1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 This file provides some dataflow routines for computing reaching defs,
27 upward exposed uses, live variables, def-use chains, and use-def
28 chains. The global dataflow is performed using simple iterative
29 methods with a worklist and could be sped up by ordering the blocks
30 with a depth first search order.
32 A `struct ref' data structure (ref) is allocated for every register
33 reference (def or use) and this records the insn and bb the ref is
34 found within. The refs are linked together in chains of uses and defs
35 for each insn and for each register. Each ref also has a chain field
36 that links all the use refs for a def or all the def refs for a use.
37 This is used to create use-def or def-use chains.
42 Here's an example of using the dataflow routines.
48 df_analyse (df, 0, DF_ALL);
50 df_dump (df, DF_ALL, stderr);
55 df_init simply creates a poor man's object (df) that needs to be
56 passed to all the dataflow routines. df_finish destroys this
57 object and frees up any allocated memory. DF_ALL says to analyse
60 df_analyse performs the following:
62 1. Records defs and uses by scanning the insns in each basic block
63 or by scanning the insns queued by df_insn_modify.
64 2. Links defs and uses into insn-def and insn-use chains.
65 3. Links defs and uses into reg-def and reg-use chains.
66 4. Assigns LUIDs to each insn (for modified blocks).
67 5. Calculates local reaching definitions.
68 6. Calculates global reaching definitions.
69 7. Creates use-def chains.
70 8. Calculates local reaching uses (upwards exposed uses).
71 9. Calculates global reaching uses.
72 10. Creates def-use chains.
73 11. Calculates local live registers.
74 12. Calculates global live registers.
75 13. Calculates register lifetimes and determines local registers.
80 Note that the dataflow information is not updated for every newly
81 deleted or created insn. If the dataflow information requires
82 updating then all the changed, new, or deleted insns needs to be
83 marked with df_insn_modify (or df_insns_modify) either directly or
84 indirectly (say through calling df_insn_delete). df_insn_modify
85 marks all the modified insns to get processed the next time df_analyse
88 Beware that tinkering with insns may invalidate the dataflow information.
89 The philosophy behind these routines is that once the dataflow
90 information has been gathered, the user should store what they require
91 before they tinker with any insn. Once a reg is replaced, for example,
92 then the reg-def/reg-use chains will point to the wrong place. Once a
93 whole lot of changes have been made, df_analyse can be called again
94 to update the dataflow information. Currently, this is not very smart
95 with regard to propagating changes to the dataflow so it should not
101 The basic object is a REF (reference) and this may either be a DEF
102 (definition) or a USE of a register.
104 These are linked into a variety of lists; namely reg-def, reg-use,
105 insn-def, insn-use, def-use, and use-def lists. For example,
106 the reg-def lists contain all the refs that define a given register
107 while the insn-use lists contain all the refs used by an insn.
109 Note that the reg-def and reg-use chains are generally short (except for the
110 hard registers) and thus it is much faster to search these chains
111 rather than searching the def or use bitmaps.
113 If the insns are in SSA form then the reg-def and use-def lists
114 should only contain the single defining ref.
119 1) Incremental dataflow analysis.
121 Note that if a loop invariant insn is hoisted (or sunk), we do not
122 need to change the def-use or use-def chains. All we have to do is to
123 change the bb field for all the associated defs and uses and to
124 renumber the LUIDs for the original and new basic blocks of the insn.
126 When shadowing loop mems we create new uses and defs for new pseudos
127 so we do not affect the existing dataflow information.
129 My current strategy is to queue up all modified, created, or deleted
130 insns so when df_analyse is called we can easily determine all the new
131 or deleted refs. Currently the global dataflow information is
132 recomputed from scratch but this could be propagated more efficiently.
134 2) Reduced memory requirements.
136 We could operate a pool of ref structures. When a ref is deleted it
137 gets returned to the pool (say by linking on to a chain of free refs).
138 This will require a pair of bitmaps for defs and uses so that we can
139 tell which ones have been changed. Alternatively, we could
140 periodically squeeze the def and use tables and associated bitmaps and
141 renumber the def and use ids.
143 3) Ordering of reg-def and reg-use lists.
145 Should the first entry in the def list be the first def (within a BB)?
146 Similarly, should the first entry in the use list be the last use
149 4) Working with a sub-CFG.
151 Often the whole CFG does not need to be analyzed, for example,
152 when optimising a loop, only certain registers are of interest.
153 Perhaps there should be a bitmap argument to df_analyse to specify
154 which registers should be analyzed?
159 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
160 both a use and a def. These are both marked read/write to show that they
161 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
162 will generate a use of reg 42 followed by a def of reg 42 (both marked
163 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
164 generates a use of reg 41 then a def of reg 41 (both marked read/write),
165 even though reg 41 is decremented before it is used for the memory
166 address in this second example.
168 A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
169 a read-modify write operation. We generate both a use and a def
170 and again mark them read/write.
175 #include "coretypes.h"
179 #include "insn-config.h"
181 #include "function.h"
184 #include "hard-reg-set.h"
185 #include "basic-block.h"
191 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
194 unsigned int node_; \
195 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, \
196 {(BB) = BASIC_BLOCK (node_); CODE;}); \
200 static struct obstack df_ref_obstack
;
201 static struct df
*ddf
;
203 static void df_reg_table_realloc
PARAMS((struct df
*, int));
204 static void df_insn_table_realloc
PARAMS((struct df
*, unsigned int));
205 static void df_bitmaps_alloc
PARAMS((struct df
*, int));
206 static void df_bitmaps_free
PARAMS((struct df
*, int));
207 static void df_free
PARAMS((struct df
*));
208 static void df_alloc
PARAMS((struct df
*, int));
210 static rtx df_reg_clobber_gen
PARAMS((unsigned int));
211 static rtx df_reg_use_gen
PARAMS((unsigned int));
213 static inline struct df_link
*df_link_create
PARAMS((struct ref
*,
215 static struct df_link
*df_ref_unlink
PARAMS((struct df_link
**, struct ref
*));
216 static void df_def_unlink
PARAMS((struct df
*, struct ref
*));
217 static void df_use_unlink
PARAMS((struct df
*, struct ref
*));
218 static void df_insn_refs_unlink
PARAMS ((struct df
*, basic_block
, rtx
));
220 static void df_bb_refs_unlink
PARAMS ((struct df
*, basic_block
));
221 static void df_refs_unlink
PARAMS ((struct df
*, bitmap
));
224 static struct ref
*df_ref_create
PARAMS((struct df
*,
226 enum df_ref_type
, enum df_ref_flags
));
227 static void df_ref_record_1
PARAMS((struct df
*, rtx
, rtx
*,
228 rtx
, enum df_ref_type
,
230 static void df_ref_record
PARAMS((struct df
*, rtx
, rtx
*,
231 rtx
, enum df_ref_type
,
233 static void df_def_record_1
PARAMS((struct df
*, rtx
, basic_block
, rtx
));
234 static void df_defs_record
PARAMS((struct df
*, rtx
, basic_block
, rtx
));
235 static void df_uses_record
PARAMS((struct df
*, rtx
*,
236 enum df_ref_type
, basic_block
, rtx
,
238 static void df_insn_refs_record
PARAMS((struct df
*, basic_block
, rtx
));
239 static void df_bb_refs_record
PARAMS((struct df
*, basic_block
));
240 static void df_refs_record
PARAMS((struct df
*, bitmap
));
242 static void df_bb_reg_def_chain_create
PARAMS((struct df
*, basic_block
));
243 static void df_reg_def_chain_create
PARAMS((struct df
*, bitmap
));
244 static void df_bb_reg_use_chain_create
PARAMS((struct df
*, basic_block
));
245 static void df_reg_use_chain_create
PARAMS((struct df
*, bitmap
));
246 static void df_bb_du_chain_create
PARAMS((struct df
*, basic_block
, bitmap
));
247 static void df_du_chain_create
PARAMS((struct df
*, bitmap
));
248 static void df_bb_ud_chain_create
PARAMS((struct df
*, basic_block
));
249 static void df_ud_chain_create
PARAMS((struct df
*, bitmap
));
250 static void df_bb_rd_local_compute
PARAMS((struct df
*, basic_block
));
251 static void df_rd_local_compute
PARAMS((struct df
*, bitmap
));
252 static void df_bb_ru_local_compute
PARAMS((struct df
*, basic_block
));
253 static void df_ru_local_compute
PARAMS((struct df
*, bitmap
));
254 static void df_bb_lr_local_compute
PARAMS((struct df
*, basic_block
));
255 static void df_lr_local_compute
PARAMS((struct df
*, bitmap
));
256 static void df_bb_reg_info_compute
PARAMS((struct df
*, basic_block
, bitmap
));
257 static void df_reg_info_compute
PARAMS((struct df
*, bitmap
));
259 static int df_bb_luids_set
PARAMS((struct df
*df
, basic_block
));
260 static int df_luids_set
PARAMS((struct df
*df
, bitmap
));
262 static int df_modified_p
PARAMS ((struct df
*, bitmap
));
263 static int df_refs_queue
PARAMS ((struct df
*));
264 static int df_refs_process
PARAMS ((struct df
*));
265 static int df_bb_refs_update
PARAMS ((struct df
*, basic_block
));
266 static int df_refs_update
PARAMS ((struct df
*));
267 static void df_analyse_1
PARAMS((struct df
*, bitmap
, int, int));
