1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
270 /* GCSE global vars. */
273 static FILE *gcse_file
;
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse
;
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr
;
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack
;
293 struct reg_use
{rtx reg_rtx
; };
295 /* Hash table of expressions. */
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
301 /* Index in the available expression bitmaps. */
303 /* Next entry with the same hash. */
304 struct expr
*next_same_hash
;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr
*antic_occr
;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr
*avail_occr
;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
328 /* Next occurrence of this expression. */
330 /* The insn that computes the expression. */
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
334 /* Nonzero if this [available] occurrence has been copied to
336 /* ??? This is mutually exclusive with deleted_p, so they could share
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
353 This is an array of `expr_hash_table_size' elements. */
356 /* Size of the hash table, in elements. */
359 /* Number of hash table elements. */
360 unsigned int n_elems
;
362 /* Whether the table is expression of copy propagation one. */
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table
;
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table
;
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid
;
376 /* Highest UID in UID_CUID. */
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
387 /* Number of cuids. */
390 /* Mapping of cuids to insns. */
391 static rtx
*cuid_insn
;
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno
;
401 /* Table of registers that are modified.
403 For each register, each element is a list of places where the pseudo-reg
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
424 typedef struct reg_set
426 /* The next setting of this register. */
427 struct reg_set
*next
;
428 /* The index of the block where it was set. */
432 static reg_set
**reg_set_table
;
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
437 static int reg_set_table_size
;
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
442 /* This is a list of expressions which are MEMs and will be used by load
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
455 struct expr
* expr
; /* Gcse expression reference for LM. */
456 rtx pattern
; /* Pattern of this mem. */
457 rtx pattern_regs
; /* List of registers mentioned by the mem. */
458 rtx loads
; /* INSN list of loads seen. */
459 rtx stores
; /* INSN list of stores seen. */
460 struct ls_expr
* next
; /* Next in the list. */
461 int invalid
; /* Invalid for some reason. */
462 int index
; /* If it maps to a bitmap index. */
463 unsigned int hash_index
; /* Index when in a hash table. */
464 rtx reaching_reg
; /* Register to use when re-writing. */
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx
*implicit_sets
;
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr
* pre_ldst_mems
= NULL
;
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap
;
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap
*reg_set_in_block
;
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx
* modify_mem_list
;
488 static bitmap modify_mem_list_set
;
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx
* canon_modify_mem_list
;
493 /* Bitmap indexed by block numbers to record which blocks contain
495 static bitmap blocks_with_calls
;
497 /* Various variables for statistics gathering. */
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used
;
504 /* GCSE substitutions made. */
505 static int gcse_subst_count
;
506 /* Number of copy instructions created. */
507 static int gcse_create_count
;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count
;
510 /* Number of local copys propagated. */
511 static int local_copy_prop_count
;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count
;
514 /* Number of global copys propagated. */
515 static int global_copy_prop_count
;
517 /* For available exprs */
518 static sbitmap
*ae_kill
, *ae_gen
;
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (void);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx
);
530 static void record_set_info (rtx
, rtx
, void *);
531 static void compute_sets (void);
532 static void hash_scan_insn (rtx
, struct hash_table
*, int);
533 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
534 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
535 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
536 static int want_to_gcse_p (rtx
);
537 static bool can_assign_to_reg_p (rtx
);
538 static bool gcse_constant_p (rtx
);
539 static int oprs_unchanged_p (rtx
, rtx
, int);
540 static int oprs_anticipatable_p (rtx
, rtx
);
541 static int oprs_available_p (rtx
, rtx
);
542 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
543 struct hash_table
*);
544 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
545 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx
, rtx
);
548 static void record_last_reg_set_info (rtx
, int);
549 static void record_last_mem_set_info (rtx
);
550 static void record_last_set_info (rtx
, rtx
, void *);
551 static void compute_hash_table (struct hash_table
*);
552 static void alloc_hash_table (int, struct hash_table
*, int);
553 static void free_hash_table (struct hash_table
*);
554 static void compute_hash_table_work (struct hash_table
*);
555 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
556 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
557 static struct expr
*next_set (unsigned int, struct expr
*);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx
, rtx
);
560 static void mark_call (rtx
);
561 static void mark_set (rtx
, rtx
);
562 static void mark_clobber (rtx
, rtx
);
563 static void mark_oprs_set (rtx
);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx
, int, sbitmap
*, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
569 struct hash_table
*);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx
*, void *);
572 static int try_replace_reg (rtx
, rtx
, rtx
);
573 static struct expr
*find_avail_set (int, rtx
);
574 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
575 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
576 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
577 static void canon_list_insert (rtx
, rtx
, void *);
578 static int cprop_insn (rtx
, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, bool, bool);
582 static bool constprop_register (rtx
, rtx
, rtx
, bool);
583 static struct expr
*find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx
, edge
);
585 static int bypass_block (basic_block
, rtx
, rtx
);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
592 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
593 static void pre_insert_copy_insn (struct expr
*, rtx
);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx
, rtx
);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx
process_insert_insn (struct expr
*);
607 static int pre_edge_insert (struct edge_list
*, struct expr
**);
608 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
609 basic_block
, char *);
610 static struct ls_expr
* ldst_entry (rtx
);
611 static void free_ldst_entry (struct ls_expr
*);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr
* find_rtx_in_ldst (rtx
);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr
* first_ls_expr (void);
617 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
618 static int simple_mem (rtx
);
619 static void invalidate_any_buried_refs (rtx
);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr
*);
623 static void reg_set_info (rtx
, rtx
, void *);
624 static void reg_clear_last_set (rtx
, rtx
, void *);
625 static bool store_ops_ok (rtx
, int *);
626 static rtx
extract_mentioned_regs (rtx
);
627 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
628 static void find_moveable_store (rtx
, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx
, rtx
, int);
631 static bool find_loads (rtx
, rtx
, int);
632 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
633 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
634 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx
, basic_block
);
637 static int insert_store (struct ls_expr
*, edge
);
638 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
639 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
640 static void delete_store (struct ls_expr
*, basic_block
);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx
*);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
647 static void local_cprop_find_used_regs (rtx
*, void *);
648 static bool do_local_cprop (rtx
, rtx
, bool, rtx
*);
649 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
650 static void local_cprop_pass (bool);
651 static bool is_too_expensive (const char *);
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
659 gcse_main (rtx f ATTRIBUTE_UNUSED
, FILE *file
)
662 /* Bytes used at start of pass. */
663 int initial_bytes_used
;
664 /* Maximum number of bytes used by a pass. */
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom
;
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp
)
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse
= 0;
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr
= stderr
;
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno
= max_reg_num ();
686 dump_flow_info (file
);
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
692 gcc_obstack_init (&gcse_obstack
);
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno
);
710 initial_bytes_used
= bytes_used
;
712 gcse_obstack_bottom
= gcse_alloc (1);
714 while (changed
&& pass
< MAX_GCSE_PASSES
)
718 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used
= initial_bytes_used
;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno
= max_reg_num ();
729 /* Don't allow constant propagation to modify jumps
731 timevar_push (TV_CPROP1
);
732 changed
= one_cprop_pass (pass
+ 1, false, false);
733 timevar_pop (TV_CPROP1
);
739 timevar_push (TV_PRE
);
740 changed
|= one_pre_gcse_pass (pass
+ 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
746 free_modify_mem_tables ();
747 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
748 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
751 alloc_reg_set_mem (max_reg_num ());
753 run_jump_opt_after_gcse
= 1;
754 timevar_pop (TV_PRE
);
757 if (max_pass_bytes
< bytes_used
)
758 max_pass_bytes
= bytes_used
;
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
772 timevar_push (TV_HOIST
);
773 max_gcse_regno
= max_reg_num ();
775 changed
|= one_code_hoisting_pass ();
778 if (max_pass_bytes
< bytes_used
)
779 max_pass_bytes
= bytes_used
;
780 timevar_pop (TV_HOIST
);
785 fprintf (file
, "\n");
789 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
796 max_gcse_regno
= max_reg_num ();
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2
);
800 one_cprop_pass (pass
+ 1, true, false);
801 timevar_pop (TV_CPROP2
);
806 fprintf (file
, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks
);
808 fprintf (file
, "%d pass%s, %d bytes\n\n",
809 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
812 obstack_free (&gcse_obstack
, NULL
);
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
819 if (!optimize_size
&& flag_gcse_sm
)
821 timevar_push (TV_LSM
);
823 timevar_pop (TV_LSM
);
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse
;
830 /* Misc. utilities. */
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy
[(int) NUM_MACHINE_MODES
];
837 /* Compute which modes support reg/reg copy operations. */
840 compute_can_copy (void)
843 #ifndef AVOID_CCMODE_COPIES
846 memset (can_copy
, 0, NUM_MACHINE_MODES
);
849 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
850 if (GET_MODE_CLASS (i
) == MODE_CC
)
852 #ifdef AVOID_CCMODE_COPIES
855 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
856 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
857 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
867 /* Returns whether the mode supports reg/reg copy operations. */
870 can_copy_p (enum machine_mode mode
)
872 static bool can_copy_init_p
= false;
874 if (! can_copy_init_p
)
877 can_copy_init_p
= true;
880 return can_copy
[mode
] != 0;
883 /* Cover function to xmalloc to record bytes allocated. */
886 gmalloc (size_t size
)
889 return xmalloc (size
);
892 /* Cover function to xcalloc to record bytes allocated. */
895 gcalloc (size_t nelem
, size_t elsize
)
897 bytes_used
+= nelem
* elsize
;
898 return xcalloc (nelem
, elsize
);
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
906 grealloc (void *ptr
, size_t size
)
908 return xrealloc (ptr
, size
);
911 /* Cover function to obstack_alloc. */
914 gcse_alloc (unsigned long size
)
917 return obstack_alloc (&gcse_obstack
, size
);
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
923 This is called at the start of each pass. */
926 alloc_gcse_mem (void)
932 /* Find the largest UID and create a mapping from UIDs to CUIDs.
933 CUIDs are like UIDs except they increase monotonically, have no gaps,
934 and only apply to real insns.
935 (Actually, there are gaps, for insn that are not inside a basic block.
936 but we should never see those anyway, so this is OK.) */
938 max_uid
= get_max_uid ();
939 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
942 FOR_BB_INSNS (bb
, insn
)
945 uid_cuid
[INSN_UID (insn
)] = i
++;
947 uid_cuid
[INSN_UID (insn
)] = i
;
950 /* Create a table mapping cuids to insns. */
953 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
956 FOR_BB_INSNS (bb
, insn
)
958 CUID_INSN (i
++) = insn
;
960 /* Allocate vars to track sets of regs. */
961 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
963 /* Allocate vars to track sets of regs, memory per block. */
964 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
965 /* Allocate array to keep a list of insns which modify memory in each
967 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
968 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
969 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
970 blocks_with_calls
= BITMAP_ALLOC (NULL
);
973 /* Free memory allocated by alloc_gcse_mem. */
981 BITMAP_FREE (reg_set_bitmap
);
983 sbitmap_vector_free (reg_set_in_block
);
984 free_modify_mem_tables ();
985 BITMAP_FREE (modify_mem_list_set
);
986 BITMAP_FREE (blocks_with_calls
);
989 /* Compute the local properties of each recorded expression.
991 Local properties are those that are defined by the block, irrespective of
994 An expression is transparent in a block if its operands are not modified
997 An expression is computed (locally available) in a block if it is computed
998 at least once and expression would contain the same value if the
999 computation was moved to the end of the block.
1001 An expression is locally anticipatable in a block if it is computed at
1002 least once and expression would contain the same value if the computation
1003 was moved to the beginning of the block.
1005 We call this routine for cprop, pre and code hoisting. They all compute
1006 basically the same information and thus can easily share this code.
1008 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1009 properties. If NULL, then it is not necessary to compute or record that
1010 particular property.
1012 TABLE controls which hash table to look at. If it is set hash table,
1013 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1017 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
1018 struct hash_table
*table
)
1022 /* Initialize any bitmaps that were passed in. */
1026 sbitmap_vector_zero (transp
, last_basic_block
);
1028 sbitmap_vector_ones (transp
, last_basic_block
);
1032 sbitmap_vector_zero (comp
, last_basic_block
);
1034 sbitmap_vector_zero (antloc
, last_basic_block
);
1036 for (i
= 0; i
< table
->size
; i
++)
1040 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1042 int indx
= expr
->bitmap_index
;
1045 /* The expression is transparent in this block if it is not killed.
1046 We start by assuming all are transparent [none are killed], and
1047 then reset the bits for those that are. */
1049 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1051 /* The occurrences recorded in antic_occr are exactly those that
1052 we want to set to nonzero in ANTLOC. */
1054 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1056 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1058 /* While we're scanning the table, this is a good place to
1060 occr
->deleted_p
= 0;
1063 /* The occurrences recorded in avail_occr are exactly those that
1064 we want to set to nonzero in COMP. */
1066 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1068 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1070 /* While we're scanning the table, this is a good place to
1075 /* While we're scanning the table, this is a good place to
1077 expr
->reaching_reg
= 0;
1082 /* Register set information.
1084 `reg_set_table' records where each register is set or otherwise
1087 static struct obstack reg_set_obstack
;
1090 alloc_reg_set_mem (int n_regs
)
1092 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1093 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1095 gcc_obstack_init (®_set_obstack
);
1099 free_reg_set_mem (void)
1101 free (reg_set_table
);
1102 obstack_free (®_set_obstack
, NULL
);
1105 /* Record REGNO in the reg_set table. */
1108 record_one_set (int regno
, rtx insn
)
1110 /* Allocate a new reg_set element and link it onto the list. */
1111 struct reg_set
*new_reg_info
;
1113 /* If the table isn't big enough, enlarge it. */
1114 if (regno
>= reg_set_table_size
)
1116 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1118 reg_set_table
= grealloc (reg_set_table
,
1119 new_size
* sizeof (struct reg_set
*));
1120 memset (reg_set_table
+ reg_set_table_size
, 0,
1121 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1122 reg_set_table_size
= new_size
;
1125 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1126 bytes_used
+= sizeof (struct reg_set
);
1127 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1128 new_reg_info
->next
= reg_set_table
[regno
];
1129 reg_set_table
[regno
] = new_reg_info
;
1132 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1133 an insn. The DATA is really the instruction in which the SET is
1137 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1139 rtx record_set_insn
= (rtx
) data
;
1141 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1142 record_one_set (REGNO (dest
), record_set_insn
);
1145 /* Scan the function and record each set of each pseudo-register.
1147 This is called once, at the start of the gcse pass. See the comments for
1148 `reg_set_table' for further documentation. */
1157 FOR_BB_INSNS (bb
, insn
)
1159 note_stores (PATTERN (insn
), record_set_info
, insn
);
1162 /* Hash table support. */
1164 struct reg_avail_info
1166 basic_block last_bb
;
1171 static struct reg_avail_info
*reg_avail_info
;
1172 static basic_block current_bb
;
1175 /* See whether X, the source of a set, is something we want to consider for
1179 want_to_gcse_p (rtx x
)
1181 switch (GET_CODE (x
))
1192 return can_assign_to_reg_p (x
);
1196 /* Used internally by can_assign_to_reg_p. */
1198 static GTY(()) rtx test_insn
;
1200 /* Return true if we can assign X to a pseudo register. */
1203 can_assign_to_reg_p (rtx x
)
1205 int num_clobbers
= 0;
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x
, GET_MODE (x
)))
1211 else if (GET_MODE (x
) == VOIDmode
)
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1219 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1220 gen_rtx_REG (word_mode
,
1221 FIRST_PSEUDO_REGISTER
* 2),
1223 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1228 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1229 SET_SRC (PATTERN (test_insn
)) = x
;
1230 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1231 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1239 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1248 code
= GET_CODE (x
);
1253 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1255 if (info
->last_bb
!= current_bb
)
1258 return info
->last_set
< INSN_CUID (insn
);
1260 return info
->first_set
>= INSN_CUID (insn
);
1264 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1268 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1294 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1302 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1304 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1307 else if (fmt
[i
] == 'E')
1308 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1309 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p
;
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand
;
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1332 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1333 void *data ATTRIBUTE_UNUSED
)
1335 while (GET_CODE (dest
) == SUBREG
1336 || GET_CODE (dest
) == ZERO_EXTRACT
1337 || GET_CODE (dest
) == STRICT_LOW_PART
)
1338 dest
= XEXP (dest
, 0);
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1349 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1351 if (!find_rtx_in_ldst (dest
))
1352 gcse_mems_conflict_p
= 1;
1356 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1358 gcse_mems_conflict_p
= 1;
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1370 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1372 rtx list_entry
= modify_mem_list
[bb
->index
];
1376 /* Ignore entries in the list that do not apply. */
1378 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1380 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1382 list_entry
= XEXP (list_entry
, 1);
1386 setter
= XEXP (list_entry
, 0);
1388 /* If SETTER is a call everything is clobbered. Note that calls
1389 to pure functions are never put on the list, so we need not
1390 worry about them. */
1391 if (CALL_P (setter
))
1394 /* SETTER must be an INSN of some kind that sets memory. Call
1395 note_stores to examine each hunk of memory that is modified.
