1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
33 #include "hard-reg-set.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
48 #include "typeclass.h"
50 #include "langhooks.h"
53 #include "tree-iterator.h"
55 #include "dominance.h"
57 #include "basic-block.h"
58 #include "tree-ssa-alias.h"
59 #include "internal-fn.h"
60 #include "gimple-expr.h"
63 #include "gimple-ssa.h"
65 #include "plugin-api.h"
68 #include "tree-ssanames.h"
70 #include "common/common-target.h"
73 #include "diagnostic.h"
74 #include "tree-ssa-live.h"
75 #include "tree-outof-ssa.h"
76 #include "target-globals.h"
78 #include "tree-ssa-address.h"
79 #include "cfgexpand.h"
82 #ifndef STACK_PUSH_CODE
83 #ifdef STACK_GROWS_DOWNWARD
84 #define STACK_PUSH_CODE PRE_DEC
86 #define STACK_PUSH_CODE PRE_INC
91 /* If this is nonzero, we do not bother generating VOLATILE
92 around volatile memory references, and we are willing to
93 output indirect addresses. If cse is to follow, we reject
94 indirect addresses so a useful potential cse is generated;
95 if it is used only once, instruction combination will produce
96 the same indirect address eventually. */
99 /* This structure is used by move_by_pieces to describe the move to
101 struct move_by_pieces_d
110 int explicit_inc_from
;
111 unsigned HOST_WIDE_INT len
;
112 HOST_WIDE_INT offset
;
116 /* This structure is used by store_by_pieces to describe the clear to
119 struct store_by_pieces_d
125 unsigned HOST_WIDE_INT len
;
126 HOST_WIDE_INT offset
;
127 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
132 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
133 struct move_by_pieces_d
*);
134 static bool block_move_libcall_safe_for_call_parm (void);
135 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
136 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
137 unsigned HOST_WIDE_INT
);
138 static tree
emit_block_move_libcall_fn (int);
139 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
140 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
141 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
142 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
143 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
144 struct store_by_pieces_d
*);
145 static tree
clear_storage_libcall_fn (int);
146 static rtx_insn
*compress_float_constant (rtx
, rtx
);
147 static rtx
get_subtarget (rtx
);
148 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
149 HOST_WIDE_INT
, machine_mode
,
150 tree
, int, alias_set_type
);
151 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
152 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
153 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
154 machine_mode
, tree
, alias_set_type
, bool);
156 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
158 static int is_aligning_offset (const_tree
, const_tree
);
159 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
160 enum expand_modifier
);
161 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
162 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
164 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
166 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
167 static rtx
const_vector_from_tree (tree
);
168 static void write_complex_part (rtx
, rtx
, bool);
171 /* This is run to set up which modes can be used
172 directly in memory and to initialize the block move optab. It is run
173 at the beginning of compilation and when the target is reinitialized. */
176 init_expr_target (void)
184 /* Try indexing by frame ptr and try by stack ptr.
185 It is known that on the Convex the stack ptr isn't a valid index.
186 With luck, one or the other is valid on any machine. */
187 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
188 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
190 /* A scratch register we can modify in-place below to avoid
191 useless RTL allocations. */
192 reg
= gen_rtx_REG (VOIDmode
, -1);
194 insn
= rtx_alloc (INSN
);
195 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
196 PATTERN (insn
) = pat
;
198 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
199 mode
= (machine_mode
) ((int) mode
+ 1))
203 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
204 PUT_MODE (mem
, mode
);
205 PUT_MODE (mem1
, mode
);
206 PUT_MODE (reg
, mode
);
208 /* See if there is some register that can be used in this mode and
209 directly loaded or stored from memory. */
211 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
212 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
213 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
216 if (! HARD_REGNO_MODE_OK (regno
, mode
))
219 SET_REGNO (reg
, regno
);
222 SET_DEST (pat
) = reg
;
223 if (recog (pat
, insn
, &num_clobbers
) >= 0)
224 direct_load
[(int) mode
] = 1;
226 SET_SRC (pat
) = mem1
;
227 SET_DEST (pat
) = reg
;
228 if (recog (pat
, insn
, &num_clobbers
) >= 0)
229 direct_load
[(int) mode
] = 1;
232 SET_DEST (pat
) = mem
;
233 if (recog (pat
, insn
, &num_clobbers
) >= 0)
234 direct_store
[(int) mode
] = 1;
237 SET_DEST (pat
) = mem1
;
238 if (recog (pat
, insn
, &num_clobbers
) >= 0)
239 direct_store
[(int) mode
] = 1;
243 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
245 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
246 mode
= GET_MODE_WIDER_MODE (mode
))
248 machine_mode srcmode
;
249 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
250 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
254 ic
= can_extend_p (mode
, srcmode
, 0);
255 if (ic
== CODE_FOR_nothing
)
258 PUT_MODE (mem
, srcmode
);
260 if (insn_operand_matches (ic
, 1, mem
))
261 float_extend_from_mem
[mode
][srcmode
] = true;
266 /* This is run at the start of compiling a function. */
271 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
274 /* Copy data from FROM to TO, where the machine modes are not the same.
275 Both modes may be integer, or both may be floating, or both may be
277 UNSIGNEDP should be nonzero if FROM is an unsigned type.
278 This causes zero-extension instead of sign-extension. */
281 convert_move (rtx to
, rtx from
, int unsignedp
)
283 machine_mode to_mode
= GET_MODE (to
);
284 machine_mode from_mode
= GET_MODE (from
);
285 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
286 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
290 /* rtx code for making an equivalent value. */
291 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
292 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
295 gcc_assert (to_real
== from_real
);
296 gcc_assert (to_mode
!= BLKmode
);
297 gcc_assert (from_mode
!= BLKmode
);
299 /* If the source and destination are already the same, then there's
304 /* If FROM is a SUBREG that indicates that we have already done at least
305 the required extension, strip it. We don't handle such SUBREGs as
308 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
309 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
310 >= GET_MODE_PRECISION (to_mode
))
311 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
312 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
314 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
316 if (to_mode
== from_mode
317 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
319 emit_move_insn (to
, from
);
323 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
325 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
327 if (VECTOR_MODE_P (to_mode
))
328 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
330 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
332 emit_move_insn (to
, from
);
336 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
338 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
339 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
349 gcc_assert ((GET_MODE_PRECISION (from_mode
)
350 != GET_MODE_PRECISION (to_mode
))
351 || (DECIMAL_FLOAT_MODE_P (from_mode
)
352 != DECIMAL_FLOAT_MODE_P (to_mode
)));
354 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
355 /* Conversion between decimal float and binary float, same size. */
356 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
357 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
362 /* Try converting directly if the insn is supported. */
364 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
365 if (code
!= CODE_FOR_nothing
)
367 emit_unop_insn (code
, to
, from
,
368 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
372 /* Otherwise use a libcall. */
373 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
375 /* Is this conversion implemented yet? */
376 gcc_assert (libcall
);
379 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
381 insns
= get_insns ();
383 emit_libcall_block (insns
, to
, value
,
384 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
386 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
390 /* Handle pointer conversion. */ /* SPEE 900220. */
391 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
395 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
402 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
405 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
411 /* Targets are expected to provide conversion insns between PxImode and
412 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
413 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
415 machine_mode full_mode
416 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
418 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
419 != CODE_FOR_nothing
);
421 if (full_mode
!= from_mode
)
422 from
= convert_to_mode (full_mode
, from
, unsignedp
);
423 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
427 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
430 machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
432 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
433 enum insn_code icode
;
435 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
436 gcc_assert (icode
!= CODE_FOR_nothing
);
438 if (to_mode
== full_mode
)
440 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
444 new_from
= gen_reg_rtx (full_mode
);
445 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
447 /* else proceed to integer conversions below. */
448 from_mode
= full_mode
;
452 /* Make sure both are fixed-point modes or both are not. */
453 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
454 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
455 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
457 /* If we widen from_mode to to_mode and they are in the same class,
458 we won't saturate the result.
459 Otherwise, always saturate the result to play safe. */
460 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
461 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
462 expand_fixed_convert (to
, from
, 0, 0);
464 expand_fixed_convert (to
, from
, 0, 1);
468 /* Now both modes are integers. */
470 /* Handle expanding beyond a word. */
471 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
472 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
479 machine_mode lowpart_mode
;
480 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
482 /* Try converting directly if the insn is supported. */
483 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
486 /* If FROM is a SUBREG, put it into a register. Do this
487 so that we always generate the same set of insns for
488 better cse'ing; if an intermediate assignment occurred,
489 we won't be doing the operation directly on the SUBREG. */
490 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
491 from
= force_reg (from_mode
, from
);
492 emit_unop_insn (code
, to
, from
, equiv_code
);
495 /* Next, try converting via full word. */
496 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
497 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
498 != CODE_FOR_nothing
))
500 rtx word_to
= gen_reg_rtx (word_mode
);
503 if (reg_overlap_mentioned_p (to
, from
))
504 from
= force_reg (from_mode
, from
);
507 convert_move (word_to
, from
, unsignedp
);
508 emit_unop_insn (code
, to
, word_to
, equiv_code
);
512 /* No special multiword conversion insn; do it by hand. */
515 /* Since we will turn this into a no conflict block, we must ensure the
516 the source does not overlap the target so force it into an isolated
517 register when maybe so. Likewise for any MEM input, since the
518 conversion sequence might require several references to it and we
519 must ensure we're getting the same value every time. */
521 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
522 from
= force_reg (from_mode
, from
);
524 /* Get a copy of FROM widened to a word, if necessary. */
525 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
526 lowpart_mode
= word_mode
;
528 lowpart_mode
= from_mode
;
530 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
532 lowpart
= gen_lowpart (lowpart_mode
, to
);
533 emit_move_insn (lowpart
, lowfrom
);
535 /* Compute the value to put in each remaining word. */
537 fill_value
= const0_rtx
;
539 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
540 LT
, lowfrom
, const0_rtx
,
541 lowpart_mode
, 0, -1);
543 /* Fill the remaining words. */
544 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
546 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
547 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
549 gcc_assert (subword
);
551 if (fill_value
!= subword
)
552 emit_move_insn (subword
, fill_value
);
555 insns
= get_insns ();
562 /* Truncating multi-word to a word or less. */
563 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
564 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
567 && ! MEM_VOLATILE_P (from
)
568 && direct_load
[(int) to_mode
]
569 && ! mode_dependent_address_p (XEXP (from
, 0),
570 MEM_ADDR_SPACE (from
)))
572 || GET_CODE (from
) == SUBREG
))
573 from
= force_reg (from_mode
, from
);
574 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
578 /* Now follow all the conversions between integers
579 no more than a word long. */
581 /* For truncation, usually we can just refer to FROM in a narrower mode. */
582 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
583 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
586 && ! MEM_VOLATILE_P (from
)
587 && direct_load
[(int) to_mode
]
588 && ! mode_dependent_address_p (XEXP (from
, 0),
589 MEM_ADDR_SPACE (from
)))
591 || GET_CODE (from
) == SUBREG
))
592 from
= force_reg (from_mode
, from
);
593 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
594 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
595 from
= copy_to_reg (from
);
596 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
600 /* Handle extension. */
601 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
603 /* Convert directly if that works. */
604 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
607 emit_unop_insn (code
, to
, from
, equiv_code
);
612 machine_mode intermediate
;
616 /* Search for a mode to convert via. */
617 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
618 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
619 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
621 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
622 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
623 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
624 != CODE_FOR_nothing
))
626 convert_move (to
, convert_to_mode (intermediate
, from
,
627 unsignedp
), unsignedp
);
631 /* No suitable intermediate mode.
632 Generate what we need with shifts. */
633 shift_amount
= (GET_MODE_PRECISION (to_mode
)
634 - GET_MODE_PRECISION (from_mode
));
635 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
636 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
638 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
641 emit_move_insn (to
, tmp
);
646 /* Support special truncate insns for certain modes. */
647 if (convert_optab_handler (trunc_optab
, to_mode
,
648 from_mode
) != CODE_FOR_nothing
)
650 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
655 /* Handle truncation of volatile memrefs, and so on;
656 the things that couldn't be truncated directly,
657 and for which there was no special instruction.
659 ??? Code above formerly short-circuited this, for most integer
660 mode pairs, with a force_reg in from_mode followed by a recursive
661 call to this routine. Appears always to have been wrong. */
662 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
664 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
665 emit_move_insn (to
, temp
);
669 /* Mode combination is not recognized. */
673 /* Return an rtx for a value that would result
674 from converting X to mode MODE.
675 Both X and MODE may be floating, or both integer.
676 UNSIGNEDP is nonzero if X is an unsigned value.
677 This can be done by referring to a part of X in place
678 or by copying to a new temporary with conversion. */
681 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
683 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
686 /* Return an rtx for a value that would result
687 from converting X from mode OLDMODE to mode MODE.
688 Both modes may be floating, or both integer.
689 UNSIGNEDP is nonzero if X is an unsigned value.
691 This can be done by referring to a part of X in place
692 or by copying to a new temporary with conversion.
694 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
697 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
701 /* If FROM is a SUBREG that indicates that we have already done at least
702 the required extension, strip it. */
704 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
705 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
706 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
707 x
= gen_lowpart (mode
, SUBREG_REG (x
));
709 if (GET_MODE (x
) != VOIDmode
)
710 oldmode
= GET_MODE (x
);
715 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
717 /* If the caller did not tell us the old mode, then there is not
718 much to do with respect to canonicalization. We have to
719 assume that all the bits are significant. */
720 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
721 oldmode
= MAX_MODE_INT
;
722 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
723 GET_MODE_PRECISION (mode
),
724 unsignedp
? UNSIGNED
: SIGNED
);
725 return immed_wide_int_const (w
, mode
);
728 /* We can do this with a gen_lowpart if both desired and current modes
729 are integer, and this is either a constant integer, a register, or a
731 if (GET_MODE_CLASS (mode
) == MODE_INT
732 && GET_MODE_CLASS (oldmode
) == MODE_INT
733 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
734 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
736 && (!HARD_REGISTER_P (x
)
737 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
738 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
740 return gen_lowpart (mode
, x
);
742 /* Converting from integer constant into mode is always equivalent to an
744 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
746 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
747 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
750 temp
= gen_reg_rtx (mode
);
751 convert_move (temp
, x
, unsignedp
);
755 /* Return the largest alignment we can use for doing a move (or store)
756 of MAX_PIECES. ALIGN is the largest alignment we could use. */
759 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
763 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
764 if (align
>= GET_MODE_ALIGNMENT (tmode
))
765 align
= GET_MODE_ALIGNMENT (tmode
);
768 machine_mode tmode
, xmode
;
770 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
772 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
773 if (GET_MODE_SIZE (tmode
) > max_pieces
774 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
777 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
783 /* Return the widest integer mode no wider than SIZE. If no such mode
784 can be found, return VOIDmode. */
787 widest_int_mode_for_size (unsigned int size
)
789 machine_mode tmode
, mode
= VOIDmode
;
791 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
792 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
793 if (GET_MODE_SIZE (tmode
) < size
)
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
804 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
807 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
808 optimize_insn_for_speed_p ());
811 /* Generate several move instructions to copy LEN bytes from block FROM to
812 block TO. (These are MEM rtx's with BLKmode).
814 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
815 used to push FROM to the stack.
817 ALIGN is maximum stack alignment we can assume.
819 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
820 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
824 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
825 unsigned int align
, int endp
)
827 struct move_by_pieces_d data
;
828 machine_mode to_addr_mode
;
829 machine_mode from_addr_mode
= get_address_mode (from
);
830 rtx to_addr
, from_addr
= XEXP (from
, 0);
831 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
832 enum insn_code icode
;
834 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
837 data
.from_addr
= from_addr
;
840 to_addr_mode
= get_address_mode (to
);
841 to_addr
= XEXP (to
, 0);
844 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
845 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
847 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
851 to_addr_mode
= VOIDmode
;
855 #ifdef STACK_GROWS_DOWNWARD
861 data
.to_addr
= to_addr
;
864 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
865 || GET_CODE (from_addr
) == POST_INC
866 || GET_CODE (from_addr
) == POST_DEC
);
868 data
.explicit_inc_from
= 0;
869 data
.explicit_inc_to
= 0;
870 if (data
.reverse
) data
.offset
= len
;
873 /* If copying requires more than two move insns,
874 copy addresses to registers (to make displacements shorter)
875 and use post-increment if available. */
876 if (!(data
.autinc_from
&& data
.autinc_to
)
877 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
879 /* Find the mode of the largest move...
880 MODE might not be used depending on the definitions of the
881 USE_* macros below. */
882 machine_mode mode ATTRIBUTE_UNUSED
883 = widest_int_mode_for_size (max_size
);
885 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
887 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
888 plus_constant (from_addr_mode
,
890 data
.autinc_from
= 1;
891 data
.explicit_inc_from
= -1;
893 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
895 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
896 data
.autinc_from
= 1;
897 data
.explicit_inc_from
= 1;
899 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
900 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
901 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
903 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
904 plus_constant (to_addr_mode
,
907 data
.explicit_inc_to
= -1;
909 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
911 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
913 data
.explicit_inc_to
= 1;
915 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
916 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
919 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
921 /* First move what we can in the largest integer mode, then go to
922 successively smaller modes. */
924 while (max_size
> 1 && data
.len
> 0)
926 machine_mode mode
= widest_int_mode_for_size (max_size
);
928 if (mode
== VOIDmode
)
931 icode
= optab_handler (mov_optab
, mode
);
932 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
933 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
935 max_size
= GET_MODE_SIZE (mode
);
938 /* The code above should have handled everything. */
939 gcc_assert (!data
.len
);
945 gcc_assert (!data
.reverse
);
950 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
951 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
953 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
954 plus_constant (to_addr_mode
,
958 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
965 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
973 /* Return number of insns required to move L bytes by pieces.
974 ALIGN (in bits) is maximum alignment we can assume. */
976 unsigned HOST_WIDE_INT
977 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
978 unsigned int max_size
)
980 unsigned HOST_WIDE_INT n_insns
= 0;
982 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
984 while (max_size
> 1 && l
> 0)
987 enum insn_code icode
;
989 mode
= widest_int_mode_for_size (max_size
);
991 if (mode
== VOIDmode
)
994 icode
= optab_handler (mov_optab
, mode
);
995 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
996 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
998 max_size
= GET_MODE_SIZE (mode
);
1005 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1006 with move instructions for mode MODE. GENFUN is the gen_... function
1007 to make a move insn for that mode. DATA has all the other info. */
1010 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1011 struct move_by_pieces_d
*data
)
1013 unsigned int size
= GET_MODE_SIZE (mode
);
1014 rtx to1
= NULL_RTX
, from1
;
1016 while (data
->len
>= size
)
1019 data
->offset
-= size
;
1023 if (data
->autinc_to
)
1024 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1027 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1030 if (data
->autinc_from
)
1031 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1034 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1036 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1037 emit_insn (gen_add2_insn (data
->to_addr
,
1038 gen_int_mode (-(HOST_WIDE_INT
) size
,
1039 GET_MODE (data
->to_addr
))));
1040 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1041 emit_insn (gen_add2_insn (data
->from_addr
,
1042 gen_int_mode (-(HOST_WIDE_INT
) size
,
1043 GET_MODE (data
->from_addr
))));
1046 emit_insn ((*genfun
) (to1
, from1
));
1049 #ifdef PUSH_ROUNDING
1050 emit_single_push_insn (mode
, from1
, NULL
);
1056 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1057 emit_insn (gen_add2_insn (data
->to_addr
,
1059 GET_MODE (data
->to_addr
))));
1060 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1061 emit_insn (gen_add2_insn (data
->from_addr
,
1063 GET_MODE (data
->from_addr
))));
1065 if (! data
->reverse
)
1066 data
->offset
+= size
;
1072 /* Emit code to move a block Y to a block X. This may be done with
1073 string-move instructions, with multiple scalar move instructions,
1074 or with a library call.
1076 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1077 SIZE is an rtx that says how long they are.
1078 ALIGN is the maximum alignment we can assume they have.
1079 METHOD describes what kind of copy this is, and what mechanisms may be used.
1080 MIN_SIZE is the minimal size of block to move
1081 MAX_SIZE is the maximal size of block to move, if it can not be represented
1082 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1084 Return the address of the new block, if memcpy is called and returns it,
1088 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1089 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1090 unsigned HOST_WIDE_INT min_size
,
1091 unsigned HOST_WIDE_INT max_size
,
1092 unsigned HOST_WIDE_INT probable_max_size
)
1099 if (CONST_INT_P (size
)
1100 && INTVAL (size
) == 0)
1105 case BLOCK_OP_NORMAL
:
1106 case BLOCK_OP_TAILCALL
:
1107 may_use_call
= true;
1110 case BLOCK_OP_CALL_PARM
:
1111 may_use_call
= block_move_libcall_safe_for_call_parm ();
1113 /* Make inhibit_defer_pop nonzero around the library call
1114 to force it to pop the arguments right away. */
1118 case BLOCK_OP_NO_LIBCALL
:
1119 may_use_call
= false;
1126 gcc_assert (MEM_P (x
) && MEM_P (y
));
1127 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1128 gcc_assert (align
>= BITS_PER_UNIT
);
1130 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1131 block copy is more efficient for other large modes, e.g. DCmode. */
1132 x
= adjust_address (x
, BLKmode
, 0);
1133 y
= adjust_address (y
, BLKmode
, 0);
1135 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1136 can be incorrect is coming from __builtin_memcpy. */
1137 if (CONST_INT_P (size
))
1139 x
= shallow_copy_rtx (x
);
1140 y
= shallow_copy_rtx (y
);
1141 set_mem_size (x
, INTVAL (size
));
1142 set_mem_size (y
, INTVAL (size
));
1145 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1146 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1147 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1148 expected_align
, expected_size
,
1149 min_size
, max_size
, probable_max_size
))
1151 else if (may_use_call
1152 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1153 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1155 /* Since x and y are passed to a libcall, mark the corresponding
1156 tree EXPR as addressable. */
1157 tree y_expr
= MEM_EXPR (y
);
1158 tree x_expr
= MEM_EXPR (x
);
1160 mark_addressable (y_expr
);
1162 mark_addressable (x_expr
);
1163 retval
= emit_block_move_via_libcall (x
, y
, size
,
1164 method
== BLOCK_OP_TAILCALL
);
1168 emit_block_move_via_loop (x
, y
, size
, align
);
1170 if (method
== BLOCK_OP_CALL_PARM
)
1177 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1179 unsigned HOST_WIDE_INT max
, min
= 0;
1180 if (GET_CODE (size
) == CONST_INT
)
1181 min
= max
= UINTVAL (size
);
1183 max
= GET_MODE_MASK (GET_MODE (size
));
1184 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1188 /* A subroutine of emit_block_move. Returns true if calling the
1189 block move libcall will not clobber any parameters which may have
1190 already been placed on the stack. */
1193 block_move_libcall_safe_for_call_parm (void)
1195 #if defined (REG_PARM_STACK_SPACE)
1199 /* If arguments are pushed on the stack, then they're safe. */
1203 /* If registers go on the stack anyway, any argument is sure to clobber
1204 an outgoing argument. */
1205 #if defined (REG_PARM_STACK_SPACE)
1206 fn
= emit_block_move_libcall_fn (false);
1207 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1208 depend on its argument. */
1210 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1211 && REG_PARM_STACK_SPACE (fn
) != 0)
1215 /* If any argument goes in memory, then it might clobber an outgoing
1218 CUMULATIVE_ARGS args_so_far_v
;
1219 cumulative_args_t args_so_far
;
1222 fn
= emit_block_move_libcall_fn (false);
1223 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1224 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1226 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1227 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1229 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1230 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1232 if (!tmp
|| !REG_P (tmp
))
1234 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1236 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1243 /* A subroutine of emit_block_move. Expand a movmem pattern;
1244 return true if successful. */
1247 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1248 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1249 unsigned HOST_WIDE_INT min_size
,
1250 unsigned HOST_WIDE_INT max_size
,
1251 unsigned HOST_WIDE_INT probable_max_size
)
1253 int save_volatile_ok
= volatile_ok
;
1256 if (expected_align
< align
)
1257 expected_align
= align
;
1258 if (expected_size
!= -1)
1260 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1261 expected_size
= probable_max_size
;
1262 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1263 expected_size
= min_size
;
1266 /* Since this is a move insn, we don't care about volatility. */
1269 /* Try the most limited insn first, because there's no point
1270 including more than one in the machine description unless
1271 the more limited one has some advantage. */
1273 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1274 mode
= GET_MODE_WIDER_MODE (mode
))
1276 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1278 if (code
!= CODE_FOR_nothing
1279 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1280 here because if SIZE is less than the mode mask, as it is
1281 returned by the macro, it will definitely be less than the
1282 actual mode mask. Since SIZE is within the Pmode address
1283 space, we limit MODE to Pmode. */
1284 && ((CONST_INT_P (size
)
1285 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1286 <= (GET_MODE_MASK (mode
) >> 1)))
1287 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1288 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1290 struct expand_operand ops
[9];
1293 /* ??? When called via emit_block_move_for_call, it'd be
1294 nice if there were some way to inform the backend, so
1295 that it doesn't fail the expansion because it thinks
1296 emitting the libcall would be more efficient. */
1297 nops
= insn_data
[(int) code
].n_generator_args
;
1298 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1300 create_fixed_operand (&ops
[0], x
);
1301 create_fixed_operand (&ops
[1], y
);
1302 /* The check above guarantees that this size conversion is valid. */
1303 create_convert_operand_to (&ops
[2], size
, mode
, true);
1304 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1307 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1308 create_integer_operand (&ops
[5], expected_size
);
1312 create_integer_operand (&ops
[6], min_size
);
1313 /* If we can not represent the maximal size,
1314 make parameter NULL. */
1315 if ((HOST_WIDE_INT
) max_size
!= -1)
1316 create_integer_operand (&ops
[7], max_size
);
1318 create_fixed_operand (&ops
[7], NULL
);
1322 /* If we can not represent the maximal size,
1323 make parameter NULL. */
1324 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1325 create_integer_operand (&ops
[8], probable_max_size
);
1327 create_fixed_operand (&ops
[8], NULL
);
1329 if (maybe_expand_insn (code
, nops
, ops
))
1331 volatile_ok
= save_volatile_ok
;
1337 volatile_ok
= save_volatile_ok
;
1341 /* A subroutine of emit_block_move. Expand a call to memcpy.
1342 Return the return value from memcpy, 0 otherwise. */
1345 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1347 rtx dst_addr
, src_addr
;
1348 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1349 machine_mode size_mode
;
1352 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1353 pseudos. We can then place those new pseudos into a VAR_DECL and
1356 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1357 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1359 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1360 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1362 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1363 src_tree
= make_tree (ptr_type_node
, src_addr
);
1365 size_mode
= TYPE_MODE (sizetype
);
1367 size
= convert_to_mode (size_mode
, size
, 1);
1368 size
= copy_to_mode_reg (size_mode
, size
);
1370 /* It is incorrect to use the libcall calling conventions to call
1371 memcpy in this context. This could be a user call to memcpy and
1372 the user may wish to examine the return value from memcpy. For
1373 targets where libcalls and normal calls have different conventions
1374 for returning pointers, we could end up generating incorrect code. */
1376 size_tree
= make_tree (sizetype
, size
);
1378 fn
= emit_block_move_libcall_fn (true);
1379 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1380 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1382 retval
= expand_normal (call_expr
);
1387 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1388 for the function we use for block copies. */
1390 static GTY(()) tree block_move_fn
;
1393 init_block_move_fn (const char *asmspec
)
1397 tree args
, fn
, attrs
, attr_args
;
1399 fn
= get_identifier ("memcpy");
1400 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1401 const_ptr_type_node
, sizetype
,
1404 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1405 DECL_EXTERNAL (fn
) = 1;
1406 TREE_PUBLIC (fn
) = 1;
1407 DECL_ARTIFICIAL (fn
) = 1;
1408 TREE_NOTHROW (fn
) = 1;
1409 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1410 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1412 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1413 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1415 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1421 set_user_assembler_name (block_move_fn
, asmspec
);
1425 emit_block_move_libcall_fn (int for_call
)
1427 static bool emitted_extern
;
1430 init_block_move_fn (NULL
);
1432 if (for_call
&& !emitted_extern
)
1434 emitted_extern
= true;
1435 make_decl_rtl (block_move_fn
);
1438 return block_move_fn
;
1441 /* A subroutine of emit_block_move. Copy the data via an explicit
1442 loop. This is used only when libcalls are forbidden. */
1443 /* ??? It'd be nice to copy in hunks larger than QImode. */
1446 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1447 unsigned int align ATTRIBUTE_UNUSED
)
1449 rtx_code_label
*cmp_label
, *top_label
;
1450 rtx iter
, x_addr
, y_addr
, tmp
;
1451 machine_mode x_addr_mode
= get_address_mode (x
);
1452 machine_mode y_addr_mode
= get_address_mode (y
);
1453 machine_mode iter_mode
;
1455 iter_mode
= GET_MODE (size
);
1456 if (iter_mode
== VOIDmode
)
1457 iter_mode
= word_mode
;
1459 top_label
= gen_label_rtx ();
1460 cmp_label
= gen_label_rtx ();
1461 iter
= gen_reg_rtx (iter_mode
);
1463 emit_move_insn (iter
, const0_rtx
);
1465 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1466 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1467 do_pending_stack_adjust ();
1469 emit_jump (cmp_label
);
1470 emit_label (top_label
);
1472 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1473 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1475 if (x_addr_mode
!= y_addr_mode
)
1476 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1477 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1479 x
= change_address (x
, QImode
, x_addr
);
1480 y
= change_address (y
, QImode
, y_addr
);
1482 emit_move_insn (x
, y
);
1484 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1485 true, OPTAB_LIB_WIDEN
);
1487 emit_move_insn (iter
, tmp
);
1489 emit_label (cmp_label
);
1491 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1492 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1495 /* Copy all or part of a value X into registers starting at REGNO.
1496 The number of registers to be filled is NREGS. */
1499 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1502 #ifdef HAVE_load_multiple
1510 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1511 x
= validize_mem (force_const_mem (mode
, x
));
1513 /* See if the machine can do this with a load multiple insn. */
1514 #ifdef HAVE_load_multiple
1515 if (HAVE_load_multiple
)
1517 last
= get_last_insn ();
1518 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1526 delete_insns_since (last
);
1530 for (i
= 0; i
< nregs
; i
++)
1531 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1532 operand_subword_force (x
, i
, mode
));
1535 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1536 The number of registers to be filled is NREGS. */
1539 move_block_from_reg (int regno
, rtx x
, int nregs
)
1546 /* See if the machine can do this with a store multiple insn. */
1547 #ifdef HAVE_store_multiple
1548 if (HAVE_store_multiple
)
1550 rtx_insn
*last
= get_last_insn ();
1551 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1559 delete_insns_since (last
);
1563 for (i
= 0; i
< nregs
; i
++)
1565 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1569 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1573 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1574 ORIG, where ORIG is a non-consecutive group of registers represented by
1575 a PARALLEL. The clone is identical to the original except in that the
1576 original set of registers is replaced by a new set of pseudo registers.
1577 The new set has the same modes as the original set. */
1580 gen_group_rtx (rtx orig
)
1585 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1587 length
= XVECLEN (orig
, 0);
1588 tmps
= XALLOCAVEC (rtx
, length
);
1590 /* Skip a NULL entry in first slot. */
1591 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1596 for (; i
< length
; i
++)
1598 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1599 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1601 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1604 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1607 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1608 except that values are placed in TMPS[i], and must later be moved
1609 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1612 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1616 machine_mode m
= GET_MODE (orig_src
);
1618 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1621 && !SCALAR_INT_MODE_P (m
)
1622 && !MEM_P (orig_src
)
1623 && GET_CODE (orig_src
) != CONCAT
)
1625 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1626 if (imode
== BLKmode
)
1627 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1629 src
= gen_reg_rtx (imode
);
1630 if (imode
!= BLKmode
)
1631 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1632 emit_move_insn (src
, orig_src
);
1633 /* ...and back again. */
1634 if (imode
!= BLKmode
)
1635 src
= gen_lowpart (imode
, src
);
1636 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1640 /* Check for a NULL entry, used to indicate that the parameter goes
1641 both on the stack and in registers. */
1642 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1647 /* Process the pieces. */
1648 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1650 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1651 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1652 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1655 /* Handle trailing fragments that run over the size of the struct. */
1656 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1658 /* Arrange to shift the fragment to where it belongs.