269 static void df_insns_modify
PARAMS((struct df
*, basic_block
,
271 static int df_rtx_mem_replace
PARAMS ((rtx
*, void *));
272 static int df_rtx_reg_replace
PARAMS ((rtx
*, void *));
273 void df_refs_reg_replace
PARAMS ((struct df
*, bitmap
,
274 struct df_link
*, rtx
, rtx
));
276 static int df_def_dominates_all_uses_p
PARAMS((struct df
*, struct ref
*def
));
277 static int df_def_dominates_uses_p
PARAMS((struct df
*,
278 struct ref
*def
, bitmap
));
279 static struct ref
*df_bb_regno_last_use_find
PARAMS((struct df
*, basic_block
,
281 static struct ref
*df_bb_regno_first_def_find
PARAMS((struct df
*, basic_block
,
283 static struct ref
*df_bb_insn_regno_last_use_find
PARAMS((struct df
*,
286 static struct ref
*df_bb_insn_regno_first_def_find
PARAMS((struct df
*,
290 static void df_chain_dump
PARAMS((struct df_link
*, FILE *file
));
291 static void df_chain_dump_regno
PARAMS((struct df_link
*, FILE *file
));
292 static void df_regno_debug
PARAMS ((struct df
*, unsigned int, FILE *));
293 static void df_ref_debug
PARAMS ((struct df
*, struct ref
*, FILE *));
294 static void df_rd_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
295 bitmap
, bitmap
, void *));
296 static void df_ru_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
297 bitmap
, bitmap
, void *));
298 static void df_lr_transfer_function
PARAMS ((int, int *, bitmap
, bitmap
,
299 bitmap
, bitmap
, void *));
300 static void hybrid_search_bitmap
PARAMS ((basic_block
, bitmap
*, bitmap
*,
301 bitmap
*, bitmap
*, enum df_flow_dir
,
302 enum df_confluence_op
,
303 transfer_function_bitmap
,
304 sbitmap
, sbitmap
, void *));
305 static void hybrid_search_sbitmap
PARAMS ((basic_block
, sbitmap
*, sbitmap
*,
306 sbitmap
*, sbitmap
*, enum df_flow_dir
,
307 enum df_confluence_op
,
308 transfer_function_sbitmap
,
309 sbitmap
, sbitmap
, void *));
312 /* Local memory allocation/deallocation routines. */
315 /* Increase the insn info table to have space for at least SIZE + 1
318 df_insn_table_realloc (df
, size
)
323 if (size
<= df
->insn_size
)
326 /* Make the table a little larger than requested, so we do not need
327 to enlarge it so often. */
328 size
+= df
->insn_size
/ 4;
330 df
->insns
= (struct insn_info
*)
331 xrealloc (df
->insns
, size
* sizeof (struct insn_info
));
333 memset (df
->insns
+ df
->insn_size
, 0,
334 (size
- df
->insn_size
) * sizeof (struct insn_info
));
336 df
->insn_size
= size
;
338 if (! df
->insns_modified
)
340 df
->insns_modified
= BITMAP_XMALLOC ();
341 bitmap_zero (df
->insns_modified
);
346 /* Increase the reg info table by SIZE more elements. */
348 df_reg_table_realloc (df
, size
)
352 /* Make table 25 percent larger by default. */
354 size
= df
->reg_size
/ 4;
356 size
+= df
->reg_size
;
357 if (size
< max_reg_num ())
358 size
= max_reg_num ();
360 df
->regs
= (struct reg_info
*)
361 xrealloc (df
->regs
, size
* sizeof (struct reg_info
));
363 /* Zero the new entries. */
364 memset (df
->regs
+ df
->reg_size
, 0,
365 (size
- df
->reg_size
) * sizeof (struct reg_info
));
371 /* Allocate bitmaps for each basic block. */
373 df_bitmaps_alloc (df
, flags
)
380 /* Free the bitmaps if they need resizing. */
381 if ((flags
& DF_LR
) && df
->n_regs
< (unsigned int) max_reg_num ())
382 dflags
|= DF_LR
| DF_RU
;
383 if ((flags
& DF_RU
) && df
->n_uses
< df
->use_id
)
385 if ((flags
& DF_RD
) && df
->n_defs
< df
->def_id
)
389 df_bitmaps_free (df
, dflags
);
391 df
->n_defs
= df
->def_id
;
392 df
->n_uses
= df
->use_id
;
396 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
398 if (flags
& DF_RD
&& ! bb_info
->rd_in
)
400 /* Allocate bitmaps for reaching definitions. */
401 bb_info
->rd_kill
= BITMAP_XMALLOC ();
402 bitmap_zero (bb_info
->rd_kill
);
403 bb_info
->rd_gen
= BITMAP_XMALLOC ();
404 bitmap_zero (bb_info
->rd_gen
);
405 bb_info
->rd_in
= BITMAP_XMALLOC ();
406 bb_info
->rd_out
= BITMAP_XMALLOC ();
407 bb_info
->rd_valid
= 0;
410 if (flags
& DF_RU
&& ! bb_info
->ru_in
)
412 /* Allocate bitmaps for upward exposed uses. */
413 bb_info
->ru_kill
= BITMAP_XMALLOC ();
414 bitmap_zero (bb_info
->ru_kill
);
415 /* Note the lack of symmetry. */
416 bb_info
->ru_gen
= BITMAP_XMALLOC ();
417 bitmap_zero (bb_info
->ru_gen
);
418 bb_info
->ru_in
= BITMAP_XMALLOC ();
419 bb_info
->ru_out
= BITMAP_XMALLOC ();
420 bb_info
->ru_valid
= 0;
423 if (flags
& DF_LR
&& ! bb_info
->lr_in
)
425 /* Allocate bitmaps for live variables. */
426 bb_info
->lr_def
= BITMAP_XMALLOC ();
427 bitmap_zero (bb_info
->lr_def
);
428 bb_info
->lr_use
= BITMAP_XMALLOC ();
429 bitmap_zero (bb_info
->lr_use
);
430 bb_info
->lr_in
= BITMAP_XMALLOC ();
431 bb_info
->lr_out
= BITMAP_XMALLOC ();
432 bb_info
->lr_valid
= 0;
438 /* Free bitmaps for each basic block. */
440 df_bitmaps_free (df
, flags
)
441 struct df
*df ATTRIBUTE_UNUSED
;
448 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
453 if ((flags
& DF_RD
) && bb_info
->rd_in
)
455 /* Free bitmaps for reaching definitions. */
456 BITMAP_XFREE (bb_info
->rd_kill
);
457 bb_info
->rd_kill
= NULL
;
458 BITMAP_XFREE (bb_info
->rd_gen
);
459 bb_info
->rd_gen
= NULL
;
460 BITMAP_XFREE (bb_info
->rd_in
);
461 bb_info
->rd_in
= NULL
;
462 BITMAP_XFREE (bb_info
->rd_out
);
463 bb_info
->rd_out
= NULL
;
466 if ((flags
& DF_RU
) && bb_info
->ru_in
)
468 /* Free bitmaps for upward exposed uses. */
469 BITMAP_XFREE (bb_info
->ru_kill
);
470 bb_info
->ru_kill
= NULL
;
471 BITMAP_XFREE (bb_info
->ru_gen
);
472 bb_info
->ru_gen
= NULL
;
473 BITMAP_XFREE (bb_info
->ru_in
);
474 bb_info
->ru_in
= NULL
;
475 BITMAP_XFREE (bb_info
->ru_out
);
476 bb_info
->ru_out
= NULL
;
479 if ((flags
& DF_LR
) && bb_info
->lr_in
)
481 /* Free bitmaps for live variables. */
482 BITMAP_XFREE (bb_info
->lr_def
);
483 bb_info
->lr_def
= NULL
;
484 BITMAP_XFREE (bb_info
->lr_use
);
485 bb_info
->lr_use
= NULL
;
486 BITMAP_XFREE (bb_info
->lr_in
);
487 bb_info
->lr_in
= NULL
;
488 BITMAP_XFREE (bb_info
->lr_out
);
489 bb_info
->lr_out
= NULL
;
492 df
->flags
&= ~(flags
& (DF_RD
| DF_RU
| DF_LR
));
496 /* Allocate and initialize dataflow memory. */
498 df_alloc (df
, n_regs
)
505 gcc_obstack_init (&df_ref_obstack
);
507 /* Perhaps we should use LUIDs to save memory for the insn_refs
508 table. This is only a small saving; a few pointers. */
509 n_insns
= get_max_uid () + 1;
513 /* Approximate number of defs by number of insns. */
514 df
->def_size
= n_insns
;
515 df
->defs
= xmalloc (df
->def_size
* sizeof (*df
->defs
));
519 /* Approximate number of uses by twice number of insns. */
520 df
->use_size
= n_insns
* 2;
521 df
->uses
= xmalloc (df
->use_size
* sizeof (*df
->uses
));
524 df
->n_bbs
= last_basic_block
;
526 /* Allocate temporary working array used during local dataflow analysis. */
527 df
->reg_def_last
= xmalloc (df
->n_regs
* sizeof (struct ref
*));
529 df_insn_table_realloc (df
, n_insns
);
531 df_reg_table_realloc (df
, df
->n_regs
);
533 df
->bbs_modified
= BITMAP_XMALLOC ();
534 bitmap_zero (df
->bbs_modified
);
538 df
->bbs
= xcalloc (last_basic_block
, sizeof (struct bb_info
));
540 df
->all_blocks
= BITMAP_XMALLOC ();
542 bitmap_set_bit (df
->all_blocks
, bb
->index
);
546 /* Free all the dataflow info. */
551 df_bitmaps_free (df
, DF_ALL
);
579 if (df
->bbs_modified
)
580 BITMAP_XFREE (df
->bbs_modified
);
581 df
->bbs_modified
= 0;
583 if (df
->insns_modified
)
584 BITMAP_XFREE (df
->insns_modified
);
585 df
->insns_modified
= 0;
587 BITMAP_XFREE (df
->all_blocks
);
590 obstack_free (&df_ref_obstack
, NULL
);
593 /* Local miscellaneous routines. */
595 /* Return a USE for register REGNO. */
596 static rtx
df_reg_use_gen (regno
)
602 reg
= regno_reg_rtx
[regno
];
604 use
= gen_rtx_USE (GET_MODE (reg
), reg
);
609 /* Return a CLOBBER for register REGNO. */
610 static rtx
df_reg_clobber_gen (regno
)
616 reg
= regno_reg_rtx
[regno
];
618 use
= gen_rtx_CLOBBER (GET_MODE (reg
), reg
);
622 /* Local chain manipulation routines. */
624 /* Create a link in a def-use or use-def chain. */
625 static inline struct df_link
*
626 df_link_create (ref
, next
)
628 struct df_link
*next
;
630 struct df_link
*link
;
632 link
= (struct df_link
*) obstack_alloc (&df_ref_obstack
,
640 /* Add REF to chain head pointed to by PHEAD. */
641 static struct df_link
*
642 df_ref_unlink (phead
, ref
)
643 struct df_link
**phead
;
646 struct df_link
*link
= *phead
;
652 /* Only a single ref. It must be the one we want.
653 If not, the def-use and use-def chains are likely to
655 if (link
->ref
!= ref
)
657 /* Now have an empty chain. */
662 /* Multiple refs. One of them must be us. */
663 if (link
->ref
== ref
)
668 for (; link
->next
; link
= link
->next
)
670 if (link
->next
->ref
== ref
)
672 /* Unlink from list. */
673 link
->next
= link
->next
->next
;
684 /* Unlink REF from all def-use/use-def chains, etc. */
686 df_ref_remove (df
, ref
)
690 if (DF_REF_REG_DEF_P (ref
))
692 df_def_unlink (df
, ref
);
693 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].defs
, ref
);
697 df_use_unlink (df
, ref
);
698 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].uses
, ref
);
704 /* Unlink DEF from use-def and reg-def chains. */
706 df_def_unlink (df
, def
)
707 struct df
*df ATTRIBUTE_UNUSED
;
710 struct df_link
*du_link
;
711 unsigned int dregno
= DF_REF_REGNO (def
);
713 /* Follow def-use chain to find all the uses of this def. */
714 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
716 struct ref
*use
= du_link
->ref
;
718 /* Unlink this def from the use-def chain. */
719 df_ref_unlink (&DF_REF_CHAIN (use
), def
);
721 DF_REF_CHAIN (def
) = 0;
723 /* Unlink def from reg-def chain. */
724 df_ref_unlink (&df
->regs
[dregno
].defs
, def
);
726 df
->defs
[DF_REF_ID (def
)] = 0;
