >= Mode_Conformant then
4936 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4937 if not Ekind_In (New_Id, E_Function, E_Procedure)
4938 or else not Is_Primitive_Wrapper (New_Id)
4939 then
4940 Conformance_Error ("\mode of & does not match!", New_Formal);
4942 else
4943 declare
4944 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4945 begin
4946 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4947 then
4948 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
4949 else
4950 Conformance_Error
4951 ("\mode of & does not match!", New_Formal);
4952 end if;
4953 end;
4954 end if;
4956 return;
4958 -- Part of mode conformance for access types is having the same
4959 -- constant modifier.
4961 elsif Access_Types_Match
4962 and then Is_Access_Constant (Old_Formal_Base) /=
4963 Is_Access_Constant (New_Formal_Base)
4964 then
4965 Conformance_Error
4966 ("\constant modifier does not match!", New_Formal);
4967 return;
4968 end if;
4969 end if;
4971 if Ctype >= Subtype_Conformant then
4973 -- Ada 2005 (AI-231): In case of anonymous access types check
4974 -- the null-exclusion and access-to-constant attributes must
4975 -- match. For null exclusion, we test the types rather than the
4976 -- formals themselves, since the attribute is only set reliably
4977 -- on the formals in the Ada 95 case, and we exclude the case
4978 -- where Old_Formal is marked as controlling, to avoid errors
4979 -- when matching completing bodies with dispatching declarations
4980 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4982 if Ada_Version >= Ada_2005
4983 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4984 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4985 and then
4986 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4987 Can_Never_Be_Null (Etype (New_Formal))
4988 and then
4989 not Is_Controlling_Formal (Old_Formal))
4990 or else
4991 Is_Access_Constant (Etype (Old_Formal)) /=
4992 Is_Access_Constant (Etype (New_Formal)))
4994 -- Do not complain if error already posted on New_Formal. This
4995 -- avoids some redundant error messages.
4997 and then not Error_Posted (New_Formal)
4998 then
4999 -- It is allowed to omit the null-exclusion in case of stream
5000 -- attribute subprograms. We recognize stream subprograms
5001 -- through their TSS-generated suffix.
5003 declare
5004 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5006 begin
5007 if TSS_Name /= TSS_Stream_Read
5008 and then TSS_Name /= TSS_Stream_Write
5009 and then TSS_Name /= TSS_Stream_Input
5010 and then TSS_Name /= TSS_Stream_Output
5011 then
5012 -- Here we have a definite conformance error. It is worth
5013 -- special casing the error message for the case of a
5014 -- controlling formal (which excludes null).
5016 if Is_Controlling_Formal (New_Formal) then
5017 Error_Msg_Node_2 := Scope (New_Formal);
5018 Conformance_Error
5019 ("\controlling formal & of & excludes null, "
5020 & "declaration must exclude null as well",
5021 New_Formal);
5023 -- Normal case (couldn't we give more detail here???)
5025 else
5026 Conformance_Error
5027 ("\type of & does not match!", New_Formal);
5028 end if;
5030 return;
5031 end if;
5032 end;
5033 end if;
5034 end if;
5036 -- Full conformance checks
5038 if Ctype = Fully_Conformant then
5040 -- We have checked already that names match
5042 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5044 -- Check default expressions for in parameters
5046 declare
5047 NewD : constant Boolean :=
5048 Present (Default_Value (New_Formal));
5049 OldD : constant Boolean :=
5050 Present (Default_Value (Old_Formal));
5051 begin
5052 if NewD or OldD then
5054 -- The old default value has been analyzed because the
5055 -- current full declaration will have frozen everything
5056 -- before. The new default value has not been analyzed,
5057 -- so analyze it now before we check for conformance.
5059 if NewD then
5060 Push_Scope (New_Id);
5061 Preanalyze_Spec_Expression
5062 (Default_Value (New_Formal), Etype (New_Formal));
5063 End_Scope;
5064 end if;
5066 if not (NewD and OldD)
5067 or else not Fully_Conformant_Expressions
5068 (Default_Value (Old_Formal),
5069 Default_Value (New_Formal))
5070 then
5071 Conformance_Error
5072 ("\default expression for & does not match!",
5073 New_Formal);
5074 return;
5075 end if;
5076 end if;
5077 end;
5078 end if;
5079 end if;
5081 -- A couple of special checks for Ada 83 mode. These checks are
5082 -- skipped if either entity is an operator in package Standard,
5083 -- or if either old or new instance is not from the source program.
5085 if Ada_Version = Ada_83
5086 and then Sloc (Old_Id) > Standard_Location
5087 and then Sloc (New_Id) > Standard_Location
5088 and then Comes_From_Source (Old_Id)
5089 and then Comes_From_Source (New_Id)
5090 then
5091 declare
5092 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5093 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5095 begin
5096 -- Explicit IN must be present or absent in both cases. This
5097 -- test is required only in the full conformance case.
5099 if In_Present (Old_Param) /= In_Present (New_Param)
5100 and then Ctype = Fully_Conformant
5101 then
5102 Conformance_Error
5103 ("\(Ada 83) IN must appear in both declarations",
5104 New_Formal);
5105 return;
5106 end if;
5108 -- Grouping (use of comma in param lists) must be the same
5109 -- This is where we catch a misconformance like:
5111 -- A, B : Integer
5112 -- A : Integer; B : Integer
5114 -- which are represented identically in the tree except
5115 -- for the setting of the flags More_Ids and Prev_Ids.
5117 if More_Ids (Old_Param) /= More_Ids (New_Param)
5118 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5119 then
5120 Conformance_Error
5121 ("\grouping of & does not match!", New_Formal);
5122 return;
5123 end if;
5124 end;
5125 end if;
5127 -- This label is required when skipping controlling formals
5129 <<Skip_Controlling_Formal>>
5131 Next_Formal (Old_Formal);
5132 Next_Formal (New_Formal);
5133 end loop;
5135 if Present (Old_Formal) then
5136 Conformance_Error ("\too few parameters!");
5137 return;
5139 elsif Present (New_Formal) then
5140 Conformance_Error ("\too many parameters!", New_Formal);
5141 return;
5142 end if;
5143 end Check_Conformance;
5145 -----------------------
5146 -- Check_Conventions --
5147 -----------------------
5149 procedure Check_Conventions (Typ : Entity_Id) is
5150 Ifaces_List : Elist_Id;
5152 procedure Check_Convention (Op : Entity_Id);
5153 -- Verify that the convention of inherited dispatching operation Op is
5154 -- consistent among all subprograms it overrides. In order to minimize
5155 -- the search, Search_From is utilized to designate a specific point in
5156 -- the list rather than iterating over the whole list once more.
5158 ----------------------
5159 -- Check_Convention --
5160 ----------------------
5162 procedure Check_Convention (Op : Entity_Id) is
5163 Op_Conv : constant Convention_Id := Convention (Op);
5164 Iface_Conv : Convention_Id;
5165 Iface_Elmt : Elmt_Id;
5166 Iface_Prim_Elmt : Elmt_Id;
5167 Iface_Prim : Entity_Id;
5169 begin
5170 Iface_Elmt := First_Elmt (Ifaces_List);
5171 while Present (Iface_Elmt) loop
5172 Iface_Prim_Elmt :=
5173 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5174 while Present (Iface_Prim_Elmt) loop
5175 Iface_Prim := Node (Iface_Prim_Elmt);
5176 Iface_Conv := Convention (Iface_Prim);
5178 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5179 and then Iface_Conv /= Op_Conv
5180 then
5181 Error_Msg_N
5182 ("inconsistent conventions in primitive operations", Typ);
5184 Error_Msg_Name_1 := Chars (Op);
5185 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5186 Error_Msg_Sloc := Sloc (Op);
5188 if Comes_From_Source (Op) or else No (Alias (Op)) then
5189 if not Present (Overridden_Operation (Op)) then
5190 Error_Msg_N ("\\primitive % defined #", Typ);
5191 else
5192 Error_Msg_N
5193 ("\\overriding operation % with "
5194 & "convention % defined #", Typ);
5195 end if;
5197 else pragma Assert (Present (Alias (Op)));
5198 Error_Msg_Sloc := Sloc (Alias (Op));
5199 Error_Msg_N ("\\inherited operation % with "
5200 & "convention % defined #", Typ);
5201 end if;
5203 Error_Msg_Name_1 := Chars (Op);
5204 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5205 Error_Msg_Sloc := Sloc (Iface_Prim);
5206 Error_Msg_N ("\\overridden operation % with "
5207 & "convention % defined #", Typ);
5209 -- Avoid cascading errors
5211 return;
5212 end if;
5214 Next_Elmt (Iface_Prim_Elmt);
5215 end loop;
5217 Next_Elmt (Iface_Elmt);
5218 end loop;
5219 end Check_Convention;
5221 -- Local variables
5223 Prim_Op : Entity_Id;
5224 Prim_Op_Elmt : Elmt_Id;
5226 -- Start of processing for Check_Conventions
5228 begin
5229 if not Has_Interfaces (Typ) then
5230 return;
5231 end if;
5233 Collect_Interfaces (Typ, Ifaces_List);
5235 -- The algorithm checks every overriding dispatching operation against
5236 -- all the corresponding overridden dispatching operations, detecting
5237 -- differences in conventions.
5239 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5240 while Present (Prim_Op_Elmt) loop
5241 Prim_Op := Node (Prim_Op_Elmt);
5243 -- A small optimization: skip the predefined dispatching operations
5244 -- since they always have the same convention.
5246 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5247 Check_Convention (Prim_Op);
5248 end if;
5250 Next_Elmt (Prim_Op_Elmt);
5251 end loop;
5252 end Check_Conventions;
5254 ------------------------------
5255 -- Check_Delayed_Subprogram --
5256 ------------------------------
5258 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5259 F : Entity_Id;
5261 procedure Possible_Freeze (T : Entity_Id);
5262 -- T is the type of either a formal parameter or of the return type.
5263 -- If T is not yet frozen and needs a delayed freeze, then the
5264 -- subprogram itself must be delayed. If T is the limited view of an
5265 -- incomplete type (or of a CW type thereof) the subprogram must be
5266 -- frozen as well, because T may depend on local types that have not
5267 -- been frozen yet.
5269 ---------------------
5270 -- Possible_Freeze --
5271 ---------------------
5273 procedure Possible_Freeze (T : Entity_Id) is
5274 begin
5275 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5276 Set_Has_Delayed_Freeze (Designator);
5278 elsif Is_Access_Type (T)
5279 and then Has_Delayed_Freeze (Designated_Type (T))
5280 and then not Is_Frozen (Designated_Type (T))
5281 then
5282 Set_Has_Delayed_Freeze (Designator);
5284 elsif (Ekind (T) = E_Incomplete_Type
5285 or else Ekind (T) = E_Class_Wide_Type)
5286 and then From_Limited_With (T)
5287 then
5288 Set_Has_Delayed_Freeze (Designator);
5290 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5291 -- of a subprogram or entry declaration.
5293 elsif Ekind (T) = E_Incomplete_Type
5294 and then Ada_Version >= Ada_2012
5295 then
5296 Set_Has_Delayed_Freeze (Designator);
5297 end if;
5299 end Possible_Freeze;
5301 -- Start of processing for Check_Delayed_Subprogram
5303 begin
5304 -- All subprograms, including abstract subprograms, may need a freeze
5305 -- node if some formal type or the return type needs one.
5307 Possible_Freeze (Etype (Designator));
5308 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5310 -- Need delayed freeze if any of the formal types themselves need
5311 -- a delayed freeze and are not yet frozen.
5313 F := First_Formal (Designator);
5314 while Present (F) loop
5315 Possible_Freeze (Etype (F));
5316 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5317 Next_Formal (F);
5318 end loop;
5320 -- Mark functions that return by reference. Note that it cannot be
5321 -- done for delayed_freeze subprograms because the underlying
5322 -- returned type may not be known yet (for private types)
5324 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5325 declare
5326 Typ : constant Entity_Id := Etype (Designator);
5327 Utyp : constant Entity_Id := Underlying_Type (Typ);
5328 begin
5329 if Is_Limited_View (Typ) then
5330 Set_Returns_By_Ref (Designator);
5331 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5332 Set_Returns_By_Ref (Designator);
5333 end if;
5334 end;
5335 end if;
5336 end Check_Delayed_Subprogram;
5338 ------------------------------------
5339 -- Check_Discriminant_Conformance --
5340 ------------------------------------
5342 procedure Check_Discriminant_Conformance
5343 (N : Node_Id;
5344 Prev : Entity_Id;
5345 Prev_Loc : Node_Id)
5347 Old_Discr : Entity_Id := First_Discriminant (Prev);
5348 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5349 New_Discr_Id : Entity_Id;
5350 New_Discr_Type : Entity_Id;
5352 procedure Conformance_Error (Msg : String; N : Node_Id);
5353 -- Post error message for conformance error on given node. Two messages
5354 -- are output. The first points to the previous declaration with a
5355 -- general "no conformance" message. The second is the detailed reason,
5356 -- supplied as Msg. The parameter N provide information for a possible
5357 -- & insertion in the message.
5359 -----------------------
5360 -- Conformance_Error --
5361 -----------------------
5363 procedure Conformance_Error (Msg : String; N : Node_Id) is
5364 begin
5365 Error_Msg_Sloc := Sloc (Prev_Loc);
5366 Error_Msg_N -- CODEFIX
5367 ("not fully conformant with declaration#!", N);
5368 Error_Msg_NE (Msg, N, N);
5369 end Conformance_Error;
5371 -- Start of processing for Check_Discriminant_Conformance
5373 begin
5374 while Present (Old_Discr) and then Present (New_Discr) loop
5375 New_Discr_Id := Defining_Identifier (New_Discr);
5377 -- The subtype mark of the discriminant on the full type has not
5378 -- been analyzed so we do it here. For an access discriminant a new
5379 -- type is created.
5381 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5382 New_Discr_Type :=
5383 Access_Definition (N, Discriminant_Type (New_Discr));
5385 else
5386 Analyze (Discriminant_Type (New_Discr));
5387 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5389 -- Ada 2005: if the discriminant definition carries a null
5390 -- exclusion, create an itype to check properly for consistency
5391 -- with partial declaration.
5393 if Is_Access_Type (New_Discr_Type)
5394 and then Null_Exclusion_Present (New_Discr)
5395 then
5396 New_Discr_Type :=
5397 Create_Null_Excluding_Itype
5398 (T => New_Discr_Type,
5399 Related_Nod => New_Discr,
5400 Scope_Id => Current_Scope);
5401 end if;
5402 end if;
5404 if not Conforming_Types
5405 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5406 then
5407 Conformance_Error ("type of & does not match!", New_Discr_Id);
5408 return;
5409 else
5410 -- Treat the new discriminant as an occurrence of the old one,
5411 -- for navigation purposes, and fill in some semantic
5412 -- information, for completeness.
5414 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5415 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5416 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5417 end if;
5419 -- Names must match
5421 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5422 Conformance_Error ("name & does not match!", New_Discr_Id);
5423 return;
5424 end if;
5426 -- Default expressions must match
5428 declare
5429 NewD : constant Boolean :=
5430 Present (Expression (New_Discr));
5431 OldD : constant Boolean :=
5432 Present (Expression (Parent (Old_Discr)));
5434 begin
5435 if NewD or OldD then
5437 -- The old default value has been analyzed and expanded,
5438 -- because the current full declaration will have frozen
5439 -- everything before. The new default values have not been
5440 -- expanded, so expand now to check conformance.
5442 if NewD then
5443 Preanalyze_Spec_Expression
5444 (Expression (New_Discr), New_Discr_Type);
5445 end if;
5447 if not (NewD and OldD)
5448 or else not Fully_Conformant_Expressions
5449 (Expression (Parent (Old_Discr)),
5450 Expression (New_Discr))
5452 then
5453 Conformance_Error
5454 ("default expression for & does not match!",
5455 New_Discr_Id);
5456 return;
5457 end if;
5458 end if;
5459 end;
5461 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5463 if Ada_Version = Ada_83 then
5464 declare
5465 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5467 begin
5468 -- Grouping (use of comma in param lists) must be the same
5469 -- This is where we catch a misconformance like:
5471 -- A, B : Integer
5472 -- A : Integer; B : Integer
5474 -- which are represented identically in the tree except
5475 -- for the setting of the flags More_Ids and Prev_Ids.
5477 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5478 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5479 then
5480 Conformance_Error
5481 ("grouping of & does not match!", New_Discr_Id);
5482 return;
5483 end if;
5484 end;
5485 end if;
5487 Next_Discriminant (Old_Discr);
5488 Next (New_Discr);
5489 end loop;
5491 if Present (Old_Discr) then
5492 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5493 return;
5495 elsif Present (New_Discr) then
5496 Conformance_Error
5497 ("too many discriminants!", Defining_Identifier (New_Discr));
5498 return;
5499 end if;
5500 end Check_Discriminant_Conformance;
5502 ----------------------------
5503 -- Check_Fully_Conformant --
5504 ----------------------------
5506 procedure Check_Fully_Conformant
5507 (New_Id : Entity_Id;
5508 Old_Id : Entity_Id;
5509 Err_Loc : Node_Id := Empty)
5511 Result : Boolean;
5512 pragma Warnings (Off, Result);
5513 begin
5514 Check_Conformance
5515 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5516 end Check_Fully_Conformant;
5518 --------------------------
5519 -- Check_Limited_Return --
5520 --------------------------
5522 procedure Check_Limited_Return
5523 (N : Node_Id;
5524 Expr : Node_Id;
5525 R_Type : Entity_Id)
5527 begin
5528 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5529 -- replaced by anonymous access results. This is an incompatibility with
5530 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5531 -- controllable with special switch. ???
5533 -- A limited interface that is not immutably limited is OK
5535 if Is_Limited_Interface (R_Type)
5536 and then
5537 not (Is_Task_Interface (R_Type)
5538 or else Is_Protected_Interface (R_Type)
5539 or else Is_Synchronized_Interface (R_Type))
5540 then
5541 null;
5543 elsif Is_Limited_Type (R_Type)
5544 and then not Is_Interface (R_Type)
5545 and then Comes_From_Source (N)
5546 and then not In_Instance_Body
5547 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5548 then
5549 -- Error in Ada 2005
5551 if Ada_Version >= Ada_2005
5552 and then not Debug_Flag_Dot_L
5553 and then not GNAT_Mode
5554 then
5555 Error_Msg_N
5556 ("(Ada 2005) cannot copy object of a limited type "
5557 & "(RM-2005 6.5(5.5/2))", Expr);
5559 if Is_Limited_View (R_Type) then
5560 Error_Msg_N
5561 ("\return by reference not permitted in Ada 2005", Expr);
5562 end if;
5564 -- Warn in Ada 95 mode, to give folks a heads up about this
5565 -- incompatibility.
5567 -- In GNAT mode, this is just a warning, to allow it to be evilly
5568 -- turned off. Otherwise it is a real error.
5570 -- In a generic context, simplify the warning because it makes no
5571 -- sense to discuss pass-by-reference or copy.
5573 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5574 if Inside_A_Generic then
5575 Error_Msg_N
5576 ("return of limited object not permitted in Ada 2005 "
5577 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5579 elsif Is_Limited_View (R_Type) then
5580 Error_Msg_N
5581 ("return by reference not permitted in Ada 2005 "
5582 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5583 else
5584 Error_Msg_N
5585 ("cannot copy object of a limited type in Ada 2005 "
5586 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5587 end if;
5589 -- Ada 95 mode, compatibility warnings disabled
5591 else
5592 return; -- skip continuation messages below
5593 end if;
5595 if not Inside_A_Generic then
5596 Error_Msg_N
5597 ("\consider switching to return of access type", Expr);
5598 Explain_Limited_Type (R_Type, Expr);
5599 end if;
5600 end if;
5601 end Check_Limited_Return;
5603 ---------------------------
5604 -- Check_Mode_Conformant --
5605 ---------------------------
5607 procedure Check_Mode_Conformant
5608 (New_Id : Entity_Id;
5609 Old_Id : Entity_Id;
5610 Err_Loc : Node_Id := Empty;
5611 Get_Inst : Boolean := False)
5613 Result : Boolean;
5614 pragma Warnings (Off, Result);
5615 begin
5616 Check_Conformance
5617 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5618 end Check_Mode_Conformant;
5620 --------------------------------
5621 -- Check_Overriding_Indicator --
5622 --------------------------------
5624 procedure Check_Overriding_Indicator
5625 (Subp : Entity_Id;
5626 Overridden_Subp : Entity_Id;
5627 Is_Primitive : Boolean)
5629 Decl : Node_Id;
5630 Spec : Node_Id;
5632 begin
5633 -- No overriding indicator for literals
5635 if Ekind (Subp) = E_Enumeration_Literal then
5636 return;
5638 elsif Ekind (Subp) = E_Entry then
5639 Decl := Parent (Subp);
5641 -- No point in analyzing a malformed operator
5643 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5644 and then Error_Posted (Subp)
5645 then
5646 return;
5648 else
5649 Decl := Unit_Declaration_Node (Subp);
5650 end if;
5652 if Nkind_In (Decl, N_Subprogram_Body,
5653 N_Subprogram_Body_Stub,
5654 N_Subprogram_Declaration,
5655 N_Abstract_Subprogram_Declaration,
5656 N_Subprogram_Renaming_Declaration)
5657 then
5658 Spec := Specification (Decl);
5660 elsif Nkind (Decl) = N_Entry_Declaration then
5661 Spec := Decl;
5663 else
5664 return;
5665 end if;
5667 -- The overriding operation is type conformant with the overridden one,
5668 -- but the names of the formals are not required to match. If the names
5669 -- appear permuted in the overriding operation, this is a possible
5670 -- source of confusion that is worth diagnosing. Controlling formals
5671 -- often carry names that reflect the type, and it is not worthwhile
5672 -- requiring that their names match.
5674 if Present (Overridden_Subp)
5675 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5676 then
5677 declare
5678 Form1 : Entity_Id;
5679 Form2 : Entity_Id;
5681 begin
5682 Form1 := First_Formal (Subp);
5683 Form2 := First_Formal (Overridden_Subp);
5685 -- If the overriding operation is a synchronized operation, skip
5686 -- the first parameter of the overridden operation, which is
5687 -- implicit in the new one. If the operation is declared in the
5688 -- body it is not primitive and all formals must match.
5690 if Is_Concurrent_Type (Scope (Subp))
5691 and then Is_Tagged_Type (Scope (Subp))
5692 and then not Has_Completion (Scope (Subp))
5693 then
5694 Form2 := Next_Formal (Form2);
5695 end if;
5697 if Present (Form1) then
5698 Form1 := Next_Formal (Form1);
5699 Form2 := Next_Formal (Form2);
5700 end if;
5702 while Present (Form1) loop
5703 if not Is_Controlling_Formal (Form1)
5704 and then Present (Next_Formal (Form2))
5705 and then Chars (Form1) = Chars (Next_Formal (Form2))
5706 then
5707 Error_Msg_Node_2 := Alias (Overridden_Subp);
5708 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5709 Error_Msg_NE
5710 ("& does not match corresponding formal of&#",
5711 Form1, Form1);
5712 exit;
5713 end if;
5715 Next_Formal (Form1);
5716 Next_Formal (Form2);
5717 end loop;
5718 end;
5719 end if;
5721 -- If there is an overridden subprogram, then check that there is no
5722 -- "not overriding" indicator, and mark the subprogram as overriding.
5723 -- This is not done if the overridden subprogram is marked as hidden,
5724 -- which can occur for the case of inherited controlled operations
5725 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5726 -- subprogram is not itself hidden. (Note: This condition could probably
5727 -- be simplified, leaving out the testing for the specific controlled
5728 -- cases, but it seems safer and clearer this way, and echoes similar
5729 -- special-case tests of this kind in other places.)