1397 The note_stores interface is pretty limited, so we have to
1398 communicate via global variables. Yuk. */
1399 gcse_mem_operand
= x
;
1400 gcse_mems_conflict_p
= 0;
1401 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1402 if (gcse_mems_conflict_p
)
1404 list_entry
= XEXP (list_entry
, 1);
1409 /* Return nonzero if the operands of expression X are unchanged from
1410 the start of INSN's basic block up to but not including INSN. */
1413 oprs_anticipatable_p (rtx x
, rtx insn
)
1415 return oprs_unchanged_p (x
, insn
, 0);
1418 /* Return nonzero if the operands of expression X are unchanged from
1419 INSN to the end of INSN's basic block. */
1422 oprs_available_p (rtx x
, rtx insn
)
1424 return oprs_unchanged_p (x
, insn
, 1);
1427 /* Hash expression X.
1429 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1430 indicating if a volatile operand is found or if the expression contains
1431 something we don't want to insert in the table. HASH_TABLE_SIZE is
1432 the current size of the hash table to be probed. */
1435 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1436 int hash_table_size
)
1440 *do_not_record_p
= 0;
1442 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1443 NULL
, /*have_reg_qty=*/false);
1444 return hash
% hash_table_size
;
1447 /* Hash a set of register REGNO.
1449 Sets are hashed on the register that is set. This simplifies the PRE copy
1452 ??? May need to make things more elaborate. Later, as necessary. */
1455 hash_set (int regno
, int hash_table_size
)
1460 return hash
% hash_table_size
;
1463 /* Return nonzero if exp1 is equivalent to exp2. */
1466 expr_equiv_p (rtx x
, rtx y
)
1468 return exp_equiv_p (x
, y
, 0, true);
1471 /* Insert expression X in INSN in the hash TABLE.
1472 If it is already present, record it as the last occurrence in INSN's
1475 MODE is the mode of the value X is being stored into.
1476 It is only used if X is a CONST_INT.
1478 ANTIC_P is nonzero if X is an anticipatable expression.
1479 AVAIL_P is nonzero if X is an available expression. */
1482 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1483 int avail_p
, struct hash_table
*table
)
1485 int found
, do_not_record_p
;
1487 struct expr
*cur_expr
, *last_expr
= NULL
;
1488 struct occr
*antic_occr
, *avail_occr
;
1490 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1492 /* Do not insert expression in table if it contains volatile operands,
1493 or if hash_expr determines the expression is something we don't want
1494 to or can't handle. */
1495 if (do_not_record_p
)
1498 cur_expr
= table
->table
[hash
];
1501 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1503 /* If the expression isn't found, save a pointer to the end of
1505 last_expr
= cur_expr
;
1506 cur_expr
= cur_expr
->next_same_hash
;
1511 cur_expr
= gcse_alloc (sizeof (struct expr
));
1512 bytes_used
+= sizeof (struct expr
);
1513 if (table
->table
[hash
] == NULL
)
1514 /* This is the first pattern that hashed to this index. */
1515 table
->table
[hash
] = cur_expr
;
1517 /* Add EXPR to end of this hash chain. */
1518 last_expr
->next_same_hash
= cur_expr
;
1520 /* Set the fields of the expr element. */
1522 cur_expr
->bitmap_index
= table
->n_elems
++;
1523 cur_expr
->next_same_hash
= NULL
;
1524 cur_expr
->antic_occr
= NULL
;
1525 cur_expr
->avail_occr
= NULL
;
1528 /* Now record the occurrence(s). */
1531 antic_occr
= cur_expr
->antic_occr
;
1533 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1537 /* Found another instance of the expression in the same basic block.
1538 Prefer the currently recorded one. We want the first one in the
1539 block and the block is scanned from start to end. */
1540 ; /* nothing to do */
1543 /* First occurrence of this expression in this basic block. */
1544 antic_occr
= gcse_alloc (sizeof (struct occr
));
1545 bytes_used
+= sizeof (struct occr
);
1546 antic_occr
->insn
= insn
;
1547 antic_occr
->next
= cur_expr
->antic_occr
;
1548 antic_occr
->deleted_p
= 0;
1549 cur_expr
->antic_occr
= antic_occr
;
1555 avail_occr
= cur_expr
->avail_occr
;
1557 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1559 /* Found another instance of the expression in the same basic block.
1560 Prefer this occurrence to the currently recorded one. We want
1561 the last one in the block and the block is scanned from start
1563 avail_occr
->insn
= insn
;
1567 /* First occurrence of this expression in this basic block. */
1568 avail_occr
= gcse_alloc (sizeof (struct occr
));
1569 bytes_used
+= sizeof (struct occr
);
1570 avail_occr
->insn
= insn
;
1571 avail_occr
->next
= cur_expr
->avail_occr
;
1572 avail_occr
->deleted_p
= 0;
1573 cur_expr
->avail_occr
= avail_occr
;
1578 /* Insert pattern X in INSN in the hash table.
1579 X is a SET of a reg to either another reg or a constant.
1580 If it is already present, record it as the last occurrence in INSN's
1584 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1588 struct expr
*cur_expr
, *last_expr
= NULL
;
1589 struct occr
*cur_occr
;
1591 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1593 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1595 cur_expr
= table
->table
[hash
];
1598 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1600 /* If the expression isn't found, save a pointer to the end of
1602 last_expr
= cur_expr
;
1603 cur_expr
= cur_expr
->next_same_hash
;
1608 cur_expr
= gcse_alloc (sizeof (struct expr
));
1609 bytes_used
+= sizeof (struct expr
);
1610 if (table
->table
[hash
] == NULL
)
1611 /* This is the first pattern that hashed to this index. */
1612 table
->table
[hash
] = cur_expr
;
1614 /* Add EXPR to end of this hash chain. */
1615 last_expr
->next_same_hash
= cur_expr
;
1617 /* Set the fields of the expr element.
1618 We must copy X because it can be modified when copy propagation is
1619 performed on its operands. */
1620 cur_expr
->expr
= copy_rtx (x
);
1621 cur_expr
->bitmap_index
= table
->n_elems
++;
1622 cur_expr
->next_same_hash
= NULL
;
1623 cur_expr
->antic_occr
= NULL
;
1624 cur_expr
->avail_occr
= NULL
;
1627 /* Now record the occurrence. */
1628 cur_occr
= cur_expr
->avail_occr
;
1630 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1632 /* Found another instance of the expression in the same basic block.
1633 Prefer this occurrence to the currently recorded one. We want
1634 the last one in the block and the block is scanned from start
1636 cur_occr
->insn
= insn
;
1640 /* First occurrence of this expression in this basic block. */
1641 cur_occr
= gcse_alloc (sizeof (struct occr
));
1642 bytes_used
+= sizeof (struct occr
);
1644 cur_occr
->insn
= insn
;
1645 cur_occr
->next
= cur_expr
->avail_occr
;
1646 cur_occr
->deleted_p
= 0;
1647 cur_expr
->avail_occr
= cur_occr
;
1651 /* Determine whether the rtx X should be treated as a constant for
1652 the purposes of GCSE's constant propagation. */
1655 gcse_constant_p (rtx x
)
1657 /* Consider a COMPARE of two integers constant. */
1658 if (GET_CODE (x
) == COMPARE
1659 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1660 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1663 /* Consider a COMPARE of the same registers is a constant
1664 if they are not floating point registers. */
1665 if (GET_CODE(x
) == COMPARE
1666 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1667 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1668 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1669 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1672 return CONSTANT_P (x
);
1675 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1679 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1681 rtx src
= SET_SRC (pat
);
1682 rtx dest
= SET_DEST (pat
);
1685 if (GET_CODE (src
) == CALL
)
1686 hash_scan_call (src
, insn
, table
);
1688 else if (REG_P (dest
))
1690 unsigned int regno
= REGNO (dest
);
1693 /* If this is a single set and we are doing constant propagation,
1694 see if a REG_NOTE shows this equivalent to a constant. */
1695 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
1696 && gcse_constant_p (XEXP (note
, 0)))
1697 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1699 /* Only record sets of pseudo-regs in the hash table. */
1701 && regno
>= FIRST_PSEUDO_REGISTER
1702 /* Don't GCSE something if we can't do a reg/reg copy. */
1703 && can_copy_p (GET_MODE (dest
))
1704 /* GCSE commonly inserts instruction after the insn. We can't
1705 do that easily for EH_REGION notes so disable GCSE on these
1707 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1708 /* Is SET_SRC something we want to gcse? */
1709 && want_to_gcse_p (src
)
1710 /* Don't CSE a nop. */
1711 && ! set_noop_p (pat
)
1712 /* Don't GCSE if it has attached REG_EQUIV note.
1713 At this point this only function parameters should have
1714 REG_EQUIV notes and if the argument slot is used somewhere
1715 explicitly, it means address of parameter has been taken,
1716 so we should not extend the lifetime of the pseudo. */
1717 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1718 || ! MEM_P (XEXP (note
, 0))))
1720 /* An expression is not anticipatable if its operands are
1721 modified before this insn or if this is not the only SET in
1723 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
1724 /* An expression is not available if its operands are
1725 subsequently modified, including this insn. It's also not
1726 available if this is a branch, because we can't insert
1727 a set after the branch. */
1728 int avail_p
= (oprs_available_p (src
, insn
)
1729 && ! JUMP_P (insn
));
1731 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1734 /* Record sets for constant/copy propagation. */
1735 else if (table
->set_p
1736 && regno
>= FIRST_PSEUDO_REGISTER
1738 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1739 && can_copy_p (GET_MODE (dest
))
1740 && REGNO (src
) != regno
)
1741 || gcse_constant_p (src
))
1742 /* A copy is not available if its src or dest is subsequently
1743 modified. Here we want to search from INSN+1 on, but
1744 oprs_available_p searches from INSN on. */
1745 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1746 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
1747 && oprs_available_p (pat
, tmp
))))
1748 insert_set_in_table (pat
, insn
, table
);
1750 /* In case of store we want to consider the memory value as available in
1751 the REG stored in that memory. This makes it possible to remove
1752 redundant loads from due to stores to the same location. */
1753 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1755 unsigned int regno
= REGNO (src
);
1757 /* Do not do this for constant/copy propagation. */
1759 /* Only record sets of pseudo-regs in the hash table. */
1760 && regno
>= FIRST_PSEUDO_REGISTER
1761 /* Don't GCSE something if we can't do a reg/reg copy. */
1762 && can_copy_p (GET_MODE (src
))
1763 /* GCSE commonly inserts instruction after the insn. We can't
1764 do that easily for EH_REGION notes so disable GCSE on these
1766 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1767 /* Is SET_DEST something we want to gcse? */
1768 && want_to_gcse_p (dest
)
1769 /* Don't CSE a nop. */
1770 && ! set_noop_p (pat
)
1771 /* Don't GCSE if it has attached REG_EQUIV note.
1772 At this point this only function parameters should have
1773 REG_EQUIV notes and if the argument slot is used somewhere
1774 explicitly, it means address of parameter has been taken,
1775 so we should not extend the lifetime of the pseudo. */
1776 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1777 || ! MEM_P (XEXP (note
, 0))))
1779 /* Stores are never anticipatable. */
1781 /* An expression is not available if its operands are
1782 subsequently modified, including this insn. It's also not
1783 available if this is a branch, because we can't insert
1784 a set after the branch. */
1785 int avail_p
= oprs_available_p (dest
, insn
)
1788 /* Record the memory expression (DEST) in the hash table. */
1789 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1790 antic_p
, avail_p
, table
);
1796 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1797 struct hash_table
*table ATTRIBUTE_UNUSED
)
1799 /* Currently nothing to do. */
1803 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1804 struct hash_table
*table ATTRIBUTE_UNUSED
)
1806 /* Currently nothing to do. */
1809 /* Process INSN and add hash table entries as appropriate.
1811 Only available expressions that set a single pseudo-reg are recorded.
1813 Single sets in a PARALLEL could be handled, but it's an extra complication
1814 that isn't dealt with right now. The trick is handling the CLOBBERs that
1815 are also in the PARALLEL. Later.
1817 If SET_P is nonzero, this is for the assignment hash table,
1818 otherwise it is for the expression hash table.
1819 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1820 not record any expressions. */
1823 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1825 rtx pat
= PATTERN (insn
);
1828 if (in_libcall_block
)
1831 /* Pick out the sets of INSN and for other forms of instructions record
1832 what's been modified. */
1834 if (GET_CODE (pat
) == SET
)
1835 hash_scan_set (pat
, insn
, table
);
1836 else if (GET_CODE (pat
) == PARALLEL
)
1837 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1839 rtx x
= XVECEXP (pat
, 0, i
);
1841 if (GET_CODE (x
) == SET
)
1842 hash_scan_set (x
, insn
, table
);
1843 else if (GET_CODE (x
) == CLOBBER
)
1844 hash_scan_clobber (x
, insn
, table
);
1845 else if (GET_CODE (x
) == CALL
)
1846 hash_scan_call (x
, insn
, table
);
1849 else if (GET_CODE (pat
) == CLOBBER
)
1850 hash_scan_clobber (pat
, insn
, table
);
1851 else if (GET_CODE (pat
) == CALL
)
1852 hash_scan_call (pat
, insn
, table
);
1856 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1859 /* Flattened out table, so it's printed in proper order. */
1860 struct expr
**flat_table
;
1861 unsigned int *hash_val
;
1864 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1865 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1867 for (i
= 0; i
< (int) table
->size
; i
++)
1868 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1870 flat_table
[expr
->bitmap_index
] = expr
;
1871 hash_val
[expr
->bitmap_index
] = i
;
1874 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1875 name
, table
->size
, table
->n_elems
);
1877 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1878 if (flat_table
[i
] != 0)
1880 expr
= flat_table
[i
];
1881 fprintf (file
, "Index %d (hash value %d)\n ",
1882 expr
->bitmap_index
, hash_val
[i
]);
1883 print_rtl (file
, expr
->expr
);
1884 fprintf (file
, "\n");
1887 fprintf (file
, "\n");
1893 /* Record register first/last/block set information for REGNO in INSN.
1895 first_set records the first place in the block where the register
1896 is set and is used to compute "anticipatability".
1898 last_set records the last place in the block where the register
1899 is set and is used to compute "availability".
1901 last_bb records the block for which first_set and last_set are
1902 valid, as a quick test to invalidate them.