1659 extract_bit_field loads to the lsb of the reg. */
1661 #ifdef BLOCK_REG_PADDING
1662 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1663 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1668 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1669 bytelen
= ssize
- bytepos
;
1670 gcc_assert (bytelen
> 0);
1673 /* If we won't be loading directly from memory, protect the real source
1674 from strange tricks we might play; but make sure that the source can
1675 be loaded directly into the destination. */
1677 if (!MEM_P (orig_src
)
1678 && (!CONSTANT_P (orig_src
)
1679 || (GET_MODE (orig_src
) != mode
1680 && GET_MODE (orig_src
) != VOIDmode
)))
1682 if (GET_MODE (orig_src
) == VOIDmode
)
1683 src
= gen_reg_rtx (mode
);
1685 src
= gen_reg_rtx (GET_MODE (orig_src
));
1687 emit_move_insn (src
, orig_src
);
1690 /* Optimize the access just a bit. */
1692 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1693 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1694 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1695 && bytelen
== GET_MODE_SIZE (mode
))
1697 tmps
[i
] = gen_reg_rtx (mode
);
1698 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1700 else if (COMPLEX_MODE_P (mode
)
1701 && GET_MODE (src
) == mode
1702 && bytelen
== GET_MODE_SIZE (mode
))
1703 /* Let emit_move_complex do the bulk of the work. */
1705 else if (GET_CODE (src
) == CONCAT
)
1707 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1708 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1710 if ((bytepos
== 0 && bytelen
== slen0
)
1711 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1713 /* The following assumes that the concatenated objects all
1714 have the same size. In this case, a simple calculation
1715 can be used to determine the object and the bit field
1717 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1718 if (! CONSTANT_P (tmps
[i
])
1719 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1720 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1721 (bytepos
% slen0
) * BITS_PER_UNIT
,
1722 1, NULL_RTX
, mode
, mode
);
1728 gcc_assert (!bytepos
);
1729 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1730 emit_move_insn (mem
, src
);
1731 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1732 0, 1, NULL_RTX
, mode
, mode
);
1735 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1736 SIMD register, which is currently broken. While we get GCC
1737 to emit proper RTL for these cases, let's dump to memory. */
1738 else if (VECTOR_MODE_P (GET_MODE (dst
))
1741 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1744 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1745 emit_move_insn (mem
, src
);
1746 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1748 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1749 && XVECLEN (dst
, 0) > 1)
1750 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1751 else if (CONSTANT_P (src
))
1753 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1761 /* TODO: const_wide_int can have sizes other than this... */
1762 gcc_assert (2 * len
== ssize
);
1763 split_double (src
, &first
, &second
);
1770 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1773 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1774 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1778 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1783 /* Emit code to move a block SRC of type TYPE to a block DST,
1784 where DST is non-consecutive registers represented by a PARALLEL.
1785 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1789 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1794 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1795 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1797 /* Copy the extracted pieces into the proper (probable) hard regs. */
1798 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1800 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1803 emit_move_insn (d
, tmps
[i
]);
1807 /* Similar, but load SRC into new pseudos in a format that looks like
1808 PARALLEL. This can later be fed to emit_group_move to get things
1809 in the right place. */
1812 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1817 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1818 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1820 /* Convert the vector to look just like the original PARALLEL, except
1821 with the computed values. */
1822 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1824 rtx e
= XVECEXP (parallel
, 0, i
);
1825 rtx d
= XEXP (e
, 0);
1829 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1830 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1832 RTVEC_ELT (vec
, i
) = e
;
1835 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1838 /* Emit code to move a block SRC to block DST, where SRC and DST are
1839 non-consecutive groups of registers, each represented by a PARALLEL. */
1842 emit_group_move (rtx dst
, rtx src
)
1846 gcc_assert (GET_CODE (src
) == PARALLEL
1847 && GET_CODE (dst
) == PARALLEL
1848 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1850 /* Skip first entry if NULL. */
1851 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1852 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1853 XEXP (XVECEXP (src
, 0, i
), 0));
1856 /* Move a group of registers represented by a PARALLEL into pseudos. */
1859 emit_group_move_into_temps (rtx src
)
1861 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1864 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1866 rtx e
= XVECEXP (src
, 0, i
);
1867 rtx d
= XEXP (e
, 0);
1870 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1871 RTVEC_ELT (vec
, i
) = e
;
1874 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1877 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1878 where SRC is non-consecutive registers represented by a PARALLEL.
1879 SSIZE represents the total size of block ORIG_DST, or -1 if not
1883 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1886 int start
, finish
, i
;
1887 machine_mode m
= GET_MODE (orig_dst
);
1889 gcc_assert (GET_CODE (src
) == PARALLEL
);
1891 if (!SCALAR_INT_MODE_P (m
)
1892 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1894 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1895 if (imode
== BLKmode
)
1896 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1898 dst
= gen_reg_rtx (imode
);
1899 emit_group_store (dst
, src
, type
, ssize
);
1900 if (imode
!= BLKmode
)
1901 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1902 emit_move_insn (orig_dst
, dst
);
1906 /* Check for a NULL entry, used to indicate that the parameter goes
1907 both on the stack and in registers. */
1908 if (XEXP (XVECEXP (src
, 0, 0), 0))
1912 finish
= XVECLEN (src
, 0);
1914 tmps
= XALLOCAVEC (rtx
, finish
);
1916 /* Copy the (probable) hard regs into pseudos. */
1917 for (i
= start
; i
< finish
; i
++)
1919 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1920 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1922 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1923 emit_move_insn (tmps
[i
], reg
);
1929 /* If we won't be storing directly into memory, protect the real destination
1930 from strange tricks we might play. */
1932 if (GET_CODE (dst
) == PARALLEL
)
1936 /* We can get a PARALLEL dst if there is a conditional expression in
1937 a return statement. In that case, the dst and src are the same,
1938 so no action is necessary. */
1939 if (rtx_equal_p (dst
, src
))
1942 /* It is unclear if we can ever reach here, but we may as well handle
1943 it. Allocate a temporary, and split this into a store/load to/from
1945 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1946 emit_group_store (temp
, src
, type
, ssize
);
1947 emit_group_load (dst
, temp
, type
, ssize
);
1950 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1952 machine_mode outer
= GET_MODE (dst
);
1954 HOST_WIDE_INT bytepos
;
1958 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1959 dst
= gen_reg_rtx (outer
);
1961 /* Make life a bit easier for combine. */
1962 /* If the first element of the vector is the low part
1963 of the destination mode, use a paradoxical subreg to
1964 initialize the destination. */
1967 inner
= GET_MODE (tmps
[start
]);
1968 bytepos
= subreg_lowpart_offset (inner
, outer
);
1969 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1971 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1975 emit_move_insn (dst
, temp
);
1982 /* If the first element wasn't the low part, try the last. */
1984 && start
< finish
- 1)
1986 inner
= GET_MODE (tmps
[finish
- 1]);
1987 bytepos
= subreg_lowpart_offset (inner
, outer
);
1988 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1990 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1994 emit_move_insn (dst
, temp
);
2001 /* Otherwise, simply initialize the result to zero. */
2003 emit_move_insn (dst
, CONST0_RTX (outer
));
2006 /* Process the pieces. */
2007 for (i
= start
; i
< finish
; i
++)
2009 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2010 machine_mode mode
= GET_MODE (tmps
[i
]);
2011 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2012 unsigned int adj_bytelen
;
2015 /* Handle trailing fragments that run over the size of the struct. */
2016 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2017 adj_bytelen
= ssize
- bytepos
;
2019 adj_bytelen
= bytelen
;
2021 if (GET_CODE (dst
) == CONCAT
)
2023 if (bytepos
+ adj_bytelen
2024 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2025 dest
= XEXP (dst
, 0);
2026 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2028 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2029 dest
= XEXP (dst
, 1);
2033 machine_mode dest_mode
= GET_MODE (dest
);
2034 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2036 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2038 if (GET_MODE_ALIGNMENT (dest_mode
)
2039 >= GET_MODE_ALIGNMENT (tmp_mode
))
2041 dest
= assign_stack_temp (dest_mode
,
2042 GET_MODE_SIZE (dest_mode
));
2043 emit_move_insn (adjust_address (dest
,
2051 dest
= assign_stack_temp (tmp_mode
,
2052 GET_MODE_SIZE (tmp_mode
));
2053 emit_move_insn (dest
, tmps
[i
]);
2054 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2060 /* Handle trailing fragments that run over the size of the struct. */
2061 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2063 /* store_bit_field always takes its value from the lsb.
2064 Move the fragment to the lsb if it's not already there. */
2066 #ifdef BLOCK_REG_PADDING
2067 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2068 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2074 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2075 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2079 /* Make sure not to write past the end of the struct. */
2080 store_bit_field (dest
,
2081 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2082 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2086 /* Optimize the access just a bit. */
2087 else if (MEM_P (dest
)
2088 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2089 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2090 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2091 && bytelen
== GET_MODE_SIZE (mode
))
2092 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2095 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2096 0, 0, mode
, tmps
[i
]);
2099 /* Copy from the pseudo into the (probable) hard reg. */
2100 if (orig_dst
!= dst
)
2101 emit_move_insn (orig_dst
, dst
);
2104 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2105 of the value stored in X. */
2108 maybe_emit_group_store (rtx x
, tree type
)
2110 machine_mode mode
= TYPE_MODE (type
);
2111 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2112 if (GET_CODE (x
) == PARALLEL
)
2114 rtx result
= gen_reg_rtx (mode
);
2115 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2121 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2123 This is used on targets that return BLKmode values in registers. */
2126 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2128 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2129 rtx src
= NULL
, dst
= NULL
;
2130 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2131 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2132 machine_mode mode
= GET_MODE (srcreg
);
2133 machine_mode tmode
= GET_MODE (target
);
2134 machine_mode copy_mode
;
2136 /* BLKmode registers created in the back-end shouldn't have survived. */
2137 gcc_assert (mode
!= BLKmode
);
2139 /* If the structure doesn't take up a whole number of words, see whether
2140 SRCREG is padded on the left or on the right. If it's on the left,
2141 set PADDING_CORRECTION to the number of bits to skip.
2143 In most ABIs, the structure will be returned at the least end of
2144 the register, which translates to right padding on little-endian
2145 targets and left padding on big-endian targets. The opposite
2146 holds if the structure is returned at the most significant
2147 end of the register. */
2148 if (bytes
% UNITS_PER_WORD
!= 0
2149 && (targetm
.calls
.return_in_msb (type
)
2151 : BYTES_BIG_ENDIAN
))
2153 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2155 /* We can use a single move if we have an exact mode for the size. */
2156 else if (MEM_P (target
)
2157 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2158 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2159 && bytes
== GET_MODE_SIZE (mode
))
2161 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2165 /* And if we additionally have the same mode for a register. */
2166 else if (REG_P (target
)
2167 && GET_MODE (target
) == mode
2168 && bytes
== GET_MODE_SIZE (mode
))
2170 emit_move_insn (target
, srcreg
);
2174 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2175 into a new pseudo which is a full word. */
2176 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2178 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2182 /* Copy the structure BITSIZE bits at a time. If the target lives in
2183 memory, take care of not reading/writing past its end by selecting
2184 a copy mode suited to BITSIZE. This should always be possible given
2187 If the target lives in register, make sure not to select a copy mode
2188 larger than the mode of the register.
2190 We could probably emit more efficient code for machines which do not use
2191 strict alignment, but it doesn't seem worth the effort at the current
2194 copy_mode
= word_mode
;
2197 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2198 if (mem_mode
!= BLKmode
)
2199 copy_mode
= mem_mode
;
2201 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2204 for (bitpos
= 0, xbitpos
= padding_correction
;
2205 bitpos
< bytes
* BITS_PER_UNIT
;
2206 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2208 /* We need a new source operand each time xbitpos is on a
2209 word boundary and when xbitpos == padding_correction
2210 (the first time through). */
2211 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2212 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2214 /* We need a new destination operand each time bitpos is on
2216 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2218 else if (bitpos
% BITS_PER_WORD
== 0)
2219 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2221 /* Use xbitpos for the source extraction (right justified) and
2222 bitpos for the destination store (left justified). */
2223 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2224 extract_bit_field (src
, bitsize
,
2225 xbitpos
% BITS_PER_WORD
, 1,
2226 NULL_RTX
, copy_mode
, copy_mode
));
2230 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2231 register if it contains any data, otherwise return null.
2233 This is used on targets that return BLKmode values in registers. */
2236 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2239 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2240 unsigned int bitsize
;
2241 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2242 machine_mode dst_mode
;
2244 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2246 x
= expand_normal (src
);
2248 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2252 /* If the structure doesn't take up a whole number of words, see
2253 whether the register value should be padded on the left or on
2254 the right. Set PADDING_CORRECTION to the number of padding
2255 bits needed on the left side.
2257 In most ABIs, the structure will be returned at the least end of
2258 the register, which translates to right padding on little-endian
2259 targets and left padding on big-endian targets. The opposite
2260 holds if the structure is returned at the most significant
2261 end of the register. */
2262 if (bytes
% UNITS_PER_WORD
!= 0
2263 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2265 : BYTES_BIG_ENDIAN
))
2266 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2269 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2270 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2271 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2273 /* Copy the structure BITSIZE bits at a time. */
2274 for (bitpos
= 0, xbitpos
= padding_correction
;
2275 bitpos
< bytes
* BITS_PER_UNIT
;
2276 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2278 /* We need a new destination pseudo each time xbitpos is
2279 on a word boundary and when xbitpos == padding_correction
2280 (the first time through). */
2281 if (xbitpos
% BITS_PER_WORD
== 0
2282 || xbitpos
== padding_correction
)
2284 /* Generate an appropriate register. */
2285 dst_word
= gen_reg_rtx (word_mode
);
2286 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2288 /* Clear the destination before we move anything into it. */
2289 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2292 /* We need a new source operand each time bitpos is on a word
2294 if (bitpos
% BITS_PER_WORD
== 0)
2295 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2297 /* Use bitpos for the source extraction (left justified) and
2298 xbitpos for the destination store (right justified). */
2299 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2301 extract_bit_field (src_word
, bitsize
,
2302 bitpos
% BITS_PER_WORD
, 1,
2303 NULL_RTX
, word_mode
, word_mode
));
2306 if (mode
== BLKmode
)
2308 /* Find the smallest integer mode large enough to hold the
2309 entire structure. */
2310 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2312 mode
= GET_MODE_WIDER_MODE (mode
))
2313 /* Have we found a large enough mode? */
2314 if (GET_MODE_SIZE (mode
) >= bytes
)
2317 /* A suitable mode should have been found. */
2318 gcc_assert (mode
!= VOIDmode
);
2321 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2322 dst_mode
= word_mode
;
2325 dst
= gen_reg_rtx (dst_mode
);
2327 for (i
= 0; i
< n_regs
; i
++)
2328 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2330 if (mode
!= dst_mode
)
2331 dst
= gen_lowpart (mode
, dst
);
2336 /* Add a USE expression for REG to the (possibly empty) list pointed
2337 to by CALL_FUSAGE. REG must denote a hard register. */
2340 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2342 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2345 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2348 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2349 to by CALL_FUSAGE. REG must denote a hard register. */
2352 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2354 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2357 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2360 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2361 starting at REGNO. All of these registers must be hard registers. */
2364 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2368 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2370 for (i
= 0; i
< nregs
; i
++)
2371 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2374 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2375 PARALLEL REGS. This is for calls that pass values in multiple
2376 non-contiguous locations. The Irix 6 ABI has examples of this. */
2379 use_group_regs (rtx
*call_fusage
, rtx regs
)
2383 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2385 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2387 /* A NULL entry means the parameter goes both on the stack and in
2388 registers. This can also be a MEM for targets that pass values
2389 partially on the stack and partially in registers. */
2390 if (reg
!= 0 && REG_P (reg
))
2391 use_reg (call_fusage
, reg
);
2395 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2396 assigment and the code of the expresion on the RHS is CODE. Return
2400 get_def_for_expr (tree name
, enum tree_code code
)
2404 if (TREE_CODE (name
) != SSA_NAME
)
2407 def_stmt
= get_gimple_for_ssa_name (name
);
2409 || gimple_assign_rhs_code (def_stmt
) != code
)
2415 #ifdef HAVE_conditional_move
2416 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2417 assigment and the class of the expresion on the RHS is CLASS. Return
2421 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2425 if (TREE_CODE (name
) != SSA_NAME
)
2428 def_stmt
= get_gimple_for_ssa_name (name
);
2430 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2438 /* Determine whether the LEN bytes generated by CONSTFUN can be
2439 stored to memory using several move instructions. CONSTFUNDATA is
2440 a pointer which will be passed as argument in every CONSTFUN call.
2441 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2442 a memset operation and false if it's a copy of a constant string.
2443 Return nonzero if a call to store_by_pieces should succeed. */
2446 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2447 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2448 void *constfundata
, unsigned int align
, bool memsetp
)
2450 unsigned HOST_WIDE_INT l
;
2451 unsigned int max_size
;
2452 HOST_WIDE_INT offset
= 0;
2454 enum insn_code icode
;
2456 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2457 rtx cst ATTRIBUTE_UNUSED
;
2462 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2466 optimize_insn_for_speed_p ()))
2469 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2471 /* We would first store what we can in the largest integer mode, then go to
2472 successively smaller modes. */
2475 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2479 max_size
= STORE_MAX_PIECES
+ 1;
2480 while (max_size
> 1 && l
> 0)
2482 mode
= widest_int_mode_for_size (max_size
);
2484 if (mode
== VOIDmode
)
2487 icode
= optab_handler (mov_optab
, mode
);
2488 if (icode
!= CODE_FOR_nothing
2489 && align
>= GET_MODE_ALIGNMENT (mode
))
2491 unsigned int size
= GET_MODE_SIZE (mode
);
2498 cst
= (*constfun
) (constfundata
, offset
, mode
);
2499 if (!targetm
.legitimate_constant_p (mode
, cst
))
2509 max_size
= GET_MODE_SIZE (mode
);
2512 /* The code above should have handled everything. */
2519 /* Generate several move instructions to store LEN bytes generated by
2520 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2521 pointer which will be passed as argument in every CONSTFUN call.
2522 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2523 a memset operation and false if it's a copy of a constant string.
2524 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2525 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2529 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2530 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2531 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2533 machine_mode to_addr_mode
= get_address_mode (to
);
2534 struct store_by_pieces_d data
;
2538 gcc_assert (endp
!= 2);
2542 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2547 optimize_insn_for_speed_p ()));
2549 data
.constfun
= constfun
;
2550 data
.constfundata
= constfundata
;
2553 store_by_pieces_1 (&data
, align
);
2558 gcc_assert (!data
.reverse
);
2563 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2564 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2566 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2567 plus_constant (to_addr_mode
,
2571 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2578 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2586 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2587 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2590 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2592 struct store_by_pieces_d data
;
2597 data
.constfun
= clear_by_pieces_1
;
2598 data
.constfundata
= NULL
;
2601 store_by_pieces_1 (&data
, align
);
2604 /* Callback routine for clear_by_pieces.
2605 Return const0_rtx unconditionally. */
2608 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2609 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2610 machine_mode mode ATTRIBUTE_UNUSED
)
2615 /* Subroutine of clear_by_pieces and store_by_pieces.
2616 Generate several move instructions to store LEN bytes of block TO. (A MEM
2617 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2620 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2621 unsigned int align ATTRIBUTE_UNUSED
)
2623 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2624 rtx to_addr
= XEXP (data
->to
, 0);
2625 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2626 enum insn_code icode
;
2629 data
->to_addr
= to_addr
;
2631 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2632 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2634 data
->explicit_inc_to
= 0;
2636 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2638 data
->offset
= data
->len
;
2640 /* If storing requires more than two move insns,
2641 copy addresses to registers (to make displacements shorter)
2642 and use post-increment if available. */
2643 if (!data
->autinc_to
2644 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2646 /* Determine the main mode we'll be using.
2647 MODE might not be used depending on the definitions of the
2648 USE_* macros below. */
2649 machine_mode mode ATTRIBUTE_UNUSED
2650 = widest_int_mode_for_size (max_size
);
2652 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2654 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2655 plus_constant (to_addr_mode
,
2658 data
->autinc_to
= 1;
2659 data
->explicit_inc_to
= -1;
2662 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2663 && ! data
->autinc_to
)
2665 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2666 data
->autinc_to
= 1;
2667 data
->explicit_inc_to
= 1;
2670 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2671 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2674 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2676 /* First store what we can in the largest integer mode, then go to
2677 successively smaller modes. */
2679 while (max_size
> 1 && data
->len
> 0)
2681 machine_mode mode
= widest_int_mode_for_size (max_size
);
2683 if (mode
== VOIDmode
)
2686 icode
= optab_handler (mov_optab
, mode
);
2687 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2688 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2690 max_size
= GET_MODE_SIZE (mode
);
2693 /* The code above should have handled everything. */
2694 gcc_assert (!data
->len
);
2697 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2698 with move instructions for mode MODE. GENFUN is the gen_... function
2699 to make a move insn for that mode. DATA has all the other info. */
2702 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2703 struct store_by_pieces_d
*data
)
2705 unsigned int size
= GET_MODE_SIZE (mode
);
2708 while (data
->len
>= size
)
2711 data
->offset
-= size
;
2713 if (data
->autinc_to
)
2714 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2717 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2719 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2720 emit_insn (gen_add2_insn (data
->to_addr
,
2721 gen_int_mode (-(HOST_WIDE_INT
) size
,
2722 GET_MODE (data
->to_addr
))));
2724 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2725 emit_insn ((*genfun
) (to1
, cst
));
2727 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2728 emit_insn (gen_add2_insn (data
->to_addr
,
2730 GET_MODE (data
->to_addr
))));
2732 if (! data
->reverse
)
2733 data
->offset
+= size
;
2739 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2740 its length in bytes. */
2743 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2744 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2745 unsigned HOST_WIDE_INT min_size
,
2746 unsigned HOST_WIDE_INT max_size
,
2747 unsigned HOST_WIDE_INT probable_max_size
)
2749 machine_mode mode
= GET_MODE (object
);
2752 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2754 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2755 just move a zero. Otherwise, do this a piece at a time. */
2757 && CONST_INT_P (size
)
2758 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2760 rtx zero
= CONST0_RTX (mode
);
2763 emit_move_insn (object
, zero
);
2767 if (COMPLEX_MODE_P (mode
))
2769 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2772 write_complex_part (object
, zero
, 0);
2773 write_complex_part (object
, zero
, 1);
2779 if (size
== const0_rtx
)
2782 align
= MEM_ALIGN (object
);
2784 if (CONST_INT_P (size
)
2785 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2787 optimize_insn_for_speed_p ()))
2788 clear_by_pieces (object
, INTVAL (size
), align
);
2789 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2790 expected_align
, expected_size
,
2791 min_size
, max_size
, probable_max_size
))
2793 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2794 return set_storage_via_libcall (object
, size
, const0_rtx
,
2795 method
== BLOCK_OP_TAILCALL
);
2803 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2805 unsigned HOST_WIDE_INT max
, min
= 0;
2806 if (GET_CODE (size
) == CONST_INT
)
2807 min
= max
= UINTVAL (size
);
2809 max
= GET_MODE_MASK (GET_MODE (size
));
2810 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2814 /* A subroutine of clear_storage. Expand a call to memset.
2815 Return the return value of memset, 0 otherwise. */
2818 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2820 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2821 machine_mode size_mode
;
2824 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2825 place those into new pseudos into a VAR_DECL and use them later. */
2827 object
= copy_addr_to_reg (XEXP (object
, 0));
2829 size_mode
= TYPE_MODE (sizetype
);
2830 size
= convert_to_mode (size_mode
, size
, 1);
2831 size
= copy_to_mode_reg (size_mode
, size
);
2833 /* It is incorrect to use the libcall calling conventions to call
2834 memset in this context. This could be a user call to memset and
2835 the user may wish to examine the return value from memset. For
2836 targets where libcalls and normal calls have different conventions
2837 for returning pointers, we could end up generating incorrect code. */
2839 object_tree
= make_tree (ptr_type_node
, object
);
2840 if (!CONST_INT_P (val
))
2841 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2842 size_tree
= make_tree (sizetype
, size
);
2843 val_tree
= make_tree (integer_type_node
, val
);
2845 fn
= clear_storage_libcall_fn (true);
2846 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2847 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2849 retval
= expand_normal (call_expr
);
2854 /* A subroutine of set_storage_via_libcall. Create the tree node
2855 for the function we use for block clears. */
2857 tree block_clear_fn
;
2860 init_block_clear_fn (const char *asmspec
)
2862 if (!block_clear_fn
)
2866 fn
= get_identifier ("memset");
2867 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2868 integer_type_node
, sizetype
,
2871 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2872 DECL_EXTERNAL (fn
) = 1;
2873 TREE_PUBLIC (fn
) = 1;
2874 DECL_ARTIFICIAL (fn
) = 1;
2875 TREE_NOTHROW (fn
) = 1;
2876 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2877 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2879 block_clear_fn
= fn
;
2883 set_user_assembler_name (block_clear_fn
, asmspec
);
2887 clear_storage_libcall_fn (int for_call
)
2889 static bool emitted_extern
;
2891 if (!block_clear_fn
)
2892 init_block_clear_fn (NULL
);
2894 if (for_call
&& !emitted_extern
)
2896 emitted_extern
= true;
2897 make_decl_rtl (block_clear_fn
);
2900 return block_clear_fn
;
2903 /* Expand a setmem pattern; return true if successful. */
2906 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2907 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2908 unsigned HOST_WIDE_INT min_size
,
2909 unsigned HOST_WIDE_INT max_size
,
2910 unsigned HOST_WIDE_INT probable_max_size
)
2912 /* Try the most limited insn first, because there's no point
2913 including more than one in the machine description unless
2914 the more limited one has some advantage. */
2918 if (expected_align
< align
)
2919 expected_align
= align
;
2920 if (expected_size
!= -1)
2922 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2923 expected_size
= max_size
;
2924 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2925 expected_size
= min_size
;
2928 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2929 mode
= GET_MODE_WIDER_MODE (mode
))
2931 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2933 if (code
!= CODE_FOR_nothing
2934 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2935 here because if SIZE is less than the mode mask, as it is
2936 returned by the macro, it will definitely be less than the
2937 actual mode mask. Since SIZE is within the Pmode address
2938 space, we limit MODE to Pmode. */
2939 && ((CONST_INT_P (size
)
2940 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2941 <= (GET_MODE_MASK (mode
) >> 1)))
2942 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2943 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2945 struct expand_operand ops
[9];
2948 nops
= insn_data
[(int) code
].n_generator_args
;
2949 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2951 create_fixed_operand (&ops
[0], object
);
2952 /* The check above guarantees that this size conversion is valid. */
2953 create_convert_operand_to (&ops
[1], size
, mode
, true);
2954 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2955 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2958 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2959 create_integer_operand (&ops
[5], expected_size
);
2963 create_integer_operand (&ops
[6], min_size
);
2964 /* If we can not represent the maximal size,
2965 make parameter NULL. */
2966 if ((HOST_WIDE_INT
) max_size
!= -1)
2967 create_integer_operand (&ops
[7], max_size
);
2969 create_fixed_operand (&ops
[7], NULL
);
2973 /* If we can not represent the maximal size,
2974 make parameter NULL. */
2975 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2976 create_integer_operand (&ops
[8], probable_max_size
);
2978 create_fixed_operand (&ops
[8], NULL
);
2980 if (maybe_expand_insn (code
, nops
, ops
))
2989 /* Write to one of the components of the complex value CPLX. Write VAL to
2990 the real part if IMAG_P is false, and the imaginary part if its true. */
2993 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2999 if (GET_CODE (cplx
) == CONCAT
)
3001 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3005 cmode
= GET_MODE (cplx
);
3006 imode
= GET_MODE_INNER (cmode
);
3007 ibitsize
= GET_MODE_BITSIZE (imode
);
3009 /* For MEMs simplify_gen_subreg may generate an invalid new address
3010 because, e.g., the original address is considered mode-dependent
3011 by the target, which restricts simplify_subreg from invoking
3012 adjust_address_nv. Instead of preparing fallback support for an
3013 invalid address, we call adjust_address_nv directly. */
3016 emit_move_insn (adjust_address_nv (cplx
, imode
,
3017 imag_p
? GET_MODE_SIZE (imode
) : 0),
3022 /* If the sub-object is at least word sized, then we know that subregging
3023 will work. This special case is important, since store_bit_field
3024 wants to operate on integer modes, and there's rarely an OImode to
3025 correspond to TCmode. */
3026 if (ibitsize
>= BITS_PER_WORD
3027 /* For hard regs we have exact predicates. Assume we can split
3028 the original object if it spans an even number of hard regs.
3029 This special case is important for SCmode on 64-bit platforms
3030 where the natural size of floating-point regs is 32-bit. */
3032 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3033 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3035 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3036 imag_p
? GET_MODE_SIZE (imode
) : 0);
3039 emit_move_insn (part
, val
);
3043 /* simplify_gen_subreg may fail for sub-word MEMs. */
3044 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3047 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3050 /* Extract one of the components of the complex value CPLX. Extract the
3051 real part if IMAG_P is false, and the imaginary part if it's true. */
3054 read_complex_part (rtx cplx
, bool imag_p
)
3056 machine_mode cmode
, imode
;
3059 if (GET_CODE (cplx
) == CONCAT
)
3060 return XEXP (cplx
, imag_p
);
3062 cmode
= GET_MODE (cplx
);
3063 imode
= GET_MODE_INNER (cmode
);
3064 ibitsize
= GET_MODE_BITSIZE (imode
);
3066 /* Special case reads from complex constants that got spilled to memory. */
3067 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3069 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3070 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3072 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3073 if (CONSTANT_CLASS_P (part
))
3074 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3078 /* For MEMs simplify_gen_subreg may generate an invalid new address
3079 because, e.g., the original address is considered mode-dependent
3080 by the target, which restricts simplify_subreg from invoking
3081 adjust_address_nv. Instead of preparing fallback support for an
3082 invalid address, we call adjust_address_nv directly. */
3084 return adjust_address_nv (cplx
, imode
,
3085 imag_p
? GET_MODE_SIZE (imode
) : 0);
3087 /* If the sub-object is at least word sized, then we know that subregging
3088 will work. This special case is important, since extract_bit_field
3089 wants to operate on integer modes, and there's rarely an OImode to
3090 correspond to TCmode. */
3091 if (ibitsize
>= BITS_PER_WORD
3092 /* For hard regs we have exact predicates. Assume we can split
3093 the original object if it spans an even number of hard regs.