5731 if Present (Overridden_Subp)
5732 and then (not Is_Hidden (Overridden_Subp)
5733 or else
5734 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5735 Name_Adjust,
5736 Name_Finalize)
5737 and then Present (Alias (Overridden_Subp))
5738 and then not Is_Hidden (Alias (Overridden_Subp))))
5739 then
5740 if Must_Not_Override (Spec) then
5741 Error_Msg_Sloc := Sloc (Overridden_Subp);
5743 if Ekind (Subp) = E_Entry then
5744 Error_Msg_NE
5745 ("entry & overrides inherited operation #", Spec, Subp);
5746 else
5747 Error_Msg_NE
5748 ("subprogram & overrides inherited operation #", Spec, Subp);
5749 end if;
5751 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5752 -- as an extension of Root_Controlled, and thus has a useless Adjust
5753 -- operation. This operation should not be inherited by other limited
5754 -- controlled types. An explicit Adjust for them is not overriding.
5756 elsif Must_Override (Spec)
5757 and then Chars (Overridden_Subp) = Name_Adjust
5758 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5759 and then Present (Alias (Overridden_Subp))
5760 and then
5761 Is_Predefined_File_Name
5762 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5763 then
5764 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5766 elsif Is_Subprogram (Subp) then
5767 if Is_Init_Proc (Subp) then
5768 null;
5770 elsif No (Overridden_Operation (Subp)) then
5772 -- For entities generated by Derive_Subprograms the overridden
5773 -- operation is the inherited primitive (which is available
5774 -- through the attribute alias)
5776 if (Is_Dispatching_Operation (Subp)
5777 or else Is_Dispatching_Operation (Overridden_Subp))
5778 and then not Comes_From_Source (Overridden_Subp)
5779 and then Find_Dispatching_Type (Overridden_Subp) =
5780 Find_Dispatching_Type (Subp)
5781 and then Present (Alias (Overridden_Subp))
5782 and then Comes_From_Source (Alias (Overridden_Subp))
5783 then
5784 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5785 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5787 else
5788 Set_Overridden_Operation (Subp, Overridden_Subp);
5789 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5790 end if;
5791 end if;
5792 end if;
5794 -- If primitive flag is set or this is a protected operation, then
5795 -- the operation is overriding at the point of its declaration, so
5796 -- warn if necessary. Otherwise it may have been declared before the
5797 -- operation it overrides and no check is required.
5799 if Style_Check
5800 and then not Must_Override (Spec)
5801 and then (Is_Primitive
5802 or else Ekind (Scope (Subp)) = E_Protected_Type)
5803 then
5804 Style.Missing_Overriding (Decl, Subp);
5805 end if;
5807 -- If Subp is an operator, it may override a predefined operation, if
5808 -- it is defined in the same scope as the type to which it applies.
5809 -- In that case Overridden_Subp is empty because of our implicit
5810 -- representation for predefined operators. We have to check whether the
5811 -- signature of Subp matches that of a predefined operator. Note that
5812 -- first argument provides the name of the operator, and the second
5813 -- argument the signature that may match that of a standard operation.
5814 -- If the indicator is overriding, then the operator must match a
5815 -- predefined signature, because we know already that there is no
5816 -- explicit overridden operation.
5818 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5819 if Must_Not_Override (Spec) then
5821 -- If this is not a primitive or a protected subprogram, then
5822 -- "not overriding" is illegal.
5824 if not Is_Primitive
5825 and then Ekind (Scope (Subp)) /= E_Protected_Type
5826 then
5827 Error_Msg_N ("overriding indicator only allowed "
5828 & "if subprogram is primitive", Subp);
5830 elsif Can_Override_Operator (Subp) then
5831 Error_Msg_NE
5832 ("subprogram& overrides predefined operator ", Spec, Subp);
5833 end if;
5835 elsif Must_Override (Spec) then
5836 if No (Overridden_Operation (Subp))
5837 and then not Can_Override_Operator (Subp)
5838 then
5839 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5840 end if;
5842 elsif not Error_Posted (Subp)
5843 and then Style_Check
5844 and then Can_Override_Operator (Subp)
5845 and then
5846 not Is_Predefined_File_Name
5847 (Unit_File_Name (Get_Source_Unit (Subp)))
5848 then
5849 -- If style checks are enabled, indicate that the indicator is
5850 -- missing. However, at the point of declaration, the type of
5851 -- which this is a primitive operation may be private, in which
5852 -- case the indicator would be premature.
5854 if Has_Private_Declaration (Etype (Subp))
5855 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5856 then
5857 null;
5858 else
5859 Style.Missing_Overriding (Decl, Subp);
5860 end if;
5861 end if;
5863 elsif Must_Override (Spec) then
5864 if Ekind (Subp) = E_Entry then
5865 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5866 else
5867 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5868 end if;
5870 -- If the operation is marked "not overriding" and it's not primitive
5871 -- then an error is issued, unless this is an operation of a task or
5872 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5873 -- has been specified have already been checked above.
5875 elsif Must_Not_Override (Spec)
5876 and then not Is_Primitive
5877 and then Ekind (Subp) /= E_Entry
5878 and then Ekind (Scope (Subp)) /= E_Protected_Type
5879 then
5880 Error_Msg_N
5881 ("overriding indicator only allowed if subprogram is primitive",
5882 Subp);
5883 return;
5884 end if;
5885 end Check_Overriding_Indicator;
5887 -------------------
5888 -- Check_Returns --
5889 -------------------
5891 -- Note: this procedure needs to know far too much about how the expander
5892 -- messes with exceptions. The use of the flag Exception_Junk and the
5893 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5894 -- works, but is not very clean. It would be better if the expansion
5895 -- routines would leave Original_Node working nicely, and we could use
5896 -- Original_Node here to ignore all the peculiar expander messing ???
5898 procedure Check_Returns
5899 (HSS : Node_Id;
5900 Mode : Character;
5901 Err : out Boolean;
5902 Proc : Entity_Id := Empty)
5904 Handler : Node_Id;
5906 procedure Check_Statement_Sequence (L : List_Id);
5907 -- Internal recursive procedure to check a list of statements for proper
5908 -- termination by a return statement (or a transfer of control or a
5909 -- compound statement that is itself internally properly terminated).
5911 ------------------------------
5912 -- Check_Statement_Sequence --
5913 ------------------------------
5915 procedure Check_Statement_Sequence (L : List_Id) is
5916 Last_Stm : Node_Id;
5917 Stm : Node_Id;
5918 Kind : Node_Kind;
5920 function Assert_False return Boolean;
5921 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5922 -- rewritten as a null statement when assertions are off. The assert
5923 -- is not active, but it is still enough to kill the warning.
5925 ------------------
5926 -- Assert_False --
5927 ------------------
5929 function Assert_False return Boolean is
5930 Orig : constant Node_Id := Original_Node (Last_Stm);
5932 begin
5933 if Nkind (Orig) = N_Pragma
5934 and then Pragma_Name (Orig) = Name_Assert
5935 and then not Error_Posted (Orig)
5936 then
5937 declare
5938 Arg : constant Node_Id :=
5939 First (Pragma_Argument_Associations (Orig));
5940 Exp : constant Node_Id := Expression (Arg);
5941 begin
5942 return Nkind (Exp) = N_Identifier
5943 and then Chars (Exp) = Name_False;
5944 end;
5946 else
5947 return False;
5948 end if;
5949 end Assert_False;
5951 -- Local variables
5953 Raise_Exception_Call : Boolean;
5954 -- Set True if statement sequence terminated by Raise_Exception call
5955 -- or a Reraise_Occurrence call.
5957 -- Start of processing for Check_Statement_Sequence
5959 begin
5960 Raise_Exception_Call := False;
5962 -- Get last real statement
5964 Last_Stm := Last (L);
5966 -- Deal with digging out exception handler statement sequences that
5967 -- have been transformed by the local raise to goto optimization.
5968 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5969 -- optimization has occurred, we are looking at something like:
5971 -- begin
5972 -- original stmts in block
5974 -- exception \
5975 -- when excep1 => |
5976 -- goto L1; | omitted if No_Exception_Propagation
5977 -- when excep2 => |
5978 -- goto L2; /
5979 -- end;
5981 -- goto L3; -- skip handler when exception not raised
5983 -- <<L1>> -- target label for local exception
5984 -- begin
5985 -- estmts1
5986 -- end;
5988 -- goto L3;
5990 -- <<L2>>
5991 -- begin
5992 -- estmts2
5993 -- end;
5995 -- <<L3>>
5997 -- and what we have to do is to dig out the estmts1 and estmts2
5998 -- sequences (which were the original sequences of statements in
5999 -- the exception handlers) and check them.
6001 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6002 Stm := Last_Stm;
6003 loop
6004 Prev (Stm);
6005 exit when No (Stm);
6006 exit when Nkind (Stm) /= N_Block_Statement;
6007 exit when not Exception_Junk (Stm);
6008 Prev (Stm);
6009 exit when No (Stm);
6010 exit when Nkind (Stm) /= N_Label;
6011 exit when not Exception_Junk (Stm);
6012 Check_Statement_Sequence
6013 (Statements (Handled_Statement_Sequence (Next (Stm))));
6015 Prev (Stm);
6016 Last_Stm := Stm;
6017 exit when No (Stm);
6018 exit when Nkind (Stm) /= N_Goto_Statement;
6019 exit when not Exception_Junk (Stm);
6020 end loop;
6021 end if;
6023 -- Don't count pragmas
6025 while Nkind (Last_Stm) = N_Pragma
6027 -- Don't count call to SS_Release (can happen after Raise_Exception)
6029 or else
6030 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6031 and then
6032 Nkind (Name (Last_Stm)) = N_Identifier
6033 and then
6034 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6036 -- Don't count exception junk
6038 or else
6039 (Nkind_In (Last_Stm, N_Goto_Statement,
6040 N_Label,
6041 N_Object_Declaration)
6042 and then Exception_Junk (Last_Stm))
6043 or else Nkind (Last_Stm) in N_Push_xxx_Label
6044 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6046 -- Inserted code, such as finalization calls, is irrelevant: we only
6047 -- need to check original source.
6049 or else Is_Rewrite_Insertion (Last_Stm)
6050 loop
6051 Prev (Last_Stm);
6052 end loop;
6054 -- Here we have the "real" last statement
6056 Kind := Nkind (Last_Stm);
6058 -- Transfer of control, OK. Note that in the No_Return procedure
6059 -- case, we already diagnosed any explicit return statements, so
6060 -- we can treat them as OK in this context.
6062 if Is_Transfer (Last_Stm) then
6063 return;
6065 -- Check cases of explicit non-indirect procedure calls
6067 elsif Kind = N_Procedure_Call_Statement
6068 and then Is_Entity_Name (Name (Last_Stm))
6069 then
6070 -- Check call to Raise_Exception procedure which is treated
6071 -- specially, as is a call to Reraise_Occurrence.
6073 -- We suppress the warning in these cases since it is likely that
6074 -- the programmer really does not expect to deal with the case
6075 -- of Null_Occurrence, and thus would find a warning about a
6076 -- missing return curious, and raising Program_Error does not
6077 -- seem such a bad behavior if this does occur.
6079 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6080 -- behavior will be to raise Constraint_Error (see AI-329).
6082 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6083 or else
6084 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6085 then
6086 Raise_Exception_Call := True;
6088 -- For Raise_Exception call, test first argument, if it is
6089 -- an attribute reference for a 'Identity call, then we know
6090 -- that the call cannot possibly return.
6092 declare
6093 Arg : constant Node_Id :=
6094 Original_Node (First_Actual (Last_Stm));
6095 begin
6096 if Nkind (Arg) = N_Attribute_Reference
6097 and then Attribute_Name (Arg) = Name_Identity
6098 then
6099 return;
6100 end if;
6101 end;
6102 end if;
6104 -- If statement, need to look inside if there is an else and check
6105 -- each constituent statement sequence for proper termination.
6107 elsif Kind = N_If_Statement
6108 and then Present (Else_Statements (Last_Stm))
6109 then
6110 Check_Statement_Sequence (Then_Statements (Last_Stm));
6111 Check_Statement_Sequence (Else_Statements (Last_Stm));
6113 if Present (Elsif_Parts (Last_Stm)) then
6114 declare
6115 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6117 begin
6118 while Present (Elsif_Part) loop
6119 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6120 Next (Elsif_Part);
6121 end loop;
6122 end;
6123 end if;
6125 return;
6127 -- Case statement, check each case for proper termination
6129 elsif Kind = N_Case_Statement then
6130 declare
6131 Case_Alt : Node_Id;
6132 begin
6133 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6134 while Present (Case_Alt) loop
6135 Check_Statement_Sequence (Statements (Case_Alt));
6136 Next_Non_Pragma (Case_Alt);
6137 end loop;
6138 end;
6140 return;
6142 -- Block statement, check its handled sequence of statements
6144 elsif Kind = N_Block_Statement then
6145 declare
6146 Err1 : Boolean;
6148 begin
6149 Check_Returns
6150 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6152 if Err1 then
6153 Err := True;
6154 end if;
6156 return;
6157 end;
6159 -- Loop statement. If there is an iteration scheme, we can definitely
6160 -- fall out of the loop. Similarly if there is an exit statement, we
6161 -- can fall out. In either case we need a following return.
6163 elsif Kind = N_Loop_Statement then
6164 if Present (Iteration_Scheme (Last_Stm))
6165 or else Has_Exit (Entity (Identifier (Last_Stm)))
6166 then
6167 null;
6169 -- A loop with no exit statement or iteration scheme is either
6170 -- an infinite loop, or it has some other exit (raise/return).
6171 -- In either case, no warning is required.
6173 else
6174 return;
6175 end if;
6177 -- Timed entry call, check entry call and delay alternatives
6179 -- Note: in expanded code, the timed entry call has been converted
6180 -- to a set of expanded statements on which the check will work
6181 -- correctly in any case.
6183 elsif Kind = N_Timed_Entry_Call then
6184 declare
6185 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6186 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6188 begin
6189 -- If statement sequence of entry call alternative is missing,
6190 -- then we can definitely fall through, and we post the error
6191 -- message on the entry call alternative itself.
6193 if No (Statements (ECA)) then
6194 Last_Stm := ECA;
6196 -- If statement sequence of delay alternative is missing, then
6197 -- we can definitely fall through, and we post the error
6198 -- message on the delay alternative itself.
6200 -- Note: if both ECA and DCA are missing the return, then we
6201 -- post only one message, should be enough to fix the bugs.
6202 -- If not we will get a message next time on the DCA when the
6203 -- ECA is fixed.
6205 elsif No (Statements (DCA)) then
6206 Last_Stm := DCA;
6208 -- Else check both statement sequences
6210 else
6211 Check_Statement_Sequence (Statements (ECA));
6212 Check_Statement_Sequence (Statements (DCA));
6213 return;
6214 end if;
6215 end;
6217 -- Conditional entry call, check entry call and else part
6219 -- Note: in expanded code, the conditional entry call has been
6220 -- converted to a set of expanded statements on which the check
6221 -- will work correctly in any case.
6223 elsif Kind = N_Conditional_Entry_Call then
6224 declare
6225 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6227 begin
6228 -- If statement sequence of entry call alternative is missing,
6229 -- then we can definitely fall through, and we post the error
6230 -- message on the entry call alternative itself.
6232 if No (Statements (ECA)) then
6233 Last_Stm := ECA;
6235 -- Else check statement sequence and else part
6237 else
6238 Check_Statement_Sequence (Statements (ECA));
6239 Check_Statement_Sequence (Else_Statements (Last_Stm));
6240 return;
6241 end if;
6242 end;
6243 end if;
6245 -- If we fall through, issue appropriate message
6247 if Mode = 'F' then
6249 -- Kill warning if last statement is a raise exception call,
6250 -- or a pragma Assert (False). Note that with assertions enabled,
6251 -- such a pragma has been converted into a raise exception call
6252 -- already, so the Assert_False is for the assertions off case.
6254 if not Raise_Exception_Call and then not Assert_False then
6256 -- In GNATprove mode, it is an error to have a missing return
6258 Error_Msg_Warn := SPARK_Mode /= On;
6260 -- Issue error message or warning
6262 Error_Msg_N
6263 ("RETURN statement missing following this statement<<!",
6264 Last_Stm);
6265 Error_Msg_N
6266 ("\Program_Error ]<<!", Last_Stm);
6267 end if;
6269 -- Note: we set Err even though we have not issued a warning
6270 -- because we still have a case of a missing return. This is
6271 -- an extremely marginal case, probably will never be noticed
6272 -- but we might as well get it right.
6274 Err := True;
6276 -- Otherwise we have the case of a procedure marked No_Return
6278 else
6279 if not Raise_Exception_Call then
6280 if GNATprove_Mode then
6281 Error_Msg_N
6282 ("implied return after this statement "
6283 & "would have raised Program_Error", Last_Stm);
6284 else
6285 Error_Msg_N
6286 ("implied return after this statement "
6287 & "will raise Program_Error??", Last_Stm);
6288 end if;
6290 Error_Msg_Warn := SPARK_Mode /= On;
6291 Error_Msg_NE
6292 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6293 end if;
6295 declare
6296 RE : constant Node_Id :=
6297 Make_Raise_Program_Error (Sloc (Last_Stm),
6298 Reason => PE_Implicit_Return);
6299 begin
6300 Insert_After (Last_Stm, RE);
6301 Analyze (RE);
6302 end;
6303 end if;
6304 end Check_Statement_Sequence;
6306 -- Start of processing for Check_Returns
6308 begin
6309 Err := False;
6310 Check_Statement_Sequence (Statements (HSS));
6312 if Present (Exception_Handlers (HSS)) then
6313 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6314 while Present (Handler) loop
6315 Check_Statement_Sequence (Statements (Handler));
6316 Next_Non_Pragma (Handler);
6317 end loop;
6318 end if;
6319 end Check_Returns;
6321 ----------------------------
6322 -- Check_Subprogram_Order --
6323 ----------------------------
6325 procedure Check_Subprogram_Order (N : Node_Id) is
6327 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6328 -- This is used to check if S1 > S2 in the sense required by this test,
6329 -- for example nameab < namec, but name2 < name10.
6331 -----------------------------
6332 -- Subprogram_Name_Greater --
6333 -----------------------------
6335 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6336 L1, L2 : Positive;
6337 N1, N2 : Natural;
6339 begin
6340 -- Deal with special case where names are identical except for a
6341 -- numerical suffix. These are handled specially, taking the numeric
6342 -- ordering from the suffix into account.
6344 L1 := S1'Last;
6345 while S1 (L1) in '0' .. '9' loop
6346 L1 := L1 - 1;
6347 end loop;
6349 L2 := S2'Last;
6350 while S2 (L2) in '0' .. '9' loop
6351 L2 := L2 - 1;
6352 end loop;
6354 -- If non-numeric parts non-equal, do straight compare
6356 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6357 return S1 > S2;
6359 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6360 -- that a missing suffix is treated as numeric zero in this test.
6362 else
6363 N1 := 0;
6364 while L1 < S1'Last loop
6365 L1 := L1 + 1;
6366 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6367 end loop;
6369 N2 := 0;
6370 while L2 < S2'Last loop
6371 L2 := L2 + 1;
6372 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6373 end loop;
6375 return N1 > N2;
6376 end if;
6377 end Subprogram_Name_Greater;
6379 -- Start of processing for Check_Subprogram_Order
6381 begin
6382 -- Check body in alpha order if this is option
6384 if Style_Check
6385 and then Style_Check_Order_Subprograms
6386 and then Nkind (N) = N_Subprogram_Body
6387 and then Comes_From_Source (N)
6388 and then In_Extended_Main_Source_Unit (N)
6389 then
6390 declare
6391 LSN : String_Ptr
6392 renames Scope_Stack.Table
6393 (Scope_Stack.Last).Last_Subprogram_Name;
6395 Body_Id : constant Entity_Id :=
6396 Defining_Entity (Specification (N));
6398 begin
6399 Get_Decoded_Name_String (Chars (Body_Id));
6401 if LSN /= null then
6402 if Subprogram_Name_Greater
6403 (LSN.all, Name_Buffer (1 .. Name_Len))
6404 then
6405 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6406 end if;
6408 Free (LSN);
6409 end if;
6411 LSN := new String'(Name_Buffer (1 .. Name_Len));
6412 end;
6413 end if;
6414 end Check_Subprogram_Order;
6416 ------------------------------
6417 -- Check_Subtype_Conformant --
6418 ------------------------------
6420 procedure Check_Subtype_Conformant
6421 (New_Id : Entity_Id;
6422 Old_Id : Entity_Id;
6423 Err_Loc : Node_Id := Empty;
6424 Skip_Controlling_Formals : Boolean := False;
6425 Get_Inst : Boolean := False)
6427 Result : Boolean;
6428 pragma Warnings (Off, Result);
6429 begin
6430 Check_Conformance
6431 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6432 Skip_Controlling_Formals => Skip_Controlling_Formals,
6433 Get_Inst => Get_Inst);
6434 end Check_Subtype_Conformant;
6436 ---------------------------
6437 -- Check_Type_Conformant --
6438 ---------------------------
6440 procedure Check_Type_Conformant
6441 (New_Id : Entity_Id;
6442 Old_Id : Entity_Id;
6443 Err_Loc : Node_Id := Empty)
6445 Result : Boolean;
6446 pragma Warnings (Off, Result);
6447 begin
6448 Check_Conformance
6449 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6450 end Check_Type_Conformant;
6452 ---------------------------
6453 -- Can_Override_Operator --
6454 ---------------------------
6456 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6457 Typ : Entity_Id;
6459 begin
6460 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6461 return False;
6463 else
6464 Typ := Base_Type (Etype (First_Formal (Subp)));
6466 -- Check explicitly that the operation is a primitive of the type
6468 return Operator_Matches_Spec (Subp, Subp)
6469 and then not Is_Generic_Type (Typ)
6470 and then Scope (Subp) = Scope (Typ)
6471 and then not Is_Class_Wide_Type (Typ);
6472 end if;
6473 end Can_Override_Operator;
6475 ----------------------
6476 -- Conforming_Types --
6477 ----------------------
6479 function Conforming_Types
6480 (T1 : Entity_Id;
6481 T2 : Entity_Id;
6482 Ctype : Conformance_Type;
6483 Get_Inst : Boolean := False) return Boolean
6485 function Base_Types_Match
6486 (Typ_1 : Entity_Id;
6487 Typ_2 : Entity_Id) return Boolean;
6488 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
6489 -- in different scopes (e.g. parent and child instances), then verify
6490 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
6491 -- the same subtype chain. The whole purpose of this procedure is to
6492 -- prevent spurious ambiguities in an instantiation that may arise if
6493 -- two distinct generic types are instantiated with the same actual.
6495 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
6496 -- An access parameter can designate an incomplete type. If the
6497 -- incomplete type is the limited view of a type from a limited_
6498 -- with_clause, check whether the non-limited view is available.
6499 -- If it is a (non-limited) incomplete type, get the full view.
6501 function Matches_Limited_With_View
6502 (Typ_1 : Entity_Id;
6503 Typ_2 : Entity_Id) return Boolean;
6504 -- Returns True if and only if either Typ_1 denotes a limited view of
6505 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
6506 -- the limited with view of a type is used in a subprogram declaration
6507 -- and the subprogram body is in the scope of a regular with clause for
6508 -- the same unit. In such a case, the two type entities are considered
6509 -- identical for purposes of conformance checking.
6511 ----------------------
6512 -- Base_Types_Match --
6513 ----------------------
6515 function Base_Types_Match
6516 (Typ_1 : Entity_Id;
6517 Typ_2 : Entity_Id) return Boolean
6519 Base_1 : constant Entity_Id := Base_Type (Typ_1);
6520 Base_2 : constant Entity_Id := Base_Type (Typ_2);
6522 begin
6523 if Typ_1 = Typ_2 then
6524 return True;
6526 elsif Base_1 = Base_2 then
6528 -- The following is too permissive. A more precise test should
6529 -- check that the generic actual is an ancestor subtype of the
6530 -- other ???.
6532 -- See code in Find_Corresponding_Spec that applies an additional
6533 -- filter to handle accidental amiguities in instances.