1904 reg_set_in_block records whether the register is set in the block
1905 and is used to compute "transparency". */
1908 record_last_reg_set_info (rtx insn
, int regno
)
1910 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1911 int cuid
= INSN_CUID (insn
);
1913 info
->last_set
= cuid
;
1914 if (info
->last_bb
!= current_bb
)
1916 info
->last_bb
= current_bb
;
1917 info
->first_set
= cuid
;
1918 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1923 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1924 Note we store a pair of elements in the list, so they have to be
1925 taken off pairwise. */
1928 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
1931 rtx dest_addr
, insn
;
1934 while (GET_CODE (dest
) == SUBREG
1935 || GET_CODE (dest
) == ZERO_EXTRACT
1936 || GET_CODE (dest
) == STRICT_LOW_PART
)
1937 dest
= XEXP (dest
, 0);
1939 /* If DEST is not a MEM, then it will not conflict with a load. Note
1940 that function calls are assumed to clobber memory, but are handled
1946 dest_addr
= get_addr (XEXP (dest
, 0));
1947 dest_addr
= canon_rtx (dest_addr
);
1948 insn
= (rtx
) v_insn
;
1949 bb
= BLOCK_NUM (insn
);
1951 canon_modify_mem_list
[bb
] =
1952 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1953 canon_modify_mem_list
[bb
] =
1954 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1957 /* Record memory modification information for INSN. We do not actually care
1958 about the memory location(s) that are set, or even how they are set (consider
1959 a CALL_INSN). We merely need to record which insns modify memory. */
1962 record_last_mem_set_info (rtx insn
)
1964 int bb
= BLOCK_NUM (insn
);
1966 /* load_killed_in_block_p will handle the case of calls clobbering
1968 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1969 bitmap_set_bit (modify_mem_list_set
, bb
);
1973 /* Note that traversals of this loop (other than for free-ing)
1974 will break after encountering a CALL_INSN. So, there's no
1975 need to insert a pair of items, as canon_list_insert does. */
1976 canon_modify_mem_list
[bb
] =
1977 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1978 bitmap_set_bit (blocks_with_calls
, bb
);
1981 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1984 /* Called from compute_hash_table via note_stores to handle one
1985 SET or CLOBBER in an insn. DATA is really the instruction in which
1986 the SET is taking place. */
1989 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1991 rtx last_set_insn
= (rtx
) data
;
1993 if (GET_CODE (dest
) == SUBREG
)
1994 dest
= SUBREG_REG (dest
);
1997 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1998 else if (MEM_P (dest
)
1999 /* Ignore pushes, they clobber nothing. */
2000 && ! push_operand (dest
, GET_MODE (dest
)))
2001 record_last_mem_set_info (last_set_insn
);
2004 /* Top level function to create an expression or assignment hash table.
2006 Expression entries are placed in the hash table if
2007 - they are of the form (set (pseudo-reg) src),
2008 - src is something we want to perform GCSE on,
2009 - none of the operands are subsequently modified in the block
2011 Assignment entries are placed in the hash table if
2012 - they are of the form (set (pseudo-reg) src),
2013 - src is something we want to perform const/copy propagation on,
2014 - none of the operands or target are subsequently modified in the block
2016 Currently src must be a pseudo-reg or a const_int.
2018 TABLE is the table computed. */
2021 compute_hash_table_work (struct hash_table
*table
)
2025 /* While we compute the hash table we also compute a bit array of which
2026 registers are set in which blocks.
2027 ??? This isn't needed during const/copy propagation, but it's cheap to
2029 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2031 /* re-Cache any INSN_LIST nodes we have allocated. */
2032 clear_modify_mem_tables ();
2033 /* Some working arrays used to track first and last set in each block. */
2034 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2036 for (i
= 0; i
< max_gcse_regno
; ++i
)
2037 reg_avail_info
[i
].last_bb
= NULL
;
2039 FOR_EACH_BB (current_bb
)
2043 int in_libcall_block
;
2045 /* First pass over the instructions records information used to
2046 determine when registers and memory are first and last set.
2047 ??? hard-reg reg_set_in_block computation
2048 could be moved to compute_sets since they currently don't change. */
2050 FOR_BB_INSNS (current_bb
, insn
)
2052 if (! INSN_P (insn
))
2057 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2058 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2059 record_last_reg_set_info (insn
, regno
);
2064 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2067 /* Insert implicit sets in the hash table. */
2069 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2070 hash_scan_set (implicit_sets
[current_bb
->index
],
2071 BB_HEAD (current_bb
), table
);
2073 /* The next pass builds the hash table. */
2074 in_libcall_block
= 0;
2075 FOR_BB_INSNS (current_bb
, insn
)
2078 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2079 in_libcall_block
= 1;
2080 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2081 in_libcall_block
= 0;
2082 hash_scan_insn (insn
, table
, in_libcall_block
);
2083 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2084 in_libcall_block
= 0;
2088 free (reg_avail_info
);
2089 reg_avail_info
= NULL
;
2092 /* Allocate space for the set/expr hash TABLE.
2093 N_INSNS is the number of instructions in the function.
2094 It is used to determine the number of buckets to use.
2095 SET_P determines whether set or expression table will
2099 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2103 table
->size
= n_insns
/ 4;
2104 if (table
->size
< 11)
2107 /* Attempt to maintain efficient use of hash table.
2108 Making it an odd number is simplest for now.
2109 ??? Later take some measurements. */
2111 n
= table
->size
* sizeof (struct expr
*);
2112 table
->table
= gmalloc (n
);
2113 table
->set_p
= set_p
;
2116 /* Free things allocated by alloc_hash_table. */
2119 free_hash_table (struct hash_table
*table
)
2121 free (table
->table
);
2124 /* Compute the hash TABLE for doing copy/const propagation or
2125 expression hash table. */
2128 compute_hash_table (struct hash_table
*table
)
2130 /* Initialize count of number of entries in hash table. */
2132 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2134 compute_hash_table_work (table
);
2137 /* Expression tracking support. */
2139 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2140 table entry, or NULL if not found. */
2142 static struct expr
*
2143 lookup_set (unsigned int regno
, struct hash_table
*table
)
2145 unsigned int hash
= hash_set (regno
, table
->size
);
2148 expr
= table
->table
[hash
];
2150 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2151 expr
= expr
->next_same_hash
;
2156 /* Return the next entry for REGNO in list EXPR. */
2158 static struct expr
*
2159 next_set (unsigned int regno
, struct expr
*expr
)
2162 expr
= expr
->next_same_hash
;
2163 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2168 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2169 types may be mixed. */
2172 free_insn_expr_list_list (rtx
*listp
)
2176 for (list
= *listp
; list
; list
= next
)
2178 next
= XEXP (list
, 1);
2179 if (GET_CODE (list
) == EXPR_LIST
)
2180 free_EXPR_LIST_node (list
);
2182 free_INSN_LIST_node (list
);
2188 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2190 clear_modify_mem_tables (void)
2195 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2197 free_INSN_LIST_list (modify_mem_list
+ i
);
2198 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2200 bitmap_clear (modify_mem_list_set
);
2201 bitmap_clear (blocks_with_calls
);
2204 /* Release memory used by modify_mem_list_set. */
2207 free_modify_mem_tables (void)
2209 clear_modify_mem_tables ();
2210 free (modify_mem_list
);
2211 free (canon_modify_mem_list
);
2212 modify_mem_list
= 0;
2213 canon_modify_mem_list
= 0;
2216 /* Reset tables used to keep track of what's still available [since the
2217 start of the block]. */
2220 reset_opr_set_tables (void)
2222 /* Maintain a bitmap of which regs have been set since beginning of
2224 CLEAR_REG_SET (reg_set_bitmap
);
2226 /* Also keep a record of the last instruction to modify memory.
2227 For now this is very trivial, we only record whether any memory
2228 location has been modified. */
2229 clear_modify_mem_tables ();
2232 /* Return nonzero if the operands of X are not set before INSN in
2233 INSN's basic block. */
2236 oprs_not_set_p (rtx x
, rtx insn
)
2245 code
= GET_CODE (x
);
2261 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2262 INSN_CUID (insn
), x
, 0))
2265 return oprs_not_set_p (XEXP (x
, 0), insn
);
2268 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2274 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2278 /* If we are about to do the last recursive call
2279 needed at this level, change it into iteration.
2280 This function is called enough to be worth it. */
2282 return oprs_not_set_p (XEXP (x
, i
), insn
);
2284 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2287 else if (fmt
[i
] == 'E')
2288 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2289 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2296 /* Mark things set by a CALL. */
2299 mark_call (rtx insn
)
2301 if (! CONST_OR_PURE_CALL_P (insn
))
2302 record_last_mem_set_info (insn
);
2305 /* Mark things set by a SET. */
2308 mark_set (rtx pat
, rtx insn
)
2310 rtx dest
= SET_DEST (pat
);
2312 while (GET_CODE (dest
) == SUBREG
2313 || GET_CODE (dest
) == ZERO_EXTRACT
2314 || GET_CODE (dest
) == STRICT_LOW_PART
)
2315 dest
= XEXP (dest
, 0);
2318 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2319 else if (MEM_P (dest
))
2320 record_last_mem_set_info (insn
);
2322 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2326 /* Record things set by a CLOBBER. */
2329 mark_clobber (rtx pat
, rtx insn
)
2331 rtx clob
= XEXP (pat
, 0);
2333 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2334 clob
= XEXP (clob
, 0);
2337 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2339 record_last_mem_set_info (insn
);
2342 /* Record things set by INSN.
2343 This data is used by oprs_not_set_p. */
2346 mark_oprs_set (rtx insn
)
2348 rtx pat
= PATTERN (insn
);
2351 if (GET_CODE (pat
) == SET
)
2352 mark_set (pat
, insn
);
2353 else if (GET_CODE (pat
) == PARALLEL
)
2354 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2356 rtx x
= XVECEXP (pat
, 0, i
);
2358 if (GET_CODE (x
) == SET
)
2360 else if (GET_CODE (x
) == CLOBBER
)
2361 mark_clobber (x
, insn
);
2362 else if (GET_CODE (x
) == CALL
)
2366 else if (GET_CODE (pat
) == CLOBBER
)
2367 mark_clobber (pat
, insn
);
2368 else if (GET_CODE (pat
) == CALL
)
2373 /* Compute copy/constant propagation working variables. */
2375 /* Local properties of assignments. */
2376 static sbitmap
*cprop_pavloc
;
2377 static sbitmap
*cprop_absaltered
;
2379 /* Global properties of assignments (computed from the local properties). */
2380 static sbitmap
*cprop_avin
;
2381 static sbitmap
*cprop_avout
;
2383 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2384 basic blocks. N_SETS is the number of sets. */
2387 alloc_cprop_mem (int n_blocks
, int n_sets
)
2389 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2390 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2392 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2393 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2396 /* Free vars used by copy/const propagation. */
2399 free_cprop_mem (void)
2401 sbitmap_vector_free (cprop_pavloc
);
2402 sbitmap_vector_free (cprop_absaltered
);
2403 sbitmap_vector_free (cprop_avin
);
2404 sbitmap_vector_free (cprop_avout
);
2407 /* For each block, compute whether X is transparent. X is either an
2408 expression or an assignment [though we don't care which, for this context
2409 an assignment is treated as an expression]. For each block where an
2410 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2414 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2422 /* repeat is used to turn tail-recursion into iteration since GCC
2423 can't do it when there's no return value. */
2429 code
= GET_CODE (x
);
2435 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2438 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2439 SET_BIT (bmap
[bb
->index
], indx
);
2443 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2444 SET_BIT (bmap
[r
->bb_index
], indx
);
2449 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2452 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2453 RESET_BIT (bmap
[bb
->index
], indx
);
2457 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2458 RESET_BIT (bmap
[r
->bb_index
], indx
);
2469 /* First handle all the blocks with calls. We don't need to
2470 do any list walking for them. */
2471 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2474 SET_BIT (bmap
[bb_index
], indx
);
2476 RESET_BIT (bmap
[bb_index
], indx
);
2479 /* Now iterate over the blocks which have memory modifications
2480 but which do not have any calls. */
2481 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
, blocks_with_calls
,
2484 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2488 rtx dest
, dest_addr
;
2490 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2491 Examine each hunk of memory that is modified. */
2493 dest
= XEXP (list_entry
, 0);
2494 list_entry
= XEXP (list_entry
, 1);
2495 dest_addr
= XEXP (list_entry
, 0);
2497 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2498 x
, rtx_addr_varies_p
))
2501 SET_BIT (bmap
[bb_index
], indx
);
2503 RESET_BIT (bmap
[bb_index
], indx
);
2506 list_entry
= XEXP (list_entry
, 1);
2530 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2534 /* If we are about to do the last recursive call
2535 needed at this level, change it into iteration.
2536 This function is called enough to be worth it. */
2543 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2545 else if (fmt
[i
] == 'E')
2546 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2547 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2551 /* Top level routine to do the dataflow analysis needed by copy/const
2555 compute_cprop_data (void)
2557 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2558 compute_available (cprop_pavloc
, cprop_absaltered
,
2559 cprop_avout
, cprop_avin
);
2562 /* Copy/constant propagation. */
2564 /* Maximum number of register uses in an insn that we handle. */
2567 /* Table of uses found in an insn.
2568 Allocated statically to avoid alloc/free complexity and overhead. */
2569 static struct reg_use reg_use_table
[MAX_USES
];
2571 /* Index into `reg_use_table' while building it. */
2572 static int reg_use_count
;
2574 /* Set up a list of register numbers used in INSN. The found uses are stored
2575 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2576 and contains the number of uses in the table upon exit.
2578 ??? If a register appears multiple times we will record it multiple times.
2579 This doesn't hurt anything but it will slow things down. */
2582 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2589 /* repeat is used to turn tail-recursion into iteration since GCC
2590 can't do it when there's no return value. */
2595 code
= GET_CODE (x
);
2598 if (reg_use_count
== MAX_USES
)
2601 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2605 /* Recursively scan the operands of this expression. */
2607 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2611 /* If we are about to do the last recursive call
2612 needed at this level, change it into iteration.
2613 This function is called enough to be worth it. */
2620 find_used_regs (&XEXP (x
, i
), data
);
2622 else if (fmt
[i
] == 'E')
2623 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2624 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2628 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2629 Returns nonzero is successful. */
2632 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2634 rtx note
= find_reg_equal_equiv_note (insn
);
2637 rtx set
= single_set (insn
);
2639 validate_replace_src_group (from
, to
, insn
);
2640 if (num_changes_pending () && apply_change_group ())
2643 /* Try to simplify SET_SRC if we have substituted a constant. */
2644 if (success
&& set
&& CONSTANT_P (to
))
2646 src
= simplify_rtx (SET_SRC (set
));
2649 validate_change (insn
, &SET_SRC (set
), src
, 0);
2652 /* If there is already a NOTE, update the expression in it with our
2655 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
2657 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2659 /* If above failed and this is a single set, try to simplify the source of
2660 the set given our substitution. We could perhaps try this for multiple
2661 SETs, but it probably won't buy us anything. */
2662 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2664 if (!rtx_equal_p (src
, SET_SRC (set
))
2665 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2668 /* If we've failed to do replacement, have a single SET, don't already
2669 have a note, and have no special SET, add a REG_EQUAL note to not
2670 lose information. */
2671 if (!success
&& note
== 0 && set
!= 0
2672 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
)
2673 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2676 /* REG_EQUAL may get simplified into register.
2677 We don't allow that. Remove that note. This code ought
2678 not to happen, because previous code ought to synthesize
2679 reg-reg move, but be on the safe side. */
2680 if (note
&& REG_P (XEXP (note
, 0)))
2681 remove_note (insn
, note
);
2686 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2687 NULL no such set is found. */
2689 static struct expr
*
2690 find_avail_set (int regno
, rtx insn
)
2692 /* SET1 contains the last set found that can be returned to the caller for
2693 use in a substitution. */
2694 struct expr
*set1
= 0;
2696 /* Loops are not possible here. To get a loop we would need two sets
2697 available at the start of the block containing INSN. i.e. we would
2698 need two sets like this available at the start of the block:
2700 (set (reg X) (reg Y))
2701 (set (reg Y) (reg X))
2703 This can not happen since the set of (reg Y) would have killed the
2704 set of (reg X) making it unavailable at the start of this block. */
2708 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2710 /* Find a set that is available at the start of the block
2711 which contains INSN. */
2714 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2716 set
= next_set (regno
, set
);
2719 /* If no available set was found we've reached the end of the
2720 (possibly empty) copy chain. */
2724 gcc_assert (GET_CODE (set
->expr
) == SET
);
2726 src
= SET_SRC (set
->expr
);
2728 /* We know the set is available.