3094 This special case is important for SCmode on 64-bit platforms
3095 where the natural size of floating-point regs is 32-bit. */
3097 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3098 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3100 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3101 imag_p
? GET_MODE_SIZE (imode
) : 0);
3105 /* simplify_gen_subreg may fail for sub-word MEMs. */
3106 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3109 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3110 true, NULL_RTX
, imode
, imode
);
3113 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3114 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3115 represented in NEW_MODE. If FORCE is true, this will never happen, as
3116 we'll force-create a SUBREG if needed. */
3119 emit_move_change_mode (machine_mode new_mode
,
3120 machine_mode old_mode
, rtx x
, bool force
)
3124 if (push_operand (x
, GET_MODE (x
)))
3126 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3127 MEM_COPY_ATTRIBUTES (ret
, x
);
3131 /* We don't have to worry about changing the address since the
3132 size in bytes is supposed to be the same. */
3133 if (reload_in_progress
)
3135 /* Copy the MEM to change the mode and move any
3136 substitutions from the old MEM to the new one. */
3137 ret
= adjust_address_nv (x
, new_mode
, 0);
3138 copy_replacements (x
, ret
);
3141 ret
= adjust_address (x
, new_mode
, 0);
3145 /* Note that we do want simplify_subreg's behavior of validating
3146 that the new mode is ok for a hard register. If we were to use
3147 simplify_gen_subreg, we would create the subreg, but would
3148 probably run into the target not being able to implement it. */
3149 /* Except, of course, when FORCE is true, when this is exactly what
3150 we want. Which is needed for CCmodes on some targets. */
3152 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3154 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3160 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3161 an integer mode of the same size as MODE. Returns the instruction
3162 emitted, or NULL if such a move could not be generated. */
3165 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3168 enum insn_code code
;
3170 /* There must exist a mode of the exact size we require. */
3171 imode
= int_mode_for_mode (mode
);
3172 if (imode
== BLKmode
)
3175 /* The target must support moves in this mode. */
3176 code
= optab_handler (mov_optab
, imode
);
3177 if (code
== CODE_FOR_nothing
)
3180 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3183 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3186 return emit_insn (GEN_FCN (code
) (x
, y
));
3189 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3190 Return an equivalent MEM that does not use an auto-increment. */
3193 emit_move_resolve_push (machine_mode mode
, rtx x
)
3195 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3196 HOST_WIDE_INT adjust
;
3199 adjust
= GET_MODE_SIZE (mode
);
3200 #ifdef PUSH_ROUNDING
3201 adjust
= PUSH_ROUNDING (adjust
);
3203 if (code
== PRE_DEC
|| code
== POST_DEC
)
3205 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3207 rtx expr
= XEXP (XEXP (x
, 0), 1);
3210 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3211 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3212 val
= INTVAL (XEXP (expr
, 1));
3213 if (GET_CODE (expr
) == MINUS
)
3215 gcc_assert (adjust
== val
|| adjust
== -val
);
3219 /* Do not use anti_adjust_stack, since we don't want to update
3220 stack_pointer_delta. */
3221 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3222 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3223 0, OPTAB_LIB_WIDEN
);
3224 if (temp
!= stack_pointer_rtx
)
3225 emit_move_insn (stack_pointer_rtx
, temp
);
3232 temp
= stack_pointer_rtx
;
3237 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3243 return replace_equiv_address (x
, temp
);
3246 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3247 X is known to satisfy push_operand, and MODE is known to be complex.
3248 Returns the last instruction emitted. */
3251 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3253 machine_mode submode
= GET_MODE_INNER (mode
);
3256 #ifdef PUSH_ROUNDING
3257 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3259 /* In case we output to the stack, but the size is smaller than the
3260 machine can push exactly, we need to use move instructions. */
3261 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3263 x
= emit_move_resolve_push (mode
, x
);
3264 return emit_move_insn (x
, y
);
3268 /* Note that the real part always precedes the imag part in memory
3269 regardless of machine's endianness. */
3270 switch (GET_CODE (XEXP (x
, 0)))
3284 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3285 read_complex_part (y
, imag_first
));
3286 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3287 read_complex_part (y
, !imag_first
));
3290 /* A subroutine of emit_move_complex. Perform the move from Y to X
3291 via two moves of the parts. Returns the last instruction emitted. */
3294 emit_move_complex_parts (rtx x
, rtx y
)
3296 /* Show the output dies here. This is necessary for SUBREGs
3297 of pseudos since we cannot track their lifetimes correctly;
3298 hard regs shouldn't appear here except as return values. */
3299 if (!reload_completed
&& !reload_in_progress
3300 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3303 write_complex_part (x
, read_complex_part (y
, false), false);
3304 write_complex_part (x
, read_complex_part (y
, true), true);
3306 return get_last_insn ();
3309 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3310 MODE is known to be complex. Returns the last instruction emitted. */
3313 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3317 /* Need to take special care for pushes, to maintain proper ordering
3318 of the data, and possibly extra padding. */
3319 if (push_operand (x
, mode
))
3320 return emit_move_complex_push (mode
, x
, y
);
3322 /* See if we can coerce the target into moving both values at once, except
3323 for floating point where we favor moving as parts if this is easy. */
3324 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3325 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3327 && HARD_REGISTER_P (x
)
3328 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3330 && HARD_REGISTER_P (y
)
3331 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3333 /* Not possible if the values are inherently not adjacent. */
3334 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3336 /* Is possible if both are registers (or subregs of registers). */
3337 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3339 /* If one of the operands is a memory, and alignment constraints
3340 are friendly enough, we may be able to do combined memory operations.
3341 We do not attempt this if Y is a constant because that combination is
3342 usually better with the by-parts thing below. */
3343 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3344 && (!STRICT_ALIGNMENT
3345 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3354 /* For memory to memory moves, optimal behavior can be had with the
3355 existing block move logic. */
3356 if (MEM_P (x
) && MEM_P (y
))
3358 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3359 BLOCK_OP_NO_LIBCALL
);
3360 return get_last_insn ();
3363 ret
= emit_move_via_integer (mode
, x
, y
, true);
3368 return emit_move_complex_parts (x
, y
);
3371 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3372 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3375 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3379 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3382 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3383 if (code
!= CODE_FOR_nothing
)
3385 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3386 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3387 return emit_insn (GEN_FCN (code
) (x
, y
));
3391 /* Otherwise, find the MODE_INT mode of the same width. */
3392 ret
= emit_move_via_integer (mode
, x
, y
, false);
3393 gcc_assert (ret
!= NULL
);
3397 /* Return true if word I of OP lies entirely in the
3398 undefined bits of a paradoxical subreg. */
3401 undefined_operand_subword_p (const_rtx op
, int i
)
3403 machine_mode innermode
, innermostmode
;
3405 if (GET_CODE (op
) != SUBREG
)
3407 innermode
= GET_MODE (op
);
3408 innermostmode
= GET_MODE (SUBREG_REG (op
));
3409 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3410 /* The SUBREG_BYTE represents offset, as if the value were stored in
3411 memory, except for a paradoxical subreg where we define
3412 SUBREG_BYTE to be 0; undo this exception as in
3414 if (SUBREG_BYTE (op
) == 0
3415 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3417 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3418 if (WORDS_BIG_ENDIAN
)
3419 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3420 if (BYTES_BIG_ENDIAN
)
3421 offset
+= difference
% UNITS_PER_WORD
;
3423 if (offset
>= GET_MODE_SIZE (innermostmode
)
3424 || offset
<= -GET_MODE_SIZE (word_mode
))
3429 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3430 MODE is any multi-word or full-word mode that lacks a move_insn
3431 pattern. Note that you will get better code if you define such
3432 patterns, even if they must turn into multiple assembler instructions. */
3435 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3437 rtx_insn
*last_insn
= 0;
3443 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3445 /* If X is a push on the stack, do the push now and replace
3446 X with a reference to the stack pointer. */
3447 if (push_operand (x
, mode
))
3448 x
= emit_move_resolve_push (mode
, x
);
3450 /* If we are in reload, see if either operand is a MEM whose address
3451 is scheduled for replacement. */
3452 if (reload_in_progress
&& MEM_P (x
)
3453 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3454 x
= replace_equiv_address_nv (x
, inner
);
3455 if (reload_in_progress
&& MEM_P (y
)
3456 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3457 y
= replace_equiv_address_nv (y
, inner
);
3461 need_clobber
= false;
3463 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3466 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3469 /* Do not generate code for a move if it would come entirely
3470 from the undefined bits of a paradoxical subreg. */
3471 if (undefined_operand_subword_p (y
, i
))
3474 ypart
= operand_subword (y
, i
, 1, mode
);
3476 /* If we can't get a part of Y, put Y into memory if it is a
3477 constant. Otherwise, force it into a register. Then we must
3478 be able to get a part of Y. */
3479 if (ypart
== 0 && CONSTANT_P (y
))
3481 y
= use_anchored_address (force_const_mem (mode
, y
));
3482 ypart
= operand_subword (y
, i
, 1, mode
);
3484 else if (ypart
== 0)
3485 ypart
= operand_subword_force (y
, i
, mode
);
3487 gcc_assert (xpart
&& ypart
);
3489 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3491 last_insn
= emit_move_insn (xpart
, ypart
);
3497 /* Show the output dies here. This is necessary for SUBREGs
3498 of pseudos since we cannot track their lifetimes correctly;
3499 hard regs shouldn't appear here except as return values.
3500 We never want to emit such a clobber after reload. */
3502 && ! (reload_in_progress
|| reload_completed
)
3503 && need_clobber
!= 0)
3511 /* Low level part of emit_move_insn.
3512 Called just like emit_move_insn, but assumes X and Y
3513 are basically valid. */
3516 emit_move_insn_1 (rtx x
, rtx y
)
3518 machine_mode mode
= GET_MODE (x
);
3519 enum insn_code code
;
3521 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3523 code
= optab_handler (mov_optab
, mode
);
3524 if (code
!= CODE_FOR_nothing
)
3525 return emit_insn (GEN_FCN (code
) (x
, y
));
3527 /* Expand complex moves by moving real part and imag part. */
3528 if (COMPLEX_MODE_P (mode
))
3529 return emit_move_complex (mode
, x
, y
);
3531 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3532 || ALL_FIXED_POINT_MODE_P (mode
))
3534 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3536 /* If we can't find an integer mode, use multi words. */
3540 return emit_move_multi_word (mode
, x
, y
);
3543 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3544 return emit_move_ccmode (mode
, x
, y
);
3546 /* Try using a move pattern for the corresponding integer mode. This is
3547 only safe when simplify_subreg can convert MODE constants into integer
3548 constants. At present, it can only do this reliably if the value
3549 fits within a HOST_WIDE_INT. */
3550 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3552 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3556 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3561 return emit_move_multi_word (mode
, x
, y
);
3564 /* Generate code to copy Y into X.
3565 Both Y and X must have the same mode, except that
3566 Y can be a constant with VOIDmode.
3567 This mode cannot be BLKmode; use emit_block_move for that.
3569 Return the last instruction emitted. */
3572 emit_move_insn (rtx x
, rtx y
)
3574 machine_mode mode
= GET_MODE (x
);
3575 rtx y_cst
= NULL_RTX
;
3576 rtx_insn
*last_insn
;
3579 gcc_assert (mode
!= BLKmode
3580 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3585 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3586 && (last_insn
= compress_float_constant (x
, y
)))
3591 if (!targetm
.legitimate_constant_p (mode
, y
))
3593 y
= force_const_mem (mode
, y
);
3595 /* If the target's cannot_force_const_mem prevented the spill,
3596 assume that the target's move expanders will also take care
3597 of the non-legitimate constant. */
3601 y
= use_anchored_address (y
);
3605 /* If X or Y are memory references, verify that their addresses are valid
3608 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3610 && ! push_operand (x
, GET_MODE (x
))))
3611 x
= validize_mem (x
);
3614 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3615 MEM_ADDR_SPACE (y
)))
3616 y
= validize_mem (y
);
3618 gcc_assert (mode
!= BLKmode
);
3620 last_insn
= emit_move_insn_1 (x
, y
);
3622 if (y_cst
&& REG_P (x
)
3623 && (set
= single_set (last_insn
)) != NULL_RTX
3624 && SET_DEST (set
) == x
3625 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3626 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3631 /* If Y is representable exactly in a narrower mode, and the target can
3632 perform the extension directly from constant or memory, then emit the
3633 move as an extension. */
3636 compress_float_constant (rtx x
, rtx y
)
3638 machine_mode dstmode
= GET_MODE (x
);
3639 machine_mode orig_srcmode
= GET_MODE (y
);
3640 machine_mode srcmode
;
3642 int oldcost
, newcost
;
3643 bool speed
= optimize_insn_for_speed_p ();
3645 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3647 if (targetm
.legitimate_constant_p (dstmode
, y
))
3648 oldcost
= set_src_cost (y
, speed
);
3650 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3652 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3653 srcmode
!= orig_srcmode
;
3654 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3658 rtx_insn
*last_insn
;
3660 /* Skip if the target can't extend this way. */
3661 ic
= can_extend_p (dstmode
, srcmode
, 0);
3662 if (ic
== CODE_FOR_nothing
)
3665 /* Skip if the narrowed value isn't exact. */
3666 if (! exact_real_truncate (srcmode
, &r
))
3669 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3671 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3673 /* Skip if the target needs extra instructions to perform
3675 if (!insn_operand_matches (ic
, 1, trunc_y
))
3677 /* This is valid, but may not be cheaper than the original. */
3678 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3680 if (oldcost
< newcost
)
3683 else if (float_extend_from_mem
[dstmode
][srcmode
])
3685 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3686 /* This is valid, but may not be cheaper than the original. */
3687 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3689 if (oldcost
< newcost
)
3691 trunc_y
= validize_mem (trunc_y
);
3696 /* For CSE's benefit, force the compressed constant pool entry
3697 into a new pseudo. This constant may be used in different modes,
3698 and if not, combine will put things back together for us. */
3699 trunc_y
= force_reg (srcmode
, trunc_y
);
3701 /* If x is a hard register, perform the extension into a pseudo,
3702 so that e.g. stack realignment code is aware of it. */
3704 if (REG_P (x
) && HARD_REGISTER_P (x
))
3705 target
= gen_reg_rtx (dstmode
);
3707 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3708 last_insn
= get_last_insn ();
3711 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3714 return emit_move_insn (x
, target
);
3721 /* Pushing data onto the stack. */
3723 /* Push a block of length SIZE (perhaps variable)
3724 and return an rtx to address the beginning of the block.
3725 The value may be virtual_outgoing_args_rtx.
3727 EXTRA is the number of bytes of padding to push in addition to SIZE.
3728 BELOW nonzero means this padding comes at low addresses;
3729 otherwise, the padding comes at high addresses. */
3732 push_block (rtx size
, int extra
, int below
)
3736 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3737 if (CONSTANT_P (size
))
3738 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3739 else if (REG_P (size
) && extra
== 0)
3740 anti_adjust_stack (size
);
3743 temp
= copy_to_mode_reg (Pmode
, size
);
3745 temp
= expand_binop (Pmode
, add_optab
, temp
,
3746 gen_int_mode (extra
, Pmode
),
3747 temp
, 0, OPTAB_LIB_WIDEN
);
3748 anti_adjust_stack (temp
);
3751 #ifndef STACK_GROWS_DOWNWARD
3757 temp
= virtual_outgoing_args_rtx
;
3758 if (extra
!= 0 && below
)
3759 temp
= plus_constant (Pmode
, temp
, extra
);
3763 if (CONST_INT_P (size
))
3764 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3765 -INTVAL (size
) - (below
? 0 : extra
));
3766 else if (extra
!= 0 && !below
)
3767 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3768 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3771 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3772 negate_rtx (Pmode
, size
));
3775 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3778 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3781 mem_autoinc_base (rtx mem
)
3785 rtx addr
= XEXP (mem
, 0);
3786 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3787 return XEXP (addr
, 0);
3792 /* A utility routine used here, in reload, and in try_split. The insns
3793 after PREV up to and including LAST are known to adjust the stack,
3794 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3795 placing notes as appropriate. PREV may be NULL, indicating the
3796 entire insn sequence prior to LAST should be scanned.
3798 The set of allowed stack pointer modifications is small:
3799 (1) One or more auto-inc style memory references (aka pushes),
3800 (2) One or more addition/subtraction with the SP as destination,
3801 (3) A single move insn with the SP as destination,
3802 (4) A call_pop insn,
3803 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3805 Insns in the sequence that do not modify the SP are ignored,
3806 except for noreturn calls.
3808 The return value is the amount of adjustment that can be trivially
3809 verified, via immediate operand or auto-inc. If the adjustment
3810 cannot be trivially extracted, the return value is INT_MIN. */
3813 find_args_size_adjust (rtx_insn
*insn
)
3818 pat
= PATTERN (insn
);
3821 /* Look for a call_pop pattern. */
3824 /* We have to allow non-call_pop patterns for the case
3825 of emit_single_push_insn of a TLS address. */
3826 if (GET_CODE (pat
) != PARALLEL
)
3829 /* All call_pop have a stack pointer adjust in the parallel.
3830 The call itself is always first, and the stack adjust is
3831 usually last, so search from the end. */
3832 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3834 set
= XVECEXP (pat
, 0, i
);
3835 if (GET_CODE (set
) != SET
)
3837 dest
= SET_DEST (set
);
3838 if (dest
== stack_pointer_rtx
)
3841 /* We'd better have found the stack pointer adjust. */
3844 /* Fall through to process the extracted SET and DEST
3845 as if it was a standalone insn. */
3847 else if (GET_CODE (pat
) == SET
)
3849 else if ((set
= single_set (insn
)) != NULL
)
3851 else if (GET_CODE (pat
) == PARALLEL
)
3853 /* ??? Some older ports use a parallel with a stack adjust
3854 and a store for a PUSH_ROUNDING pattern, rather than a
3855 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3856 /* ??? See h8300 and m68k, pushqi1. */
3857 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3859 set
= XVECEXP (pat
, 0, i
);
3860 if (GET_CODE (set
) != SET
)
3862 dest
= SET_DEST (set
);
3863 if (dest
== stack_pointer_rtx
)
3866 /* We do not expect an auto-inc of the sp in the parallel. */
3867 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3868 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3869 != stack_pointer_rtx
);
3877 dest
= SET_DEST (set
);
3879 /* Look for direct modifications of the stack pointer. */
3880 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3882 /* Look for a trivial adjustment, otherwise assume nothing. */
3883 /* Note that the SPU restore_stack_block pattern refers to
3884 the stack pointer in V4SImode. Consider that non-trivial. */
3885 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3886 && GET_CODE (SET_SRC (set
)) == PLUS
3887 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3888 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3889 return INTVAL (XEXP (SET_SRC (set
), 1));
3890 /* ??? Reload can generate no-op moves, which will be cleaned
3891 up later. Recognize it and continue searching. */
3892 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3895 return HOST_WIDE_INT_MIN
;
3901 /* Otherwise only think about autoinc patterns. */
3902 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3905 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3906 != stack_pointer_rtx
);
3908 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3909 mem
= SET_SRC (set
);
3913 addr
= XEXP (mem
, 0);
3914 switch (GET_CODE (addr
))
3918 return GET_MODE_SIZE (GET_MODE (mem
));
3921 return -GET_MODE_SIZE (GET_MODE (mem
));
3924 addr
= XEXP (addr
, 1);
3925 gcc_assert (GET_CODE (addr
) == PLUS
);
3926 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3927 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3928 return INTVAL (XEXP (addr
, 1));
3936 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3938 int args_size
= end_args_size
;
3939 bool saw_unknown
= false;
3942 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3944 HOST_WIDE_INT this_delta
;
3946 if (!NONDEBUG_INSN_P (insn
))
3949 this_delta
= find_args_size_adjust (insn
);
3950 if (this_delta
== 0)
3953 || ACCUMULATE_OUTGOING_ARGS
3954 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3958 gcc_assert (!saw_unknown
);
3959 if (this_delta
== HOST_WIDE_INT_MIN
)
3962 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3963 #ifdef STACK_GROWS_DOWNWARD
3964 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3966 args_size
-= this_delta
;
3969 return saw_unknown
? INT_MIN
: args_size
;
3972 #ifdef PUSH_ROUNDING
3973 /* Emit single push insn. */
3976 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
3979 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3981 enum insn_code icode
;
3983 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3984 /* If there is push pattern, use it. Otherwise try old way of throwing
3985 MEM representing push operation to move expander. */
3986 icode
= optab_handler (push_optab
, mode
);
3987 if (icode
!= CODE_FOR_nothing
)
3989 struct expand_operand ops
[1];
3991 create_input_operand (&ops
[0], x
, mode
);
3992 if (maybe_expand_insn (icode
, 1, ops
))
3995 if (GET_MODE_SIZE (mode
) == rounded_size
)
3996 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3997 /* If we are to pad downward, adjust the stack pointer first and
3998 then store X into the stack location using an offset. This is
3999 because emit_move_insn does not know how to pad; it does not have
4001 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4003 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4004 HOST_WIDE_INT offset
;
4006 emit_move_insn (stack_pointer_rtx
,
4007 expand_binop (Pmode
,
4008 #ifdef STACK_GROWS_DOWNWARD
4014 gen_int_mode (rounded_size
, Pmode
),
4015 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4017 offset
= (HOST_WIDE_INT
) padding_size
;
4018 #ifdef STACK_GROWS_DOWNWARD
4019 if (STACK_PUSH_CODE
== POST_DEC
)
4020 /* We have already decremented the stack pointer, so get the
4022 offset
+= (HOST_WIDE_INT
) rounded_size
;
4024 if (STACK_PUSH_CODE
== POST_INC
)
4025 /* We have already incremented the stack pointer, so get the
4027 offset
-= (HOST_WIDE_INT
) rounded_size
;
4029 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4030 gen_int_mode (offset
, Pmode
));
4034 #ifdef STACK_GROWS_DOWNWARD
4035 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4036 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4037 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4040 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4041 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4042 gen_int_mode (rounded_size
, Pmode
));
4044 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4047 dest
= gen_rtx_MEM (mode
, dest_addr
);
4051 set_mem_attributes (dest
, type
, 1);
4053 if (cfun
->tail_call_marked
)
4054 /* Function incoming arguments may overlap with sibling call
4055 outgoing arguments and we cannot allow reordering of reads
4056 from function arguments with stores to outgoing arguments
4057 of sibling calls. */
4058 set_mem_alias_set (dest
, 0);
4060 emit_move_insn (dest
, x
);
4063 /* Emit and annotate a single push insn. */
4066 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4068 int delta
, old_delta
= stack_pointer_delta
;
4069 rtx_insn
*prev
= get_last_insn ();
4072 emit_single_push_insn_1 (mode
, x
, type
);
4074 last
= get_last_insn ();
4076 /* Notice the common case where we emitted exactly one insn. */
4077 if (PREV_INSN (last
) == prev
)
4079 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4083 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4084 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4088 /* Generate code to push X onto the stack, assuming it has mode MODE and
4090 MODE is redundant except when X is a CONST_INT (since they don't
4092 SIZE is an rtx for the size of data to be copied (in bytes),
4093 needed only if X is BLKmode.
4095 ALIGN (in bits) is maximum alignment we can assume.
4097 If PARTIAL and REG are both nonzero, then copy that many of the first
4098 bytes of X into registers starting with REG, and push the rest of X.
4099 The amount of space pushed is decreased by PARTIAL bytes.
4100 REG must be a hard register in this case.
4101 If REG is zero but PARTIAL is not, take any all others actions for an
4102 argument partially in registers, but do not actually load any
4105 EXTRA is the amount in bytes of extra space to leave next to this arg.
4106 This is ignored if an argument block has already been allocated.
4108 On a machine that lacks real push insns, ARGS_ADDR is the address of
4109 the bottom of the argument block for this call. We use indexing off there
4110 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4111 argument block has not been preallocated.
4113 ARGS_SO_FAR is the size of args previously pushed for this call.
4115 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4116 for arguments passed in registers. If nonzero, it will be the number
4117 of bytes required. */
4120 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4121 unsigned int align
, int partial
, rtx reg
, int extra
,
4122 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4126 enum direction stack_direction
4127 #ifdef STACK_GROWS_DOWNWARD
4133 /* Decide where to pad the argument: `downward' for below,
4134 `upward' for above, or `none' for don't pad it.
4135 Default is below for small data on big-endian machines; else above. */
4136 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4138 /* Invert direction if stack is post-decrement.
4140 if (STACK_PUSH_CODE
== POST_DEC
)
4141 if (where_pad
!= none
)
4142 where_pad
= (where_pad
== downward
? upward
: downward
);
4147 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4149 /* Copy a block into the stack, entirely or partially. */
4156 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4157 used
= partial
- offset
;
4159 if (mode
!= BLKmode
)
4161 /* A value is to be stored in an insufficiently aligned
4162 stack slot; copy via a suitably aligned slot if
4164 size
= GEN_INT (GET_MODE_SIZE (mode
));
4165 if (!MEM_P (xinner
))
4167 temp
= assign_temp (type
, 1, 1);
4168 emit_move_insn (temp
, xinner
);
4175 /* USED is now the # of bytes we need not copy to the stack
4176 because registers will take care of them. */
4179 xinner
= adjust_address (xinner
, BLKmode
, used
);
4181 /* If the partial register-part of the arg counts in its stack size,
4182 skip the part of stack space corresponding to the registers.
4183 Otherwise, start copying to the beginning of the stack space,
4184 by setting SKIP to 0. */
4185 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4187 #ifdef PUSH_ROUNDING
4188 /* Do it with several push insns if that doesn't take lots of insns
4189 and if there is no difficulty with push insns that skip bytes
4190 on the stack for alignment purposes. */
4193 && CONST_INT_P (size
)
4195 && MEM_ALIGN (xinner
) >= align
4196 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4197 /* Here we avoid the case of a structure whose weak alignment
4198 forces many pushes of a small amount of data,
4199 and such small pushes do rounding that causes trouble. */
4200 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4201 || align
>= BIGGEST_ALIGNMENT
4202 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4203 == (align
/ BITS_PER_UNIT
)))
4204 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4206 /* Push padding now if padding above and stack grows down,
4207 or if padding below and stack grows up.
4208 But if space already allocated, this has already been done. */
4209 if (extra
&& args_addr
== 0
4210 && where_pad
!= none
&& where_pad
!= stack_direction
)
4211 anti_adjust_stack (GEN_INT (extra
));
4213 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4216 #endif /* PUSH_ROUNDING */
4220 /* Otherwise make space on the stack and copy the data
4221 to the address of that space. */
4223 /* Deduct words put into registers from the size we must copy. */
4226 if (CONST_INT_P (size
))
4227 size
= GEN_INT (INTVAL (size
) - used
);
4229 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4230 gen_int_mode (used
, GET_MODE (size
)),
4231 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4234 /* Get the address of the stack space.
4235 In this case, we do not deal with EXTRA separately.
4236 A single stack adjust will do. */
4239 temp
= push_block (size
, extra
, where_pad
== downward
);
4242 else if (CONST_INT_P (args_so_far
))
4243 temp
= memory_address (BLKmode
,
4244 plus_constant (Pmode
, args_addr
,
4245 skip
+ INTVAL (args_so_far
)));
4247 temp
= memory_address (BLKmode
,
4248 plus_constant (Pmode
,
4249 gen_rtx_PLUS (Pmode
,
4254 if (!ACCUMULATE_OUTGOING_ARGS
)
4256 /* If the source is referenced relative to the stack pointer,
4257 copy it to another register to stabilize it. We do not need
4258 to do this if we know that we won't be changing sp. */
4260 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4261 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4262 temp
= copy_to_reg (temp
);
4265 target
= gen_rtx_MEM (BLKmode
, temp
);
4267 /* We do *not* set_mem_attributes here, because incoming arguments
4268 may overlap with sibling call outgoing arguments and we cannot
4269 allow reordering of reads from function arguments with stores
4270 to outgoing arguments of sibling calls. We do, however, want
4271 to record the alignment of the stack slot. */
4272 /* ALIGN may well be better aligned than TYPE, e.g. due to
4273 PARM_BOUNDARY. Assume the caller isn't lying. */
4274 set_mem_align (target
, align
);
4276 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4279 else if (partial
> 0)
4281 /* Scalar partly in registers. */
4283 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4286 /* # bytes of start of argument
4287 that we must make space for but need not store. */
4288 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4289 int args_offset
= INTVAL (args_so_far
);
4292 /* Push padding now if padding above and stack grows down,
4293 or if padding below and stack grows up.
4294 But if space already allocated, this has already been done. */
4295 if (extra
&& args_addr
== 0
4296 && where_pad
!= none
&& where_pad
!= stack_direction
)
4297 anti_adjust_stack (GEN_INT (extra
));
4299 /* If we make space by pushing it, we might as well push
4300 the real data. Otherwise, we can leave OFFSET nonzero
4301 and leave the space uninitialized. */
4305 /* Now NOT_STACK gets the number of words that we don't need to
4306 allocate on the stack. Convert OFFSET to words too. */
4307 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4308 offset
/= UNITS_PER_WORD
;
4310 /* If the partial register-part of the arg counts in its stack size,
4311 skip the part of stack space corresponding to the registers.
4312 Otherwise, start copying to the beginning of the stack space,
4313 by setting SKIP to 0. */
4314 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4316 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4317 x
= validize_mem (force_const_mem (mode
, x
));
4319 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4320 SUBREGs of such registers are not allowed. */
4321 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4322 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4323 x
= copy_to_reg (x
);
4325 /* Loop over all the words allocated on the stack for this arg. */
4326 /* We can do it by words, because any scalar bigger than a word
4327 has a size a multiple of a word. */
4328 for (i
= size
- 1; i
>= not_stack
; i
--)
4329 if (i
>= not_stack
+ offset
)
4330 emit_push_insn (operand_subword_force (x
, i
, mode
),
4331 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4333 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4335 reg_parm_stack_space
, alignment_pad
);
4342 /* Push padding now if padding above and stack grows down,
4343 or if padding below and stack grows up.
4344 But if space already allocated, this has already been done. */
4345 if (extra
&& args_addr
== 0
4346 && where_pad
!= none
&& where_pad
!= stack_direction
)
4347 anti_adjust_stack (GEN_INT (extra
));
4349 #ifdef PUSH_ROUNDING
4350 if (args_addr
== 0 && PUSH_ARGS
)
4351 emit_single_push_insn (mode
, x
, type
);
4355 if (CONST_INT_P (args_so_far
))
4357 = memory_address (mode
,
4358 plus_constant (Pmode
, args_addr
,
4359 INTVAL (args_so_far
)));
4361 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4363 dest
= gen_rtx_MEM (mode
, addr
);
4365 /* We do *not* set_mem_attributes here, because incoming arguments
4366 may overlap with sibling call outgoing arguments and we cannot
4367 allow reordering of reads from function arguments with stores
4368 to outgoing arguments of sibling calls. We do, however, want
4369 to record the alignment of the stack slot. */
4370 /* ALIGN may well be better aligned than TYPE, e.g. due to
4371 PARM_BOUNDARY. Assume the caller isn't lying. */
4372 set_mem_align (dest
, align
);
4374 emit_move_insn (dest
, x
);
4378 /* If part should go in registers, copy that part
4379 into the appropriate registers. Do this now, at the end,
4380 since mem-to-mem copies above may do function calls. */
4381 if (partial
> 0 && reg
!= 0)
4383 /* Handle calls that pass values in multiple non-contiguous locations.
4384 The Irix 6 ABI has examples of this. */
4385 if (GET_CODE (reg
) == PARALLEL
)
4386 emit_group_load (reg
, x
, type
, -1);
4389 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4390 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4394 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4395 anti_adjust_stack (GEN_INT (extra
));
4397 if (alignment_pad
&& args_addr
== 0)
4398 anti_adjust_stack (alignment_pad
);
4401 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4405 get_subtarget (rtx x
)
4409 /* Only registers can be subtargets. */
4411 /* Don't use hard regs to avoid extending their life. */
4412 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4416 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4417 FIELD is a bitfield. Returns true if the optimization was successful,
4418 and there's nothing else to do. */
4421 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4422 unsigned HOST_WIDE_INT bitpos
,
4423 unsigned HOST_WIDE_INT bitregion_start
,
4424 unsigned HOST_WIDE_INT bitregion_end
,
4425 machine_mode mode1
, rtx str_rtx
,
4428 machine_mode str_mode
= GET_MODE (str_rtx
);
4429 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4434 enum tree_code code
;
4436 if (mode1
!= VOIDmode
4437 || bitsize
>= BITS_PER_WORD
4438 || str_bitsize
> BITS_PER_WORD
4439 || TREE_SIDE_EFFECTS (to
)
4440 || TREE_THIS_VOLATILE (to
))
4444 if (TREE_CODE (src
) != SSA_NAME
)
4446 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4449 srcstmt
= get_gimple_for_ssa_name (src
);
4451 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4454 code
= gimple_assign_rhs_code (srcstmt
);
4456 op0
= gimple_assign_rhs1 (srcstmt
);
4458 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4459 to find its initialization. Hopefully the initialization will
4460 be from a bitfield load. */
4461 if (TREE_CODE (op0
) == SSA_NAME
)
4463 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4465 /* We want to eventually have OP0 be the same as TO, which
4466 should be a bitfield. */
4468 || !is_gimple_assign (op0stmt
)
4469 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4471 op0
= gimple_assign_rhs1 (op0stmt
);
4474 op1
= gimple_assign_rhs2 (srcstmt
);
4476 if (!operand_equal_p (to
, op0
, 0))
4479 if (MEM_P (str_rtx
))
4481 unsigned HOST_WIDE_INT offset1
;
4483 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4484 str_mode
= word_mode
;
4485 str_mode
= get_best_mode (bitsize
, bitpos
,
4486 bitregion_start
, bitregion_end
,
4487 MEM_ALIGN (str_rtx
), str_mode
, 0);
4488 if (str_mode
== VOIDmode
)
4490 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4493 bitpos
%= str_bitsize
;
4494 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4495 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4497 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4500 /* If the bit field covers the whole REG/MEM, store_field
4501 will likely generate better code. */
4502 if (bitsize
>= str_bitsize
)
4505 /* We can't handle fields split across multiple entities. */
4506 if (bitpos
+ bitsize
> str_bitsize
)
4509 if (BYTES_BIG_ENDIAN
)
4510 bitpos
= str_bitsize
- bitpos
- bitsize
;
4516 /* For now, just optimize the case of the topmost bitfield
4517 where we don't need to do any masking and also
4518 1 bit bitfields where xor can be used.