6535 return
6536 not Is_Generic_Actual_Type (Typ_1)
6537 or else not Is_Generic_Actual_Type (Typ_2)
6538 or else Scope (Typ_1) /= Scope (Typ_2);
6540 -- If Typ_2 is a generic actual type it is declared as the subtype of
6541 -- the actual. If that actual is itself a subtype we need to use its
6542 -- own base type to check for compatibility.
6544 elsif Ekind (Base_2) = Ekind (Typ_2)
6545 and then Base_1 = Base_Type (Base_2)
6546 then
6547 return True;
6549 elsif Ekind (Base_1) = Ekind (Typ_1)
6550 and then Base_2 = Base_Type (Base_1)
6551 then
6552 return True;
6554 else
6555 return False;
6556 end if;
6557 end Base_Types_Match;
6559 --------------------------
6560 -- Find_Designated_Type --
6561 --------------------------
6563 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
6564 Desig : Entity_Id;
6566 begin
6567 Desig := Directly_Designated_Type (Typ);
6569 if Ekind (Desig) = E_Incomplete_Type then
6571 -- If regular incomplete type, get full view if available
6573 if Present (Full_View (Desig)) then
6574 Desig := Full_View (Desig);
6576 -- If limited view of a type, get non-limited view if available,
6577 -- and check again for a regular incomplete type.
6579 elsif Present (Non_Limited_View (Desig)) then
6580 Desig := Get_Full_View (Non_Limited_View (Desig));
6581 end if;
6582 end if;
6584 return Desig;
6585 end Find_Designated_Type;
6587 -------------------------------
6588 -- Matches_Limited_With_View --
6589 -------------------------------
6591 function Matches_Limited_With_View
6592 (Typ_1 : Entity_Id;
6593 Typ_2 : Entity_Id) return Boolean
6595 function Is_Matching_Limited_View
6596 (Typ : Entity_Id;
6597 View : Entity_Id) return Boolean;
6598 -- Determine whether non-limited view View denotes type Typ in some
6599 -- conformant fashion.
6601 ------------------------------
6602 -- Is_Matching_Limited_View --
6603 ------------------------------
6605 function Is_Matching_Limited_View
6606 (Typ : Entity_Id;
6607 View : Entity_Id) return Boolean
6609 Root_Typ : Entity_Id;
6610 Root_View : Entity_Id;
6612 begin
6613 -- The non-limited view directly denotes the type
6615 if Typ = View then
6616 return True;
6618 -- The type is a subtype of the non-limited view
6620 elsif Is_Subtype_Of (Typ, View) then
6621 return True;
6623 -- Both the non-limited view and the type denote class-wide types
6625 elsif Is_Class_Wide_Type (Typ)
6626 and then Is_Class_Wide_Type (View)
6627 then
6628 Root_Typ := Root_Type (Typ);
6629 Root_View := Root_Type (View);
6631 if Root_Typ = Root_View then
6632 return True;
6634 -- An incomplete tagged type and its full view may receive two
6635 -- distinct class-wide types when the related package has not
6636 -- been analyzed yet.
6638 -- package Pack is
6639 -- type T is tagged; -- CW_1
6640 -- type T is tagged null record; -- CW_2
6641 -- end Pack;
6643 -- This is because the package lacks any semantic information
6644 -- that may eventually link both views of T. As a consequence,
6645 -- a client of the limited view of Pack will see CW_2 while a
6646 -- client of the non-limited view of Pack will see CW_1.
6648 elsif Is_Incomplete_Type (Root_Typ)
6649 and then Present (Full_View (Root_Typ))
6650 and then Full_View (Root_Typ) = Root_View
6651 then
6652 return True;
6654 elsif Is_Incomplete_Type (Root_View)
6655 and then Present (Full_View (Root_View))
6656 and then Full_View (Root_View) = Root_Typ
6657 then
6658 return True;
6659 end if;
6660 end if;
6662 return False;
6663 end Is_Matching_Limited_View;
6665 -- Start of processing for Matches_Limited_With_View
6667 begin
6668 -- In some cases a type imported through a limited_with clause, and
6669 -- its non-limited view are both visible, for example in an anonymous
6670 -- access-to-class-wide type in a formal, or when building the body
6671 -- for a subprogram renaming after the subprogram has been frozen.
6672 -- In these cases both entities designate the same type. In addition,
6673 -- if one of them is an actual in an instance, it may be a subtype of
6674 -- the non-limited view of the other.
6676 if From_Limited_With (Typ_1)
6677 and then From_Limited_With (Typ_2)
6678 and then Available_View (Typ_1) = Available_View (Typ_2)
6679 then
6680 return True;
6682 elsif From_Limited_With (Typ_1) then
6683 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
6685 elsif From_Limited_With (Typ_2) then
6686 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
6688 else
6689 return False;
6690 end if;
6691 end Matches_Limited_With_View;
6693 -- Local variables
6695 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6697 Type_1 : Entity_Id := T1;
6698 Type_2 : Entity_Id := T2;
6700 -- Start of processing for Conforming_Types
6702 begin
6703 -- The context is an instance association for a formal access-to-
6704 -- subprogram type; the formal parameter types require mapping because
6705 -- they may denote other formal parameters of the generic unit.
6707 if Get_Inst then
6708 Type_1 := Get_Instance_Of (T1);
6709 Type_2 := Get_Instance_Of (T2);
6710 end if;
6712 -- If one of the types is a view of the other introduced by a limited
6713 -- with clause, treat these as conforming for all purposes.
6715 if Matches_Limited_With_View (T1, T2) then
6716 return True;
6718 elsif Base_Types_Match (Type_1, Type_2) then
6719 return Ctype <= Mode_Conformant
6720 or else Subtypes_Statically_Match (Type_1, Type_2);
6722 elsif Is_Incomplete_Or_Private_Type (Type_1)
6723 and then Present (Full_View (Type_1))
6724 and then Base_Types_Match (Full_View (Type_1), Type_2)
6725 then
6726 return Ctype <= Mode_Conformant
6727 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6729 elsif Ekind (Type_2) = E_Incomplete_Type
6730 and then Present (Full_View (Type_2))
6731 and then Base_Types_Match (Type_1, Full_View (Type_2))
6732 then
6733 return Ctype <= Mode_Conformant
6734 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6736 elsif Is_Private_Type (Type_2)
6737 and then In_Instance
6738 and then Present (Full_View (Type_2))
6739 and then Base_Types_Match (Type_1, Full_View (Type_2))
6740 then
6741 return Ctype <= Mode_Conformant
6742 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6744 -- In Ada 2012, incomplete types (including limited views) can appear
6745 -- as actuals in instantiations.
6747 elsif Is_Incomplete_Type (Type_1)
6748 and then Is_Incomplete_Type (Type_2)
6749 and then (Used_As_Generic_Actual (Type_1)
6750 or else Used_As_Generic_Actual (Type_2))
6751 then
6752 return True;
6753 end if;
6755 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6756 -- treated recursively because they carry a signature. As far as
6757 -- conformance is concerned, convention plays no role, and either
6758 -- or both could be access to protected subprograms.
6760 Are_Anonymous_Access_To_Subprogram_Types :=
6761 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6762 E_Anonymous_Access_Protected_Subprogram_Type)
6763 and then
6764 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6765 E_Anonymous_Access_Protected_Subprogram_Type);
6767 -- Test anonymous access type case. For this case, static subtype
6768 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6769 -- the base types because we may have built internal subtype entities
6770 -- to handle null-excluding types (see Process_Formals).
6772 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6773 and then
6774 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6776 -- Ada 2005 (AI-254)
6778 or else Are_Anonymous_Access_To_Subprogram_Types
6779 then
6780 declare
6781 Desig_1 : Entity_Id;
6782 Desig_2 : Entity_Id;
6784 begin
6785 -- In Ada 2005, access constant indicators must match for
6786 -- subtype conformance.
6788 if Ada_Version >= Ada_2005
6789 and then Ctype >= Subtype_Conformant
6790 and then
6791 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6792 then
6793 return False;
6794 end if;
6796 Desig_1 := Find_Designated_Type (Type_1);
6797 Desig_2 := Find_Designated_Type (Type_2);
6799 -- If the context is an instance association for a formal
6800 -- access-to-subprogram type; formal access parameter designated
6801 -- types require mapping because they may denote other formal
6802 -- parameters of the generic unit.
6804 if Get_Inst then
6805 Desig_1 := Get_Instance_Of (Desig_1);
6806 Desig_2 := Get_Instance_Of (Desig_2);
6807 end if;
6809 -- It is possible for a Class_Wide_Type to be introduced for an
6810 -- incomplete type, in which case there is a separate class_ wide
6811 -- type for the full view. The types conform if their Etypes
6812 -- conform, i.e. one may be the full view of the other. This can
6813 -- only happen in the context of an access parameter, other uses
6814 -- of an incomplete Class_Wide_Type are illegal.
6816 if Is_Class_Wide_Type (Desig_1)
6817 and then
6818 Is_Class_Wide_Type (Desig_2)
6819 then
6820 return
6821 Conforming_Types
6822 (Etype (Base_Type (Desig_1)),
6823 Etype (Base_Type (Desig_2)), Ctype);
6825 elsif Are_Anonymous_Access_To_Subprogram_Types then
6826 if Ada_Version < Ada_2005 then
6827 return Ctype = Type_Conformant
6828 or else
6829 Subtypes_Statically_Match (Desig_1, Desig_2);
6831 -- We must check the conformance of the signatures themselves
6833 else
6834 declare
6835 Conformant : Boolean;
6836 begin
6837 Check_Conformance
6838 (Desig_1, Desig_2, Ctype, False, Conformant);
6839 return Conformant;
6840 end;
6841 end if;
6843 -- A limited view of an actual matches the corresponding
6844 -- incomplete formal.
6846 elsif Ekind (Desig_2) = E_Incomplete_Subtype
6847 and then From_Limited_With (Desig_2)
6848 and then Used_As_Generic_Actual (Etype (Desig_2))
6849 then
6850 return True;
6852 else
6853 return Base_Type (Desig_1) = Base_Type (Desig_2)
6854 and then (Ctype = Type_Conformant
6855 or else
6856 Subtypes_Statically_Match (Desig_1, Desig_2));
6857 end if;
6858 end;
6860 -- Otherwise definitely no match
6862 else
6863 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6864 and then Is_Access_Type (Type_2))
6865 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6866 and then Is_Access_Type (Type_1)))
6867 and then
6868 Conforming_Types
6869 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6870 then
6871 May_Hide_Profile := True;
6872 end if;
6874 return False;
6875 end if;
6876 end Conforming_Types;
6878 --------------------------
6879 -- Create_Extra_Formals --
6880 --------------------------
6882 procedure Create_Extra_Formals (E : Entity_Id) is
6883 Formal : Entity_Id;
6884 First_Extra : Entity_Id := Empty;
6885 Last_Extra : Entity_Id;
6886 Formal_Type : Entity_Id;
6887 P_Formal : Entity_Id := Empty;
6889 function Add_Extra_Formal
6890 (Assoc_Entity : Entity_Id;
6891 Typ : Entity_Id;
6892 Scope : Entity_Id;
6893 Suffix : String) return Entity_Id;
6894 -- Add an extra formal to the current list of formals and extra formals.
6895 -- The extra formal is added to the end of the list of extra formals,
6896 -- and also returned as the result. These formals are always of mode IN.
6897 -- The new formal has the type Typ, is declared in Scope, and its name
6898 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6899 -- The following suffixes are currently used. They should not be changed
6900 -- without coordinating with CodePeer, which makes use of these to
6901 -- provide better messages.
6903 -- O denotes the Constrained bit.
6904 -- L denotes the accessibility level.
6905 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6906 -- the full list in exp_ch6.BIP_Formal_Kind.
6908 ----------------------
6909 -- Add_Extra_Formal --
6910 ----------------------
6912 function Add_Extra_Formal
6913 (Assoc_Entity : Entity_Id;
6914 Typ : Entity_Id;
6915 Scope : Entity_Id;
6916 Suffix : String) return Entity_Id
6918 EF : constant Entity_Id :=
6919 Make_Defining_Identifier (Sloc (Assoc_Entity),
6920 Chars => New_External_Name (Chars (Assoc_Entity),
6921 Suffix => Suffix));
6923 begin
6924 -- A little optimization. Never generate an extra formal for the
6925 -- _init operand of an initialization procedure, since it could
6926 -- never be used.
6928 if Chars (Formal) = Name_uInit then
6929 return Empty;
6930 end if;
6932 Set_Ekind (EF, E_In_Parameter);
6933 Set_Actual_Subtype (EF, Typ);
6934 Set_Etype (EF, Typ);
6935 Set_Scope (EF, Scope);
6936 Set_Mechanism (EF, Default_Mechanism);
6937 Set_Formal_Validity (EF);
6939 if No (First_Extra) then
6940 First_Extra := EF;
6941 Set_Extra_Formals (Scope, First_Extra);
6942 end if;
6944 if Present (Last_Extra) then
6945 Set_Extra_Formal (Last_Extra, EF);
6946 end if;
6948 Last_Extra := EF;
6950 return EF;
6951 end Add_Extra_Formal;
6953 -- Start of processing for Create_Extra_Formals
6955 begin
6956 -- We never generate extra formals if expansion is not active because we
6957 -- don't need them unless we are generating code.
6959 if not Expander_Active then
6960 return;
6961 end if;
6963 -- No need to generate extra formals in interface thunks whose target
6964 -- primitive has no extra formals.
6966 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6967 return;
6968 end if;
6970 -- If this is a derived subprogram then the subtypes of the parent
6971 -- subprogram's formal parameters will be used to determine the need
6972 -- for extra formals.
6974 if Is_Overloadable (E) and then Present (Alias (E)) then
6975 P_Formal := First_Formal (Alias (E));
6976 end if;
6978 Last_Extra := Empty;
6979 Formal := First_Formal (E);
6980 while Present (Formal) loop
6981 Last_Extra := Formal;
6982 Next_Formal (Formal);
6983 end loop;
6985 -- If Extra_Formals were already created, don't do it again. This
6986 -- situation may arise for subprogram types created as part of
6987 -- dispatching calls (see Expand_Dispatching_Call)
6989 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6990 return;
6991 end if;
6993 -- If the subprogram is a predefined dispatching subprogram then don't
6994 -- generate any extra constrained or accessibility level formals. In
6995 -- general we suppress these for internal subprograms (by not calling
6996 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6997 -- generated stream attributes do get passed through because extra
6998 -- build-in-place formals are needed in some cases (limited 'Input).
7000 if Is_Predefined_Internal_Operation (E) then
7001 goto Test_For_Func_Result_Extras;
7002 end if;
7004 Formal := First_Formal (E);
7005 while Present (Formal) loop
7007 -- Create extra formal for supporting the attribute 'Constrained.
7008 -- The case of a private type view without discriminants also
7009 -- requires the extra formal if the underlying type has defaulted
7010 -- discriminants.
7012 if Ekind (Formal) /= E_In_Parameter then
7013 if Present (P_Formal) then
7014 Formal_Type := Etype (P_Formal);
7015 else
7016 Formal_Type := Etype (Formal);
7017 end if;
7019 -- Do not produce extra formals for Unchecked_Union parameters.
7020 -- Jump directly to the end of the loop.
7022 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7023 goto Skip_Extra_Formal_Generation;
7024 end if;
7026 if not Has_Discriminants (Formal_Type)
7027 and then Ekind (Formal_Type) in Private_Kind
7028 and then Present (Underlying_Type (Formal_Type))
7029 then
7030 Formal_Type := Underlying_Type (Formal_Type);
7031 end if;
7033 -- Suppress the extra formal if formal's subtype is constrained or
7034 -- indefinite, or we're compiling for Ada 2012 and the underlying
7035 -- type is tagged and limited. In Ada 2012, a limited tagged type
7036 -- can have defaulted discriminants, but 'Constrained is required
7037 -- to return True, so the formal is never needed (see AI05-0214).
7038 -- Note that this ensures consistency of calling sequences for
7039 -- dispatching operations when some types in a class have defaults
7040 -- on discriminants and others do not (and requiring the extra
7041 -- formal would introduce distributed overhead).
7043 -- If the type does not have a completion yet, treat as prior to
7044 -- Ada 2012 for consistency.
7046 if Has_Discriminants (Formal_Type)
7047 and then not Is_Constrained (Formal_Type)
7048 and then Is_Definite_Subtype (Formal_Type)
7049 and then (Ada_Version < Ada_2012
7050 or else No (Underlying_Type (Formal_Type))
7051 or else not
7052 (Is_Limited_Type (Formal_Type)
7053 and then
7054 (Is_Tagged_Type
7055 (Underlying_Type (Formal_Type)))))
7056 then
7057 Set_Extra_Constrained
7058 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7059 end if;
7060 end if;
7062 -- Create extra formal for supporting accessibility checking. This
7063 -- is done for both anonymous access formals and formals of named
7064 -- access types that are marked as controlling formals. The latter
7065 -- case can occur when Expand_Dispatching_Call creates a subprogram
7066 -- type and substitutes the types of access-to-class-wide actuals
7067 -- for the anonymous access-to-specific-type of controlling formals.
7068 -- Base_Type is applied because in cases where there is a null
7069 -- exclusion the formal may have an access subtype.
7071 -- This is suppressed if we specifically suppress accessibility
7072 -- checks at the package level for either the subprogram, or the
7073 -- package in which it resides. However, we do not suppress it
7074 -- simply if the scope has accessibility checks suppressed, since
7075 -- this could cause trouble when clients are compiled with a
7076 -- different suppression setting. The explicit checks at the
7077 -- package level are safe from this point of view.
7079 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7080 or else (Is_Controlling_Formal (Formal)
7081 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7082 and then not
7083 (Explicit_Suppress (E, Accessibility_Check)
7084 or else
7085 Explicit_Suppress (Scope (E), Accessibility_Check))
7086 and then
7087 (No (P_Formal)
7088 or else Present (Extra_Accessibility (P_Formal)))
7089 then
7090 Set_Extra_Accessibility
7091 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7092 end if;
7094 -- This label is required when skipping extra formal generation for
7095 -- Unchecked_Union parameters.
7097 <<Skip_Extra_Formal_Generation>>
7099 if Present (P_Formal) then
7100 Next_Formal (P_Formal);
7101 end if;
7103 Next_Formal (Formal);
7104 end loop;
7106 <<Test_For_Func_Result_Extras>>
7108 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7109 -- function call is ... determined by the point of call ...".
7111 if Needs_Result_Accessibility_Level (E) then
7112 Set_Extra_Accessibility_Of_Result
7113 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7114 end if;
7116 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7117 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7119 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7120 declare
7121 Result_Subt : constant Entity_Id := Etype (E);
7122 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7123 Formal_Typ : Entity_Id;
7125 Discard : Entity_Id;
7126 pragma Warnings (Off, Discard);
7128 begin
7129 -- In the case of functions with unconstrained result subtypes,
7130 -- add a 4-state formal indicating whether the return object is
7131 -- allocated by the caller (1), or should be allocated by the
7132 -- callee on the secondary stack (2), in the global heap (3), or
7133 -- in a user-defined storage pool (4). For the moment we just use
7134 -- Natural for the type of this formal. Note that this formal
7135 -- isn't usually needed in the case where the result subtype is
7136 -- constrained, but it is needed when the function has a tagged
7137 -- result, because generally such functions can be called in a
7138 -- dispatching context and such calls must be handled like calls
7139 -- to a class-wide function.
7141 if Needs_BIP_Alloc_Form (E) then
7142 Discard :=
7143 Add_Extra_Formal
7144 (E, Standard_Natural,
7145 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7147 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7148 -- use a user-defined pool. This formal is not added on
7149 -- ZFP as those targets do not support pools.
7151 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7152 Discard :=
7153 Add_Extra_Formal
7154 (E, RTE (RE_Root_Storage_Pool_Ptr),
7155 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7156 end if;
7157 end if;
7159 -- In the case of functions whose result type needs finalization,
7160 -- add an extra formal which represents the finalization master.
7162 if Needs_BIP_Finalization_Master (E) then
7163 Discard :=
7164 Add_Extra_Formal
7165 (E, RTE (RE_Finalization_Master_Ptr),
7166 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7167 end if;
7169 -- When the result type contains tasks, add two extra formals: the
7170 -- master of the tasks to be created, and the caller's activation
7171 -- chain.
7173 if Has_Task (Full_Subt) then
7174 Discard :=
7175 Add_Extra_Formal
7176 (E, RTE (RE_Master_Id),
7177 E, BIP_Formal_Suffix (BIP_Task_Master));
7178 Discard :=
7179 Add_Extra_Formal
7180 (E, RTE (RE_Activation_Chain_Access),
7181 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7182 end if;
7184 -- All build-in-place functions get an extra formal that will be
7185 -- passed the address of the return object within the caller.
7187 Formal_Typ :=
7188 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7190 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7191 Set_Etype (Formal_Typ, Formal_Typ);
7192 Set_Depends_On_Private
7193 (Formal_Typ, Has_Private_Component (Formal_Typ));
7194 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7195 Set_Is_Access_Constant (Formal_Typ, False);
7197 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7198 -- the designated type comes from the limited view (for back-end
7199 -- purposes).
7201 Set_From_Limited_With
7202 (Formal_Typ, From_Limited_With (Result_Subt));
7204 Layout_Type (Formal_Typ);
7206 Discard :=
7207 Add_Extra_Formal
7208 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7209 end;
7210 end if;
7211 end Create_Extra_Formals;
7213 -----------------------------
7214 -- Enter_Overloaded_Entity --
7215 -----------------------------
7217 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7218 function Matches_Predefined_Op return Boolean;
7219 -- This returns an approximation of whether S matches a predefined
7220 -- operator, based on the operator symbol, and the parameter and result
7221 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
7223 ---------------------------
7224 -- Matches_Predefined_Op --
7225 ---------------------------
7227 function Matches_Predefined_Op return Boolean is
7228 Formal_1 : constant Entity_Id := First_Formal (S);
7229 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
7230 Op : constant Name_Id := Chars (S);
7231 Result_Type : constant Entity_Id := Base_Type (Etype (S));
7232 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
7234 begin
7235 -- Binary operator
7237 if Present (Formal_2) then
7238 declare
7239 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
7241 begin
7242 -- All but "&" and "**" have same-types parameters
7244 case Op is
7245 when Name_Op_Concat |
7246 Name_Op_Expon =>
7247 null;
7249 when others =>
7250 if Type_1 /= Type_2 then
7251 return False;
7252 end if;
7253 end case;
7255 -- Check parameter and result types
7257 case Op is
7258 when Name_Op_And |
7259 Name_Op_Or |
7260 Name_Op_Xor =>
7261 return
7262 Is_Boolean_Type (Result_Type)
7263 and then Result_Type = Type_1;
7265 when Name_Op_Mod |
7266 Name_Op_Rem =>
7267 return
7268 Is_Integer_Type (Result_Type)
7269 and then Result_Type = Type_1;
7271 when Name_Op_Add |
7272 Name_Op_Divide |
7273 Name_Op_Multiply |
7274 Name_Op_Subtract =>
7275 return
7276 Is_Numeric_Type (Result_Type)
7277 and then Result_Type = Type_1;
7279 when Name_Op_Eq |
7280 Name_Op_Ne =>
7281 return
7282 Is_Boolean_Type (Result_Type)
7283 and then not Is_Limited_Type (Type_1);
7285 when Name_Op_Ge |
7286 Name_Op_Gt |
7287 Name_Op_Le |
7288 Name_Op_Lt =>
7289 return
7290 Is_Boolean_Type (Result_Type)
7291 and then (Is_Array_Type (Type_1)
7292 or else Is_Scalar_Type (Type_1));
7294 when Name_Op_Concat =>
7295 return Is_Array_Type (Result_Type);
7297 when Name_Op_Expon =>
7298 return
7299 (Is_Integer_Type (Result_Type)
7300 or else Is_Floating_Point_Type (Result_Type))
7301 and then Result_Type = Type_1
7302 and then Type_2 = Standard_Integer;
7304 when others =>
7305 raise Program_Error;
7306 end case;
7307 end;
7309 -- Unary operator
7311 else
7312 case Op is
7313 when Name_Op_Abs |
7314 Name_Op_Add |
7315 Name_Op_Subtract =>
7316 return
7317 Is_Numeric_Type (Result_Type)
7318 and then Result_Type = Type_1;
7320 when Name_Op_Not =>
7321 return
7322 Is_Boolean_Type (Result_Type)
7323 and then Result_Type = Type_1;
7325 when others =>
7326 raise Program_Error;
7327 end case;
7328 end if;
7329 end Matches_Predefined_Op;
7331 -- Local variables
7333 E : Entity_Id := Current_Entity_In_Scope (S);
7334 C_E : Entity_Id := Current_Entity (S);
7336 -- Start of processing for Enter_Overloaded_Entity
7338 begin
7339 if Present (E) then
7340 Set_Has_Homonym (E);
7341 Set_Has_Homonym (S);
7342 end if;
7344 Set_Is_Immediately_Visible (S);
7345 Set_Scope (S, Current_Scope);
7347 -- Chain new entity if front of homonym in current scope, so that
7348 -- homonyms are contiguous.