2729 Now check that SRC is ANTLOC (i.e. none of the source operands
2730 have changed since the start of the block).
2732 If the source operand changed, we may still use it for the next
2733 iteration of this loop, but we may not use it for substitutions. */
2735 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2738 /* If the source of the set is anything except a register, then
2739 we have reached the end of the copy chain. */
2743 /* Follow the copy chain, i.e. start another iteration of the loop
2744 and see if we have an available copy into SRC. */
2745 regno
= REGNO (src
);
2748 /* SET1 holds the last set that was available and anticipatable at
2753 /* Subroutine of cprop_insn that tries to propagate constants into
2754 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2755 it is the instruction that immediately precedes JUMP, and must be a
2756 single SET of a register. FROM is what we will try to replace,
2757 SRC is the constant we will try to substitute for it. Returns nonzero
2758 if a change was made. */
2761 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2763 rtx
new, set_src
, note_src
;
2764 rtx set
= pc_set (jump
);
2765 rtx note
= find_reg_equal_equiv_note (jump
);
2769 note_src
= XEXP (note
, 0);
2770 if (GET_CODE (note_src
) == EXPR_LIST
)
2771 note_src
= NULL_RTX
;
2773 else note_src
= NULL_RTX
;
2775 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2776 set_src
= note_src
? note_src
: SET_SRC (set
);
2778 /* First substitute the SETCC condition into the JUMP instruction,
2779 then substitute that given values into this expanded JUMP. */
2780 if (setcc
!= NULL_RTX
2781 && !modified_between_p (from
, setcc
, jump
)
2782 && !modified_between_p (src
, setcc
, jump
))
2785 rtx setcc_set
= single_set (setcc
);
2786 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2787 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2788 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2789 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2795 new = simplify_replace_rtx (set_src
, from
, src
);
2797 /* If no simplification can be made, then try the next register. */
2798 if (rtx_equal_p (new, SET_SRC (set
)))
2801 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2806 /* Ensure the value computed inside the jump insn to be equivalent
2807 to one computed by setcc. */
2808 if (setcc
&& modified_in_p (new, setcc
))
2810 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
2812 /* When (some) constants are not valid in a comparison, and there
2813 are two registers to be replaced by constants before the entire
2814 comparison can be folded into a constant, we need to keep
2815 intermediate information in REG_EQUAL notes. For targets with
2816 separate compare insns, such notes are added by try_replace_reg.
2817 When we have a combined compare-and-branch instruction, however,
2818 we need to attach a note to the branch itself to make this
2819 optimization work. */
2821 if (!rtx_equal_p (new, note_src
))
2822 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2826 /* Remove REG_EQUAL note after simplification. */
2828 remove_note (jump
, note
);
2830 /* If this has turned into an unconditional jump,
2831 then put a barrier after it so that the unreachable
2832 code will be deleted. */
2833 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
2834 emit_barrier_after (jump
);
2838 /* Delete the cc0 setter. */
2839 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2840 delete_insn (setcc
);
2843 run_jump_opt_after_gcse
= 1;
2845 global_const_prop_count
++;
2846 if (gcse_file
!= NULL
)
2849 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2850 REGNO (from
), INSN_UID (jump
));
2851 print_rtl (gcse_file
, src
);
2852 fprintf (gcse_file
, "\n");
2854 purge_dead_edges (bb
);
2860 constprop_register (rtx insn
, rtx from
, rtx to
, bool alter_jumps
)
2864 /* Check for reg or cc0 setting instructions followed by
2865 conditional branch instructions first. */
2867 && (sset
= single_set (insn
)) != NULL
2869 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2871 rtx dest
= SET_DEST (sset
);
2872 if ((REG_P (dest
) || CC0_P (dest
))
2873 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2877 /* Handle normal insns next. */
2878 if (NONJUMP_INSN_P (insn
)
2879 && try_replace_reg (from
, to
, insn
))
2882 /* Try to propagate a CONST_INT into a conditional jump.
2883 We're pretty specific about what we will handle in this
2884 code, we can extend this as necessary over time.
2886 Right now the insn in question must look like
2887 (set (pc) (if_then_else ...)) */
2888 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2889 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2893 /* Perform constant and copy propagation on INSN.
2894 The result is nonzero if a change was made. */
2897 cprop_insn (rtx insn
, int alter_jumps
)
2899 struct reg_use
*reg_used
;
2907 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2909 note
= find_reg_equal_equiv_note (insn
);
2911 /* We may win even when propagating constants into notes. */
2913 find_used_regs (&XEXP (note
, 0), NULL
);
2915 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2916 reg_used
++, reg_use_count
--)
2918 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2922 /* Ignore registers created by GCSE.
2923 We do this because ... */
2924 if (regno
>= max_gcse_regno
)
2927 /* If the register has already been set in this block, there's
2928 nothing we can do. */
2929 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2932 /* Find an assignment that sets reg_used and is available
2933 at the start of the block. */
2934 set
= find_avail_set (regno
, insn
);
2939 /* ??? We might be able to handle PARALLELs. Later. */
2940 gcc_assert (GET_CODE (pat
) == SET
);
2942 src
= SET_SRC (pat
);
2944 /* Constant propagation. */
2945 if (gcse_constant_p (src
))
2947 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2950 global_const_prop_count
++;
2951 if (gcse_file
!= NULL
)
2953 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2954 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
2955 print_rtl (gcse_file
, src
);
2956 fprintf (gcse_file
, "\n");
2958 if (INSN_DELETED_P (insn
))
2962 else if (REG_P (src
)
2963 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2964 && REGNO (src
) != regno
)
2966 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2969 global_copy_prop_count
++;
2970 if (gcse_file
!= NULL
)
2972 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2973 regno
, INSN_UID (insn
));
2974 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
2977 /* The original insn setting reg_used may or may not now be
2978 deletable. We leave the deletion to flow. */
2979 /* FIXME: If it turns out that the insn isn't deletable,
2980 then we may have unnecessarily extended register lifetimes
2981 and made things worse. */
2989 /* Like find_used_regs, but avoid recording uses that appear in
2990 input-output contexts such as zero_extract or pre_dec. This
2991 restricts the cases we consider to those for which local cprop
2992 can legitimately make replacements. */
2995 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
3002 switch (GET_CODE (x
))
3006 case STRICT_LOW_PART
:
3015 /* Can only legitimately appear this early in the context of
3016 stack pushes for function arguments, but handle all of the
3017 codes nonetheless. */
3021 /* Setting a subreg of a register larger than word_mode leaves
3022 the non-written words unchanged. */
3023 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3031 find_used_regs (xptr
, data
);
3034 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3035 their REG_EQUAL notes need updating. */
3038 do_local_cprop (rtx x
, rtx insn
, bool alter_jumps
, rtx
*libcall_sp
)
3040 rtx newreg
= NULL
, newcnst
= NULL
;
3042 /* Rule out USE instructions and ASM statements as we don't want to
3043 change the hard registers mentioned. */
3045 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3046 || (GET_CODE (PATTERN (insn
)) != USE
3047 && asm_noperands (PATTERN (insn
)) < 0)))
3049 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3050 struct elt_loc_list
*l
;
3054 for (l
= val
->locs
; l
; l
= l
->next
)
3056 rtx this_rtx
= l
->loc
;
3059 /* Don't CSE non-constant values out of libcall blocks. */
3060 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3063 if (gcse_constant_p (this_rtx
))
3065 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3066 /* Don't copy propagate if it has attached REG_EQUIV note.
3067 At this point this only function parameters should have
3068 REG_EQUIV notes and if the argument slot is used somewhere
3069 explicitly, it means address of parameter has been taken,
3070 so we should not extend the lifetime of the pseudo. */
3071 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3072 || ! MEM_P (XEXP (note
, 0))))
3075 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3077 /* If we find a case where we can't fix the retval REG_EQUAL notes
3078 match the new register, we either have to abandon this replacement
3079 or fix delete_trivially_dead_insns to preserve the setting insn,
3080 or make it delete the REG_EUAQL note, and fix up all passes that
3081 require the REG_EQUAL note there. */
3084 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3085 gcc_assert (adjusted
);
3087 if (gcse_file
!= NULL
)
3089 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3091 fprintf (gcse_file
, "insn %d with constant ",
3093 print_rtl (gcse_file
, newcnst
);
3094 fprintf (gcse_file
, "\n");
3096 local_const_prop_count
++;
3099 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3101 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3102 if (gcse_file
!= NULL
)
3105 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3106 REGNO (x
), INSN_UID (insn
));
3107 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
3109 local_copy_prop_count
++;
3116 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3117 their REG_EQUAL notes need updating to reflect that OLDREG has been
3118 replaced with NEWVAL in INSN. Return true if all substitutions could
3121 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3125 while ((end
= *libcall_sp
++))
3127 rtx note
= find_reg_equal_equiv_note (end
);
3134 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3138 note
= find_reg_equal_equiv_note (end
);
3141 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3144 while ((end
= *libcall_sp
++));
3148 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3154 #define MAX_NESTED_LIBCALLS 9
3156 /* Do local const/copy propagation (i.e. within each basic block).
3157 If ALTER_JUMPS is true, allow propagating into jump insns, which
3158 could modify the CFG. */
3161 local_cprop_pass (bool alter_jumps
)
3165 struct reg_use
*reg_used
;
3166 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3167 bool changed
= false;
3169 cselib_init (false);
3170 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3174 FOR_BB_INSNS (bb
, insn
)
3178 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3182 gcc_assert (libcall_sp
!= libcall_stack
);
3183 *--libcall_sp
= XEXP (note
, 0);
3185 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3188 note
= find_reg_equal_equiv_note (insn
);
3192 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
3195 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3197 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3198 reg_used
++, reg_use_count
--)
3199 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3205 if (INSN_DELETED_P (insn
))
3208 while (reg_use_count
);
3210 cselib_process_insn (insn
);
3213 /* Forget everything at the end of a basic block. Make sure we are
3214 not inside a libcall, they should never cross basic blocks. */
3215 cselib_clear_table ();
3216 gcc_assert (libcall_sp
== &libcall_stack
[MAX_NESTED_LIBCALLS
]);
3221 /* Global analysis may get into infinite loops for unreachable blocks. */
3222 if (changed
&& alter_jumps
)
3224 delete_unreachable_blocks ();
3225 free_reg_set_mem ();
3226 alloc_reg_set_mem (max_reg_num ());
3231 /* Forward propagate copies. This includes copies and constants. Return
3232 nonzero if a change was made. */
3235 cprop (int alter_jumps
)
3241 /* Note we start at block 1. */
3242 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3244 if (gcse_file
!= NULL
)
3245 fprintf (gcse_file
, "\n");
3250 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3252 /* Reset tables used to keep track of what's still valid [since the
3253 start of the block]. */
3254 reset_opr_set_tables ();
3256 FOR_BB_INSNS (bb
, insn
)
3259 changed
|= cprop_insn (insn
, alter_jumps
);
3261 /* Keep track of everything modified by this insn. */
3262 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3263 call mark_oprs_set if we turned the insn into a NOTE. */
3264 if (! NOTE_P (insn
))
3265 mark_oprs_set (insn
);
3269 if (gcse_file
!= NULL
)
3270 fprintf (gcse_file
, "\n");
3275 /* Similar to get_condition, only the resulting condition must be
3276 valid at JUMP, instead of at EARLIEST.
3278 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3279 settle for the condition variable in the jump instruction being integral.
3280 We prefer to be able to record the value of a user variable, rather than
3281 the value of a temporary used in a condition. This could be solved by
3282 recording the value of *every* register scanned by canonicalize_condition,
3283 but this would require some code reorganization. */
3286 fis_get_condition (rtx jump
)
3288 return get_condition (jump
, NULL
, false, true);
3291 /* Check the comparison COND to see if we can safely form an implicit set from
3292 it. COND is either an EQ or NE comparison. */
3295 implicit_set_cond_p (rtx cond
)
3297 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3298 rtx cst
= XEXP (cond
, 1);
3300 /* We can't perform this optimization if either operand might be or might
3301 contain a signed zero. */
3302 if (HONOR_SIGNED_ZEROS (mode
))
3304 /* It is sufficient to check if CST is or contains a zero. We must
3305 handle float, complex, and vector. If any subpart is a zero, then
3306 the optimization can't be performed. */
3307 /* ??? The complex and vector checks are not implemented yet. We just
3308 always return zero for them. */
3309 if (GET_CODE (cst
) == CONST_DOUBLE
)
3312 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3313 if (REAL_VALUES_EQUAL (d
, dconst0
))
3320 return gcse_constant_p (cst
);
3323 /* Find the implicit sets of a function. An "implicit set" is a constraint
3324 on the value of a variable, implied by a conditional jump. For example,
3325 following "if (x == 2)", the then branch may be optimized as though the
3326 conditional performed an "explicit set", in this example, "x = 2". This
3327 function records the set patterns that are implicit at the start of each
3331 find_implicit_sets (void)
3333 basic_block bb
, dest
;
3339 /* Check for more than one successor. */
3340 if (EDGE_COUNT (bb
->succs
) > 1)
3342 cond
= fis_get_condition (BB_END (bb
));
3345 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3346 && REG_P (XEXP (cond
, 0))
3347 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3348 && implicit_set_cond_p (cond
))
3350 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3351 : FALLTHRU_EDGE (bb
)->dest
;
3353 if (dest
&& single_pred_p (dest
)
3354 && dest
!= EXIT_BLOCK_PTR
)
3356 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3358 implicit_sets
[dest
->index
] = new;
3361 fprintf(gcse_file
, "Implicit set of reg %d in ",
3362 REGNO (XEXP (cond
, 0)));
3363 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
3371 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
3374 /* Perform one copy/constant propagation pass.
3375 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3376 propagation into conditional jumps. If BYPASS_JUMPS is true,
3377 perform conditional jump bypassing optimizations. */
3380 one_cprop_pass (int pass
, bool cprop_jumps
, bool bypass_jumps
)
3384 global_const_prop_count
= local_const_prop_count
= 0;
3385 global_copy_prop_count
= local_copy_prop_count
= 0;
3387 local_cprop_pass (cprop_jumps
);
3389 /* Determine implicit sets. */
3390 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
3391 find_implicit_sets ();
3393 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3394 compute_hash_table (&set_hash_table
);
3396 /* Free implicit_sets before peak usage. */
3397 free (implicit_sets
);
3398 implicit_sets
= NULL
;
3401 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
3402 if (set_hash_table
.n_elems
> 0)
3404 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3405 compute_cprop_data ();
3406 changed
= cprop (cprop_jumps
);
3408 changed
|= bypass_conditional_jumps ();
3412 free_hash_table (&set_hash_table
);
3416 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3417 current_function_name (), pass
, bytes_used
);
3418 fprintf (gcse_file
, "%d local const props, %d local copy props, ",
3419 local_const_prop_count
, local_copy_prop_count
);
3420 fprintf (gcse_file
, "%d global const props, %d global copy props\n\n",
3421 global_const_prop_count
, global_copy_prop_count
);
3423 /* Global analysis may get into infinite loops for unreachable blocks. */
3424 if (changed
&& cprop_jumps
)
3425 delete_unreachable_blocks ();
3430 /* Bypass conditional jumps. */
3432 /* The value of last_basic_block at the beginning of the jump_bypass
3433 pass. The use of redirect_edge_and_branch_force may introduce new
3434 basic blocks, but the data flow analysis is only valid for basic
3435 block indices less than bypass_last_basic_block. */
3437 static int bypass_last_basic_block
;
3439 /* Find a set of REGNO to a constant that is available at the end of basic
3440 block BB. Returns NULL if no such set is found. Based heavily upon
3443 static struct expr
*
3444 find_bypass_set (int regno
, int bb
)
3446 struct expr
*result
= 0;
3451 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3455 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3457 set
= next_set (regno
, set
);
3463 gcc_assert (GET_CODE (set
->expr
) == SET
);
3465 src
= SET_SRC (set
->expr
);
3466 if (gcse_constant_p (src
))
3472 regno
= REGNO (src
);
3478 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3479 any of the instructions inserted on an edge. Jump bypassing places
3480 condition code setters on CFG edges using insert_insn_on_edge. This
3481 function is required to check that our data flow analysis is still
3482 valid prior to commit_edge_insertions. */
3485 reg_killed_on_edge (rtx reg
, edge e
)
3489 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3490 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3496 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3497 basic block BB which has more than one predecessor. If not NULL, SETCC
3498 is the first instruction of BB, which is immediately followed by JUMP_INSN
3499 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3500 Returns nonzero if a change was made.