4519 We might win by one instruction for the other bitfields
4520 too if insv/extv instructions aren't used, so that
4521 can be added later. */
4522 if (bitpos
+ bitsize
!= str_bitsize
4523 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4526 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4527 value
= convert_modes (str_mode
,
4528 TYPE_MODE (TREE_TYPE (op1
)), value
,
4529 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4531 /* We may be accessing data outside the field, which means
4532 we can alias adjacent data. */
4533 if (MEM_P (str_rtx
))
4535 str_rtx
= shallow_copy_rtx (str_rtx
);
4536 set_mem_alias_set (str_rtx
, 0);
4537 set_mem_expr (str_rtx
, 0);
4540 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4541 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4543 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4546 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4547 result
= expand_binop (str_mode
, binop
, str_rtx
,
4548 value
, str_rtx
, 1, OPTAB_WIDEN
);
4549 if (result
!= str_rtx
)
4550 emit_move_insn (str_rtx
, result
);
4555 if (TREE_CODE (op1
) != INTEGER_CST
)
4557 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4558 value
= convert_modes (str_mode
,
4559 TYPE_MODE (TREE_TYPE (op1
)), value
,
4560 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4562 /* We may be accessing data outside the field, which means
4563 we can alias adjacent data. */
4564 if (MEM_P (str_rtx
))
4566 str_rtx
= shallow_copy_rtx (str_rtx
);
4567 set_mem_alias_set (str_rtx
, 0);
4568 set_mem_expr (str_rtx
, 0);
4571 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4572 if (bitpos
+ bitsize
!= str_bitsize
)
4574 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4576 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4578 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4579 result
= expand_binop (str_mode
, binop
, str_rtx
,
4580 value
, str_rtx
, 1, OPTAB_WIDEN
);
4581 if (result
!= str_rtx
)
4582 emit_move_insn (str_rtx
, result
);
4592 /* In the C++ memory model, consecutive bit fields in a structure are
4593 considered one memory location.
4595 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4596 returns the bit range of consecutive bits in which this COMPONENT_REF
4597 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4598 and *OFFSET may be adjusted in the process.
4600 If the access does not need to be restricted, 0 is returned in both
4601 *BITSTART and *BITEND. */
4604 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4605 unsigned HOST_WIDE_INT
*bitend
,
4607 HOST_WIDE_INT
*bitpos
,
4610 HOST_WIDE_INT bitoffset
;
4613 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4615 field
= TREE_OPERAND (exp
, 1);
4616 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4617 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4618 need to limit the range we can access. */
4621 *bitstart
= *bitend
= 0;
4625 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4626 part of a larger bit field, then the representative does not serve any
4627 useful purpose. This can occur in Ada. */
4628 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4631 HOST_WIDE_INT rbitsize
, rbitpos
;
4635 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4636 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4637 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4639 *bitstart
= *bitend
= 0;
4644 /* Compute the adjustment to bitpos from the offset of the field
4645 relative to the representative. DECL_FIELD_OFFSET of field and
4646 repr are the same by construction if they are not constants,
4647 see finish_bitfield_layout. */
4648 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4649 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4650 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4651 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4654 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4655 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4657 /* If the adjustment is larger than bitpos, we would have a negative bit
4658 position for the lower bound and this may wreak havoc later. Adjust
4659 offset and bitpos to make the lower bound non-negative in that case. */
4660 if (bitoffset
> *bitpos
)
4662 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4663 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4666 if (*offset
== NULL_TREE
)
4667 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4670 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4674 *bitstart
= *bitpos
- bitoffset
;
4676 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4679 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4680 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4681 DECL_RTL was not set yet, return NORTL. */
4684 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4686 if (TREE_CODE (addr
) != ADDR_EXPR
)
4689 tree base
= TREE_OPERAND (addr
, 0);
4692 || TREE_ADDRESSABLE (base
)
4693 || DECL_MODE (base
) == BLKmode
)
4696 if (!DECL_RTL_SET_P (base
))
4699 return (!MEM_P (DECL_RTL (base
)));
4702 /* Returns true if the MEM_REF REF refers to an object that does not
4703 reside in memory and has non-BLKmode. */
4706 mem_ref_refers_to_non_mem_p (tree ref
)
4708 tree base
= TREE_OPERAND (ref
, 0);
4709 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4712 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4713 is true, try generating a nontemporal store. */
4716 expand_assignment (tree to
, tree from
, bool nontemporal
)
4722 enum insn_code icode
;
4724 /* Don't crash if the lhs of the assignment was erroneous. */
4725 if (TREE_CODE (to
) == ERROR_MARK
)
4727 expand_normal (from
);
4731 /* Optimize away no-op moves without side-effects. */
4732 if (operand_equal_p (to
, from
, 0))
4735 /* Handle misaligned stores. */
4736 mode
= TYPE_MODE (TREE_TYPE (to
));
4737 if ((TREE_CODE (to
) == MEM_REF
4738 || TREE_CODE (to
) == TARGET_MEM_REF
)
4740 && !mem_ref_refers_to_non_mem_p (to
)
4741 && ((align
= get_object_alignment (to
))
4742 < GET_MODE_ALIGNMENT (mode
))
4743 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4744 != CODE_FOR_nothing
)
4745 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4749 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4750 reg
= force_not_mem (reg
);
4751 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4753 if (icode
!= CODE_FOR_nothing
)
4755 struct expand_operand ops
[2];
4757 create_fixed_operand (&ops
[0], mem
);
4758 create_input_operand (&ops
[1], reg
, mode
);
4759 /* The movmisalign<mode> pattern cannot fail, else the assignment
4760 would silently be omitted. */
4761 expand_insn (icode
, 2, ops
);
4764 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4768 /* Assignment of a structure component needs special treatment
4769 if the structure component's rtx is not simply a MEM.
4770 Assignment of an array element at a constant index, and assignment of
4771 an array element in an unaligned packed structure field, has the same
4772 problem. Same for (partially) storing into a non-memory object. */
4773 if (handled_component_p (to
)
4774 || (TREE_CODE (to
) == MEM_REF
4775 && mem_ref_refers_to_non_mem_p (to
))
4776 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4779 HOST_WIDE_INT bitsize
, bitpos
;
4780 unsigned HOST_WIDE_INT bitregion_start
= 0;
4781 unsigned HOST_WIDE_INT bitregion_end
= 0;
4788 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4789 &unsignedp
, &volatilep
, true);
4791 /* Make sure bitpos is not negative, it can wreak havoc later. */
4794 gcc_assert (offset
== NULL_TREE
);
4795 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4796 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4797 bitpos
&= BITS_PER_UNIT
- 1;
4800 if (TREE_CODE (to
) == COMPONENT_REF
4801 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4802 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4803 /* The C++ memory model naturally applies to byte-aligned fields.
4804 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4805 BITSIZE are not byte-aligned, there is no need to limit the range
4806 we can access. This can occur with packed structures in Ada. */
4807 else if (bitsize
> 0
4808 && bitsize
% BITS_PER_UNIT
== 0
4809 && bitpos
% BITS_PER_UNIT
== 0)
4811 bitregion_start
= bitpos
;
4812 bitregion_end
= bitpos
+ bitsize
- 1;
4815 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4817 /* If the field has a mode, we want to access it in the
4818 field's mode, not the computed mode.
4819 If a MEM has VOIDmode (external with incomplete type),
4820 use BLKmode for it instead. */
4823 if (mode1
!= VOIDmode
)
4824 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4825 else if (GET_MODE (to_rtx
) == VOIDmode
)
4826 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4831 machine_mode address_mode
;
4834 if (!MEM_P (to_rtx
))
4836 /* We can get constant negative offsets into arrays with broken
4837 user code. Translate this to a trap instead of ICEing. */
4838 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4839 expand_builtin_trap ();
4840 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4843 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4844 address_mode
= get_address_mode (to_rtx
);
4845 if (GET_MODE (offset_rtx
) != address_mode
)
4846 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4848 /* If we have an expression in OFFSET_RTX and a non-zero
4849 byte offset in BITPOS, adding the byte offset before the
4850 OFFSET_RTX results in better intermediate code, which makes
4851 later rtl optimization passes perform better.
4853 We prefer intermediate code like this:
4855 r124:DI=r123:DI+0x18
4860 r124:DI=r123:DI+0x10
4861 [r124:DI+0x8]=r121:DI
4863 This is only done for aligned data values, as these can
4864 be expected to result in single move instructions. */
4865 if (mode1
!= VOIDmode
4868 && (bitpos
% bitsize
) == 0
4869 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4870 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4872 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4873 bitregion_start
= 0;
4874 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4875 bitregion_end
-= bitpos
;
4879 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4880 highest_pow2_factor_for_target (to
,
4884 /* No action is needed if the target is not a memory and the field
4885 lies completely outside that target. This can occur if the source
4886 code contains an out-of-bounds access to a small array. */
4888 && GET_MODE (to_rtx
) != BLKmode
4889 && (unsigned HOST_WIDE_INT
) bitpos
4890 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4892 expand_normal (from
);
4895 /* Handle expand_expr of a complex value returning a CONCAT. */
4896 else if (GET_CODE (to_rtx
) == CONCAT
)
4898 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4899 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4901 && bitsize
== mode_bitsize
)
4902 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4903 else if (bitsize
== mode_bitsize
/ 2
4904 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4905 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4907 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4908 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4909 bitregion_start
, bitregion_end
,
4911 get_alias_set (to
), nontemporal
);
4912 else if (bitpos
>= mode_bitsize
/ 2)
4913 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4914 bitpos
- mode_bitsize
/ 2,
4915 bitregion_start
, bitregion_end
,
4917 get_alias_set (to
), nontemporal
);
4918 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4921 result
= expand_normal (from
);
4922 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4923 TYPE_MODE (TREE_TYPE (from
)), 0);
4924 emit_move_insn (XEXP (to_rtx
, 0),
4925 read_complex_part (from_rtx
, false));
4926 emit_move_insn (XEXP (to_rtx
, 1),
4927 read_complex_part (from_rtx
, true));
4931 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4932 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4933 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4934 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4935 result
= store_field (temp
, bitsize
, bitpos
,
4936 bitregion_start
, bitregion_end
,
4938 get_alias_set (to
), nontemporal
);
4939 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4940 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4947 /* If the field is at offset zero, we could have been given the
4948 DECL_RTX of the parent struct. Don't munge it. */
4949 to_rtx
= shallow_copy_rtx (to_rtx
);
4950 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4952 MEM_VOLATILE_P (to_rtx
) = 1;
4955 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4956 bitregion_start
, bitregion_end
,
4961 result
= store_field (to_rtx
, bitsize
, bitpos
,
4962 bitregion_start
, bitregion_end
,
4964 get_alias_set (to
), nontemporal
);
4968 preserve_temp_slots (result
);
4973 /* If the rhs is a function call and its value is not an aggregate,
4974 call the function before we start to compute the lhs.
4975 This is needed for correct code for cases such as
4976 val = setjmp (buf) on machines where reference to val
4977 requires loading up part of an address in a separate insn.
4979 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4980 since it might be a promoted variable where the zero- or sign- extension
4981 needs to be done. Handling this in the normal way is safe because no
4982 computation is done before the call. The same is true for SSA names. */
4983 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4984 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4985 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4986 && ! (((TREE_CODE (to
) == VAR_DECL
4987 || TREE_CODE (to
) == PARM_DECL
4988 || TREE_CODE (to
) == RESULT_DECL
)
4989 && REG_P (DECL_RTL (to
)))
4990 || TREE_CODE (to
) == SSA_NAME
))
4995 value
= expand_normal (from
);
4997 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4999 /* Handle calls that return values in multiple non-contiguous locations.
5000 The Irix 6 ABI has examples of this. */
5001 if (GET_CODE (to_rtx
) == PARALLEL
)
5003 if (GET_CODE (value
) == PARALLEL
)
5004 emit_group_move (to_rtx
, value
);
5006 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5007 int_size_in_bytes (TREE_TYPE (from
)));
5009 else if (GET_CODE (value
) == PARALLEL
)
5010 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5011 int_size_in_bytes (TREE_TYPE (from
)));
5012 else if (GET_MODE (to_rtx
) == BLKmode
)
5014 /* Handle calls that return BLKmode values in registers. */
5016 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5018 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5022 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5023 value
= convert_memory_address_addr_space
5024 (GET_MODE (to_rtx
), value
,
5025 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5027 emit_move_insn (to_rtx
, value
);
5029 preserve_temp_slots (to_rtx
);
5034 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5035 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5037 /* Don't move directly into a return register. */
5038 if (TREE_CODE (to
) == RESULT_DECL
5039 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5045 /* If the source is itself a return value, it still is in a pseudo at
5046 this point so we can move it back to the return register directly. */
5048 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5049 && TREE_CODE (from
) != CALL_EXPR
)
5050 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5052 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5054 /* Handle calls that return values in multiple non-contiguous locations.
5055 The Irix 6 ABI has examples of this. */
5056 if (GET_CODE (to_rtx
) == PARALLEL
)
5058 if (GET_CODE (temp
) == PARALLEL
)
5059 emit_group_move (to_rtx
, temp
);
5061 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5062 int_size_in_bytes (TREE_TYPE (from
)));
5065 emit_move_insn (to_rtx
, temp
);
5067 preserve_temp_slots (to_rtx
);
5072 /* In case we are returning the contents of an object which overlaps
5073 the place the value is being stored, use a safe function when copying
5074 a value through a pointer into a structure value return block. */
5075 if (TREE_CODE (to
) == RESULT_DECL
5076 && TREE_CODE (from
) == INDIRECT_REF
5077 && ADDR_SPACE_GENERIC_P
5078 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5079 && refs_may_alias_p (to
, from
)
5080 && cfun
->returns_struct
5081 && !cfun
->returns_pcc_struct
)
5086 size
= expr_size (from
);
5087 from_rtx
= expand_normal (from
);
5089 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5090 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5091 XEXP (from_rtx
, 0), Pmode
,
5092 convert_to_mode (TYPE_MODE (sizetype
),
5093 size
, TYPE_UNSIGNED (sizetype
)),
5094 TYPE_MODE (sizetype
));
5096 preserve_temp_slots (to_rtx
);
5101 /* Compute FROM and store the value in the rtx we got. */
5104 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
5105 preserve_temp_slots (result
);
5110 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5111 succeeded, false otherwise. */
5114 emit_storent_insn (rtx to
, rtx from
)
5116 struct expand_operand ops
[2];
5117 machine_mode mode
= GET_MODE (to
);
5118 enum insn_code code
= optab_handler (storent_optab
, mode
);
5120 if (code
== CODE_FOR_nothing
)
5123 create_fixed_operand (&ops
[0], to
);
5124 create_input_operand (&ops
[1], from
, mode
);
5125 return maybe_expand_insn (code
, 2, ops
);
5128 /* Generate code for computing expression EXP,
5129 and storing the value into TARGET.
5131 If the mode is BLKmode then we may return TARGET itself.
5132 It turns out that in BLKmode it doesn't cause a problem.
5133 because C has no operators that could combine two different
5134 assignments into the same BLKmode object with different values
5135 with no sequence point. Will other languages need this to
5138 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5139 stack, and block moves may need to be treated specially.
5141 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5144 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5147 rtx alt_rtl
= NULL_RTX
;
5148 location_t loc
= curr_insn_location ();
5150 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5152 /* C++ can generate ?: expressions with a throw expression in one
5153 branch and an rvalue in the other. Here, we resolve attempts to
5154 store the throw expression's nonexistent result. */
5155 gcc_assert (!call_param_p
);
5156 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5159 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5161 /* Perform first part of compound expression, then assign from second
5163 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5164 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5165 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5168 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5170 /* For conditional expression, get safe form of the target. Then
5171 test the condition, doing the appropriate assignment on either
5172 side. This avoids the creation of unnecessary temporaries.
5173 For non-BLKmode, it is more efficient not to do this. */
5175 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5177 do_pending_stack_adjust ();
5179 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5180 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5182 emit_jump_insn (gen_jump (lab2
));
5185 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5192 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5193 /* If this is a scalar in a register that is stored in a wider mode
5194 than the declared mode, compute the result into its declared mode
5195 and then convert to the wider mode. Our value is the computed
5198 rtx inner_target
= 0;
5200 /* We can do the conversion inside EXP, which will often result
5201 in some optimizations. Do the conversion in two steps: first
5202 change the signedness, if needed, then the extend. But don't
5203 do this if the type of EXP is a subtype of something else
5204 since then the conversion might involve more than just
5205 converting modes. */
5206 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5207 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5208 && GET_MODE_PRECISION (GET_MODE (target
))
5209 == TYPE_PRECISION (TREE_TYPE (exp
)))
5211 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5212 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5214 /* Some types, e.g. Fortran's logical*4, won't have a signed
5215 version, so use the mode instead. */
5217 = (signed_or_unsigned_type_for
5218 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5220 ntype
= lang_hooks
.types
.type_for_mode
5221 (TYPE_MODE (TREE_TYPE (exp
)),
5222 SUBREG_PROMOTED_SIGN (target
));
5224 exp
= fold_convert_loc (loc
, ntype
, exp
);
5227 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5228 (GET_MODE (SUBREG_REG (target
)),
5229 SUBREG_PROMOTED_SIGN (target
)),
5232 inner_target
= SUBREG_REG (target
);
5235 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5236 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5238 /* If TEMP is a VOIDmode constant, use convert_modes to make
5239 sure that we properly convert it. */
5240 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5242 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5243 temp
, SUBREG_PROMOTED_SIGN (target
));
5244 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5245 GET_MODE (target
), temp
,
5246 SUBREG_PROMOTED_SIGN (target
));
5249 convert_move (SUBREG_REG (target
), temp
,
5250 SUBREG_PROMOTED_SIGN (target
));
5254 else if ((TREE_CODE (exp
) == STRING_CST
5255 || (TREE_CODE (exp
) == MEM_REF
5256 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5257 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5259 && integer_zerop (TREE_OPERAND (exp
, 1))))
5260 && !nontemporal
&& !call_param_p
5263 /* Optimize initialization of an array with a STRING_CST. */
5264 HOST_WIDE_INT exp_len
, str_copy_len
;
5266 tree str
= TREE_CODE (exp
) == STRING_CST
5267 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5269 exp_len
= int_expr_size (exp
);
5273 if (TREE_STRING_LENGTH (str
) <= 0)
5276 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5277 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5280 str_copy_len
= TREE_STRING_LENGTH (str
);
5281 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5282 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5284 str_copy_len
+= STORE_MAX_PIECES
- 1;
5285 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5287 str_copy_len
= MIN (str_copy_len
, exp_len
);
5288 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5289 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5290 MEM_ALIGN (target
), false))
5295 dest_mem
= store_by_pieces (dest_mem
,
5296 str_copy_len
, builtin_strncpy_read_str
,
5298 TREE_STRING_POINTER (str
)),
5299 MEM_ALIGN (target
), false,
5300 exp_len
> str_copy_len
? 1 : 0);
5301 if (exp_len
> str_copy_len
)
5302 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5303 GEN_INT (exp_len
- str_copy_len
),
5312 /* If we want to use a nontemporal store, force the value to
5314 tmp_target
= nontemporal
? NULL_RTX
: target
;
5315 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5317 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5321 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5322 the same as that of TARGET, adjust the constant. This is needed, for
5323 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5324 only a word-sized value. */
5325 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5326 && TREE_CODE (exp
) != ERROR_MARK
5327 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5328 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5329 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5331 /* If value was not generated in the target, store it there.
5332 Convert the value to TARGET's type first if necessary and emit the
5333 pending incrementations that have been queued when expanding EXP.
5334 Note that we cannot emit the whole queue blindly because this will
5335 effectively disable the POST_INC optimization later.
5337 If TEMP and TARGET compare equal according to rtx_equal_p, but
5338 one or both of them are volatile memory refs, we have to distinguish
5340 - expand_expr has used TARGET. In this case, we must not generate
5341 another copy. This can be detected by TARGET being equal according
5343 - expand_expr has not used TARGET - that means that the source just
5344 happens to have the same RTX form. Since temp will have been created
5345 by expand_expr, it will compare unequal according to == .
5346 We must generate a copy in this case, to reach the correct number
5347 of volatile memory references. */
5349 if ((! rtx_equal_p (temp
, target
)
5350 || (temp
!= target
&& (side_effects_p (temp
)
5351 || side_effects_p (target
))))
5352 && TREE_CODE (exp
) != ERROR_MARK
5353 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5354 but TARGET is not valid memory reference, TEMP will differ
5355 from TARGET although it is really the same location. */
5357 && rtx_equal_p (alt_rtl
, target
)
5358 && !side_effects_p (alt_rtl
)
5359 && !side_effects_p (target
))
5360 /* If there's nothing to copy, don't bother. Don't call
5361 expr_size unless necessary, because some front-ends (C++)
5362 expr_size-hook must not be given objects that are not
5363 supposed to be bit-copied or bit-initialized. */
5364 && expr_size (exp
) != const0_rtx
)
5366 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5368 if (GET_MODE (target
) == BLKmode
)
5370 /* Handle calls that return BLKmode values in registers. */
5371 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5372 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5374 store_bit_field (target
,
5375 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5376 0, 0, 0, GET_MODE (temp
), temp
);
5379 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5382 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5384 /* Handle copying a string constant into an array. The string
5385 constant may be shorter than the array. So copy just the string's
5386 actual length, and clear the rest. First get the size of the data
5387 type of the string, which is actually the size of the target. */
5388 rtx size
= expr_size (exp
);
5390 if (CONST_INT_P (size
)
5391 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5392 emit_block_move (target
, temp
, size
,
5394 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5397 machine_mode pointer_mode
5398 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5399 machine_mode address_mode
= get_address_mode (target
);
5401 /* Compute the size of the data to copy from the string. */
5403 = size_binop_loc (loc
, MIN_EXPR
,
5404 make_tree (sizetype
, size
),
5405 size_int (TREE_STRING_LENGTH (exp
)));
5407 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5409 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5410 rtx_code_label
*label
= 0;
5412 /* Copy that much. */
5413 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5414 TYPE_UNSIGNED (sizetype
));
5415 emit_block_move (target
, temp
, copy_size_rtx
,
5417 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5419 /* Figure out how much is left in TARGET that we have to clear.
5420 Do all calculations in pointer_mode. */
5421 if (CONST_INT_P (copy_size_rtx
))
5423 size
= plus_constant (address_mode
, size
,
5424 -INTVAL (copy_size_rtx
));
5425 target
= adjust_address (target
, BLKmode
,
5426 INTVAL (copy_size_rtx
));
5430 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5431 copy_size_rtx
, NULL_RTX
, 0,
5434 if (GET_MODE (copy_size_rtx
) != address_mode
)
5435 copy_size_rtx
= convert_to_mode (address_mode
,
5437 TYPE_UNSIGNED (sizetype
));
5439 target
= offset_address (target
, copy_size_rtx
,
5440 highest_pow2_factor (copy_size
));
5441 label
= gen_label_rtx ();
5442 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5443 GET_MODE (size
), 0, label
);
5446 if (size
!= const0_rtx
)
5447 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5453 /* Handle calls that return values in multiple non-contiguous locations.
5454 The Irix 6 ABI has examples of this. */
5455 else if (GET_CODE (target
) == PARALLEL
)
5457 if (GET_CODE (temp
) == PARALLEL
)
5458 emit_group_move (target
, temp
);
5460 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5461 int_size_in_bytes (TREE_TYPE (exp
)));
5463 else if (GET_CODE (temp
) == PARALLEL
)
5464 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5465 int_size_in_bytes (TREE_TYPE (exp
)));
5466 else if (GET_MODE (temp
) == BLKmode
)
5467 emit_block_move (target
, temp
, expr_size (exp
),
5469 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5470 /* If we emit a nontemporal store, there is nothing else to do. */
5471 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5475 temp
= force_operand (temp
, target
);
5477 emit_move_insn (target
, temp
);
5484 /* Return true if field F of structure TYPE is a flexible array. */
5487 flexible_array_member_p (const_tree f
, const_tree type
)
5492 return (DECL_CHAIN (f
) == NULL
5493 && TREE_CODE (tf
) == ARRAY_TYPE
5495 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5496 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5497 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5498 && int_size_in_bytes (type
) >= 0);
5501 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5502 must have in order for it to completely initialize a value of type TYPE.
5503 Return -1 if the number isn't known.
5505 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5507 static HOST_WIDE_INT
5508 count_type_elements (const_tree type
, bool for_ctor_p
)
5510 switch (TREE_CODE (type
))
5516 nelts
= array_type_nelts (type
);
5517 if (nelts
&& tree_fits_uhwi_p (nelts
))
5519 unsigned HOST_WIDE_INT n
;
5521 n
= tree_to_uhwi (nelts
) + 1;
5522 if (n
== 0 || for_ctor_p
)
5525 return n
* count_type_elements (TREE_TYPE (type
), false);
5527 return for_ctor_p
? -1 : 1;
5532 unsigned HOST_WIDE_INT n
;
5536 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5537 if (TREE_CODE (f
) == FIELD_DECL
)
5540 n
+= count_type_elements (TREE_TYPE (f
), false);
5541 else if (!flexible_array_member_p (f
, type
))
5542 /* Don't count flexible arrays, which are not supposed
5543 to be initialized. */
5551 case QUAL_UNION_TYPE
:
5556 gcc_assert (!for_ctor_p
);
5557 /* Estimate the number of scalars in each field and pick the
5558 maximum. Other estimates would do instead; the idea is simply
5559 to make sure that the estimate is not sensitive to the ordering
5562 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5563 if (TREE_CODE (f
) == FIELD_DECL
)
5565 m
= count_type_elements (TREE_TYPE (f
), false);
5566 /* If the field doesn't span the whole union, add an extra
5567 scalar for the rest. */
5568 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5569 TYPE_SIZE (type
)) != 1)
5581 return TYPE_VECTOR_SUBPARTS (type
);
5585 case FIXED_POINT_TYPE
:
5590 case REFERENCE_TYPE
:
5606 /* Helper for categorize_ctor_elements. Identical interface. */
5609 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5610 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5612 unsigned HOST_WIDE_INT idx
;
5613 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5614 tree value
, purpose
, elt_type
;
5616 /* Whether CTOR is a valid constant initializer, in accordance with what
5617 initializer_constant_valid_p does. If inferred from the constructor
5618 elements, true until proven otherwise. */
5619 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5620 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5625 elt_type
= NULL_TREE
;
5627 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5629 HOST_WIDE_INT mult
= 1;
5631 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5633 tree lo_index
= TREE_OPERAND (purpose
, 0);
5634 tree hi_index
= TREE_OPERAND (purpose
, 1);
5636 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5637 mult
= (tree_to_uhwi (hi_index
)
5638 - tree_to_uhwi (lo_index
) + 1);
5641 elt_type
= TREE_TYPE (value
);
5643 switch (TREE_CODE (value
))
5647 HOST_WIDE_INT nz
= 0, ic
= 0;
5649 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5652 nz_elts
+= mult
* nz
;
5653 init_elts
+= mult
* ic
;
5655 if (const_from_elts_p
&& const_p
)
5656 const_p
= const_elt_p
;
5663 if (!initializer_zerop (value
))
5669 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5670 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5674 if (!initializer_zerop (TREE_REALPART (value
)))
5676 if (!initializer_zerop (TREE_IMAGPART (value
)))
5684 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5686 tree v
= VECTOR_CST_ELT (value
, i
);
5687 if (!initializer_zerop (v
))
5696 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5697 nz_elts
+= mult
* tc
;
5698 init_elts
+= mult
* tc
;
5700 if (const_from_elts_p
&& const_p
)
5701 const_p
= initializer_constant_valid_p (value
, elt_type
)
5708 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5709 num_fields
, elt_type
))
5710 *p_complete
= false;
5712 *p_nz_elts
+= nz_elts
;
5713 *p_init_elts
+= init_elts
;
5718 /* Examine CTOR to discover:
5719 * how many scalar fields are set to nonzero values,
5720 and place it in *P_NZ_ELTS;
5721 * how many scalar fields in total are in CTOR,
5722 and place it in *P_ELT_COUNT.
5723 * whether the constructor is complete -- in the sense that every
5724 meaningful byte is explicitly given a value --
5725 and place it in *P_COMPLETE.
5727 Return whether or not CTOR is a valid static constant initializer, the same
5728 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5731 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5732 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5738 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5741 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5742 of which had type LAST_TYPE. Each element was itself a complete
5743 initializer, in the sense that every meaningful byte was explicitly
5744 given a value. Return true if the same is true for the constructor
5748 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5749 const_tree last_type
)
5751 if (TREE_CODE (type
) == UNION_TYPE
5752 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5757 gcc_assert (num_elts
== 1 && last_type
);
5759 /* ??? We could look at each element of the union, and find the
5760 largest element. Which would avoid comparing the size of the
5761 initialized element against any tail padding in the union.
5762 Doesn't seem worth the effort... */
5763 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5766 return count_type_elements (type
, true) == num_elts
;
5769 /* Return 1 if EXP contains mostly (3/4) zeros. */
5772 mostly_zeros_p (const_tree exp
)
5774 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5776 HOST_WIDE_INT nz_elts
, init_elts
;
5779 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5780 return !complete_p
|| nz_elts
< init_elts
/ 4;
5783 return initializer_zerop (exp
);
5786 /* Return 1 if EXP contains all zeros. */
5789 all_zeros_p (const_tree exp
)
5791 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5793 HOST_WIDE_INT nz_elts
, init_elts
;
5796 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5797 return nz_elts
== 0;
5800 return initializer_zerop (exp
);
5803 /* Helper function for store_constructor.
5804 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5805 CLEARED is as for store_constructor.
5806 ALIAS_SET is the alias set to use for any stores.
5808 This provides a recursive shortcut back to store_constructor when it isn't
5809 necessary to go through store_field. This is so that we can pass through
5810 the cleared field to let store_constructor know that we may not have to
5811 clear a substructure if the outer structure has already been cleared. */
5814 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5815 HOST_WIDE_INT bitpos
, machine_mode mode
,
5816 tree exp
, int cleared
, alias_set_type alias_set
)
5818 if (TREE_CODE (exp
) == CONSTRUCTOR
5819 /* We can only call store_constructor recursively if the size and
5820 bit position are on a byte boundary. */
5821 && bitpos
% BITS_PER_UNIT
== 0
5822 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5823 /* If we have a nonzero bitpos for a register target, then we just
5824 let store_field do the bitfield handling. This is unlikely to
5825 generate unnecessary clear instructions anyways. */
5826 && (bitpos
== 0 || MEM_P (target
)))
5830 = adjust_address (target
,
5831 GET_MODE (target
) == BLKmode
5833 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5834 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5837 /* Update the alias set, if required. */
5838 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5839 && MEM_ALIAS_SET (target
) != 0)
5841 target
= copy_rtx (target
);
5842 set_mem_alias_set (target
, alias_set
);
5845 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5848 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5852 /* Returns the number of FIELD_DECLs in TYPE. */
5855 fields_length (const_tree type
)
5857 tree t
= TYPE_FIELDS (type
);
5860 for (; t
; t
= DECL_CHAIN (t
))
5861 if (TREE_CODE (t
) == FIELD_DECL
)
5868 /* Store the value of constructor EXP into the rtx TARGET.
5869 TARGET is either a REG or a MEM; we know it cannot conflict, since
5870 safe_from_p has been called.
