i386: Add -masm=intel profiling support [PR113122]
[official-gcc.git] / gcc / sched-deps.cc
blob0615007c560a27f3ee4f454c4f457e84541b860a
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2024 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "cselib.h"
40 #include "function-abi.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
64 gcc_assert (ds & DEP_ANTI);
66 return REG_DEP_ANTI;
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
73 switch (dk)
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
104 dep->unused = 0;
107 /* Init DEP with the arguments.
108 While most of the scheduler (including targets) only need the major type
109 of the dependency, it is convenient to hide full dep_status from them. */
110 void
111 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
113 ds_t ds;
115 if ((current_sched_info->flags & USE_DEPS_LIST))
116 ds = dk_to_ds (kind);
117 else
118 ds = 0;
120 init_dep_1 (dep, pro, con, kind, ds);
123 /* Make a copy of FROM in TO. */
124 static void
125 copy_dep (dep_t to, dep_t from)
127 memcpy (to, from, sizeof (*to));
130 static void dump_ds (FILE *, ds_t);
132 /* Define flags for dump_dep (). */
134 /* Dump producer of the dependence. */
135 #define DUMP_DEP_PRO (2)
137 /* Dump consumer of the dependence. */
138 #define DUMP_DEP_CON (4)
140 /* Dump type of the dependence. */
141 #define DUMP_DEP_TYPE (8)
143 /* Dump status of the dependence. */
144 #define DUMP_DEP_STATUS (16)
146 /* Dump all information about the dependence. */
147 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
148 |DUMP_DEP_STATUS)
150 /* Dump DEP to DUMP.
151 FLAGS is a bit mask specifying what information about DEP needs
152 to be printed.
153 If FLAGS has the very first bit set, then dump all information about DEP
154 and propagate this bit into the callee dump functions. */
155 static void
156 dump_dep (FILE *dump, dep_t dep, int flags)
158 if (flags & 1)
159 flags |= DUMP_DEP_ALL;
161 fprintf (dump, "<");
163 if (flags & DUMP_DEP_PRO)
164 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
166 if (flags & DUMP_DEP_CON)
167 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
169 if (flags & DUMP_DEP_TYPE)
171 char t;
172 enum reg_note type = DEP_TYPE (dep);
174 switch (type)
176 case REG_DEP_TRUE:
177 t = 't';
178 break;
180 case REG_DEP_OUTPUT:
181 t = 'o';
182 break;
184 case REG_DEP_CONTROL:
185 t = 'c';
186 break;
188 case REG_DEP_ANTI:
189 t = 'a';
190 break;
192 default:
193 gcc_unreachable ();
194 break;
197 fprintf (dump, "%c; ", t);
200 if (flags & DUMP_DEP_STATUS)
202 if (current_sched_info->flags & USE_DEPS_LIST)
203 dump_ds (dump, DEP_STATUS (dep));
206 fprintf (dump, ">");
209 /* Default flags for dump_dep (). */
210 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
212 /* Dump all fields of DEP to STDERR. */
213 void
214 sd_debug_dep (dep_t dep)
216 dump_dep (stderr, dep, 1);
217 fprintf (stderr, "\n");
220 /* Determine whether DEP is a dependency link of a non-debug insn on a
221 debug insn. */
223 static inline bool
224 depl_on_debug_p (dep_link_t dep)
226 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
227 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
230 /* Functions to operate with a single link from the dependencies lists -
231 dep_link_t. */
233 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
234 PREV_NEXT_P. */
235 static void
236 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
238 dep_link_t next = *prev_nextp;
240 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
241 && DEP_LINK_NEXT (l) == NULL);
243 /* Init node being inserted. */
244 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
245 DEP_LINK_NEXT (l) = next;
247 /* Fix next node. */
248 if (next != NULL)
250 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
252 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
255 /* Fix prev node. */
256 *prev_nextp = l;
259 /* Add dep_link LINK to deps_list L. */
260 static void
261 add_to_deps_list (dep_link_t link, deps_list_t l)
263 attach_dep_link (link, &DEPS_LIST_FIRST (l));
265 /* Don't count debug deps. */
266 if (!depl_on_debug_p (link))
267 ++DEPS_LIST_N_LINKS (l);
270 /* Detach dep_link L from the list. */
271 static void
272 detach_dep_link (dep_link_t l)
274 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
275 dep_link_t next = DEP_LINK_NEXT (l);
277 *prev_nextp = next;
279 if (next != NULL)
280 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
282 DEP_LINK_PREV_NEXTP (l) = NULL;
283 DEP_LINK_NEXT (l) = NULL;
286 /* Remove link LINK from list LIST. */
287 static void
288 remove_from_deps_list (dep_link_t link, deps_list_t list)
290 detach_dep_link (link);
292 /* Don't count debug deps. */
293 if (!depl_on_debug_p (link))
294 --DEPS_LIST_N_LINKS (list);
297 /* Move link LINK from list FROM to list TO. */
298 static void
299 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
301 remove_from_deps_list (link, from);
302 add_to_deps_list (link, to);
305 /* Return true of LINK is not attached to any list. */
306 static bool
307 dep_link_is_detached_p (dep_link_t link)
309 return DEP_LINK_PREV_NEXTP (link) == NULL;
312 /* Pool to hold all dependency nodes (dep_node_t). */
313 static object_allocator<_dep_node> *dn_pool;
315 /* Number of dep_nodes out there. */
316 static int dn_pool_diff = 0;
318 /* Create a dep_node. */
319 static dep_node_t
320 create_dep_node (void)
322 dep_node_t n = dn_pool->allocate ();
323 dep_link_t back = DEP_NODE_BACK (n);
324 dep_link_t forw = DEP_NODE_FORW (n);
326 DEP_LINK_NODE (back) = n;
327 DEP_LINK_NEXT (back) = NULL;
328 DEP_LINK_PREV_NEXTP (back) = NULL;
330 DEP_LINK_NODE (forw) = n;
331 DEP_LINK_NEXT (forw) = NULL;
332 DEP_LINK_PREV_NEXTP (forw) = NULL;
334 ++dn_pool_diff;
336 return n;
339 /* Delete dep_node N. N must not be connected to any deps_list. */
340 static void
341 delete_dep_node (dep_node_t n)
343 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
344 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
346 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
348 --dn_pool_diff;
350 dn_pool->remove (n);
353 /* Pool to hold dependencies lists (deps_list_t). */
354 static object_allocator<_deps_list> *dl_pool;
356 /* Number of deps_lists out there. */
357 static int dl_pool_diff = 0;
359 /* Functions to operate with dependences lists - deps_list_t. */
361 /* Return true if list L is empty. */
362 static bool
363 deps_list_empty_p (deps_list_t l)
365 return DEPS_LIST_N_LINKS (l) == 0;
368 /* Create a new deps_list. */
369 static deps_list_t
370 create_deps_list (void)
372 deps_list_t l = dl_pool->allocate ();
374 DEPS_LIST_FIRST (l) = NULL;
375 DEPS_LIST_N_LINKS (l) = 0;
377 ++dl_pool_diff;
378 return l;
381 /* Free deps_list L. */
382 static void
383 free_deps_list (deps_list_t l)
385 gcc_assert (deps_list_empty_p (l));
387 --dl_pool_diff;
389 dl_pool->remove (l);
392 /* Return true if there is no dep_nodes and deps_lists out there.
393 After the region is scheduled all the dependency nodes and lists
394 should [generally] be returned to pool. */
395 bool
396 deps_pools_are_empty_p (void)
398 return dn_pool_diff == 0 && dl_pool_diff == 0;
401 /* Remove all elements from L. */
402 static void
403 clear_deps_list (deps_list_t l)
407 dep_link_t link = DEPS_LIST_FIRST (l);
409 if (link == NULL)
410 break;
412 remove_from_deps_list (link, l);
414 while (1);
417 /* Decide whether a dependency should be treated as a hard or a speculative
418 dependency. */
419 static bool
420 dep_spec_p (dep_t dep)
422 if (current_sched_info->flags & DO_SPECULATION)
424 if (DEP_STATUS (dep) & SPECULATIVE)
425 return true;
427 if (current_sched_info->flags & DO_PREDICATION)
429 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
430 return true;
432 if (DEP_REPLACE (dep) != NULL)
433 return true;
434 return false;
437 static regset reg_pending_sets;
438 static regset reg_pending_clobbers;
439 static regset reg_pending_uses;
440 static regset reg_pending_control_uses;
441 static enum reg_pending_barrier_mode reg_pending_barrier;
443 /* Hard registers implicitly clobbered or used (or may be implicitly
444 clobbered or used) by the currently analyzed insn. For example,
445 insn in its constraint has one register class. Even if there is
446 currently no hard register in the insn, the particular hard
447 register will be in the insn after reload pass because the
448 constraint requires it. */
449 static HARD_REG_SET implicit_reg_pending_clobbers;
450 static HARD_REG_SET implicit_reg_pending_uses;
452 /* To speed up the test for duplicate dependency links we keep a
453 record of dependencies created by add_dependence when the average
454 number of instructions in a basic block is very large.
456 Studies have shown that there is typically around 5 instructions between
457 branches for typical C code. So we can make a guess that the average
458 basic block is approximately 5 instructions long; we will choose 100X
459 the average size as a very large basic block.
461 Each insn has associated bitmaps for its dependencies. Each bitmap
462 has enough entries to represent a dependency on any other insn in
463 the insn chain. All bitmap for true dependencies cache is
464 allocated then the rest two ones are also allocated. */
465 static bitmap true_dependency_cache = NULL;
466 static bitmap output_dependency_cache = NULL;
467 static bitmap anti_dependency_cache = NULL;
468 static bitmap control_dependency_cache = NULL;
469 static bitmap spec_dependency_cache = NULL;
470 static int cache_size;
472 /* True if we should mark added dependencies as a non-register deps. */
473 static bool mark_as_hard;
475 static bool deps_may_trap_p (const_rtx);
476 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
477 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
478 enum reg_note, bool);
479 static void add_dependence_list_and_free (class deps_desc *, rtx_insn *,
480 rtx_insn_list **, int, enum reg_note,
481 bool);
482 static void delete_all_dependences (rtx_insn *);
483 static void chain_to_prev_insn (rtx_insn *);
485 static void flush_pending_lists (class deps_desc *, rtx_insn *, int, int);
486 static void sched_analyze_1 (class deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_2 (class deps_desc *, rtx, rtx_insn *);
488 static void sched_analyze_insn (class deps_desc *, rtx, rtx_insn *);
490 static bool sched_has_condition_p (const rtx_insn *);
491 static bool conditions_mutex_p (const_rtx, const_rtx, bool, bool);
493 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
494 rtx, rtx);
495 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
497 static void check_dep (dep_t, bool);
500 /* Return true if a load of the memory reference MEM can cause a trap. */
502 static bool
503 deps_may_trap_p (const_rtx mem)
505 const_rtx addr = XEXP (mem, 0);
507 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
509 const_rtx t = get_reg_known_value (REGNO (addr));
510 if (t)
511 addr = t;
513 return rtx_addr_can_trap_p (addr);
517 /* Find the condition under which INSN is executed. If REV is not NULL,
518 it is set to TRUE when the returned comparison should be reversed
519 to get the actual condition. */
520 static rtx
521 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
523 rtx pat = PATTERN (insn);
524 rtx src;
526 if (rev)
527 *rev = false;
529 if (GET_CODE (pat) == COND_EXEC)
530 return COND_EXEC_TEST (pat);
532 if (!any_condjump_p (insn) || !onlyjump_p (insn))
533 return 0;
535 src = SET_SRC (pc_set (insn));
537 if (XEXP (src, 2) == pc_rtx)
538 return XEXP (src, 0);
539 else if (XEXP (src, 1) == pc_rtx)
541 rtx cond = XEXP (src, 0);
542 enum rtx_code revcode = reversed_comparison_code (cond, insn);
544 if (revcode == UNKNOWN)
545 return 0;
547 if (rev)
548 *rev = true;
549 return cond;
552 return 0;
555 /* Return the condition under which INSN does not execute (i.e. the
556 not-taken condition for a conditional branch), or NULL if we cannot
557 find such a condition. The caller should make a copy of the condition
558 before using it. */
560 sched_get_reverse_condition_uncached (const rtx_insn *insn)
562 bool rev;
563 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
564 if (cond == NULL_RTX)
565 return cond;
566 if (!rev)
568 enum rtx_code revcode = reversed_comparison_code (cond, insn);
569 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
570 XEXP (cond, 0),
571 XEXP (cond, 1));
573 return cond;
576 /* Caching variant of sched_get_condition_with_rev_uncached.
577 We only do actual work the first time we come here for an insn; the
578 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
579 static rtx
580 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
582 bool tmp;
584 if (INSN_LUID (insn) == 0)
585 return sched_get_condition_with_rev_uncached (insn, rev);
587 if (INSN_CACHED_COND (insn) == const_true_rtx)
588 return NULL_RTX;
590 if (INSN_CACHED_COND (insn) != NULL_RTX)
592 if (rev)
593 *rev = INSN_REVERSE_COND (insn);
594 return INSN_CACHED_COND (insn);
597 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
598 INSN_REVERSE_COND (insn) = tmp;
600 if (INSN_CACHED_COND (insn) == NULL_RTX)
602 INSN_CACHED_COND (insn) = const_true_rtx;
603 return NULL_RTX;
606 if (rev)
607 *rev = INSN_REVERSE_COND (insn);
608 return INSN_CACHED_COND (insn);
611 /* True when we can find a condition under which INSN is executed. */
612 static bool
613 sched_has_condition_p (const rtx_insn *insn)
615 return !! sched_get_condition_with_rev (insn, NULL);
620 /* Return true if conditions COND1 and COND2 can never be both true. */
621 static bool
622 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
624 if (COMPARISON_P (cond1)
625 && COMPARISON_P (cond2)
626 && GET_CODE (cond1) ==
627 (rev1==rev2
628 ? reversed_comparison_code (cond2, NULL)
629 : GET_CODE (cond2))
630 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
631 && XEXP (cond1, 1) == XEXP (cond2, 1))
632 return true;
633 return false;
636 /* Return true if insn1 and insn2 can never depend on one another because
637 the conditions under which they are executed are mutually exclusive. */
638 bool
639 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
641 rtx cond1, cond2;
642 bool rev1 = false, rev2 = false;
644 /* df doesn't handle conditional lifetimes entirely correctly;
645 calls mess up the conditional lifetimes. */
646 if (!CALL_P (insn1) && !CALL_P (insn2))
648 cond1 = sched_get_condition_with_rev (insn1, &rev1);
649 cond2 = sched_get_condition_with_rev (insn2, &rev2);
650 if (cond1 && cond2
651 && conditions_mutex_p (cond1, cond2, rev1, rev2)
652 /* Make sure first instruction doesn't affect condition of second
653 instruction if switched. */
654 && !modified_in_p (cond1, insn2)
655 /* Make sure second instruction doesn't affect condition of first
656 instruction if switched. */
657 && !modified_in_p (cond2, insn1))
658 return true;
660 return false;
664 /* Return true if INSN can potentially be speculated with type DS. */
665 bool
666 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
668 if (HAS_INTERNAL_DEP (insn))
669 return false;
671 if (!NONJUMP_INSN_P (insn))
672 return false;
674 if (SCHED_GROUP_P (insn))
675 return false;
677 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
678 return false;
680 if (side_effects_p (PATTERN (insn)))
681 return false;
683 if (ds & BE_IN_SPEC)
684 /* The following instructions, which depend on a speculatively scheduled
685 instruction, cannot be speculatively scheduled along. */
687 if (may_trap_or_fault_p (PATTERN (insn)))
688 /* If instruction might fault, it cannot be speculatively scheduled.