3502 During the jump bypassing pass, we may place copies of SETCC instructions
3503 on CFG edges. The following routine must be careful to pay attention to
3504 these inserted insns when performing its transformations. */
3507 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3512 int may_be_loop_header
;
3516 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3518 /* Determine set of register uses in INSN. */
3520 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3521 note
= find_reg_equal_equiv_note (insn
);
3523 find_used_regs (&XEXP (note
, 0), NULL
);
3525 may_be_loop_header
= false;
3526 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3527 if (e
->flags
& EDGE_DFS_BACK
)
3529 may_be_loop_header
= true;
3534 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3538 if (e
->flags
& EDGE_COMPLEX
)
3544 /* We can't redirect edges from new basic blocks. */
3545 if (e
->src
->index
>= bypass_last_basic_block
)
3551 /* The irreducible loops created by redirecting of edges entering the
3552 loop from outside would decrease effectiveness of some of the following
3553 optimizations, so prevent this. */
3554 if (may_be_loop_header
3555 && !(e
->flags
& EDGE_DFS_BACK
))
3561 for (i
= 0; i
< reg_use_count
; i
++)
3563 struct reg_use
*reg_used
= ®_use_table
[i
];
3564 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3565 basic_block dest
, old_dest
;
3569 if (regno
>= max_gcse_regno
)
3572 set
= find_bypass_set (regno
, e
->src
->index
);
3577 /* Check the data flow is valid after edge insertions. */
3578 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3581 src
= SET_SRC (pc_set (jump
));
3584 src
= simplify_replace_rtx (src
,
3585 SET_DEST (PATTERN (setcc
)),
3586 SET_SRC (PATTERN (setcc
)));
3588 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3589 SET_SRC (set
->expr
));
3591 /* Jump bypassing may have already placed instructions on
3592 edges of the CFG. We can't bypass an outgoing edge that
3593 has instructions associated with it, as these insns won't
3594 get executed if the incoming edge is redirected. */
3598 edest
= FALLTHRU_EDGE (bb
);
3599 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3601 else if (GET_CODE (new) == LABEL_REF
)
3603 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3604 /* Don't bypass edges containing instructions. */
3605 edest
= find_edge (bb
, dest
);
3606 if (edest
&& edest
->insns
.r
)
3612 /* Avoid unification of the edge with other edges from original
3613 branch. We would end up emitting the instruction on "both"
3616 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3617 && find_edge (e
->src
, dest
))
3623 && dest
!= EXIT_BLOCK_PTR
)
3625 redirect_edge_and_branch_force (e
, dest
);
3627 /* Copy the register setter to the redirected edge.
3628 Don't copy CC0 setters, as CC0 is dead after jump. */
3631 rtx pat
= PATTERN (setcc
);
3632 if (!CC0_P (SET_DEST (pat
)))
3633 insert_insn_on_edge (copy_insn (pat
), e
);
3636 if (gcse_file
!= NULL
)
3638 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d "
3639 "in jump_insn %d equals constant ",
3640 regno
, INSN_UID (jump
));
3641 print_rtl (gcse_file
, SET_SRC (set
->expr
));
3642 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
3643 e
->src
->index
, old_dest
->index
, dest
->index
);
3656 /* Find basic blocks with more than one predecessor that only contain a
3657 single conditional jump. If the result of the comparison is known at
3658 compile-time from any incoming edge, redirect that edge to the
3659 appropriate target. Returns nonzero if a change was made.
3661 This function is now mis-named, because we also handle indirect jumps. */
3664 bypass_conditional_jumps (void)
3672 /* Note we start at block 1. */
3673 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3676 bypass_last_basic_block
= last_basic_block
;
3677 mark_dfs_back_edges ();
3680 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3681 EXIT_BLOCK_PTR
, next_bb
)
3683 /* Check for more than one predecessor. */
3684 if (!single_pred_p (bb
))
3687 FOR_BB_INSNS (bb
, insn
)
3688 if (NONJUMP_INSN_P (insn
))
3692 if (GET_CODE (PATTERN (insn
)) != SET
)
3695 dest
= SET_DEST (PATTERN (insn
));
3696 if (REG_P (dest
) || CC0_P (dest
))
3701 else if (JUMP_P (insn
))
3703 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3704 && onlyjump_p (insn
))
3705 changed
|= bypass_block (bb
, setcc
, insn
);
3708 else if (INSN_P (insn
))
3713 /* If we bypassed any register setting insns, we inserted a
3714 copy on the redirected edge. These need to be committed. */
3716 commit_edge_insertions();
3721 /* Compute PRE+LCM working variables. */
3723 /* Local properties of expressions. */
3724 /* Nonzero for expressions that are transparent in the block. */
3725 static sbitmap
*transp
;
3727 /* Nonzero for expressions that are transparent at the end of the block.
3728 This is only zero for expressions killed by abnormal critical edge
3729 created by a calls. */
3730 static sbitmap
*transpout
;
3732 /* Nonzero for expressions that are computed (available) in the block. */
3733 static sbitmap
*comp
;
3735 /* Nonzero for expressions that are locally anticipatable in the block. */
3736 static sbitmap
*antloc
;
3738 /* Nonzero for expressions where this block is an optimal computation
3740 static sbitmap
*pre_optimal
;
3742 /* Nonzero for expressions which are redundant in a particular block. */
3743 static sbitmap
*pre_redundant
;
3745 /* Nonzero for expressions which should be inserted on a specific edge. */
3746 static sbitmap
*pre_insert_map
;
3748 /* Nonzero for expressions which should be deleted in a specific block. */
3749 static sbitmap
*pre_delete_map
;
3751 /* Contains the edge_list returned by pre_edge_lcm. */
3752 static struct edge_list
*edge_list
;
3754 /* Redundant insns. */
3755 static sbitmap pre_redundant_insns
;
3757 /* Allocate vars used for PRE analysis. */
3760 alloc_pre_mem (int n_blocks
, int n_exprs
)
3762 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3763 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3764 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3767 pre_redundant
= NULL
;
3768 pre_insert_map
= NULL
;
3769 pre_delete_map
= NULL
;
3770 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3772 /* pre_insert and pre_delete are allocated later. */
3775 /* Free vars used for PRE analysis. */
3780 sbitmap_vector_free (transp
);
3781 sbitmap_vector_free (comp
);
3783 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3786 sbitmap_vector_free (pre_optimal
);
3788 sbitmap_vector_free (pre_redundant
);
3790 sbitmap_vector_free (pre_insert_map
);
3792 sbitmap_vector_free (pre_delete_map
);
3794 transp
= comp
= NULL
;
3795 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3798 /* Top level routine to do the dataflow analysis needed by PRE. */
3801 compute_pre_data (void)
3803 sbitmap trapping_expr
;
3807 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3808 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3810 /* Collect expressions which might trap. */
3811 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3812 sbitmap_zero (trapping_expr
);
3813 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3816 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3817 if (may_trap_p (e
->expr
))
3818 SET_BIT (trapping_expr
, e
->bitmap_index
);
3821 /* Compute ae_kill for each basic block using:
3831 /* If the current block is the destination of an abnormal edge, we
3832 kill all trapping expressions because we won't be able to properly
3833 place the instruction on the edge. So make them neither
3834 anticipatable nor transparent. This is fairly conservative. */
3835 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3836 if (e
->flags
& EDGE_ABNORMAL
)
3838 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3839 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3843 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3844 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3847 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3848 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3849 sbitmap_vector_free (antloc
);
3851 sbitmap_vector_free (ae_kill
);
3853 sbitmap_free (trapping_expr
);
3858 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3861 VISITED is a pointer to a working buffer for tracking which BB's have
3862 been visited. It is NULL for the top-level call.
3864 We treat reaching expressions that go through blocks containing the same
3865 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3866 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3867 2 as not reaching. The intent is to improve the probability of finding
3868 only one reaching expression and to reduce register lifetimes by picking
3869 the closest such expression. */
3872 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3877 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3879 basic_block pred_bb
= pred
->src
;
3881 if (pred
->src
== ENTRY_BLOCK_PTR
3882 /* Has predecessor has already been visited? */
3883 || visited
[pred_bb
->index
])
3884 ;/* Nothing to do. */
3886 /* Does this predecessor generate this expression? */
3887 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3889 /* Is this the occurrence we're looking for?
3890 Note that there's only one generating occurrence per block
3891 so we just need to check the block number. */
3892 if (occr_bb
== pred_bb
)
3895 visited
[pred_bb
->index
] = 1;
3897 /* Ignore this predecessor if it kills the expression. */
3898 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3899 visited
[pred_bb
->index
] = 1;
3901 /* Neither gen nor kill. */
3904 visited
[pred_bb
->index
] = 1;
3905 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3910 /* All paths have been checked. */
3914 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3915 memory allocated for that function is returned. */
3918 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3921 char *visited
= xcalloc (last_basic_block
, 1);
3923 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3930 /* Given an expr, generate RTL which we can insert at the end of a BB,
3931 or on an edge. Set the block number of any insns generated to
3935 process_insert_insn (struct expr
*expr
)
3937 rtx reg
= expr
->reaching_reg
;
3938 rtx exp
= copy_rtx (expr
->expr
);
3943 /* If the expression is something that's an operand, like a constant,
3944 just copy it to a register. */
3945 if (general_operand (exp
, GET_MODE (reg
)))
3946 emit_move_insn (reg
, exp
);
3948 /* Otherwise, make a new insn to compute this expression and make sure the
3949 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3950 expression to make sure we don't have any sharing issues. */
3953 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3955 if (insn_invalid_p (insn
))
3966 /* Add EXPR to the end of basic block BB.
3968 This is used by both the PRE and code hoisting.
3970 For PRE, we want to verify that the expr is either transparent
3971 or locally anticipatable in the target block. This check makes
3972 no sense for code hoisting. */
3975 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
3977 rtx insn
= BB_END (bb
);
3979 rtx reg
= expr
->reaching_reg
;
3980 int regno
= REGNO (reg
);
3983 pat
= process_insert_insn (expr
);
3984 gcc_assert (pat
&& INSN_P (pat
));
3987 while (NEXT_INSN (pat_end
) != NULL_RTX
)
3988 pat_end
= NEXT_INSN (pat_end
);
3990 /* If the last insn is a jump, insert EXPR in front [taking care to
3991 handle cc0, etc. properly]. Similarly we need to care trapping
3992 instructions in presence of non-call exceptions. */
3995 || (NONJUMP_INSN_P (insn
)
3996 && (!single_succ_p (bb
)
3997 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
4002 /* It should always be the case that we can put these instructions
4003 anywhere in the basic block with performing PRE optimizations.
4005 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
4006 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4007 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4009 /* If this is a jump table, then we can't insert stuff here. Since
4010 we know the previous real insn must be the tablejump, we insert
4011 the new instruction just before the tablejump. */
4012 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4013 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4014 insn
= prev_real_insn (insn
);
4017 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4018 if cc0 isn't set. */
4019 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4021 insn
= XEXP (note
, 0);
4024 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4025 if (maybe_cc0_setter
4026 && INSN_P (maybe_cc0_setter
)
4027 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4028 insn
= maybe_cc0_setter
;
4031 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4032 new_insn
= emit_insn_before_noloc (pat
, insn
);
4035 /* Likewise if the last insn is a call, as will happen in the presence
4036 of exception handling. */
4037 else if (CALL_P (insn
)
4038 && (!single_succ_p (bb
)
4039 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
4041 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4042 we search backward and place the instructions before the first
4043 parameter is loaded. Do this for everyone for consistency and a
4044 presumption that we'll get better code elsewhere as well.
4046 It should always be the case that we can put these instructions
4047 anywhere in the basic block with performing PRE optimizations.
4051 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4052 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4054 /* Since different machines initialize their parameter registers
4055 in different orders, assume nothing. Collect the set of all
4056 parameter registers. */
4057 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4059 /* If we found all the parameter loads, then we want to insert
4060 before the first parameter load.
4062 If we did not find all the parameter loads, then we might have
4063 stopped on the head of the block, which could be a CODE_LABEL.
4064 If we inserted before the CODE_LABEL, then we would be putting
4065 the insn in the wrong basic block. In that case, put the insn
4066 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4067 while (LABEL_P (insn
)
4068 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4069 insn
= NEXT_INSN (insn
);
4071 new_insn
= emit_insn_before_noloc (pat
, insn
);
4074 new_insn
= emit_insn_after_noloc (pat
, insn
);
4080 add_label_notes (PATTERN (pat
), new_insn
);
4081 note_stores (PATTERN (pat
), record_set_info
, pat
);
4085 pat
= NEXT_INSN (pat
);
4088 gcse_create_count
++;
4092 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4093 bb
->index
, INSN_UID (new_insn
));
4094 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4095 expr
->bitmap_index
, regno
);
4099 /* Insert partially redundant expressions on edges in the CFG to make
4100 the expressions fully redundant. */
4103 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4105 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4108 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4109 if it reaches any of the deleted expressions. */
4111 set_size
= pre_insert_map
[0]->size
;
4112 num_edges
= NUM_EDGES (edge_list
);
4113 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4114 sbitmap_vector_zero (inserted
, num_edges
);
4116 for (e
= 0; e
< num_edges
; e
++)
4119 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4121 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4123 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4125 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4126 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4128 struct expr
*expr
= index_map
[j
];
4131 /* Now look at each deleted occurrence of this expression. */
4132 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4134 if (! occr
->deleted_p
)
4137 /* Insert this expression on this edge if it would
4138 reach the deleted occurrence in BB. */
4139 if (!TEST_BIT (inserted
[e
], j
))
4142 edge eg
= INDEX_EDGE (edge_list
, e
);
4144 /* We can't insert anything on an abnormal and
4145 critical edge, so we insert the insn at the end of
4146 the previous block. There are several alternatives
4147 detailed in Morgans book P277 (sec 10.5) for
4148 handling this situation. This one is easiest for
4151 if (eg
->flags
& EDGE_ABNORMAL
)
4152 insert_insn_end_bb (index_map
[j
], bb
, 0);
4155 insn
= process_insert_insn (index_map
[j
]);
4156 insert_insn_on_edge (insn
, eg
);
4161 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4163 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4164 fprintf (gcse_file
, "copy expression %d\n",
4165 expr
->bitmap_index
);
4168 update_ld_motion_stores (expr
);
4169 SET_BIT (inserted
[e
], j
);
4171 gcse_create_count
++;
4178 sbitmap_vector_free (inserted
);
4182 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4183 Given "old_reg <- expr" (INSN), instead of adding after it
4184 reaching_reg <- old_reg
4185 it's better to do the following:
4186 reaching_reg <- expr
4187 old_reg <- reaching_reg
4188 because this way copy propagation can discover additional PRE
4189 opportunities. But if this fails, we try the old way.