5871 CLEARED is true if TARGET is known to have been zero'd.
5872 SIZE is the number of bytes of TARGET we are allowed to modify: this
5873 may not be the same as the size of EXP if we are assigning to a field
5874 which has been packed to exclude padding bits. */
5877 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5879 tree type
= TREE_TYPE (exp
);
5880 #ifdef WORD_REGISTER_OPERATIONS
5881 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5884 switch (TREE_CODE (type
))
5888 case QUAL_UNION_TYPE
:
5890 unsigned HOST_WIDE_INT idx
;
5893 /* If size is zero or the target is already cleared, do nothing. */
5894 if (size
== 0 || cleared
)
5896 /* We either clear the aggregate or indicate the value is dead. */
5897 else if ((TREE_CODE (type
) == UNION_TYPE
5898 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5899 && ! CONSTRUCTOR_ELTS (exp
))
5900 /* If the constructor is empty, clear the union. */
5902 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5906 /* If we are building a static constructor into a register,
5907 set the initial value as zero so we can fold the value into
5908 a constant. But if more than one register is involved,
5909 this probably loses. */
5910 else if (REG_P (target
) && TREE_STATIC (exp
)
5911 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5913 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5917 /* If the constructor has fewer fields than the structure or
5918 if we are initializing the structure to mostly zeros, clear
5919 the whole structure first. Don't do this if TARGET is a
5920 register whose mode size isn't equal to SIZE since
5921 clear_storage can't handle this case. */
5923 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5924 != fields_length (type
))
5925 || mostly_zeros_p (exp
))
5927 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5930 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5934 if (REG_P (target
) && !cleared
)
5935 emit_clobber (target
);
5937 /* Store each element of the constructor into the
5938 corresponding field of TARGET. */
5939 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5942 HOST_WIDE_INT bitsize
;
5943 HOST_WIDE_INT bitpos
= 0;
5945 rtx to_rtx
= target
;
5947 /* Just ignore missing fields. We cleared the whole
5948 structure, above, if any fields are missing. */
5952 if (cleared
&& initializer_zerop (value
))
5955 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
5956 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
5960 mode
= DECL_MODE (field
);
5961 if (DECL_BIT_FIELD (field
))
5964 offset
= DECL_FIELD_OFFSET (field
);
5965 if (tree_fits_shwi_p (offset
)
5966 && tree_fits_shwi_p (bit_position (field
)))
5968 bitpos
= int_bit_position (field
);
5972 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
5976 machine_mode address_mode
;
5980 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5981 make_tree (TREE_TYPE (exp
),
5984 offset_rtx
= expand_normal (offset
);
5985 gcc_assert (MEM_P (to_rtx
));
5987 address_mode
= get_address_mode (to_rtx
);
5988 if (GET_MODE (offset_rtx
) != address_mode
)
5989 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5991 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5992 highest_pow2_factor (offset
));
5995 #ifdef WORD_REGISTER_OPERATIONS
5996 /* If this initializes a field that is smaller than a
5997 word, at the start of a word, try to widen it to a full
5998 word. This special case allows us to output C++ member
5999 function initializations in a form that the optimizers
6002 && bitsize
< BITS_PER_WORD
6003 && bitpos
% BITS_PER_WORD
== 0
6004 && GET_MODE_CLASS (mode
) == MODE_INT
6005 && TREE_CODE (value
) == INTEGER_CST
6007 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6009 tree type
= TREE_TYPE (value
);
6011 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6013 type
= lang_hooks
.types
.type_for_mode
6014 (word_mode
, TYPE_UNSIGNED (type
));
6015 value
= fold_convert (type
, value
);
6018 if (BYTES_BIG_ENDIAN
)
6020 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6021 build_int_cst (type
,
6022 BITS_PER_WORD
- bitsize
));
6023 bitsize
= BITS_PER_WORD
;
6028 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6029 && DECL_NONADDRESSABLE_P (field
))
6031 to_rtx
= copy_rtx (to_rtx
);
6032 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6035 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6037 get_alias_set (TREE_TYPE (field
)));
6044 unsigned HOST_WIDE_INT i
;
6047 tree elttype
= TREE_TYPE (type
);
6049 HOST_WIDE_INT minelt
= 0;
6050 HOST_WIDE_INT maxelt
= 0;
6052 domain
= TYPE_DOMAIN (type
);
6053 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6054 && TYPE_MAX_VALUE (domain
)
6055 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6056 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6058 /* If we have constant bounds for the range of the type, get them. */
6061 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6062 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6065 /* If the constructor has fewer elements than the array, clear
6066 the whole array first. Similarly if this is static
6067 constructor of a non-BLKmode object. */
6070 else if (REG_P (target
) && TREE_STATIC (exp
))
6074 unsigned HOST_WIDE_INT idx
;
6076 HOST_WIDE_INT count
= 0, zero_count
= 0;
6077 need_to_clear
= ! const_bounds_p
;
6079 /* This loop is a more accurate version of the loop in
6080 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6081 is also needed to check for missing elements. */
6082 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6084 HOST_WIDE_INT this_node_count
;
6089 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6091 tree lo_index
= TREE_OPERAND (index
, 0);
6092 tree hi_index
= TREE_OPERAND (index
, 1);
6094 if (! tree_fits_uhwi_p (lo_index
)
6095 || ! tree_fits_uhwi_p (hi_index
))
6101 this_node_count
= (tree_to_uhwi (hi_index
)
6102 - tree_to_uhwi (lo_index
) + 1);
6105 this_node_count
= 1;
6107 count
+= this_node_count
;
6108 if (mostly_zeros_p (value
))
6109 zero_count
+= this_node_count
;
6112 /* Clear the entire array first if there are any missing
6113 elements, or if the incidence of zero elements is >=
6116 && (count
< maxelt
- minelt
+ 1
6117 || 4 * zero_count
>= 3 * count
))
6121 if (need_to_clear
&& size
> 0)
6124 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6126 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6130 if (!cleared
&& REG_P (target
))
6131 /* Inform later passes that the old value is dead. */
6132 emit_clobber (target
);
6134 /* Store each element of the constructor into the
6135 corresponding element of TARGET, determined by counting the
6137 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6140 HOST_WIDE_INT bitsize
;
6141 HOST_WIDE_INT bitpos
;
6142 rtx xtarget
= target
;
6144 if (cleared
&& initializer_zerop (value
))
6147 mode
= TYPE_MODE (elttype
);
6148 if (mode
== BLKmode
)
6149 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6150 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6153 bitsize
= GET_MODE_BITSIZE (mode
);
6155 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6157 tree lo_index
= TREE_OPERAND (index
, 0);
6158 tree hi_index
= TREE_OPERAND (index
, 1);
6159 rtx index_r
, pos_rtx
;
6160 HOST_WIDE_INT lo
, hi
, count
;
6163 /* If the range is constant and "small", unroll the loop. */
6165 && tree_fits_shwi_p (lo_index
)
6166 && tree_fits_shwi_p (hi_index
)
6167 && (lo
= tree_to_shwi (lo_index
),
6168 hi
= tree_to_shwi (hi_index
),
6169 count
= hi
- lo
+ 1,
6172 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6173 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6176 lo
-= minelt
; hi
-= minelt
;
6177 for (; lo
<= hi
; lo
++)
6179 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6182 && !MEM_KEEP_ALIAS_SET_P (target
)
6183 && TREE_CODE (type
) == ARRAY_TYPE
6184 && TYPE_NONALIASED_COMPONENT (type
))
6186 target
= copy_rtx (target
);
6187 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6190 store_constructor_field
6191 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6192 get_alias_set (elttype
));
6197 rtx_code_label
*loop_start
= gen_label_rtx ();
6198 rtx_code_label
*loop_end
= gen_label_rtx ();
6201 expand_normal (hi_index
);
6203 index
= build_decl (EXPR_LOCATION (exp
),
6204 VAR_DECL
, NULL_TREE
, domain
);
6205 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6206 SET_DECL_RTL (index
, index_r
);
6207 store_expr (lo_index
, index_r
, 0, false);
6209 /* Build the head of the loop. */
6210 do_pending_stack_adjust ();
6211 emit_label (loop_start
);
6213 /* Assign value to element index. */
6215 fold_convert (ssizetype
,
6216 fold_build2 (MINUS_EXPR
,
6219 TYPE_MIN_VALUE (domain
)));
6222 size_binop (MULT_EXPR
, position
,
6223 fold_convert (ssizetype
,
6224 TYPE_SIZE_UNIT (elttype
)));
6226 pos_rtx
= expand_normal (position
);
6227 xtarget
= offset_address (target
, pos_rtx
,
6228 highest_pow2_factor (position
));
6229 xtarget
= adjust_address (xtarget
, mode
, 0);
6230 if (TREE_CODE (value
) == CONSTRUCTOR
)
6231 store_constructor (value
, xtarget
, cleared
,
6232 bitsize
/ BITS_PER_UNIT
);
6234 store_expr (value
, xtarget
, 0, false);
6236 /* Generate a conditional jump to exit the loop. */
6237 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6239 jumpif (exit_cond
, loop_end
, -1);
6241 /* Update the loop counter, and jump to the head of
6243 expand_assignment (index
,
6244 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6245 index
, integer_one_node
),
6248 emit_jump (loop_start
);
6250 /* Build the end of the loop. */
6251 emit_label (loop_end
);
6254 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6255 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6260 index
= ssize_int (1);
6263 index
= fold_convert (ssizetype
,
6264 fold_build2 (MINUS_EXPR
,
6267 TYPE_MIN_VALUE (domain
)));
6270 size_binop (MULT_EXPR
, index
,
6271 fold_convert (ssizetype
,
6272 TYPE_SIZE_UNIT (elttype
)));
6273 xtarget
= offset_address (target
,
6274 expand_normal (position
),
6275 highest_pow2_factor (position
));
6276 xtarget
= adjust_address (xtarget
, mode
, 0);
6277 store_expr (value
, xtarget
, 0, false);
6282 bitpos
= ((tree_to_shwi (index
) - minelt
)
6283 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6285 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6287 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6288 && TREE_CODE (type
) == ARRAY_TYPE
6289 && TYPE_NONALIASED_COMPONENT (type
))
6291 target
= copy_rtx (target
);
6292 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6294 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6295 cleared
, get_alias_set (elttype
));
6303 unsigned HOST_WIDE_INT idx
;
6304 constructor_elt
*ce
;
6307 int icode
= CODE_FOR_nothing
;
6308 tree elttype
= TREE_TYPE (type
);
6309 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6310 machine_mode eltmode
= TYPE_MODE (elttype
);
6311 HOST_WIDE_INT bitsize
;
6312 HOST_WIDE_INT bitpos
;
6313 rtvec vector
= NULL
;
6315 alias_set_type alias
;
6317 gcc_assert (eltmode
!= BLKmode
);
6319 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6320 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6322 machine_mode mode
= GET_MODE (target
);
6324 icode
= (int) optab_handler (vec_init_optab
, mode
);
6325 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6326 if (icode
!= CODE_FOR_nothing
)
6330 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6331 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6333 icode
= CODE_FOR_nothing
;
6337 if (icode
!= CODE_FOR_nothing
)
6341 vector
= rtvec_alloc (n_elts
);
6342 for (i
= 0; i
< n_elts
; i
++)
6343 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6347 /* If the constructor has fewer elements than the vector,
6348 clear the whole array first. Similarly if this is static
6349 constructor of a non-BLKmode object. */
6352 else if (REG_P (target
) && TREE_STATIC (exp
))
6356 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6359 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6361 int n_elts_here
= tree_to_uhwi
6362 (int_const_binop (TRUNC_DIV_EXPR
,
6363 TYPE_SIZE (TREE_TYPE (value
)),
6364 TYPE_SIZE (elttype
)));
6366 count
+= n_elts_here
;
6367 if (mostly_zeros_p (value
))
6368 zero_count
+= n_elts_here
;
6371 /* Clear the entire vector first if there are any missing elements,
6372 or if the incidence of zero elements is >= 75%. */
6373 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6376 if (need_to_clear
&& size
> 0 && !vector
)
6379 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6381 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6385 /* Inform later passes that the old value is dead. */
6386 if (!cleared
&& !vector
&& REG_P (target
))
6387 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6390 alias
= MEM_ALIAS_SET (target
);
6392 alias
= get_alias_set (elttype
);
6394 /* Store each element of the constructor into the corresponding
6395 element of TARGET, determined by counting the elements. */
6396 for (idx
= 0, i
= 0;
6397 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6398 idx
++, i
+= bitsize
/ elt_size
)
6400 HOST_WIDE_INT eltpos
;
6401 tree value
= ce
->value
;
6403 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6404 if (cleared
&& initializer_zerop (value
))
6408 eltpos
= tree_to_uhwi (ce
->index
);
6414 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6416 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6417 RTVEC_ELT (vector
, eltpos
)
6418 = expand_normal (value
);
6422 machine_mode value_mode
=
6423 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6424 ? TYPE_MODE (TREE_TYPE (value
))
6426 bitpos
= eltpos
* elt_size
;
6427 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6428 value
, cleared
, alias
);
6433 emit_insn (GEN_FCN (icode
)
6435 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6444 /* Store the value of EXP (an expression tree)
6445 into a subfield of TARGET which has mode MODE and occupies
6446 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6447 If MODE is VOIDmode, it means that we are storing into a bit-field.
6449 BITREGION_START is bitpos of the first bitfield in this region.
6450 BITREGION_END is the bitpos of the ending bitfield in this region.
6451 These two fields are 0, if the C++ memory model does not apply,
6452 or we are not interested in keeping track of bitfield regions.
6454 Always return const0_rtx unless we have something particular to
6457 ALIAS_SET is the alias set for the destination. This value will
6458 (in general) be different from that for TARGET, since TARGET is a
6459 reference to the containing structure.
6461 If NONTEMPORAL is true, try generating a nontemporal store. */
6464 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6465 unsigned HOST_WIDE_INT bitregion_start
,
6466 unsigned HOST_WIDE_INT bitregion_end
,
6467 machine_mode mode
, tree exp
,
6468 alias_set_type alias_set
, bool nontemporal
)
6470 if (TREE_CODE (exp
) == ERROR_MARK
)
6473 /* If we have nothing to store, do nothing unless the expression has
6476 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6478 if (GET_CODE (target
) == CONCAT
)
6480 /* We're storing into a struct containing a single __complex. */
6482 gcc_assert (!bitpos
);
6483 return store_expr (exp
, target
, 0, nontemporal
);
6486 /* If the structure is in a register or if the component
6487 is a bit field, we cannot use addressing to access it.
6488 Use bit-field techniques or SUBREG to store in it. */
6490 if (mode
== VOIDmode
6491 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6492 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6493 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6495 || GET_CODE (target
) == SUBREG
6496 /* If the field isn't aligned enough to store as an ordinary memref,
6497 store it as a bit field. */
6499 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6500 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6501 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6502 || (bitpos
% BITS_PER_UNIT
!= 0)))
6503 || (bitsize
>= 0 && mode
!= BLKmode
6504 && GET_MODE_BITSIZE (mode
) > bitsize
)
6505 /* If the RHS and field are a constant size and the size of the
6506 RHS isn't the same size as the bitfield, we must use bitfield
6509 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6510 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6511 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6512 decl we must use bitfield operations. */
6514 && TREE_CODE (exp
) == MEM_REF
6515 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6516 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6517 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6518 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6523 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6524 implies a mask operation. If the precision is the same size as
6525 the field we're storing into, that mask is redundant. This is
6526 particularly common with bit field assignments generated by the
6528 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6531 tree type
= TREE_TYPE (exp
);
6532 if (INTEGRAL_TYPE_P (type
)
6533 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6534 && bitsize
== TYPE_PRECISION (type
))
6536 tree op
= gimple_assign_rhs1 (nop_def
);
6537 type
= TREE_TYPE (op
);
6538 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6543 temp
= expand_normal (exp
);
6545 /* If BITSIZE is narrower than the size of the type of EXP
6546 we will be narrowing TEMP. Normally, what's wanted are the
6547 low-order bits. However, if EXP's type is a record and this is
6548 big-endian machine, we want the upper BITSIZE bits. */
6549 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6550 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6551 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6552 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6553 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6556 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6557 if (mode
!= VOIDmode
&& mode
!= BLKmode
6558 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6559 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6561 /* If the modes of TEMP and TARGET are both BLKmode, both
6562 must be in memory and BITPOS must be aligned on a byte
6563 boundary. If so, we simply do a block copy. Likewise
6564 for a BLKmode-like TARGET. */
6565 if (GET_MODE (temp
) == BLKmode
6566 && (GET_MODE (target
) == BLKmode
6568 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6569 && (bitpos
% BITS_PER_UNIT
) == 0
6570 && (bitsize
% BITS_PER_UNIT
) == 0)))
6572 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6573 && (bitpos
% BITS_PER_UNIT
) == 0);
6575 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6576 emit_block_move (target
, temp
,
6577 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6584 /* Handle calls that return values in multiple non-contiguous locations.
6585 The Irix 6 ABI has examples of this. */
6586 if (GET_CODE (temp
) == PARALLEL
)
6588 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6590 if (mode
== BLKmode
|| mode
== VOIDmode
)
6591 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6592 temp_target
= gen_reg_rtx (mode
);
6593 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6596 else if (mode
== BLKmode
)
6598 /* Handle calls that return BLKmode values in registers. */
6599 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6601 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6602 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6607 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6609 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6610 temp_target
= gen_reg_rtx (mode
);
6612 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6613 temp_target
, mode
, mode
);
6618 /* Store the value in the bitfield. */
6619 store_bit_field (target
, bitsize
, bitpos
,
6620 bitregion_start
, bitregion_end
,
6627 /* Now build a reference to just the desired component. */
6628 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6630 if (to_rtx
== target
)
6631 to_rtx
= copy_rtx (to_rtx
);
6633 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6634 set_mem_alias_set (to_rtx
, alias_set
);
6636 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6640 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6641 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6642 codes and find the ultimate containing object, which we return.
6644 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6645 bit position, and *PUNSIGNEDP to the signedness of the field.
6646 If the position of the field is variable, we store a tree
6647 giving the variable offset (in units) in *POFFSET.
6648 This offset is in addition to the bit position.
6649 If the position is not variable, we store 0 in *POFFSET.
6651 If any of the extraction expressions is volatile,
6652 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6654 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6655 Otherwise, it is a mode that can be used to access the field.
6657 If the field describes a variable-sized object, *PMODE is set to
6658 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6659 this case, but the address of the object can be found.
6661 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6662 look through nodes that serve as markers of a greater alignment than
6663 the one that can be deduced from the expression. These nodes make it
6664 possible for front-ends to prevent temporaries from being created by
6665 the middle-end on alignment considerations. For that purpose, the
6666 normal operating mode at high-level is to always pass FALSE so that
6667 the ultimate containing object is really returned; moreover, the
6668 associated predicate handled_component_p will always return TRUE
6669 on these nodes, thus indicating that they are essentially handled
6670 by get_inner_reference. TRUE should only be passed when the caller
6671 is scanning the expression in order to build another representation
6672 and specifically knows how to handle these nodes; as such, this is
6673 the normal operating mode in the RTL expanders. */
6676 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6677 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6678 machine_mode
*pmode
, int *punsignedp
,
6679 int *pvolatilep
, bool keep_aligning
)
6682 machine_mode mode
= VOIDmode
;
6683 bool blkmode_bitfield
= false;
6684 tree offset
= size_zero_node
;
6685 offset_int bit_offset
= 0;
6687 /* First get the mode, signedness, and size. We do this from just the
6688 outermost expression. */
6690 if (TREE_CODE (exp
) == COMPONENT_REF
)
6692 tree field
= TREE_OPERAND (exp
, 1);
6693 size_tree
= DECL_SIZE (field
);
6694 if (flag_strict_volatile_bitfields
> 0
6695 && TREE_THIS_VOLATILE (exp
)
6696 && DECL_BIT_FIELD_TYPE (field
)
6697 && DECL_MODE (field
) != BLKmode
)
6698 /* Volatile bitfields should be accessed in the mode of the
6699 field's type, not the mode computed based on the bit
6701 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6702 else if (!DECL_BIT_FIELD (field
))
6703 mode
= DECL_MODE (field
);
6704 else if (DECL_MODE (field
) == BLKmode
)
6705 blkmode_bitfield
= true;
6707 *punsignedp
= DECL_UNSIGNED (field
);
6709 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6711 size_tree
= TREE_OPERAND (exp
, 1);
6712 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6713 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6715 /* For vector types, with the correct size of access, use the mode of
6717 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6718 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6719 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6720 mode
= TYPE_MODE (TREE_TYPE (exp
));
6724 mode
= TYPE_MODE (TREE_TYPE (exp
));
6725 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6727 if (mode
== BLKmode
)
6728 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6730 *pbitsize
= GET_MODE_BITSIZE (mode
);
6735 if (! tree_fits_uhwi_p (size_tree
))
6736 mode
= BLKmode
, *pbitsize
= -1;
6738 *pbitsize
= tree_to_uhwi (size_tree
);
6741 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6742 and find the ultimate containing object. */
6745 switch (TREE_CODE (exp
))
6748 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6753 tree field
= TREE_OPERAND (exp
, 1);
6754 tree this_offset
= component_ref_field_offset (exp
);
6756 /* If this field hasn't been filled in yet, don't go past it.
6757 This should only happen when folding expressions made during
6758 type construction. */
6759 if (this_offset
== 0)
6762 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6763 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6765 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6770 case ARRAY_RANGE_REF
:
6772 tree index
= TREE_OPERAND (exp
, 1);
6773 tree low_bound
= array_ref_low_bound (exp
);
6774 tree unit_size
= array_ref_element_size (exp
);
6776 /* We assume all arrays have sizes that are a multiple of a byte.
6777 First subtract the lower bound, if any, in the type of the
6778 index, then convert to sizetype and multiply by the size of
6779 the array element. */
6780 if (! integer_zerop (low_bound
))
6781 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6784 offset
= size_binop (PLUS_EXPR
, offset
,
6785 size_binop (MULT_EXPR
,
6786 fold_convert (sizetype
, index
),
6795 bit_offset
+= *pbitsize
;
6798 case VIEW_CONVERT_EXPR
:
6799 if (keep_aligning
&& STRICT_ALIGNMENT
6800 && (TYPE_ALIGN (TREE_TYPE (exp
))
6801 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6802 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6803 < BIGGEST_ALIGNMENT
)
6804 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6805 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6810 /* Hand back the decl for MEM[&decl, off]. */
6811 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6813 tree off
= TREE_OPERAND (exp
, 1);
6814 if (!integer_zerop (off
))
6816 offset_int boff
, coff
= mem_ref_offset (exp
);
6817 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6820 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6828 /* If any reference in the chain is volatile, the effect is volatile. */
6829 if (TREE_THIS_VOLATILE (exp
))
6832 exp
= TREE_OPERAND (exp
, 0);
6836 /* If OFFSET is constant, see if we can return the whole thing as a
6837 constant bit position. Make sure to handle overflow during
6839 if (TREE_CODE (offset
) == INTEGER_CST
)
6841 offset_int tem
= wi::sext (wi::to_offset (offset
),
6842 TYPE_PRECISION (sizetype
));
6843 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6845 if (wi::fits_shwi_p (tem
))
6847 *pbitpos
= tem
.to_shwi ();
6848 *poffset
= offset
= NULL_TREE
;
6852 /* Otherwise, split it up. */
6855 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6856 if (wi::neg_p (bit_offset
))
6858 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6859 offset_int tem
= bit_offset
.and_not (mask
);
6860 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6861 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6863 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6864 offset
= size_binop (PLUS_EXPR
, offset
,
6865 wide_int_to_tree (sizetype
, tem
));
6868 *pbitpos
= bit_offset
.to_shwi ();
6872 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6873 if (mode
== VOIDmode
6875 && (*pbitpos
% BITS_PER_UNIT
) == 0
6876 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6884 /* Return a tree of sizetype representing the size, in bytes, of the element
6885 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6888 array_ref_element_size (tree exp
)
6890 tree aligned_size
= TREE_OPERAND (exp
, 3);
6891 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6892 location_t loc
= EXPR_LOCATION (exp
);
6894 /* If a size was specified in the ARRAY_REF, it's the size measured
6895 in alignment units of the element type. So multiply by that value. */
6898 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6899 sizetype from another type of the same width and signedness. */
6900 if (TREE_TYPE (aligned_size
) != sizetype
)
6901 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6902 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6903 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6906 /* Otherwise, take the size from that of the element type. Substitute
6907 any PLACEHOLDER_EXPR that we have. */
6909 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6912 /* Return a tree representing the lower bound of the array mentioned in
6913 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6916 array_ref_low_bound (tree exp
)
6918 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6920 /* If a lower bound is specified in EXP, use it. */
6921 if (TREE_OPERAND (exp
, 2))
6922 return TREE_OPERAND (exp
, 2);
6924 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6925 substituting for a PLACEHOLDER_EXPR as needed. */
6926 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6927 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6929 /* Otherwise, return a zero of the appropriate type. */
6930 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6933 /* Returns true if REF is an array reference to an array at the end of
6934 a structure. If this is the case, the array may be allocated larger
6935 than its upper bound implies. */
6938 array_at_struct_end_p (tree ref
)
6940 if (TREE_CODE (ref
) != ARRAY_REF
6941 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6944 while (handled_component_p (ref
))
6946 /* If the reference chain contains a component reference to a
6947 non-union type and there follows another field the reference
6948 is not at the end of a structure. */
6949 if (TREE_CODE (ref
) == COMPONENT_REF
6950 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6952 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6953 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6954 nextf
= DECL_CHAIN (nextf
);
6959 ref
= TREE_OPERAND (ref
, 0);
6962 /* If the reference is based on a declared entity, the size of the array
6963 is constrained by its given domain. */
6970 /* Return a tree representing the upper bound of the array mentioned in
6971 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6974 array_ref_up_bound (tree exp
)
6976 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6978 /* If there is a domain type and it has an upper bound, use it, substituting
6979 for a PLACEHOLDER_EXPR as needed. */
6980 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6981 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6983 /* Otherwise fail. */
6987 /* Return a tree representing the offset, in bytes, of the field referenced
6988 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6991 component_ref_field_offset (tree exp
)
6993 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6994 tree field
= TREE_OPERAND (exp
, 1);
6995 location_t loc
= EXPR_LOCATION (exp
);
6997 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6998 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7002 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7003 sizetype from another type of the same width and signedness. */
7004 if (TREE_TYPE (aligned_offset
) != sizetype
)
7005 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7006 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7007 size_int (DECL_OFFSET_ALIGN (field
)
7011 /* Otherwise, take the offset from that of the field. Substitute
7012 any PLACEHOLDER_EXPR that we have. */
7014 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7017 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7019 static unsigned HOST_WIDE_INT
7020 target_align (const_tree target
)
7022 /* We might have a chain of nested references with intermediate misaligning
7023 bitfields components, so need to recurse to find out. */
7025 unsigned HOST_WIDE_INT this_align
, outer_align
;
7027 switch (TREE_CODE (target
))
7033 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7034 outer_align
= target_align (TREE_OPERAND (target
, 0));
7035 return MIN (this_align
, outer_align
);
7038 case ARRAY_RANGE_REF
:
7039 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7040 outer_align
= target_align (TREE_OPERAND (target
, 0));
7041 return MIN (this_align
, outer_align
);
7044 case NON_LVALUE_EXPR
:
7045 case VIEW_CONVERT_EXPR
:
7046 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7047 outer_align
= target_align (TREE_OPERAND (target
, 0));
7048 return MAX (this_align
, outer_align
);
7051 return TYPE_ALIGN (TREE_TYPE (target
));
7056 /* Given an rtx VALUE that may contain additions and multiplications, return
7057 an equivalent value that just refers to a register, memory, or constant.
7058 This is done by generating instructions to perform the arithmetic and
7059 returning a pseudo-register containing the value.
7061 The returned value may be a REG, SUBREG, MEM or constant. */
7064 force_operand (rtx value
, rtx target
)
7067 /* Use subtarget as the target for operand 0 of a binary operation. */
7068 rtx subtarget
= get_subtarget (target
);
7069 enum rtx_code code
= GET_CODE (value
);
7071 /* Check for subreg applied to an expression produced by loop optimizer. */
7073 && !REG_P (SUBREG_REG (value
))
7074 && !MEM_P (SUBREG_REG (value
)))
7077 = simplify_gen_subreg (GET_MODE (value
),
7078 force_reg (GET_MODE (SUBREG_REG (value
)),
7079 force_operand (SUBREG_REG (value
),
7081 GET_MODE (SUBREG_REG (value
)),
7082 SUBREG_BYTE (value
));
7083 code
= GET_CODE (value
);
7086 /* Check for a PIC address load. */
7087 if ((code
== PLUS
|| code
== MINUS
)
7088 && XEXP (value
, 0) == pic_offset_table_rtx
7089 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7090 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7091 || GET_CODE (XEXP (value
, 1)) == CONST
))
7094 subtarget
= gen_reg_rtx (GET_MODE (value
));
7095 emit_move_insn (subtarget
, value
);
7099 if (ARITHMETIC_P (value
))
7101 op2
= XEXP (value
, 1);
7102 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7104 if (code
== MINUS
&& CONST_INT_P (op2
))
7107 op2
= negate_rtx (GET_MODE (value
), op2
);
7110 /* Check for an addition with OP2 a constant integer and our first
7111 operand a PLUS of a virtual register and something else. In that
7112 case, we want to emit the sum of the virtual register and the
7113 constant first and then add the other value. This allows virtual
7114 register instantiation to simply modify the constant rather than
7115 creating another one around this addition. */
7116 if (code
== PLUS
&& CONST_INT_P (op2
)
7117 && GET_CODE (XEXP (value
, 0)) == PLUS
7118 && REG_P (XEXP (XEXP (value
, 0), 0))
7119 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7120 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7122 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7123 XEXP (XEXP (value
, 0), 0), op2
,
7124 subtarget
, 0, OPTAB_LIB_WIDEN
);
7125 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7126 force_operand (XEXP (XEXP (value
,
7128 target
, 0, OPTAB_LIB_WIDEN
);
7131 op1
= force_operand (XEXP (value
, 0), subtarget
);
7132 op2
= force_operand (op2
, NULL_RTX
);
7136 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7138 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7139 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7140 target
, 1, OPTAB_LIB_WIDEN
);
7142 return expand_divmod (0,
7143 FLOAT_MODE_P (GET_MODE (value
))
7144 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7145 GET_MODE (value
), op1
, op2
, target
, 0);
7147 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7150 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7153 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7156 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7157 target
, 0, OPTAB_LIB_WIDEN
);
7159 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7160 target
, 1, OPTAB_LIB_WIDEN
);
7163 if (UNARY_P (value
))
7166 target
= gen_reg_rtx (GET_MODE (value
));
7167 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7174 case FLOAT_TRUNCATE
:
7175 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7180 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7184 case UNSIGNED_FLOAT
:
7185 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7189 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7193 #ifdef INSN_SCHEDULING
7194 /* On machines that have insn scheduling, we want all memory reference to be
7195 explicit, so we need to deal with such paradoxical SUBREGs. */
7196 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7198 = simplify_gen_subreg (GET_MODE (value
),
7199 force_reg (GET_MODE (SUBREG_REG (value
)),
7200 force_operand (SUBREG_REG (value
),
7202 GET_MODE (SUBREG_REG (value
)),
7203 SUBREG_BYTE (value
));
7209 /* Subroutine of expand_expr: return nonzero iff there is no way that
7210 EXP can reference X, which is being modified. TOP_P is nonzero if this
7211 call is going to be used to determine whether we need a temporary
7212 for EXP, as opposed to a recursive call to this function.
7214 It is always safe for this routine to return zero since it merely
7215 searches for optimization opportunities. */
7218 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7224 /* If EXP has varying size, we MUST use a target since we currently
7225 have no way of allocating temporaries of variable size
7226 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7227 So we assume here that something at a higher level has prevented a
7228 clash. This is somewhat bogus, but the best we can do. Only
7229 do this when X is BLKmode and when we are at the top level. */
7230 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7231 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7232 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7233 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7234 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7236 && GET_MODE (x
) == BLKmode
)
7237 /* If X is in the outgoing argument area, it is always safe. */
7239 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7240 || (GET_CODE (XEXP (x
, 0)) == PLUS
7241 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7244 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7245 find the underlying pseudo. */
7246 if (GET_CODE (x
) == SUBREG
)
7249 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7253 /* Now look at our tree code and possibly recurse. */
7254 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7256 case tcc_declaration
:
7257 exp_rtl
= DECL_RTL_IF_SET (exp
);
7263 case tcc_exceptional
:
7264 if (TREE_CODE (exp
) == TREE_LIST
)
7268 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7270 exp
= TREE_CHAIN (exp
);
7273 if (TREE_CODE (exp
) != TREE_LIST
)
7274 return safe_from_p (x
, exp
, 0);
7277 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7279 constructor_elt
*ce
;
7280 unsigned HOST_WIDE_INT idx
;
7282 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7283 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7284 || !safe_from_p (x
, ce
->value
, 0))
7288 else if (TREE_CODE (exp
) == ERROR_MARK
)
7289 return 1; /* An already-visited SAVE_EXPR? */
7294 /* The only case we look at here is the DECL_INITIAL inside a
7296 return (TREE_CODE (exp
) != DECL_EXPR
7297 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7298 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7299 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7302 case tcc_comparison
:
7303 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7308 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7310 case tcc_expression
:
7313 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7314 the expression. If it is set, we conflict iff we are that rtx or
7315 both are in memory. Otherwise, we check all operands of the
7316 expression recursively. */
7318 switch (TREE_CODE (exp
))
7321 /* If the operand is static or we are static, we can't conflict.