689 For control speculation it's obvious why and for data speculation
690 it's because the insn might get wrong input if speculation
691 wasn't successful. */
692 return false;
694 if ((ds & BE_IN_DATA)
695 && sched_has_condition_p (insn))
696 /* If this is a predicated instruction, then it cannot be
697 speculatively scheduled. See PR35659. */
698 return false;
701 return true;
704 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
705 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
706 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
707 This function is used to switch sd_iterator to the next list.
708 !!! For internal use only. Might consider moving it to sched-int.h. */
709 void
710 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
711 deps_list_t *list_ptr, bool *resolved_p_ptr)
713 sd_list_types_def types = *types_ptr;
715 if (types & SD_LIST_HARD_BACK)
717 *list_ptr = INSN_HARD_BACK_DEPS (insn);
718 *resolved_p_ptr = false;
719 *types_ptr = types & ~SD_LIST_HARD_BACK;
721 else if (types & SD_LIST_SPEC_BACK)
723 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
724 *resolved_p_ptr = false;
725 *types_ptr = types & ~SD_LIST_SPEC_BACK;
727 else if (types & SD_LIST_FORW)
729 *list_ptr = INSN_FORW_DEPS (insn);
730 *resolved_p_ptr = false;
731 *types_ptr = types & ~SD_LIST_FORW;
733 else if (types & SD_LIST_RES_BACK)
735 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
736 *resolved_p_ptr = true;
737 *types_ptr = types & ~SD_LIST_RES_BACK;
739 else if (types & SD_LIST_RES_FORW)
741 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
742 *resolved_p_ptr = true;
743 *types_ptr = types & ~SD_LIST_RES_FORW;
745 else
747 *list_ptr = NULL;
748 *resolved_p_ptr = false;
749 *types_ptr = SD_LIST_NONE;
753 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
755 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
757 int size = 0;
759 while (list_types != SD_LIST_NONE)
761 deps_list_t list;
762 bool resolved_p;
764 sd_next_list (insn, &list_types, &list, &resolved_p);
765 if (list)
766 size += DEPS_LIST_N_LINKS (list);
769 return size;
772 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
774 bool
775 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
777 while (list_types != SD_LIST_NONE)
779 deps_list_t list;
780 bool resolved_p;
782 sd_next_list (insn, &list_types, &list, &resolved_p);
783 if (!deps_list_empty_p (list))
784 return false;
787 return true;
790 /* Initialize data for INSN. */
791 void
792 sd_init_insn (rtx_insn *insn)
794 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
795 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
796 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
797 INSN_FORW_DEPS (insn) = create_deps_list ();
798 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
800 /* ??? It would be nice to allocate dependency caches here. */
803 /* Free data for INSN. */
804 void
805 sd_finish_insn (rtx_insn *insn)
807 /* ??? It would be nice to deallocate dependency caches here. */
809 free_deps_list (INSN_HARD_BACK_DEPS (insn));
810 INSN_HARD_BACK_DEPS (insn) = NULL;
812 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
813 INSN_SPEC_BACK_DEPS (insn) = NULL;
815 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
816 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
818 free_deps_list (INSN_FORW_DEPS (insn));
819 INSN_FORW_DEPS (insn) = NULL;
821 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
822 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
825 /* Find a dependency between producer PRO and consumer CON.
826 Search through resolved dependency lists if RESOLVED_P is true.
827 If no such dependency is found return NULL,
828 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
829 with an iterator pointing to it. */
830 static dep_t
831 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
832 sd_iterator_def *sd_it_ptr)
834 sd_list_types_def pro_list_type;
835 sd_list_types_def con_list_type;
836 sd_iterator_def sd_it;
837 dep_t dep;
838 bool found_p = false;
840 if (resolved_p)
842 pro_list_type = SD_LIST_RES_FORW;
843 con_list_type = SD_LIST_RES_BACK;
845 else
847 pro_list_type = SD_LIST_FORW;
848 con_list_type = SD_LIST_BACK;
851 /* Walk through either back list of INSN or forw list of ELEM
852 depending on which one is shorter. */
853 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
855 /* Find the dep_link with producer PRO in consumer's back_deps. */
856 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
857 if (DEP_PRO (dep) == pro)
859 found_p = true;
860 break;
863 else
865 /* Find the dep_link with consumer CON in producer's forw_deps. */
866 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
867 if (DEP_CON (dep) == con)
869 found_p = true;
870 break;
874 if (found_p)
876 if (sd_it_ptr != NULL)
877 *sd_it_ptr = sd_it;
879 return dep;
882 return NULL;
885 /* Find a dependency between producer PRO and consumer CON.
886 Use dependency [if available] to check if dependency is present at all.
887 Search through resolved dependency lists if RESOLVED_P is true.
888 If the dependency or NULL if none found. */
889 dep_t
890 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
892 if (true_dependency_cache != NULL)
893 /* Avoiding the list walk below can cut compile times dramatically
894 for some code. */
896 int elem_luid = INSN_LUID (pro);
897 int insn_luid = INSN_LUID (con);
899 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
902 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
903 return NULL;
906 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
909 /* Add or update a dependence described by DEP.
910 MEM1 and MEM2, if non-null, correspond to memory locations in case of
911 data speculation.
913 The function returns a value indicating if an old entry has been changed
914 or a new entry has been added to insn's backward deps.
916 This function merely checks if producer and consumer is the same insn
917 and doesn't create a dep in this case. Actual manipulation of
918 dependence data structures is performed in add_or_update_dep_1. */
919 static enum DEPS_ADJUST_RESULT
920 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
922 rtx_insn *elem = DEP_PRO (dep);
923 rtx_insn *insn = DEP_CON (dep);
925 gcc_assert (INSN_P (insn) && INSN_P (elem));
927 /* Don't depend an insn on itself. */
928 if (insn == elem)
930 if (sched_deps_info->generate_spec_deps)
931 /* INSN has an internal dependence, which we can't overcome. */
932 HAS_INTERNAL_DEP (insn) = 1;
934 return DEP_NODEP;
937 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
940 /* Ask dependency caches what needs to be done for dependence DEP.
941 Return DEP_CREATED if new dependence should be created and there is no
942 need to try to find one searching the dependencies lists.
943 Return DEP_PRESENT if there already is a dependence described by DEP and
944 hence nothing is to be done.
945 Return DEP_CHANGED if there already is a dependence, but it should be
946 updated to incorporate additional information from DEP. */
947 static enum DEPS_ADJUST_RESULT
948 ask_dependency_caches (dep_t dep)
950 int elem_luid = INSN_LUID (DEP_PRO (dep));
951 int insn_luid = INSN_LUID (DEP_CON (dep));
953 gcc_assert (true_dependency_cache != NULL
954 && output_dependency_cache != NULL
955 && anti_dependency_cache != NULL
956 && control_dependency_cache != NULL);
958 if (!(current_sched_info->flags & USE_DEPS_LIST))
960 enum reg_note present_dep_type;
962 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
963 present_dep_type = REG_DEP_TRUE;
964 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
965 present_dep_type = REG_DEP_OUTPUT;
966 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
967 present_dep_type = REG_DEP_ANTI;
968 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
969 present_dep_type = REG_DEP_CONTROL;
970 else
971 /* There is no existing dep so it should be created. */
972 return DEP_CREATED;
974 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
975 /* DEP does not add anything to the existing dependence. */
976 return DEP_PRESENT;
978 else
980 ds_t present_dep_types = 0;
982 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
983 present_dep_types |= DEP_TRUE;
984 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
985 present_dep_types |= DEP_OUTPUT;
986 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
987 present_dep_types |= DEP_ANTI;
988 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
989 present_dep_types |= DEP_CONTROL;
991 if (present_dep_types == 0)
992 /* There is no existing dep so it should be created. */
993 return DEP_CREATED;
995 if (!(current_sched_info->flags & DO_SPECULATION)
996 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
998 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
999 == present_dep_types)
1000 /* DEP does not add anything to the existing dependence. */
1001 return DEP_PRESENT;
1003 else
1005 /* Only true dependencies can be data speculative and
1006 only anti dependencies can be control speculative. */
1007 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1008 == present_dep_types);
1010 /* if (DEP is SPECULATIVE) then
1011 ..we should update DEP_STATUS
1012 else
1013 ..we should reset existing dep to non-speculative. */
1017 return DEP_CHANGED;
1020 /* Set dependency caches according to DEP. */
1021 static void
1022 set_dependency_caches (dep_t dep)
1024 int elem_luid = INSN_LUID (DEP_PRO (dep));
1025 int insn_luid = INSN_LUID (DEP_CON (dep));
1027 if (!(current_sched_info->flags & USE_DEPS_LIST))
1029 switch (DEP_TYPE (dep))
1031 case REG_DEP_TRUE:
1032 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1033 break;
1035 case REG_DEP_OUTPUT:
1036 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1037 break;
1039 case REG_DEP_ANTI:
1040 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1041 break;
1043 case REG_DEP_CONTROL:
1044 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1045 break;
1047 default:
1048 gcc_unreachable ();
1051 else
1053 ds_t ds = DEP_STATUS (dep);
1055 if (ds & DEP_TRUE)
1056 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1057 if (ds & DEP_OUTPUT)
1058 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1059 if (ds & DEP_ANTI)
1060 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1061 if (ds & DEP_CONTROL)
1062 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1064 if (ds & SPECULATIVE)
1066 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1067 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1072 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1073 caches accordingly. */
1074 static void
1075 update_dependency_caches (dep_t dep, enum reg_note old_type)
1077 int elem_luid = INSN_LUID (DEP_PRO (dep));
1078 int insn_luid = INSN_LUID (DEP_CON (dep));
1080 /* Clear corresponding cache entry because type of the link
1081 may have changed. Keep them if we use_deps_list. */
1082 if (!(current_sched_info->flags & USE_DEPS_LIST))
1084 switch (old_type)
1086 case REG_DEP_OUTPUT:
1087 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1088 break;
1090 case REG_DEP_ANTI:
1091 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1092 break;
1094 case REG_DEP_CONTROL:
1095 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1096 break;
1098 default:
1099 gcc_unreachable ();
1103 set_dependency_caches (dep);
1106 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1107 static void
1108 change_spec_dep_to_hard (sd_iterator_def sd_it)
1110 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1111 dep_link_t link = DEP_NODE_BACK (node);
1112 dep_t dep = DEP_NODE_DEP (node);
1113 rtx_insn *elem = DEP_PRO (dep);
1114 rtx_insn *insn = DEP_CON (dep);
1116 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1118 DEP_STATUS (dep) &= ~SPECULATIVE;
1120 if (true_dependency_cache != NULL)
1121 /* Clear the cache entry. */
1122 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1123 INSN_LUID (elem));
1126 /* Update DEP to incorporate information from NEW_DEP.
1127 SD_IT points to DEP in case it should be moved to another list.
1128 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1129 data-speculative dependence should be updated. */
1130 static enum DEPS_ADJUST_RESULT
1131 update_dep (dep_t dep, dep_t new_dep,
1132 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1133 rtx mem1 ATTRIBUTE_UNUSED,
1134 rtx mem2 ATTRIBUTE_UNUSED)
1136 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1137 enum reg_note old_type = DEP_TYPE (dep);
1138 bool was_spec = dep_spec_p (dep);
1140 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1141 DEP_MULTIPLE (dep) = 1;
1143 /* If this is a more restrictive type of dependence than the
1144 existing one, then change the existing dependence to this
1145 type. */
1146 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1148 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1149 res = DEP_CHANGED;
1152 if (current_sched_info->flags & USE_DEPS_LIST)
1153 /* Update DEP_STATUS. */
1155 ds_t dep_status = DEP_STATUS (dep);
1156 ds_t ds = DEP_STATUS (new_dep);
1157 ds_t new_status = ds | dep_status;
1159 if (new_status & SPECULATIVE)
1161 /* Either existing dep or a dep we're adding or both are
1162 speculative. */
1163 if (!(ds & SPECULATIVE)
1164 || !(dep_status & SPECULATIVE))
1165 /* The new dep can't be speculative. */
1166 new_status &= ~SPECULATIVE;
1167 else
1169 /* Both are speculative. Merge probabilities. */
1170 if (mem1 != NULL)
1172 dw_t dw;
1174 dw = estimate_dep_weak (mem1, mem2);
1175 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1178 new_status = ds_merge (dep_status, ds);
1182 ds = new_status;
1184 if (dep_status != ds)
1186 DEP_STATUS (dep) = ds;
1187 res = DEP_CHANGED;
1191 if (was_spec && !dep_spec_p (dep))
1192 /* The old dep was speculative, but now it isn't. */
1193 change_spec_dep_to_hard (sd_it);
1195 if (true_dependency_cache != NULL
1196 && res == DEP_CHANGED)
1197 update_dependency_caches (dep, old_type);
1199 return res;
1202 /* Add or update a dependence described by DEP.
1203 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1204 data speculation.