4190 When "expr" is a store, i.e.
4191 given "MEM <- old_reg", instead of adding after it
4192 reaching_reg <- old_reg
4193 it's better to add it before as follows:
4194 reaching_reg <- old_reg
4195 MEM <- reaching_reg. */
4198 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4200 rtx reg
= expr
->reaching_reg
;
4201 int regno
= REGNO (reg
);
4202 int indx
= expr
->bitmap_index
;
4203 rtx pat
= PATTERN (insn
);
4208 /* This block matches the logic in hash_scan_insn. */
4209 switch (GET_CODE (pat
))
4216 /* Search through the parallel looking for the set whose
4217 source was the expression that we're interested in. */
4219 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4221 rtx x
= XVECEXP (pat
, 0, i
);
4222 if (GET_CODE (x
) == SET
4223 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
4235 if (REG_P (SET_DEST (set
)))
4237 old_reg
= SET_DEST (set
);
4238 /* Check if we can modify the set destination in the original insn. */
4239 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4241 new_insn
= gen_move_insn (old_reg
, reg
);
4242 new_insn
= emit_insn_after (new_insn
, insn
);
4244 /* Keep register set table up to date. */
4245 record_one_set (regno
, insn
);
4249 new_insn
= gen_move_insn (reg
, old_reg
);
4250 new_insn
= emit_insn_after (new_insn
, insn
);
4252 /* Keep register set table up to date. */
4253 record_one_set (regno
, new_insn
);
4256 else /* This is possible only in case of a store to memory. */
4258 old_reg
= SET_SRC (set
);
4259 new_insn
= gen_move_insn (reg
, old_reg
);
4261 /* Check if we can modify the set source in the original insn. */
4262 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4263 new_insn
= emit_insn_before (new_insn
, insn
);
4265 new_insn
= emit_insn_after (new_insn
, insn
);
4267 /* Keep register set table up to date. */
4268 record_one_set (regno
, new_insn
);
4271 gcse_create_count
++;
4275 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4276 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4277 INSN_UID (insn
), regno
);
4280 /* Copy available expressions that reach the redundant expression
4281 to `reaching_reg'. */
4284 pre_insert_copies (void)
4286 unsigned int i
, added_copy
;
4291 /* For each available expression in the table, copy the result to
4292 `reaching_reg' if the expression reaches a deleted one.
4294 ??? The current algorithm is rather brute force.
4295 Need to do some profiling. */
4297 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4298 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4300 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4301 we don't want to insert a copy here because the expression may not
4302 really be redundant. So only insert an insn if the expression was
4303 deleted. This test also avoids further processing if the
4304 expression wasn't deleted anywhere. */
4305 if (expr
->reaching_reg
== NULL
)
4308 /* Set when we add a copy for that expression. */
4311 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4313 if (! occr
->deleted_p
)
4316 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4318 rtx insn
= avail
->insn
;
4320 /* No need to handle this one if handled already. */
4321 if (avail
->copied_p
)
4324 /* Don't handle this one if it's a redundant one. */
4325 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4328 /* Or if the expression doesn't reach the deleted one. */
4329 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4331 BLOCK_FOR_INSN (occr
->insn
)))
4336 /* Copy the result of avail to reaching_reg. */
4337 pre_insert_copy_insn (expr
, insn
);
4338 avail
->copied_p
= 1;
4343 update_ld_motion_stores (expr
);
4347 /* Emit move from SRC to DEST noting the equivalence with expression computed
4350 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4353 rtx set
= single_set (insn
), set2
;
4357 /* This should never fail since we're creating a reg->reg copy
4358 we've verified to be valid. */
4360 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4362 /* Note the equivalence for local CSE pass. */
4363 set2
= single_set (new);
4364 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4366 if ((note
= find_reg_equal_equiv_note (insn
)))
4367 eqv
= XEXP (note
, 0);
4369 eqv
= SET_SRC (set
);
4371 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4376 /* Delete redundant computations.
4377 Deletion is done by changing the insn to copy the `reaching_reg' of
4378 the expression into the result of the SET. It is left to later passes
4379 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4381 Returns nonzero if a change is made. */
4392 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4393 for (expr
= expr_hash_table
.table
[i
];
4395 expr
= expr
->next_same_hash
)
4397 int indx
= expr
->bitmap_index
;
4399 /* We only need to search antic_occr since we require
4402 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4404 rtx insn
= occr
->insn
;
4406 basic_block bb
= BLOCK_FOR_INSN (insn
);
4408 /* We only delete insns that have a single_set. */
4409 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4410 && (set
= single_set (insn
)) != 0)
4412 /* Create a pseudo-reg to store the result of reaching
4413 expressions into. Get the mode for the new pseudo from
4414 the mode of the original destination pseudo. */
4415 if (expr
->reaching_reg
== NULL
)
4417 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4419 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4421 occr
->deleted_p
= 1;
4422 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4429 "PRE: redundant insn %d (expression %d) in ",
4430 INSN_UID (insn
), indx
);
4431 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
4432 bb
->index
, REGNO (expr
->reaching_reg
));
4441 /* Perform GCSE optimizations using PRE.
4442 This is called by one_pre_gcse_pass after all the dataflow analysis
4445 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4446 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4447 Compiler Design and Implementation.
4449 ??? A new pseudo reg is created to hold the reaching expression. The nice
4450 thing about the classical approach is that it would try to use an existing
4451 reg. If the register can't be adequately optimized [i.e. we introduce
4452 reload problems], one could add a pass here to propagate the new register
4455 ??? We don't handle single sets in PARALLELs because we're [currently] not
4456 able to copy the rest of the parallel when we insert copies to create full
4457 redundancies from partial redundancies. However, there's no reason why we
4458 can't handle PARALLELs in the cases where there are no partial
4465 int did_insert
, changed
;
4466 struct expr
**index_map
;
4469 /* Compute a mapping from expression number (`bitmap_index') to
4470 hash table entry. */
4472 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4473 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4474 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4475 index_map
[expr
->bitmap_index
] = expr
;
4477 /* Reset bitmap used to track which insns are redundant. */
4478 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4479 sbitmap_zero (pre_redundant_insns
);
4481 /* Delete the redundant insns first so that
4482 - we know what register to use for the new insns and for the other
4483 ones with reaching expressions
4484 - we know which insns are redundant when we go to create copies */
4486 changed
= pre_delete ();
4488 did_insert
= pre_edge_insert (edge_list
, index_map
);
4490 /* In other places with reaching expressions, copy the expression to the
4491 specially allocated pseudo-reg that reaches the redundant expr. */
4492 pre_insert_copies ();
4495 commit_edge_insertions ();
4500 sbitmap_free (pre_redundant_insns
);
4504 /* Top level routine to perform one PRE GCSE pass.
4506 Return nonzero if a change was made. */
4509 one_pre_gcse_pass (int pass
)
4513 gcse_subst_count
= 0;
4514 gcse_create_count
= 0;
4516 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4517 add_noreturn_fake_exit_edges ();
4519 compute_ld_motion_mems ();
4521 compute_hash_table (&expr_hash_table
);
4522 trim_ld_motion_mems ();
4524 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
4526 if (expr_hash_table
.n_elems
> 0)
4528 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4529 compute_pre_data ();
4530 changed
|= pre_gcse ();
4531 free_edge_list (edge_list
);
4536 remove_fake_exit_edges ();
4537 free_hash_table (&expr_hash_table
);
4541 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4542 current_function_name (), pass
, bytes_used
);
4543 fprintf (gcse_file
, "%d substs, %d insns created\n",
4544 gcse_subst_count
, gcse_create_count
);
4550 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4551 If notes are added to an insn which references a CODE_LABEL, the
4552 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4553 because the following loop optimization pass requires them. */
4555 /* ??? This is very similar to the loop.c add_label_notes function. We
4556 could probably share code here. */
4558 /* ??? If there was a jump optimization pass after gcse and before loop,
4559 then we would not need to do this here, because jump would add the
4560 necessary REG_LABEL notes. */
4563 add_label_notes (rtx x
, rtx insn
)
4565 enum rtx_code code
= GET_CODE (x
);
4569 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4571 /* This code used to ignore labels that referred to dispatch tables to
4572 avoid flow generating (slightly) worse code.
4574 We no longer ignore such label references (see LABEL_REF handling in
4575 mark_jump_label for additional information). */
4577 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
4579 if (LABEL_P (XEXP (x
, 0)))
4580 LABEL_NUSES (XEXP (x
, 0))++;
4584 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4587 add_label_notes (XEXP (x
, i
), insn
);
4588 else if (fmt
[i
] == 'E')
4589 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4590 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4594 /* Compute transparent outgoing information for each block.
4596 An expression is transparent to an edge unless it is killed by
4597 the edge itself. This can only happen with abnormal control flow,
4598 when the edge is traversed through a call. This happens with
4599 non-local labels and exceptions.
4601 This would not be necessary if we split the edge. While this is
4602 normally impossible for abnormal critical edges, with some effort
4603 it should be possible with exception handling, since we still have
4604 control over which handler should be invoked. But due to increased
4605 EH table sizes, this may not be worthwhile. */
4608 compute_transpout (void)
4614 sbitmap_vector_ones (transpout
, last_basic_block
);
4618 /* Note that flow inserted a nop a the end of basic blocks that
4619 end in call instructions for reasons other than abnormal
4621 if (! CALL_P (BB_END (bb
)))
4624 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4625 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4626 if (MEM_P (expr
->expr
))
4628 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4629 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4632 /* ??? Optimally, we would use interprocedural alias
4633 analysis to determine if this mem is actually killed
4635 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4640 /* Code Hoisting variables and subroutines. */
4642 /* Very busy expressions. */
4643 static sbitmap
*hoist_vbein
;
4644 static sbitmap
*hoist_vbeout
;
4646 /* Hoistable expressions. */
4647 static sbitmap
*hoist_exprs
;
4649 /* ??? We could compute post dominators and run this algorithm in
4650 reverse to perform tail merging, doing so would probably be
4651 more effective than the tail merging code in jump.c.
4653 It's unclear if tail merging could be run in parallel with
4654 code hoisting. It would be nice. */
4656 /* Allocate vars used for code hoisting analysis. */
4659 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4661 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4662 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4663 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4665 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4666 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4667 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4668 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4671 /* Free vars used for code hoisting analysis. */
4674 free_code_hoist_mem (void)
4676 sbitmap_vector_free (antloc
);
4677 sbitmap_vector_free (transp
);
4678 sbitmap_vector_free (comp
);
4680 sbitmap_vector_free (hoist_vbein
);
4681 sbitmap_vector_free (hoist_vbeout
);
4682 sbitmap_vector_free (hoist_exprs
);
4683 sbitmap_vector_free (transpout
);
4685 free_dominance_info (CDI_DOMINATORS
);
4688 /* Compute the very busy expressions at entry/exit from each block.
4690 An expression is very busy if all paths from a given point
4691 compute the expression. */
4694 compute_code_hoist_vbeinout (void)
4696 int changed
, passes
;
4699 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4700 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4709 /* We scan the blocks in the reverse order to speed up
4711 FOR_EACH_BB_REVERSE (bb
)
4713 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
4714 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
4715 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4716 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
4723 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4726 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4729 compute_code_hoist_data (void)
4731 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4732 compute_transpout ();
4733 compute_code_hoist_vbeinout ();
4734 calculate_dominance_info (CDI_DOMINATORS
);
4736 fprintf (gcse_file
, "\n");
4739 /* Determine if the expression identified by EXPR_INDEX would
4740 reach BB unimpared if it was placed at the end of EXPR_BB.
4742 It's unclear exactly what Muchnick meant by "unimpared". It seems
4743 to me that the expression must either be computed or transparent in
4744 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4745 would allow the expression to be hoisted out of loops, even if
4746 the expression wasn't a loop invariant.
4748 Contrast this to reachability for PRE where an expression is
4749 considered reachable if *any* path reaches instead of *all*
4753 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4757 int visited_allocated_locally
= 0;
4760 if (visited
== NULL
)
4762 visited_allocated_locally
= 1;
4763 visited
= xcalloc (last_basic_block
, 1);
4766 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4768 basic_block pred_bb
= pred
->src
;
4770 if (pred
->src
== ENTRY_BLOCK_PTR
)
4772 else if (pred_bb
== expr_bb
)
4774 else if (visited
[pred_bb
->index
])
4777 /* Does this predecessor generate this expression? */
4778 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4780 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4786 visited
[pred_bb
->index
] = 1;
4787 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4792 if (visited_allocated_locally
)
4795 return (pred
== NULL
);
4798 /* Actually perform code hoisting. */
4803 basic_block bb
, dominated
;
4805 unsigned int domby_len
;
4807 struct expr
**index_map
;
4810 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4812 /* Compute a mapping from expression number (`bitmap_index') to
4813 hash table entry. */
4815 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4816 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4817 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4818 index_map
[expr
->bitmap_index
] = expr
;
4820 /* Walk over each basic block looking for potentially hoistable
4821 expressions, nothing gets hoisted from the entry block. */
4825 int insn_inserted_p
;
4827 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
4828 /* Examine each expression that is very busy at the exit of this
4829 block. These are the potentially hoistable expressions. */
4830 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4834 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4835 && TEST_BIT (transpout
[bb
->index
], i
))
4837 /* We've found a potentially hoistable expression, now
4838 we look at every block BB dominates to see if it
4839 computes the expression. */
4840 for (j
= 0; j
< domby_len
; j
++)
4842 dominated
= domby
[j
];
4843 /* Ignore self dominance. */
4844 if (bb
== dominated
)
4846 /* We've found a dominated block, now see if it computes
4847 the busy expression and whether or not moving that
4848 expression to the "beginning" of that block is safe. */
4849 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4852 /* Note if the expression would reach the dominated block
4853 unimpared if it was placed at the end of BB.
4855 Keep track of how many times this expression is hoistable
4856 from a dominated block into BB. */
4857 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4861 /* If we found more than one hoistable occurrence of this
4862 expression, then note it in the bitmap of expressions to
4863 hoist. It makes no sense to hoist things which are computed
4864 in only one BB, and doing so tends to pessimize register
4865 allocation. One could increase this value to try harder
4866 to avoid any possible code expansion due to register
4867 allocation issues; however experiments have shown that
4868 the vast majority of hoistable expressions are only movable
4869 from two successors, so raising this threshold is likely
4870 to nullify any benefit we get from code hoisting. */
4873 SET_BIT (hoist_exprs
[bb
->index
], i
);
4878 /* If we found nothing to hoist, then quit now. */
4885 /* Loop over all the hoistable expressions. */
4886 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4888 /* We want to insert the expression into BB only once, so
4889 note when we've inserted it. */
4890 insn_inserted_p
= 0;
4892 /* These tests should be the same as the tests above. */
4893 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
4895 /* We've found a potentially hoistable expression, now
4896 we look at every block BB dominates to see if it
4897 computes the expression. */
4898 for (j
= 0; j
< domby_len
; j
++)
4900 dominated
= domby
[j
];
4901 /* Ignore self dominance. */
4902 if (bb
== dominated
)
4905 /* We've found a dominated block, now see if it computes
4906 the busy expression and whether or not moving that
4907 expression to the "beginning" of that block is safe. */
4908 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4911 /* The expression is computed in the dominated block and
4912 it would be safe to compute it at the start of the
4913 dominated block. Now we have to determine if the
4914 expression would reach the dominated block if it was
4915 placed at the end of BB. */
4916 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4918 struct expr
*expr
= index_map
[i
];
4919 struct occr
*occr
= expr
->antic_occr
;
4923 /* Find the right occurrence of this expression. */
4924 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4929 set
= single_set (insn
);
4932 /* Create a pseudo-reg to store the result of reaching
4933 expressions into. Get the mode for the new pseudo
4934 from the mode of the original destination pseudo. */
4935 if (expr
->reaching_reg
== NULL
)
4937 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4939 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4941 occr
->deleted_p
= 1;
4942 if (!insn_inserted_p
)
4944 insert_insn_end_bb (index_map
[i
], bb
, 0);
4945 insn_inserted_p
= 1;
4957 /* Top level routine to perform one code hoisting (aka unification) pass
4959 Return nonzero if a change was made. */
4962 one_code_hoisting_pass (void)
4966 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4967 compute_hash_table (&expr_hash_table
);
4969 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
4971 if (expr_hash_table
.n_elems
> 0)
4973 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4974 compute_code_hoist_data ();
4976 free_code_hoist_mem ();
4979 free_hash_table (&expr_hash_table
);
4984 /* Here we provide the things required to do store motion towards
4985 the exit. In order for this to be effective, gcse also needed to
4986 be taught how to move a load when it is kill only by a store to itself.