7350 if Present (E) and then E /= C_E then
7351 while Homonym (C_E) /= E loop
7352 C_E := Homonym (C_E);
7353 end loop;
7355 Set_Homonym (C_E, S);
7357 else
7358 E := C_E;
7359 Set_Current_Entity (S);
7360 end if;
7362 Set_Homonym (S, E);
7364 if Is_Inherited_Operation (S) then
7365 Append_Inherited_Subprogram (S);
7366 else
7367 Append_Entity (S, Current_Scope);
7368 end if;
7370 Set_Public_Status (S);
7372 if Debug_Flag_E then
7373 Write_Str ("New overloaded entity chain: ");
7374 Write_Name (Chars (S));
7376 E := S;
7377 while Present (E) loop
7378 Write_Str (" "); Write_Int (Int (E));
7379 E := Homonym (E);
7380 end loop;
7382 Write_Eol;
7383 end if;
7385 -- Generate warning for hiding
7387 if Warn_On_Hiding
7388 and then Comes_From_Source (S)
7389 and then In_Extended_Main_Source_Unit (S)
7390 then
7391 E := S;
7392 loop
7393 E := Homonym (E);
7394 exit when No (E);
7396 -- Warn unless genuine overloading. Do not emit warning on
7397 -- hiding predefined operators in Standard (these are either an
7398 -- (artifact of our implicit declarations, or simple noise) but
7399 -- keep warning on a operator defined on a local subtype, because
7400 -- of the real danger that different operators may be applied in
7401 -- various parts of the program.
7403 -- Note that if E and S have the same scope, there is never any
7404 -- hiding. Either the two conflict, and the program is illegal,
7405 -- or S is overriding an implicit inherited subprogram.
7407 if Scope (E) /= Scope (S)
7408 and then (not Is_Overloadable (E)
7409 or else Subtype_Conformant (E, S))
7410 and then (Is_Immediately_Visible (E)
7411 or else Is_Potentially_Use_Visible (S))
7412 then
7413 if Scope (E) = Standard_Standard then
7414 if Nkind (S) = N_Defining_Operator_Symbol
7415 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
7416 Scope (S)
7417 and then Matches_Predefined_Op
7418 then
7419 Error_Msg_N
7420 ("declaration of & hides predefined operator?h?", S);
7421 end if;
7423 -- E not immediately within Standard
7425 else
7426 Error_Msg_Sloc := Sloc (E);
7427 Error_Msg_N ("declaration of & hides one #?h?", S);
7428 end if;
7429 end if;
7430 end loop;
7431 end if;
7432 end Enter_Overloaded_Entity;
7434 -----------------------------
7435 -- Check_Untagged_Equality --
7436 -----------------------------
7438 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7439 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7440 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7441 Obj_Decl : Node_Id;
7443 begin
7444 -- This check applies only if we have a subprogram declaration with an
7445 -- untagged record type.
7447 if Nkind (Decl) /= N_Subprogram_Declaration
7448 or else not Is_Record_Type (Typ)
7449 or else Is_Tagged_Type (Typ)
7450 then
7451 return;
7452 end if;
7454 -- In Ada 2012 case, we will output errors or warnings depending on
7455 -- the setting of debug flag -gnatd.E.
7457 if Ada_Version >= Ada_2012 then
7458 Error_Msg_Warn := Debug_Flag_Dot_EE;
7460 -- In earlier versions of Ada, nothing to do unless we are warning on
7461 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7463 else
7464 if not Warn_On_Ada_2012_Compatibility then
7465 return;
7466 end if;
7467 end if;
7469 -- Cases where the type has already been frozen
7471 if Is_Frozen (Typ) then
7473 -- If the type is not declared in a package, or if we are in the body
7474 -- of the package or in some other scope, the new operation is not
7475 -- primitive, and therefore legal, though suspicious. Should we
7476 -- generate a warning in this case ???
7478 if Ekind (Scope (Typ)) /= E_Package
7479 or else Scope (Typ) /= Current_Scope
7480 then
7481 return;
7483 -- If the type is a generic actual (sub)type, the operation is not
7484 -- primitive either because the base type is declared elsewhere.
7486 elsif Is_Generic_Actual_Type (Typ) then
7487 return;
7489 -- Here we have a definite error of declaration after freezing
7491 else
7492 if Ada_Version >= Ada_2012 then
7493 Error_Msg_NE
7494 ("equality operator must be declared before type & is "
7495 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7497 -- In Ada 2012 mode with error turned to warning, output one
7498 -- more warning to warn that the equality operation may not
7499 -- compose. This is the consequence of ignoring the error.
7501 if Error_Msg_Warn then
7502 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7503 end if;
7505 else
7506 Error_Msg_NE
7507 ("equality operator must be declared before type& is "
7508 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7509 end if;
7511 -- If we are in the package body, we could just move the
7512 -- declaration to the package spec, so add a message saying that.
7514 if In_Package_Body (Scope (Typ)) then
7515 if Ada_Version >= Ada_2012 then
7516 Error_Msg_N
7517 ("\move declaration to package spec<<", Eq_Op);
7518 else
7519 Error_Msg_N
7520 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7521 end if;
7523 -- Otherwise try to find the freezing point
7525 else
7526 Obj_Decl := Next (Parent (Typ));
7527 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7528 if Nkind (Obj_Decl) = N_Object_Declaration
7529 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7530 then
7531 -- Freezing point, output warnings
7533 if Ada_Version >= Ada_2012 then
7534 Error_Msg_NE
7535 ("type& is frozen by declaration??", Obj_Decl, Typ);
7536 Error_Msg_N
7537 ("\an equality operator cannot be declared after "
7538 & "this point??",
7539 Obj_Decl);
7540 else
7541 Error_Msg_NE
7542 ("type& is frozen by declaration (Ada 2012)?y?",
7543 Obj_Decl, Typ);
7544 Error_Msg_N
7545 ("\an equality operator cannot be declared after "
7546 & "this point (Ada 2012)?y?",
7547 Obj_Decl);
7548 end if;
7550 exit;
7551 end if;
7553 Next (Obj_Decl);
7554 end loop;
7555 end if;
7556 end if;
7558 -- Here if type is not frozen yet. It is illegal to have a primitive
7559 -- equality declared in the private part if the type is visible.
7561 elsif not In_Same_List (Parent (Typ), Decl)
7562 and then not Is_Limited_Type (Typ)
7563 then
7564 -- Shouldn't we give an RM reference here???
7566 if Ada_Version >= Ada_2012 then
7567 Error_Msg_N
7568 ("equality operator appears too late<<", Eq_Op);
7569 else
7570 Error_Msg_N
7571 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7572 end if;
7574 -- No error detected
7576 else
7577 return;
7578 end if;
7579 end Check_Untagged_Equality;
7581 -----------------------------
7582 -- Find_Corresponding_Spec --
7583 -----------------------------
7585 function Find_Corresponding_Spec
7586 (N : Node_Id;
7587 Post_Error : Boolean := True) return Entity_Id
7589 Spec : constant Node_Id := Specification (N);
7590 Designator : constant Entity_Id := Defining_Entity (Spec);
7592 E : Entity_Id;
7594 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7595 -- Even if fully conformant, a body may depend on a generic actual when
7596 -- the spec does not, or vice versa, in which case they were distinct
7597 -- entities in the generic.
7599 -------------------------------
7600 -- Different_Generic_Profile --
7601 -------------------------------
7603 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7604 F1, F2 : Entity_Id;
7606 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7607 -- Check that the types of corresponding formals have the same
7608 -- generic actual if any. We have to account for subtypes of a
7609 -- generic formal, declared between a spec and a body, which may
7610 -- appear distinct in an instance but matched in the generic, and
7611 -- the subtype may be used either in the spec or the body of the
7612 -- subprogram being checked.
7614 -------------------------
7615 -- Same_Generic_Actual --
7616 -------------------------
7618 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7620 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7621 -- Predicate to check whether S1 is a subtype of S2 in the source
7622 -- of the instance.
7624 -------------------------
7625 -- Is_Declared_Subtype --
7626 -------------------------
7628 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7629 begin
7630 return Comes_From_Source (Parent (S1))
7631 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7632 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7633 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7634 end Is_Declared_Subtype;
7636 -- Start of processing for Same_Generic_Actual
7638 begin
7639 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7640 or else Is_Declared_Subtype (T1, T2)
7641 or else Is_Declared_Subtype (T2, T1);
7642 end Same_Generic_Actual;
7644 -- Start of processing for Different_Generic_Profile
7646 begin
7647 if not In_Instance then
7648 return False;
7650 elsif Ekind (E) = E_Function
7651 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7652 then
7653 return True;
7654 end if;
7656 F1 := First_Formal (Designator);
7657 F2 := First_Formal (E);
7658 while Present (F1) loop
7659 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7660 return True;
7661 end if;
7663 Next_Formal (F1);
7664 Next_Formal (F2);
7665 end loop;
7667 return False;
7668 end Different_Generic_Profile;
7670 -- Start of processing for Find_Corresponding_Spec
7672 begin
7673 E := Current_Entity (Designator);
7674 while Present (E) loop
7676 -- We are looking for a matching spec. It must have the same scope,
7677 -- and the same name, and either be type conformant, or be the case
7678 -- of a library procedure spec and its body (which belong to one
7679 -- another regardless of whether they are type conformant or not).
7681 if Scope (E) = Current_Scope then
7682 if Current_Scope = Standard_Standard
7683 or else (Ekind (E) = Ekind (Designator)
7684 and then Type_Conformant (E, Designator))
7685 then
7686 -- Within an instantiation, we know that spec and body are
7687 -- subtype conformant, because they were subtype conformant in
7688 -- the generic. We choose the subtype-conformant entity here as
7689 -- well, to resolve spurious ambiguities in the instance that
7690 -- were not present in the generic (i.e. when two different
7691 -- types are given the same actual). If we are looking for a
7692 -- spec to match a body, full conformance is expected.
7694 if In_Instance then
7696 -- Inherit the convention and "ghostness" of the matching
7697 -- spec to ensure proper full and subtype conformance.
7699 Set_Convention (Designator, Convention (E));
7701 if Is_Ghost_Entity (E) then
7702 Set_Is_Ghost_Entity (Designator);
7703 end if;
7705 -- Skip past subprogram bodies and subprogram renamings that
7706 -- may appear to have a matching spec, but that aren't fully
7707 -- conformant with it. That can occur in cases where an
7708 -- actual type causes unrelated homographs in the instance.
7710 if Nkind_In (N, N_Subprogram_Body,
7711 N_Subprogram_Renaming_Declaration)
7712 and then Present (Homonym (E))
7713 and then not Fully_Conformant (Designator, E)
7714 then
7715 goto Next_Entity;
7717 elsif not Subtype_Conformant (Designator, E) then
7718 goto Next_Entity;
7720 elsif Different_Generic_Profile (E) then
7721 goto Next_Entity;
7722 end if;
7723 end if;
7725 -- Ada 2012 (AI05-0165): For internally generated bodies of
7726 -- null procedures locate the internally generated spec. We
7727 -- enforce mode conformance since a tagged type may inherit
7728 -- from interfaces several null primitives which differ only
7729 -- in the mode of the formals.
7731 if not (Comes_From_Source (E))
7732 and then Is_Null_Procedure (E)
7733 and then not Mode_Conformant (Designator, E)
7734 then
7735 null;
7737 -- For null procedures coming from source that are completions,
7738 -- analysis of the generated body will establish the link.
7740 elsif Comes_From_Source (E)
7741 and then Nkind (Spec) = N_Procedure_Specification
7742 and then Null_Present (Spec)
7743 then
7744 return E;
7746 -- Expression functions can be completions, but cannot be
7747 -- completed by an explicit body.
7749 elsif Comes_From_Source (E)
7750 and then Comes_From_Source (N)
7751 and then Nkind (N) = N_Subprogram_Body
7752 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
7753 N_Expression_Function
7754 then
7755 Error_Msg_Sloc := Sloc (E);
7756 Error_Msg_N ("body conflicts with expression function#", N);
7757 return Empty;
7759 elsif not Has_Completion (E) then
7760 if Nkind (N) /= N_Subprogram_Body_Stub then
7761 Set_Corresponding_Spec (N, E);
7762 end if;
7764 Set_Has_Completion (E);
7765 return E;
7767 elsif Nkind (Parent (N)) = N_Subunit then
7769 -- If this is the proper body of a subunit, the completion
7770 -- flag is set when analyzing the stub.
7772 return E;
7774 -- If E is an internal function with a controlling result that
7775 -- was created for an operation inherited by a null extension,
7776 -- it may be overridden by a body without a previous spec (one
7777 -- more reason why these should be shunned). In that case we
7778 -- remove the generated body if present, because the current
7779 -- one is the explicit overriding.
7781 elsif Ekind (E) = E_Function
7782 and then Ada_Version >= Ada_2005
7783 and then not Comes_From_Source (E)
7784 and then Has_Controlling_Result (E)
7785 and then Is_Null_Extension (Etype (E))
7786 and then Comes_From_Source (Spec)
7787 then
7788 Set_Has_Completion (E, False);
7790 if Expander_Active
7791 and then Nkind (Parent (E)) = N_Function_Specification
7792 then
7793 Remove
7794 (Unit_Declaration_Node
7795 (Corresponding_Body (Unit_Declaration_Node (E))));
7797 return E;
7799 -- If expansion is disabled, or if the wrapper function has
7800 -- not been generated yet, this a late body overriding an
7801 -- inherited operation, or it is an overriding by some other
7802 -- declaration before the controlling result is frozen. In
7803 -- either case this is a declaration of a new entity.
7805 else
7806 return Empty;
7807 end if;
7809 -- If the body already exists, then this is an error unless
7810 -- the previous declaration is the implicit declaration of a
7811 -- derived subprogram. It is also legal for an instance to
7812 -- contain type conformant overloadable declarations (but the
7813 -- generic declaration may not), per 8.3(26/2).
7815 elsif No (Alias (E))
7816 and then not Is_Intrinsic_Subprogram (E)
7817 and then not In_Instance
7818 and then Post_Error
7819 then
7820 Error_Msg_Sloc := Sloc (E);
7822 if Is_Imported (E) then
7823 Error_Msg_NE
7824 ("body not allowed for imported subprogram & declared#",
7825 N, E);
7826 else
7827 Error_Msg_NE ("duplicate body for & declared#", N, E);
7828 end if;
7829 end if;
7831 -- Child units cannot be overloaded, so a conformance mismatch
7832 -- between body and a previous spec is an error.
7834 elsif Is_Child_Unit (E)
7835 and then
7836 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7837 and then
7838 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7839 N_Compilation_Unit
7840 and then Post_Error
7841 then
7842 Error_Msg_N
7843 ("body of child unit does not match previous declaration", N);
7844 end if;
7845 end if;
7847 <<Next_Entity>>
7848 E := Homonym (E);
7849 end loop;
7851 -- On exit, we know that no previous declaration of subprogram exists
7853 return Empty;
7854 end Find_Corresponding_Spec;
7856 ----------------------
7857 -- Fully_Conformant --
7858 ----------------------
7860 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7861 Result : Boolean;
7862 begin
7863 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7864 return Result;
7865 end Fully_Conformant;
7867 ----------------------------------
7868 -- Fully_Conformant_Expressions --
7869 ----------------------------------
7871 function Fully_Conformant_Expressions
7872 (Given_E1 : Node_Id;
7873 Given_E2 : Node_Id) return Boolean
7875 E1 : constant Node_Id := Original_Node (Given_E1);
7876 E2 : constant Node_Id := Original_Node (Given_E2);
7877 -- We always test conformance on original nodes, since it is possible
7878 -- for analysis and/or expansion to make things look as though they
7879 -- conform when they do not, e.g. by converting 1+2 into 3.
7881 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7882 renames Fully_Conformant_Expressions;
7884 function FCL (L1, L2 : List_Id) return Boolean;
7885 -- Compare elements of two lists for conformance. Elements have to be
7886 -- conformant, and actuals inserted as default parameters do not match
7887 -- explicit actuals with the same value.
7889 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7890 -- Compare an operator node with a function call
7892 ---------
7893 -- FCL --
7894 ---------
7896 function FCL (L1, L2 : List_Id) return Boolean is
7897 N1, N2 : Node_Id;
7899 begin
7900 if L1 = No_List then
7901 N1 := Empty;
7902 else
7903 N1 := First (L1);
7904 end if;
7906 if L2 = No_List then
7907 N2 := Empty;
7908 else
7909 N2 := First (L2);
7910 end if;
7912 -- Compare two lists, skipping rewrite insertions (we want to compare
7913 -- the original trees, not the expanded versions).
7915 loop
7916 if Is_Rewrite_Insertion (N1) then
7917 Next (N1);
7918 elsif Is_Rewrite_Insertion (N2) then
7919 Next (N2);
7920 elsif No (N1) then
7921 return No (N2);
7922 elsif No (N2) then
7923 return False;
7924 elsif not FCE (N1, N2) then
7925 return False;
7926 else
7927 Next (N1);
7928 Next (N2);
7929 end if;
7930 end loop;
7931 end FCL;
7933 ---------
7934 -- FCO --
7935 ---------
7937 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7938 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7939 Act : Node_Id;
7941 begin
7942 if No (Actuals)
7943 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7944 then
7945 return False;
7947 else
7948 Act := First (Actuals);
7950 if Nkind (Op_Node) in N_Binary_Op then
7951 if not FCE (Left_Opnd (Op_Node), Act) then
7952 return False;
7953 end if;
7955 Next (Act);
7956 end if;
7958 return Present (Act)
7959 and then FCE (Right_Opnd (Op_Node), Act)
7960 and then No (Next (Act));
7961 end if;
7962 end FCO;
7964 -- Start of processing for Fully_Conformant_Expressions
7966 begin
7967 -- Non-conformant if paren count does not match. Note: if some idiot
7968 -- complains that we don't do this right for more than 3 levels of
7969 -- parentheses, they will be treated with the respect they deserve.
7971 if Paren_Count (E1) /= Paren_Count (E2) then
7972 return False;
7974 -- If same entities are referenced, then they are conformant even if
7975 -- they have different forms (RM 8.3.1(19-20)).
7977 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7978 if Present (Entity (E1)) then
7979 return Entity (E1) = Entity (E2)
7980 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7981 and then Ekind (Entity (E1)) = E_Discriminant
7982 and then Ekind (Entity (E2)) = E_In_Parameter);
7984 elsif Nkind (E1) = N_Expanded_Name
7985 and then Nkind (E2) = N_Expanded_Name
7986 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7987 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7988 then
7989 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7991 else
7992 -- Identifiers in component associations don't always have
7993 -- entities, but their names must conform.
7995 return Nkind (E1) = N_Identifier
7996 and then Nkind (E2) = N_Identifier
7997 and then Chars (E1) = Chars (E2);
7998 end if;
8000 elsif Nkind (E1) = N_Character_Literal
8001 and then Nkind (E2) = N_Expanded_Name
8002 then
8003 return Nkind (Selector_Name (E2)) = N_Character_Literal
8004 and then Chars (E1) = Chars (Selector_Name (E2));
8006 elsif Nkind (E2) = N_Character_Literal
8007 and then Nkind (E1) = N_Expanded_Name
8008 then
8009 return Nkind (Selector_Name (E1)) = N_Character_Literal
8010 and then Chars (E2) = Chars (Selector_Name (E1));
8012 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8013 return FCO (E1, E2);
8015 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8016 return FCO (E2, E1);
8018 -- Otherwise we must have the same syntactic entity
8020 elsif Nkind (E1) /= Nkind (E2) then
8021 return False;
8023 -- At this point, we specialize by node type
8025 else
8026 case Nkind (E1) is
8028 when N_Aggregate =>
8029 return
8030 FCL (Expressions (E1), Expressions (E2))
8031 and then
8032 FCL (Component_Associations (E1),
8033 Component_Associations (E2));
8035 when N_Allocator =>
8036 if Nkind (Expression (E1)) = N_Qualified_Expression
8037 or else
8038 Nkind (Expression (E2)) = N_Qualified_Expression
8039 then
8040 return FCE (Expression (E1), Expression (E2));
8042 -- Check that the subtype marks and any constraints
8043 -- are conformant
8045 else
8046 declare
8047 Indic1 : constant Node_Id := Expression (E1);
8048 Indic2 : constant Node_Id := Expression (E2);
8049 Elt1 : Node_Id;
8050 Elt2 : Node_Id;
8052 begin
8053 if Nkind (Indic1) /= N_Subtype_Indication then
8054 return
8055 Nkind (Indic2) /= N_Subtype_Indication
8056 and then Entity (Indic1) = Entity (Indic2);
8058 elsif Nkind (Indic2) /= N_Subtype_Indication then
8059 return
8060 Nkind (Indic1) /= N_Subtype_Indication
8061 and then Entity (Indic1) = Entity (Indic2);
8063 else
8064 if Entity (Subtype_Mark (Indic1)) /=
8065 Entity (Subtype_Mark (Indic2))
8066 then
8067 return False;
8068 end if;
8070 Elt1 := First (Constraints (Constraint (Indic1)));
8071 Elt2 := First (Constraints (Constraint (Indic2)));
8072 while Present (Elt1) and then Present (Elt2) loop
8073 if not FCE (Elt1, Elt2) then
8074 return False;
8075 end if;
8077 Next (Elt1);
8078 Next (Elt2);
8079 end loop;
8081 return True;
8082 end if;
8083 end;
8084 end if;
8086 when N_Attribute_Reference =>
8087 return
8088 Attribute_Name (E1) = Attribute_Name (E2)
8089 and then FCL (Expressions (E1), Expressions (E2));
8091 when N_Binary_Op =>
8092 return
8093 Entity (E1) = Entity (E2)
8094 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8095 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8097 when N_Short_Circuit | N_Membership_Test =>
8098 return
8099 FCE (Left_Opnd (E1), Left_Opnd (E2))
8100 and then
8101 FCE (Right_Opnd (E1), Right_Opnd (E2));
8103 when N_Case_Expression =>
8104 declare
8105 Alt1 : Node_Id;
8106 Alt2 : Node_Id;
8108 begin
8109 if not FCE (Expression (E1), Expression (E2)) then
8110 return False;
8112 else
8113 Alt1 := First (Alternatives (E1));
8114 Alt2 := First (Alternatives (E2));
8115 loop
8116 if Present (Alt1) /= Present (Alt2) then
8117 return False;
8118 elsif No (Alt1) then
8119 return True;
8120 end if;
8122 if not FCE (Expression (Alt1), Expression (Alt2))
8123 or else not FCL (Discrete_Choices (Alt1),
8124 Discrete_Choices (Alt2))
8125 then
8126 return False;
8127 end if;
8129 Next (Alt1);
8130 Next (Alt2);
8131 end loop;
8132 end if;
8133 end;
8135 when N_Character_Literal =>
8136 return
8137 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8139 when N_Component_Association =>
8140 return
8141 FCL (Choices (E1), Choices (E2))
8142 and then
8143 FCE (Expression (E1), Expression (E2));
8145 when N_Explicit_Dereference =>
8146 return
8147 FCE (Prefix (E1), Prefix (E2));
8149 when N_Extension_Aggregate =>
8150 return
8151 FCL (Expressions (E1), Expressions (E2))
8152 and then Null_Record_Present (E1) =
8153 Null_Record_Present (E2)
8154 and then FCL (Component_Associations (E1),
8155 Component_Associations (E2));
8157 when N_Function_Call =>
8158 return
8159 FCE (Name (E1), Name (E2))
8160 and then
8161 FCL (Parameter_Associations (E1),
8162 Parameter_Associations (E2));
8164 when N_If_Expression =>
8165 return
8166 FCL (Expressions (E1), Expressions (E2));
8168 when N_Indexed_Component =>
8169 return
8170 FCE (Prefix (E1), Prefix (E2))
8171 and then
8172 FCL (Expressions (E1), Expressions (E2));
8174 when N_Integer_Literal =>
8175 return (Intval (E1) = Intval (E2));
8177 when N_Null =>
8178 return True;
8180 when N_Operator_Symbol =>
8181 return
8182 Chars (E1) = Chars (E2);
8184 when N_Others_Choice =>
8185 return True;
8187 when N_Parameter_Association =>
8188 return
8189 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
8190 and then FCE (Explicit_Actual_Parameter (E1),
8191 Explicit_Actual_Parameter (E2));
8193 when N_Qualified_Expression =>
8194 return
8195 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8196 and then
8197 FCE (Expression (E1), Expression (E2));
8199 when N_Quantified_Expression =>
8200 if not FCE (Condition (E1), Condition (E2)) then
8201 return False;
8202 end if;
8204 if Present (Loop_Parameter_Specification (E1))
8205 and then Present (Loop_Parameter_Specification (E2))
8206 then
8207 declare
8208 L1 : constant Node_Id :=
8209 Loop_Parameter_Specification (E1);
8210 L2 : constant Node_Id :=
8211 Loop_Parameter_Specification (E2);
8213 begin
8214 return
8215 Reverse_Present (L1) = Reverse_Present (L2)
8216 and then
8217 FCE (Defining_Identifier (L1),
8218 Defining_Identifier (L2))
8219 and then
8220 FCE (Discrete_Subtype_Definition (L1),
8221 Discrete_Subtype_Definition (L2));
8222 end;
8224 elsif Present (Iterator_Specification (E1))
8225 and then Present (Iterator_Specification (E2))
8226 then
8227 declare
8228 I1 : constant Node_Id := Iterator_Specification (E1);
8229 I2 : constant Node_Id := Iterator_Specification (E2);
8231 begin
8232 return
8233 FCE (Defining_Identifier (I1),
8234 Defining_Identifier (I2))
8235 and then
8236 Of_Present (I1) = Of_Present (I2)
8237 and then
8238 Reverse_Present (I1) = Reverse_Present (I2)
8239 and then FCE (Name (I1), Name (I2))
8240 and then FCE (Subtype_Indication (I1),
8241 Subtype_Indication (I2));
8242 end;
8244 -- The quantified expressions used different specifications to
8245 -- walk their respective ranges.