1206 The function returns a value indicating if an old entry has been changed
1207 or a new entry has been added to insn's backward deps or nothing has
1208 been updated at all. */
1209 static enum DEPS_ADJUST_RESULT
1210 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1211 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1213 bool maybe_present_p = true;
1214 bool present_p = false;
1216 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1217 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1219 if (flag_checking)
1220 check_dep (new_dep, mem1 != NULL);
1222 if (true_dependency_cache != NULL)
1224 switch (ask_dependency_caches (new_dep))
1226 case DEP_PRESENT:
1227 dep_t present_dep;
1228 sd_iterator_def sd_it;
1230 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1231 DEP_CON (new_dep),
1232 resolved_p, &sd_it);
1233 DEP_MULTIPLE (present_dep) = 1;
1234 return DEP_PRESENT;
1236 case DEP_CHANGED:
1237 maybe_present_p = true;
1238 present_p = true;
1239 break;
1241 case DEP_CREATED:
1242 maybe_present_p = false;
1243 present_p = false;
1244 break;
1246 default:
1247 gcc_unreachable ();
1248 break;
1252 /* Check that we don't already have this dependence. */
1253 if (maybe_present_p)
1255 dep_t present_dep;
1256 sd_iterator_def sd_it;
1258 gcc_assert (true_dependency_cache == NULL || present_p);
1260 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1261 DEP_CON (new_dep),
1262 resolved_p, &sd_it);
1264 if (present_dep != NULL)
1265 /* We found an existing dependency between ELEM and INSN. */
1266 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1267 else
1268 /* We didn't find a dep, it shouldn't present in the cache. */
1269 gcc_assert (!present_p);
1272 /* Might want to check one level of transitivity to save conses.
1273 This check should be done in maybe_add_or_update_dep_1.
1274 Since we made it to add_or_update_dep_1, we must create
1275 (or update) a link. */
1277 if (mem1 != NULL_RTX)
1279 gcc_assert (sched_deps_info->generate_spec_deps);
1280 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1281 estimate_dep_weak (mem1, mem2));
1284 sd_add_dep (new_dep, resolved_p);
1286 return DEP_CREATED;
1289 /* Initialize BACK_LIST_PTR with consumer's backward list and
1290 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1291 initialize with lists that hold resolved deps. */
1292 static void
1293 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1294 deps_list_t *back_list_ptr,
1295 deps_list_t *forw_list_ptr)
1297 rtx_insn *con = DEP_CON (dep);
1299 if (!resolved_p)
1301 if (dep_spec_p (dep))
1302 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1303 else
1304 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1306 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1308 else
1310 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1311 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1315 /* Add dependence described by DEP.
1316 If RESOLVED_P is true treat the dependence as a resolved one. */
1317 void
1318 sd_add_dep (dep_t dep, bool resolved_p)
1320 dep_node_t n = create_dep_node ();
1321 deps_list_t con_back_deps;
1322 deps_list_t pro_forw_deps;
1323 rtx_insn *elem = DEP_PRO (dep);
1324 rtx_insn *insn = DEP_CON (dep);
1326 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1328 if ((current_sched_info->flags & DO_SPECULATION) == 0
1329 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1330 DEP_STATUS (dep) &= ~SPECULATIVE;
1332 copy_dep (DEP_NODE_DEP (n), dep);
1334 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1336 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1338 if (flag_checking)
1339 check_dep (dep, false);
1341 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1343 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1344 in the bitmap caches of dependency information. */
1345 if (true_dependency_cache != NULL)
1346 set_dependency_caches (dep);
1349 /* Add or update backward dependence between INSN and ELEM
1350 with given type DEP_TYPE and dep_status DS.
1351 This function is a convenience wrapper. */
1352 enum DEPS_ADJUST_RESULT
1353 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1355 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1358 /* Resolved dependence pointed to by SD_IT.
1359 SD_IT will advance to the next element. */
1360 void
1361 sd_resolve_dep (sd_iterator_def sd_it)
1363 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1364 dep_t dep = DEP_NODE_DEP (node);
1365 rtx_insn *pro = DEP_PRO (dep);
1366 rtx_insn *con = DEP_CON (dep);
1368 if (dep_spec_p (dep))
1369 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1370 INSN_RESOLVED_BACK_DEPS (con));
1371 else
1372 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1375 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1376 INSN_RESOLVED_FORW_DEPS (pro));
1379 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1380 pointed to by SD_IT to unresolved state. */
1381 void
1382 sd_unresolve_dep (sd_iterator_def sd_it)
1384 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1385 dep_t dep = DEP_NODE_DEP (node);
1386 rtx_insn *pro = DEP_PRO (dep);
1387 rtx_insn *con = DEP_CON (dep);
1389 if (dep_spec_p (dep))
1390 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1391 INSN_SPEC_BACK_DEPS (con));
1392 else
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_HARD_BACK_DEPS (con));
1396 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1397 INSN_FORW_DEPS (pro));
1400 /* Make TO depend on all the FROM's producers.
1401 If RESOLVED_P is true add dependencies to the resolved lists. */
1402 void
1403 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1405 sd_list_types_def list_type;
1406 sd_iterator_def sd_it;
1407 dep_t dep;
1409 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1411 FOR_EACH_DEP (from, list_type, sd_it, dep)
1413 dep_def _new_dep, *new_dep = &_new_dep;
1415 copy_dep (new_dep, dep);
1416 DEP_CON (new_dep) = to;
1417 sd_add_dep (new_dep, resolved_p);
1421 /* Remove a dependency referred to by SD_IT.
1422 SD_IT will point to the next dependence after removal. */
1423 void
1424 sd_delete_dep (sd_iterator_def sd_it)
1426 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1427 dep_t dep = DEP_NODE_DEP (n);
1428 rtx_insn *pro = DEP_PRO (dep);
1429 rtx_insn *con = DEP_CON (dep);
1430 deps_list_t con_back_deps;
1431 deps_list_t pro_forw_deps;
1433 if (true_dependency_cache != NULL)
1435 int elem_luid = INSN_LUID (pro);
1436 int insn_luid = INSN_LUID (con);
1438 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1441 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1443 if (current_sched_info->flags & DO_SPECULATION)
1444 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1447 get_back_and_forw_lists (dep, sd_it.resolved_p,
1448 &con_back_deps, &pro_forw_deps);
1450 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1451 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1453 delete_dep_node (n);
1456 /* Dump size of the lists. */
1457 #define DUMP_LISTS_SIZE (2)
1459 /* Dump dependencies of the lists. */
1460 #define DUMP_LISTS_DEPS (4)
1462 /* Dump all information about the lists. */
1463 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1465 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1466 FLAGS is a bit mask specifying what information about the lists needs
1467 to be printed.
1468 If FLAGS has the very first bit set, then dump all information about
1469 the lists and propagate this bit into the callee dump functions. */
1470 static void
1471 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1473 sd_iterator_def sd_it;
1474 dep_t dep;
1475 int all;
1477 all = (flags & 1);
1479 if (all)
1480 flags |= DUMP_LISTS_ALL;
1482 fprintf (dump, "[");
1484 if (flags & DUMP_LISTS_SIZE)
1485 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1487 if (flags & DUMP_LISTS_DEPS)
1489 FOR_EACH_DEP (insn, types, sd_it, dep)
1491 dump_dep (dump, dep, dump_dep_flags | all);
1492 fprintf (dump, " ");
1497 /* Dump all information about deps_lists of INSN specified by TYPES
1498 to STDERR. */
1499 void
1500 sd_debug_lists (rtx insn, sd_list_types_def types)
1502 dump_lists (stderr, insn, types, 1);
1503 fprintf (stderr, "\n");
1506 /* A wrapper around add_dependence_1, to add a dependence of CON on
1507 PRO, with type DEP_TYPE. This function implements special handling
1508 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1509 the type to REG_DEP_ANTI if we can determine that predication is
1510 impossible; otherwise we add additional true dependencies on the
1511 INSN_COND_DEPS list of the jump (which PRO must be). */
1512 void
1513 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1515 if (dep_type == REG_DEP_CONTROL
1516 && !(current_sched_info->flags & DO_PREDICATION))
1517 dep_type = REG_DEP_ANTI;
1519 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1520 so we must also make the insn dependent on the setter of the
1521 condition. */
1522 if (dep_type == REG_DEP_CONTROL)
1524 rtx_insn *real_pro = pro;
1525 rtx_insn *other = real_insn_for_shadow (real_pro);
1526 rtx cond;
1528 if (other != NULL_RTX)
1529 real_pro = other;
1530 cond = sched_get_reverse_condition_uncached (real_pro);
1531 /* Verify that the insn does not use a different value in
1532 the condition register than the one that was present at
1533 the jump. */
1534 if (cond == NULL_RTX)
1535 dep_type = REG_DEP_ANTI;
1536 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1538 HARD_REG_SET uses;
1539 CLEAR_HARD_REG_SET (uses);
1540 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1541 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1542 dep_type = REG_DEP_ANTI;
1544 if (dep_type == REG_DEP_CONTROL)
1546 if (sched_verbose >= 5)
1547 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1548 INSN_UID (real_pro));
1549 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1550 REG_DEP_TRUE, false);
1554 add_dependence_1 (con, pro, dep_type);
1557 /* A convenience wrapper to operate on an entire list. HARD should be
1558 true if DEP_NONREG should be set on newly created dependencies. */
1560 static void
1561 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1562 enum reg_note dep_type, bool hard)
1564 mark_as_hard = hard;
1565 for (; list; list = list->next ())
1567 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1568 add_dependence (insn, list->insn (), dep_type);
1570 mark_as_hard = false;
1573 /* Similar, but free *LISTP at the same time, when the context
1574 is not readonly. HARD should be true if DEP_NONREG should be set on
1575 newly created dependencies. */
1577 static void
1578 add_dependence_list_and_free (class deps_desc *deps, rtx_insn *insn,
1579 rtx_insn_list **listp,
1580 int uncond, enum reg_note dep_type, bool hard)
1582 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1584 /* We don't want to short-circuit dependencies involving debug
1585 insns, because they may cause actual dependencies to be
1586 disregarded. */
1587 if (deps->readonly || DEBUG_INSN_P (insn))
1588 return;
1590 free_INSN_LIST_list (listp);
1593 /* Remove all occurrences of INSN from LIST. Return the number of
1594 occurrences removed. */
1596 static int
1597 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1599 int removed = 0;
1601 while (*listp)
1603 if ((*listp)->insn () == insn)
1605 remove_free_INSN_LIST_node (listp);
1606 removed++;
1607 continue;
1610 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1613 return removed;
1616 /* Same as above, but process two lists at once. */
1617 static int
1618 remove_from_both_dependence_lists (rtx_insn *insn,
1619 rtx_insn_list **listp,
1620 rtx_expr_list **exprp)
1622 int removed = 0;
1624 while (*listp)
1626 if (XEXP (*listp, 0) == insn)
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1634 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1635 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1638 return removed;
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx_insn *insn)
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1663 static void
1664 chain_to_prev_insn (rtx_insn *insn)
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx_insn *prev_nonnote;
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1672 rtx_insn *i = insn;
1673 rtx_insn *pro = DEP_PRO (dep);
1677 i = prev_nonnote_insn (i);
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1688 delete_all_dependences (insn);
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1711 static void
1712 add_insn_mem_dependence (class deps_desc *deps, bool read_p,
1713 rtx_insn *insn, rtx mem)
1715 rtx_insn_list **insn_list;
1716 rtx_insn_list *insn_node;
1717 rtx_expr_list **mem_list;
1718 rtx_expr_list *mem_node;
1720 gcc_assert (!deps->readonly);
1721 if (read_p)
1723 insn_list = &deps->pending_read_insns;
1724 mem_list = &deps->pending_read_mems;
1725 if (!DEBUG_INSN_P (insn))
1726 deps->pending_read_list_length++;
1728 else
1730 insn_list = &deps->pending_write_insns;
1731 mem_list = &deps->pending_write_mems;
1732 deps->pending_write_list_length++;
1735 insn_node = alloc_INSN_LIST (insn, *insn_list);
1736 *insn_list = insn_node;
1738 if (sched_deps_info->use_cselib)
1740 mem = shallow_copy_rtx (mem);
1741 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1742 GET_MODE (mem), insn);
1744 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1745 *mem_list = mem_node;
1748 /* Make a dependency between every memory reference on the pending lists
1749 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1750 dependencies for a read operation, similarly with FOR_WRITE. */
1752 static void
1753 flush_pending_lists (class deps_desc *deps, rtx_insn *insn, int for_read,
1754 int for_write)
1756 if (for_write)
1758 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1759 1, REG_DEP_ANTI, true);
1760 if (!deps->readonly)
1762 free_EXPR_LIST_list (&deps->pending_read_mems);
1763 deps->pending_read_list_length = 0;
1767 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1768 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1769 true);
1771 add_dependence_list_and_free (deps, insn,
1772 &deps->last_pending_memory_flush, 1,
1773 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1774 true);
1776 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1777 REG_DEP_ANTI, true);