7322 Likewise if we don't conflict with the operand at all. */
7323 if (staticp (TREE_OPERAND (exp
, 0))
7324 || TREE_STATIC (exp
)
7325 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7328 /* Otherwise, the only way this can conflict is if we are taking
7329 the address of a DECL a that address if part of X, which is
7331 exp
= TREE_OPERAND (exp
, 0);
7334 if (!DECL_RTL_SET_P (exp
)
7335 || !MEM_P (DECL_RTL (exp
)))
7338 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7344 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7345 get_alias_set (exp
)))
7350 /* Assume that the call will clobber all hard registers and
7352 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7357 case WITH_CLEANUP_EXPR
:
7358 case CLEANUP_POINT_EXPR
:
7359 /* Lowered by gimplify.c. */
7363 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7369 /* If we have an rtx, we do not need to scan our operands. */
7373 nops
= TREE_OPERAND_LENGTH (exp
);
7374 for (i
= 0; i
< nops
; i
++)
7375 if (TREE_OPERAND (exp
, i
) != 0
7376 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7382 /* Should never get a type here. */
7386 /* If we have an rtl, find any enclosed object. Then see if we conflict
7390 if (GET_CODE (exp_rtl
) == SUBREG
)
7392 exp_rtl
= SUBREG_REG (exp_rtl
);
7394 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7398 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7399 are memory and they conflict. */
7400 return ! (rtx_equal_p (x
, exp_rtl
)
7401 || (MEM_P (x
) && MEM_P (exp_rtl
)
7402 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7405 /* If we reach here, it is safe. */
7410 /* Return the highest power of two that EXP is known to be a multiple of.
7411 This is used in updating alignment of MEMs in array references. */
7413 unsigned HOST_WIDE_INT
7414 highest_pow2_factor (const_tree exp
)
7416 unsigned HOST_WIDE_INT ret
;
7417 int trailing_zeros
= tree_ctz (exp
);
7418 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7419 return BIGGEST_ALIGNMENT
;
7420 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7421 if (ret
> BIGGEST_ALIGNMENT
)
7422 return BIGGEST_ALIGNMENT
;
7426 /* Similar, except that the alignment requirements of TARGET are
7427 taken into account. Assume it is at least as aligned as its
7428 type, unless it is a COMPONENT_REF in which case the layout of
7429 the structure gives the alignment. */
7431 static unsigned HOST_WIDE_INT
7432 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7434 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7435 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7437 return MAX (factor
, talign
);
7440 #ifdef HAVE_conditional_move
7441 /* Convert the tree comparison code TCODE to the rtl one where the
7442 signedness is UNSIGNEDP. */
7444 static enum rtx_code
7445 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7457 code
= unsignedp
? LTU
: LT
;
7460 code
= unsignedp
? LEU
: LE
;
7463 code
= unsignedp
? GTU
: GT
;
7466 code
= unsignedp
? GEU
: GE
;
7468 case UNORDERED_EXPR
:
7500 /* Subroutine of expand_expr. Expand the two operands of a binary
7501 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7502 The value may be stored in TARGET if TARGET is nonzero. The
7503 MODIFIER argument is as documented by expand_expr. */
7506 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7507 enum expand_modifier modifier
)
7509 if (! safe_from_p (target
, exp1
, 1))
7511 if (operand_equal_p (exp0
, exp1
, 0))
7513 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7514 *op1
= copy_rtx (*op0
);
7518 /* If we need to preserve evaluation order, copy exp0 into its own
7519 temporary variable so that it can't be clobbered by exp1. */
7520 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7521 exp0
= save_expr (exp0
);
7522 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7523 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7528 /* Return a MEM that contains constant EXP. DEFER is as for
7529 output_constant_def and MODIFIER is as for expand_expr. */
7532 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7536 mem
= output_constant_def (exp
, defer
);
7537 if (modifier
!= EXPAND_INITIALIZER
)
7538 mem
= use_anchored_address (mem
);
7542 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7543 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7546 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7547 enum expand_modifier modifier
, addr_space_t as
)
7549 rtx result
, subtarget
;
7551 HOST_WIDE_INT bitsize
, bitpos
;
7552 int volatilep
, unsignedp
;
7555 /* If we are taking the address of a constant and are at the top level,
7556 we have to use output_constant_def since we can't call force_const_mem
7558 /* ??? This should be considered a front-end bug. We should not be
7559 generating ADDR_EXPR of something that isn't an LVALUE. The only
7560 exception here is STRING_CST. */
7561 if (CONSTANT_CLASS_P (exp
))
7563 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7564 if (modifier
< EXPAND_SUM
)
7565 result
= force_operand (result
, target
);
7569 /* Everything must be something allowed by is_gimple_addressable. */
7570 switch (TREE_CODE (exp
))
7573 /* This case will happen via recursion for &a->b. */
7574 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7578 tree tem
= TREE_OPERAND (exp
, 0);
7579 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7580 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7581 return expand_expr (tem
, target
, tmode
, modifier
);
7585 /* Expand the initializer like constants above. */
7586 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7588 if (modifier
< EXPAND_SUM
)
7589 result
= force_operand (result
, target
);
7593 /* The real part of the complex number is always first, therefore
7594 the address is the same as the address of the parent object. */
7597 inner
= TREE_OPERAND (exp
, 0);
7601 /* The imaginary part of the complex number is always second.
7602 The expression is therefore always offset by the size of the
7605 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7606 inner
= TREE_OPERAND (exp
, 0);
7609 case COMPOUND_LITERAL_EXPR
:
7610 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7611 rtl_for_decl_init is called on DECL_INITIAL with
7612 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7613 if (modifier
== EXPAND_INITIALIZER
7614 && COMPOUND_LITERAL_EXPR_DECL (exp
))
7615 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7616 target
, tmode
, modifier
, as
);
7619 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7620 expand_expr, as that can have various side effects; LABEL_DECLs for
7621 example, may not have their DECL_RTL set yet. Expand the rtl of
7622 CONSTRUCTORs too, which should yield a memory reference for the
7623 constructor's contents. Assume language specific tree nodes can
7624 be expanded in some interesting way. */
7625 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7627 || TREE_CODE (exp
) == CONSTRUCTOR
7628 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7630 result
= expand_expr (exp
, target
, tmode
,
7631 modifier
== EXPAND_INITIALIZER
7632 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7634 /* If the DECL isn't in memory, then the DECL wasn't properly
7635 marked TREE_ADDRESSABLE, which will be either a front-end
7636 or a tree optimizer bug. */
7638 if (TREE_ADDRESSABLE (exp
)
7640 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7642 error ("local frame unavailable (naked function?)");
7646 gcc_assert (MEM_P (result
));
7647 result
= XEXP (result
, 0);
7649 /* ??? Is this needed anymore? */
7651 TREE_USED (exp
) = 1;
7653 if (modifier
!= EXPAND_INITIALIZER
7654 && modifier
!= EXPAND_CONST_ADDRESS
7655 && modifier
!= EXPAND_SUM
)
7656 result
= force_operand (result
, target
);
7660 /* Pass FALSE as the last argument to get_inner_reference although
7661 we are expanding to RTL. The rationale is that we know how to
7662 handle "aligning nodes" here: we can just bypass them because
7663 they won't change the final object whose address will be returned
7664 (they actually exist only for that purpose). */
7665 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7666 &mode1
, &unsignedp
, &volatilep
, false);
7670 /* We must have made progress. */
7671 gcc_assert (inner
!= exp
);
7673 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7674 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7675 inner alignment, force the inner to be sufficiently aligned. */
7676 if (CONSTANT_CLASS_P (inner
)
7677 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7679 inner
= copy_node (inner
);
7680 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7681 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7682 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7684 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7690 if (modifier
!= EXPAND_NORMAL
)
7691 result
= force_operand (result
, NULL
);
7692 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7693 modifier
== EXPAND_INITIALIZER
7694 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7696 /* expand_expr is allowed to return an object in a mode other
7697 than TMODE. If it did, we need to convert. */
7698 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7699 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7700 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7701 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7702 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7704 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7705 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7708 subtarget
= bitpos
? NULL_RTX
: target
;
7709 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7710 1, OPTAB_LIB_WIDEN
);
7716 /* Someone beforehand should have rejected taking the address
7717 of such an object. */
7718 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7720 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7721 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7722 if (modifier
< EXPAND_SUM
)
7723 result
= force_operand (result
, target
);
7729 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7730 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7733 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7734 enum expand_modifier modifier
)
7736 addr_space_t as
= ADDR_SPACE_GENERIC
;
7737 machine_mode address_mode
= Pmode
;
7738 machine_mode pointer_mode
= ptr_mode
;
7742 /* Target mode of VOIDmode says "whatever's natural". */
7743 if (tmode
== VOIDmode
)
7744 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7746 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7748 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7749 address_mode
= targetm
.addr_space
.address_mode (as
);
7750 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7753 /* We can get called with some Weird Things if the user does silliness
7754 like "(short) &a". In that case, convert_memory_address won't do
7755 the right thing, so ignore the given target mode. */
7756 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7757 tmode
= address_mode
;
7759 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7760 tmode
, modifier
, as
);
7762 /* Despite expand_expr claims concerning ignoring TMODE when not
7763 strictly convenient, stuff breaks if we don't honor it. Note
7764 that combined with the above, we only do this for pointer modes. */
7765 rmode
= GET_MODE (result
);
7766 if (rmode
== VOIDmode
)
7769 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7774 /* Generate code for computing CONSTRUCTOR EXP.
7775 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7776 is TRUE, instead of creating a temporary variable in memory
7777 NULL is returned and the caller needs to handle it differently. */
7780 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7781 bool avoid_temp_mem
)
7783 tree type
= TREE_TYPE (exp
);
7784 machine_mode mode
= TYPE_MODE (type
);
7786 /* Try to avoid creating a temporary at all. This is possible
7787 if all of the initializer is zero.
7788 FIXME: try to handle all [0..255] initializers we can handle
7790 if (TREE_STATIC (exp
)
7791 && !TREE_ADDRESSABLE (exp
)
7792 && target
!= 0 && mode
== BLKmode
7793 && all_zeros_p (exp
))
7795 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7799 /* All elts simple constants => refer to a constant in memory. But
7800 if this is a non-BLKmode mode, let it store a field at a time
7801 since that should make a CONST_INT, CONST_WIDE_INT or
7802 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7803 use, it is best to store directly into the target unless the type
7804 is large enough that memcpy will be used. If we are making an
7805 initializer and all operands are constant, put it in memory as
7808 FIXME: Avoid trying to fill vector constructors piece-meal.
7809 Output them with output_constant_def below unless we're sure
7810 they're zeros. This should go away when vector initializers
7811 are treated like VECTOR_CST instead of arrays. */
7812 if ((TREE_STATIC (exp
)
7813 && ((mode
== BLKmode
7814 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7815 || TREE_ADDRESSABLE (exp
)
7816 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7817 && (! can_move_by_pieces
7818 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7820 && ! mostly_zeros_p (exp
))))
7821 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7822 && TREE_CONSTANT (exp
)))
7829 constructor
= expand_expr_constant (exp
, 1, modifier
);
7831 if (modifier
!= EXPAND_CONST_ADDRESS
7832 && modifier
!= EXPAND_INITIALIZER
7833 && modifier
!= EXPAND_SUM
)
7834 constructor
= validize_mem (constructor
);
7839 /* Handle calls that pass values in multiple non-contiguous
7840 locations. The Irix 6 ABI has examples of this. */
7841 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7842 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7847 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7850 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7855 /* expand_expr: generate code for computing expression EXP.
7856 An rtx for the computed value is returned. The value is never null.
7857 In the case of a void EXP, const0_rtx is returned.
7859 The value may be stored in TARGET if TARGET is nonzero.
7860 TARGET is just a suggestion; callers must assume that
7861 the rtx returned may not be the same as TARGET.
7863 If TARGET is CONST0_RTX, it means that the value will be ignored.
7865 If TMODE is not VOIDmode, it suggests generating the
7866 result in mode TMODE. But this is done only when convenient.
7867 Otherwise, TMODE is ignored and the value generated in its natural mode.
7868 TMODE is just a suggestion; callers must assume that
7869 the rtx returned may not have mode TMODE.
7871 Note that TARGET may have neither TMODE nor MODE. In that case, it
7872 probably will not be used.
7874 If MODIFIER is EXPAND_SUM then when EXP is an addition
7875 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7876 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7877 products as above, or REG or MEM, or constant.
7878 Ordinarily in such cases we would output mul or add instructions
7879 and then return a pseudo reg containing the sum.
7881 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7882 it also marks a label as absolutely required (it can't be dead).
7883 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7884 This is used for outputting expressions used in initializers.
7886 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7887 with a constant address even if that address is not normally legitimate.
7888 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7890 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7891 a call parameter. Such targets require special care as we haven't yet
7892 marked TARGET so that it's safe from being trashed by libcalls. We
7893 don't want to use TARGET for anything but the final result;
7894 Intermediate values must go elsewhere. Additionally, calls to
7895 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7897 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7898 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7899 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7900 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7903 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7904 In this case, we don't adjust a returned MEM rtx that wouldn't be
7905 sufficiently aligned for its mode; instead, it's up to the caller
7906 to deal with it afterwards. This is used to make sure that unaligned
7907 base objects for which out-of-bounds accesses are supported, for
7908 example record types with trailing arrays, aren't realigned behind
7909 the back of the caller.
7910 The normal operating mode is to pass FALSE for this parameter. */
7913 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
7914 enum expand_modifier modifier
, rtx
*alt_rtl
,
7915 bool inner_reference_p
)
7919 /* Handle ERROR_MARK before anybody tries to access its type. */
7920 if (TREE_CODE (exp
) == ERROR_MARK
7921 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7923 ret
= CONST0_RTX (tmode
);
7924 return ret
? ret
: const0_rtx
;
7927 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
7932 /* Try to expand the conditional expression which is represented by
7933 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7934 return the rtl reg which repsents the result. Otherwise return
7938 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7939 tree treeop1 ATTRIBUTE_UNUSED
,
7940 tree treeop2 ATTRIBUTE_UNUSED
)
7942 #ifdef HAVE_conditional_move
7944 rtx op00
, op01
, op1
, op2
;
7945 enum rtx_code comparison_code
;
7946 machine_mode comparison_mode
;
7949 tree type
= TREE_TYPE (treeop1
);
7950 int unsignedp
= TYPE_UNSIGNED (type
);
7951 machine_mode mode
= TYPE_MODE (type
);
7952 machine_mode orig_mode
= mode
;
7954 /* If we cannot do a conditional move on the mode, try doing it
7955 with the promoted mode. */
7956 if (!can_conditionally_move_p (mode
))
7958 mode
= promote_mode (type
, mode
, &unsignedp
);
7959 if (!can_conditionally_move_p (mode
))
7961 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7964 temp
= assign_temp (type
, 0, 1);
7967 expand_operands (treeop1
, treeop2
,
7968 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7970 if (TREE_CODE (treeop0
) == SSA_NAME
7971 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7973 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7974 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7975 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7976 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7977 comparison_mode
= TYPE_MODE (type
);
7978 unsignedp
= TYPE_UNSIGNED (type
);
7979 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7981 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7983 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7984 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7985 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7986 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7987 unsignedp
= TYPE_UNSIGNED (type
);
7988 comparison_mode
= TYPE_MODE (type
);
7989 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7993 op00
= expand_normal (treeop0
);
7995 comparison_code
= NE
;
7996 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7999 if (GET_MODE (op1
) != mode
)
8000 op1
= gen_lowpart (mode
, op1
);
8002 if (GET_MODE (op2
) != mode
)
8003 op2
= gen_lowpart (mode
, op2
);
8005 /* Try to emit the conditional move. */
8006 insn
= emit_conditional_move (temp
, comparison_code
,
8007 op00
, op01
, comparison_mode
,
8011 /* If we could do the conditional move, emit the sequence,
8015 rtx_insn
*seq
= get_insns ();
8018 return convert_modes (orig_mode
, mode
, temp
, 0);
8021 /* Otherwise discard the sequence and fall back to code with
8029 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8030 enum expand_modifier modifier
)
8032 rtx op0
, op1
, op2
, temp
;
8036 enum tree_code code
= ops
->code
;
8038 rtx subtarget
, original_target
;
8040 bool reduce_bit_field
;
8041 location_t loc
= ops
->location
;
8042 tree treeop0
, treeop1
, treeop2
;
8043 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8044 ? reduce_to_bit_field_precision ((expr), \
8050 mode
= TYPE_MODE (type
);
8051 unsignedp
= TYPE_UNSIGNED (type
);
8057 /* We should be called only on simple (binary or unary) expressions,
8058 exactly those that are valid in gimple expressions that aren't
8059 GIMPLE_SINGLE_RHS (or invalid). */
8060 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8061 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8062 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8064 ignore
= (target
== const0_rtx
8065 || ((CONVERT_EXPR_CODE_P (code
)
8066 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8067 && TREE_CODE (type
) == VOID_TYPE
));
8069 /* We should be called only if we need the result. */
8070 gcc_assert (!ignore
);
8072 /* An operation in what may be a bit-field type needs the
8073 result to be reduced to the precision of the bit-field type,
8074 which is narrower than that of the type's mode. */
8075 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8076 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8078 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8081 /* Use subtarget as the target for operand 0 of a binary operation. */
8082 subtarget
= get_subtarget (target
);
8083 original_target
= target
;
8087 case NON_LVALUE_EXPR
:
8090 if (treeop0
== error_mark_node
)
8093 if (TREE_CODE (type
) == UNION_TYPE
)
8095 tree valtype
= TREE_TYPE (treeop0
);
8097 /* If both input and output are BLKmode, this conversion isn't doing
8098 anything except possibly changing memory attribute. */
8099 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8101 rtx result
= expand_expr (treeop0
, target
, tmode
,
8104 result
= copy_rtx (result
);
8105 set_mem_attributes (result
, type
, 0);
8111 if (TYPE_MODE (type
) != BLKmode
)
8112 target
= gen_reg_rtx (TYPE_MODE (type
));
8114 target
= assign_temp (type
, 1, 1);
8118 /* Store data into beginning of memory target. */
8119 store_expr (treeop0
,
8120 adjust_address (target
, TYPE_MODE (valtype
), 0),
8121 modifier
== EXPAND_STACK_PARM
,
8126 gcc_assert (REG_P (target
));
8128 /* Store this field into a union of the proper type. */
8129 store_field (target
,
8130 MIN ((int_size_in_bytes (TREE_TYPE
8133 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8134 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8137 /* Return the entire union. */
8141 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8143 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8146 /* If the signedness of the conversion differs and OP0 is
8147 a promoted SUBREG, clear that indication since we now
8148 have to do the proper extension. */
8149 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8150 && GET_CODE (op0
) == SUBREG
)
8151 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8153 return REDUCE_BIT_FIELD (op0
);
8156 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8157 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8158 if (GET_MODE (op0
) == mode
)
8161 /* If OP0 is a constant, just convert it into the proper mode. */
8162 else if (CONSTANT_P (op0
))
8164 tree inner_type
= TREE_TYPE (treeop0
);
8165 machine_mode inner_mode
= GET_MODE (op0
);
8167 if (inner_mode
== VOIDmode
)
8168 inner_mode
= TYPE_MODE (inner_type
);
8170 if (modifier
== EXPAND_INITIALIZER
)
8171 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8172 subreg_lowpart_offset (mode
,
8175 op0
= convert_modes (mode
, inner_mode
, op0
,
8176 TYPE_UNSIGNED (inner_type
));
8179 else if (modifier
== EXPAND_INITIALIZER
)
8180 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8182 else if (target
== 0)
8183 op0
= convert_to_mode (mode
, op0
,
8184 TYPE_UNSIGNED (TREE_TYPE
8188 convert_move (target
, op0
,
8189 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8193 return REDUCE_BIT_FIELD (op0
);
8195 case ADDR_SPACE_CONVERT_EXPR
:
8197 tree treeop0_type
= TREE_TYPE (treeop0
);
8199 addr_space_t as_from
;
8201 gcc_assert (POINTER_TYPE_P (type
));
8202 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8204 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8205 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8207 /* Conversions between pointers to the same address space should
8208 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8209 gcc_assert (as_to
!= as_from
);
8211 /* Ask target code to handle conversion between pointers
8212 to overlapping address spaces. */
8213 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8214 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8216 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8217 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8222 /* For disjoint address spaces, converting anything but
8223 a null pointer invokes undefined behaviour. We simply
8224 always return a null pointer here. */
8225 return CONST0_RTX (mode
);
8228 case POINTER_PLUS_EXPR
:
8229 /* Even though the sizetype mode and the pointer's mode can be different
8230 expand is able to handle this correctly and get the correct result out
8231 of the PLUS_EXPR code. */
8232 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8233 if sizetype precision is smaller than pointer precision. */
8234 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8235 treeop1
= fold_convert_loc (loc
, type
,
8236 fold_convert_loc (loc
, ssizetype
,
8238 /* If sizetype precision is larger than pointer precision, truncate the
8239 offset to have matching modes. */
8240 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8241 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8244 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8245 something else, make sure we add the register to the constant and
8246 then to the other thing. This case can occur during strength
8247 reduction and doing it this way will produce better code if the
8248 frame pointer or argument pointer is eliminated.
8250 fold-const.c will ensure that the constant is always in the inner
8251 PLUS_EXPR, so the only case we need to do anything about is if
8252 sp, ap, or fp is our second argument, in which case we must swap
8253 the innermost first argument and our second argument. */
8255 if (TREE_CODE (treeop0
) == PLUS_EXPR
8256 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8257 && TREE_CODE (treeop1
) == VAR_DECL
8258 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8259 || DECL_RTL (treeop1
) == stack_pointer_rtx
8260 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8265 /* If the result is to be ptr_mode and we are adding an integer to
8266 something, we might be forming a constant. So try to use
8267 plus_constant. If it produces a sum and we can't accept it,
8268 use force_operand. This allows P = &ARR[const] to generate
8269 efficient code on machines where a SYMBOL_REF is not a valid
8272 If this is an EXPAND_SUM call, always return the sum. */
8273 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8274 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8276 if (modifier
== EXPAND_STACK_PARM
)
8278 if (TREE_CODE (treeop0
) == INTEGER_CST
8279 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8280 && TREE_CONSTANT (treeop1
))
8284 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8286 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8288 /* Use wi::shwi to ensure that the constant is
8289 truncated according to the mode of OP1, then sign extended
8290 to a HOST_WIDE_INT. Using the constant directly can result
8291 in non-canonical RTL in a 64x32 cross compile. */
8292 wc
= TREE_INT_CST_LOW (treeop0
);
8294 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8295 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8296 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8297 op1
= force_operand (op1
, target
);
8298 return REDUCE_BIT_FIELD (op1
);
8301 else if (TREE_CODE (treeop1
) == INTEGER_CST
8302 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8303 && TREE_CONSTANT (treeop0
))
8307 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8309 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8310 (modifier
== EXPAND_INITIALIZER
8311 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8312 if (! CONSTANT_P (op0
))
8314 op1
= expand_expr (treeop1
, NULL_RTX
,
8315 VOIDmode
, modifier
);
8316 /* Return a PLUS if modifier says it's OK. */
8317 if (modifier
== EXPAND_SUM
8318 || modifier
== EXPAND_INITIALIZER
)
8319 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8322 /* Use wi::shwi to ensure that the constant is
8323 truncated according to the mode of OP1, then sign extended
8324 to a HOST_WIDE_INT. Using the constant directly can result
8325 in non-canonical RTL in a 64x32 cross compile. */
8326 wc
= TREE_INT_CST_LOW (treeop1
);
8328 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8329 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8330 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8331 op0
= force_operand (op0
, target
);
8332 return REDUCE_BIT_FIELD (op0
);
8336 /* Use TER to expand pointer addition of a negated value
8337 as pointer subtraction. */
8338 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8339 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8340 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8341 && TREE_CODE (treeop1
) == SSA_NAME
8342 && TYPE_MODE (TREE_TYPE (treeop0
))
8343 == TYPE_MODE (TREE_TYPE (treeop1
)))
8345 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8348 treeop1
= gimple_assign_rhs1 (def
);
8354 /* No sense saving up arithmetic to be done
8355 if it's all in the wrong mode to form part of an address.
8356 And force_operand won't know whether to sign-extend or
8358 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8359 || mode
!= ptr_mode
)
8361 expand_operands (treeop0
, treeop1
,
8362 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8363 if (op0
== const0_rtx
)
8365 if (op1
== const0_rtx
)
8370 expand_operands (treeop0
, treeop1
,
8371 subtarget
, &op0
, &op1
, modifier
);
8372 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8376 /* For initializers, we are allowed to return a MINUS of two
8377 symbolic constants. Here we handle all cases when both operands
8379 /* Handle difference of two symbolic constants,
8380 for the sake of an initializer. */
8381 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8382 && really_constant_p (treeop0
)
8383 && really_constant_p (treeop1
))
8385 expand_operands (treeop0
, treeop1
,
8386 NULL_RTX
, &op0
, &op1
, modifier
);
8388 /* If the last operand is a CONST_INT, use plus_constant of
8389 the negated constant. Else make the MINUS. */
8390 if (CONST_INT_P (op1
))
8391 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8394 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8397 /* No sense saving up arithmetic to be done
8398 if it's all in the wrong mode to form part of an address.
8399 And force_operand won't know whether to sign-extend or
8401 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8402 || mode
!= ptr_mode
)
8405 expand_operands (treeop0
, treeop1
,
8406 subtarget
, &op0
, &op1
, modifier
);
8408 /* Convert A - const to A + (-const). */
8409 if (CONST_INT_P (op1
))
8411 op1
= negate_rtx (mode
, op1
);
8412 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8417 case WIDEN_MULT_PLUS_EXPR
:
8418 case WIDEN_MULT_MINUS_EXPR
:
8419 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8420 op2
= expand_normal (treeop2
);
8421 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8425 case WIDEN_MULT_EXPR
:
8426 /* If first operand is constant, swap them.
8427 Thus the following special case checks need only
8428 check the second operand. */
8429 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8436 /* First, check if we have a multiplication of one signed and one
8437 unsigned operand. */
8438 if (TREE_CODE (treeop1
) != INTEGER_CST
8439 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8440 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8442 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8443 this_optab
= usmul_widen_optab
;
8444 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8445 != CODE_FOR_nothing
)
8447 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8448 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8451 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8453 /* op0 and op1 might still be constant, despite the above
8454 != INTEGER_CST check. Handle it. */
8455 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8457 op0
= convert_modes (innermode
, mode
, op0
, true);
8458 op1
= convert_modes (innermode
, mode
, op1
, false);
8459 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8460 target
, unsignedp
));
8465 /* Check for a multiplication with matching signedness. */
8466 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8467 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8468 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8469 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8471 tree op0type
= TREE_TYPE (treeop0
);
8472 machine_mode innermode
= TYPE_MODE (op0type
);
8473 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8474 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8475 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8477 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8479 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8480 != CODE_FOR_nothing
)
8482 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8484 /* op0 and op1 might still be constant, despite the above
8485 != INTEGER_CST check. Handle it. */
8486 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8489 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8491 = convert_modes (innermode
, mode
, op1
,
8492 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8493 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8497 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8498 unsignedp
, this_optab
);
8499 return REDUCE_BIT_FIELD (temp
);
8501 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8503 && innermode
== word_mode
)
8506 op0
= expand_normal (treeop0
);
8507 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8508 op1
= convert_modes (innermode
, mode
,
8509 expand_normal (treeop1
),
8510 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8512 op1
= expand_normal (treeop1
);
8513 /* op0 and op1 might still be constant, despite the above
8514 != INTEGER_CST check. Handle it. */
8515 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8516 goto widen_mult_const
;
8517 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8518 unsignedp
, OPTAB_LIB_WIDEN
);
8519 hipart
= gen_highpart (innermode
, temp
);
8520 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8524 emit_move_insn (hipart
, htem
);
8525 return REDUCE_BIT_FIELD (temp
);
8529 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8530 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8531 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8532 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8536 optab opt
= fma_optab
;
8539 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8541 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8543 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8546 gcc_assert (fn
!= NULL_TREE
);
8547 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8548 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8551 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8552 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8557 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8560 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8561 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8564 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8567 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8570 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8573 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8577 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8579 op2
= expand_normal (treeop2
);
8580 op1
= expand_normal (treeop1
);
8582 return expand_ternary_op (TYPE_MODE (type
), opt
,
8583 op0
, op1
, op2
, target
, 0);
8587 /* If this is a fixed-point operation, then we cannot use the code
8588 below because "expand_mult" doesn't support sat/no-sat fixed-point
8590 if (ALL_FIXED_POINT_MODE_P (mode
))
8593 /* If first operand is constant, swap them.
8594 Thus the following special case checks need only
8595 check the second operand. */
8596 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8603 /* Attempt to return something suitable for generating an
8604 indexed address, for machines that support that. */
8606 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8607 && tree_fits_shwi_p (treeop1
))
8609 tree exp1
= treeop1
;
8611 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8615 op0
= force_operand (op0
, NULL_RTX
);
8617 op0
= copy_to_mode_reg (mode
, op0
);
8619 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8620 gen_int_mode (tree_to_shwi (exp1
),
8621 TYPE_MODE (TREE_TYPE (exp1
)))));
8624 if (modifier
== EXPAND_STACK_PARM
)
8627 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8628 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8630 case TRUNC_DIV_EXPR
:
8631 case FLOOR_DIV_EXPR
:
8633 case ROUND_DIV_EXPR
:
8634 case EXACT_DIV_EXPR
:
8635 /* If this is a fixed-point operation, then we cannot use the code
8636 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8638 if (ALL_FIXED_POINT_MODE_P (mode
))
8641 if (modifier
== EXPAND_STACK_PARM
)
8643 /* Possible optimization: compute the dividend with EXPAND_SUM
8644 then if the divisor is constant can optimize the case
8645 where some terms of the dividend have coeffs divisible by it. */
8646 expand_operands (treeop0
, treeop1
,
8647 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8648 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8653 case MULT_HIGHPART_EXPR
:
8654 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8655 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8659 case TRUNC_MOD_EXPR
:
8660 case FLOOR_MOD_EXPR
:
8662 case ROUND_MOD_EXPR
:
8663 if (modifier
== EXPAND_STACK_PARM
)
8665 expand_operands (treeop0
, treeop1
,
8666 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8667 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8669 case FIXED_CONVERT_EXPR
:
8670 op0
= expand_normal (treeop0
);
8671 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8672 target
= gen_reg_rtx (mode
);
8674 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8675 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8676 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8677 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8679 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8682 case FIX_TRUNC_EXPR
:
8683 op0
= expand_normal (treeop0
);
8684 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8685 target
= gen_reg_rtx (mode
);
8686 expand_fix (target
, op0
, unsignedp
);
8690 op0
= expand_normal (treeop0
);
8691 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8692 target
= gen_reg_rtx (mode
);
8693 /* expand_float can't figure out what to do if FROM has VOIDmode.