730 /* Unlink use from def-use and reg-use chains. */
732 df_use_unlink (df
, use
)
733 struct df
*df ATTRIBUTE_UNUSED
;
736 struct df_link
*ud_link
;
737 unsigned int uregno
= DF_REF_REGNO (use
);
739 /* Follow use-def chain to find all the defs of this use. */
740 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
742 struct ref
*def
= ud_link
->ref
;
744 /* Unlink this use from the def-use chain. */
745 df_ref_unlink (&DF_REF_CHAIN (def
), use
);
747 DF_REF_CHAIN (use
) = 0;
749 /* Unlink use from reg-use chain. */
750 df_ref_unlink (&df
->regs
[uregno
].uses
, use
);
752 df
->uses
[DF_REF_ID (use
)] = 0;
755 /* Local routines for recording refs. */
758 /* Create a new ref of type DF_REF_TYPE for register REG at address
759 LOC within INSN of BB. */
761 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
766 enum df_ref_type ref_type
;
767 enum df_ref_flags ref_flags
;
769 struct ref
*this_ref
;
771 this_ref
= (struct ref
*) obstack_alloc (&df_ref_obstack
,
773 DF_REF_REG (this_ref
) = reg
;
774 DF_REF_LOC (this_ref
) = loc
;
775 DF_REF_INSN (this_ref
) = insn
;
776 DF_REF_CHAIN (this_ref
) = 0;
777 DF_REF_TYPE (this_ref
) = ref_type
;
778 DF_REF_FLAGS (this_ref
) = ref_flags
;
780 if (ref_type
== DF_REF_REG_DEF
)
782 if (df
->def_id
>= df
->def_size
)
784 /* Make table 25 percent larger. */
785 df
->def_size
+= (df
->def_size
/ 4);
786 df
->defs
= xrealloc (df
->defs
,
787 df
->def_size
* sizeof (*df
->defs
));
789 DF_REF_ID (this_ref
) = df
->def_id
;
790 df
->defs
[df
->def_id
++] = this_ref
;
794 if (df
->use_id
>= df
->use_size
)
796 /* Make table 25 percent larger. */
797 df
->use_size
+= (df
->use_size
/ 4);
798 df
->uses
= xrealloc (df
->uses
,
799 df
->use_size
* sizeof (*df
->uses
));
801 DF_REF_ID (this_ref
) = df
->use_id
;
802 df
->uses
[df
->use_id
++] = this_ref
;
808 /* Create a new reference of type DF_REF_TYPE for a single register REG,
809 used inside the LOC rtx of INSN. */
811 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
816 enum df_ref_type ref_type
;
817 enum df_ref_flags ref_flags
;
819 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
823 /* Create new references of type DF_REF_TYPE for each part of register REG
824 at address LOC within INSN of BB. */
826 df_ref_record (df
, reg
, loc
, insn
, ref_type
, ref_flags
)
831 enum df_ref_type ref_type
;
832 enum df_ref_flags ref_flags
;
836 if (GET_CODE (reg
) != REG
&& GET_CODE (reg
) != SUBREG
)
839 /* For the reg allocator we are interested in some SUBREG rtx's, but not
840 all. Notably only those representing a word extraction from a multi-word
841 reg. As written in the docu those should have the form
842 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
843 XXX Is that true? We could also use the global word_mode variable. */
844 if (GET_CODE (reg
) == SUBREG
845 && (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (word_mode
)
846 || GET_MODE_SIZE (GET_MODE (reg
))
847 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg
)))))
849 loc
= &SUBREG_REG (reg
);
851 ref_flags
|= DF_REF_STRIPPED
;
854 regno
= REGNO (GET_CODE (reg
) == SUBREG
? SUBREG_REG (reg
) : reg
);
855 if (regno
< FIRST_PSEUDO_REGISTER
)
860 if (! (df
->flags
& DF_HARD_REGS
))
863 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
864 for the mode, because we only want to add references to regs, which
865 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
866 reference the whole reg 0 in DI mode (which would also include
867 reg 1, at least, if 0 and 1 are SImode registers). */
868 endregno
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
869 if (GET_CODE (reg
) == SUBREG
)
870 regno
+= subreg_regno_offset (regno
, GET_MODE (SUBREG_REG (reg
)),
871 SUBREG_BYTE (reg
), GET_MODE (reg
));
874 for (i
= regno
; i
< endregno
; i
++)
875 df_ref_record_1 (df
, regno_reg_rtx
[i
],
876 loc
, insn
, ref_type
, ref_flags
);
880 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
885 /* Return non-zero if writes to paradoxical SUBREGs, or SUBREGs which
886 are too narrow, are read-modify-write. */
888 read_modify_subreg_p (x
)
891 unsigned int isize
, osize
;
892 if (GET_CODE (x
) != SUBREG
)
894 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
895 osize
= GET_MODE_SIZE (GET_MODE (x
));
896 /* Paradoxical subreg writes don't leave a trace of the old content. */
897 return (isize
> osize
&& isize
> UNITS_PER_WORD
);
901 /* Process all the registers defined in the rtx, X. */
903 df_def_record_1 (df
, x
, bb
, insn
)
911 enum df_ref_flags flags
= 0;
913 /* We may recursivly call ourselves on EXPR_LIST when dealing with PARALLEL
915 if (GET_CODE (x
) == EXPR_LIST
|| GET_CODE (x
) == CLOBBER
)
921 /* Some targets place small structures in registers for
922 return values of functions. */
923 if (GET_CODE (dst
) == PARALLEL
&& GET_MODE (dst
) == BLKmode
)
927 for (i
= XVECLEN (dst
, 0) - 1; i
>= 0; i
--)
929 rtx temp
= XVECEXP (dst
, 0, i
);
930 if (GET_CODE (temp
) == EXPR_LIST
|| GET_CODE (temp
) == CLOBBER
931 || GET_CODE (temp
) == SET
)
932 df_def_record_1 (df
, temp
, bb
, insn
);
937 #ifdef CLASS_CANNOT_CHANGE_MODE
938 if (GET_CODE (dst
) == SUBREG
939 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
940 GET_MODE (SUBREG_REG (dst
))))
941 flags
|= DF_REF_MODE_CHANGE
;
944 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
945 be handy for the reg allocator. */
946 while (GET_CODE (dst
) == STRICT_LOW_PART
947 || GET_CODE (dst
) == ZERO_EXTRACT
948 || GET_CODE (dst
) == SIGN_EXTRACT
949 || ((df
->flags
& DF_FOR_REGALLOC
) == 0
950 && read_modify_subreg_p (dst
)))
952 /* Strict low part always contains SUBREG, but we do not want to make
953 it appear outside, as whole register is always considered. */
954 if (GET_CODE (dst
) == STRICT_LOW_PART
)
956 loc
= &XEXP (dst
, 0);
959 #ifdef CLASS_CANNOT_CHANGE_MODE
960 if (GET_CODE (dst
) == SUBREG
961 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
962 GET_MODE (SUBREG_REG (dst
))))
963 flags
|= DF_REF_MODE_CHANGE
;
965 loc
= &XEXP (dst
, 0);
967 flags
|= DF_REF_READ_WRITE
;
970 if (GET_CODE (dst
) == REG
971 || (GET_CODE (dst
) == SUBREG
&& GET_CODE (SUBREG_REG (dst
)) == REG
))
972 df_ref_record (df
, dst
, loc
, insn
, DF_REF_REG_DEF
, flags
);
976 /* Process all the registers defined in the pattern rtx, X. */
978 df_defs_record (df
, x
, bb
, insn
)
984 RTX_CODE code
= GET_CODE (x
);
986 if (code
== SET
|| code
== CLOBBER
)
988 /* Mark the single def within the pattern. */
989 df_def_record_1 (df
, x
, bb
, insn
);
991 else if (code
== PARALLEL
)
995 /* Mark the multiple defs within the pattern. */
996 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
998 code
= GET_CODE (XVECEXP (x
, 0, i
));
999 if (code
== SET
|| code
== CLOBBER
)
1000 df_def_record_1 (df
, XVECEXP (x
, 0, i
), bb
, insn
);
1006 /* Process all the registers used in the rtx at address LOC. */
1008 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
)
1011 enum df_ref_type ref_type
;
1014 enum df_ref_flags flags
;
1022 code
= GET_CODE (x
);
1038 /* If we are clobbering a MEM, mark any registers inside the address
1040 if (GET_CODE (XEXP (x
, 0)) == MEM
)
1041 df_uses_record (df
, &XEXP (XEXP (x
, 0), 0),
1042 DF_REF_REG_MEM_STORE
, bb
, insn
, flags
);
1044 /* If we're clobbering a REG then we have a def so ignore. */
1048 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_MEM_LOAD
, bb
, insn
, flags
);
1052 /* While we're here, optimize this case. */
1054 /* In case the SUBREG is not of a REG, do not optimize. */
1055 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1057 loc
= &SUBREG_REG (x
);
1058 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
);
1061 #ifdef CLASS_CANNOT_CHANGE_MODE
1062 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x
),
1063 GET_MODE (SUBREG_REG (x
))))
1064 flags
|= DF_REF_MODE_CHANGE
;
1067 /* ... Fall through ... */
1070 /* See a REG (or SUBREG) other than being set. */
1071 df_ref_record (df
, x
, loc
, insn
, ref_type
, flags
);
1076 rtx dst
= SET_DEST (x
);
1078 df_uses_record (df
, &SET_SRC (x
), DF_REF_REG_USE
, bb
, insn
, 0);
1080 switch (GET_CODE (dst
))
1082 enum df_ref_flags use_flags
;
1084 if ((df
->flags
& DF_FOR_REGALLOC
) == 0
1085 && read_modify_subreg_p (dst
))
1087 use_flags
= DF_REF_READ_WRITE
;
1088 #ifdef CLASS_CANNOT_CHANGE_MODE
1089 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
1090 GET_MODE (SUBREG_REG (dst
))))
1091 use_flags
|= DF_REF_MODE_CHANGE
;
1093 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1097 /* ... FALLTHRU ... */
1104 df_uses_record (df
, &XEXP (dst
, 0),
1105 DF_REF_REG_MEM_STORE
,
1108 case STRICT_LOW_PART
:
1109 /* A strict_low_part uses the whole REG and not just the SUBREG. */
1110 dst
= XEXP (dst
, 0);
1111 if (GET_CODE (dst
) != SUBREG
)
1113 use_flags
= DF_REF_READ_WRITE
;
1114 #ifdef CLASS_CANNOT_CHANGE_MODE
1115 if (CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (dst
),
1116 GET_MODE (SUBREG_REG (dst
))))
1117 use_flags
|= DF_REF_MODE_CHANGE
;
1119 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1124 df_uses_record (df
, &XEXP (dst
, 0), DF_REF_REG_USE
, bb
, insn
,
1126 df_uses_record (df
, &XEXP (dst
, 1), DF_REF_REG_USE
, bb
, insn
, 0);
1127 df_uses_record (df
, &XEXP (dst
, 2), DF_REF_REG_USE
, bb
, insn
, 0);
1128 dst
= XEXP (dst
, 0);
1140 case UNSPEC_VOLATILE
:
1144 /* Traditional and volatile asm instructions must be considered to use
1145 and clobber all hard registers, all pseudo-registers and all of
1146 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1148 Consider for instance a volatile asm that changes the fpu rounding
1149 mode. An insn should not be moved across this even if it only uses
1150 pseudo-regs because it might give an incorrectly rounded result.