1779 if (DEBUG_INSN_P (insn))
1781 if (for_write)
1782 free_INSN_LIST_list (&deps->pending_read_insns);
1783 free_INSN_LIST_list (&deps->pending_write_insns);
1784 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1785 free_INSN_LIST_list (&deps->pending_jump_insns);
1788 if (!deps->readonly)
1790 free_EXPR_LIST_list (&deps->pending_write_mems);
1791 deps->pending_write_list_length = 0;
1793 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1794 deps->pending_flush_length = 1;
1796 mark_as_hard = false;
1799 /* Instruction which dependencies we are analyzing. */
1800 static rtx_insn *cur_insn = NULL;
1802 /* Implement hooks for haifa scheduler. */
1804 static void
1805 haifa_start_insn (rtx_insn *insn)
1807 gcc_assert (insn && !cur_insn);
1809 cur_insn = insn;
1812 static void
1813 haifa_finish_insn (void)
1815 cur_insn = NULL;
1818 void
1819 haifa_note_reg_set (int regno)
1821 SET_REGNO_REG_SET (reg_pending_sets, regno);
1824 void
1825 haifa_note_reg_clobber (int regno)
1827 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1830 void
1831 haifa_note_reg_use (int regno)
1833 SET_REGNO_REG_SET (reg_pending_uses, regno);
1836 static void
1837 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1839 if (!(ds & SPECULATIVE))
1841 mem = NULL_RTX;
1842 pending_mem = NULL_RTX;
1844 else
1845 gcc_assert (ds & BEGIN_DATA);
1848 dep_def _dep, *dep = &_dep;
1850 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1851 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1852 DEP_NONREG (dep) = 1;
1853 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1858 static void
1859 haifa_note_dep (rtx_insn *elem, ds_t ds)
1861 dep_def _dep;
1862 dep_t dep = &_dep;
1864 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1865 if (mark_as_hard)
1866 DEP_NONREG (dep) = 1;
1867 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1870 static void
1871 note_reg_use (int r)
1873 if (sched_deps_info->note_reg_use)
1874 sched_deps_info->note_reg_use (r);
1877 static void
1878 note_reg_set (int r)
1880 if (sched_deps_info->note_reg_set)
1881 sched_deps_info->note_reg_set (r);
1884 static void
1885 note_reg_clobber (int r)
1887 if (sched_deps_info->note_reg_clobber)
1888 sched_deps_info->note_reg_clobber (r);
1891 static void
1892 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1894 if (sched_deps_info->note_mem_dep)
1895 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1898 static void
1899 note_dep (rtx_insn *e, ds_t ds)
1901 if (sched_deps_info->note_dep)
1902 sched_deps_info->note_dep (e, ds);
1905 /* Return corresponding to DS reg_note. */
1906 enum reg_note
1907 ds_to_dt (ds_t ds)
1909 if (ds & DEP_TRUE)
1910 return REG_DEP_TRUE;
1911 else if (ds & DEP_OUTPUT)
1912 return REG_DEP_OUTPUT;
1913 else if (ds & DEP_ANTI)
1914 return REG_DEP_ANTI;
1915 else
1917 gcc_assert (ds & DEP_CONTROL);
1918 return REG_DEP_CONTROL;
1924 /* Functions for computation of info needed for register pressure
1925 sensitive insn scheduling. */
1928 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1929 static struct reg_use_data *
1930 create_insn_reg_use (int regno, rtx_insn *insn)
1932 struct reg_use_data *use;
1934 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1935 use->regno = regno;
1936 use->insn = insn;
1937 use->next_insn_use = INSN_REG_USE_LIST (insn);
1938 INSN_REG_USE_LIST (insn) = use;
1939 return use;
1942 /* Allocate reg_set_data structure for REGNO and INSN. */
1943 static void
1944 create_insn_reg_set (int regno, rtx insn)
1946 struct reg_set_data *set;
1948 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1949 set->regno = regno;
1950 set->insn = insn;
1951 set->next_insn_set = INSN_REG_SET_LIST (insn);
1952 INSN_REG_SET_LIST (insn) = set;
1955 /* Set up insn register uses for INSN and dependency context DEPS. */
1956 static void
1957 setup_insn_reg_uses (class deps_desc *deps, rtx_insn *insn)
1959 unsigned i;
1960 reg_set_iterator rsi;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1968 continue;
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1976 use = create_insn_reg_use (i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1980 /* Create the cycle list of uses. */
1981 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1983 use2 = create_insn_reg_use (i, list->insn ());
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1995 static bool
1996 insn_use_p (rtx insn, int regno)
1998 struct reg_use_data *use;
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009 static void
2010 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2012 int incr, new_incr;
2013 enum reg_class cl;
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2025 else if (unused_p)
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2030 else
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044 static void
2045 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2051 while (regno < last)
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2059 if (clobber_p)
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2064 else if (unused_p)
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2069 else
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2080 regno++;
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088 static void
2089 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2091 int regno;
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2096 if (! REG_P (reg))
2097 return;
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2102 clobber_p, unused_p);
2103 else
2104 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2107 /* Update the register pressure info after death of pseudo register
2108 REGNO. */
2109 static void
2110 mark_pseudo_death (int regno)
2112 int incr;
2113 enum reg_class cl;
2115 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2116 cl = sched_regno_pressure_class[regno];
2117 if (cl != NO_REGS)
2119 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2120 reg_pressure_info[cl].change -= incr;
2124 /* Like mark_pseudo_death except that NREGS saying how many hard
2125 registers involved in the death. */
2126 static void
2127 mark_hard_regno_death (int regno, int nregs)
2129 enum reg_class cl;
2130 int last = regno + nregs;
2132 while (regno < last)
2134 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2135 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2137 cl = sched_regno_pressure_class[regno];
2138 if (cl != NO_REGS)
2139 reg_pressure_info[cl].change -= 1;
2141 regno++;
2145 /* Update the register pressure info after death of pseudo or hard
2146 register REG. */
2147 static void
2148 mark_reg_death (rtx reg)
2150 int regno;
2152 if (GET_CODE (reg) == SUBREG)
2153 reg = SUBREG_REG (reg);
2155 if (! REG_P (reg))
2156 return;
2158 regno = REGNO (reg);
2159 if (regno < FIRST_PSEUDO_REGISTER)
2160 mark_hard_regno_death (regno, REG_NREGS (reg));
2161 else
2162 mark_pseudo_death (regno);
2165 /* Process SETTER of REG. DATA is an insn containing the setter. */
2166 static void
2167 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2169 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2170 return;
2171 mark_insn_reg_birth
2172 ((rtx) data, reg, false,
2173 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2176 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2177 static void
2178 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2180 if (GET_CODE (setter) == CLOBBER)
2181 mark_insn_reg_birth ((rtx) data, reg, true, false);
2184 /* Set up reg pressure info related to INSN. */
2185 void
2186 init_insn_reg_pressure_info (rtx_insn *insn)
2188 int i, len;
2189 enum reg_class cl;
2190 static struct reg_pressure_data *pressure_info;
2191 rtx link;
2193 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2195 if (! INSN_P (insn))
2196 return;
2198 for (i = 0; i < ira_pressure_classes_num; i++)
2200 cl = ira_pressure_classes[i];
2201 reg_pressure_info[cl].clobber_increase = 0;
2202 reg_pressure_info[cl].set_increase = 0;
2203 reg_pressure_info[cl].unused_set_increase = 0;
2204 reg_pressure_info[cl].change = 0;
2207 note_stores (insn, mark_insn_reg_clobber, insn);
2209 note_stores (insn, mark_insn_reg_store, insn);
2211 if (AUTO_INC_DEC)
2212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2213 if (REG_NOTE_KIND (link) == REG_INC)
2214 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2216 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2217 if (REG_NOTE_KIND (link) == REG_DEAD)
2218 mark_reg_death (XEXP (link, 0));
2220 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2221 pressure_info
2222 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2223 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2224 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2225 * sizeof (int), 1);
2226 for (i = 0; i < ira_pressure_classes_num; i++)
2228 cl = ira_pressure_classes[i];
2229 pressure_info[i].clobber_increase
2230 = reg_pressure_info[cl].clobber_increase;
2231 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2232 pressure_info[i].unused_set_increase
2233 = reg_pressure_info[cl].unused_set_increase;
2234 pressure_info[i].change = reg_pressure_info[cl].change;
2241 /* Internal variable for sched_analyze_[12] () functions.
2242 If it is nonzero, this means that sched_analyze_[12] looks
2243 at the most toplevel SET. */
2244 static bool can_start_lhs_rhs_p;
2246 /* Extend reg info for the deps context DEPS given that
2247 we have just generated a register numbered REGNO. */
2248 static void
2249 extend_deps_reg_info (class deps_desc *deps, int regno)
2251 int max_regno = regno + 1;
2253 gcc_assert (!reload_completed);
2255 /* In a readonly context, it would not hurt to extend info,
2256 but it should not be needed. */
2257 if (reload_completed && deps->readonly)
2259 deps->max_reg = max_regno;
2260 return;
2263 if (max_regno > deps->max_reg)
2265 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2266 max_regno);
2267 memset (&deps->reg_last[deps->max_reg],
2268 0, (max_regno - deps->max_reg)
2269 * sizeof (struct deps_reg));
2270 deps->max_reg = max_regno;
2274 /* Extends REG_INFO_P if needed. */
2275 void
2276 maybe_extend_reg_info_p (void)
2278 /* Extend REG_INFO_P, if needed. */
2279 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2281 size_t new_reg_info_p_size = max_regno + 128;
2283 gcc_assert (!reload_completed && sel_sched_p ());
2285 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2286 new_reg_info_p_size,
2287 reg_info_p_size,
2288 sizeof (*reg_info_p));
2289 reg_info_p_size = new_reg_info_p_size;
2293 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2294 The type of the reference is specified by REF and can be SET,
2295 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2297 static void
2298 sched_analyze_reg (class deps_desc *deps, int regno, machine_mode mode,
2299 enum rtx_code ref, rtx_insn *insn)
2301 /* We could emit new pseudos in renaming. Extend the reg structures. */
2302 if (!reload_completed && sel_sched_p ()
2303 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2304 extend_deps_reg_info (deps, regno);
2306 maybe_extend_reg_info_p ();
2308 /* A hard reg in a wide mode may really be multiple registers.
2309 If so, mark all of them just like the first. */
2310 if (regno < FIRST_PSEUDO_REGISTER)
2312 int i = hard_regno_nregs (regno, mode);
2313 if (ref == SET)
2315 while (--i >= 0)
2316 note_reg_set (regno + i);
2318 else if (ref == USE)
2320 while (--i >= 0)
2321 note_reg_use (regno + i);
2323 else
2325 while (--i >= 0)
2326 note_reg_clobber (regno + i);
2330 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2331 it does not reload. Ignore these as they have served their
2332 purpose already. */
2333 else if (regno >= deps->max_reg)
2335 enum rtx_code code = GET_CODE (PATTERN (insn));
2336 gcc_assert (code == USE || code == CLOBBER);
2339 else
2341 if (ref == SET)
2342 note_reg_set (regno);
2343 else if (ref == USE)
2344 note_reg_use (regno);
2345 else
2346 note_reg_clobber (regno);
2348 /* Pseudos that are REG_EQUIV to something may be replaced
2349 by that during reloading. We need only add dependencies for
2350 the address in the REG_EQUIV note. */
2351 if (!reload_completed && get_reg_known_equiv_p (regno))
2353 rtx t = get_reg_known_value (regno);
2354 if (MEM_P (t))
2355 sched_analyze_2 (deps, XEXP (t, 0), insn);
2358 /* Don't let it cross a call after scheduling if it doesn't
2359 already cross one. */
2360 if (REG_N_CALLS_CROSSED (regno) == 0)
2362 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2363 deps->sched_before_next_call
2364 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2365 else
2366 add_dependence_list (insn, deps->last_function_call, 1,
2367 REG_DEP_ANTI, false);
2372 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2373 rtx, X, creating all dependencies generated by the write to the
2374 destination of X, and reads of everything mentioned. */
2376 static void
2377 sched_analyze_1 (class deps_desc *deps, rtx x, rtx_insn *insn)
2379 rtx dest = XEXP (x, 0);
2380 enum rtx_code code = GET_CODE (x);
2381 bool cslr_p = can_start_lhs_rhs_p;
2383 can_start_lhs_rhs_p = false;
2385 gcc_assert (dest);
2386 if (dest == 0)
2387 return;
2389 if (cslr_p && sched_deps_info->start_lhs)
2390 sched_deps_info->start_lhs (dest);
2392 if (GET_CODE (dest) == PARALLEL)
2394 int i;
2396 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2397 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2398 sched_analyze_1 (deps,
2399 gen_rtx_CLOBBER (VOIDmode,
2400 XEXP (XVECEXP (dest, 0, i), 0)),
2401 insn);
2403 if (cslr_p && sched_deps_info->finish_lhs)
2404 sched_deps_info->finish_lhs ();
2406 if (code == SET)
2408 can_start_lhs_rhs_p = cslr_p;
2410 sched_analyze_2 (deps, SET_SRC (x), insn);
2412 can_start_lhs_rhs_p = false;
2415 return;
2418 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2419 || GET_CODE (dest) == ZERO_EXTRACT)
2421 if (GET_CODE (dest) == STRICT_LOW_PART
2422 || GET_CODE (dest) == ZERO_EXTRACT
2423 || read_modify_subreg_p (dest))
2425 /* These both read and modify the result. We must handle
2426 them as writes to get proper dependencies for following
2427 instructions. We must handle them as reads to get proper
2428 dependencies from this to previous instructions.