8694 So give it the correct mode. With -O, cse will optimize this. */
8695 if (GET_MODE (op0
) == VOIDmode
)
8696 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8698 expand_float (target
, op0
,
8699 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8703 op0
= expand_expr (treeop0
, subtarget
,
8704 VOIDmode
, EXPAND_NORMAL
);
8705 if (modifier
== EXPAND_STACK_PARM
)
8707 temp
= expand_unop (mode
,
8708 optab_for_tree_code (NEGATE_EXPR
, type
,
8712 return REDUCE_BIT_FIELD (temp
);
8715 op0
= expand_expr (treeop0
, subtarget
,
8716 VOIDmode
, EXPAND_NORMAL
);
8717 if (modifier
== EXPAND_STACK_PARM
)
8720 /* ABS_EXPR is not valid for complex arguments. */
8721 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8722 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8724 /* Unsigned abs is simply the operand. Testing here means we don't
8725 risk generating incorrect code below. */
8726 if (TYPE_UNSIGNED (type
))
8729 return expand_abs (mode
, op0
, target
, unsignedp
,
8730 safe_from_p (target
, treeop0
, 1));
8734 target
= original_target
;
8736 || modifier
== EXPAND_STACK_PARM
8737 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8738 || GET_MODE (target
) != mode
8740 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8741 target
= gen_reg_rtx (mode
);
8742 expand_operands (treeop0
, treeop1
,
8743 target
, &op0
, &op1
, EXPAND_NORMAL
);
8745 /* First try to do it with a special MIN or MAX instruction.
8746 If that does not win, use a conditional jump to select the proper
8748 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8749 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8754 /* At this point, a MEM target is no longer useful; we will get better
8757 if (! REG_P (target
))
8758 target
= gen_reg_rtx (mode
);
8760 /* If op1 was placed in target, swap op0 and op1. */
8761 if (target
!= op0
&& target
== op1
)
8768 /* We generate better code and avoid problems with op1 mentioning
8769 target by forcing op1 into a pseudo if it isn't a constant. */
8770 if (! CONSTANT_P (op1
))
8771 op1
= force_reg (mode
, op1
);
8774 enum rtx_code comparison_code
;
8777 if (code
== MAX_EXPR
)
8778 comparison_code
= unsignedp
? GEU
: GE
;
8780 comparison_code
= unsignedp
? LEU
: LE
;
8782 /* Canonicalize to comparisons against 0. */
8783 if (op1
== const1_rtx
)
8785 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8786 or (a != 0 ? a : 1) for unsigned.
8787 For MIN we are safe converting (a <= 1 ? a : 1)
8788 into (a <= 0 ? a : 1) */
8789 cmpop1
= const0_rtx
;
8790 if (code
== MAX_EXPR
)
8791 comparison_code
= unsignedp
? NE
: GT
;
8793 if (op1
== constm1_rtx
&& !unsignedp
)
8795 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8796 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8797 cmpop1
= const0_rtx
;
8798 if (code
== MIN_EXPR
)
8799 comparison_code
= LT
;
8801 #ifdef HAVE_conditional_move
8802 /* Use a conditional move if possible. */
8803 if (can_conditionally_move_p (mode
))
8809 /* Try to emit the conditional move. */
8810 insn
= emit_conditional_move (target
, comparison_code
,
8815 /* If we could do the conditional move, emit the sequence,
8819 rtx_insn
*seq
= get_insns ();
8825 /* Otherwise discard the sequence and fall back to code with
8831 emit_move_insn (target
, op0
);
8833 temp
= gen_label_rtx ();
8834 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8835 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8838 emit_move_insn (target
, op1
);
8843 op0
= expand_expr (treeop0
, subtarget
,
8844 VOIDmode
, EXPAND_NORMAL
);
8845 if (modifier
== EXPAND_STACK_PARM
)
8847 /* In case we have to reduce the result to bitfield precision
8848 for unsigned bitfield expand this as XOR with a proper constant
8850 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8852 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8853 false, GET_MODE_PRECISION (mode
));
8855 temp
= expand_binop (mode
, xor_optab
, op0
,
8856 immed_wide_int_const (mask
, mode
),
8857 target
, 1, OPTAB_LIB_WIDEN
);
8860 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8864 /* ??? Can optimize bitwise operations with one arg constant.
8865 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8866 and (a bitwise1 b) bitwise2 b (etc)
8867 but that is probably not worth while. */
8876 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8877 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8878 == TYPE_PRECISION (type
)));
8883 /* If this is a fixed-point operation, then we cannot use the code
8884 below because "expand_shift" doesn't support sat/no-sat fixed-point
8886 if (ALL_FIXED_POINT_MODE_P (mode
))
8889 if (! safe_from_p (subtarget
, treeop1
, 1))
8891 if (modifier
== EXPAND_STACK_PARM
)
8893 op0
= expand_expr (treeop0
, subtarget
,
8894 VOIDmode
, EXPAND_NORMAL
);
8895 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8897 if (code
== LSHIFT_EXPR
)
8898 temp
= REDUCE_BIT_FIELD (temp
);
8901 /* Could determine the answer when only additive constants differ. Also,
8902 the addition of one can be handled by changing the condition. */
8909 case UNORDERED_EXPR
:
8917 temp
= do_store_flag (ops
,
8918 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8919 tmode
!= VOIDmode
? tmode
: mode
);
8923 /* Use a compare and a jump for BLKmode comparisons, or for function
8924 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8927 || modifier
== EXPAND_STACK_PARM
8928 || ! safe_from_p (target
, treeop0
, 1)
8929 || ! safe_from_p (target
, treeop1
, 1)
8930 /* Make sure we don't have a hard reg (such as function's return
8931 value) live across basic blocks, if not optimizing. */
8932 || (!optimize
&& REG_P (target
)
8933 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8934 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8936 emit_move_insn (target
, const0_rtx
);
8938 op1
= gen_label_rtx ();
8939 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8941 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8942 emit_move_insn (target
, constm1_rtx
);
8944 emit_move_insn (target
, const1_rtx
);
8950 /* Get the rtx code of the operands. */
8951 op0
= expand_normal (treeop0
);
8952 op1
= expand_normal (treeop1
);
8955 target
= gen_reg_rtx (TYPE_MODE (type
));
8957 /* If target overlaps with op1, then either we need to force
8958 op1 into a pseudo (if target also overlaps with op0),
8959 or write the complex parts in reverse order. */
8960 switch (GET_CODE (target
))
8963 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8965 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8967 complex_expr_force_op1
:
8968 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8969 emit_move_insn (temp
, op1
);
8973 complex_expr_swap_order
:
8974 /* Move the imaginary (op1) and real (op0) parts to their
8976 write_complex_part (target
, op1
, true);
8977 write_complex_part (target
, op0
, false);
8983 temp
= adjust_address_nv (target
,
8984 GET_MODE_INNER (GET_MODE (target
)), 0);
8985 if (reg_overlap_mentioned_p (temp
, op1
))
8987 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
8988 temp
= adjust_address_nv (target
, imode
,
8989 GET_MODE_SIZE (imode
));
8990 if (reg_overlap_mentioned_p (temp
, op0
))
8991 goto complex_expr_force_op1
;
8992 goto complex_expr_swap_order
;
8996 if (reg_overlap_mentioned_p (target
, op1
))
8998 if (reg_overlap_mentioned_p (target
, op0
))
8999 goto complex_expr_force_op1
;
9000 goto complex_expr_swap_order
;
9005 /* Move the real (op0) and imaginary (op1) parts to their location. */
9006 write_complex_part (target
, op0
, false);
9007 write_complex_part (target
, op1
, true);
9011 case WIDEN_SUM_EXPR
:
9013 tree oprnd0
= treeop0
;
9014 tree oprnd1
= treeop1
;
9016 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9017 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9022 case REDUC_MAX_EXPR
:
9023 case REDUC_MIN_EXPR
:
9024 case REDUC_PLUS_EXPR
:
9026 op0
= expand_normal (treeop0
);
9027 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9028 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9030 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9032 struct expand_operand ops
[2];
9033 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9035 create_output_operand (&ops
[0], target
, mode
);
9036 create_input_operand (&ops
[1], op0
, vec_mode
);
9037 if (maybe_expand_insn (icode
, 2, ops
))
9039 target
= ops
[0].value
;
9040 if (GET_MODE (target
) != mode
)
9041 return gen_lowpart (tmode
, target
);
9045 /* Fall back to optab with vector result, and then extract scalar. */
9046 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9047 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9049 /* The tree code produces a scalar result, but (somewhat by convention)
9050 the optab produces a vector with the result in element 0 if
9051 little-endian, or element N-1 if big-endian. So pull the scalar
9052 result out of that element. */
9053 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9054 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9055 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9056 target
, mode
, mode
);
9061 case VEC_RSHIFT_EXPR
:
9063 target
= expand_vec_shift_expr (ops
, target
);
9067 case VEC_UNPACK_HI_EXPR
:
9068 case VEC_UNPACK_LO_EXPR
:
9070 op0
= expand_normal (treeop0
);
9071 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9077 case VEC_UNPACK_FLOAT_HI_EXPR
:
9078 case VEC_UNPACK_FLOAT_LO_EXPR
:
9080 op0
= expand_normal (treeop0
);
9081 /* The signedness is determined from input operand. */
9082 temp
= expand_widen_pattern_expr
9083 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9084 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9090 case VEC_WIDEN_MULT_HI_EXPR
:
9091 case VEC_WIDEN_MULT_LO_EXPR
:
9092 case VEC_WIDEN_MULT_EVEN_EXPR
:
9093 case VEC_WIDEN_MULT_ODD_EXPR
:
9094 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9095 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9096 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9097 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9099 gcc_assert (target
);
9102 case VEC_PACK_TRUNC_EXPR
:
9103 case VEC_PACK_SAT_EXPR
:
9104 case VEC_PACK_FIX_TRUNC_EXPR
:
9105 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9109 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9110 op2
= expand_normal (treeop2
);
9112 /* Careful here: if the target doesn't support integral vector modes,
9113 a constant selection vector could wind up smooshed into a normal
9114 integral constant. */
9115 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9117 tree sel_type
= TREE_TYPE (treeop2
);
9119 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9120 TYPE_VECTOR_SUBPARTS (sel_type
));
9121 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9122 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9123 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9126 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9128 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9134 tree oprnd0
= treeop0
;
9135 tree oprnd1
= treeop1
;
9136 tree oprnd2
= treeop2
;
9139 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9140 op2
= expand_normal (oprnd2
);
9141 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9148 tree oprnd0
= treeop0
;
9149 tree oprnd1
= treeop1
;
9150 tree oprnd2
= treeop2
;
9153 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9154 op2
= expand_normal (oprnd2
);
9155 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9160 case REALIGN_LOAD_EXPR
:
9162 tree oprnd0
= treeop0
;
9163 tree oprnd1
= treeop1
;
9164 tree oprnd2
= treeop2
;
9167 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9168 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9169 op2
= expand_normal (oprnd2
);
9170 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9177 /* A COND_EXPR with its type being VOID_TYPE represents a
9178 conditional jump and is handled in
9179 expand_gimple_cond_expr. */
9180 gcc_assert (!VOID_TYPE_P (type
));
9182 /* Note that COND_EXPRs whose type is a structure or union
9183 are required to be constructed to contain assignments of
9184 a temporary variable, so that we can evaluate them here
9185 for side effect only. If type is void, we must do likewise. */
9187 gcc_assert (!TREE_ADDRESSABLE (type
)
9189 && TREE_TYPE (treeop1
) != void_type_node
9190 && TREE_TYPE (treeop2
) != void_type_node
);
9192 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9196 /* If we are not to produce a result, we have no target. Otherwise,
9197 if a target was specified use it; it will not be used as an
9198 intermediate target unless it is safe. If no target, use a
9201 if (modifier
!= EXPAND_STACK_PARM
9203 && safe_from_p (original_target
, treeop0
, 1)
9204 && GET_MODE (original_target
) == mode
9205 && !MEM_P (original_target
))
9206 temp
= original_target
;
9208 temp
= assign_temp (type
, 0, 1);
9210 do_pending_stack_adjust ();
9212 op0
= gen_label_rtx ();
9213 op1
= gen_label_rtx ();
9214 jumpifnot (treeop0
, op0
, -1);
9215 store_expr (treeop1
, temp
,
9216 modifier
== EXPAND_STACK_PARM
,
9219 emit_jump_insn (gen_jump (op1
));
9222 store_expr (treeop2
, temp
,
9223 modifier
== EXPAND_STACK_PARM
,
9231 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9238 /* Here to do an ordinary binary operator. */
9240 expand_operands (treeop0
, treeop1
,
9241 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9243 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9245 if (modifier
== EXPAND_STACK_PARM
)
9247 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9248 unsignedp
, OPTAB_LIB_WIDEN
);
9250 /* Bitwise operations do not need bitfield reduction as we expect their
9251 operands being properly truncated. */
9252 if (code
== BIT_XOR_EXPR
9253 || code
== BIT_AND_EXPR
9254 || code
== BIT_IOR_EXPR
)
9256 return REDUCE_BIT_FIELD (temp
);
9258 #undef REDUCE_BIT_FIELD
9261 /* Return TRUE if expression STMT is suitable for replacement.
9262 Never consider memory loads as replaceable, because those don't ever lead
9263 into constant expressions. */
9266 stmt_is_replaceable_p (gimple stmt
)
9268 if (ssa_is_replaceable_p (stmt
))
9270 /* Don't move around loads. */
9271 if (!gimple_assign_single_p (stmt
)
9272 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9279 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9280 enum expand_modifier modifier
, rtx
*alt_rtl
,
9281 bool inner_reference_p
)
9283 rtx op0
, op1
, temp
, decl_rtl
;
9287 enum tree_code code
= TREE_CODE (exp
);
9288 rtx subtarget
, original_target
;
9291 bool reduce_bit_field
;
9292 location_t loc
= EXPR_LOCATION (exp
);
9293 struct separate_ops ops
;
9294 tree treeop0
, treeop1
, treeop2
;
9295 tree ssa_name
= NULL_TREE
;
9298 type
= TREE_TYPE (exp
);
9299 mode
= TYPE_MODE (type
);
9300 unsignedp
= TYPE_UNSIGNED (type
);
9302 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9303 if (!VL_EXP_CLASS_P (exp
))
9304 switch (TREE_CODE_LENGTH (code
))
9307 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9308 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9309 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9319 ignore
= (target
== const0_rtx
9320 || ((CONVERT_EXPR_CODE_P (code
)
9321 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9322 && TREE_CODE (type
) == VOID_TYPE
));
9324 /* An operation in what may be a bit-field type needs the
9325 result to be reduced to the precision of the bit-field type,
9326 which is narrower than that of the type's mode. */
9327 reduce_bit_field
= (!ignore
9328 && INTEGRAL_TYPE_P (type
)
9329 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9331 /* If we are going to ignore this result, we need only do something
9332 if there is a side-effect somewhere in the expression. If there
9333 is, short-circuit the most common cases here. Note that we must
9334 not call expand_expr with anything but const0_rtx in case this
9335 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9339 if (! TREE_SIDE_EFFECTS (exp
))
9342 /* Ensure we reference a volatile object even if value is ignored, but
9343 don't do this if all we are doing is taking its address. */
9344 if (TREE_THIS_VOLATILE (exp
)
9345 && TREE_CODE (exp
) != FUNCTION_DECL
9346 && mode
!= VOIDmode
&& mode
!= BLKmode
9347 && modifier
!= EXPAND_CONST_ADDRESS
)
9349 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9355 if (TREE_CODE_CLASS (code
) == tcc_unary
9356 || code
== BIT_FIELD_REF
9357 || code
== COMPONENT_REF
9358 || code
== INDIRECT_REF
)
9359 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9362 else if (TREE_CODE_CLASS (code
) == tcc_binary
9363 || TREE_CODE_CLASS (code
) == tcc_comparison
9364 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9366 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9367 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9374 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9377 /* Use subtarget as the target for operand 0 of a binary operation. */
9378 subtarget
= get_subtarget (target
);
9379 original_target
= target
;
9385 tree function
= decl_function_context (exp
);
9387 temp
= label_rtx (exp
);
9388 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9390 if (function
!= current_function_decl
9392 LABEL_REF_NONLOCAL_P (temp
) = 1;
9394 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9399 /* ??? ivopts calls expander, without any preparation from
9400 out-of-ssa. So fake instructions as if this was an access to the
9401 base variable. This unnecessarily allocates a pseudo, see how we can
9402 reuse it, if partition base vars have it set already. */
9403 if (!currently_expanding_to_rtl
)
9405 tree var
= SSA_NAME_VAR (exp
);
9406 if (var
&& DECL_RTL_SET_P (var
))
9407 return DECL_RTL (var
);
9408 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9409 LAST_VIRTUAL_REGISTER
+ 1);
9412 g
= get_gimple_for_ssa_name (exp
);
9413 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9415 && modifier
== EXPAND_INITIALIZER
9416 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9417 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9418 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9419 g
= SSA_NAME_DEF_STMT (exp
);
9423 ops
.code
= gimple_assign_rhs_code (g
);
9424 switch (get_gimple_rhs_class (ops
.code
))
9426 case GIMPLE_TERNARY_RHS
:
9427 ops
.op2
= gimple_assign_rhs3 (g
);
9429 case GIMPLE_BINARY_RHS
:
9430 ops
.op1
= gimple_assign_rhs2 (g
);
9432 case GIMPLE_UNARY_RHS
:
9433 ops
.op0
= gimple_assign_rhs1 (g
);
9434 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9435 ops
.location
= gimple_location (g
);
9436 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9438 case GIMPLE_SINGLE_RHS
:
9440 location_t saved_loc
= curr_insn_location ();
9441 set_curr_insn_location (gimple_location (g
));
9442 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9443 tmode
, modifier
, NULL
, inner_reference_p
);
9444 set_curr_insn_location (saved_loc
);
9450 if (REG_P (r
) && !REG_EXPR (r
))
9451 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9456 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9457 exp
= SSA_NAME_VAR (ssa_name
);
9458 goto expand_decl_rtl
;
9462 /* If a static var's type was incomplete when the decl was written,
9463 but the type is complete now, lay out the decl now. */
9464 if (DECL_SIZE (exp
) == 0
9465 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9466 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9467 layout_decl (exp
, 0);
9469 /* ... fall through ... */
9473 decl_rtl
= DECL_RTL (exp
);
9475 gcc_assert (decl_rtl
);
9476 decl_rtl
= copy_rtx (decl_rtl
);
9477 /* Record writes to register variables. */
9478 if (modifier
== EXPAND_WRITE
9480 && HARD_REGISTER_P (decl_rtl
))
9481 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9482 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9484 /* Ensure variable marked as used even if it doesn't go through
9485 a parser. If it hasn't be used yet, write out an external
9487 TREE_USED (exp
) = 1;
9489 /* Show we haven't gotten RTL for this yet. */
9492 /* Variables inherited from containing functions should have
9493 been lowered by this point. */
9494 context
= decl_function_context (exp
);
9495 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9496 || context
== current_function_decl
9497 || TREE_STATIC (exp
)
9498 || DECL_EXTERNAL (exp
)
9499 /* ??? C++ creates functions that are not TREE_STATIC. */
9500 || TREE_CODE (exp
) == FUNCTION_DECL
);
9502 /* This is the case of an array whose size is to be determined
9503 from its initializer, while the initializer is still being parsed.
9504 ??? We aren't parsing while expanding anymore. */
9506 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9507 temp
= validize_mem (decl_rtl
);
9509 /* If DECL_RTL is memory, we are in the normal case and the
9510 address is not valid, get the address into a register. */
9512 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9515 *alt_rtl
= decl_rtl
;
9516 decl_rtl
= use_anchored_address (decl_rtl
);
9517 if (modifier
!= EXPAND_CONST_ADDRESS
9518 && modifier
!= EXPAND_SUM
9519 && !memory_address_addr_space_p (DECL_MODE (exp
),
9521 MEM_ADDR_SPACE (decl_rtl
)))
9522 temp
= replace_equiv_address (decl_rtl
,
9523 copy_rtx (XEXP (decl_rtl
, 0)));
9526 /* If we got something, return it. But first, set the alignment
9527 if the address is a register. */
9530 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9531 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9536 /* If the mode of DECL_RTL does not match that of the decl,
9537 there are two cases: we are dealing with a BLKmode value
9538 that is returned in a register, or we are dealing with
9539 a promoted value. In the latter case, return a SUBREG
9540 of the wanted mode, but mark it so that we know that it
9541 was already extended. */
9542 if (REG_P (decl_rtl
)
9543 && DECL_MODE (exp
) != BLKmode
9544 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9548 /* Get the signedness to be used for this variable. Ensure we get
9549 the same mode we got when the variable was declared. */
9550 if (code
== SSA_NAME
9551 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9552 && gimple_code (g
) == GIMPLE_CALL
9553 && !gimple_call_internal_p (g
))
9554 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9555 gimple_call_fntype (g
),
9558 pmode
= promote_decl_mode (exp
, &unsignedp
);
9559 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9561 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9562 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9563 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9570 /* Given that TYPE_PRECISION (type) is not always equal to
9571 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9572 the former to the latter according to the signedness of the
9574 temp
= immed_wide_int_const (wide_int::from
9576 GET_MODE_PRECISION (TYPE_MODE (type
)),
9583 tree tmp
= NULL_TREE
;
9584 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9585 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9586 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9587 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9588 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9589 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9590 return const_vector_from_tree (exp
);
9591 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9593 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9595 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9599 vec
<constructor_elt
, va_gc
> *v
;
9601 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9602 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9603 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9604 tmp
= build_constructor (type
, v
);
9606 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9611 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9614 /* If optimized, generate immediate CONST_DOUBLE
9615 which will be turned into memory by reload if necessary.
9617 We used to force a register so that loop.c could see it. But
9618 this does not allow gen_* patterns to perform optimizations with
9619 the constants. It also produces two insns in cases like "x = 1.0;".
9620 On most machines, floating-point constants are not permitted in
9621 many insns, so we'd end up copying it to a register in any case.
9623 Now, we do the copying in expand_binop, if appropriate. */
9624 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9625 TYPE_MODE (TREE_TYPE (exp
)));
9628 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9629 TYPE_MODE (TREE_TYPE (exp
)));
9632 /* Handle evaluating a complex constant in a CONCAT target. */
9633 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9635 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9638 rtarg
= XEXP (original_target
, 0);
9639 itarg
= XEXP (original_target
, 1);
9641 /* Move the real and imaginary parts separately. */
9642 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9643 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9646 emit_move_insn (rtarg
, op0
);
9648 emit_move_insn (itarg
, op1
);
9650 return original_target
;
9653 /* ... fall through ... */
9656 temp
= expand_expr_constant (exp
, 1, modifier
);
9658 /* temp contains a constant address.
9659 On RISC machines where a constant address isn't valid,
9660 make some insns to get that address into a register. */
9661 if (modifier
!= EXPAND_CONST_ADDRESS
9662 && modifier
!= EXPAND_INITIALIZER
9663 && modifier
!= EXPAND_SUM
9664 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9665 MEM_ADDR_SPACE (temp
)))
9666 return replace_equiv_address (temp
,
9667 copy_rtx (XEXP (temp
, 0)));
9673 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9676 if (!SAVE_EXPR_RESOLVED_P (exp
))
9678 /* We can indeed still hit this case, typically via builtin
9679 expanders calling save_expr immediately before expanding
9680 something. Assume this means that we only have to deal
9681 with non-BLKmode values. */
9682 gcc_assert (GET_MODE (ret
) != BLKmode
);
9684 val
= build_decl (curr_insn_location (),
9685 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9686 DECL_ARTIFICIAL (val
) = 1;
9687 DECL_IGNORED_P (val
) = 1;
9689 TREE_OPERAND (exp
, 0) = treeop0
;
9690 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9692 if (!CONSTANT_P (ret
))
9693 ret
= copy_to_reg (ret
);
9694 SET_DECL_RTL (val
, ret
);
9702 /* If we don't need the result, just ensure we evaluate any
9706 unsigned HOST_WIDE_INT idx
;
9709 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9710 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9715 return expand_constructor (exp
, target
, modifier
, false);
9717 case TARGET_MEM_REF
:
9720 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9721 enum insn_code icode
;
9724 op0
= addr_for_mem_ref (exp
, as
, true);
9725 op0
= memory_address_addr_space (mode
, op0
, as
);
9726 temp
= gen_rtx_MEM (mode
, op0
);
9727 set_mem_attributes (temp
, exp
, 0);
9728 set_mem_addr_space (temp
, as
);
9729 align
= get_object_alignment (exp
);
9730 if (modifier
!= EXPAND_WRITE
9731 && modifier
!= EXPAND_MEMORY
9733 && align
< GET_MODE_ALIGNMENT (mode
)
9734 /* If the target does not have special handling for unaligned
9735 loads of mode then it can use regular moves for them. */
9736 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9737 != CODE_FOR_nothing
))
9739 struct expand_operand ops
[2];
9741 /* We've already validated the memory, and we're creating a
9742 new pseudo destination. The predicates really can't fail,
9743 nor can the generator. */
9744 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9745 create_fixed_operand (&ops
[1], temp
);
9746 expand_insn (icode
, 2, ops
);
9747 temp
= ops
[0].value
;
9755 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9756 machine_mode address_mode
;
9757 tree base
= TREE_OPERAND (exp
, 0);
9759 enum insn_code icode
;
9761 /* Handle expansion of non-aliased memory with non-BLKmode. That
9762 might end up in a register. */
9763 if (mem_ref_refers_to_non_mem_p (exp
))
9765 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9766 base
= TREE_OPERAND (base
, 0);
9768 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9769 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9770 == tree_to_uhwi (TYPE_SIZE (type
))))
9771 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9772 target
, tmode
, modifier
);
9773 if (TYPE_MODE (type
) == BLKmode
)
9775 temp
= assign_stack_temp (DECL_MODE (base
),
9776 GET_MODE_SIZE (DECL_MODE (base
)));
9777 store_expr (base
, temp
, 0, false);
9778 temp
= adjust_address (temp
, BLKmode
, offset
);
9779 set_mem_size (temp
, int_size_in_bytes (type
));
9782 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9783 bitsize_int (offset
* BITS_PER_UNIT
));
9784 return expand_expr (exp
, target
, tmode
, modifier
);
9786 address_mode
= targetm
.addr_space
.address_mode (as
);
9787 base
= TREE_OPERAND (exp
, 0);
9788 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9790 tree mask
= gimple_assign_rhs2 (def_stmt
);
9791 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9792 gimple_assign_rhs1 (def_stmt
), mask
);
9793 TREE_OPERAND (exp
, 0) = base
;
9795 align
= get_object_alignment (exp
);
9796 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9797 op0
= memory_address_addr_space (mode
, op0
, as
);
9798 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9800 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9801 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9802 op0
= memory_address_addr_space (mode
, op0
, as
);
9804 temp
= gen_rtx_MEM (mode
, op0
);
9805 set_mem_attributes (temp
, exp
, 0);
9806 set_mem_addr_space (temp
, as
);
9807 if (TREE_THIS_VOLATILE (exp
))
9808 MEM_VOLATILE_P (temp
) = 1;
9809 if (modifier
!= EXPAND_WRITE
9810 && modifier
!= EXPAND_MEMORY
9811 && !inner_reference_p
9813 && align
< GET_MODE_ALIGNMENT (mode
))
9815 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9816 != CODE_FOR_nothing
)
9818 struct expand_operand ops
[2];
9820 /* We've already validated the memory, and we're creating a
9821 new pseudo destination. The predicates really can't fail,
9822 nor can the generator. */
9823 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9824 create_fixed_operand (&ops
[1], temp
);
9825 expand_insn (icode
, 2, ops
);
9826 temp
= ops
[0].value
;
9828 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9829 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9830 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9831 (modifier
== EXPAND_STACK_PARM
9832 ? NULL_RTX
: target
),
9841 tree array
= treeop0
;
9842 tree index
= treeop1
;
9845 /* Fold an expression like: "foo"[2].
9846 This is not done in fold so it won't happen inside &.
9847 Don't fold if this is for wide characters since it's too
9848 difficult to do correctly and this is a very rare case. */
9850 if (modifier
!= EXPAND_CONST_ADDRESS
9851 && modifier
!= EXPAND_INITIALIZER
9852 && modifier
!= EXPAND_MEMORY
)
9854 tree t
= fold_read_from_constant_string (exp
);
9857 return expand_expr (t
, target
, tmode
, modifier
);
9860 /* If this is a constant index into a constant array,
9861 just get the value from the array. Handle both the cases when
9862 we have an explicit constructor and when our operand is a variable
9863 that was declared const. */
9865 if (modifier
!= EXPAND_CONST_ADDRESS
9866 && modifier
!= EXPAND_INITIALIZER
9867 && modifier
!= EXPAND_MEMORY
9868 && TREE_CODE (array
) == CONSTRUCTOR
9869 && ! TREE_SIDE_EFFECTS (array
)
9870 && TREE_CODE (index
) == INTEGER_CST
)
9872 unsigned HOST_WIDE_INT ix
;
9875 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9877 if (tree_int_cst_equal (field
, index
))
9879 if (!TREE_SIDE_EFFECTS (value
))
9880 return expand_expr (fold (value
), target
, tmode
, modifier
);
9885 else if (optimize
>= 1
9886 && modifier
!= EXPAND_CONST_ADDRESS
9887 && modifier
!= EXPAND_INITIALIZER
9888 && modifier
!= EXPAND_MEMORY
9889 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9890 && TREE_CODE (index
) == INTEGER_CST
9891 && (TREE_CODE (array
) == VAR_DECL
9892 || TREE_CODE (array
) == CONST_DECL
)
9893 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9895 if (init
== NULL_TREE
)
9897 tree value
= build_zero_cst (type
);
9898 if (TREE_CODE (value
) == CONSTRUCTOR
)
9900 /* If VALUE is a CONSTRUCTOR, this optimization is only
9901 useful if this doesn't store the CONSTRUCTOR into
9902 memory. If it does, it is more efficient to just
9903 load the data from the array directly. */
9904 rtx ret
= expand_constructor (value
, target
,
9906 if (ret
== NULL_RTX
)
9911 return expand_expr (value
, target
, tmode
, modifier
);
9913 else if (TREE_CODE (init
) == CONSTRUCTOR
)
9915 unsigned HOST_WIDE_INT ix
;
9918 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9920 if (tree_int_cst_equal (field
, index
))
9922 if (TREE_SIDE_EFFECTS (value
))
9925 if (TREE_CODE (value
) == CONSTRUCTOR
)
9927 /* If VALUE is a CONSTRUCTOR, this
9928 optimization is only useful if
9929 this doesn't store the CONSTRUCTOR
9930 into memory. If it does, it is more
9931 efficient to just load the data from
9932 the array directly. */
9933 rtx ret
= expand_constructor (value
, target
,
9935 if (ret
== NULL_RTX
)
9940 expand_expr (fold (value
), target
, tmode
, modifier
);
9943 else if (TREE_CODE (init
) == STRING_CST
)
9945 tree low_bound
= array_ref_low_bound (exp
);
9946 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
9948 /* Optimize the special case of a zero lower bound.