1152 For now, just mark any regs we can find in ASM_OPERANDS as
1155 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1156 We can not just fall through here since then we would be confused
1157 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1158 traditional asms unlike their normal usage. */
1159 if (code
== ASM_OPERANDS
)
1163 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
1164 df_uses_record (df
, &ASM_OPERANDS_INPUT (x
, j
),
1165 DF_REF_REG_USE
, bb
, insn
, 0);
1177 /* Catch the def of the register being modified. */
1178 df_ref_record (df
, XEXP (x
, 0), &XEXP (x
, 0), insn
, DF_REF_REG_DEF
, DF_REF_READ_WRITE
);
1180 /* ... Fall through to handle uses ... */
1186 /* Recursively scan the operands of this expression. */
1188 const char *fmt
= GET_RTX_FORMAT (code
);
1191 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1195 /* Tail recursive case: save a function call level. */
1201 df_uses_record (df
, &XEXP (x
, i
), ref_type
, bb
, insn
, flags
);
1203 else if (fmt
[i
] == 'E')
1206 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1207 df_uses_record (df
, &XVECEXP (x
, i
, j
), ref_type
,
1215 /* Record all the df within INSN of basic block BB. */
1217 df_insn_refs_record (df
, bb
, insn
)
1228 /* Record register defs */
1229 df_defs_record (df
, PATTERN (insn
), bb
, insn
);
1231 if (df
->flags
& DF_EQUIV_NOTES
)
1232 for (note
= REG_NOTES (insn
); note
;
1233 note
= XEXP (note
, 1))
1235 switch (REG_NOTE_KIND (note
))
1239 df_uses_record (df
, &XEXP (note
, 0), DF_REF_REG_USE
,
1246 if (GET_CODE (insn
) == CALL_INSN
)
1251 /* Record the registers used to pass arguments. */
1252 for (note
= CALL_INSN_FUNCTION_USAGE (insn
); note
;
1253 note
= XEXP (note
, 1))
1255 if (GET_CODE (XEXP (note
, 0)) == USE
)
1256 df_uses_record (df
, &XEXP (XEXP (note
, 0), 0), DF_REF_REG_USE
,
1260 /* The stack ptr is used (honorarily) by a CALL insn. */
1261 x
= df_reg_use_gen (STACK_POINTER_REGNUM
);
1262 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_USE
, bb
, insn
, 0);
1264 if (df
->flags
& DF_HARD_REGS
)
1266 /* Calls may also reference any of the global registers,
1267 so they are recorded as used. */
1268 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1271 x
= df_reg_use_gen (i
);
1272 df_uses_record (df
, &SET_DEST (x
),
1273 DF_REF_REG_USE
, bb
, insn
, 0);
1278 /* Record the register uses. */
1279 df_uses_record (df
, &PATTERN (insn
),
1280 DF_REF_REG_USE
, bb
, insn
, 0);
1282 if (GET_CODE (insn
) == CALL_INSN
)
1286 if (df
->flags
& DF_HARD_REGS
)
1288 /* Kill all registers invalidated by a call. */
1289 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1290 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1292 rtx reg_clob
= df_reg_clobber_gen (i
);
1293 df_defs_record (df
, reg_clob
, bb
, insn
);
1297 /* There may be extra registers to be clobbered. */
1298 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1300 note
= XEXP (note
, 1))
1301 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1302 df_defs_record (df
, XEXP (note
, 0), bb
, insn
);
1308 /* Record all the refs within the basic block BB. */
1310 df_bb_refs_record (df
, bb
)
1316 /* Scan the block an insn at a time from beginning to end. */
1317 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1321 /* Record defs within INSN. */
1322 df_insn_refs_record (df
, bb
, insn
);
1324 if (insn
== bb
->end
)
1330 /* Record all the refs in the basic blocks specified by BLOCKS. */
1332 df_refs_record (df
, blocks
)
1338 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1340 df_bb_refs_record (df
, bb
);
1344 /* Dataflow analysis routines. */
1347 /* Create reg-def chains for basic block BB. These are a list of
1348 definitions for each register. */
1350 df_bb_reg_def_chain_create (df
, bb
)
1356 /* Perhaps the defs should be sorted using a depth first search
1357 of the CFG (or possibly a breadth first search). We currently
1358 scan the basic blocks in reverse order so that the first defs
1359 appear at the start of the chain. */
1361 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1362 insn
= PREV_INSN (insn
))
1364 struct df_link
*link
;
1365 unsigned int uid
= INSN_UID (insn
);
1367 if (! INSN_P (insn
))
1370 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1372 struct ref
*def
= link
->ref
;
1373 unsigned int dregno
= DF_REF_REGNO (def
);
1375 /* Do not add ref's to the chain twice, i.e., only add new
1376 refs. XXX the same could be done by testing if the
1377 current insn is a modified (or a new) one. This would be
1379 if (DF_REF_ID (def
) < df
->def_id_save
)
1382 df
->regs
[dregno
].defs
1383 = df_link_create (def
, df
->regs
[dregno
].defs
);
1389 /* Create reg-def chains for each basic block within BLOCKS. These
1390 are a list of definitions for each register. */
1392 df_reg_def_chain_create (df
, blocks
)
1398 FOR_EACH_BB_IN_BITMAP
/*_REV*/ (blocks
, 0, bb
,
1400 df_bb_reg_def_chain_create (df
, bb
);
1405 /* Create reg-use chains for basic block BB. These are a list of uses
1406 for each register. */
1408 df_bb_reg_use_chain_create (df
, bb
)
1414 /* Scan in forward order so that the last uses appear at the start
1417 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1418 insn
= NEXT_INSN (insn
))
1420 struct df_link
*link
;
1421 unsigned int uid
= INSN_UID (insn
);
1423 if (! INSN_P (insn
))
1426 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1428 struct ref
*use
= link
->ref
;
1429 unsigned int uregno
= DF_REF_REGNO (use
);
1431 /* Do not add ref's to the chain twice, i.e., only add new
1432 refs. XXX the same could be done by testing if the
1433 current insn is a modified (or a new) one. This would be
1435 if (DF_REF_ID (use
) < df
->use_id_save
)
1438 df
->regs
[uregno
].uses
1439 = df_link_create (use
, df
->regs
[uregno
].uses
);
1445 /* Create reg-use chains for each basic block within BLOCKS. These
1446 are a list of uses for each register. */
1448 df_reg_use_chain_create (df
, blocks
)
1454 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1456 df_bb_reg_use_chain_create (df
, bb
);
1461 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1463 df_bb_du_chain_create (df
, bb
, ru
)
1468 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1471 bitmap_copy (ru
, bb_info
->ru_out
);
1473 /* For each def in BB create a linked list (chain) of uses
1474 reached from the def. */
1475 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1476 insn
= PREV_INSN (insn
))
1478 struct df_link
*def_link
;
1479 struct df_link
*use_link
;
1480 unsigned int uid
= INSN_UID (insn
);
1482 if (! INSN_P (insn
))
1485 /* For each def in insn... */
1486 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1488 struct ref
*def
= def_link
->ref
;
1489 unsigned int dregno
= DF_REF_REGNO (def
);
1491 DF_REF_CHAIN (def
) = 0;
1493 /* While the reg-use chains are not essential, it
1494 is _much_ faster to search these short lists rather
1495 than all the reaching uses, especially for large functions. */
1496 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1497 use_link
= use_link
->next
)
1499 struct ref
*use
= use_link
->ref
;
1501 if (bitmap_bit_p (ru
, DF_REF_ID (use
)))
1504 = df_link_create (use
, DF_REF_CHAIN (def
));
1506 bitmap_clear_bit (ru
, DF_REF_ID (use
));
1511 /* For each use in insn... */
1512 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1514 struct ref
*use
= use_link
->ref
;
1515 bitmap_set_bit (ru
, DF_REF_ID (use
));
1521 /* Create def-use chains from reaching use bitmaps for basic blocks
1524 df_du_chain_create (df
, blocks
)
1531 ru
= BITMAP_XMALLOC ();
1533 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1535 df_bb_du_chain_create (df
, bb
, ru
);
1542 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1544 df_bb_ud_chain_create (df
, bb
)
1548 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1549 struct ref
**reg_def_last
= df
->reg_def_last
;
1552 memset (reg_def_last
, 0, df
->n_regs
* sizeof (struct ref
*));
1554 /* For each use in BB create a linked list (chain) of defs
1555 that reach the use. */
1556 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1557 insn
= NEXT_INSN (insn
))
1559 unsigned int uid
= INSN_UID (insn
);
1560 struct df_link
*use_link
;
1561 struct df_link
*def_link
;
1563 if (! INSN_P (insn
))
1566 /* For each use in insn... */
1567 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1569 struct ref
*use
= use_link
->ref
;
1570 unsigned int regno
= DF_REF_REGNO (use
);
1572 DF_REF_CHAIN (use
) = 0;
1574 /* Has regno been defined in this BB yet? If so, use
1575 the last def as the single entry for the use-def
1576 chain for this use. Otherwise, we need to add all
1577 the defs using this regno that reach the start of
1579 if (reg_def_last
[regno
])
1582 = df_link_create (reg_def_last
[regno
], 0);
1586 /* While the reg-def chains are not essential, it is
1587 _much_ faster to search these short lists rather than
1588 all the reaching defs, especially for large
1590 for (def_link
= df
->regs
[regno
].defs
; def_link
;
1591 def_link
= def_link
->next
)
1593 struct ref
*def
= def_link
->ref
;
1595 if (bitmap_bit_p (bb_info
->rd_in
, DF_REF_ID (def
)))
1598 = df_link_create (def
, DF_REF_CHAIN (use
));
1605 /* For each def in insn... record the last def of each reg. */
1606 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1608 struct ref
*def
= def_link
->ref
;
1609 int dregno
= DF_REF_REGNO (def
);
1611 reg_def_last
[dregno
] = def
;
1617 /* Create use-def chains from reaching def bitmaps for basic blocks
1620 df_ud_chain_create (df
, blocks
)
1626 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1628 df_bb_ud_chain_create (df
, bb
);
1635 df_rd_transfer_function (bb
, changed
, in
, out
, gen
, kill
, data
)
1636 int bb ATTRIBUTE_UNUSED
;
1638 bitmap in
, out
, gen
, kill
;
1639 void *data ATTRIBUTE_UNUSED
;
1641 *changed
= bitmap_union_of_diff (out
, gen
, in
, kill
);
1646 df_ru_transfer_function (bb
, changed
, in
, out
, gen
, kill
, data
)
1647 int bb ATTRIBUTE_UNUSED
;
1649 bitmap in
, out
, gen
, kill
;
1650 void *data ATTRIBUTE_UNUSED
;
1652 *changed
= bitmap_union_of_diff (in
, gen
, out
, kill
);
1657 df_lr_transfer_function (bb
, changed
, in
, out
, use
, def
, data
)
1658 int bb ATTRIBUTE_UNUSED
;
1660 bitmap in
, out
, use
, def
;
1661 void *data ATTRIBUTE_UNUSED
;
1663 *changed
= bitmap_union_of_diff (in
, use
, out
, def
);
1667 /* Compute local reaching def info for basic block BB. */
1669 df_bb_rd_local_compute (df
, bb
)
1673 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1676 for (insn
= bb
->head
; insn
&& insn
!= NEXT_INSN (bb
->end
);
1677 insn
= NEXT_INSN (insn
))
1679 unsigned int uid
= INSN_UID (insn
);
1680 struct df_link
*def_link
;
1682 if (! INSN_P (insn
))
1685 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1687 struct ref
*def
= def_link
->ref
;
1688 unsigned int regno
= DF_REF_REGNO (def
);
1689 struct df_link
*def2_link
;
1691 for (def2_link
= df
->regs
[regno
].defs
; def2_link
;
1692 def2_link
= def2_link
->next
)
1694 struct ref
*def2
= def2_link
->ref
;
1696 /* Add all defs of this reg to the set of kills. This
1697 is greedy since many of these defs will not actually
1698 be killed by this BB but it keeps things a lot
1700 bitmap_set_bit (bb_info
->rd_kill
, DF_REF_ID (def2
));
1702 /* Zap from the set of gens for this BB. */
1703 bitmap_clear_bit (bb_info
->rd_gen
, DF_REF_ID (def2
));
1706 bitmap_set_bit (bb_info
->rd_gen
, DF_REF_ID (def
));
1710 bb_info
->rd_valid
= 1;
1714 /* Compute local reaching def info for each basic block within BLOCKS. */
1716 df_rd_local_compute (df
, blocks
)
1722 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1724 df_bb_rd_local_compute (df
, bb
);
1729 /* Compute local reaching use (upward exposed use) info for basic
1732 df_bb_ru_local_compute (df
, bb
)
1736 /* This is much more tricky than computing reaching defs. With
1737 reaching defs, defs get killed by other defs. With upwards
1738 exposed uses, these get killed by defs with the same regno. */
1740 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1744 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1745 insn
= PREV_INSN (insn
))
1747 unsigned int uid
= INSN_UID (insn
);
1748 struct df_link
*def_link
;
1749 struct df_link
*use_link
;
1751 if (! INSN_P (insn
))
1754 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1756 struct ref
*def
= def_link
->ref
;
1757 unsigned int dregno
= DF_REF_REGNO (def
);
1759 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1760 use_link
= use_link
->next
)
1762 struct ref
*use
= use_link
->ref
;
1764 /* Add all uses of this reg to the set of kills. This
1765 is greedy since many of these uses will not actually
1766 be killed by this BB but it keeps things a lot
1768 bitmap_set_bit (bb_info
->ru_kill
, DF_REF_ID (use
));
1770 /* Zap from the set of gens for this BB. */
1771 bitmap_clear_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1775 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1777 struct ref
*use
= use_link
->ref
;
1778 /* Add use to set of gens in this BB. */
1779 bitmap_set_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1782 bb_info
->ru_valid
= 1;
1786 /* Compute local reaching use (upward exposed use) info for each basic
1787 block within BLOCKS. */
1789 df_ru_local_compute (df