8247 else
8248 return False;
8249 end if;
8251 when N_Range =>
8252 return
8253 FCE (Low_Bound (E1), Low_Bound (E2))
8254 and then
8255 FCE (High_Bound (E1), High_Bound (E2));
8257 when N_Real_Literal =>
8258 return (Realval (E1) = Realval (E2));
8260 when N_Selected_Component =>
8261 return
8262 FCE (Prefix (E1), Prefix (E2))
8263 and then
8264 FCE (Selector_Name (E1), Selector_Name (E2));
8266 when N_Slice =>
8267 return
8268 FCE (Prefix (E1), Prefix (E2))
8269 and then
8270 FCE (Discrete_Range (E1), Discrete_Range (E2));
8272 when N_String_Literal =>
8273 declare
8274 S1 : constant String_Id := Strval (E1);
8275 S2 : constant String_Id := Strval (E2);
8276 L1 : constant Nat := String_Length (S1);
8277 L2 : constant Nat := String_Length (S2);
8279 begin
8280 if L1 /= L2 then
8281 return False;
8283 else
8284 for J in 1 .. L1 loop
8285 if Get_String_Char (S1, J) /=
8286 Get_String_Char (S2, J)
8287 then
8288 return False;
8289 end if;
8290 end loop;
8292 return True;
8293 end if;
8294 end;
8296 when N_Type_Conversion =>
8297 return
8298 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8299 and then
8300 FCE (Expression (E1), Expression (E2));
8302 when N_Unary_Op =>
8303 return
8304 Entity (E1) = Entity (E2)
8305 and then
8306 FCE (Right_Opnd (E1), Right_Opnd (E2));
8308 when N_Unchecked_Type_Conversion =>
8309 return
8310 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8311 and then
8312 FCE (Expression (E1), Expression (E2));
8314 -- All other node types cannot appear in this context. Strictly
8315 -- we should raise a fatal internal error. Instead we just ignore
8316 -- the nodes. This means that if anyone makes a mistake in the
8317 -- expander and mucks an expression tree irretrievably, the result
8318 -- will be a failure to detect a (probably very obscure) case
8319 -- of non-conformance, which is better than bombing on some
8320 -- case where two expressions do in fact conform.
8322 when others =>
8323 return True;
8325 end case;
8326 end if;
8327 end Fully_Conformant_Expressions;
8329 ----------------------------------------
8330 -- Fully_Conformant_Discrete_Subtypes --
8331 ----------------------------------------
8333 function Fully_Conformant_Discrete_Subtypes
8334 (Given_S1 : Node_Id;
8335 Given_S2 : Node_Id) return Boolean
8337 S1 : constant Node_Id := Original_Node (Given_S1);
8338 S2 : constant Node_Id := Original_Node (Given_S2);
8340 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8341 -- Special-case for a bound given by a discriminant, which in the body
8342 -- is replaced with the discriminal of the enclosing type.
8344 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8345 -- Check both bounds
8347 -----------------------
8348 -- Conforming_Bounds --
8349 -----------------------
8351 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8352 begin
8353 if Is_Entity_Name (B1)
8354 and then Is_Entity_Name (B2)
8355 and then Ekind (Entity (B1)) = E_Discriminant
8356 then
8357 return Chars (B1) = Chars (B2);
8359 else
8360 return Fully_Conformant_Expressions (B1, B2);
8361 end if;
8362 end Conforming_Bounds;
8364 -----------------------
8365 -- Conforming_Ranges --
8366 -----------------------
8368 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8369 begin
8370 return
8371 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8372 and then
8373 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8374 end Conforming_Ranges;
8376 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8378 begin
8379 if Nkind (S1) /= Nkind (S2) then
8380 return False;
8382 elsif Is_Entity_Name (S1) then
8383 return Entity (S1) = Entity (S2);
8385 elsif Nkind (S1) = N_Range then
8386 return Conforming_Ranges (S1, S2);
8388 elsif Nkind (S1) = N_Subtype_Indication then
8389 return
8390 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8391 and then
8392 Conforming_Ranges
8393 (Range_Expression (Constraint (S1)),
8394 Range_Expression (Constraint (S2)));
8395 else
8396 return True;
8397 end if;
8398 end Fully_Conformant_Discrete_Subtypes;
8400 --------------------
8401 -- Install_Entity --
8402 --------------------
8404 procedure Install_Entity (E : Entity_Id) is
8405 Prev : constant Entity_Id := Current_Entity (E);
8406 begin
8407 Set_Is_Immediately_Visible (E);
8408 Set_Current_Entity (E);
8409 Set_Homonym (E, Prev);
8410 end Install_Entity;
8412 ---------------------
8413 -- Install_Formals --
8414 ---------------------
8416 procedure Install_Formals (Id : Entity_Id) is
8417 F : Entity_Id;
8418 begin
8419 F := First_Formal (Id);
8420 while Present (F) loop
8421 Install_Entity (F);
8422 Next_Formal (F);
8423 end loop;
8424 end Install_Formals;
8426 -----------------------------
8427 -- Is_Interface_Conformant --
8428 -----------------------------
8430 function Is_Interface_Conformant
8431 (Tagged_Type : Entity_Id;
8432 Iface_Prim : Entity_Id;
8433 Prim : Entity_Id) return Boolean
8435 -- The operation may in fact be an inherited (implicit) operation
8436 -- rather than the original interface primitive, so retrieve the
8437 -- ultimate ancestor.
8439 Iface : constant Entity_Id :=
8440 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8441 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8443 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8444 -- Return the controlling formal of Prim
8446 ------------------------
8447 -- Controlling_Formal --
8448 ------------------------
8450 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8451 E : Entity_Id;
8453 begin
8454 E := First_Entity (Prim);
8455 while Present (E) loop
8456 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8457 return E;
8458 end if;
8460 Next_Entity (E);
8461 end loop;
8463 return Empty;
8464 end Controlling_Formal;
8466 -- Local variables
8468 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8469 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8471 -- Start of processing for Is_Interface_Conformant
8473 begin
8474 pragma Assert (Is_Subprogram (Iface_Prim)
8475 and then Is_Subprogram (Prim)
8476 and then Is_Dispatching_Operation (Iface_Prim)
8477 and then Is_Dispatching_Operation (Prim));
8479 pragma Assert (Is_Interface (Iface)
8480 or else (Present (Alias (Iface_Prim))
8481 and then
8482 Is_Interface
8483 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8485 if Prim = Iface_Prim
8486 or else not Is_Subprogram (Prim)
8487 or else Ekind (Prim) /= Ekind (Iface_Prim)
8488 or else not Is_Dispatching_Operation (Prim)
8489 or else Scope (Prim) /= Scope (Tagged_Type)
8490 or else No (Typ)
8491 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8492 or else not Primitive_Names_Match (Iface_Prim, Prim)
8493 then
8494 return False;
8496 -- The mode of the controlling formals must match
8498 elsif Present (Iface_Ctrl_F)
8499 and then Present (Prim_Ctrl_F)
8500 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8501 then
8502 return False;
8504 -- Case of a procedure, or a function whose result type matches the
8505 -- result type of the interface primitive, or a function that has no
8506 -- controlling result (I or access I).
8508 elsif Ekind (Iface_Prim) = E_Procedure
8509 or else Etype (Prim) = Etype (Iface_Prim)
8510 or else not Has_Controlling_Result (Prim)
8511 then
8512 return Type_Conformant
8513 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8515 -- Case of a function returning an interface, or an access to one. Check
8516 -- that the return types correspond.
8518 elsif Implements_Interface (Typ, Iface) then
8519 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8521 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8522 then
8523 return False;
8524 else
8525 return
8526 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8527 Skip_Controlling_Formals => True);
8528 end if;
8530 else
8531 return False;
8532 end if;
8533 end Is_Interface_Conformant;
8535 ---------------------------------
8536 -- Is_Non_Overriding_Operation --
8537 ---------------------------------
8539 function Is_Non_Overriding_Operation
8540 (Prev_E : Entity_Id;
8541 New_E : Entity_Id) return Boolean
8543 Formal : Entity_Id;
8544 F_Typ : Entity_Id;
8545 G_Typ : Entity_Id := Empty;
8547 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8548 -- If F_Type is a derived type associated with a generic actual subtype,
8549 -- then return its Generic_Parent_Type attribute, else return Empty.
8551 function Types_Correspond
8552 (P_Type : Entity_Id;
8553 N_Type : Entity_Id) return Boolean;
8554 -- Returns true if and only if the types (or designated types in the
8555 -- case of anonymous access types) are the same or N_Type is derived
8556 -- directly or indirectly from P_Type.
8558 -----------------------------
8559 -- Get_Generic_Parent_Type --
8560 -----------------------------
8562 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8563 G_Typ : Entity_Id;
8564 Defn : Node_Id;
8565 Indic : Node_Id;
8567 begin
8568 if Is_Derived_Type (F_Typ)
8569 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8570 then
8571 -- The tree must be traversed to determine the parent subtype in
8572 -- the generic unit, which unfortunately isn't always available
8573 -- via semantic attributes. ??? (Note: The use of Original_Node
8574 -- is needed for cases where a full derived type has been
8575 -- rewritten.)
8577 -- If the parent type is a scalar type, the derivation creates
8578 -- an anonymous base type for it, and the source type is its
8579 -- first subtype.
8581 if Is_Scalar_Type (F_Typ)
8582 and then not Comes_From_Source (F_Typ)
8583 then
8584 Defn :=
8585 Type_Definition
8586 (Original_Node (Parent (First_Subtype (F_Typ))));
8587 else
8588 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8589 end if;
8590 if Nkind (Defn) = N_Derived_Type_Definition then
8591 Indic := Subtype_Indication (Defn);
8593 if Nkind (Indic) = N_Subtype_Indication then
8594 G_Typ := Entity (Subtype_Mark (Indic));
8595 else
8596 G_Typ := Entity (Indic);
8597 end if;
8599 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8600 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8601 then
8602 return Generic_Parent_Type (Parent (G_Typ));
8603 end if;
8604 end if;
8605 end if;
8607 return Empty;
8608 end Get_Generic_Parent_Type;
8610 ----------------------
8611 -- Types_Correspond --
8612 ----------------------
8614 function Types_Correspond
8615 (P_Type : Entity_Id;
8616 N_Type : Entity_Id) return Boolean
8618 Prev_Type : Entity_Id := Base_Type (P_Type);
8619 New_Type : Entity_Id := Base_Type (N_Type);
8621 begin
8622 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8623 Prev_Type := Designated_Type (Prev_Type);
8624 end if;
8626 if Ekind (New_Type) = E_Anonymous_Access_Type then
8627 New_Type := Designated_Type (New_Type);
8628 end if;
8630 if Prev_Type = New_Type then
8631 return True;
8633 elsif not Is_Class_Wide_Type (New_Type) then
8634 while Etype (New_Type) /= New_Type loop
8635 New_Type := Etype (New_Type);
8637 if New_Type = Prev_Type then
8638 return True;
8639 end if;
8640 end loop;
8641 end if;
8642 return False;
8643 end Types_Correspond;
8645 -- Start of processing for Is_Non_Overriding_Operation
8647 begin
8648 -- In the case where both operations are implicit derived subprograms
8649 -- then neither overrides the other. This can only occur in certain
8650 -- obscure cases (e.g., derivation from homographs created in a generic
8651 -- instantiation).
8653 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8654 return True;
8656 elsif Ekind (Current_Scope) = E_Package
8657 and then Is_Generic_Instance (Current_Scope)
8658 and then In_Private_Part (Current_Scope)
8659 and then Comes_From_Source (New_E)
8660 then
8661 -- We examine the formals and result type of the inherited operation,
8662 -- to determine whether their type is derived from (the instance of)
8663 -- a generic type. The first such formal or result type is the one
8664 -- tested.
8666 Formal := First_Formal (Prev_E);
8667 while Present (Formal) loop
8668 F_Typ := Base_Type (Etype (Formal));
8670 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8671 F_Typ := Designated_Type (F_Typ);
8672 end if;
8674 G_Typ := Get_Generic_Parent_Type (F_Typ);
8675 exit when Present (G_Typ);
8677 Next_Formal (Formal);
8678 end loop;
8680 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8681 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8682 end if;
8684 if No (G_Typ) then
8685 return False;
8686 end if;
8688 -- If the generic type is a private type, then the original operation
8689 -- was not overriding in the generic, because there was no primitive
8690 -- operation to override.
8692 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8693 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8694 N_Formal_Private_Type_Definition
8695 then
8696 return True;
8698 -- The generic parent type is the ancestor of a formal derived
8699 -- type declaration. We need to check whether it has a primitive
8700 -- operation that should be overridden by New_E in the generic.
8702 else
8703 declare
8704 P_Formal : Entity_Id;
8705 N_Formal : Entity_Id;
8706 P_Typ : Entity_Id;
8707 N_Typ : Entity_Id;
8708 P_Prim : Entity_Id;
8709 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8711 begin
8712 while Present (Prim_Elt) loop
8713 P_Prim := Node (Prim_Elt);
8715 if Chars (P_Prim) = Chars (New_E)
8716 and then Ekind (P_Prim) = Ekind (New_E)
8717 then
8718 P_Formal := First_Formal (P_Prim);
8719 N_Formal := First_Formal (New_E);
8720 while Present (P_Formal) and then Present (N_Formal) loop
8721 P_Typ := Etype (P_Formal);
8722 N_Typ := Etype (N_Formal);
8724 if not Types_Correspond (P_Typ, N_Typ) then
8725 exit;
8726 end if;
8728 Next_Entity (P_Formal);
8729 Next_Entity (N_Formal);
8730 end loop;
8732 -- Found a matching primitive operation belonging to the
8733 -- formal ancestor type, so the new subprogram is
8734 -- overriding.
8736 if No (P_Formal)
8737 and then No (N_Formal)
8738 and then (Ekind (New_E) /= E_Function
8739 or else
8740 Types_Correspond
8741 (Etype (P_Prim), Etype (New_E)))
8742 then
8743 return False;
8744 end if;
8745 end if;
8747 Next_Elmt (Prim_Elt);
8748 end loop;
8750 -- If no match found, then the new subprogram does not override
8751 -- in the generic (nor in the instance).
8753 -- If the type in question is not abstract, and the subprogram
8754 -- is, this will be an error if the new operation is in the
8755 -- private part of the instance. Emit a warning now, which will
8756 -- make the subsequent error message easier to understand.
8758 if not Is_Abstract_Type (F_Typ)
8759 and then Is_Abstract_Subprogram (Prev_E)
8760 and then In_Private_Part (Current_Scope)
8761 then
8762 Error_Msg_Node_2 := F_Typ;
8763 Error_Msg_NE
8764 ("private operation& in generic unit does not override "
8765 & "any primitive operation of& (RM 12.3 (18))??",
8766 New_E, New_E);
8767 end if;
8769 return True;
8770 end;
8771 end if;
8772 else
8773 return False;
8774 end if;
8775 end Is_Non_Overriding_Operation;
8777 -------------------------------------
8778 -- List_Inherited_Pre_Post_Aspects --
8779 -------------------------------------
8781 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8782 begin
8783 if Opt.List_Inherited_Aspects
8784 and then Is_Subprogram_Or_Generic_Subprogram (E)
8785 then
8786 declare
8787 Subps : constant Subprogram_List := Inherited_Subprograms (E);
8788 Items : Node_Id;
8789 Prag : Node_Id;
8791 begin
8792 for Index in Subps'Range loop
8793 Items := Contract (Subps (Index));
8795 if Present (Items) then
8796 Prag := Pre_Post_Conditions (Items);
8797 while Present (Prag) loop
8798 Error_Msg_Sloc := Sloc (Prag);
8800 if Class_Present (Prag)
8801 and then not Split_PPC (Prag)
8802 then
8803 if Pragma_Name (Prag) = Name_Precondition then
8804 Error_Msg_N
8805 ("info: & inherits `Pre''Class` aspect from "
8806 & "#?L?", E);
8807 else
8808 Error_Msg_N
8809 ("info: & inherits `Post''Class` aspect from "
8810 & "#?L?", E);
8811 end if;
8812 end if;
8814 Prag := Next_Pragma (Prag);
8815 end loop;
8816 end if;
8817 end loop;
8818 end;
8819 end if;
8820 end List_Inherited_Pre_Post_Aspects;
8822 ------------------------------
8823 -- Make_Inequality_Operator --
8824 ------------------------------
8826 -- S is the defining identifier of an equality operator. We build a
8827 -- subprogram declaration with the right signature. This operation is
8828 -- intrinsic, because it is always expanded as the negation of the
8829 -- call to the equality function.
8831 procedure Make_Inequality_Operator (S : Entity_Id) is
8832 Loc : constant Source_Ptr := Sloc (S);
8833 Decl : Node_Id;
8834 Formals : List_Id;
8835 Op_Name : Entity_Id;
8837 FF : constant Entity_Id := First_Formal (S);
8838 NF : constant Entity_Id := Next_Formal (FF);
8840 begin
8841 -- Check that equality was properly defined, ignore call if not
8843 if No (NF) then
8844 return;
8845 end if;
8847 declare
8848 A : constant Entity_Id :=
8849 Make_Defining_Identifier (Sloc (FF),
8850 Chars => Chars (FF));
8852 B : constant Entity_Id :=
8853 Make_Defining_Identifier (Sloc (NF),
8854 Chars => Chars (NF));
8856 begin
8857 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8859 Formals := New_List (
8860 Make_Parameter_Specification (Loc,
8861 Defining_Identifier => A,
8862 Parameter_Type =>
8863 New_Occurrence_Of (Etype (First_Formal (S)),
8864 Sloc (Etype (First_Formal (S))))),
8866 Make_Parameter_Specification (Loc,
8867 Defining_Identifier => B,
8868 Parameter_Type =>
8869 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8870 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8872 Decl :=
8873 Make_Subprogram_Declaration (Loc,
8874 Specification =>
8875 Make_Function_Specification (Loc,
8876 Defining_Unit_Name => Op_Name,
8877 Parameter_Specifications => Formals,
8878 Result_Definition =>
8879 New_Occurrence_Of (Standard_Boolean, Loc)));
8881 -- Insert inequality right after equality if it is explicit or after
8882 -- the derived type when implicit. These entities are created only
8883 -- for visibility purposes, and eventually replaced in the course
8884 -- of expansion, so they do not need to be attached to the tree and
8885 -- seen by the back-end. Keeping them internal also avoids spurious
8886 -- freezing problems. The declaration is inserted in the tree for
8887 -- analysis, and removed afterwards. If the equality operator comes
8888 -- from an explicit declaration, attach the inequality immediately
8889 -- after. Else the equality is inherited from a derived type
8890 -- declaration, so insert inequality after that declaration.
8892 if No (Alias (S)) then
8893 Insert_After (Unit_Declaration_Node (S), Decl);
8894 elsif Is_List_Member (Parent (S)) then
8895 Insert_After (Parent (S), Decl);
8896 else
8897 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8898 end if;
8900 Mark_Rewrite_Insertion (Decl);
8901 Set_Is_Intrinsic_Subprogram (Op_Name);
8902 Analyze (Decl);
8903 Remove (Decl);
8904 Set_Has_Completion (Op_Name);
8905 Set_Corresponding_Equality (Op_Name, S);
8906 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8907 end;
8908 end Make_Inequality_Operator;
8910 ----------------------
8911 -- May_Need_Actuals --
8912 ----------------------
8914 procedure May_Need_Actuals (Fun : Entity_Id) is
8915 F : Entity_Id;
8916 B : Boolean;
8918 begin
8919 F := First_Formal (Fun);
8920 B := True;
8921 while Present (F) loop
8922 if No (Default_Value (F)) then
8923 B := False;
8924 exit;
8925 end if;
8927 Next_Formal (F);
8928 end loop;
8930 Set_Needs_No_Actuals (Fun, B);
8931 end May_Need_Actuals;
8933 ---------------------
8934 -- Mode_Conformant --
8935 ---------------------
8937 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8938 Result : Boolean;
8939 begin
8940 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8941 return Result;
8942 end Mode_Conformant;
8944 ---------------------------
8945 -- New_Overloaded_Entity --
8946 ---------------------------
8948 procedure New_Overloaded_Entity
8949 (S : Entity_Id;
8950 Derived_Type : Entity_Id := Empty)
8952 Overridden_Subp : Entity_Id := Empty;
8953 -- Set if the current scope has an operation that is type-conformant
8954 -- with S, and becomes hidden by S.