2429 Thus we need to call sched_analyze_2. */
2431 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2433 if (GET_CODE (dest) == ZERO_EXTRACT)
2435 /* The second and third arguments are values read by this insn. */
2436 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2437 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2439 dest = XEXP (dest, 0);
2442 if (REG_P (dest))
2444 int regno = REGNO (dest);
2445 machine_mode mode = GET_MODE (dest);
2447 sched_analyze_reg (deps, regno, mode, code, insn);
2449 #ifdef STACK_REGS
2450 /* Treat all writes to a stack register as modifying the TOS. */
2451 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2453 /* Avoid analyzing the same register twice. */
2454 if (regno != FIRST_STACK_REG)
2455 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2457 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2458 FIRST_STACK_REG);
2460 #endif
2462 else if (MEM_P (dest))
2464 /* Writing memory. */
2465 rtx t = dest;
2467 if (sched_deps_info->use_cselib)
2469 machine_mode address_mode = get_address_mode (dest);
2471 t = shallow_copy_rtx (dest);
2472 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2473 GET_MODE (t), insn);
2474 XEXP (t, 0)
2475 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2476 insn);
2478 t = canon_rtx (t);
2480 /* Pending lists can't get larger with a readonly context. */
2481 if (!deps->readonly
2482 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2483 >= param_max_pending_list_length))
2485 /* Flush all pending reads and writes to prevent the pending lists
2486 from getting any larger. Insn scheduling runs too slowly when
2487 these lists get long. When compiling GCC with itself,
2488 this flush occurs 8 times for sparc, and 10 times for m88k using
2489 the default value of 32. */
2490 flush_pending_lists (deps, insn, false, true);
2492 else
2494 rtx_insn_list *pending;
2495 rtx_expr_list *pending_mem;
2497 pending = deps->pending_read_insns;
2498 pending_mem = deps->pending_read_mems;
2499 while (pending)
2501 if (anti_dependence (pending_mem->element (), t)
2502 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2503 note_mem_dep (t, pending_mem->element (), pending->insn (),
2504 DEP_ANTI);
2506 pending = pending->next ();
2507 pending_mem = pending_mem->next ();
2510 pending = deps->pending_write_insns;
2511 pending_mem = deps->pending_write_mems;
2512 while (pending)
2514 if (output_dependence (pending_mem->element (), t)
2515 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2516 note_mem_dep (t, pending_mem->element (),
2517 pending->insn (),
2518 DEP_OUTPUT);
2520 pending = pending->next ();
2521 pending_mem = pending_mem-> next ();
2524 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2525 REG_DEP_ANTI, true);
2526 add_dependence_list (insn, deps->pending_jump_insns, 1,
2527 REG_DEP_CONTROL, true);
2529 if (!deps->readonly)
2530 add_insn_mem_dependence (deps, false, insn, dest);
2532 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2535 if (cslr_p && sched_deps_info->finish_lhs)
2536 sched_deps_info->finish_lhs ();
2538 /* Analyze reads. */
2539 if (GET_CODE (x) == SET)
2541 can_start_lhs_rhs_p = cslr_p;
2543 sched_analyze_2 (deps, SET_SRC (x), insn);
2545 can_start_lhs_rhs_p = false;
2549 /* Analyze the uses of memory and registers in rtx X in INSN. */
2550 static void
2551 sched_analyze_2 (class deps_desc *deps, rtx x, rtx_insn *insn)
2553 int i;
2554 int j;
2555 enum rtx_code code;
2556 const char *fmt;
2557 bool cslr_p = can_start_lhs_rhs_p;
2559 can_start_lhs_rhs_p = false;
2561 gcc_assert (x);
2562 if (x == 0)
2563 return;
2565 if (cslr_p && sched_deps_info->start_rhs)
2566 sched_deps_info->start_rhs (x);
2568 code = GET_CODE (x);
2570 switch (code)
2572 CASE_CONST_ANY:
2573 case SYMBOL_REF:
2574 case CONST:
2575 case LABEL_REF:
2576 /* Ignore constants. */
2577 if (cslr_p && sched_deps_info->finish_rhs)
2578 sched_deps_info->finish_rhs ();
2580 return;
2582 case REG:
2584 int regno = REGNO (x);
2585 machine_mode mode = GET_MODE (x);
2587 sched_analyze_reg (deps, regno, mode, USE, insn);
2589 #ifdef STACK_REGS
2590 /* Treat all reads of a stack register as modifying the TOS. */
2591 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2593 /* Avoid analyzing the same register twice. */
2594 if (regno != FIRST_STACK_REG)
2595 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2596 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2598 #endif
2600 if (cslr_p && sched_deps_info->finish_rhs)
2601 sched_deps_info->finish_rhs ();
2603 return;
2606 case MEM:
2608 if (DEBUG_INSN_P (insn) && sched_deps_info->use_cselib)
2610 machine_mode address_mode = get_address_mode (x);
2612 cselib_lookup_from_insn (XEXP (x, 0), address_mode, 1,
2613 GET_MODE (x), insn);
2615 else if (!DEBUG_INSN_P (insn))
2617 /* Reading memory. */
2618 rtx_insn_list *u;
2619 rtx_insn_list *pending;
2620 rtx_expr_list *pending_mem;
2621 rtx t = x;
2623 if (sched_deps_info->use_cselib)
2625 machine_mode address_mode = get_address_mode (t);
2627 t = shallow_copy_rtx (t);
2628 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2629 GET_MODE (t), insn);
2630 XEXP (t, 0)
2631 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2632 insn);
2635 t = canon_rtx (t);
2636 pending = deps->pending_read_insns;
2637 pending_mem = deps->pending_read_mems;
2638 while (pending)
2640 if (read_dependence (pending_mem->element (), t)
2641 && ! sched_insns_conditions_mutex_p (insn,
2642 pending->insn ()))
2643 note_mem_dep (t, pending_mem->element (),
2644 pending->insn (),
2645 DEP_ANTI);
2647 pending = pending->next ();
2648 pending_mem = pending_mem->next ();
2651 pending = deps->pending_write_insns;
2652 pending_mem = deps->pending_write_mems;
2653 while (pending)
2655 if (true_dependence (pending_mem->element (), VOIDmode, t)
2656 && ! sched_insns_conditions_mutex_p (insn,
2657 pending->insn ()))
2658 note_mem_dep (t, pending_mem->element (),
2659 pending->insn (),
2660 sched_deps_info->generate_spec_deps
2661 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2663 pending = pending->next ();
2664 pending_mem = pending_mem->next ();
2667 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2668 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2670 for (u = deps->pending_jump_insns; u; u = u->next ())
2671 if (deps_may_trap_p (x))
2673 if ((sched_deps_info->generate_spec_deps)
2674 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2676 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2677 MAX_DEP_WEAK);
2679 note_dep (u->insn (), ds);
2681 else
2682 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2686 /* Always add these dependencies to pending_reads, since
2687 this insn may be followed by a write. */
2688 if (!deps->readonly)
2690 if ((deps->pending_read_list_length
2691 + deps->pending_write_list_length)
2692 >= param_max_pending_list_length
2693 && !DEBUG_INSN_P (insn))
2694 flush_pending_lists (deps, insn, true, true);
2695 add_insn_mem_dependence (deps, true, insn, x);
2698 sched_analyze_2 (deps, XEXP (x, 0), insn);
2700 if (cslr_p && sched_deps_info->finish_rhs)
2701 sched_deps_info->finish_rhs ();
2703 return;
2706 /* Force pending stores to memory in case a trap handler needs them.
2707 Also force pending loads from memory; loads and stores can segfault
2708 and the signal handler won't be triggered if the trap insn was moved
2709 above load or store insn. */
2710 case TRAP_IF:
2711 flush_pending_lists (deps, insn, true, true);
2712 break;
2714 case PREFETCH:
2715 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2716 reg_pending_barrier = TRUE_BARRIER;
2717 /* Prefetch insn contains addresses only. So if the prefetch
2718 address has no registers, there will be no dependencies on
2719 the prefetch insn. This is wrong with result code
2720 correctness point of view as such prefetch can be moved below
2721 a jump insn which usually generates MOVE_BARRIER preventing
2722 to move insns containing registers or memories through the
2723 barrier. It is also wrong with generated code performance
2724 point of view as prefetch withouth dependecies will have a
2725 tendency to be issued later instead of earlier. It is hard
2726 to generate accurate dependencies for prefetch insns as
2727 prefetch has only the start address but it is better to have
2728 something than nothing. */
2729 if (!deps->readonly)
2731 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2732 if (sched_deps_info->use_cselib)
2733 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2734 add_insn_mem_dependence (deps, true, insn, x);
2736 break;
2738 case UNSPEC_VOLATILE:
2739 flush_pending_lists (deps, insn, true, true);
2740 /* FALLTHRU */
2742 case ASM_OPERANDS:
2743 case ASM_INPUT:
2745 /* Traditional and volatile asm instructions must be considered to use
2746 and clobber all hard registers, all pseudo-registers and all of
2747 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2749 Consider for instance a volatile asm that changes the fpu rounding
2750 mode. An insn should not be moved across this even if it only uses
2751 pseudo-regs because it might give an incorrectly rounded result. */
2752 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2753 && !DEBUG_INSN_P (insn))
2754 reg_pending_barrier = TRUE_BARRIER;
2756 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2757 We cannot just fall through here since then we would be confused
2758 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2759 traditional asms unlike their normal usage. */
2761 if (code == ASM_OPERANDS)
2763 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2764 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2766 if (cslr_p && sched_deps_info->finish_rhs)
2767 sched_deps_info->finish_rhs ();
2769 return;
2771 break;
2774 case PRE_DEC:
2775 case POST_DEC:
2776 case PRE_INC:
2777 case POST_INC:
2778 /* These both read and modify the result. We must handle them as writes
2779 to get proper dependencies for following instructions. We must handle
2780 them as reads to get proper dependencies from this to previous
2781 instructions. Thus we need to pass them to both sched_analyze_1
2782 and sched_analyze_2. We must call sched_analyze_2 first in order
2783 to get the proper antecedent for the read. */
2784 sched_analyze_2 (deps, XEXP (x, 0), insn);
2785 sched_analyze_1 (deps, x, insn);
2787 if (cslr_p && sched_deps_info->finish_rhs)
2788 sched_deps_info->finish_rhs ();
2790 return;
2792 case POST_MODIFY:
2793 case PRE_MODIFY:
2794 /* op0 = op0 + op1 */
2795 sched_analyze_2 (deps, XEXP (x, 0), insn);
2796 sched_analyze_2 (deps, XEXP (x, 1), insn);
2797 sched_analyze_1 (deps, x, insn);
2799 if (cslr_p && sched_deps_info->finish_rhs)
2800 sched_deps_info->finish_rhs ();
2802 return;
2804 default:
2805 break;
2808 /* Other cases: walk the insn. */
2809 fmt = GET_RTX_FORMAT (code);
2810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2812 if (fmt[i] == 'e')
2813 sched_analyze_2 (deps, XEXP (x, i), insn);
2814 else if (fmt[i] == 'E')
2815 for (j = 0; j < XVECLEN (x, i); j++)
2816 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2819 if (cslr_p && sched_deps_info->finish_rhs)
2820 sched_deps_info->finish_rhs ();
2823 /* Try to group two fusible insns together to prevent scheduler
2824 from scheduling them apart. */
2826 static void
2827 sched_macro_fuse_insns (rtx_insn *insn)
2829 rtx_insn *prev;
2830 /* No target hook would return true for debug insn as any of the
2831 hook operand, and with very large sequences of only debug insns
2832 where on each we call sched_macro_fuse_insns it has quadratic
2833 compile time complexity. */
2834 if (DEBUG_INSN_P (insn))
2835 return;
2836 prev = prev_nonnote_nondebug_insn_bb (insn);
2837 if (!prev)
2838 return;
2840 if (any_condjump_p (insn))
2842 unsigned int condreg1, condreg2;
2843 rtx cc_reg_1;
2844 if (targetm.fixed_condition_code_regs (&condreg1, &condreg2))
2846 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2847 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2848 && modified_in_p (cc_reg_1, prev))
2850 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2851 SCHED_GROUP_P (insn) = 1;
2852 return;
2857 if (single_set (insn) && single_set (prev))
2859 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2860 SCHED_GROUP_P (insn) = 1;
2864 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2865 void
2866 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2868 extract_insn (insn);
2869 preprocess_constraints (insn);
2870 alternative_mask preferred = get_preferred_alternatives (insn);
2871 ira_implicitly_set_insn_hard_regs (temp, preferred);
2872 *temp &= ~ira_no_alloc_regs;
2875 /* Analyze an INSN with pattern X to find all dependencies. */
2876 static void
2877 sched_analyze_insn (class deps_desc *deps, rtx x, rtx_insn *insn)
2879 RTX_CODE code = GET_CODE (x);
2880 rtx link;
2881 unsigned i;
2882 reg_set_iterator rsi;
2884 if (! reload_completed)
2886 HARD_REG_SET temp;
2887 get_implicit_reg_pending_clobbers (&temp, insn);
2888 implicit_reg_pending_clobbers |= temp;
2891 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2892 && code == SET);
2894 /* Group compare and branch insns for macro-fusion. */
2895 if (!deps->readonly
2896 && targetm.sched.macro_fusion_p
2897 && targetm.sched.macro_fusion_p ())
2898 sched_macro_fuse_insns (insn);
2900 if (may_trap_p (x))
2901 /* Avoid moving trapping instructions across function calls that might
2902 not always return. */
2903 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2904 1, REG_DEP_ANTI, true);
2906 /* We must avoid creating a situation in which two successors of the
2907 current block have different unwind info after scheduling. If at any
2908 point the two paths re-join this leads to incorrect unwind info. */
2909 /* ??? There are certain situations involving a forced frame pointer in
2910 which, with extra effort, we could fix up the unwind info at a later
2911 CFG join. However, it seems better to notice these cases earlier
2912 during prologue generation and avoid marking the frame pointer setup
2913 as frame-related at all. */
2914 if (RTX_FRAME_RELATED_P (insn))
2916 /* Make sure prologue insn is scheduled before next jump. */
2917 deps->sched_before_next_jump
2918 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2920 /* Make sure epilogue insn is scheduled after preceding jumps. */
2921 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2922 REG_DEP_ANTI, true);
2923 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2924 true);
2927 if (code == COND_EXEC)
2929 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2931 /* ??? Should be recording conditions so we reduce the number of
2932 false dependencies. */
2933 x = COND_EXEC_CODE (x);
2934 code = GET_CODE (x);
2936 if (code == SET || code == CLOBBER)
2938 sched_analyze_1 (deps, x, insn);
2940 /* Bare clobber insns are used for letting life analysis, reg-stack
2941 and others know that a value is dead. Depend on the last call
2942 instruction so that reg-stack won't get confused. */
2943 if (code == CLOBBER)
2944 add_dependence_list (insn, deps->last_function_call, 1,
2945 REG_DEP_OUTPUT, true);
2947 else if (code == PARALLEL)
2949 for (i = XVECLEN (x, 0); i--;)
2951 rtx sub = XVECEXP (x, 0, i);
2952 code = GET_CODE (sub);
2954 if (code == COND_EXEC)
2956 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2957 sub = COND_EXEC_CODE (sub);
2958 code = GET_CODE (sub);
2960 else if (code == SET || code == CLOBBER)
2961 sched_analyze_1 (deps, sub, insn);
2962 else
2963 sched_analyze_2 (deps, sub, insn);
2966 else
2967 sched_analyze_2 (deps, x, insn);
2969 /* Mark registers CLOBBERED or used by called function. */
2970 if (CALL_P (insn))
2972 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2974 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2975 sched_analyze_1 (deps, XEXP (link, 0), insn);
2976 else if (GET_CODE (XEXP (link, 0)) != SET)
2977 sched_analyze_2 (deps, XEXP (link, 0), insn);
2979 /* Don't schedule anything after a tail call, tail call needs
2980 to use at least all call-saved registers. */
2981 if (SIBLING_CALL_P (insn))
2982 reg_pending_barrier = TRUE_BARRIER;
2983 else if (find_reg_note (insn, REG_SETJMP, NULL))
2984 reg_pending_barrier = MOVE_BARRIER;
2987 if (JUMP_P (insn))
2989 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2990 /* ??? For tablejumps, the barrier may appear not immediately after
2991 the jump, but after a label and a jump_table_data insn. */
2992 if (next && LABEL_P (next) && NEXT_INSN (next)
2993 && JUMP_TABLE_DATA_P (NEXT_INSN (next)))
2994 next = NEXT_INSN (NEXT_INSN (next));
2995 if (next && BARRIER_P (next))
2996 reg_pending_barrier = MOVE_BARRIER;
2997 else
2999 rtx_insn_list *pending;
3000 rtx_expr_list *pending_mem;
3002 if (sched_deps_info->compute_jump_reg_dependencies)
3004 (*sched_deps_info->compute_jump_reg_dependencies)
3005 (insn, reg_pending_control_uses);
3007 /* Make latency of jump equal to 0 by using anti-dependence. */
3008 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3010 struct deps_reg *reg_last = &deps->reg_last[i];
3011 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3012 false);
3013 add_dependence_list (insn, reg_last->implicit_sets,
3014 0, REG_DEP_ANTI, false);
3015 add_dependence_list (insn, reg_last->clobbers, 0,
3016 REG_DEP_ANTI, false);
3020 /* All memory writes and volatile reads must happen before the
3021 jump. Non-volatile reads must happen before the jump iff
3022 the result is needed by the above register used mask. */
3024 pending = deps->pending_write_insns;
3025 pending_mem = deps->pending_write_mems;
3026 while (pending)
3028 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3029 add_dependence (insn, pending->insn (),
3030 REG_DEP_OUTPUT);
3031 pending = pending->next ();
3032 pending_mem = pending_mem->next ();
3035 pending = deps->pending_read_insns;
3036 pending_mem = deps->pending_read_mems;
3037 while (pending)
3039 if (MEM_VOLATILE_P (pending_mem->element ())
3040 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3041 add_dependence (insn, pending->insn (),
3042 REG_DEP_OUTPUT);
3043 pending = pending->next ();
3044 pending_mem = pending_mem->next ();
3047 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3048 REG_DEP_ANTI, true);
3049 add_dependence_list (insn, deps->pending_jump_insns, 1,
3050 REG_DEP_ANTI, true);
3054 /* If this instruction can throw an exception, then moving it changes
3055 where block boundaries fall. This is mighty confusing elsewhere.