, blocks
)
1795 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1797 df_bb_ru_local_compute (df
, bb
);
1802 /* Compute local live variable info for basic block BB. */
1804 df_bb_lr_local_compute (df
, bb
)
1808 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1811 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1812 insn
= PREV_INSN (insn
))
1814 unsigned int uid
= INSN_UID (insn
);
1815 struct df_link
*link
;
1817 if (! INSN_P (insn
))
1820 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1822 struct ref
*def
= link
->ref
;
1823 unsigned int dregno
= DF_REF_REGNO (def
);
1825 /* Add def to set of defs in this BB. */
1826 bitmap_set_bit (bb_info
->lr_def
, dregno
);
1828 bitmap_clear_bit (bb_info
->lr_use
, dregno
);
1831 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1833 struct ref
*use
= link
->ref
;
1834 /* Add use to set of uses in this BB. */
1835 bitmap_set_bit (bb_info
->lr_use
, DF_REF_REGNO (use
));
1838 bb_info
->lr_valid
= 1;
1842 /* Compute local live variable info for each basic block within BLOCKS. */
1844 df_lr_local_compute (df
, blocks
)
1850 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1852 df_bb_lr_local_compute (df
, bb
);
1857 /* Compute register info: lifetime, bb, and number of defs and uses
1858 for basic block BB. */
1860 df_bb_reg_info_compute (df
, bb
, live
)
1865 struct reg_info
*reg_info
= df
->regs
;
1866 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1869 bitmap_copy (live
, bb_info
->lr_out
);
1871 for (insn
= bb
->end
; insn
&& insn
!= PREV_INSN (bb
->head
);
1872 insn
= PREV_INSN (insn
))
1874 unsigned int uid
= INSN_UID (insn
);
1876 struct df_link
*link
;
1878 if (! INSN_P (insn
))
1881 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1883 struct ref
*def
= link
->ref
;
1884 unsigned int dregno
= DF_REF_REGNO (def
);
1886 /* Kill this register. */
1887 bitmap_clear_bit (live
, dregno
);
1888 reg_info
[dregno
].n_defs
++;
1891 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1893 struct ref
*use
= link
->ref
;
1894 unsigned int uregno
= DF_REF_REGNO (use
);
1896 /* This register is now live. */
1897 bitmap_set_bit (live
, uregno
);
1898 reg_info
[uregno
].n_uses
++;
1901 /* Increment lifetimes of all live registers. */
1902 EXECUTE_IF_SET_IN_BITMAP (live
, 0, regno
,
1904 reg_info
[regno
].lifetime
++;
1910 /* Compute register info: lifetime, bb, and number of defs and uses. */
1912 df_reg_info_compute (df
, blocks
)
1919 live
= BITMAP_XMALLOC ();
1921 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1923 df_bb_reg_info_compute (df
, bb
, live
);
1926 BITMAP_XFREE (live
);
1930 /* Assign LUIDs for BB. */
1932 df_bb_luids_set (df
, bb
)
1939 /* The LUIDs are monotonically increasing for each basic block. */
1941 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
1944 DF_INSN_LUID (df
, insn
) = luid
++;
1945 DF_INSN_LUID (df
, insn
) = luid
;
1947 if (insn
== bb
->end
)
1954 /* Assign LUIDs for each basic block within BLOCKS. */
1956 df_luids_set (df
, blocks
)
1963 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1965 total
+= df_bb_luids_set (df
, bb
);
1971 /* Perform dataflow analysis using existing DF structure for blocks
1972 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1974 df_analyse_1 (df
, blocks
, flags
, update
)
1987 if (flags
& DF_UD_CHAIN
)
1988 aflags
|= DF_RD
| DF_RD_CHAIN
;
1990 if (flags
& DF_DU_CHAIN
)
1994 aflags
|= DF_RU_CHAIN
;
1996 if (flags
& DF_REG_INFO
)
2000 blocks
= df
->all_blocks
;
2005 df_refs_update (df
);
2006 /* More fine grained incremental dataflow analysis would be
2007 nice. For now recompute the whole shebang for the
2010 df_refs_unlink (df
, blocks
);
2012 /* All the def-use, use-def chains can be potentially
2013 modified by changes in one block. The size of the
2014 bitmaps can also change. */
2018 /* Scan the function for all register defs and uses. */
2020 df_refs_record (df
, blocks
);
2022 /* Link all the new defs and uses to the insns. */
2023 df_refs_process (df
);
2026 /* Allocate the bitmaps now the total number of defs and uses are
2027 known. If the number of defs or uses have changed, then
2028 these bitmaps need to be reallocated. */
2029 df_bitmaps_alloc (df
, aflags
);
2031 /* Set the LUIDs for each specified basic block. */
2032 df_luids_set (df
, blocks
);
2034 /* Recreate reg-def and reg-use chains from scratch so that first
2035 def is at the head of the reg-def chain and the last use is at
2036 the head of the reg-use chain. This is only important for
2037 regs local to a basic block as it speeds up searching. */
2038 if (aflags
& DF_RD_CHAIN
)
2040 df_reg_def_chain_create (df
, blocks
);
2043 if (aflags
& DF_RU_CHAIN
)
2045 df_reg_use_chain_create (df
, blocks
);
2048 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2049 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2050 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2051 df
->inverse_dfs_map
= xmalloc (sizeof (int) * last_basic_block
);
2052 df
->inverse_rc_map
= xmalloc (sizeof (int) * last_basic_block
);
2053 df
->inverse_rts_map
= xmalloc (sizeof (int) * last_basic_block
);
2055 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
2056 flow_reverse_top_sort_order_compute (df
->rts_order
);
2057 for (i
= 0; i
< n_basic_blocks
; i
++)
2059 df
->inverse_dfs_map
[df
->dfs_order
[i
]] = i
;
2060 df
->inverse_rc_map
[df
->rc_order
[i
]] = i
;
2061 df
->inverse_rts_map
[df
->rts_order
[i
]] = i
;
2065 /* Compute the sets of gens and kills for the defs of each bb. */
2066 df_rd_local_compute (df
, df
->flags
& DF_RD
? blocks
: df
->all_blocks
);
2068 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2069 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2070 bitmap
*gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2071 bitmap
*kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2074 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2075 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2076 gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2077 kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2079 iterative_dataflow_bitmap (in
, out
, gen
, kill
, df
->all_blocks
,
2080 DF_FORWARD
, DF_UNION
, df_rd_transfer_function
,
2081 df
->inverse_rc_map
, NULL
);
2089 if (aflags
& DF_UD_CHAIN
)
2091 /* Create use-def chains. */
2092 df_ud_chain_create (df
, df
->all_blocks
);
2094 if (! (flags
& DF_RD
))
2100 /* Compute the sets of gens and kills for the upwards exposed
2102 df_ru_local_compute (df
, df
->flags
& DF_RU
? blocks
: df
->all_blocks
);
2104 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2105 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2106 bitmap
*gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2107 bitmap
*kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2110 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2111 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2112 gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2113 kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2115 iterative_dataflow_bitmap (in
, out
, gen
, kill
, df
->all_blocks
,
2116 DF_BACKWARD
, DF_UNION
, df_ru_transfer_function
,
2117 df
->inverse_rts_map
, NULL
);
2125 if (aflags
& DF_DU_CHAIN
)
2127 /* Create def-use chains. */
2128 df_du_chain_create (df
, df
->all_blocks
);
2130 if (! (flags
& DF_RU
))
2134 /* Free up bitmaps that are no longer required. */
2136 df_bitmaps_free (df
, dflags
);
2140 /* Compute the sets of defs and uses of live variables. */
2141 df_lr_local_compute (df
, df
->flags
& DF_LR
? blocks
: df
->all_blocks
);
2143 bitmap
*in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2144 bitmap
*out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2145 bitmap
*use
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2146 bitmap
*def
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2149 in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2150 out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2151 use
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2152 def
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2154 iterative_dataflow_bitmap (in
, out
, use
, def
, df
->all_blocks
,
2155 DF_BACKWARD
, DF_UNION
, df_lr_transfer_function
,
2156 df
->inverse_rts_map
, NULL
);
2164 if (aflags
& DF_REG_INFO
)
2166 df_reg_info_compute (df
, df
->all_blocks
);
2169 free (df
->dfs_order
);
2170 free (df
->rc_order
);
2171 free (df
->rts_order
);
2172 free (df
->inverse_rc_map
);
2173 free (df
->inverse_dfs_map
);
2174 free (df
->inverse_rts_map
);
2178 /* Initialize dataflow analysis. */
2184 df
= xcalloc (1, sizeof (struct df
));
2186 /* Squirrel away a global for debugging. */
2193 /* Start queuing refs. */
2198 df
->def_id_save
= df
->def_id
;
2199 df
->use_id_save
= df
->use_id
;
2200 /* ???? Perhaps we should save current obstack state so that we can
2206 /* Process queued refs. */
2208 df_refs_process (df
)
2213 /* Build new insn-def chains. */
2214 for (i
= df
->def_id_save
; i
!= df
->def_id
; i
++)
2216 struct ref
*def
= df
->defs
[i
];
2217 unsigned int uid
= DF_REF_INSN_UID (def
);
2219 /* Add def to head of def list for INSN. */
2221 = df_link_create (def
, df
->insns
[uid
].defs
);
2224 /* Build new insn-use chains. */
2225 for (i
= df
->use_id_save
; i
!= df
->use_id
; i
++)
2227 struct ref
*use
= df
->uses
[i
];
2228 unsigned int uid
= DF_REF_INSN_UID (use
);
2230 /* Add use to head of use list for INSN. */
2232 = df_link_create (use
, df
->insns
[uid
].uses
);
2238 /* Update refs for basic block BB. */
2240 df_bb_refs_update (df
, bb
)
2247 /* While we have to scan the chain of insns for this BB, we do not
2248 need to allocate and queue a long chain of BB/INSN pairs. Using
2249 a bitmap for insns_modified saves memory and avoids queuing
2252 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
2256 uid
= INSN_UID (insn
);
2258 if (bitmap_bit_p (df
->insns_modified
, uid
))
2260 /* Delete any allocated refs of this insn. MPH, FIXME. */
2261 df_insn_refs_unlink (df
, bb
, insn
);
2263 /* Scan the insn for refs. */
2264 df_insn_refs_record (df
, bb
, insn
);
2268 if (insn
== bb
->end
)
2275 /* Process all the modified/deleted insns that were queued. */
2283 if ((unsigned int) max_reg_num () >= df
->reg_size
)
2284 df_reg_table_realloc (df
, 0);
2288 FOR_EACH_BB_IN_BITMAP (df
->bbs_modified
, 0, bb
,
2290 count
+= df_bb_refs_update (df
, bb
);
2293 df_refs_process (df
);
2298 /* Return nonzero if any of the requested blocks in the bitmap
2299 BLOCKS have been modified. */
2301 df_modified_p (df
, blocks
)
2312 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
)
2313 && (! blocks
|| (blocks
== (bitmap
) -1) || bitmap_bit_p (blocks
, bb
->index
)))
2323 /* Analyze dataflow info for the basic blocks specified by the bitmap
2324 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2325 modified blocks if BLOCKS is -1. */
2327 df_analyse (df
, blocks
, flags
)
2334 /* We could deal with additional basic blocks being created by
2335 rescanning everything again. */
2336 if (df
->n_bbs
&& df
->n_bbs
!= (unsigned int) last_basic_block
)
2339 update
= df_modified_p (df
, blocks
);
2340 if (update
|| (flags
!= df
->flags
))
2346 /* Recompute everything from scratch. */
2349 /* Allocate and initialize data structures. */
2350 df_alloc (df
, max_reg_num ());
2351 df_analyse_1 (df
, 0, flags
, 0);
2356 if (blocks
== (bitmap
) -1)
2357 blocks
= df
->bbs_modified
;
2362 df_analyse_1 (df
, blocks
, flags
, 1);
2363 bitmap_zero (df
->bbs_modified
);
2364 bitmap_zero (df
->insns_modified
);
2371 /* Free all the dataflow info and the DF structure. */
2381 /* Unlink INSN from its reference information. */
2383 df_insn_refs_unlink (df
, bb
, insn
)
2385 basic_block bb ATTRIBUTE_UNUSED
;
2388 struct df_link
*link
;
2391 uid
= INSN_UID (insn
);
2393 /* Unlink all refs defined by this insn. */
2394 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2395 df_def_unlink (df
, link
->ref
);
2397 /* Unlink all refs used by this insn. */
2398 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2399 df_use_unlink (df
, link
->ref
);
2401 df
->insns
[uid
].defs
= 0;
2402 df
->insns
[uid
].uses
= 0;
2407 /* Unlink all the insns within BB from their reference information. */
2409 df_bb_refs_unlink (df
, bb
)
2415 /* Scan the block an insn at a time from beginning to end. */
2416 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
2420 /* Unlink refs for INSN. */
2421 df_insn_refs_unlink (df
, bb
, insn
);
2423 if (insn
== bb
->end
)
2429 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2430 Not currently used. */
2432 df_refs_unlink (df
, blocks
)
2440 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2442 df_bb_refs_unlink (df
, bb
);
2448 df_bb_refs_unlink (df
, bb
);
2453 /* Functions to modify insns. */
2456 /* Delete INSN and all its reference information. */
2458 df_insn_delete (df
, bb
, insn
)
2460 basic_block bb ATTRIBUTE_UNUSED
;
2463 /* If the insn is a jump, we should perhaps call delete_insn to
2464 handle the JUMP_LABEL? */
2466 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2467 if (insn
== bb
->head
)
2470 /* Delete the insn. */
2473 df_insn_modify (df
, bb
, insn
);
2475 return NEXT_INSN (insn
);
2479 /* Mark that INSN within BB may have changed (created/modified/deleted).