4991 void foo(float scale)
4993 for (i=0; i<10; i++)
4997 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4998 the load out since its live around the loop, and stored at the bottom
5001 The 'Load Motion' referred to and implemented in this file is
5002 an enhancement to gcse which when using edge based lcm, recognizes
5003 this situation and allows gcse to move the load out of the loop.
5005 Once gcse has hoisted the load, store motion can then push this
5006 load towards the exit, and we end up with no loads or stores of 'i'
5009 /* This will search the ldst list for a matching expression. If it
5010 doesn't find one, we create one and initialize it. */
5012 static struct ls_expr
*
5015 int do_not_record_p
= 0;
5016 struct ls_expr
* ptr
;
5019 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5020 NULL
, /*have_reg_qty=*/false);
5022 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5023 if (ptr
->hash_index
== hash
&& expr_equiv_p (ptr
->pattern
, x
))
5026 ptr
= xmalloc (sizeof (struct ls_expr
));
5028 ptr
->next
= pre_ldst_mems
;
5031 ptr
->pattern_regs
= NULL_RTX
;
5032 ptr
->loads
= NULL_RTX
;
5033 ptr
->stores
= NULL_RTX
;
5034 ptr
->reaching_reg
= NULL_RTX
;
5037 ptr
->hash_index
= hash
;
5038 pre_ldst_mems
= ptr
;
5043 /* Free up an individual ldst entry. */
5046 free_ldst_entry (struct ls_expr
* ptr
)
5048 free_INSN_LIST_list (& ptr
->loads
);
5049 free_INSN_LIST_list (& ptr
->stores
);
5054 /* Free up all memory associated with the ldst list. */
5057 free_ldst_mems (void)
5059 while (pre_ldst_mems
)
5061 struct ls_expr
* tmp
= pre_ldst_mems
;
5063 pre_ldst_mems
= pre_ldst_mems
->next
;
5065 free_ldst_entry (tmp
);
5068 pre_ldst_mems
= NULL
;
5071 /* Dump debugging info about the ldst list. */
5074 print_ldst_list (FILE * file
)
5076 struct ls_expr
* ptr
;
5078 fprintf (file
, "LDST list: \n");
5080 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5082 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5084 print_rtl (file
, ptr
->pattern
);
5086 fprintf (file
, "\n Loads : ");
5089 print_rtl (file
, ptr
->loads
);
5091 fprintf (file
, "(nil)");
5093 fprintf (file
, "\n Stores : ");
5096 print_rtl (file
, ptr
->stores
);
5098 fprintf (file
, "(nil)");
5100 fprintf (file
, "\n\n");
5103 fprintf (file
, "\n");
5106 /* Returns 1 if X is in the list of ldst only expressions. */
5108 static struct ls_expr
*
5109 find_rtx_in_ldst (rtx x
)
5111 struct ls_expr
* ptr
;
5113 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5114 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
5120 /* Assign each element of the list of mems a monotonically increasing value. */
5123 enumerate_ldsts (void)
5125 struct ls_expr
* ptr
;
5128 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5134 /* Return first item in the list. */
5136 static inline struct ls_expr
*
5137 first_ls_expr (void)
5139 return pre_ldst_mems
;
5142 /* Return the next item in the list after the specified one. */
5144 static inline struct ls_expr
*
5145 next_ls_expr (struct ls_expr
* ptr
)
5150 /* Load Motion for loads which only kill themselves. */
5152 /* Return true if x is a simple MEM operation, with no registers or
5153 side effects. These are the types of loads we consider for the
5154 ld_motion list, otherwise we let the usual aliasing take care of it. */
5162 if (MEM_VOLATILE_P (x
))
5165 if (GET_MODE (x
) == BLKmode
)
5168 /* If we are handling exceptions, we must be careful with memory references
5169 that may trap. If we are not, the behavior is undefined, so we may just
5171 if (flag_non_call_exceptions
&& may_trap_p (x
))
5174 if (side_effects_p (x
))
5177 /* Do not consider function arguments passed on stack. */
5178 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5181 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5187 /* Make sure there isn't a buried reference in this pattern anywhere.
5188 If there is, invalidate the entry for it since we're not capable
5189 of fixing it up just yet.. We have to be sure we know about ALL
5190 loads since the aliasing code will allow all entries in the
5191 ld_motion list to not-alias itself. If we miss a load, we will get
5192 the wrong value since gcse might common it and we won't know to
5196 invalidate_any_buried_refs (rtx x
)
5200 struct ls_expr
* ptr
;
5202 /* Invalidate it in the list. */
5203 if (MEM_P (x
) && simple_mem (x
))
5205 ptr
= ldst_entry (x
);
5209 /* Recursively process the insn. */
5210 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5212 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5215 invalidate_any_buried_refs (XEXP (x
, i
));
5216 else if (fmt
[i
] == 'E')
5217 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5218 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5222 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5223 being defined as MEM loads and stores to symbols, with no side effects
5224 and no registers in the expression. For a MEM destination, we also
5225 check that the insn is still valid if we replace the destination with a
5226 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5227 which don't match this criteria, they are invalidated and trimmed out
5231 compute_ld_motion_mems (void)
5233 struct ls_expr
* ptr
;
5237 pre_ldst_mems
= NULL
;
5241 FOR_BB_INSNS (bb
, insn
)
5245 if (GET_CODE (PATTERN (insn
)) == SET
)
5247 rtx src
= SET_SRC (PATTERN (insn
));
5248 rtx dest
= SET_DEST (PATTERN (insn
));
5250 /* Check for a simple LOAD... */
5251 if (MEM_P (src
) && simple_mem (src
))
5253 ptr
= ldst_entry (src
);
5255 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5261 /* Make sure there isn't a buried load somewhere. */
5262 invalidate_any_buried_refs (src
);
5265 /* Check for stores. Don't worry about aliased ones, they
5266 will block any movement we might do later. We only care
5267 about this exact pattern since those are the only
5268 circumstance that we will ignore the aliasing info. */
5269 if (MEM_P (dest
) && simple_mem (dest
))
5271 ptr
= ldst_entry (dest
);
5274 && GET_CODE (src
) != ASM_OPERANDS
5275 /* Check for REG manually since want_to_gcse_p
5276 returns 0 for all REGs. */
5277 && can_assign_to_reg_p (src
))
5278 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5284 invalidate_any_buried_refs (PATTERN (insn
));
5290 /* Remove any references that have been either invalidated or are not in the
5291 expression list for pre gcse. */
5294 trim_ld_motion_mems (void)
5296 struct ls_expr
* * last
= & pre_ldst_mems
;
5297 struct ls_expr
* ptr
= pre_ldst_mems
;
5303 /* Delete if entry has been made invalid. */
5306 /* Delete if we cannot find this mem in the expression list. */
5307 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5309 for (expr
= expr_hash_table
.table
[hash
];
5311 expr
= expr
->next_same_hash
)
5312 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5316 expr
= (struct expr
*) 0;
5320 /* Set the expression field if we are keeping it. */
5328 free_ldst_entry (ptr
);
5333 /* Show the world what we've found. */
5334 if (gcse_file
&& pre_ldst_mems
!= NULL
)
5335 print_ldst_list (gcse_file
);
5338 /* This routine will take an expression which we are replacing with
5339 a reaching register, and update any stores that are needed if
5340 that expression is in the ld_motion list. Stores are updated by
5341 copying their SRC to the reaching register, and then storing
5342 the reaching register into the store location. These keeps the
5343 correct value in the reaching register for the loads. */
5346 update_ld_motion_stores (struct expr
* expr
)
5348 struct ls_expr
* mem_ptr
;
5350 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5352 /* We can try to find just the REACHED stores, but is shouldn't
5353 matter to set the reaching reg everywhere... some might be
5354 dead and should be eliminated later. */
5356 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5357 where reg is the reaching reg used in the load. We checked in
5358 compute_ld_motion_mems that we can replace (set mem expr) with
5359 (set reg expr) in that insn. */
5360 rtx list
= mem_ptr
->stores
;
5362 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5364 rtx insn
= XEXP (list
, 0);
5365 rtx pat
= PATTERN (insn
);
5366 rtx src
= SET_SRC (pat
);
5367 rtx reg
= expr
->reaching_reg
;
5370 /* If we've already copied it, continue. */
5371 if (expr
->reaching_reg
== src
)
5376 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
5377 print_rtl (gcse_file
, expr
->reaching_reg
);
5378 fprintf (gcse_file
, ":\n ");
5379 print_inline_rtx (gcse_file
, insn
, 8);
5380 fprintf (gcse_file
, "\n");
5383 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5384 new = emit_insn_before (copy
, insn
);
5385 record_one_set (REGNO (reg
), new);
5386 SET_SRC (pat
) = reg
;
5388 /* un-recognize this pattern since it's probably different now. */
5389 INSN_CODE (insn
) = -1;
5390 gcse_create_count
++;
5395 /* Store motion code. */
5397 #define ANTIC_STORE_LIST(x) ((x)->loads)
5398 #define AVAIL_STORE_LIST(x) ((x)->stores)
5399 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5401 /* This is used to communicate the target bitvector we want to use in the
5402 reg_set_info routine when called via the note_stores mechanism. */
5403 static int * regvec
;
5405 /* And current insn, for the same routine. */
5406 static rtx compute_store_table_current_insn
;
5408 /* Used in computing the reverse edge graph bit vectors. */
5409 static sbitmap
* st_antloc
;
5411 /* Global holding the number of store expressions we are dealing with. */
5412 static int num_stores
;
5414 /* Checks to set if we need to mark a register set. Called from
5418 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5421 sbitmap bb_reg
= data
;
5423 if (GET_CODE (dest
) == SUBREG
)
5424 dest
= SUBREG_REG (dest
);
5428 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5430 SET_BIT (bb_reg
, REGNO (dest
));
5434 /* Clear any mark that says that this insn sets dest. Called from
5438 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5441 int *dead_vec
= data
;
5443 if (GET_CODE (dest
) == SUBREG
)
5444 dest
= SUBREG_REG (dest
);
5447 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5448 dead_vec
[REGNO (dest
)] = 0;
5451 /* Return zero if some of the registers in list X are killed
5452 due to set of registers in bitmap REGS_SET. */
5455 store_ops_ok (rtx x
, int *regs_set
)
5459 for (; x
; x
= XEXP (x
, 1))
5462 if (regs_set
[REGNO(reg
)])
5469 /* Returns a list of registers mentioned in X. */
5471 extract_mentioned_regs (rtx x
)
5473 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5476 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5479 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5485 /* Repeat is used to turn tail-recursion into iteration. */
5491 code
= GET_CODE (x
);
5495 return alloc_EXPR_LIST (0, x
, accum
);
5505 /* We do not run this function with arguments having side effects. */
5524 i
= GET_RTX_LENGTH (code
) - 1;
5525 fmt
= GET_RTX_FORMAT (code
);
5531 rtx tem
= XEXP (x
, i
);
5533 /* If we are about to do the last recursive call
5534 needed at this level, change it into iteration. */
5541 accum
= extract_mentioned_regs_helper (tem
, accum
);
5543 else if (fmt
[i
] == 'E')
5547 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5548 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5555 /* Determine whether INSN is MEM store pattern that we will consider moving.
5556 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5557 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5558 including) the insn in this basic block. We must be passing through BB from
5559 head to end, as we are using this fact to speed things up.
5561 The results are stored this way:
5563 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5564 -- if the processed expression is not anticipatable, NULL_RTX is added
5565 there instead, so that we can use it as indicator that no further
5566 expression of this type may be anticipatable
5567 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5568 consequently, all of them but this head are dead and may be deleted.
5569 -- if the expression is not available, the insn due to that it fails to be
5570 available is stored in reaching_reg.
5572 The things are complicated a bit by fact that there already may be stores
5573 to the same MEM from other blocks; also caller must take care of the
5574 necessary cleanup of the temporary markers after end of the basic block.
5578 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5580 struct ls_expr
* ptr
;
5582 int check_anticipatable
, check_available
;
5583 basic_block bb
= BLOCK_FOR_INSN (insn
);
5585 set
= single_set (insn
);
5589 dest
= SET_DEST (set
);
5591 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5592 || GET_MODE (dest
) == BLKmode
)
5595 if (side_effects_p (dest
))
5598 /* If we are handling exceptions, we must be careful with memory references
5599 that may trap. If we are not, the behavior is undefined, so we may just
5601 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5604 /* Even if the destination cannot trap, the source may. In this case we'd
5605 need to handle updating the REG_EH_REGION note. */
5606 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5609 ptr
= ldst_entry (dest
);
5610 if (!ptr
->pattern_regs
)
5611 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5613 /* Do not check for anticipatability if we either found one anticipatable
5614 store already, or tested for one and found out that it was killed. */
5615 check_anticipatable
= 0;
5616 if (!ANTIC_STORE_LIST (ptr
))
5617 check_anticipatable
= 1;
5620 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5622 && BLOCK_FOR_INSN (tmp
) != bb
)
5623 check_anticipatable
= 1;
5625 if (check_anticipatable
)
5627 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5631 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5632 ANTIC_STORE_LIST (ptr
));
5635 /* It is not necessary to check whether store is available if we did
5636 it successfully before; if we failed before, do not bother to check
5637 until we reach the insn that caused us to fail. */
5638 check_available
= 0;
5639 if (!AVAIL_STORE_LIST (ptr
))
5640 check_available
= 1;
5643 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5644 if (BLOCK_FOR_INSN (tmp
) != bb
)
5645 check_available
= 1;
5647 if (check_available
)
5649 /* Check that we have already reached the insn at that the check
5650 failed last time. */
5651 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5653 for (tmp
= BB_END (bb
);
5654 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5655 tmp
= PREV_INSN (tmp
))
5658 check_available
= 0;
5661 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5663 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5665 if (!check_available
)
5666 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5669 /* Find available and anticipatable stores. */
5672 compute_store_table (void)
5678 int *last_set_in
, *already_set
;
5679 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5681 max_gcse_regno
= max_reg_num ();
5683 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5685 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5687 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
5688 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
5690 /* Find all the stores we care about. */
5693 /* First compute the registers set in this block. */
5694 regvec
= last_set_in
;
5696 FOR_BB_INSNS (bb
, insn
)
5698 if (! INSN_P (insn
))
5703 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5704 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5706 last_set_in
[regno
] = INSN_UID (insn
);
5707 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5711 pat
= PATTERN (insn
);
5712 compute_store_table_current_insn
= insn
;
5713 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5716 /* Now find the stores. */
5717 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5718 regvec
= already_set
;
5719 FOR_BB_INSNS (bb
, insn
)
5721 if (! INSN_P (insn
))
5726 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5727 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5728 already_set
[regno
] = 1;
5731 pat
= PATTERN (insn
);
5732 note_stores (pat
, reg_set_info
, NULL
);
5734 /* Now that we've marked regs, look for stores. */
5735 find_moveable_store (insn
, already_set
, last_set_in
);
5737 /* Unmark regs that are no longer set. */
5738 compute_store_table_current_insn
= insn
;
5739 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5742 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5743 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5744 && last_set_in
[regno
] == INSN_UID (insn
))
5745 last_set_in
[regno
] = 0;
5749 #ifdef ENABLE_CHECKING
5750 /* last_set_in should now be all-zero. */
5751 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5752 gcc_assert (!last_set_in
[regno
]);
5755 /* Clear temporary marks. */
5756 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5758 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5759 if (ANTIC_STORE_LIST (ptr
)
5760 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5761 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5765 /* Remove the stores that are not available anywhere, as there will
5766 be no opportunity to optimize them. */
5767 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5769 ptr
= *prev_next_ptr_ptr
)
5771 if (!AVAIL_STORE_LIST (ptr
))
5773 *prev_next_ptr_ptr
= ptr
->next
;
5774 free_ldst_entry (ptr
);
5777 prev_next_ptr_ptr
= &ptr
->next
;
5780 ret
= enumerate_ldsts ();
5784 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
5785 print_ldst_list (gcse_file
);
5793 /* Check to see if the load X is aliased with STORE_PATTERN.