3056 Therefore, prevent such an instruction from being moved. Same for
3057 non-jump instructions that define block boundaries.
3058 ??? Unclear whether this is still necessary in EBB mode. If not,
3059 add_branch_dependences should be adjusted for RGN mode instead. */
3060 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3061 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3062 reg_pending_barrier = MOVE_BARRIER;
3064 if (sched_pressure != SCHED_PRESSURE_NONE)
3066 setup_insn_reg_uses (deps, insn);
3067 init_insn_reg_pressure_info (insn);
3070 /* Add register dependencies for insn. */
3071 if (DEBUG_INSN_P (insn))
3073 rtx_insn *prev = deps->last_debug_insn;
3074 rtx_insn_list *u;
3076 if (!deps->readonly)
3077 deps->last_debug_insn = insn;
3079 if (prev)
3080 add_dependence (insn, prev, REG_DEP_ANTI);
3082 add_dependence_list (insn, deps->last_function_call, 1,
3083 REG_DEP_ANTI, false);
3085 if (!sel_sched_p ())
3086 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3087 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3089 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3091 struct deps_reg *reg_last = &deps->reg_last[i];
3092 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3093 /* There's no point in making REG_DEP_CONTROL dependencies for
3094 debug insns. */
3095 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3096 false);
3098 if (!deps->readonly)
3099 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3101 CLEAR_REG_SET (reg_pending_uses);
3103 /* Quite often, a debug insn will refer to stuff in the
3104 previous instruction, but the reason we want this
3105 dependency here is to make sure the scheduler doesn't
3106 gratuitously move a debug insn ahead. This could dirty
3107 DF flags and cause additional analysis that wouldn't have
3108 occurred in compilation without debug insns, and such
3109 additional analysis can modify the generated code. */
3110 prev = PREV_INSN (insn);
3112 if (prev && NONDEBUG_INSN_P (prev))
3113 add_dependence (insn, prev, REG_DEP_ANTI);
3115 else
3117 regset_head set_or_clobbered;
3119 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3121 struct deps_reg *reg_last = &deps->reg_last[i];
3122 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3123 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3124 false);
3125 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3126 false);
3128 if (!deps->readonly)
3130 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3131 reg_last->uses_length++;
3135 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3136 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3138 struct deps_reg *reg_last = &deps->reg_last[i];
3139 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3140 add_dependence_list (insn, reg_last->implicit_sets, 0,
3141 REG_DEP_ANTI, false);
3142 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3143 false);
3145 if (!deps->readonly)
3147 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3148 reg_last->uses_length++;
3152 if (targetm.sched.exposed_pipeline)
3154 INIT_REG_SET (&set_or_clobbered);
3155 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3156 reg_pending_sets);
3157 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3159 struct deps_reg *reg_last = &deps->reg_last[i];
3160 rtx list;
3161 for (list = reg_last->uses; list; list = XEXP (list, 1))
3163 rtx other = XEXP (list, 0);
3164 if (INSN_CACHED_COND (other) != const_true_rtx
3165 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3166 INSN_CACHED_COND (other) = const_true_rtx;
3171 /* If the current insn is conditional, we can't free any
3172 of the lists. */
3173 if (sched_has_condition_p (insn))
3175 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3177 struct deps_reg *reg_last = &deps->reg_last[i];
3178 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3179 false);
3180 add_dependence_list (insn, reg_last->implicit_sets, 0,
3181 REG_DEP_ANTI, false);
3182 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3183 false);
3184 add_dependence_list (insn, reg_last->control_uses, 0,
3185 REG_DEP_CONTROL, false);
3187 if (!deps->readonly)
3189 reg_last->clobbers
3190 = alloc_INSN_LIST (insn, reg_last->clobbers);
3191 reg_last->clobbers_length++;
3194 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3196 struct deps_reg *reg_last = &deps->reg_last[i];
3197 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3198 false);
3199 add_dependence_list (insn, reg_last->implicit_sets, 0,
3200 REG_DEP_ANTI, false);
3201 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3202 false);
3203 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3204 false);
3205 add_dependence_list (insn, reg_last->control_uses, 0,
3206 REG_DEP_CONTROL, false);
3208 if (!deps->readonly)
3209 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3212 else
3214 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3216 struct deps_reg *reg_last = &deps->reg_last[i];
3217 if (reg_last->uses_length >= param_max_pending_list_length
3218 || reg_last->clobbers_length >= param_max_pending_list_length)
3220 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3221 REG_DEP_OUTPUT, false);
3222 add_dependence_list_and_free (deps, insn,
3223 &reg_last->implicit_sets, 0,
3224 REG_DEP_ANTI, false);
3225 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3226 REG_DEP_ANTI, false);
3227 add_dependence_list_and_free (deps, insn,
3228 &reg_last->control_uses, 0,
3229 REG_DEP_ANTI, false);
3230 add_dependence_list_and_free (deps, insn,
3231 &reg_last->clobbers, 0,
3232 REG_DEP_OUTPUT, false);
3234 if (!deps->readonly)
3236 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3237 reg_last->clobbers_length = 0;
3238 reg_last->uses_length = 0;
3241 else
3243 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3244 false);
3245 add_dependence_list (insn, reg_last->implicit_sets, 0,
3246 REG_DEP_ANTI, false);
3247 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3248 false);
3249 add_dependence_list (insn, reg_last->control_uses, 0,
3250 REG_DEP_CONTROL, false);
3253 if (!deps->readonly)
3255 reg_last->clobbers_length++;
3256 reg_last->clobbers
3257 = alloc_INSN_LIST (insn, reg_last->clobbers);
3260 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3262 struct deps_reg *reg_last = &deps->reg_last[i];
3264 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3265 REG_DEP_OUTPUT, false);
3266 add_dependence_list_and_free (deps, insn,
3267 &reg_last->implicit_sets,
3268 0, REG_DEP_ANTI, false);
3269 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3270 REG_DEP_OUTPUT, false);
3271 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3272 REG_DEP_ANTI, false);
3273 add_dependence_list (insn, reg_last->control_uses, 0,
3274 REG_DEP_CONTROL, false);
3276 if (!deps->readonly)
3278 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3279 reg_last->uses_length = 0;
3280 reg_last->clobbers_length = 0;
3284 if (!deps->readonly)
3286 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3288 struct deps_reg *reg_last = &deps->reg_last[i];
3289 reg_last->control_uses
3290 = alloc_INSN_LIST (insn, reg_last->control_uses);
3295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3296 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3298 struct deps_reg *reg_last = &deps->reg_last[i];
3299 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3300 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3301 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3302 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3303 false);
3305 if (!deps->readonly)
3306 reg_last->implicit_sets
3307 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3310 if (!deps->readonly)
3312 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3313 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3314 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3315 IOR_REG_SET_HRS (&deps->reg_last_in_use,
3316 implicit_reg_pending_uses
3317 | implicit_reg_pending_clobbers);
3319 /* Set up the pending barrier found. */
3320 deps->last_reg_pending_barrier = reg_pending_barrier;
3323 CLEAR_REG_SET (reg_pending_uses);
3324 CLEAR_REG_SET (reg_pending_clobbers);
3325 CLEAR_REG_SET (reg_pending_sets);
3326 CLEAR_REG_SET (reg_pending_control_uses);
3327 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3328 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3330 /* Add dependencies if a scheduling barrier was found. */
3331 if (reg_pending_barrier)
3333 /* In the case of barrier the most added dependencies are not
3334 real, so we use anti-dependence here. */
3335 if (sched_has_condition_p (insn))
3337 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3339 struct deps_reg *reg_last = &deps->reg_last[i];
3340 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3341 true);
3342 add_dependence_list (insn, reg_last->sets, 0,
3343 reg_pending_barrier == TRUE_BARRIER
3344 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3345 add_dependence_list (insn, reg_last->implicit_sets, 0,
3346 REG_DEP_ANTI, true);
3347 add_dependence_list (insn, reg_last->clobbers, 0,
3348 reg_pending_barrier == TRUE_BARRIER
3349 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3352 else
3354 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3356 struct deps_reg *reg_last = &deps->reg_last[i];
3357 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3358 REG_DEP_ANTI, true);
3359 add_dependence_list_and_free (deps, insn,
3360 &reg_last->control_uses, 0,
3361 REG_DEP_CONTROL, true);
3362 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3363 reg_pending_barrier == TRUE_BARRIER
3364 ? REG_DEP_TRUE : REG_DEP_ANTI,
3365 true);
3366 add_dependence_list_and_free (deps, insn,
3367 &reg_last->implicit_sets, 0,
3368 REG_DEP_ANTI, true);
3369 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3370 reg_pending_barrier == TRUE_BARRIER
3371 ? REG_DEP_TRUE : REG_DEP_ANTI,
3372 true);
3374 if (!deps->readonly)
3376 reg_last->uses_length = 0;
3377 reg_last->clobbers_length = 0;
3382 if (!deps->readonly)
3383 for (i = 0; i < (unsigned)deps->max_reg; i++)
3385 struct deps_reg *reg_last = &deps->reg_last[i];
3386 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3387 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3390 /* Don't flush pending lists on speculative checks for
3391 selective scheduling. */
3392 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3393 flush_pending_lists (deps, insn, true, true);
3395 reg_pending_barrier = NOT_A_BARRIER;
3398 /* If a post-call group is still open, see if it should remain so.
3399 This insn must be a simple move of a hard reg to a pseudo or
3400 vice-versa.
3402 We must avoid moving these insns for correctness on targets
3403 with small register classes, and for special registers like
3404 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3405 hard regs for all targets. */
3407 if (deps->in_post_call_group_p)
3409 rtx tmp, set = single_set (insn);
3410 int src_regno, dest_regno;
3412 if (set == NULL)
3414 if (DEBUG_INSN_P (insn))
3415 /* We don't want to mark debug insns as part of the same
3416 sched group. We know they really aren't, but if we use
3417 debug insns to tell that a call group is over, we'll
3418 get different code if debug insns are not there and
3419 instructions that follow seem like they should be part
3420 of the call group.
3422 Also, if we did, chain_to_prev_insn would move the
3423 deps of the debug insn to the call insn, modifying
3424 non-debug post-dependency counts of the debug insn
3425 dependencies and otherwise messing with the scheduling
3426 order.