2480 This may be called multiple times for the same insn. There is no
2481 harm calling this function if the insn wasn't changed; it will just
2482 slow down the rescanning of refs. */
2484 df_insn_modify (df
, bb
, insn
)
2491 uid
= INSN_UID (insn
);
2492 if (uid
>= df
->insn_size
)
2493 df_insn_table_realloc (df
, uid
);
2495 bitmap_set_bit (df
->bbs_modified
, bb
->index
);
2496 bitmap_set_bit (df
->insns_modified
, uid
);
2498 /* For incremental updating on the fly, perhaps we could make a copy
2499 of all the refs of the original insn and turn them into
2500 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2501 the original refs. If validate_change fails then these anti-refs
2502 will just get ignored. */
2506 typedef struct replace_args
2515 /* Replace mem pointed to by PX with its associated pseudo register.
2516 DATA is actually a pointer to a structure describing the
2517 instruction currently being scanned and the MEM we are currently
2520 df_rtx_mem_replace (px
, data
)
2524 replace_args
*args
= (replace_args
*) data
;
2527 if (mem
== NULL_RTX
)
2530 switch (GET_CODE (mem
))
2536 /* We're not interested in the MEM associated with a
2537 CONST_DOUBLE, so there's no need to traverse into one. */
2541 /* This is not a MEM. */
2545 if (!rtx_equal_p (args
->match
, mem
))
2546 /* This is not the MEM we are currently replacing. */
2549 /* Actually replace the MEM. */
2550 validate_change (args
->insn
, px
, args
->replacement
, 1);
2558 df_insn_mem_replace (df
, bb
, insn
, mem
, reg
)
2569 args
.replacement
= reg
;
2572 /* Search and replace all matching mems within insn. */
2573 for_each_rtx (&insn
, df_rtx_mem_replace
, &args
);
2576 df_insn_modify (df
, bb
, insn
);
2578 /* ???? FIXME. We may have a new def or one or more new uses of REG
2579 in INSN. REG should be a new pseudo so it won't affect the
2580 dataflow information that we currently have. We should add
2581 the new uses and defs to INSN and then recreate the chains
2582 when df_analyse is called. */
2583 return args
.modified
;
2587 /* Replace one register with another. Called through for_each_rtx; PX
2588 points to the rtx being scanned. DATA is actually a pointer to a
2589 structure of arguments. */
2591 df_rtx_reg_replace (px
, data
)
2596 replace_args
*args
= (replace_args
*) data
;
2601 if (x
== args
->match
)
2603 validate_change (args
->insn
, px
, args
->replacement
, 1);
2611 /* Replace the reg within every ref on CHAIN that is within the set
2612 BLOCKS of basic blocks with NEWREG. Also update the regs within
2615 df_refs_reg_replace (df
, blocks
, chain
, oldreg
, newreg
)
2618 struct df_link
*chain
;
2622 struct df_link
*link
;
2626 blocks
= df
->all_blocks
;
2628 args
.match
= oldreg
;
2629 args
.replacement
= newreg
;
2632 for (link
= chain
; link
; link
= link
->next
)
2634 struct ref
*ref
= link
->ref
;
2635 rtx insn
= DF_REF_INSN (ref
);
2637 if (! INSN_P (insn
))
2640 if (bitmap_bit_p (blocks
, DF_REF_BBNO (ref
)))
2642 df_ref_reg_replace (df
, ref
, oldreg
, newreg
);
2644 /* Replace occurrences of the reg within the REG_NOTES. */
2645 if ((! link
->next
|| DF_REF_INSN (ref
)
2646 != DF_REF_INSN (link
->next
->ref
))
2647 && REG_NOTES (insn
))
2650 for_each_rtx (®_NOTES (insn
), df_rtx_reg_replace
, &args
);
2655 /* Temporary check to ensure that we have a grip on which
2656 regs should be replaced. */
2663 /* Replace all occurrences of register OLDREG with register NEWREG in
2664 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2665 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2666 routine expects the reg-use and reg-def chains to be valid. */
2668 df_reg_replace (df
, blocks
, oldreg
, newreg
)
2674 unsigned int oldregno
= REGNO (oldreg
);
2676 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].defs
, oldreg
, newreg
);
2677 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].uses
, oldreg
, newreg
);
2682 /* Try replacing the reg within REF with NEWREG. Do not modify
2683 def-use/use-def chains. */
2685 df_ref_reg_replace (df
, ref
, oldreg
, newreg
)
2691 /* Check that insn was deleted by being converted into a NOTE. If
2692 so ignore this insn. */
2693 if (! INSN_P (DF_REF_INSN (ref
)))
2696 if (oldreg
&& oldreg
!= DF_REF_REG (ref
))
2699 if (! validate_change (DF_REF_INSN (ref
), DF_REF_LOC (ref
), newreg
, 1))
2702 df_insn_modify (df
, DF_REF_BB (ref
), DF_REF_INSN (ref
));
2708 df_bb_def_use_swap (df
, bb
, def_insn
, use_insn
, regno
)
2719 struct df_link
*link
;
2721 def
= df_bb_insn_regno_first_def_find (df
, bb
, def_insn
, regno
);
2725 use
= df_bb_insn_regno_last_use_find (df
, bb
, use_insn
, regno
);
2729 /* The USE no longer exists. */
2730 use_uid
= INSN_UID (use_insn
);
2731 df_use_unlink (df
, use
);
2732 df_ref_unlink (&df
->insns
[use_uid
].uses
, use
);
2734 /* The DEF requires shifting so remove it from DEF_INSN
2735 and add it to USE_INSN by reusing LINK. */
2736 def_uid
= INSN_UID (def_insn
);
2737 link
= df_ref_unlink (&df
->insns
[def_uid
].defs
, def
);
2739 link
->next
= df
->insns
[use_uid
].defs
;
2740 df
->insns
[use_uid
].defs
= link
;
2743 link
= df_ref_unlink (&df
->regs
[regno
].defs
, def
);
2745 link
->next
= df
->regs
[regno
].defs
;
2746 df
->insns
[regno
].defs
= link
;
2749 DF_REF_INSN (def
) = use_insn
;
2754 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2755 insns must be processed by this routine. */
2757 df_insns_modify (df
, bb
, first_insn
, last_insn
)
2765 for (insn
= first_insn
; ; insn
= NEXT_INSN (insn
))
2769 /* A non-const call should not have slipped through the net. If
2770 it does, we need to create a new basic block. Ouch. The
2771 same applies for a label. */
2772 if ((GET_CODE (insn
) == CALL_INSN
2773 && ! CONST_OR_PURE_CALL_P (insn
))
2774 || GET_CODE (insn
) == CODE_LABEL
)
2777 uid
= INSN_UID (insn
);
2779 if (uid
>= df
->insn_size
)
2780 df_insn_table_realloc (df
, uid
);
2782 df_insn_modify (df
, bb
, insn
);
2784 if (insn
== last_insn
)
2790 /* Emit PATTERN before INSN within BB. */
2792 df_pattern_emit_before (df
, pattern
, bb
, insn
)
2793 struct df
*df ATTRIBUTE_UNUSED
;
2799 rtx prev_insn
= PREV_INSN (insn
);
2801 /* We should not be inserting before the start of the block. */
2802 if (insn
== bb
->head
)
2804 ret_insn
= emit_insn_before (pattern
, insn
);
2805 if (ret_insn
== insn
)
2808 df_insns_modify (df
, bb
, NEXT_INSN (prev_insn
), ret_insn
);
2813 /* Emit PATTERN after INSN within BB. */
2815 df_pattern_emit_after (df
, pattern
, bb
, insn
)
2823 ret_insn
= emit_insn_after (pattern
, insn
);
2824 if (ret_insn
== insn
)
2827 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2832 /* Emit jump PATTERN after INSN within BB. */
2834 df_jump_pattern_emit_after (df
, pattern
, bb
, insn
)
2842 ret_insn
= emit_jump_insn_after (pattern
, insn
);
2843 if (ret_insn
== insn
)
2846 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2851 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2853 This function should only be used to move loop invariant insns
2854 out of a loop where it has been proven that the def-use info
2855 will still be valid. */
2857 df_insn_move_before (df
, bb
, insn
, before_bb
, before_insn
)
2861 basic_block before_bb
;
2864 struct df_link
*link
;
2868 return df_pattern_emit_before (df
, insn
, before_bb
, before_insn
);
2870 uid
= INSN_UID (insn
);
2872 /* Change bb for all df defined and used by this insn. */
2873 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2874 DF_REF_BB (link
->ref
) = before_bb
;
2875 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2876 DF_REF_BB (link
->ref
) = before_bb
;
2878 /* The lifetimes of the registers used in this insn will be reduced
2879 while the lifetimes of the registers defined in this insn
2880 are likely to be increased. */
2882 /* ???? Perhaps all the insns moved should be stored on a list
2883 which df_analyse removes when it recalculates data flow. */
2885 return emit_insn_before (insn
, before_insn
);
2888 /* Functions to query dataflow information. */
2892 df_insn_regno_def_p (df
, bb
, insn
, regno
)
2894 basic_block bb ATTRIBUTE_UNUSED
;
2899 struct df_link
*link
;
2901 uid
= INSN_UID (insn
);
2903 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2905 struct ref
*def
= link
->ref
;
2907 if (DF_REF_REGNO (def
) == regno
)
2916 df_def_dominates_all_uses_p (df
, def
)
2917 struct df
*df ATTRIBUTE_UNUSED
;
2920 struct df_link
*du_link
;
2922 /* Follow def-use chain to find all the uses of this def. */
2923 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
2925 struct ref
*use
= du_link
->ref
;
2926 struct df_link
*ud_link
;
2928 /* Follow use-def chain to check all the defs for this use. */
2929 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
2930 if (ud_link
->ref
!= def
)
2938 df_insn_dominates_all_uses_p (df
, bb
, insn
)
2940 basic_block bb ATTRIBUTE_UNUSED
;
2944 struct df_link
*link
;
2946 uid
= INSN_UID (insn
);
2948 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2950 struct ref
*def
= link
->ref
;
2952 if (! df_def_dominates_all_uses_p (df
, def
))
2960 /* Return nonzero if all DF dominates all the uses within the bitmap
2963 df_def_dominates_uses_p (df
, def
, blocks
)
2964 struct df
*df ATTRIBUTE_UNUSED
;
2968 struct df_link
*du_link
;
2970 /* Follow def-use chain to find all the uses of this def. */
2971 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
2973 struct ref
*use
= du_link
->ref
;
2974 struct df_link
*ud_link
;
2976 /* Only worry about the uses within BLOCKS. For example,
2977 consider a register defined within a loop that is live at the
2979 if (bitmap_bit_p (blocks
, DF_REF_BBNO (use
)))
2981 /* Follow use-def chain to check all the defs for this use. */
2982 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
2983 if (ud_link
->ref
!= def
)
2991 /* Return nonzero if all the defs of INSN within BB dominates
2992 all the corresponding uses. */
2994 df_insn_dominates_uses_p (df
, bb
, insn
, blocks
)
2996 basic_block bb ATTRIBUTE_UNUSED
;
3001 struct df_link
*link
;
3003 uid
= INSN_UID (insn
);
3005 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3007 struct ref