5794 AFTER is true if we are checking the case when STORE_PATTERN occurs
5798 load_kills_store (rtx x
, rtx store_pattern
, int after
)
5801 return anti_dependence (x
, store_pattern
);
5803 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5807 /* Go through the entire insn X, looking for any loads which might alias
5808 STORE_PATTERN. Return true if found.
5809 AFTER is true if we are checking the case when STORE_PATTERN occurs
5810 after the insn X. */
5813 find_loads (rtx x
, rtx store_pattern
, int after
)
5822 if (GET_CODE (x
) == SET
)
5827 if (load_kills_store (x
, store_pattern
, after
))
5831 /* Recursively process the insn. */
5832 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5834 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5837 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5838 else if (fmt
[i
] == 'E')
5839 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5840 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5845 /* Check if INSN kills the store pattern X (is aliased with it).
5846 AFTER is true if we are checking the case when store X occurs
5847 after the insn. Return true if it does. */
5850 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
5852 rtx reg
, base
, note
;
5859 /* A normal or pure call might read from pattern,
5860 but a const call will not. */
5861 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5864 /* But even a const call reads its parameters. Check whether the
5865 base of some of registers used in mem is stack pointer. */
5866 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5868 base
= find_base_term (XEXP (reg
, 0));
5870 || (GET_CODE (base
) == ADDRESS
5871 && GET_MODE (base
) == Pmode
5872 && XEXP (base
, 0) == stack_pointer_rtx
))
5879 if (GET_CODE (PATTERN (insn
)) == SET
)
5881 rtx pat
= PATTERN (insn
);
5882 rtx dest
= SET_DEST (pat
);
5884 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5885 dest
= XEXP (dest
, 0);
5887 /* Check for memory stores to aliased objects. */
5889 && !expr_equiv_p (dest
, x
))
5893 if (output_dependence (dest
, x
))
5898 if (output_dependence (x
, dest
))
5902 if (find_loads (SET_SRC (pat
), x
, after
))
5905 else if (find_loads (PATTERN (insn
), x
, after
))
5908 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5909 location aliased with X, then this insn kills X. */
5910 note
= find_reg_equal_equiv_note (insn
);
5913 note
= XEXP (note
, 0);
5915 /* However, if the note represents a must alias rather than a may
5916 alias relationship, then it does not kill X. */
5917 if (expr_equiv_p (note
, x
))
5920 /* See if there are any aliased loads in the note. */
5921 return find_loads (note
, x
, after
);
5924 /* Returns true if the expression X is loaded or clobbered on or after INSN
5925 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5926 or after the insn. X_REGS is list of registers mentioned in X. If the store
5927 is killed, return the last insn in that it occurs in FAIL_INSN. */
5930 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5931 int *regs_set_after
, rtx
*fail_insn
)
5933 rtx last
= BB_END (bb
), act
;
5935 if (!store_ops_ok (x_regs
, regs_set_after
))
5937 /* We do not know where it will happen. */
5939 *fail_insn
= NULL_RTX
;
5943 /* Scan from the end, so that fail_insn is determined correctly. */
5944 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
5945 if (store_killed_in_insn (x
, x_regs
, act
, false))
5955 /* Returns true if the expression X is loaded or clobbered on or before INSN
5956 within basic block BB. X_REGS is list of registers mentioned in X.
5957 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5959 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5960 int *regs_set_before
)
5962 rtx first
= BB_HEAD (bb
);
5964 if (!store_ops_ok (x_regs
, regs_set_before
))
5967 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
5968 if (store_killed_in_insn (x
, x_regs
, insn
, true))
5974 /* Fill in available, anticipatable, transparent and kill vectors in
5975 STORE_DATA, based on lists of available and anticipatable stores. */
5977 build_store_vectors (void)
5980 int *regs_set_in_block
;
5982 struct ls_expr
* ptr
;
5985 /* Build the gen_vector. This is any store in the table which is not killed
5986 by aliasing later in its block. */
5987 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5988 sbitmap_vector_zero (ae_gen
, last_basic_block
);
5990 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5991 sbitmap_vector_zero (st_antloc
, last_basic_block
);
5993 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5995 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
5997 insn
= XEXP (st
, 0);
5998 bb
= BLOCK_FOR_INSN (insn
);
6000 /* If we've already seen an available expression in this block,
6001 we can delete this one (It occurs earlier in the block). We'll
6002 copy the SRC expression to an unused register in case there
6003 are any side effects. */
6004 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6006 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6008 fprintf (gcse_file
, "Removing redundant store:\n");
6009 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6012 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6015 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6017 insn
= XEXP (st
, 0);
6018 bb
= BLOCK_FOR_INSN (insn
);
6019 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6023 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6024 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6026 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6027 sbitmap_vector_zero (transp
, last_basic_block
);
6028 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
6032 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6033 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6035 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6037 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6038 bb
, regs_set_in_block
, NULL
))
6040 /* It should not be necessary to consider the expression
6041 killed if it is both anticipatable and available. */
6042 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6043 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6044 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6047 SET_BIT (transp
[bb
->index
], ptr
->index
);
6051 free (regs_set_in_block
);
6055 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6056 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
6057 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
6058 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6062 /* Insert an instruction at the beginning of a basic block, and update
6063 the BB_HEAD if needed. */
6066 insert_insn_start_bb (rtx insn
, basic_block bb
)
6068 /* Insert at start of successor block. */
6069 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6070 rtx before
= BB_HEAD (bb
);
6073 if (! LABEL_P (before
)
6074 && (! NOTE_P (before
)
6075 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6078 if (prev
== BB_END (bb
))
6080 before
= NEXT_INSN (before
);
6083 insn
= emit_insn_after_noloc (insn
, prev
);
6087 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6089 print_inline_rtx (gcse_file
, insn
, 6);
6090 fprintf (gcse_file
, "\n");
6094 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6095 the memory reference, and E is the edge to insert it on. Returns nonzero
6096 if an edge insertion was performed. */
6099 insert_store (struct ls_expr
* expr
, edge e
)
6106 /* We did all the deleted before this insert, so if we didn't delete a
6107 store, then we haven't set the reaching reg yet either. */
6108 if (expr
->reaching_reg
== NULL_RTX
)
6111 if (e
->flags
& EDGE_FAKE
)
6114 reg
= expr
->reaching_reg
;
6115 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6117 /* If we are inserting this expression on ALL predecessor edges of a BB,
6118 insert it at the start of the BB, and reset the insert bits on the other
6119 edges so we don't try to insert it on the other edges. */
6121 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6122 if (!(tmp
->flags
& EDGE_FAKE
))
6124 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6126 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6127 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6131 /* If tmp is NULL, we found an insertion on every edge, blank the
6132 insertion vector for these edges, and insert at the start of the BB. */
6133 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6135 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6137 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6138 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6140 insert_insn_start_bb (insn
, bb
);
6144 /* We can't put stores in the front of blocks pointed to by abnormal
6145 edges since that may put a store where one didn't used to be. */
6146 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6148 insert_insn_on_edge (insn
, e
);
6152 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6153 e
->src
->index
, e
->dest
->index
);
6154 print_inline_rtx (gcse_file
, insn
, 6);
6155 fprintf (gcse_file
, "\n");
6161 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6162 memory location in SMEXPR set in basic block BB.
6164 This could be rather expensive. */
6167 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6169 edge_iterator
*stack
, ei
;
6172 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6173 rtx last
, insn
, note
;
6174 rtx mem
= smexpr
->pattern
;
6176 stack
= xmalloc (sizeof (edge_iterator
) * n_basic_blocks
);
6178 ei
= ei_start (bb
->succs
);
6180 sbitmap_zero (visited
);
6182 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6190 sbitmap_free (visited
);
6193 act
= ei_edge (stack
[--sp
]);
6197 if (bb
== EXIT_BLOCK_PTR
6198 || TEST_BIT (visited
, bb
->index
))
6202 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6205 SET_BIT (visited
, bb
->index
);
6207 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6209 for (last
= ANTIC_STORE_LIST (smexpr
);
6210 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6211 last
= XEXP (last
, 1))
6213 last
= XEXP (last
, 0);
6216 last
= NEXT_INSN (BB_END (bb
));
6218 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6221 note
= find_reg_equal_equiv_note (insn
);
6222 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6226 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6228 remove_note (insn
, note
);
6233 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6235 if (EDGE_COUNT (bb
->succs
) > 0)
6239 ei
= ei_start (bb
->succs
);
6240 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6245 /* This routine will replace a store with a SET to a specified register. */
6248 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6250 rtx insn
, mem
, note
, set
, ptr
, pair
;
6252 mem
= smexpr
->pattern
;
6253 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6254 insn
= emit_insn_after (insn
, del
);
6259 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6260 print_inline_rtx (gcse_file
, del
, 6);
6261 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
6262 print_inline_rtx (gcse_file
, insn
, 6);
6263 fprintf (gcse_file
, "\n");
6266 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6267 if (XEXP (ptr
, 0) == del
)
6269 XEXP (ptr
, 0) = insn
;
6273 /* Move the notes from the deleted insn to its replacement, and patch
6274 up the LIBCALL notes. */
6275 REG_NOTES (insn
) = REG_NOTES (del
);
6277 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6280 pair
= XEXP (note
, 0);
6281 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6282 XEXP (note
, 0) = insn
;
6284 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6287 pair
= XEXP (note
, 0);
6288 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6289 XEXP (note
, 0) = insn
;
6294 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6295 they are no longer accurate provided that they are reached by this
6296 definition, so drop them. */
6297 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6300 set
= single_set (insn
);
6303 if (expr_equiv_p (SET_DEST (set
), mem
))
6305 note
= find_reg_equal_equiv_note (insn
);
6306 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6310 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6312 remove_note (insn
, note
);
6314 remove_reachable_equiv_notes (bb
, smexpr
);
6318 /* Delete a store, but copy the value that would have been stored into
6319 the reaching_reg for later storing. */
6322 delete_store (struct ls_expr
* expr
, basic_block bb
)
6326 if (expr
->reaching_reg
== NULL_RTX
)
6327 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6329 reg
= expr
->reaching_reg
;
6331 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6334 if (BLOCK_FOR_INSN (del
) == bb
)
6336 /* We know there is only one since we deleted redundant
6337 ones during the available computation. */
6338 replace_store_insn (reg
, del
, bb
, expr
);
6344 /* Free memory used by store motion. */
6347 free_store_memory (void)
6352 sbitmap_vector_free (ae_gen
);
6354 sbitmap_vector_free (ae_kill
);
6356 sbitmap_vector_free (transp
);
6358 sbitmap_vector_free (st_antloc
);
6360 sbitmap_vector_free (pre_insert_map
);
6362 sbitmap_vector_free (pre_delete_map
);
6363 if (reg_set_in_block
)
6364 sbitmap_vector_free (reg_set_in_block
);
6366 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6367 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6370 /* Perform store motion. Much like gcse, except we move expressions the
6371 other way by looking at the flowgraph in reverse. */
6378 struct ls_expr
* ptr
;
6379 int update_flow
= 0;
6383 fprintf (gcse_file
, "before store motion\n");
6384 print_rtl (gcse_file
, get_insns ());
6387 init_alias_analysis ();
6389 /* Find all the available and anticipatable stores. */
6390 num_stores
= compute_store_table ();
6391 if (num_stores
== 0)
6393 sbitmap_vector_free (reg_set_in_block
);
6394 end_alias_analysis ();
6398 /* Now compute kill & transp vectors. */
6399 build_store_vectors ();
6400 add_noreturn_fake_exit_edges ();
6401 connect_infinite_loops_to_exit ();
6403 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
6404 st_antloc
, ae_kill
, &pre_insert_map
,
6407 /* Now we want to insert the new stores which are going to be needed. */
6408 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6410 /* If any of the edges we have above are abnormal, we can't move this
6412 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6413 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6414 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6419 if (gcse_file
!= NULL
)
6421 "Can't replace store %d: abnormal edge from %d to %d\n",
6422 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6423 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6427 /* Now we want to insert the new stores which are going to be needed. */
6430 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6431 delete_store (ptr
, bb
);
6433 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6434 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6435 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6439 commit_edge_insertions ();
6441 free_store_memory ();
6442 free_edge_list (edge_list
);
6443 remove_fake_exit_edges ();
6444 end_alias_analysis ();
6448 /* Entry point for jump bypassing optimization pass. */
6451 bypass_jumps (FILE *file
)
6455 /* We do not construct an accurate cfg in functions which call
6456 setjmp, so just punt to be safe. */
6457 if (current_function_calls_setjmp
)
6460 /* For calling dump_foo fns from gdb. */
6461 debug_stderr
= stderr
;
6464 /* Identify the basic block information for this function, including
6465 successors and predecessors. */
6466 max_gcse_regno
= max_reg_num ();
6469 dump_flow_info (file
);
6471 /* Return if there's nothing to do, or it is too expensive. */
6472 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6475 gcc_obstack_init (&gcse_obstack
);
6478 /* We need alias. */
6479 init_alias_analysis ();
6481 /* Record where pseudo-registers are set. This data is kept accurate
6482 during each pass. ??? We could also record hard-reg information here
6483 [since it's unchanging], however it is currently done during hash table
6486 It may be tempting to compute MEM set information here too, but MEM sets
6487 will be subject to code motion one day and thus we need to compute
6488 information about memory sets when we build the hash tables. */
6490 alloc_reg_set_mem (max_gcse_regno
);
6493 max_gcse_regno
= max_reg_num ();
6495 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, true, true);
6500 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
6501 current_function_name (), n_basic_blocks
);
6502 fprintf (file
, "%d bytes\n\n", bytes_used
);
6505 obstack_free (&gcse_obstack
, NULL
);
6506 free_reg_set_mem ();
6508 /* We are finished with alias. */
6509 end_alias_analysis ();
6510 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
6515 /* Return true if the graph is too expensive to optimize. PASS is the
6516 optimization about to be performed. */
6519 is_too_expensive (const char *pass
)
6521 /* Trying to perform global optimizations on flow graphs which have
6522 a high connectivity will take a long time and is unlikely to be
6523 particularly useful.
6525 In normal circumstances a cfg should have about twice as many
6526 edges as blocks. But we do not want to punish small functions
6527 which have a couple switch statements. Rather than simply
6528 threshold the number of blocks, uses something with a more
6529 graceful degradation. */
6530 if (n_edges
> 20000 + n_basic_blocks
* 4)
6532 if (warn_disabled_optimization
)
6533 warning (0, "%s: %d basic blocks and %d edges/basic block",
6534 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6539 /* If allocating memory for the cprop bitmap would take up too much
6540 storage it's better just to disable the optimization. */
6542 * SBITMAP_SET_SIZE (max_reg_num ())
6543 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6545 if (warn_disabled_optimization
)
6546 warning (0, "%s: %d basic blocks and %d registers",
6547 pass
, n_basic_blocks
, max_reg_num ());
6555 #include "gt-gcse.h"