3428 Instead, let such debug insns be scheduled freely, but
3429 keep the call group open in case there are insns that
3430 should be part of it afterwards. Since we grant debug
3431 insns higher priority than even sched group insns, it
3432 will all turn out all right. */
3433 goto debug_dont_end_call_group;
3434 else
3435 goto end_call_group;
3438 tmp = SET_DEST (set);
3439 if (GET_CODE (tmp) == SUBREG)
3440 tmp = SUBREG_REG (tmp);
3441 if (REG_P (tmp))
3442 dest_regno = REGNO (tmp);
3443 else
3444 goto end_call_group;
3446 tmp = SET_SRC (set);
3447 if (GET_CODE (tmp) == SUBREG)
3448 tmp = SUBREG_REG (tmp);
3449 if ((GET_CODE (tmp) == PLUS
3450 || GET_CODE (tmp) == MINUS)
3451 && REG_P (XEXP (tmp, 0))
3452 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3453 && dest_regno == STACK_POINTER_REGNUM)
3454 src_regno = STACK_POINTER_REGNUM;
3455 else if (REG_P (tmp))
3456 src_regno = REGNO (tmp);
3457 else
3458 goto end_call_group;
3460 if (src_regno < FIRST_PSEUDO_REGISTER
3461 || dest_regno < FIRST_PSEUDO_REGISTER)
3463 if (!deps->readonly
3464 && deps->in_post_call_group_p == post_call_initial)
3465 deps->in_post_call_group_p = post_call;
3467 if (!sel_sched_p () || sched_emulate_haifa_p)
3469 SCHED_GROUP_P (insn) = 1;
3470 CANT_MOVE (insn) = 1;
3473 else
3475 end_call_group:
3476 if (!deps->readonly)
3477 deps->in_post_call_group_p = not_post_call;
3481 debug_dont_end_call_group:
3482 if ((current_sched_info->flags & DO_SPECULATION)
3483 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3484 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3485 be speculated. */
3487 if (sel_sched_p ())
3488 sel_mark_hard_insn (insn);
3489 else
3491 sd_iterator_def sd_it;
3492 dep_t dep;
3494 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3495 sd_iterator_cond (&sd_it, &dep);)
3496 change_spec_dep_to_hard (sd_it);
3500 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3501 honor their original ordering. */
3502 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3504 if (deps->last_args_size)
3505 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3506 if (!deps->readonly)
3507 deps->last_args_size = insn;
3510 /* We must not mix prologue and epilogue insns. See PR78029. */
3511 if (prologue_contains (insn))
3513 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3514 if (!deps->readonly)
3516 if (deps->last_logue_was_epilogue)
3517 free_INSN_LIST_list (&deps->last_prologue);
3518 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3519 deps->last_logue_was_epilogue = false;
3523 if (epilogue_contains (insn))
3525 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3526 if (!deps->readonly)
3528 if (!deps->last_logue_was_epilogue)
3529 free_INSN_LIST_list (&deps->last_epilogue);
3530 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3531 deps->last_logue_was_epilogue = true;
3536 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3537 longjmp, loop forever, ...). */
3538 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3539 test for ECF_NORETURN? */
3540 static bool
3541 call_may_noreturn_p (rtx_insn *insn)
3543 rtx call;
3545 /* const or pure calls that aren't looping will always return. */
3546 if (RTL_CONST_OR_PURE_CALL_P (insn)
3547 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3548 return false;
3550 call = get_call_rtx_from (insn);
3551 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3553 rtx symbol = XEXP (XEXP (call, 0), 0);
3554 if (SYMBOL_REF_DECL (symbol)
3555 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3557 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3558 == BUILT_IN_NORMAL)
3559 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3561 case BUILT_IN_BCMP:
3562 case BUILT_IN_BCOPY:
3563 case BUILT_IN_BZERO:
3564 case BUILT_IN_INDEX:
3565 case BUILT_IN_MEMCHR:
3566 case BUILT_IN_MEMCMP:
3567 case BUILT_IN_MEMCPY:
3568 case BUILT_IN_MEMMOVE:
3569 case BUILT_IN_MEMPCPY:
3570 case BUILT_IN_MEMSET:
3571 case BUILT_IN_RINDEX:
3572 case BUILT_IN_STPCPY:
3573 case BUILT_IN_STPNCPY:
3574 case BUILT_IN_STRCAT:
3575 case BUILT_IN_STRCHR:
3576 case BUILT_IN_STRCMP:
3577 case BUILT_IN_STRCPY:
3578 case BUILT_IN_STRCSPN:
3579 case BUILT_IN_STRLEN:
3580 case BUILT_IN_STRNCAT:
3581 case BUILT_IN_STRNCMP:
3582 case BUILT_IN_STRNCPY:
3583 case BUILT_IN_STRPBRK:
3584 case BUILT_IN_STRRCHR:
3585 case BUILT_IN_STRSPN:
3586 case BUILT_IN_STRSTR:
3587 /* Assume certain string/memory builtins always return. */
3588 return false;
3589 default:
3590 break;
3595 /* For all other calls assume that they might not always return. */
3596 return true;
3599 /* Return true if INSN should be made dependent on the previous instruction
3600 group, and if all INSN's dependencies should be moved to the first
3601 instruction of that group. */
3603 static bool
3604 chain_to_prev_insn_p (rtx_insn *insn)
3606 /* INSN forms a group with the previous instruction. */
3607 if (SCHED_GROUP_P (insn))
3608 return true;
3610 /* If the previous instruction clobbers a register R and this one sets
3611 part of R, the clobber was added specifically to help us track the
3612 liveness of R. There's no point scheduling the clobber and leaving
3613 INSN behind, especially if we move the clobber to another block. */
3614 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3615 if (prev
3616 && INSN_P (prev)
3617 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3618 && GET_CODE (PATTERN (prev)) == CLOBBER)
3620 rtx x = XEXP (PATTERN (prev), 0);
3621 if (set_of (x, insn))
3622 return true;
3625 return false;
3628 /* Analyze INSN with DEPS as a context. */
3629 void
3630 deps_analyze_insn (class deps_desc *deps, rtx_insn *insn)
3632 if (sched_deps_info->start_insn)
3633 sched_deps_info->start_insn (insn);
3635 /* Record the condition for this insn. */
3636 if (NONDEBUG_INSN_P (insn))
3638 rtx t;
3639 sched_get_condition_with_rev (insn, NULL);
3640 t = INSN_CACHED_COND (insn);
3641 INSN_COND_DEPS (insn) = NULL;
3642 if (reload_completed
3643 && (current_sched_info->flags & DO_PREDICATION)
3644 && COMPARISON_P (t)
3645 && REG_P (XEXP (t, 0))
3646 && CONSTANT_P (XEXP (t, 1)))
3648 unsigned int regno;
3649 int nregs;
3650 rtx_insn_list *cond_deps = NULL;
3651 t = XEXP (t, 0);
3652 regno = REGNO (t);
3653 nregs = REG_NREGS (t);
3654 while (nregs-- > 0)
3656 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3657 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3658 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3659 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3661 INSN_COND_DEPS (insn) = cond_deps;
3665 if (JUMP_P (insn))
3667 /* Make each JUMP_INSN (but not a speculative check)
3668 a scheduling barrier for memory references. */
3669 if (!deps->readonly
3670 && !(sel_sched_p ()
3671 && sel_insn_is_speculation_check (insn)))
3673 /* Keep the list a reasonable size. */
3674 if (deps->pending_flush_length++ >= param_max_pending_list_length)
3675 flush_pending_lists (deps, insn, true, true);
3676 else
3677 deps->pending_jump_insns
3678 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3681 /* For each insn which shouldn't cross a jump, add a dependence. */
3682 add_dependence_list_and_free (deps, insn,
3683 &deps->sched_before_next_jump, 1,
3684 REG_DEP_ANTI, true);
3686 sched_analyze_insn (deps, PATTERN (insn), insn);
3688 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3690 sched_analyze_insn (deps, PATTERN (insn), insn);
3692 else if (CALL_P (insn))
3694 int i;
3696 CANT_MOVE (insn) = 1;
3698 if (!reload_completed)
3700 /* Scheduling across calls may increase register pressure by extending
3701 live ranges of pseudos over the call. Worse, in presence of setjmp
3702 it may incorrectly move up an assignment over a longjmp. */
3703 reg_pending_barrier = MOVE_BARRIER;
3705 else if (find_reg_note (insn, REG_SETJMP, NULL))
3707 /* This is setjmp. Assume that all registers, not just
3708 hard registers, may be clobbered by this call. */
3709 reg_pending_barrier = MOVE_BARRIER;
3711 else
3713 function_abi callee_abi = insn_callee_abi (insn);
3714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3715 /* A call may read and modify global register variables. */
3716 if (global_regs[i])
3718 SET_REGNO_REG_SET (reg_pending_sets, i);
3719 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3721 /* Other call-clobbered hard regs may be clobbered.
3722 Since we only have a choice between 'might be clobbered'
3723 and 'definitely not clobbered', we must include all
3724 partly call-clobbered registers here. */
3725 else if (callee_abi.clobbers_at_least_part_of_reg_p (i))
3726 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3727 /* We don't know what set of fixed registers might be used
3728 by the function, but it is certain that the stack pointer
3729 is among them, but be conservative. */
3730 else if (fixed_regs[i])
3731 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3732 /* The frame pointer is normally not used by the function
3733 itself, but by the debugger. */
3734 /* ??? MIPS o32 is an exception. It uses the frame pointer
3735 in the macro expansion of jal but does not represent this
3736 fact in the call_insn rtl. */
3737 else if (i == FRAME_POINTER_REGNUM
3738 || (i == HARD_FRAME_POINTER_REGNUM
3739 && (! reload_completed || frame_pointer_needed)))
3740 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3743 /* For each insn which shouldn't cross a call, add a dependence
3744 between that insn and this call insn. */
3745 add_dependence_list_and_free (deps, insn,
3746 &deps->sched_before_next_call, 1,
3747 REG_DEP_ANTI, true);
3749 sched_analyze_insn (deps, PATTERN (insn), insn);
3751 /* If CALL would be in a sched group, then this will violate
3752 convention that sched group insns have dependencies only on the
3753 previous instruction.
3755 Of course one can say: "Hey! What about head of the sched group?"
3756 And I will answer: "Basic principles (one dep per insn) are always
3757 the same." */
3758 gcc_assert (!SCHED_GROUP_P (insn));
3760 /* In the absence of interprocedural alias analysis, we must flush
3761 all pending reads and writes, and start new dependencies starting
3762 from here. But only flush writes for constant calls (which may
3763 be passed a pointer to something we haven't written yet). */
3764 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3766 if (!deps->readonly)
3768 /* Remember the last function call for limiting lifetimes. */
3769 free_INSN_LIST_list (&deps->last_function_call);
3770 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3772 if (call_may_noreturn_p (insn))
3774 /* Remember the last function call that might not always return
3775 normally for limiting moves of trapping insns. */
3776 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3777 deps->last_function_call_may_noreturn
3778 = alloc_INSN_LIST (insn, NULL_RTX);
3781 /* Before reload, begin a post-call group, so as to keep the
3782 lifetimes of hard registers correct. */
3783 if (! reload_completed)
3784 deps->in_post_call_group_p = post_call;
3788 if (sched_deps_info->use_cselib)
3789 cselib_process_insn (insn);
3791 if (sched_deps_info->finish_insn)
3792 sched_deps_info->finish_insn ();
3794 /* Fixup the dependencies in the sched group. */
3795 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3796 && chain_to_prev_insn_p (insn)
3797 && !sel_sched_p ())
3798 chain_to_prev_insn (insn);
3801 /* Initialize DEPS for the new block beginning with HEAD. */
3802 void
3803 deps_start_bb (class deps_desc *deps, rtx_insn *head)
3805 gcc_assert (!deps->readonly);
3807 /* Before reload, if the previous block ended in a call, show that
3808 we are inside a post-call group, so as to keep the lifetimes of
3809 hard registers correct. */
3810 if (! reload_completed && !LABEL_P (head))
3812 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3814 if (insn && CALL_P (insn))
3815 deps->in_post_call_group_p = post_call_initial;
3819 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3820 dependencies for each insn. */
3821 void
3822 sched_analyze (class deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3824 rtx_insn *insn;
3826 if (sched_deps_info->use_cselib)
3827 cselib_init (CSELIB_RECORD_MEMORY);
3829 deps_start_bb (deps, head);
3831 for (insn = head;; insn = NEXT_INSN (insn))
3833 if (INSN_P (insn))
3835 /* And initialize deps_lists. */
3836 sd_init_insn (insn);
3837 /* Clean up SCHED_GROUP_P which may be set by last
3838 scheduler pass. */
3839 if (SCHED_GROUP_P (insn))
3840 SCHED_GROUP_P (insn) = 0;
3843 deps_analyze_insn (deps, insn);
3845 if (insn == tail)
3847 if (sched_deps_info->use_cselib)
3848 cselib_finish ();
3849 return;
3854 /* Helper for sched_free_deps ().
3855 Delete INSN's (RESOLVED_P) backward dependencies. */
3856 static void
3857 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3859 sd_iterator_def sd_it;
3860 dep_t dep;
3861 sd_list_types_def types;
3863 if (resolved_p)
3864 types = SD_LIST_RES_BACK;
3865 else
3866 types = SD_LIST_BACK;
3868 for (sd_it = sd_iterator_start (insn, types);
3869 sd_iterator_cond (&sd_it, &dep);)
3871 dep_link_t link = *sd_it.linkp;
3872 dep_node_t node = DEP_LINK_NODE (link);
3873 deps_list_t back_list;
3874 deps_list_t forw_list;
3876 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3877 remove_from_deps_list (link, back_list);
3878 delete_dep_node (node);
3882 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3883 deps_lists. */
3884 void
3885 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3887 rtx_insn *insn;
3888 rtx_insn *next_tail = NEXT_INSN (tail);
3890 /* We make two passes since some insns may be scheduled before their
3891 dependencies are resolved. */
3892 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3893 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3895 /* Clear forward deps and leave the dep_nodes to the
3896 corresponding back_deps list. */
3897 if (resolved_p)
3898 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3899 else
3900 clear_deps_list (INSN_FORW_DEPS (insn));
3902 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3903 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3905 /* Clear resolved back deps together with its dep_nodes. */
3906 delete_dep_nodes_in_back_deps (insn, resolved_p);
3908 sd_finish_insn (insn);
3912 /* Initialize variables for region data dependence analysis.