*def
= link
->ref
;
3009 /* Only consider the defs within BLOCKS. */
3010 if (bitmap_bit_p (blocks
, DF_REF_BBNO (def
))
3011 && ! df_def_dominates_uses_p (df
, def
, blocks
))
3018 /* Return the basic block that REG referenced in or NULL if referenced
3019 in multiple basic blocks. */
3021 df_regno_bb (df
, regno
)
3025 struct df_link
*defs
= df
->regs
[regno
].defs
;
3026 struct df_link
*uses
= df
->regs
[regno
].uses
;
3027 struct ref
*def
= defs
? defs
->ref
: 0;
3028 struct ref
*use
= uses
? uses
->ref
: 0;
3029 basic_block bb_def
= def
? DF_REF_BB (def
) : 0;
3030 basic_block bb_use
= use
? DF_REF_BB (use
) : 0;
3032 /* Compare blocks of first def and last use. ???? FIXME. What if
3033 the reg-def and reg-use lists are not correctly ordered. */
3034 return bb_def
== bb_use
? bb_def
: 0;
3038 /* Return nonzero if REG used in multiple basic blocks. */
3040 df_reg_global_p (df
, reg
)
3044 return df_regno_bb (df
, REGNO (reg
)) != 0;
3048 /* Return total lifetime (in insns) of REG. */
3050 df_reg_lifetime (df
, reg
)
3054 return df
->regs
[REGNO (reg
)].lifetime
;
3058 /* Return nonzero if REG live at start of BB. */
3060 df_bb_reg_live_start_p (df
, bb
, reg
)
3061 struct df
*df ATTRIBUTE_UNUSED
;
3065 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3067 #ifdef ENABLE_CHECKING
3068 if (! bb_info
->lr_in
)
3072 return bitmap_bit_p (bb_info
->lr_in
, REGNO (reg
));
3076 /* Return nonzero if REG live at end of BB. */
3078 df_bb_reg_live_end_p (df
, bb
, reg
)
3079 struct df
*df ATTRIBUTE_UNUSED
;
3083 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3085 #ifdef ENABLE_CHECKING
3086 if (! bb_info
->lr_in
)
3090 return bitmap_bit_p (bb_info
->lr_out
, REGNO (reg
));
3094 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3095 after life of REG2, or 0, if the lives overlap. */
3097 df_bb_regs_lives_compare (df
, bb
, reg1
, reg2
)
3103 unsigned int regno1
= REGNO (reg1
);
3104 unsigned int regno2
= REGNO (reg2
);
3111 /* The regs must be local to BB. */
3112 if (df_regno_bb (df
, regno1
) != bb
3113 || df_regno_bb (df
, regno2
) != bb
)
3116 def2
= df_bb_regno_first_def_find (df
, bb
, regno2
);
3117 use1
= df_bb_regno_last_use_find (df
, bb
, regno1
);
3119 if (DF_INSN_LUID (df
, DF_REF_INSN (def2
))
3120 > DF_INSN_LUID (df
, DF_REF_INSN (use1
)))
3123 def1
= df_bb_regno_first_def_find (df
, bb
, regno1
);
3124 use2
= df_bb_regno_last_use_find (df
, bb
, regno2
);
3126 if (DF_INSN_LUID (df
, DF_REF_INSN (def1
))
3127 > DF_INSN_LUID (df
, DF_REF_INSN (use2
)))
3134 /* Return last use of REGNO within BB. */
3136 df_bb_regno_last_use_find (df
, bb
, regno
)
3138 basic_block bb ATTRIBUTE_UNUSED
;
3141 struct df_link
*link
;
3143 /* This assumes that the reg-use list is ordered such that for any
3144 BB, the last use is found first. However, since the BBs are not
3145 ordered, the first use in the chain is not necessarily the last
3146 use in the function. */
3147 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
3149 struct ref
*use
= link
->ref
;
3151 if (DF_REF_BB (use
) == bb
)
3158 /* Return first def of REGNO within BB. */
3160 df_bb_regno_first_def_find (df
, bb
, regno
)
3162 basic_block bb ATTRIBUTE_UNUSED
;
3165 struct df_link
*link
;
3167 /* This assumes that the reg-def list is ordered such that for any
3168 BB, the first def is found first. However, since the BBs are not
3169 ordered, the first def in the chain is not necessarily the first
3170 def in the function. */
3171 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3173 struct ref
*def
= link
->ref
;
3175 if (DF_REF_BB (def
) == bb
)
3182 /* Return first use of REGNO inside INSN within BB. */
3184 df_bb_insn_regno_last_use_find (df
, bb
, insn
, regno
)
3186 basic_block bb ATTRIBUTE_UNUSED
;
3191 struct df_link
*link
;
3193 uid
= INSN_UID (insn
);
3195 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
3197 struct ref
*use
= link
->ref
;
3199 if (DF_REF_REGNO (use
) == regno
)
3207 /* Return first def of REGNO inside INSN within BB. */
3209 df_bb_insn_regno_first_def_find (df
, bb
, insn
, regno
)
3211 basic_block bb ATTRIBUTE_UNUSED
;
3216 struct df_link
*link
;
3218 uid
= INSN_UID (insn
);
3220 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3222 struct ref
*def
= link
->ref
;
3224 if (DF_REF_REGNO (def
) == regno
)
3232 /* Return insn using REG if the BB contains only a single
3233 use and def of REG. */
3235 df_bb_single_def_use_insn_find (df
, bb
, insn
, reg
)
3243 struct df_link
*du_link
;
3245 def
= df_bb_insn_regno_first_def_find (df
, bb
, insn
, REGNO (reg
));
3250 du_link
= DF_REF_CHAIN (def
);
3257 /* Check if def is dead. */
3261 /* Check for multiple uses. */
3265 return DF_REF_INSN (use
);
3268 /* Functions for debugging/dumping dataflow information. */
3271 /* Dump a def-use or use-def chain for REF to FILE. */
3273 df_chain_dump (link
, file
)
3274 struct df_link
*link
;
3277 fprintf (file
, "{ ");
3278 for (; link
; link
= link
->next
)
3280 fprintf (file
, "%c%d ",
3281 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3282 DF_REF_ID (link
->ref
));
3284 fprintf (file
, "}");
3288 /* Dump a chain of refs with the associated regno. */
3290 df_chain_dump_regno (link
, file
)
3291 struct df_link
*link
;
3294 fprintf (file
, "{ ");
3295 for (; link
; link
= link
->next
)
3297 fprintf (file
, "%c%d(%d) ",
3298 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3299 DF_REF_ID (link
->ref
),
3300 DF_REF_REGNO (link
->ref
));
3302 fprintf (file
, "}");
3306 /* Dump dataflow info. */
3308 df_dump (df
, flags
, file
)
3319 fprintf (file
, "\nDataflow summary:\n");
3320 fprintf (file
, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3321 df
->n_regs
, df
->n_defs
, df
->n_uses
, df
->n_bbs
);
3327 fprintf (file
, "Reaching defs:\n");
3330 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3332 if (! bb_info
->rd_in
)
3335 fprintf (file
, "bb %d in \t", bb
->index
);
3336 dump_bitmap (file
, bb_info
->rd_in
);
3337 fprintf (file
, "bb %d gen \t", bb
->index
);
3338 dump_bitmap (file
, bb_info
->rd_gen
);
3339 fprintf (file
, "bb %d kill\t", bb
->index
);
3340 dump_bitmap (file
, bb_info
->rd_kill
);
3341 fprintf (file
, "bb %d out \t", bb
->index
);
3342 dump_bitmap (file
, bb_info
->rd_out
);
3346 if (flags
& DF_UD_CHAIN
)
3348 fprintf (file
, "Use-def chains:\n");
3349 for (j
= 0; j
< df
->n_defs
; j
++)
3353 fprintf (file
, "d%d bb %d luid %d insn %d reg %d ",
3354 j
, DF_REF_BBNO (df
->defs
[j
]),
3355 DF_INSN_LUID (df
, DF_REF_INSN (df
->defs
[j
])),
3356 DF_REF_INSN_UID (df
->defs
[j
]),
3357 DF_REF_REGNO (df
->defs
[j
]));
3358 if (df
->defs
[j
]->flags
& DF_REF_READ_WRITE
)
3359 fprintf (file
, "read/write ");
3360 df_chain_dump (DF_REF_CHAIN (df
->defs
[j
]), file
);
3361 fprintf (file
, "\n");
3368 fprintf (file
, "Reaching uses:\n");
3371 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3373 if (! bb_info
->ru_in
)
3376 fprintf (file
, "bb %d in \t", bb
->index
);
3377 dump_bitmap (file
, bb_info
->ru_in
);
3378 fprintf (file
, "bb %d gen \t", bb
->index
);
3379 dump_bitmap (file
, bb_info
->ru_gen
);
3380 fprintf (file
, "bb %d kill\t", bb
->index
);
3381 dump_bitmap (file
, bb_info
->ru_kill
);
3382 fprintf (file
, "bb %d out \t", bb
->index
);
3383 dump_bitmap (file
, bb_info
->ru_out
);
3387 if (flags
& DF_DU_CHAIN
)
3389 fprintf (file
, "Def-use chains:\n");
3390 for (j
= 0; j
< df
->n_uses
; j
++)
3394 fprintf (file
, "u%d bb %d luid %d insn %d reg %d ",
3395 j
, DF_REF_BBNO (df
->uses
[j
]),
3396 DF_INSN_LUID (df
, DF_REF_INSN (df
->uses
[j
])),
3397 DF_REF_INSN_UID (df
->uses
[j
]),
3398 DF_REF_REGNO (df
->uses
[j
]));
3399 if (df
->uses
[j
]->flags
& DF_REF_READ_WRITE
)
3400 fprintf (file
, "read/write ");
3401 df_chain_dump (DF_REF_CHAIN (df
->uses
[j
]), file
);
3402 fprintf (file
, "\n");
3409 fprintf (file
, "Live regs:\n");
3412 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3414 if (! bb_info
->lr_in
)
3417 fprintf (file
, "bb %d in \t", bb
->index
);
3418 dump_bitmap (file
, bb_info
->lr_in
);
3419 fprintf (file
, "bb %d use \t", bb
->index
);
3420 dump_bitmap (file
, bb_info
->lr_use
);
3421 fprintf (file
, "bb %d def \t", bb
->index
);
3422 dump_bitmap (file
, bb_info
->lr_def
);
3423 fprintf (file
, "bb %d out \t", bb
->index
);
3424 dump_bitmap (file
, bb_info
->lr_out
);
3428 if (flags
& (DF_REG_INFO
| DF_RD_CHAIN
| DF_RU_CHAIN
))
3430 struct reg_info
*reg_info
= df
->regs
;
3432 fprintf (file
, "Register info:\n");
3433 for (j
= 0; j
< df
->n_regs
; j
++)
3435 if (((flags
& DF_REG_INFO
)
3436 && (reg_info
[j
].n_uses
|| reg_info
[j
].n_defs
))
3437 || ((flags
& DF_RD_CHAIN
) && reg_info
[j
].defs
)
3438 || ((flags
& DF_RU_CHAIN
) && reg_info
[j
].uses
))
3440 fprintf (file
, "reg %d", j
);
3441 if ((flags
& DF_RD_CHAIN
) && (flags
& DF_RU_CHAIN
))
3443 basic_block bb
= df_regno_bb (df
, j
);
3446 fprintf (file
, " bb %d", bb
->index
);
3448 fprintf (file
, " bb ?");
3450 if (flags
& DF_REG_INFO
)
3452 fprintf (file
, " life %d", reg_info
[j
].lifetime
);
3455 if ((flags
& DF_REG_INFO
) || (flags
& DF_RD_CHAIN
))
3457 fprintf (file
, " defs ");
3458 if (flags
& DF_REG_INFO
)
3459 fprintf (file
, "%d ", reg_info
[j
].n_defs
);
3460 if (flags
& DF_RD_CHAIN
)
3461 df_chain_dump (reg_info
[j
].defs
, file
);
3464 if ((flags
& DF_REG_INFO
) || (flags
& DF_RU_CHAIN
))
3466 fprintf (file
, " uses ");
3467 if (flags
& DF_REG_INFO
)
3468 fprintf (file
, "%d ", reg_info
[j
].n_uses
);
3469 if (flags
& DF_RU_CHAIN
)
3470 df_chain_dump (reg_info
[j
].uses
, file
);
3473 fprintf (file
, "\n");
3477 fprintf (file
, "\n");
3482 df_insn_debug (df
, insn
, file
)
3490 uid
= INSN_UID (insn
);
3491 if (uid
>= df
->insn_size
)
3494 if (df
->insns
[uid
].defs
)
3495 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3496 else if (df
->insns
[uid
].uses
)
3497 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3501 fprintf (file
, "insn %d bb %d luid %d defs ",
3502 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3503 df_chain_dump (df
->insns
[uid
].defs
, file
);
3504 fprintf (file
, " uses ");
3505 df_chain_dump (df