8956 Is_Primitive_Subp : Boolean;
8957 -- Set to True if the new subprogram is primitive
8959 E : Entity_Id;
8960 -- Entity that S overrides
8962 Prev_Vis : Entity_Id := Empty;
8963 -- Predecessor of E in Homonym chain
8965 procedure Check_For_Primitive_Subprogram
8966 (Is_Primitive : out Boolean;
8967 Is_Overriding : Boolean := False);
8968 -- If the subprogram being analyzed is a primitive operation of the type
8969 -- of a formal or result, set the Has_Primitive_Operations flag on the
8970 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8971 -- corresponding flag on the entity itself for later use.
8973 procedure Check_Synchronized_Overriding
8974 (Def_Id : Entity_Id;
8975 Overridden_Subp : out Entity_Id);
8976 -- First determine if Def_Id is an entry or a subprogram either defined
8977 -- in the scope of a task or protected type, or is a primitive of such
8978 -- a type. Check whether Def_Id overrides a subprogram of an interface
8979 -- implemented by the synchronized type, return the overridden entity
8980 -- or Empty.
8982 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8983 -- Check that E is declared in the private part of the current package,
8984 -- or in the package body, where it may hide a previous declaration.
8985 -- We can't use In_Private_Part by itself because this flag is also
8986 -- set when freezing entities, so we must examine the place of the
8987 -- declaration in the tree, and recognize wrapper packages as well.
8989 function Is_Overriding_Alias
8990 (Old_E : Entity_Id;
8991 New_E : Entity_Id) return Boolean;
8992 -- Check whether new subprogram and old subprogram are both inherited
8993 -- from subprograms that have distinct dispatch table entries. This can
8994 -- occur with derivations from instances with accidental homonyms. The
8995 -- function is conservative given that the converse is only true within
8996 -- instances that contain accidental overloadings.
8998 ------------------------------------
8999 -- Check_For_Primitive_Subprogram --
9000 ------------------------------------
9002 procedure Check_For_Primitive_Subprogram
9003 (Is_Primitive : out Boolean;
9004 Is_Overriding : Boolean := False)
9006 Formal : Entity_Id;
9007 F_Typ : Entity_Id;
9008 B_Typ : Entity_Id;
9010 function Visible_Part_Type (T : Entity_Id) return Boolean;
9011 -- Returns true if T is declared in the visible part of the current
9012 -- package scope; otherwise returns false. Assumes that T is declared
9013 -- in a package.
9015 procedure Check_Private_Overriding (T : Entity_Id);
9016 -- Checks that if a primitive abstract subprogram of a visible
9017 -- abstract type is declared in a private part, then it must override
9018 -- an abstract subprogram declared in the visible part. Also checks
9019 -- that if a primitive function with a controlling result is declared
9020 -- in a private part, then it must override a function declared in
9021 -- the visible part.
9023 ------------------------------
9024 -- Check_Private_Overriding --
9025 ------------------------------
9027 procedure Check_Private_Overriding (T : Entity_Id) is
9028 function Overrides_Private_Part_Op return Boolean;
9029 -- This detects the special case where the overriding subprogram
9030 -- is overriding a subprogram that was declared in the same
9031 -- private part. That case is illegal by 3.9.3(10).
9033 function Overrides_Visible_Function
9034 (Partial_View : Entity_Id) return Boolean;
9035 -- True if S overrides a function in the visible part. The
9036 -- overridden function could be explicitly or implicitly declared.
9038 -------------------------------
9039 -- Overrides_Private_Part_Op --
9040 -------------------------------
9042 function Overrides_Private_Part_Op return Boolean is
9043 Over_Decl : constant Node_Id :=
9044 Unit_Declaration_Node (Overridden_Operation (S));
9045 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
9047 begin
9048 pragma Assert (Is_Overriding);
9049 pragma Assert
9050 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
9051 pragma Assert
9052 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
9054 return In_Same_List (Over_Decl, Subp_Decl);
9055 end Overrides_Private_Part_Op;
9057 --------------------------------
9058 -- Overrides_Visible_Function --
9059 --------------------------------
9061 function Overrides_Visible_Function
9062 (Partial_View : Entity_Id) return Boolean
9064 begin
9065 if not Is_Overriding or else not Has_Homonym (S) then
9066 return False;
9067 end if;
9069 if not Present (Partial_View) then
9070 return True;
9071 end if;
9073 -- Search through all the homonyms H of S in the current
9074 -- package spec, and return True if we find one that matches.
9075 -- Note that Parent (H) will be the declaration of the
9076 -- partial view of T for a match.
9078 declare
9079 H : Entity_Id := S;
9080 begin
9081 loop
9082 H := Homonym (H);
9083 exit when not Present (H) or else Scope (H) /= Scope (S);
9085 if Nkind_In
9086 (Parent (H),
9087 N_Private_Extension_Declaration,
9088 N_Private_Type_Declaration)
9089 and then Defining_Identifier (Parent (H)) = Partial_View
9090 then
9091 return True;
9092 end if;
9093 end loop;
9094 end;
9096 return False;
9097 end Overrides_Visible_Function;
9099 -- Start of processing for Check_Private_Overriding
9101 begin
9102 if Is_Package_Or_Generic_Package (Current_Scope)
9103 and then In_Private_Part (Current_Scope)
9104 and then Visible_Part_Type (T)
9105 and then not In_Instance
9106 then
9107 if Is_Abstract_Type (T)
9108 and then Is_Abstract_Subprogram (S)
9109 and then (not Is_Overriding
9110 or else not Is_Abstract_Subprogram (E)
9111 or else Overrides_Private_Part_Op)
9112 then
9113 Error_Msg_N
9114 ("abstract subprograms must be visible (RM 3.9.3(10))!",
9117 elsif Ekind (S) = E_Function then
9118 declare
9119 Partial_View : constant Entity_Id :=
9120 Incomplete_Or_Partial_View (T);
9122 begin
9123 if not Overrides_Visible_Function (Partial_View) then
9125 -- Here, S is "function ... return T;" declared in
9126 -- the private part, not overriding some visible
9127 -- operation. That's illegal in the tagged case
9128 -- (but not if the private type is untagged).
9130 if ((Present (Partial_View)
9131 and then Is_Tagged_Type (Partial_View))
9132 or else (not Present (Partial_View)
9133 and then Is_Tagged_Type (T)))
9134 and then T = Base_Type (Etype (S))
9135 then
9136 Error_Msg_N
9137 ("private function with tagged result must"
9138 & " override visible-part function", S);
9139 Error_Msg_N
9140 ("\move subprogram to the visible part"
9141 & " (RM 3.9.3(10))", S);
9143 -- AI05-0073: extend this test to the case of a
9144 -- function with a controlling access result.
9146 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9147 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9148 and then
9149 not Is_Class_Wide_Type
9150 (Designated_Type (Etype (S)))
9151 and then Ada_Version >= Ada_2012
9152 then
9153 Error_Msg_N
9154 ("private function with controlling access "
9155 & "result must override visible-part function",
9157 Error_Msg_N
9158 ("\move subprogram to the visible part"
9159 & " (RM 3.9.3(10))", S);
9160 end if;
9161 end if;
9162 end;
9163 end if;
9164 end if;
9165 end Check_Private_Overriding;
9167 -----------------------
9168 -- Visible_Part_Type --
9169 -----------------------
9171 function Visible_Part_Type (T : Entity_Id) return Boolean is
9172 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9173 N : Node_Id;
9175 begin
9176 -- If the entity is a private type, then it must be declared in a
9177 -- visible part.
9179 if Ekind (T) in Private_Kind then
9180 return True;
9181 end if;
9183 -- Otherwise, we traverse the visible part looking for its
9184 -- corresponding declaration. We cannot use the declaration
9185 -- node directly because in the private part the entity of a
9186 -- private type is the one in the full view, which does not
9187 -- indicate that it is the completion of something visible.
9189 N := First (Visible_Declarations (Specification (P)));
9190 while Present (N) loop
9191 if Nkind (N) = N_Full_Type_Declaration
9192 and then Present (Defining_Identifier (N))
9193 and then T = Defining_Identifier (N)
9194 then
9195 return True;
9197 elsif Nkind_In (N, N_Private_Type_Declaration,
9198 N_Private_Extension_Declaration)
9199 and then Present (Defining_Identifier (N))
9200 and then T = Full_View (Defining_Identifier (N))
9201 then
9202 return True;
9203 end if;
9205 Next (N);
9206 end loop;
9208 return False;
9209 end Visible_Part_Type;
9211 -- Start of processing for Check_For_Primitive_Subprogram
9213 begin
9214 Is_Primitive := False;
9216 if not Comes_From_Source (S) then
9217 null;
9219 -- If subprogram is at library level, it is not primitive operation
9221 elsif Current_Scope = Standard_Standard then
9222 null;
9224 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9225 and then not In_Package_Body (Current_Scope))
9226 or else Is_Overriding
9227 then
9228 -- For function, check return type
9230 if Ekind (S) = E_Function then
9231 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9232 F_Typ := Designated_Type (Etype (S));
9233 else
9234 F_Typ := Etype (S);
9235 end if;
9237 B_Typ := Base_Type (F_Typ);
9239 if Scope (B_Typ) = Current_Scope
9240 and then not Is_Class_Wide_Type (B_Typ)
9241 and then not Is_Generic_Type (B_Typ)
9242 then
9243 Is_Primitive := True;
9244 Set_Has_Primitive_Operations (B_Typ);
9245 Set_Is_Primitive (S);
9246 Check_Private_Overriding (B_Typ);
9248 -- The Ghost policy in effect at the point of declaration of
9249 -- a tagged type and a primitive operation must match
9250 -- (SPARK RM 6.9(16)).
9252 Check_Ghost_Primitive (S, B_Typ);
9253 end if;
9254 end if;
9256 -- For all subprograms, check formals
9258 Formal := First_Formal (S);
9259 while Present (Formal) loop
9260 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9261 F_Typ := Designated_Type (Etype (Formal));
9262 else
9263 F_Typ := Etype (Formal);
9264 end if;
9266 B_Typ := Base_Type (F_Typ);
9268 if Ekind (B_Typ) = E_Access_Subtype then
9269 B_Typ := Base_Type (B_Typ);
9270 end if;
9272 if Scope (B_Typ) = Current_Scope
9273 and then not Is_Class_Wide_Type (B_Typ)
9274 and then not Is_Generic_Type (B_Typ)
9275 then
9276 Is_Primitive := True;
9277 Set_Is_Primitive (S);
9278 Set_Has_Primitive_Operations (B_Typ);
9279 Check_Private_Overriding (B_Typ);
9281 -- The Ghost policy in effect at the point of declaration of
9282 -- a tagged type and a primitive operation must match
9283 -- (SPARK RM 6.9(16)).
9285 Check_Ghost_Primitive (S, B_Typ);
9286 end if;
9288 Next_Formal (Formal);
9289 end loop;
9291 -- Special case: An equality function can be redefined for a type
9292 -- occurring in a declarative part, and won't otherwise be treated as
9293 -- a primitive because it doesn't occur in a package spec and doesn't
9294 -- override an inherited subprogram. It's important that we mark it
9295 -- primitive so it can be returned by Collect_Primitive_Operations
9296 -- and be used in composing the equality operation of later types
9297 -- that have a component of the type.
9299 elsif Chars (S) = Name_Op_Eq
9300 and then Etype (S) = Standard_Boolean
9301 then
9302 B_Typ := Base_Type (Etype (First_Formal (S)));
9304 if Scope (B_Typ) = Current_Scope
9305 and then
9306 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
9307 and then not Is_Limited_Type (B_Typ)
9308 then
9309 Is_Primitive := True;
9310 Set_Is_Primitive (S);
9311 Set_Has_Primitive_Operations (B_Typ);
9312 Check_Private_Overriding (B_Typ);
9314 -- The Ghost policy in effect at the point of declaration of a
9315 -- tagged type and a primitive operation must match
9316 -- (SPARK RM 6.9(16)).
9318 Check_Ghost_Primitive (S, B_Typ);
9319 end if;
9320 end if;
9321 end Check_For_Primitive_Subprogram;
9323 -----------------------------------
9324 -- Check_Synchronized_Overriding --
9325 -----------------------------------
9327 procedure Check_Synchronized_Overriding
9328 (Def_Id : Entity_Id;
9329 Overridden_Subp : out Entity_Id)
9331 Ifaces_List : Elist_Id;
9332 In_Scope : Boolean;
9333 Typ : Entity_Id;
9335 function Matches_Prefixed_View_Profile
9336 (Prim_Params : List_Id;
9337 Iface_Params : List_Id) return Boolean;
9338 -- Determine whether a subprogram's parameter profile Prim_Params
9339 -- matches that of a potentially overridden interface subprogram
9340 -- Iface_Params. Also determine if the type of first parameter of
9341 -- Iface_Params is an implemented interface.
9343 -----------------------------------
9344 -- Matches_Prefixed_View_Profile --
9345 -----------------------------------
9347 function Matches_Prefixed_View_Profile
9348 (Prim_Params : List_Id;
9349 Iface_Params : List_Id) return Boolean
9351 Iface_Id : Entity_Id;
9352 Iface_Param : Node_Id;
9353 Iface_Typ : Entity_Id;
9354 Prim_Id : Entity_Id;
9355 Prim_Param : Node_Id;
9356 Prim_Typ : Entity_Id;
9358 function Is_Implemented
9359 (Ifaces_List : Elist_Id;
9360 Iface : Entity_Id) return Boolean;
9361 -- Determine if Iface is implemented by the current task or
9362 -- protected type.
9364 --------------------
9365 -- Is_Implemented --
9366 --------------------
9368 function Is_Implemented
9369 (Ifaces_List : Elist_Id;
9370 Iface : Entity_Id) return Boolean
9372 Iface_Elmt : Elmt_Id;
9374 begin
9375 Iface_Elmt := First_Elmt (Ifaces_List);
9376 while Present (Iface_Elmt) loop
9377 if Node (Iface_Elmt) = Iface then
9378 return True;
9379 end if;
9381 Next_Elmt (Iface_Elmt);
9382 end loop;
9384 return False;
9385 end Is_Implemented;
9387 -- Start of processing for Matches_Prefixed_View_Profile
9389 begin
9390 Iface_Param := First (Iface_Params);
9391 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9393 if Is_Access_Type (Iface_Typ) then
9394 Iface_Typ := Designated_Type (Iface_Typ);
9395 end if;
9397 Prim_Param := First (Prim_Params);
9399 -- The first parameter of the potentially overridden subprogram
9400 -- must be an interface implemented by Prim.
9402 if not Is_Interface (Iface_Typ)
9403 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9404 then
9405 return False;
9406 end if;
9408 -- The checks on the object parameters are done, move onto the
9409 -- rest of the parameters.
9411 if not In_Scope then
9412 Prim_Param := Next (Prim_Param);
9413 end if;
9415 Iface_Param := Next (Iface_Param);
9416 while Present (Iface_Param) and then Present (Prim_Param) loop
9417 Iface_Id := Defining_Identifier (Iface_Param);
9418 Iface_Typ := Find_Parameter_Type (Iface_Param);
9420 Prim_Id := Defining_Identifier (Prim_Param);
9421 Prim_Typ := Find_Parameter_Type (Prim_Param);
9423 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9424 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9425 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9426 then
9427 Iface_Typ := Designated_Type (Iface_Typ);
9428 Prim_Typ := Designated_Type (Prim_Typ);
9429 end if;
9431 -- Case of multiple interface types inside a parameter profile
9433 -- (Obj_Param : in out Iface; ...; Param : Iface)
9435 -- If the interface type is implemented, then the matching type
9436 -- in the primitive should be the implementing record type.
9438 if Ekind (Iface_Typ) = E_Record_Type
9439 and then Is_Interface (Iface_Typ)
9440 and then Is_Implemented (Ifaces_List, Iface_Typ)
9441 then
9442 if Prim_Typ /= Typ then
9443 return False;
9444 end if;
9446 -- The two parameters must be both mode and subtype conformant
9448 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9449 or else not
9450 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9451 then
9452 return False;
9453 end if;
9455 Next (Iface_Param);
9456 Next (Prim_Param);
9457 end loop;
9459 -- One of the two lists contains more parameters than the other
9461 if Present (Iface_Param) or else Present (Prim_Param) then
9462 return False;
9463 end if;
9465 return True;
9466 end Matches_Prefixed_View_Profile;
9468 -- Start of processing for Check_Synchronized_Overriding
9470 begin
9471 Overridden_Subp := Empty;
9473 -- Def_Id must be an entry or a subprogram. We should skip predefined
9474 -- primitives internally generated by the frontend; however at this
9475 -- stage predefined primitives are still not fully decorated. As a
9476 -- minor optimization we skip here internally generated subprograms.
9478 if (Ekind (Def_Id) /= E_Entry
9479 and then Ekind (Def_Id) /= E_Function
9480 and then Ekind (Def_Id) /= E_Procedure)
9481 or else not Comes_From_Source (Def_Id)
9482 then
9483 return;
9484 end if;
9486 -- Search for the concurrent declaration since it contains the list
9487 -- of all implemented interfaces. In this case, the subprogram is
9488 -- declared within the scope of a protected or a task type.
9490 if Present (Scope (Def_Id))
9491 and then Is_Concurrent_Type (Scope (Def_Id))
9492 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9493 then
9494 Typ := Scope (Def_Id);
9495 In_Scope := True;
9497 -- The enclosing scope is not a synchronized type and the subprogram
9498 -- has no formals.
9500 elsif No (First_Formal (Def_Id)) then
9501 return;
9503 -- The subprogram has formals and hence it may be a primitive of a
9504 -- concurrent type.
9506 else
9507 Typ := Etype (First_Formal (Def_Id));
9509 if Is_Access_Type (Typ) then
9510 Typ := Directly_Designated_Type (Typ);
9511 end if;
9513 if Is_Concurrent_Type (Typ)
9514 and then not Is_Generic_Actual_Type (Typ)
9515 then
9516 In_Scope := False;
9518 -- This case occurs when the concurrent type is declared within
9519 -- a generic unit. As a result the corresponding record has been
9520 -- built and used as the type of the first formal, we just have
9521 -- to retrieve the corresponding concurrent type.
9523 elsif Is_Concurrent_Record_Type (Typ)
9524 and then not Is_Class_Wide_Type (Typ)
9525 and then Present (Corresponding_Concurrent_Type (Typ))
9526 then
9527 Typ := Corresponding_Concurrent_Type (Typ);
9528 In_Scope := False;
9530 else
9531 return;
9532 end if;
9533 end if;
9535 -- There is no overriding to check if is an inherited operation in a
9536 -- type derivation on for a generic actual.
9538 Collect_Interfaces (Typ, Ifaces_List);
9540 if Is_Empty_Elmt_List (Ifaces_List) then
9541 return;
9542 end if;
9544 -- Determine whether entry or subprogram Def_Id overrides a primitive
9545 -- operation that belongs to one of the interfaces in Ifaces_List.
9547 declare
9548 Candidate : Entity_Id := Empty;
9549 Hom : Entity_Id := Empty;
9550 Subp : Entity_Id := Empty;
9552 begin
9553 -- Traverse the homonym chain, looking for a potentially
9554 -- overridden subprogram that belongs to an implemented
9555 -- interface.
9557 Hom := Current_Entity_In_Scope (Def_Id);
9558 while Present (Hom) loop
9559 Subp := Hom;
9561 if Subp = Def_Id
9562 or else not Is_Overloadable (Subp)
9563 or else not Is_Primitive (Subp)
9564 or else not Is_Dispatching_Operation (Subp)
9565 or else not Present (Find_Dispatching_Type (Subp))
9566 or else not Is_Interface (Find_Dispatching_Type (Subp))
9567 then
9568 null;
9570 -- Entries and procedures can override abstract or null
9571 -- interface procedures.
9573 elsif (Ekind (Def_Id) = E_Procedure
9574 or else Ekind (Def_Id) = E_Entry)
9575 and then Ekind (Subp) = E_Procedure
9576 and then Matches_Prefixed_View_Profile
9577 (Parameter_Specifications (Parent (Def_Id)),
9578 Parameter_Specifications (Parent (Subp)))
9579 then
9580 Candidate := Subp;
9582 -- For an overridden subprogram Subp, check whether the mode
9583 -- of its first parameter is correct depending on the kind
9584 -- of synchronized type.
9586 declare
9587 Formal : constant Node_Id := First_Formal (Candidate);
9589 begin
9590 -- In order for an entry or a protected procedure to
9591 -- override, the first parameter of the overridden
9592 -- routine must be of mode "out", "in out" or
9593 -- access-to-variable.
9595 if Ekind_In (Candidate, E_Entry, E_Procedure)
9596 and then Is_Protected_Type (Typ)
9597 and then Ekind (Formal) /= E_In_Out_Parameter
9598 and then Ekind (Formal) /= E_Out_Parameter
9599 and then Nkind (Parameter_Type (Parent (Formal))) /=
9600 N_Access_Definition
9601 then
9602 null;
9604 -- All other cases are OK since a task entry or routine
9605 -- does not have a restriction on the mode of the first
9606 -- parameter of the overridden interface routine.
9608 else
9609 Overridden_Subp := Candidate;
9610 return;
9611 end if;
9612 end;
9614 -- Functions can override abstract interface functions
9616 elsif Ekind (Def_Id) = E_Function
9617 and then Ekind (Subp) = E_Function
9618 and then Matches_Prefixed_View_Profile
9619 (Parameter_Specifications (Parent (Def_Id)),
9620 Parameter_Specifications (Parent (Subp)))
9621 and then Etype (Result_Definition (Parent (Def_Id))) =
9622 Etype (Result_Definition (Parent (Subp)))
9623 then
9624 Candidate := Subp;
9626 -- If an inherited subprogram is implemented by a protected
9627 -- function, then the first parameter of the inherited
9628 -- subprogram shall be of mode in, but not an
9629 -- access-to-variable parameter (RM 9.4(11/9)
9631 if Present (First_Formal (Subp))
9632 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9633 and then
9634 (not Is_Access_Type (Etype (First_Formal (Subp)))
9635 or else
9636 Is_Access_Constant (Etype (First_Formal (Subp))))
9637 then
9638 Overridden_Subp := Subp;
9639 return;
9640 end if;
9641 end if;
9643 Hom := Homonym (Hom);
9644 end loop;
9646 -- After examining all candidates for overriding, we are left with
9647 -- the best match which is a mode incompatible interface routine.
9649 if In_Scope and then Present (Candidate) then
9650 Error_Msg_PT (Def_Id, Candidate);
9651 end if;
9653 Overridden_Subp := Candidate;
9654 return;
9655 end;
9656 end Check_Synchronized_Overriding;
9658 ----------------------------
9659 -- Is_Private_Declaration --
9660 ----------------------------
9662 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9663 Priv_Decls : List_Id;
9664 Decl : constant Node_Id := Unit_Declaration_Node (E);
9666 begin
9667 if Is_Package_Or_Generic_Package (Current_Scope)
9668 and then In_Private_Part (Current_Scope)
9669 then
9670 Priv_Decls :=
9671 Private_Declarations (Package_Specification (Current_Scope));
9673 return In_Package_Body (Current_Scope)
9674 or else
9675 (Is_List_Member (Decl)
9676 and then List_Containing (Decl) = Priv_Decls)
9677 or else (Nkind (Parent (Decl)) = N_Package_Specification
9678 and then not
9679 Is_Compilation_Unit
9680 (Defining_Entity (Parent (Decl)))
9681 and then List_Containing (Parent (Parent (Decl))) =
9682 Priv_Decls);
9683 else
9684 return False;
9685 end if;
9686 end Is_Private_Declaration;
9688 --------------------------
9689 -- Is_Overriding_Alias --
9690 --------------------------
9692 function Is_Overriding_Alias
9693 (Old_E : Entity_Id;
9694 New_E : Entity_Id) return Boolean
9696 AO : constant Entity_Id := Alias (Old_E);
9697 AN : constant Entity_Id := Alias (New_E);
9698 begin
9699 return Scope (AO) /= Scope (AN)
9700 or else No (DTC_Entity (AO))
9701 or else No (DTC_Entity (AN))
9702 or else DT_Position (AO) = DT_Position (AN);
9703 end Is_Overriding_Alias;
9705 -- Start of processing for New_Overloaded_Entity
9707 begin
9708 -- We need to look for an entity that S may override. This must be a
9709 -- homonym in the current scope, so we look for the first homonym of
9710 -- S in the current scope as the starting point for the search.