9950 We convert the lower bound to sizetype to avoid problems
9951 with constant folding. E.g. suppose the lower bound is
9952 1 and its mode is QI. Without the conversion
9953 (ARRAY + (INDEX - (unsigned char)1))
9955 (ARRAY + (-(unsigned char)1) + INDEX)
9957 (ARRAY + 255 + INDEX). Oops! */
9958 if (!integer_zerop (low_bound
))
9959 index1
= size_diffop_loc (loc
, index1
,
9960 fold_convert_loc (loc
, sizetype
,
9963 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
9965 tree type
= TREE_TYPE (TREE_TYPE (init
));
9966 machine_mode mode
= TYPE_MODE (type
);
9968 if (GET_MODE_CLASS (mode
) == MODE_INT
9969 && GET_MODE_SIZE (mode
) == 1)
9970 return gen_int_mode (TREE_STRING_POINTER (init
)
9971 [TREE_INT_CST_LOW (index1
)],
9977 goto normal_inner_ref
;
9980 /* If the operand is a CONSTRUCTOR, we can just extract the
9981 appropriate field if it is present. */
9982 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9984 unsigned HOST_WIDE_INT idx
;
9987 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9989 if (field
== treeop1
9990 /* We can normally use the value of the field in the
9991 CONSTRUCTOR. However, if this is a bitfield in
9992 an integral mode that we can fit in a HOST_WIDE_INT,
9993 we must mask only the number of bits in the bitfield,
9994 since this is done implicitly by the constructor. If
9995 the bitfield does not meet either of those conditions,
9996 we can't do this optimization. */
9997 && (! DECL_BIT_FIELD (field
)
9998 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9999 && (GET_MODE_PRECISION (DECL_MODE (field
))
10000 <= HOST_BITS_PER_WIDE_INT
))))
10002 if (DECL_BIT_FIELD (field
)
10003 && modifier
== EXPAND_STACK_PARM
)
10005 op0
= expand_expr (value
, target
, tmode
, modifier
);
10006 if (DECL_BIT_FIELD (field
))
10008 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10009 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10011 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10013 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10015 op0
= expand_and (imode
, op0
, op1
, target
);
10019 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10021 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10023 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10031 goto normal_inner_ref
;
10033 case BIT_FIELD_REF
:
10034 case ARRAY_RANGE_REF
:
10037 machine_mode mode1
, mode2
;
10038 HOST_WIDE_INT bitsize
, bitpos
;
10040 int volatilep
= 0, must_force_mem
;
10041 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10042 &mode1
, &unsignedp
, &volatilep
, true);
10043 rtx orig_op0
, memloc
;
10044 bool mem_attrs_from_type
= false;
10046 /* If we got back the original object, something is wrong. Perhaps
10047 we are evaluating an expression too early. In any event, don't
10048 infinitely recurse. */
10049 gcc_assert (tem
!= exp
);
10051 /* If TEM's type is a union of variable size, pass TARGET to the inner
10052 computation, since it will need a temporary and TARGET is known
10053 to have to do. This occurs in unchecked conversion in Ada. */
10055 = expand_expr_real (tem
,
10056 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10057 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10058 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10060 && modifier
!= EXPAND_STACK_PARM
10061 ? target
: NULL_RTX
),
10063 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10066 /* If the field has a mode, we want to access it in the
10067 field's mode, not the computed mode.
10068 If a MEM has VOIDmode (external with incomplete type),
10069 use BLKmode for it instead. */
10072 if (mode1
!= VOIDmode
)
10073 op0
= adjust_address (op0
, mode1
, 0);
10074 else if (GET_MODE (op0
) == VOIDmode
)
10075 op0
= adjust_address (op0
, BLKmode
, 0);
10079 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10081 /* If we have either an offset, a BLKmode result, or a reference
10082 outside the underlying object, we must force it to memory.
10083 Such a case can occur in Ada if we have unchecked conversion
10084 of an expression from a scalar type to an aggregate type or
10085 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10086 passed a partially uninitialized object or a view-conversion
10087 to a larger size. */
10088 must_force_mem
= (offset
10089 || mode1
== BLKmode
10090 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10092 /* Handle CONCAT first. */
10093 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10096 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10099 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10102 op0
= XEXP (op0
, 0);
10103 mode2
= GET_MODE (op0
);
10105 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10106 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10110 op0
= XEXP (op0
, 1);
10112 mode2
= GET_MODE (op0
);
10115 /* Otherwise force into memory. */
10116 must_force_mem
= 1;
10119 /* If this is a constant, put it in a register if it is a legitimate
10120 constant and we don't need a memory reference. */
10121 if (CONSTANT_P (op0
)
10122 && mode2
!= BLKmode
10123 && targetm
.legitimate_constant_p (mode2
, op0
)
10124 && !must_force_mem
)
10125 op0
= force_reg (mode2
, op0
);
10127 /* Otherwise, if this is a constant, try to force it to the constant
10128 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10129 is a legitimate constant. */
10130 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10131 op0
= validize_mem (memloc
);
10133 /* Otherwise, if this is a constant or the object is not in memory
10134 and need be, put it there. */
10135 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10137 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10138 emit_move_insn (memloc
, op0
);
10140 mem_attrs_from_type
= true;
10145 machine_mode address_mode
;
10146 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10149 gcc_assert (MEM_P (op0
));
10151 address_mode
= get_address_mode (op0
);
10152 if (GET_MODE (offset_rtx
) != address_mode
)
10153 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10155 /* See the comment in expand_assignment for the rationale. */
10156 if (mode1
!= VOIDmode
10159 && (bitpos
% bitsize
) == 0
10160 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10161 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10163 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10167 op0
= offset_address (op0
, offset_rtx
,
10168 highest_pow2_factor (offset
));
10171 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10172 record its alignment as BIGGEST_ALIGNMENT. */
10173 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10174 && is_aligning_offset (offset
, tem
))
10175 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10177 /* Don't forget about volatility even if this is a bitfield. */
10178 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10180 if (op0
== orig_op0
)
10181 op0
= copy_rtx (op0
);
10183 MEM_VOLATILE_P (op0
) = 1;
10186 /* In cases where an aligned union has an unaligned object
10187 as a field, we might be extracting a BLKmode value from
10188 an integer-mode (e.g., SImode) object. Handle this case
10189 by doing the extract into an object as wide as the field
10190 (which we know to be the width of a basic mode), then
10191 storing into memory, and changing the mode to BLKmode. */
10192 if (mode1
== VOIDmode
10193 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10194 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10195 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10196 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10197 && modifier
!= EXPAND_CONST_ADDRESS
10198 && modifier
!= EXPAND_INITIALIZER
10199 && modifier
!= EXPAND_MEMORY
)
10200 /* If the bitfield is volatile and the bitsize
10201 is narrower than the access size of the bitfield,
10202 we need to extract bitfields from the access. */
10203 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10204 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10205 && mode1
!= BLKmode
10206 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10207 /* If the field isn't aligned enough to fetch as a memref,
10208 fetch it as a bit field. */
10209 || (mode1
!= BLKmode
10210 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10211 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10213 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10214 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10215 && modifier
!= EXPAND_MEMORY
10216 && ((modifier
== EXPAND_CONST_ADDRESS
10217 || modifier
== EXPAND_INITIALIZER
)
10219 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10220 || (bitpos
% BITS_PER_UNIT
!= 0)))
10221 /* If the type and the field are a constant size and the
10222 size of the type isn't the same size as the bitfield,
10223 we must use bitfield operations. */
10225 && TYPE_SIZE (TREE_TYPE (exp
))
10226 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10227 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10230 machine_mode ext_mode
= mode
;
10232 if (ext_mode
== BLKmode
10233 && ! (target
!= 0 && MEM_P (op0
)
10235 && bitpos
% BITS_PER_UNIT
== 0))
10236 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10238 if (ext_mode
== BLKmode
)
10241 target
= assign_temp (type
, 1, 1);
10243 /* ??? Unlike the similar test a few lines below, this one is
10244 very likely obsolete. */
10248 /* In this case, BITPOS must start at a byte boundary and
10249 TARGET, if specified, must be a MEM. */
10250 gcc_assert (MEM_P (op0
)
10251 && (!target
|| MEM_P (target
))
10252 && !(bitpos
% BITS_PER_UNIT
));
10254 emit_block_move (target
,
10255 adjust_address (op0
, VOIDmode
,
10256 bitpos
/ BITS_PER_UNIT
),
10257 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10259 (modifier
== EXPAND_STACK_PARM
10260 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10265 /* If we have nothing to extract, the result will be 0 for targets
10266 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10267 return 0 for the sake of consistency, as reading a zero-sized
10268 bitfield is valid in Ada and the value is fully specified. */
10272 op0
= validize_mem (op0
);
10274 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10275 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10277 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10278 (modifier
== EXPAND_STACK_PARM
10279 ? NULL_RTX
: target
),
10280 ext_mode
, ext_mode
);
10282 /* If the result is a record type and BITSIZE is narrower than
10283 the mode of OP0, an integral mode, and this is a big endian
10284 machine, we must put the field into the high-order bits. */
10285 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10286 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10287 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10288 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10289 GET_MODE_BITSIZE (GET_MODE (op0
))
10290 - bitsize
, op0
, 1);
10292 /* If the result type is BLKmode, store the data into a temporary
10293 of the appropriate type, but with the mode corresponding to the
10294 mode for the data we have (op0's mode). */
10295 if (mode
== BLKmode
)
10298 = assign_stack_temp_for_type (ext_mode
,
10299 GET_MODE_BITSIZE (ext_mode
),
10301 emit_move_insn (new_rtx
, op0
);
10302 op0
= copy_rtx (new_rtx
);
10303 PUT_MODE (op0
, BLKmode
);
10309 /* If the result is BLKmode, use that to access the object
10311 if (mode
== BLKmode
)
10314 /* Get a reference to just this component. */
10315 if (modifier
== EXPAND_CONST_ADDRESS
10316 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10317 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10319 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10321 if (op0
== orig_op0
)
10322 op0
= copy_rtx (op0
);
10324 /* If op0 is a temporary because of forcing to memory, pass only the
10325 type to set_mem_attributes so that the original expression is never
10326 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10327 if (mem_attrs_from_type
)
10328 set_mem_attributes (op0
, type
, 0);
10330 set_mem_attributes (op0
, exp
, 0);
10332 if (REG_P (XEXP (op0
, 0)))
10333 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10335 MEM_VOLATILE_P (op0
) |= volatilep
;
10336 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10337 || modifier
== EXPAND_CONST_ADDRESS
10338 || modifier
== EXPAND_INITIALIZER
)
10342 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10344 convert_move (target
, op0
, unsignedp
);
10349 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10352 /* All valid uses of __builtin_va_arg_pack () are removed during
10354 if (CALL_EXPR_VA_ARG_PACK (exp
))
10355 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10357 tree fndecl
= get_callee_fndecl (exp
), attr
;
10360 && (attr
= lookup_attribute ("error",
10361 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10362 error ("%Kcall to %qs declared with attribute error: %s",
10363 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10364 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10366 && (attr
= lookup_attribute ("warning",
10367 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10368 warning_at (tree_nonartificial_location (exp
),
10369 0, "%Kcall to %qs declared with attribute warning: %s",
10370 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10371 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10373 /* Check for a built-in function. */
10374 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10376 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10377 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10380 return expand_call (exp
, target
, ignore
);
10382 case VIEW_CONVERT_EXPR
:
10385 /* If we are converting to BLKmode, try to avoid an intermediate
10386 temporary by fetching an inner memory reference. */
10387 if (mode
== BLKmode
10388 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10389 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10390 && handled_component_p (treeop0
))
10392 machine_mode mode1
;
10393 HOST_WIDE_INT bitsize
, bitpos
;
10398 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10399 &offset
, &mode1
, &unsignedp
, &volatilep
,
10403 /* ??? We should work harder and deal with non-zero offsets. */
10405 && (bitpos
% BITS_PER_UNIT
) == 0
10407 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10409 /* See the normal_inner_ref case for the rationale. */
10411 = expand_expr_real (tem
,
10412 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10413 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10415 && modifier
!= EXPAND_STACK_PARM
10416 ? target
: NULL_RTX
),
10418 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10421 if (MEM_P (orig_op0
))
10425 /* Get a reference to just this component. */
10426 if (modifier
== EXPAND_CONST_ADDRESS
10427 || modifier
== EXPAND_SUM
10428 || modifier
== EXPAND_INITIALIZER
)
10429 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10431 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10433 if (op0
== orig_op0
)
10434 op0
= copy_rtx (op0
);
10436 set_mem_attributes (op0
, treeop0
, 0);
10437 if (REG_P (XEXP (op0
, 0)))
10438 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10440 MEM_VOLATILE_P (op0
) |= volatilep
;
10446 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10447 NULL
, inner_reference_p
);
10449 /* If the input and output modes are both the same, we are done. */
10450 if (mode
== GET_MODE (op0
))
10452 /* If neither mode is BLKmode, and both modes are the same size
10453 then we can use gen_lowpart. */
10454 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10455 && (GET_MODE_PRECISION (mode
)
10456 == GET_MODE_PRECISION (GET_MODE (op0
)))
10457 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10459 if (GET_CODE (op0
) == SUBREG
)
10460 op0
= force_reg (GET_MODE (op0
), op0
);
10461 temp
= gen_lowpart_common (mode
, op0
);
10466 if (!REG_P (op0
) && !MEM_P (op0
))
10467 op0
= force_reg (GET_MODE (op0
), op0
);
10468 op0
= gen_lowpart (mode
, op0
);
10471 /* If both types are integral, convert from one mode to the other. */
10472 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10473 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10474 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10475 /* If the output type is a bit-field type, do an extraction. */
10476 else if (reduce_bit_field
)
10477 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10478 TYPE_UNSIGNED (type
), NULL_RTX
,
10480 /* As a last resort, spill op0 to memory, and reload it in a
10482 else if (!MEM_P (op0
))
10484 /* If the operand is not a MEM, force it into memory. Since we
10485 are going to be changing the mode of the MEM, don't call
10486 force_const_mem for constants because we don't allow pool
10487 constants to change mode. */
10488 tree inner_type
= TREE_TYPE (treeop0
);
10490 gcc_assert (!TREE_ADDRESSABLE (exp
));
10492 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10494 = assign_stack_temp_for_type
10495 (TYPE_MODE (inner_type
),
10496 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10498 emit_move_insn (target
, op0
);
10502 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10503 output type is such that the operand is known to be aligned, indicate
10504 that it is. Otherwise, we need only be concerned about alignment for
10505 non-BLKmode results. */
10508 enum insn_code icode
;
10510 if (TYPE_ALIGN_OK (type
))
10512 /* ??? Copying the MEM without substantially changing it might
10513 run afoul of the code handling volatile memory references in
10514 store_expr, which assumes that TARGET is returned unmodified
10515 if it has been used. */
10516 op0
= copy_rtx (op0
);
10517 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10519 else if (modifier
!= EXPAND_WRITE
10520 && modifier
!= EXPAND_MEMORY
10521 && !inner_reference_p
10523 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10525 /* If the target does have special handling for unaligned
10526 loads of mode then use them. */
10527 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10528 != CODE_FOR_nothing
)
10532 op0
= adjust_address (op0
, mode
, 0);
10533 /* We've already validated the memory, and we're creating a
10534 new pseudo destination. The predicates really can't
10536 reg
= gen_reg_rtx (mode
);
10538 /* Nor can the insn generator. */
10539 insn
= GEN_FCN (icode
) (reg
, op0
);
10543 else if (STRICT_ALIGNMENT
)
10545 tree inner_type
= TREE_TYPE (treeop0
);
10546 HOST_WIDE_INT temp_size
10547 = MAX (int_size_in_bytes (inner_type
),
10548 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10550 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10551 rtx new_with_op0_mode
10552 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10554 gcc_assert (!TREE_ADDRESSABLE (exp
));
10556 if (GET_MODE (op0
) == BLKmode
)
10557 emit_block_move (new_with_op0_mode
, op0
,
10558 GEN_INT (GET_MODE_SIZE (mode
)),
10559 (modifier
== EXPAND_STACK_PARM
10560 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10562 emit_move_insn (new_with_op0_mode
, op0
);
10568 op0
= adjust_address (op0
, mode
, 0);
10575 tree lhs
= treeop0
;
10576 tree rhs
= treeop1
;
10577 gcc_assert (ignore
);
10579 /* Check for |= or &= of a bitfield of size one into another bitfield
10580 of size 1. In this case, (unless we need the result of the
10581 assignment) we can do this more efficiently with a
10582 test followed by an assignment, if necessary.
10584 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10585 things change so we do, this code should be enhanced to
10587 if (TREE_CODE (lhs
) == COMPONENT_REF
10588 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10589 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10590 && TREE_OPERAND (rhs
, 0) == lhs
10591 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10592 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10593 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10595 rtx_code_label
*label
= gen_label_rtx ();
10596 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10597 do_jump (TREE_OPERAND (rhs
, 1),
10599 value
? 0 : label
, -1);
10600 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10602 do_pending_stack_adjust ();
10603 emit_label (label
);
10607 expand_assignment (lhs
, rhs
, false);
10612 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10614 case REALPART_EXPR
:
10615 op0
= expand_normal (treeop0
);
10616 return read_complex_part (op0
, false);
10618 case IMAGPART_EXPR
:
10619 op0
= expand_normal (treeop0
);
10620 return read_complex_part (op0
, true);
10627 /* Expanded in cfgexpand.c. */
10628 gcc_unreachable ();
10630 case TRY_CATCH_EXPR
:
10632 case EH_FILTER_EXPR
:
10633 case TRY_FINALLY_EXPR
:
10634 /* Lowered by tree-eh.c. */
10635 gcc_unreachable ();
10637 case WITH_CLEANUP_EXPR
:
10638 case CLEANUP_POINT_EXPR
:
10640 case CASE_LABEL_EXPR
:
10645 case COMPOUND_EXPR
:
10646 case PREINCREMENT_EXPR
:
10647 case PREDECREMENT_EXPR
:
10648 case POSTINCREMENT_EXPR
:
10649 case POSTDECREMENT_EXPR
:
10652 case COMPOUND_LITERAL_EXPR
:
10653 /* Lowered by gimplify.c. */
10654 gcc_unreachable ();
10657 /* Function descriptors are not valid except for as
10658 initialization constants, and should not be expanded. */
10659 gcc_unreachable ();
10661 case WITH_SIZE_EXPR
:
10662 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10663 have pulled out the size to use in whatever context it needed. */
10664 return expand_expr_real (treeop0
, original_target
, tmode
,
10665 modifier
, alt_rtl
, inner_reference_p
);
10668 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10672 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10673 signedness of TYPE), possibly returning the result in TARGET. */
10675 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10677 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10678 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10680 /* For constant values, reduce using build_int_cst_type. */
10681 if (CONST_INT_P (exp
))
10683 HOST_WIDE_INT value
= INTVAL (exp
);
10684 tree t
= build_int_cst_type (type
, value
);
10685 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10687 else if (TYPE_UNSIGNED (type
))
10689 machine_mode mode
= GET_MODE (exp
);
10690 rtx mask
= immed_wide_int_const
10691 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10692 return expand_and (mode
, exp
, mask
, target
);
10696 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10697 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10698 exp
, count
, target
, 0);
10699 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10700 exp
, count
, target
, 0);
10704 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10705 when applied to the address of EXP produces an address known to be
10706 aligned more than BIGGEST_ALIGNMENT. */
10709 is_aligning_offset (const_tree offset
, const_tree exp
)
10711 /* Strip off any conversions. */
10712 while (CONVERT_EXPR_P (offset
))
10713 offset
= TREE_OPERAND (offset
, 0);
10715 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10716 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10717 if (TREE_CODE (offset
) != BIT_AND_EXPR
10718 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10719 || compare_tree_int (TREE_OPERAND (offset
, 1),
10720 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10721 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10724 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10725 It must be NEGATE_EXPR. Then strip any more conversions. */
10726 offset
= TREE_OPERAND (offset
, 0);
10727 while (CONVERT_EXPR_P (offset
))
10728 offset
= TREE_OPERAND (offset
, 0);
10730 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10733 offset
= TREE_OPERAND (offset
, 0);
10734 while (CONVERT_EXPR_P (offset
))
10735 offset
= TREE_OPERAND (offset
, 0);
10737 /* This must now be the address of EXP. */
10738 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10741 /* Return the tree node if an ARG corresponds to a string constant or zero
10742 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10743 in bytes within the string that ARG is accessing. The type of the
10744 offset will be `sizetype'. */
10747 string_constant (tree arg
, tree
*ptr_offset
)
10749 tree array
, offset
, lower_bound
;
10752 if (TREE_CODE (arg
) == ADDR_EXPR
)
10754 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10756 *ptr_offset
= size_zero_node
;
10757 return TREE_OPERAND (arg
, 0);
10759 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10761 array
= TREE_OPERAND (arg
, 0);
10762 offset
= size_zero_node
;
10764 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10766 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10767 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10768 if (TREE_CODE (array
) != STRING_CST
10769 && TREE_CODE (array
) != VAR_DECL
)
10772 /* Check if the array has a nonzero lower bound. */
10773 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10774 if (!integer_zerop (lower_bound
))
10776 /* If the offset and base aren't both constants, return 0. */
10777 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10779 if (TREE_CODE (offset
) != INTEGER_CST
)
10781 /* Adjust offset by the lower bound. */
10782 offset
= size_diffop (fold_convert (sizetype
, offset
),
10783 fold_convert (sizetype
, lower_bound
));
10786 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10788 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10789 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10790 if (TREE_CODE (array
) != ADDR_EXPR
)
10792 array
= TREE_OPERAND (array
, 0);
10793 if (TREE_CODE (array
) != STRING_CST
10794 && TREE_CODE (array
) != VAR_DECL
)
10800 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10802 tree arg0
= TREE_OPERAND (arg
, 0);
10803 tree arg1
= TREE_OPERAND (arg
, 1);
10808 if (TREE_CODE (arg0
) == ADDR_EXPR
10809 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10810 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10812 array
= TREE_OPERAND (arg0
, 0);
10815 else if (TREE_CODE (arg1
) == ADDR_EXPR
10816 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10817 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10819 array
= TREE_OPERAND (arg1
, 0);
10828 if (TREE_CODE (array
) == STRING_CST
)
10830 *ptr_offset
= fold_convert (sizetype
, offset
);
10833 else if (TREE_CODE (array
) == VAR_DECL
10834 || TREE_CODE (array
) == CONST_DECL
)
10837 tree init
= ctor_for_folding (array
);
10839 /* Variables initialized to string literals can be handled too. */
10840 if (init
== error_mark_node
10842 || TREE_CODE (init
) != STRING_CST
)
10845 /* Avoid const char foo[4] = "abcde"; */
10846 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10847 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10848 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10849 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10852 /* If variable is bigger than the string literal, OFFSET must be constant
10853 and inside of the bounds of the string literal. */
10854 offset
= fold_convert (sizetype
, offset
);
10855 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10856 && (! tree_fits_uhwi_p (offset
)
10857 || compare_tree_int (offset
, length
) >= 0))
10860 *ptr_offset
= offset
;
10867 /* Generate code to calculate OPS, and exploded expression
10868 using a store-flag instruction and return an rtx for the result.
10869 OPS reflects a comparison.
10871 If TARGET is nonzero, store the result there if convenient.
10873 Return zero if there is no suitable set-flag instruction
10874 available on this machine.
10876 Once expand_expr has been called on the arguments of the comparison,
10877 we are committed to doing the store flag, since it is not safe to
10878 re-evaluate the expression. We emit the store-flag insn by calling
10879 emit_store_flag, but only expand the arguments if we have a reason
10880 to believe that emit_store_flag will be successful. If we think that
10881 it will, but it isn't, we have to simulate the store-flag with a
10882 set/jump/set sequence. */
10885 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
10887 enum rtx_code code
;
10888 tree arg0
, arg1
, type
;
10890 machine_mode operand_mode
;
10893 rtx subtarget
= target
;
10894 location_t loc
= ops
->location
;
10899 /* Don't crash if the comparison was erroneous. */
10900 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10903 type
= TREE_TYPE (arg0
);
10904 operand_mode
= TYPE_MODE (type
);
10905 unsignedp
= TYPE_UNSIGNED (type
);
10907 /* We won't bother with BLKmode store-flag operations because it would mean
10908 passing a lot of information to emit_store_flag. */
10909 if (operand_mode
== BLKmode
)
10912 /* We won't bother with store-flag operations involving function pointers
10913 when function pointers must be canonicalized before comparisons. */
10914 #ifdef HAVE_canonicalize_funcptr_for_compare
10915 if (HAVE_canonicalize_funcptr_for_compare
10916 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10917 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10919 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10920 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10921 == FUNCTION_TYPE
))))
10928 /* For vector typed comparisons emit code to generate the desired
10929 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10930 expander for this. */
10931 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10933 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10934 tree if_true
= constant_boolean_node (true, ops
->type
);
10935 tree if_false
= constant_boolean_node (false, ops
->type
);
10936 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10939 /* Get the rtx comparison code to use. We know that EXP is a comparison
10940 operation of some type. Some comparisons against 1 and -1 can be
10941 converted to comparisons with zero. Do so here so that the tests
10942 below will be aware that we have a comparison with zero. These
10943 tests will not catch constants in the first operand, but constants
10944 are rarely passed as the first operand. */
10955 if (integer_onep (arg1
))
10956 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10958 code
= unsignedp
? LTU
: LT
;
10961 if (! unsignedp
&& integer_all_onesp (arg1
))
10962 arg1
= integer_zero_node
, code
= LT
;
10964 code
= unsignedp
? LEU
: LE
;
10967 if (! unsignedp
&& integer_all_onesp (arg1
))
10968 arg1
= integer_zero_node
, code
= GE
;
10970 code
= unsignedp
? GTU
: GT
;
10973 if (integer_onep (arg1
))
10974 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10976 code
= unsignedp
? GEU
: GE
;
10979 case UNORDERED_EXPR
:
11005 gcc_unreachable ();
11008 /* Put a constant second. */
11009 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11010 || TREE_CODE (arg0
) == FIXED_CST
)
11012 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11013 code
= swap_condition (code
);
11016 /* If this is an equality or inequality test of a single bit, we can
11017 do this by shifting the bit being tested to the low-order bit and
11018 masking the result with the constant 1. If the condition was EQ,
11019 we xor it with 1. This does not require an scc insn and is faster
11020 than an scc insn even if we have it.
11022 The code to make this transformation was moved into fold_single_bit_test,
11023 so we just call into the folder and expand its result. */
11025 if ((code
== NE
|| code
== EQ
)
11026 && integer_zerop (arg1
)
11027 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11029 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11031 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11033 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11034 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11035 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11036 gimple_assign_rhs1 (srcstmt
),
11037 gimple_assign_rhs2 (srcstmt
));
11038 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11040 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11044 if (! get_subtarget (target
)
11045 || GET_MODE (subtarget
) != operand_mode
)
11048 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11051 target
= gen_reg_rtx (mode
);
11053 /* Try a cstore if possible. */
11054 return emit_store_flag_force (target
, code
, op0
, op1
,
11055 operand_mode
, unsignedp
,
11056 (TYPE_PRECISION (ops
->type
) == 1
11057 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11061 /* Stubs in case we haven't got a casesi insn. */
11062 #ifndef HAVE_casesi
11063 # define HAVE_casesi 0
11064 # define gen_casesi(a, b, c, d, e) (0)
11065 # define CODE_FOR_casesi CODE_FOR_nothing
11068 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11069 0 otherwise (i.e. if there is no casesi instruction).
11071 DEFAULT_PROBABILITY is the probability of jumping to the default
11074 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11075 rtx table_label
, rtx default_label
, rtx fallback_label
,
11076 int default_probability
)
11078 struct expand_operand ops
[5];
11079 machine_mode index_mode
= SImode
;
11080 rtx op1
, op2
, index
;
11085 /* Convert the index to SImode. */
11086 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11088 machine_mode omode
= TYPE_MODE (index_type
);
11089 rtx rangertx
= expand_normal (range
);
11091 /* We must handle the endpoints in the original mode. */
11092 index_expr
= build2 (MINUS_EXPR
, index_type
,
11093 index_expr
, minval
);
11094 minval
= integer_zero_node
;
11095 index
= expand_normal (index_expr
);
11097 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11098 omode
, 1, default_label
,
11099 default_probability
);
11100 /* Now we can safely truncate. */
11101 index
= convert_to_mode (index_mode
, index
, 0);
11105 if (TYPE_MODE (index_type
) != index_mode
)
11107 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11108 index_expr
= fold_convert (index_type
, index_expr
);
11111 index
= expand_normal (index_expr
);
11114 do_pending_stack_adjust ();
11116 op1
= expand_normal (minval
);
11117 op2
= expand_normal (range
);
11119 create_input_operand (&ops
[0], index
, index_mode
);
11120 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11121 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11122 create_fixed_operand (&ops
[3], table_label
);
11123 create_fixed_operand (&ops
[4], (default_label
11125 : fallback_label
));
11126 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11130 /* Attempt to generate a tablejump instruction; same concept. */
11131 #ifndef HAVE_tablejump
11132 #define HAVE_tablejump 0
11133 #define gen_tablejump(x, y) (0)
11136 /* Subroutine of the next function.
11138 INDEX is the value being switched on, with the lowest value
11139 in the table already subtracted.
11140 MODE is its expected mode (needed if INDEX is constant).
11141 RANGE is the length of the jump table.
11142 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11144 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11145 index value is out of range.
11146 DEFAULT_PROBABILITY is the probability of jumping to
11147 the default label. */
11150 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11151 rtx default_label
, int default_probability
)
11155 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11156 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11158 /* Do an unsigned comparison (in the proper mode) between the index
11159 expression and the value which represents the length of the range.
11160 Since we just finished subtracting the lower bound of the range
11161 from the index expression, this comparison allows us to simultaneously
11162 check that the original index expression value is both greater than
11163 or equal to the minimum value of the range and less than or equal to
11164 the maximum value of the range. */
11167 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11168 default_label
, default_probability
);
11171 /* If index is in range, it must fit in Pmode.
11172 Convert to Pmode so we can index with it. */
11174 index
= convert_to_mode (Pmode
, index
, 1);
11176 /* Don't let a MEM slip through, because then INDEX that comes
11177 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11178 and break_out_memory_refs will go to work on it and mess it up. */
11179 #ifdef PIC_CASE_VECTOR_ADDRESS
11180 if (flag_pic
&& !REG_P (index
))
11181 index
= copy_to_mode_reg (Pmode
, index
);
11184 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11185 GET_MODE_SIZE, because this indicates how large insns are. The other
11186 uses should all be Pmode, because they are addresses. This code
11187 could fail if addresses and insns are not the same size. */
11188 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11189 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11191 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11192 gen_rtx_LABEL_REF (Pmode
, table_label
));
11194 #ifdef PIC_CASE_VECTOR_ADDRESS
11196 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11199 index
= memory_address (CASE_VECTOR_MODE
, index
);
11200 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11201 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11202 convert_move (temp
, vector
, 0);
11204 emit_jump_insn (gen_tablejump (temp
, table_label
));
11206 /* If we are generating PIC code or if the table is PC-relative, the
11207 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11208 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11213 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11214 rtx table_label
, rtx default_label
, int default_probability
)
11218 if (! HAVE_tablejump
)
11221 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11222 fold_convert (index_type
, index_expr
),
11223 fold_convert (index_type
, minval
));
11224 index
= expand_normal (index_expr
);
11225 do_pending_stack_adjust ();
11227 do_tablejump (index
, TYPE_MODE (index_type
),
11228 convert_modes (TYPE_MODE (index_type
),
11229 TYPE_MODE (TREE_TYPE (range
)),
11230 expand_normal (range
),
11231 TYPE_UNSIGNED (TREE_TYPE (range
))),
11232 table_label
, default_label
, default_probability
);
11236 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11238 const_vector_from_tree (tree exp
)
11244 machine_mode inner
, mode
;
11246 mode
= TYPE_MODE (TREE_TYPE (exp
));
11248 if (initializer_zerop (exp
))
11249 return CONST0_RTX (mode
);
11251 units
= GET_MODE_NUNITS (mode
);
11252 inner
= GET_MODE_INNER (mode
);
11254 v
= rtvec_alloc (units
);
11256 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11258 elt
= VECTOR_CST_ELT (exp
, i
);
11260 if (TREE_CODE (elt
) == REAL_CST
)
11261 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11263 else if (TREE_CODE (elt
) == FIXED_CST
)
11264 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11267 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11270 return gen_rtx_CONST_VECTOR (mode
, v
);
11273 /* Build a decl for a personality function given a language prefix. */
11276 build_personality_function (const char *lang
)
11278 const char *unwind_and_version
;
11282 switch (targetm_common
.except_unwind_info (&global_options
))
11287 unwind_and_version
= "_sj0";
11291 unwind_and_version
= "_v0";
11294 unwind_and_version
= "_seh0";
11297 gcc_unreachable ();
11300 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11302 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11303 long_long_unsigned_type_node
,
11304 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11305 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11306 get_identifier (name
), type
);
11307 DECL_ARTIFICIAL (decl
) = 1;
11308 DECL_EXTERNAL (decl
) = 1;
11309 TREE_PUBLIC (decl
) = 1;
11311 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11312 are the flags assigned by targetm.encode_section_info. */
11313 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11318 /* Extracts the personality function of DECL and returns the corresponding
11322 get_personality_function (tree decl
)
11324 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11325 enum eh_personality_kind pk
;
11327 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11328 if (pk
== eh_personality_none
)
11332 && pk
== eh_personality_any
)
11333 personality
= lang_hooks
.eh_personality ();
11335 if (pk
== eh_personality_lang
)
11336 gcc_assert (personality
!= NULL_TREE
);
11338 return XEXP (DECL_RTL (personality
), 0);
11341 #include "gt-expr.h"