->insns
[uid
].uses
, file
);
3506 fprintf (file
, "\n");
3511 df_insn_debug_regno (df
, insn
, file
)
3519 uid
= INSN_UID (insn
);
3520 if (uid
>= df
->insn_size
)
3523 if (df
->insns
[uid
].defs
)
3524 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3525 else if (df
->insns
[uid
].uses
)
3526 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3530 fprintf (file
, "insn %d bb %d luid %d defs ",
3531 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3532 df_chain_dump_regno (df
->insns
[uid
].defs
, file
);
3533 fprintf (file
, " uses ");
3534 df_chain_dump_regno (df
->insns
[uid
].uses
, file
);
3535 fprintf (file
, "\n");
3540 df_regno_debug (df
, regno
, file
)
3545 if (regno
>= df
->reg_size
)
3548 fprintf (file
, "reg %d life %d defs ",
3549 regno
, df
->regs
[regno
].lifetime
);
3550 df_chain_dump (df
->regs
[regno
].defs
, file
);
3551 fprintf (file
, " uses ");
3552 df_chain_dump (df
->regs
[regno
].uses
, file
);
3553 fprintf (file
, "\n");
3558 df_ref_debug (df
, ref
, file
)
3563 fprintf (file
, "%c%d ",
3564 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
3566 fprintf (file
, "reg %d bb %d luid %d insn %d chain ",
3569 DF_INSN_LUID (df
, DF_REF_INSN (ref
)),
3570 INSN_UID (DF_REF_INSN (ref
)));
3571 df_chain_dump (DF_REF_CHAIN (ref
), file
);
3572 fprintf (file
, "\n");
3575 /* Functions for debugging from GDB. */
3578 debug_df_insn (insn
)
3581 df_insn_debug (ddf
, insn
, stderr
);
3590 df_regno_debug (ddf
, REGNO (reg
), stderr
);
3595 debug_df_regno (regno
)
3598 df_regno_debug (ddf
, regno
, stderr
);
3606 df_ref_debug (ddf
, ref
, stderr
);
3611 debug_df_defno (defno
)
3614 df_ref_debug (ddf
, ddf
->defs
[defno
], stderr
);
3619 debug_df_useno (defno
)
3622 df_ref_debug (ddf
, ddf
->uses
[defno
], stderr
);
3627 debug_df_chain (link
)
3628 struct df_link
*link
;
3630 df_chain_dump (link
, stderr
);
3631 fputc ('\n', stderr
);
3635 /* Hybrid search algorithm from "Implementation Techniques for
3636 Efficient Data-Flow Analysis of Large Programs". */
3638 hybrid_search_bitmap (block
, in
, out
, gen
, kill
, dir
,
3639 conf_op
, transfun
, visited
, pending
,
3642 bitmap
*in
, *out
, *gen
, *kill
;
3643 enum df_flow_dir dir
;
3644 enum df_confluence_op conf_op
;
3645 transfer_function_bitmap transfun
;
3651 int i
= block
->index
;
3653 basic_block bb
= block
;
3655 SET_BIT (visited
, block
->index
);
3656 if (TEST_BIT (pending
, block
->index
))
3658 if (dir
== DF_FORWARD
)
3660 /* Calculate <conf_op> of predecessor_outs. */
3661 bitmap_zero (in
[i
]);
3662 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3664 if (e
->src
== ENTRY_BLOCK_PTR
)
3669 bitmap_a_or_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3671 case DF_INTERSECTION
:
3672 bitmap_a_and_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3679 /* Calculate <conf_op> of successor ins. */
3680 bitmap_zero (out
[i
]);
3681 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3683 if (e
->dest
== EXIT_BLOCK_PTR
)
3688 bitmap_a_or_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3690 case DF_INTERSECTION
:
3691 bitmap_a_and_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3697 (*transfun
)(i
, &changed
, in
[i
], out
[i
], gen
[i
], kill
[i
], data
);
3698 RESET_BIT (pending
, i
);
3701 if (dir
== DF_FORWARD
)
3703 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3705 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3707 SET_BIT (pending
, e
->dest
->index
);
3712 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3714 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->dest
->index
== i
)
3716 SET_BIT (pending
, e
->src
->index
);
3721 if (dir
== DF_FORWARD
)
3723 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3725 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3727 if (!TEST_BIT (visited
, e
->dest
->index
))
3728 hybrid_search_bitmap (e
->dest
, in
, out
, gen
, kill
, dir
,
3729 conf_op
, transfun
, visited
, pending
,
3735 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3737 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->src
->index
== i
)
3739 if (!TEST_BIT (visited
, e
->src
->index
))
3740 hybrid_search_bitmap (e
->src
, in
, out
, gen
, kill
, dir
,
3741 conf_op
, transfun
, visited
, pending
,
3748 /* Hybrid search for sbitmaps, rather than bitmaps. */
3750 hybrid_search_sbitmap (block
, in
, out
, gen
, kill
, dir
,
3751 conf_op
, transfun
, visited
, pending
,
3754 sbitmap
*in
, *out
, *gen
, *kill
;
3755 enum df_flow_dir dir
;
3756 enum df_confluence_op conf_op
;
3757 transfer_function_sbitmap transfun
;
3763 int i
= block
->index
;
3765 basic_block bb
= block
;
3767 SET_BIT (visited
, block
->index
);
3768 if (TEST_BIT (pending
, block
->index
))
3770 if (dir
== DF_FORWARD
)
3772 /* Calculate <conf_op> of predecessor_outs. */
3773 sbitmap_zero (in
[i
]);
3774 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3776 if (e
->src
== ENTRY_BLOCK_PTR
)
3781 sbitmap_a_or_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3783 case DF_INTERSECTION
:
3784 sbitmap_a_and_b (in
[i
], in
[i
], out
[e
->src
->index
]);
3791 /* Calculate <conf_op> of successor ins. */
3792 sbitmap_zero (out
[i
]);
3793 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3795 if (e
->dest
== EXIT_BLOCK_PTR
)
3800 sbitmap_a_or_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3802 case DF_INTERSECTION
:
3803 sbitmap_a_and_b (out
[i
], out
[i
], in
[e
->dest
->index
]);
3809 (*transfun
)(i
, &changed
, in
[i
], out
[i
], gen
[i
], kill
[i
], data
);
3810 RESET_BIT (pending
, i
);
3813 if (dir
== DF_FORWARD
)
3815 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3817 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3819 SET_BIT (pending
, e
->dest
->index
);
3824 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3826 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->dest
->index
== i
)
3828 SET_BIT (pending
, e
->src
->index
);
3833 if (dir
== DF_FORWARD
)
3835 for (e
= bb
->succ
; e
!= 0; e
= e
->succ_next
)
3837 if (e
->dest
== EXIT_BLOCK_PTR
|| e
->dest
->index
== i
)
3839 if (!TEST_BIT (visited
, e
->dest
->index
))
3840 hybrid_search_sbitmap (e
->dest
, in
, out
, gen
, kill
, dir
,
3841 conf_op
, transfun
, visited
, pending
,
3847 for (e
= bb
->pred
; e
!= 0; e
= e
->pred_next
)
3849 if (e
->src
== ENTRY_BLOCK_PTR
|| e
->src
->index
== i
)
3851 if (!TEST_BIT (visited
, e
->src
->index
))
3852 hybrid_search_sbitmap (e
->src
, in
, out
, gen
, kill
, dir
,
3853 conf_op
, transfun
, visited
, pending
,
3862 in, out = Filled in by function.
3863 blocks = Blocks to analyze.
3864 dir = Dataflow direction.
3865 conf_op = Confluence operation.
3866 transfun = Transfer function.
3867 order = Order to iterate in. (Should map block numbers -> order)
3868 data = Whatever you want. It's passed to the transfer function.
3870 This function will perform iterative bitvector dataflow, producing
3871 the in and out sets. Even if you only want to perform it for a
3872 small number of blocks, the vectors for in and out must be large
3873 enough for *all* blocks, because changing one block might affect
3874 others. However, it'll only put what you say to analyze on the
3877 For forward problems, you probably want to pass in a mapping of
3878 block number to rc_order (like df->inverse_rc_map).
3881 iterative_dataflow_sbitmap (in
, out
, gen
, kill
, blocks
,
3882 dir
, conf_op
, transfun
, order
, data
)
3883 sbitmap
*in
, *out
, *gen
, *kill
;
3885 enum df_flow_dir dir
;
3886 enum df_confluence_op conf_op
;
3887 transfer_function_sbitmap transfun
;
3894 sbitmap visited
, pending
;
3896 pending
= sbitmap_alloc (last_basic_block
);
3897 visited
= sbitmap_alloc (last_basic_block
);
3898 sbitmap_zero (pending
);
3899 sbitmap_zero (visited
);
3900 worklist
= fibheap_new ();
3902 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3904 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3905 SET_BIT (pending
, i
);
3906 if (dir
== DF_FORWARD
)
3907 sbitmap_copy (out
[i
], gen
[i
]);
3909 sbitmap_copy (in
[i
], gen
[i
]);
3912 while (sbitmap_first_set_bit (pending
) != -1)
3914 while (!fibheap_empty (worklist
))
3916 i
= (size_t) fibheap_extract_min (worklist
);
3917 bb
= BASIC_BLOCK (i
);
3918 if (!TEST_BIT (visited
, bb
->index
))
3919 hybrid_search_sbitmap (bb
, in
, out
, gen
, kill
, dir
,
3920 conf_op
, transfun
, visited
, pending
, data
);
3923 if (sbitmap_first_set_bit (pending
) != -1)
3925 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3927 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3929 sbitmap_zero (visited
);
3937 sbitmap_free (pending
);
3938 sbitmap_free (visited
);
3939 fibheap_delete (worklist
);
3943 /* Exactly the same as iterative_dataflow_sbitmap, except it works on
3946 iterative_dataflow_bitmap (in
, out
, gen
, kill
, blocks
,
3947 dir
, conf_op
, transfun
, order
, data
)
3948 bitmap
*in
, *out
, *gen
, *kill
;
3950 enum df_flow_dir dir
;
3951 enum df_confluence_op conf_op
;
3952 transfer_function_bitmap transfun
;
3959 sbitmap visited
, pending
;
3961 pending
= sbitmap_alloc (last_basic_block
);
3962 visited
= sbitmap_alloc (last_basic_block
);
3963 sbitmap_zero (pending
);
3964 sbitmap_zero (visited
);
3965 worklist
= fibheap_new ();
3967 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3969 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3970 SET_BIT (pending
, i
);
3971 if (dir
== DF_FORWARD
)
3972 bitmap_copy (out
[i
], gen
[i
]);
3974 bitmap_copy (in
[i
], gen
[i
]);
3977 while (sbitmap_first_set_bit (pending
) != -1)
3979 while (!fibheap_empty (worklist
))
3981 i
= (size_t) fibheap_extract_min (worklist
);
3982 bb
= BASIC_BLOCK (i
);
3983 if (!TEST_BIT (visited
, bb
->index
))
3984 hybrid_search_bitmap (bb
, in
, out
, gen
, kill
, dir
,
3985 conf_op
, transfun
, visited
, pending
, data
);
3988 if (sbitmap_first_set_bit (pending
) != -1)
3990 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
,
3992 fibheap_insert (worklist
, order
[i
], (void *) (size_t) i
);
3994 sbitmap_zero (visited
);
4001 sbitmap_free (pending
);
4002 sbitmap_free (visited
);
4003 fibheap_delete (worklist
);