9712 E := Current_Entity_In_Scope (S);
9714 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9715 -- They are directly added to the list of primitive operations of
9716 -- Derived_Type, unless this is a rederivation in the private part
9717 -- of an operation that was already derived in the visible part of
9718 -- the current package.
9720 if Ada_Version >= Ada_2005
9721 and then Present (Derived_Type)
9722 and then Present (Alias (S))
9723 and then Is_Dispatching_Operation (Alias (S))
9724 and then Present (Find_Dispatching_Type (Alias (S)))
9725 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9726 then
9727 -- For private types, when the full-view is processed we propagate to
9728 -- the full view the non-overridden entities whose attribute "alias"
9729 -- references an interface primitive. These entities were added by
9730 -- Derive_Subprograms to ensure that interface primitives are
9731 -- covered.
9733 -- Inside_Freeze_Actions is non zero when S corresponds with an
9734 -- internal entity that links an interface primitive with its
9735 -- covering primitive through attribute Interface_Alias (see
9736 -- Add_Internal_Interface_Entities).
9738 if Inside_Freezing_Actions = 0
9739 and then Is_Package_Or_Generic_Package (Current_Scope)
9740 and then In_Private_Part (Current_Scope)
9741 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9742 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9743 and then Full_View (Defining_Identifier (Parent (E)))
9744 = Defining_Identifier (Parent (S))
9745 and then Alias (E) = Alias (S)
9746 then
9747 Check_Operation_From_Private_View (S, E);
9748 Set_Is_Dispatching_Operation (S);
9750 -- Common case
9752 else
9753 Enter_Overloaded_Entity (S);
9754 Check_Dispatching_Operation (S, Empty);
9755 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9756 end if;
9758 return;
9759 end if;
9761 -- If there is no homonym then this is definitely not overriding
9763 if No (E) then
9764 Enter_Overloaded_Entity (S);
9765 Check_Dispatching_Operation (S, Empty);
9766 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9768 -- If subprogram has an explicit declaration, check whether it has an
9769 -- overriding indicator.
9771 if Comes_From_Source (S) then
9772 Check_Synchronized_Overriding (S, Overridden_Subp);
9774 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9775 -- it may have overridden some hidden inherited primitive. Update
9776 -- Overridden_Subp to avoid spurious errors when checking the
9777 -- overriding indicator.
9779 if Ada_Version >= Ada_2012
9780 and then No (Overridden_Subp)
9781 and then Is_Dispatching_Operation (S)
9782 and then Present (Overridden_Operation (S))
9783 then
9784 Overridden_Subp := Overridden_Operation (S);
9785 end if;
9787 Check_Overriding_Indicator
9788 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9790 -- The Ghost policy in effect at the point of declaration of a
9791 -- parent subprogram and an overriding subprogram must match
9792 -- (SPARK RM 6.9(17)).
9794 Check_Ghost_Overriding (S, Overridden_Subp);
9795 end if;
9797 -- If there is a homonym that is not overloadable, then we have an
9798 -- error, except for the special cases checked explicitly below.
9800 elsif not Is_Overloadable (E) then
9802 -- Check for spurious conflict produced by a subprogram that has the
9803 -- same name as that of the enclosing generic package. The conflict
9804 -- occurs within an instance, between the subprogram and the renaming
9805 -- declaration for the package. After the subprogram, the package
9806 -- renaming declaration becomes hidden.
9808 if Ekind (E) = E_Package
9809 and then Present (Renamed_Object (E))
9810 and then Renamed_Object (E) = Current_Scope
9811 and then Nkind (Parent (Renamed_Object (E))) =
9812 N_Package_Specification
9813 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9814 then
9815 Set_Is_Hidden (E);
9816 Set_Is_Immediately_Visible (E, False);
9817 Enter_Overloaded_Entity (S);
9818 Set_Homonym (S, Homonym (E));
9819 Check_Dispatching_Operation (S, Empty);
9820 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9822 -- If the subprogram is implicit it is hidden by the previous
9823 -- declaration. However if it is dispatching, it must appear in the
9824 -- dispatch table anyway, because it can be dispatched to even if it
9825 -- cannot be called directly.
9827 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9828 Set_Scope (S, Current_Scope);
9830 if Is_Dispatching_Operation (Alias (S)) then
9831 Check_Dispatching_Operation (S, Empty);
9832 end if;
9834 return;
9836 else
9837 Error_Msg_Sloc := Sloc (E);
9839 -- Generate message, with useful additional warning if in generic
9841 if Is_Generic_Unit (E) then
9842 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9843 Error_Msg_N ("\& conflicts with declaration#", S);
9844 else
9845 Error_Msg_N ("& conflicts with declaration#", S);
9846 end if;
9848 return;
9849 end if;
9851 -- E exists and is overloadable
9853 else
9854 Check_Synchronized_Overriding (S, Overridden_Subp);
9856 -- Loop through E and its homonyms to determine if any of them is
9857 -- the candidate for overriding by S.
9859 while Present (E) loop
9861 -- Definitely not interesting if not in the current scope
9863 if Scope (E) /= Current_Scope then
9864 null;
9866 -- A function can overload the name of an abstract state. The
9867 -- state can be viewed as a function with a profile that cannot
9868 -- be matched by anything.
9870 elsif Ekind (S) = E_Function
9871 and then Ekind (E) = E_Abstract_State
9872 then
9873 Enter_Overloaded_Entity (S);
9874 return;
9876 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9877 -- procedures locate the internally generated spec. We enforce
9878 -- mode conformance since a tagged type may inherit from
9879 -- interfaces several null primitives which differ only in
9880 -- the mode of the formals.
9882 elsif not Comes_From_Source (S)
9883 and then Is_Null_Procedure (S)
9884 and then not Mode_Conformant (E, S)
9885 then
9886 null;
9888 -- Check if we have type conformance
9890 elsif Type_Conformant (E, S) then
9892 -- If the old and new entities have the same profile and one
9893 -- is not the body of the other, then this is an error, unless
9894 -- one of them is implicitly declared.
9896 -- There are some cases when both can be implicit, for example
9897 -- when both a literal and a function that overrides it are
9898 -- inherited in a derivation, or when an inherited operation
9899 -- of a tagged full type overrides the inherited operation of
9900 -- a private extension. Ada 83 had a special rule for the
9901 -- literal case. In Ada 95, the later implicit operation hides
9902 -- the former, and the literal is always the former. In the
9903 -- odd case where both are derived operations declared at the
9904 -- same point, both operations should be declared, and in that
9905 -- case we bypass the following test and proceed to the next
9906 -- part. This can only occur for certain obscure cases in
9907 -- instances, when an operation on a type derived from a formal
9908 -- private type does not override a homograph inherited from
9909 -- the actual. In subsequent derivations of such a type, the
9910 -- DT positions of these operations remain distinct, if they
9911 -- have been set.
9913 if Present (Alias (S))
9914 and then (No (Alias (E))
9915 or else Comes_From_Source (E)
9916 or else Is_Abstract_Subprogram (S)
9917 or else
9918 (Is_Dispatching_Operation (E)
9919 and then Is_Overriding_Alias (E, S)))
9920 and then Ekind (E) /= E_Enumeration_Literal
9921 then
9922 -- When an derived operation is overloaded it may be due to
9923 -- the fact that the full view of a private extension
9924 -- re-inherits. It has to be dealt with.
9926 if Is_Package_Or_Generic_Package (Current_Scope)
9927 and then In_Private_Part (Current_Scope)
9928 then
9929 Check_Operation_From_Private_View (S, E);
9930 end if;
9932 -- In any case the implicit operation remains hidden by the
9933 -- existing declaration, which is overriding. Indicate that
9934 -- E overrides the operation from which S is inherited.
9936 if Present (Alias (S)) then
9937 Set_Overridden_Operation (E, Alias (S));
9938 Inherit_Subprogram_Contract (E, Alias (S));
9940 else
9941 Set_Overridden_Operation (E, S);
9942 Inherit_Subprogram_Contract (E, S);
9943 end if;
9945 if Comes_From_Source (E) then
9946 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9948 -- The Ghost policy in effect at the point of declaration
9949 -- of a parent subprogram and an overriding subprogram
9950 -- must match (SPARK RM 6.9(17)).
9952 Check_Ghost_Overriding (E, S);
9953 end if;
9955 return;
9957 -- Within an instance, the renaming declarations for actual
9958 -- subprograms may become ambiguous, but they do not hide each
9959 -- other.
9961 elsif Ekind (E) /= E_Entry
9962 and then not Comes_From_Source (E)
9963 and then not Is_Generic_Instance (E)
9964 and then (Present (Alias (E))
9965 or else Is_Intrinsic_Subprogram (E))
9966 and then (not In_Instance
9967 or else No (Parent (E))
9968 or else Nkind (Unit_Declaration_Node (E)) /=
9969 N_Subprogram_Renaming_Declaration)
9970 then
9971 -- A subprogram child unit is not allowed to override an
9972 -- inherited subprogram (10.1.1(20)).
9974 if Is_Child_Unit (S) then
9975 Error_Msg_N
9976 ("child unit overrides inherited subprogram in parent",
9978 return;
9979 end if;
9981 if Is_Non_Overriding_Operation (E, S) then
9982 Enter_Overloaded_Entity (S);
9984 if No (Derived_Type)
9985 or else Is_Tagged_Type (Derived_Type)
9986 then
9987 Check_Dispatching_Operation (S, Empty);
9988 end if;
9990 return;
9991 end if;
9993 -- E is a derived operation or an internal operator which
9994 -- is being overridden. Remove E from further visibility.
9995 -- Furthermore, if E is a dispatching operation, it must be
9996 -- replaced in the list of primitive operations of its type
9997 -- (see Override_Dispatching_Operation).
9999 Overridden_Subp := E;
10001 declare
10002 Prev : Entity_Id;
10004 begin
10005 Prev := First_Entity (Current_Scope);
10006 while Present (Prev) and then Next_Entity (Prev) /= E loop
10007 Next_Entity (Prev);
10008 end loop;
10010 -- It is possible for E to be in the current scope and
10011 -- yet not in the entity chain. This can only occur in a
10012 -- generic context where E is an implicit concatenation
10013 -- in the formal part, because in a generic body the
10014 -- entity chain starts with the formals.
10016 -- In GNATprove mode, a wrapper for an operation with
10017 -- axiomatization may be a homonym of another declaration
10018 -- for an actual subprogram (needs refinement ???).
10020 if No (Prev) then
10021 if In_Instance
10022 and then GNATprove_Mode
10023 and then
10024 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10025 N_Subprogram_Renaming_Declaration
10026 then
10027 return;
10028 else
10029 pragma Assert (Chars (E) = Name_Op_Concat);
10030 null;
10031 end if;
10032 end if;
10034 -- E must be removed both from the entity_list of the
10035 -- current scope, and from the visibility chain.
10037 if Debug_Flag_E then
10038 Write_Str ("Override implicit operation ");
10039 Write_Int (Int (E));
10040 Write_Eol;
10041 end if;
10043 -- If E is a predefined concatenation, it stands for four
10044 -- different operations. As a result, a single explicit
10045 -- declaration does not hide it. In a possible ambiguous
10046 -- situation, Disambiguate chooses the user-defined op,
10047 -- so it is correct to retain the previous internal one.
10049 if Chars (E) /= Name_Op_Concat
10050 or else Ekind (E) /= E_Operator
10051 then
10052 -- For nondispatching derived operations that are
10053 -- overridden by a subprogram declared in the private
10054 -- part of a package, we retain the derived subprogram
10055 -- but mark it as not immediately visible. If the
10056 -- derived operation was declared in the visible part
10057 -- then this ensures that it will still be visible
10058 -- outside the package with the proper signature
10059 -- (calls from outside must also be directed to this
10060 -- version rather than the overriding one, unlike the
10061 -- dispatching case). Calls from inside the package
10062 -- will still resolve to the overriding subprogram
10063 -- since the derived one is marked as not visible
10064 -- within the package.
10066 -- If the private operation is dispatching, we achieve
10067 -- the overriding by keeping the implicit operation
10068 -- but setting its alias to be the overriding one. In
10069 -- this fashion the proper body is executed in all
10070 -- cases, but the original signature is used outside
10071 -- of the package.
10073 -- If the overriding is not in the private part, we
10074 -- remove the implicit operation altogether.
10076 if Is_Private_Declaration (S) then
10077 if not Is_Dispatching_Operation (E) then
10078 Set_Is_Immediately_Visible (E, False);
10079 else
10080 -- Work done in Override_Dispatching_Operation,
10081 -- so nothing else needs to be done here.
10083 null;
10084 end if;
10086 else
10087 -- Find predecessor of E in Homonym chain
10089 if E = Current_Entity (E) then
10090 Prev_Vis := Empty;
10091 else
10092 Prev_Vis := Current_Entity (E);
10093 while Homonym (Prev_Vis) /= E loop
10094 Prev_Vis := Homonym (Prev_Vis);
10095 end loop;
10096 end if;
10098 if Prev_Vis /= Empty then
10100 -- Skip E in the visibility chain
10102 Set_Homonym (Prev_Vis, Homonym (E));
10104 else
10105 Set_Name_Entity_Id (Chars (E), Homonym (E));
10106 end if;
10108 Set_Next_Entity (Prev, Next_Entity (E));
10110 if No (Next_Entity (Prev)) then
10111 Set_Last_Entity (Current_Scope, Prev);
10112 end if;
10113 end if;
10114 end if;
10116 Enter_Overloaded_Entity (S);
10118 -- For entities generated by Derive_Subprograms the
10119 -- overridden operation is the inherited primitive
10120 -- (which is available through the attribute alias).
10122 if not (Comes_From_Source (E))
10123 and then Is_Dispatching_Operation (E)
10124 and then Find_Dispatching_Type (E) =
10125 Find_Dispatching_Type (S)
10126 and then Present (Alias (E))
10127 and then Comes_From_Source (Alias (E))
10128 then
10129 Set_Overridden_Operation (S, Alias (E));
10130 Inherit_Subprogram_Contract (S, Alias (E));
10132 -- Normal case of setting entity as overridden
10134 -- Note: Static_Initialization and Overridden_Operation
10135 -- attributes use the same field in subprogram entities.
10136 -- Static_Initialization is only defined for internal
10137 -- initialization procedures, where Overridden_Operation
10138 -- is irrelevant. Therefore the setting of this attribute
10139 -- must check whether the target is an init_proc.
10141 elsif not Is_Init_Proc (S) then
10142 Set_Overridden_Operation (S, E);
10143 Inherit_Subprogram_Contract (S, E);
10144 end if;
10146 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10148 -- The Ghost policy in effect at the point of declaration
10149 -- of a parent subprogram and an overriding subprogram
10150 -- must match (SPARK RM 6.9(17)).
10152 Check_Ghost_Overriding (S, E);
10154 -- If S is a user-defined subprogram or a null procedure
10155 -- expanded to override an inherited null procedure, or a
10156 -- predefined dispatching primitive then indicate that E
10157 -- overrides the operation from which S is inherited.
10159 if Comes_From_Source (S)
10160 or else
10161 (Present (Parent (S))
10162 and then
10163 Nkind (Parent (S)) = N_Procedure_Specification
10164 and then
10165 Null_Present (Parent (S)))
10166 or else
10167 (Present (Alias (E))
10168 and then
10169 Is_Predefined_Dispatching_Operation (Alias (E)))
10170 then
10171 if Present (Alias (E)) then
10172 Set_Overridden_Operation (S, Alias (E));
10173 Inherit_Subprogram_Contract (S, Alias (E));
10174 end if;
10175 end if;
10177 if Is_Dispatching_Operation (E) then
10179 -- An overriding dispatching subprogram inherits the
10180 -- convention of the overridden subprogram (AI-117).
10182 Set_Convention (S, Convention (E));
10183 Check_Dispatching_Operation (S, E);
10185 -- In GNATprove_Mode, create the pragmas corresponding
10186 -- to inherited class-wide conditions.
10188 if GNATprove_Mode then
10189 Collect_Inherited_Class_Wide_Conditions (S);
10190 end if;
10192 else
10193 Check_Dispatching_Operation (S, Empty);
10194 end if;
10196 Check_For_Primitive_Subprogram
10197 (Is_Primitive_Subp, Is_Overriding => True);
10198 goto Check_Inequality;
10199 end;
10201 -- Apparent redeclarations in instances can occur when two
10202 -- formal types get the same actual type. The subprograms in
10203 -- in the instance are legal, even if not callable from the
10204 -- outside. Calls from within are disambiguated elsewhere.
10205 -- For dispatching operations in the visible part, the usual
10206 -- rules apply, and operations with the same profile are not
10207 -- legal (B830001).
10209 elsif (In_Instance_Visible_Part
10210 and then not Is_Dispatching_Operation (E))
10211 or else In_Instance_Not_Visible
10212 then
10213 null;
10215 -- Here we have a real error (identical profile)
10217 else
10218 Error_Msg_Sloc := Sloc (E);
10220 -- Avoid cascaded errors if the entity appears in
10221 -- subsequent calls.
10223 Set_Scope (S, Current_Scope);
10225 -- Generate error, with extra useful warning for the case
10226 -- of a generic instance with no completion.
10228 if Is_Generic_Instance (S)
10229 and then not Has_Completion (E)
10230 then
10231 Error_Msg_N
10232 ("instantiation cannot provide body for&", S);
10233 Error_Msg_N ("\& conflicts with declaration#", S);
10234 else
10235 Error_Msg_N ("& conflicts with declaration#", S);
10236 end if;
10238 return;
10239 end if;
10241 else
10242 -- If one subprogram has an access parameter and the other
10243 -- a parameter of an access type, calls to either might be
10244 -- ambiguous. Verify that parameters match except for the
10245 -- access parameter.
10247 if May_Hide_Profile then
10248 declare
10249 F1 : Entity_Id;
10250 F2 : Entity_Id;
10252 begin
10253 F1 := First_Formal (S);
10254 F2 := First_Formal (E);
10255 while Present (F1) and then Present (F2) loop
10256 if Is_Access_Type (Etype (F1)) then
10257 if not Is_Access_Type (Etype (F2))
10258 or else not Conforming_Types
10259 (Designated_Type (Etype (F1)),
10260 Designated_Type (Etype (F2)),
10261 Type_Conformant)
10262 then
10263 May_Hide_Profile := False;
10264 end if;
10266 elsif
10267 not Conforming_Types
10268 (Etype (F1), Etype (F2), Type_Conformant)
10269 then
10270 May_Hide_Profile := False;
10271 end if;
10273 Next_Formal (F1);
10274 Next_Formal (F2);
10275 end loop;
10277 if May_Hide_Profile
10278 and then No (F1)
10279 and then No (F2)
10280 then
10281 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10282 end if;
10283 end;
10284 end if;
10285 end if;
10287 E := Homonym (E);
10288 end loop;
10290 -- On exit, we know that S is a new entity
10292 Enter_Overloaded_Entity (S);
10293 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10294 Check_Overriding_Indicator
10295 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10297 -- The Ghost policy in effect at the point of declaration of a parent
10298 -- subprogram and an overriding subprogram must match
10299 -- (SPARK RM 6.9(17)).
10301 Check_Ghost_Overriding (S, Overridden_Subp);
10303 -- Overloading is not allowed in SPARK, except for operators
10305 if Nkind (S) /= N_Defining_Operator_Symbol then
10306 Error_Msg_Sloc := Sloc (Homonym (S));
10307 Check_SPARK_05_Restriction
10308 ("overloading not allowed with entity#", S);
10309 end if;
10311 -- If S is a derived operation for an untagged type then by
10312 -- definition it's not a dispatching operation (even if the parent
10313 -- operation was dispatching), so Check_Dispatching_Operation is not
10314 -- called in that case.
10316 if No (Derived_Type)
10317 or else Is_Tagged_Type (Derived_Type)
10318 then
10319 Check_Dispatching_Operation (S, Empty);
10320 end if;
10321 end if;
10323 -- If this is a user-defined equality operator that is not a derived
10324 -- subprogram, create the corresponding inequality. If the operation is
10325 -- dispatching, the expansion is done elsewhere, and we do not create
10326 -- an explicit inequality operation.
10328 <<Check_Inequality>>
10329 if Chars (S) = Name_Op_Eq
10330 and then Etype (S) = Standard_Boolean
10331 and then Present (Parent (S))
10332 and then not Is_Dispatching_Operation (S)
10333 then
10334 Make_Inequality_Operator (S);
10335 Check_Untagged_Equality (S);
10336 end if;
10337 end New_Overloaded_Entity;
10339 ---------------------
10340 -- Process_Formals --
10341 ---------------------
10343 procedure Process_Formals
10344 (T : List_Id;
10345 Related_Nod : Node_Id)
10347 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10348 -- Determine whether an access type designates a type coming from a
10349 -- limited view.
10351 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10352 -- Check whether the default has a class-wide type. After analysis the
10353 -- default has the type of the formal, so we must also check explicitly
10354 -- for an access attribute.
10356 ----------------------------------
10357 -- Designates_From_Limited_With --
10358 ----------------------------------
10360 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
10361 Desig : Entity_Id := Typ;
10363 begin
10364 if Is_Access_Type (Desig) then
10365 Desig := Directly_Designated_Type (Desig);
10366 end if;
10368 if Is_Class_Wide_Type (Desig) then
10369 Desig := Root_Type (Desig);
10370 end if;
10372 return
10373 Ekind (Desig) = E_Incomplete_Type
10374 and then From_Limited_With (Desig);
10375 end Designates_From_Limited_With;
10377 ---------------------------
10378 -- Is_Class_Wide_Default --
10379 ---------------------------
10381 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10382 begin
10383 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10384 or else (Nkind (D) = N_Attribute_Reference
10385 and then Attribute_Name (D) = Name_Access
10386 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10387 end Is_Class_Wide_Default;
10389 -- Local variables
10391 Context : constant Node_Id := Parent (Parent (T));
10392 Default : Node_Id;
10393 Formal : Entity_Id;
10394 Formal_Type : Entity_Id;
10395 Param_Spec : Node_Id;
10396 Ptype : Entity_Id;
10398 Num_Out_Params : Nat := 0;
10399 First_Out_Param : Entity_Id := Empty;
10400 -- Used for setting Is_Only_Out_Parameter
10402 -- Start of processing for Process_Formals
10404 begin
10405 -- In order to prevent premature use of the formals in the same formal
10406 -- part, the Ekind is left undefined until all default expressions are
10407 -- analyzed. The Ekind is established in a separate loop at the end.
10409 Param_Spec := First (T);
10410 while Present (Param_Spec) loop
10411 Formal := Defining_Identifier (Param_Spec);
10412 Set_Never_Set_In_Source (Formal, True);
10413 Enter_Name (Formal);
10415 -- Case of ordinary parameters
10417 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10418 Find_Type (Parameter_Type (Param_Spec));
10419 Ptype := Parameter_Type (Param_Spec);
10421 if Ptype = Error then
10422 goto Continue;
10423 end if;
10425 Formal_Type := Entity (Ptype);
10427 if Is_Incomplete_Type (Formal_Type)
10428 or else
10429 (Is_Class_Wide_Type (Formal_Type)
10430 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10431 then
10432 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10433 -- primitive operations, as long as their completion is
10434 -- in the same declarative part. If in the private part
10435 -- this means that the type cannot be a Taft-amendment type.
10436 -- Check is done on package exit. For access to subprograms,
10437 -- the use is legal for Taft-amendment types.
10439 -- Ada 2012: tagged incomplete types are allowed as generic
10440 -- formal types. They do not introduce dependencies and the
10441 -- corresponding generic subprogram does not have a delayed
10442 -- freeze, because it does not need a freeze node. However,
10443 -- it is still the case that untagged incomplete types cannot
10444 -- be Taft-amendment types and must be completed in private
10445 -- part, so the subprogram must appear in the list of private
10446 -- dependents of the type. If the type is class-wide, it is
10447 -- not a primitive, but the freezing of the subprogram must
10448 -- also be delayed to force the creation of a freeze node.
10450 if Is_Tagged_Type (Formal_Type)
10451 or else (Ada_Version >= Ada_2012
10452 and then not From_Limited_With (Formal_Type)
10453 and then not Is_Generic_Type (Formal_Type))
10454 then
10455 if Ekind (Scope (Current_Scope)) = E_Package
10456 and then not Is_Generic_Type (Formal_Type)
10457 then
10458 if not Nkind_In
10459 (Parent (T), N_Access_Function_Definition,
10460 N_Access_Procedure_Definition)
10461 then
10462 -- A limited view has no private dependents
10464 if not Is_Class_Wide_Type (Formal_Type)
10465 and then not From_Limited_With (Formal_Type)
10466 then
10467 Append_Elmt (Current_Scope,
10468 Private_Dependents (Base_Type (Formal_Type)));
10469 end if;
10471 -- Freezing is delayed to ensure that Register_Prim
10472 -- will get called for this operation, which is needed
10473 -- in cases where static dispatch tables aren't built.
10474 -- (Note that the same is done for controlling access
10475 -- parameter cases in function Access_Definition.)
10477 if not Is_Thunk (Current_Scope) then
10478 Set_Has_Delayed_Freeze (Current_Scope);
10479 end if;
10480 end if;
10481 end if;
10483 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10484 N_Access_Procedure_Definition)
10485 then
10486 -- AI05-0151: Tagged incomplete types are allowed in all
10487 -- formal parts. Untagged incomplete types are not allowed
10488 -- in bodies. Limited views of either kind are not allowed
10489 -- if there is no place at which the non-limited view can
10490 -- become available.
10492 -- Incomplete formal untagged types are not allowed in
10493 -- subprogram bodies (but are legal in their declarations).
10494 -- This excludes bodies created for null procedures, which
10495 -- are basic declarations.
10497 if Is_Generic_Type (Formal_Type)
10498 and then not Is_Tagged_Type (Formal_Type)
10499 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10500 then
10501 Error_Msg_N
10502 ("invalid use of formal incomplete type", Param_Spec);
10504 elsif Ada_Version >= Ada_2012 then
10505 if Is_Tagged_Type (Formal_Type)
10506 and then (not From_Limited_With (Formal_Type)
10507 or else not In_Package_Body)
10508 then
10509 null;
10511 elsif Nkind_In (Context, N_Accept_Statement,
10512 N_Accept_Alternative,
10513 N_Entry_Body)
10514 or else (Nkind (Context) = N_Subprogram_Body
10515 and then Comes_From_Source (Context))
10516 then
10517 Error_Msg_NE
10518 ("invalid use of untagged incomplete type &",
10519 Ptype, Formal_Type);
10520 end if;
10522 else
10523 Error_Msg_NE
10524 ("invalid use of incomplete type&",
10525 Param_Spec, Formal_Type);
10527 -- Further checks on the legality of incomplete types
10528 -- in formal parts are delayed until the freeze point
10529 -- of the enclosing subprogram or access to subprogram.
10530 end if;
10531 end if;
10533 elsif Ekind (Formal_Type) = E_Void then
10534 Error_Msg_NE
10535 ("premature use of&",
10536 Parameter_Type (Param_Spec), Formal_Type);
10537 end if;
10539 -- Ada 2012 (AI-142): Handle aliased parameters
10541 if Ada_Version >= Ada_2012
10542 and then Aliased_Present (Param_Spec)
10543 then
10544 Set_Is_Aliased (Formal);
10545 end if;
10547 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10548 -- declaration corresponding to the null-excluding type of the
10549 -- formal in the enclosing scope. Finally, replace the parameter
10550 -- type of the formal with the internal subtype.
10552 if Ada_Version >= Ada_2005
10553 and then Null_Exclusion_Present (Param_Spec)
10554 then
10555 if not Is_Access_Type (Formal_Type) then
10556 Error_Msg_N
10557 ("`NOT NULL` allowed only for an access type", Param_Spec);
10559 else
10560 if Can_Never_Be_Null (Formal_Type)
10561 and then Comes_From_Source (Related_Nod)
10562 then
10563 Error_Msg_NE
10564 ("`NOT NULL` not allowed (& already excludes null)",
10565 Param_Spec, Formal_Type);
10566 end if;
10568 Formal_Type :=
10569 Create_Null_Excluding_Itype
10570 (T => Formal_Type,
10571 Related_Nod => Related_Nod,
10572 Scope_Id => Scope (Current_Scope));
10574 -- If the designated type of the itype is an itype that is
10575 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10576 -- on the access subtype, to prevent order-of-elaboration
10577 -- issues in the backend.
10579 -- Example:
10580 -- type T is access procedure;
10581 -- procedure Op (O : not null T);
10583 if Is_Itype (Directly_Designated_Type (Formal_Type))
10584 and then
10585 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10586 then
10587 Set_Has_Delayed_Freeze (Formal_Type);
10588 end if;
10589 end if;
10590 end if;
10592 -- An access formal type
10594 else
10595 Formal_Type :=
10596 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10598 -- No need to continue if we already notified errors
10600 if not Present (Formal_Type) then
10601 return;
10602 end if;
10604 -- Ada 2005 (AI-254)
10606 declare
10607 AD : constant Node_Id :=
10608 Access_To_Subprogram_Definition
10609 (Parameter_Type (Param_Spec));
10610 begin
10611 if Present (AD) and then Protected_Present (AD) then
10612 Formal_Type :=
10613 Replace_Anonymous_Access_To_Protected_Subprogram
10614 (Param_Spec);
10615 end if;
10616 end;
10617 end if;
10619 Set_Etype (Formal, Formal_Type);
10621 -- Deal with default expression if present
10623 Default := Expression (Param_Spec);
10625 if Present (Default) then
10626 Check_SPARK_05_Restriction
10627 ("default expression is not allowed", Default);
10629 if Out_Present (Param_Spec) then
10630 Error_Msg_N
10631 ("default initialization only allowed for IN parameters",
10632 Param_Spec);
10633 end if;
10635 -- Do the special preanalysis of the expression (see section on
10636 -- "Handling of Default Expressions" in the spec of package Sem).
10638 Preanalyze_Spec_Expression (Default, Formal_Type);
10640 -- An access to constant cannot be the default for
10641 -- an access parameter that is an access to variable.
10643 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10644 and then not Is_Access_Constant (Formal_Type)
10645 and then Is_Access_Type (Etype (Default))
10646 and then Is_Access_Constant (Etype (Default))
10647 then
10648 Error_Msg_N
10649 ("formal that is access to variable cannot be initialized "
10650 & "with an access-to-constant expression", Default);
10651 end if;
10653 -- Check that the designated type of an access parameter's default
10654 -- is not a class-wide type unless the parameter's designated type
10655 -- is also class-wide.
10657 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10658 and then not Designates_From_Limited_With (Formal_Type)
10659 and then Is_Class_Wide_Default (Default)
10660 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10661 then
10662 Error_Msg_N
10663 ("access to class-wide expression not allowed here", Default);
10664 end if;
10666 -- Check incorrect use of dynamically tagged expressions
10668 if Is_Tagged_Type (Formal_Type) then
10669 Check_Dynamically_Tagged_Expression
10670 (Expr => Default,
10671 Typ => Formal_Type,
10672 Related_Nod => Default);
10673 end if;
10674 end if;
10676 -- Ada 2005 (AI-231): Static checks
10678 if Ada_Version >= Ada_2005
10679 and then Is_Access_Type (Etype (Formal))
10680 and then Can_Never_Be_Null (Etype (Formal))
10681 then
10682 Null_Exclusion_Static_Checks (Param_Spec);
10683 end if;
10685 -- The following checks are relevant only when SPARK_Mode is on as
10686 -- these are not standard Ada legality rules.
10688 if SPARK_Mode = On then
10689 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10691 -- A function cannot have a parameter of mode IN OUT or OUT
10692 -- (SPARK RM 6.1).
10694 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10695 Error_Msg_N
10696 ("function cannot have parameter of mode `OUT` or "
10697 & "`IN OUT`", Formal);
10698 end if;
10700 -- A procedure cannot have an effectively volatile formal
10701 -- parameter of mode IN because it behaves as a constant
10702 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
10704 elsif Ekind (Scope (Formal)) = E_Procedure
10705 and then Ekind (Formal) = E_In_Parameter
10706 and then Is_Effectively_Volatile (Formal)
10707 then
10708 Error_Msg_N
10709 ("formal parameter of mode `IN` cannot be volatile", Formal);
10710 end if;
10711 end if;
10713 <<Continue>>
10714 Next (Param_Spec);
10715 end loop;
10717 -- If this is the formal part of a function specification, analyze the
10718 -- subtype mark in the context where the formals are visible but not
10719 -- yet usable, and may hide outer homographs.
10721 if Nkind (Related_Nod) = N_Function_Specification then
10722 Analyze_Return_Type (Related_Nod);
10724 -- If return type is class-wide, subprogram freezing may be
10725 -- delayed as well, unless the declaration is a compilation unit
10726 -- in which case the freeze node would appear too late.
10728 if Is_Class_Wide_Type (Etype (Current_Scope))
10729 and then not Is_Thunk (Current_Scope)
10730 and then not Is_Compilation_Unit (Current_Scope)
10731 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
10732 N_Subprogram_Declaration
10733 then
10734 Set_Has_Delayed_Freeze (Current_Scope);
10735 end if;
10736 end if;
10738 -- Now set the kind (mode) of each formal
10740 Param_Spec := First (T);
10741 while Present (Param_Spec) loop
10742 Formal := Defining_Identifier (Param_Spec);
10743 Set_Formal_Mode (Formal);
10745 if Ekind (Formal) = E_In_Parameter then
10746 Set_Default_Value (Formal, Expression (Param_Spec));
10748 if Present (Expression (Param_Spec)) then
10749 Default := Expression (Param_Spec);
10751 if Is_Scalar_Type (Etype (Default)) then
10752 if Nkind (Parameter_Type (Param_Spec)) /=
10753 N_Access_Definition
10754 then
10755 Formal_Type := Entity (Parameter_Type (Param_Spec));
10756 else
10757 Formal_Type :=
10758 Access_Definition
10759 (Related_Nod, Parameter_Type (Param_Spec));
10760 end if;
10762 Apply_Scalar_Range_Check (Default, Formal_Type);
10763 end if;
10764 end if;
10766 elsif Ekind (Formal) = E_Out_Parameter then
10767 Num_Out_Params := Num_Out_Params + 1;
10769 if Num_Out_Params = 1 then
10770 First_Out_Param := Formal;
10771 end if;
10773 elsif Ekind (Formal) = E_In_Out_Parameter then
10774 Num_Out_Params := Num_Out_Params + 1;
10775 end if;
10777 -- Skip remaining processing if formal type was in error
10779 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10780 goto Next_Parameter;
10781 end if;
10783 -- Force call by reference if aliased
10785 if Is_Aliased (Formal) then
10786 Set_Mechanism (Formal, By_Reference);
10788 -- Warn if user asked this to be passed by copy
10790 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10791 Error_Msg_N
10792 ("cannot pass aliased parameter & by copy??", Formal);
10793 end if;
10795 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10797 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10798 Set_Mechanism (Formal, By_Copy);
10800 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10801 Set_Mechanism (Formal, By_Reference);
10802 end if;
10804 <<Next_Parameter>>
10805 Next (Param_Spec);
10806 end loop;
10808 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10809 Set_Is_Only_Out_Parameter (First_Out_Param);
10810 end if;
10811 end Process_Formals;
10813 ----------------------------
10814 -- Reference_Body_Formals --
10815 ----------------------------
10817 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10818 Fs : Entity_Id;
10819 Fb : Entity_Id;
10821 begin
10822 if Error_Posted (Spec) then
10823 return;
10824 end if;
10826 -- Iterate over both lists. They may be of different lengths if the two
10827 -- specs are not conformant.
10829 Fs := First_Formal (Spec);
10830 Fb := First_Formal (Bod);
10831 while Present (Fs) and then Present (Fb) loop
10832 Generate_Reference (Fs, Fb, 'b');
10834 if Style_Check then
10835 Style.Check_Identifier (Fb, Fs);
10836 end if;
10838 Set_Spec_Entity (Fb, Fs);
10839 Set_Referenced (Fs, False);
10840 Next_Formal (Fs);
10841 Next_Formal (Fb);
10842 end loop;
10843 end Reference_Body_Formals;
10845 -------------------------
10846 -- Set_Actual_Subtypes --
10847 -------------------------
10849 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10850 Decl : Node_Id;
10851 Formal : Entity_Id;
10852 T : Entity_Id;
10853 First_Stmt : Node_Id := Empty;
10854 AS_Needed : Boolean;
10856 begin
10857 -- If this is an empty initialization procedure, no need to create
10858 -- actual subtypes (small optimization).
10860 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10861 return;
10862 end if;
10864 Formal := First_Formal (Subp);
10865 while Present (Formal) loop
10866 T := Etype (Formal);
10868 -- We never need an actual subtype for a constrained formal
10870 if Is_Constrained (T) then
10871 AS_Needed := False;
10873 -- If we have unknown discriminants, then we do not need an actual
10874 -- subtype, or more accurately we cannot figure it out. Note that
10875 -- all class-wide types have unknown discriminants.
10877 elsif Has_Unknown_Discriminants (T) then
10878 AS_Needed := False;
10880 -- At this stage we have an unconstrained type that may need an
10881 -- actual subtype. For sure the actual subtype is needed if we have
10882 -- an unconstrained array type.
10884 elsif Is_Array_Type (T) then
10885 AS_Needed := True;
10887 -- The only other case needing an actual subtype is an unconstrained
10888 -- record type which is an IN parameter (we cannot generate actual
10889 -- subtypes for the OUT or IN OUT case, since an assignment can
10890 -- change the discriminant values. However we exclude the case of
10891 -- initialization procedures, since discriminants are handled very
10892 -- specially in this context, see the section entitled "Handling of
10893 -- Discriminants" in Einfo.
10895 -- We also exclude the case of Discrim_SO_Functions (functions used
10896 -- in front end layout mode for size/offset values), since in such
10897 -- functions only discriminants are referenced, and not only are such
10898 -- subtypes not needed, but they cannot always be generated, because
10899 -- of order of elaboration issues.
10901 elsif Is_Record_Type (T)
10902 and then Ekind (Formal) = E_In_Parameter
10903 and then Chars (Formal) /= Name_uInit
10904 and then not Is_Unchecked_Union (T)
10905 and then not Is_Discrim_SO_Function (Subp)
10906 then
10907 AS_Needed := True;
10909 -- All other cases do not need an actual subtype
10911 else
10912 AS_Needed := False;
10913 end if;
10915 -- Generate actual subtypes for unconstrained arrays and
10916 -- unconstrained discriminated records.
10918 if AS_Needed then
10919 if Nkind (N) = N_Accept_Statement then
10921 -- If expansion is active, the formal is replaced by a local
10922 -- variable that renames the corresponding entry of the
10923 -- parameter block, and it is this local variable that may
10924 -- require an actual subtype.
10926 if Expander_Active then
10927 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10928 else
10929 Decl := Build_Actual_Subtype (T, Formal);
10930 end if;
10932 if Present (Handled_Statement_Sequence (N)) then
10933 First_Stmt :=
10934 First (Statements (Handled_Statement_Sequence (N)));
10935 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10936 Mark_Rewrite_Insertion (Decl);
10937 else
10938 -- If the accept statement has no body, there will be no
10939 -- reference to the actuals, so no need to compute actual
10940 -- subtypes.
10942 return;
10943 end if;
10945 else
10946 Decl := Build_Actual_Subtype (T, Formal);
10947 Prepend (Decl, Declarations (N));
10948 Mark_Rewrite_Insertion (Decl);
10949 end if;
10951 -- The declaration uses the bounds of an existing object, and
10952 -- therefore needs no constraint checks.
10954 Analyze (Decl, Suppress => All_Checks);
10956 -- We need to freeze manually the generated type when it is
10957 -- inserted anywhere else than in a declarative part.
10959 if Present (First_Stmt) then
10960 Insert_List_Before_And_Analyze (First_Stmt,
10961 Freeze_Entity (Defining_Identifier (Decl), N));
10963 -- Ditto if the type has a dynamic predicate, because the
10964 -- generated function will mention the actual subtype.
10966 elsif Has_Dynamic_Predicate_Aspect (T) then
10967 Insert_List_Before_And_Analyze (Decl,
10968 Freeze_Entity (Defining_Identifier (Decl), N));
10969 end if;
10971 if Nkind (N) = N_Accept_Statement
10972 and then Expander_Active
10973 then
10974 Set_Actual_Subtype (Renamed_Object (Formal),
10975 Defining_Identifier (Decl));
10976 else
10977 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10978 end if;
10979 end if;
10981 Next_Formal (Formal);
10982 end loop;
10983 end Set_Actual_Subtypes;
10985 ---------------------
10986 -- Set_Formal_Mode --
10987 ---------------------
10989 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10990 Spec : constant Node_Id := Parent (Formal_Id);
10991 Id : constant Entity_Id := Scope (Formal_Id);
10993 begin
10994 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10995 -- since we ensure that corresponding actuals are always valid at the
10996 -- point of the call.
10998 if Out_Present (Spec) then
10999 if Ekind_In (Id, E_Entry, E_Entry_Family)
11000 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11001 then
11002 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11003 end if;
11005 if Ekind_In (Id, E_Function, E_Generic_Function) then
11007 -- [IN] OUT parameters allowed for functions in Ada 2012
11009 if Ada_Version >= Ada_2012 then
11011 -- Even in Ada 2012 operators can only have IN parameters
11013 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11014 Error_Msg_N ("operators can only have IN parameters", Spec);
11015 end if;
11017 if In_Present (Spec) then
11018 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11019 else
11020 Set_Ekind (Formal_Id, E_Out_Parameter);
11021 end if;
11023 -- But not in earlier versions of Ada
11025 else
11026 Error_Msg_N ("functions can only have IN parameters", Spec);
11027 Set_Ekind (Formal_Id, E_In_Parameter);
11028 end if;
11030 elsif In_Present (Spec) then
11031 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11033 else
11034 Set_Ekind (Formal_Id, E_Out_Parameter);
11035 Set_Never_Set_In_Source (Formal_Id, True);
11036 Set_Is_True_Constant (Formal_Id, False);
11037 Set_Current_Value (Formal_Id, Empty);
11038 end if;
11040 else
11041 Set_Ekind (Formal_Id, E_In_Parameter);
11042 end if;
11044 -- Set Is_Known_Non_Null for access parameters since the language
11045 -- guarantees that access parameters are always non-null. We also set
11046 -- Can_Never_Be_Null, since there is no way to change the value.
11048 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11050 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11051 -- null; In Ada 2005, only if then null_exclusion is explicit.
11053 if Ada_Version < Ada_2005
11054 or else Can_Never_Be_Null (Etype (Formal_Id))
11055 then
11056 Set_Is_Known_Non_Null (Formal_Id);
11057 Set_Can_Never_Be_Null (Formal_Id);
11058 end if;
11060 -- Ada 2005 (AI-231): Null-exclusion access subtype
11062 elsif Is_Access_Type (Etype (Formal_Id))
11063 and then Can_Never_Be_Null (Etype (Formal_Id))
11064 then
11065 Set_Is_Known_Non_Null (Formal_Id);
11067 -- We can also set Can_Never_Be_Null (thus preventing some junk
11068 -- access checks) for the case of an IN parameter, which cannot
11069 -- be changed, or for an IN OUT parameter, which can be changed but
11070 -- not to a null value. But for an OUT parameter, the initial value
11071 -- passed in can be null, so we can't set this flag in that case.
11073 if Ekind (Formal_Id) /= E_Out_Parameter then
11074 Set_Can_Never_Be_Null (Formal_Id);
11075 end if;
11076 end if;
11078 Set_Mechanism (Formal_Id, Default_Mechanism);
11079 Set_Formal_Validity (Formal_Id);
11080 end Set_Formal_Mode;
11082 -------------------------
11083 -- Set_Formal_Validity --
11084 -------------------------
11086 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11087 begin
11088 -- If no validity checking, then we cannot assume anything about the
11089 -- validity of parameters, since we do not know there is any checking
11090 -- of the validity on the call side.
11092 if not Validity_Checks_On then
11093 return;
11095 -- If validity checking for parameters is enabled, this means we are
11096 -- not supposed to make any assumptions about argument values.
11098 elsif Validity_Check_Parameters then
11099 return;
11101 -- If we are checking in parameters, we will assume that the caller is
11102 -- also checking parameters, so we can assume the parameter is valid.
11104 elsif Ekind (Formal_Id) = E_In_Parameter
11105 and then Validity_Check_In_Params
11106 then
11107 Set_Is_Known_Valid (Formal_Id, True);
11109 -- Similar treatment for IN OUT parameters
11111 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11112 and then Validity_Check_In_Out_Params
11113 then
11114 Set_Is_Known_Valid (Formal_Id, True);
11115 end if;
11116 end Set_Formal_Validity;
11118 ------------------------
11119 -- Subtype_Conformant --
11120 ------------------------
11122 function Subtype_Conformant
11123 (New_Id : Entity_Id;
11124 Old_Id : Entity_Id;
11125 Skip_Controlling_Formals : Boolean := False) return Boolean
11127 Result : Boolean;
11128 begin
11129 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11130 Skip_Controlling_Formals => Skip_Controlling_Formals);
11131 return Result;
11132 end Subtype_Conformant;
11134 ---------------------
11135 -- Type_Conformant --
11136 ---------------------
11138 function Type_Conformant
11139 (New_Id : Entity_Id;
11140 Old_Id : Entity_Id;
11141 Skip_Controlling_Formals : Boolean := False) return Boolean
11143 Result : Boolean;
11144 begin
11145 May_Hide_Profile := False;
11146 Check_Conformance
11147 (New_Id, Old_Id, Type_Conformant, False, Result,
11148 Skip_Controlling_Formals => Skip_Controlling_Formals);
11149 return Result;
11150 end Type_Conformant;
11152 -------------------------------
11153 -- Valid_Operator_Definition --
11154 -------------------------------
11156 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11157 N : Integer := 0;
11158 F : Entity_Id;
11159 Id : constant Name_Id := Chars (Designator);
11160 N_OK : Boolean;
11162 begin
11163 F := First_Formal (Designator);
11164 while Present (F) loop
11165 N := N + 1;
11167 if Present (Default_Value (F)) then
11168 Error_Msg_N
11169 ("default values not allowed for operator parameters",
11170 Parent (F));
11172 -- For function instantiations that are operators, we must check
11173 -- separately that the corresponding generic only has in-parameters.
11174 -- For subprogram declarations this is done in Set_Formal_Mode. Such
11175 -- an error could not arise in earlier versions of the language.
11177 elsif Ekind (F) /= E_In_Parameter then
11178 Error_Msg_N ("operators can only have IN parameters", F);
11179 end if;
11181 Next_Formal (F);
11182 end loop;
11184 -- Verify that user-defined operators have proper number of arguments
11185 -- First case of operators which can only be unary
11187 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
11188 N_OK := (N = 1);
11190 -- Case of operators which can be unary or binary
11192 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
11193 N_OK := (N in 1 .. 2);
11195 -- All other operators can only be binary
11197 else
11198 N_OK := (N = 2);
11199 end if;
11201 if not N_OK then
11202 Error_Msg_N
11203 ("incorrect number of arguments for operator", Designator);
11204 end if;
11206 if Id = Name_Op_Ne
11207 and then Base_Type (Etype (Designator)) = Standard_Boolean
11208 and then not Is_Intrinsic_Subprogram (Designator)
11209 then
11210 Error_Msg_N
11211 ("explicit definition of inequality not allowed", Designator);
11212 end if;
11213 end Valid_Operator_Definition;
11215 end Sem_Ch6;