3913 When LAZY_REG_LAST is true, do not allocate reg_last array
3914 of class deps_desc immediately. */
3916 void
3917 init_deps (class deps_desc *deps, bool lazy_reg_last)
3919 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3921 deps->max_reg = max_reg;
3922 if (lazy_reg_last)
3923 deps->reg_last = NULL;
3924 else
3925 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3926 INIT_REG_SET (&deps->reg_last_in_use);
3928 deps->pending_read_insns = 0;
3929 deps->pending_read_mems = 0;
3930 deps->pending_write_insns = 0;
3931 deps->pending_write_mems = 0;
3932 deps->pending_jump_insns = 0;
3933 deps->pending_read_list_length = 0;
3934 deps->pending_write_list_length = 0;
3935 deps->pending_flush_length = 0;
3936 deps->last_pending_memory_flush = 0;
3937 deps->last_function_call = 0;
3938 deps->last_function_call_may_noreturn = 0;
3939 deps->sched_before_next_call = 0;
3940 deps->sched_before_next_jump = 0;
3941 deps->in_post_call_group_p = not_post_call;
3942 deps->last_debug_insn = 0;
3943 deps->last_args_size = 0;
3944 deps->last_prologue = 0;
3945 deps->last_epilogue = 0;
3946 deps->last_logue_was_epilogue = false;
3947 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3948 deps->readonly = 0;
3951 /* Init only reg_last field of DEPS, which was not allocated before as
3952 we inited DEPS lazily. */
3953 void
3954 init_deps_reg_last (class deps_desc *deps)
3956 gcc_assert (deps && deps->max_reg > 0);
3957 gcc_assert (deps->reg_last == NULL);
3959 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3963 /* Free insn lists found in DEPS. */
3965 void
3966 free_deps (class deps_desc *deps)
3968 unsigned i;
3969 reg_set_iterator rsi;
3971 /* We set max_reg to 0 when this context was already freed. */
3972 if (deps->max_reg == 0)
3974 gcc_assert (deps->reg_last == NULL);
3975 return;
3977 deps->max_reg = 0;
3979 free_INSN_LIST_list (&deps->pending_read_insns);
3980 free_EXPR_LIST_list (&deps->pending_read_mems);
3981 free_INSN_LIST_list (&deps->pending_write_insns);
3982 free_EXPR_LIST_list (&deps->pending_write_mems);
3983 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3985 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3986 times. For a testcase with 42000 regs and 8000 small basic blocks,
3987 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3988 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3990 struct deps_reg *reg_last = &deps->reg_last[i];
3991 if (reg_last->uses)
3992 free_INSN_LIST_list (&reg_last->uses);
3993 if (reg_last->sets)
3994 free_INSN_LIST_list (&reg_last->sets);
3995 if (reg_last->implicit_sets)
3996 free_INSN_LIST_list (&reg_last->implicit_sets);
3997 if (reg_last->control_uses)
3998 free_INSN_LIST_list (&reg_last->control_uses);
3999 if (reg_last->clobbers)
4000 free_INSN_LIST_list (&reg_last->clobbers);
4002 CLEAR_REG_SET (&deps->reg_last_in_use);
4004 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4005 it at all. */
4006 free (deps->reg_last);
4007 deps->reg_last = NULL;
4009 deps = NULL;
4012 /* Remove INSN from dependence contexts DEPS. */
4013 void
4014 remove_from_deps (class deps_desc *deps, rtx_insn *insn)
4016 int removed;
4017 unsigned i;
4018 reg_set_iterator rsi;
4020 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4021 &deps->pending_read_mems);
4022 if (!DEBUG_INSN_P (insn))
4023 deps->pending_read_list_length -= removed;
4024 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4025 &deps->pending_write_mems);
4026 deps->pending_write_list_length -= removed;
4028 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4029 deps->pending_flush_length -= removed;
4030 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4031 deps->pending_flush_length -= removed;
4033 unsigned to_clear = -1U;
4034 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4036 if (to_clear != -1U)
4038 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4039 to_clear = -1U;
4041 struct deps_reg *reg_last = &deps->reg_last[i];
4042 if (reg_last->uses)
4043 remove_from_dependence_list (insn, &reg_last->uses);
4044 if (reg_last->sets)
4045 remove_from_dependence_list (insn, &reg_last->sets);
4046 if (reg_last->implicit_sets)
4047 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4048 if (reg_last->clobbers)
4049 remove_from_dependence_list (insn, &reg_last->clobbers);
4050 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4051 && !reg_last->clobbers)
4052 to_clear = i;
4054 if (to_clear != -1U)
4055 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4057 if (CALL_P (insn))
4059 remove_from_dependence_list (insn, &deps->last_function_call);
4060 remove_from_dependence_list (insn,
4061 &deps->last_function_call_may_noreturn);
4063 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4066 /* Init deps data vector. */
4067 static void
4068 init_deps_data_vector (void)
4070 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4071 if (reserve > 0 && ! h_d_i_d.space (reserve))
4072 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2, true);
4075 /* If it is profitable to use them, initialize or extend (depending on
4076 GLOBAL_P) dependency data. */
4077 void
4078 sched_deps_init (bool global_p)
4080 /* Average number of insns in the basic block.
4081 '+ 1' is used to make it nonzero. */
4082 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4084 init_deps_data_vector ();
4086 /* We use another caching mechanism for selective scheduling, so
4087 we don't use this one. */
4088 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4090 /* ?!? We could save some memory by computing a per-region luid mapping
4091 which could reduce both the number of vectors in the cache and the
4092 size of each vector. Instead we just avoid the cache entirely unless
4093 the average number of instructions in a basic block is very high. See
4094 the comment before the declaration of true_dependency_cache for
4095 what we consider "very high". */
4096 cache_size = 0;
4097 extend_dependency_caches (sched_max_luid, true);
4100 if (global_p)
4102 dl_pool = new object_allocator<_deps_list> ("deps_list");
4103 /* Allocate lists for one block at a time. */
4104 dn_pool = new object_allocator<_dep_node> ("dep_node");
4105 /* Allocate nodes for one block at a time. */
4110 /* Create or extend (depending on CREATE_P) dependency caches to
4111 size N. */
4112 void
4113 extend_dependency_caches (int n, bool create_p)
4115 if (create_p || true_dependency_cache)
4117 int i, luid = cache_size + n;
4119 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4120 luid);
4121 output_dependency_cache = XRESIZEVEC (bitmap_head,
4122 output_dependency_cache, luid);
4123 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4124 luid);
4125 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4126 luid);
4128 if (current_sched_info->flags & DO_SPECULATION)
4129 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4130 luid);
4132 for (i = cache_size; i < luid; i++)
4134 bitmap_initialize (&true_dependency_cache[i], 0);
4135 bitmap_initialize (&output_dependency_cache[i], 0);
4136 bitmap_initialize (&anti_dependency_cache[i], 0);
4137 bitmap_initialize (&control_dependency_cache[i], 0);
4139 if (current_sched_info->flags & DO_SPECULATION)
4140 bitmap_initialize (&spec_dependency_cache[i], 0);
4142 cache_size = luid;
4146 /* Finalize dependency information for the whole function. */
4147 void
4148 sched_deps_finish (void)
4150 gcc_assert (deps_pools_are_empty_p ());
4151 delete dn_pool;
4152 delete dl_pool;
4153 dn_pool = NULL;
4154 dl_pool = NULL;
4156 h_d_i_d.release ();
4157 cache_size = 0;
4159 if (true_dependency_cache)
4161 int i;
4163 for (i = 0; i < cache_size; i++)
4165 bitmap_clear (&true_dependency_cache[i]);
4166 bitmap_clear (&output_dependency_cache[i]);
4167 bitmap_clear (&anti_dependency_cache[i]);
4168 bitmap_clear (&control_dependency_cache[i]);
4170 if (sched_deps_info->generate_spec_deps)
4171 bitmap_clear (&spec_dependency_cache[i]);
4173 free (true_dependency_cache);
4174 true_dependency_cache = NULL;
4175 free (output_dependency_cache);
4176 output_dependency_cache = NULL;
4177 free (anti_dependency_cache);
4178 anti_dependency_cache = NULL;
4179 free (control_dependency_cache);
4180 control_dependency_cache = NULL;
4182 if (sched_deps_info->generate_spec_deps)
4184 free (spec_dependency_cache);
4185 spec_dependency_cache = NULL;
4191 /* Initialize some global variables needed by the dependency analysis
4192 code. */
4194 void
4195 init_deps_global (void)
4197 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4198 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4199 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4200 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4201 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4202 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4203 reg_pending_barrier = NOT_A_BARRIER;
4205 if (!sel_sched_p () || sched_emulate_haifa_p)
4207 sched_deps_info->start_insn = haifa_start_insn;
4208 sched_deps_info->finish_insn = haifa_finish_insn;
4210 sched_deps_info->note_reg_set = haifa_note_reg_set;
4211 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4212 sched_deps_info->note_reg_use = haifa_note_reg_use;
4214 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4215 sched_deps_info->note_dep = haifa_note_dep;
4219 /* Free everything used by the dependency analysis code. */
4221 void
4222 finish_deps_global (void)
4224 FREE_REG_SET (reg_pending_sets);
4225 FREE_REG_SET (reg_pending_clobbers);
4226 FREE_REG_SET (reg_pending_uses);
4227 FREE_REG_SET (reg_pending_control_uses);
4230 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4231 dw_t
4232 estimate_dep_weak (rtx mem1, rtx mem2)
4234 if (mem1 == mem2)
4235 /* MEMs are the same - don't speculate. */
4236 return MIN_DEP_WEAK;
4238 rtx r1 = XEXP (mem1, 0);
4239 rtx r2 = XEXP (mem2, 0);
4241 if (sched_deps_info->use_cselib)
4243 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4244 dangling at this point, since we never preserve them. Instead we
4245 canonicalize manually to get stable VALUEs out of hashing. */
4246 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4247 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4248 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4249 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4252 if (r1 == r2
4253 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4254 /* Again, MEMs are the same. */
4255 return MIN_DEP_WEAK;
4256 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4257 /* Different addressing modes - reason to be more speculative,
4258 than usual. */
4259 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4260 else
4261 /* We can't say anything about the dependence. */
4262 return UNCERTAIN_DEP_WEAK;
4265 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4266 This function can handle same INSN and ELEM (INSN == ELEM).
4267 It is a convenience wrapper. */
4268 static void
4269 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4271 ds_t ds;
4272 bool internal;
4274 if (dep_type == REG_DEP_TRUE)
4275 ds = DEP_TRUE;
4276 else if (dep_type == REG_DEP_OUTPUT)
4277 ds = DEP_OUTPUT;
4278 else if (dep_type == REG_DEP_CONTROL)
4279 ds = DEP_CONTROL;
4280 else
4282 gcc_assert (dep_type == REG_DEP_ANTI);
4283 ds = DEP_ANTI;
4286 /* When add_dependence is called from inside sched-deps.cc, we expect
4287 cur_insn to be non-null. */
4288 internal = cur_insn != NULL;
4289 if (internal)
4290 gcc_assert (insn == cur_insn);
4291 else
4292 cur_insn = insn;
4294 note_dep (elem, ds);
4295 if (!internal)
4296 cur_insn = NULL;
4299 /* Return weakness of speculative type TYPE in the dep_status DS,
4300 without checking to prevent ICEs on malformed input. */
4301 static dw_t
4302 get_dep_weak_1 (ds_t ds, ds_t type)
4304 ds = ds & type;
4306 switch (type)
4308 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4309 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4310 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4311 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4312 default: gcc_unreachable ();
4315 return (dw_t) ds;
4318 /* Return weakness of speculative type TYPE in the dep_status DS. */
4319 dw_t
4320 get_dep_weak (ds_t ds, ds_t type)
4322 dw_t dw = get_dep_weak_1 (ds, type);
4324 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4325 return dw;
4328 /* Return the dep_status, which has the same parameters as DS, except for
4329 speculative type TYPE, that will have weakness DW. */
4330 ds_t
4331 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4333 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4335 ds &= ~type;
4336 switch (type)
4338 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4339 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4340 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4341 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4342 default: gcc_unreachable ();
4344 return ds;
4347 /* Return the join of two dep_statuses DS1 and DS2.
4348 If MAX_P is true then choose the greater probability,
4349 otherwise multiply probabilities.
4350 This function assumes that both DS1 and DS2 contain speculative bits. */
4351 static ds_t
4352 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4354 ds_t ds, t;
4356 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4358 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4360 t = FIRST_SPEC_TYPE;
4363 if ((ds1 & t) && !(ds2 & t))
4364 ds |= ds1 & t;
4365 else if (!(ds1 & t) && (ds2 & t))
4366 ds |= ds2 & t;
4367 else if ((ds1 & t) && (ds2 & t))
4369 dw_t dw1 = get_dep_weak (ds1, t);
4370 dw_t dw2 = get_dep_weak (ds2, t);
4371 ds_t dw;
4373 if (!max_p)
4375 dw = ((ds_t) dw1) * ((ds_t) dw2);
4376 dw /= MAX_DEP_WEAK;
4377 if (dw < MIN_DEP_WEAK)
4378 dw = MIN_DEP_WEAK;
4380 else
4382 if (dw1 >= dw2)
4383 dw = dw1;
4384 else
4385 dw = dw2;
4388 ds = set_dep_weak (ds, t, (dw_t) dw);
4391 if (t == LAST_SPEC_TYPE)
4392 break;
4393 t <<= SPEC_TYPE_SHIFT;
4395 while (1);
4397 return ds;
4400 /* Return the join of two dep_statuses DS1 and DS2.
4401 This function assumes that both DS1 and DS2 contain speculative bits. */
4402 ds_t
4403 ds_merge (ds_t ds1, ds_t ds2)
4405 return ds_merge_1 (ds1, ds2, false);
4408 /* Return the join of two dep_statuses DS1 and DS2. */
4409 ds_t
4410 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4412 ds_t new_status = ds | ds2;
4414 if (new_status & SPECULATIVE)
4416 if ((ds && !(ds & SPECULATIVE))
4417 || (ds2 && !(ds2 & SPECULATIVE)))
4418 /* Then this dep can't be speculative. */
4419 new_status &= ~SPECULATIVE;
4420 else
4422 /* Both are speculative. Merging probabilities. */
4423 if (mem1)
4425 dw_t dw;
4427 dw = estimate_dep_weak (mem1, mem2);
4428 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4431 if (!ds)
4432 new_status = ds2;
4433 else if (!ds2)
4434 new_status = ds;
4435 else
4436 new_status = ds_merge (ds2, ds);
4440 return new_status;
4443 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4444 probabilities. */
4445 ds_t
4446 ds_max_merge (ds_t ds1, ds_t ds2)
4448 if (ds1 == 0 && ds2 == 0)
4449 return 0;
4451 if (ds1 == 0 && ds2 != 0)
4452 return ds2;
4454 if (ds1 != 0 && ds2 == 0)
4455 return ds1;
4457 return ds_merge_1 (ds1, ds2, true);
4460 /* Return the probability of speculation success for the speculation
4461 status DS. */
4462 dw_t
4463 ds_weak (ds_t ds)
4465 ds_t res = 1, dt;
4466 int n = 0;
4468 dt = FIRST_SPEC_TYPE;
4471 if (ds & dt)
4473 res *= (ds_t) get_dep_weak (ds, dt);
4474 n++;
4477 if (dt == LAST_SPEC_TYPE)
4478 break;
4479 dt <<= SPEC_TYPE_SHIFT;
4481 while (1);
4483 gcc_assert (n);
4484 while (--n)
4485 res /= MAX_DEP_WEAK;
4487 if (res < MIN_DEP_WEAK)
4488 res = MIN_DEP_WEAK;
4490 gcc_assert (res <= MAX_DEP_WEAK);
4492 return (dw_t) res;
4495 /* Return a dep status that contains all speculation types of DS. */
4496 ds_t
4497 ds_get_speculation_types (ds_t ds)
4499 if (ds & BEGIN_DATA)
4500 ds |= BEGIN_DATA;
4501 if (ds & BE_IN_DATA)
4502 ds |= BE_IN_DATA;
4503 if (ds & BEGIN_CONTROL)
4504 ds |= BEGIN_CONTROL;
4505 if (ds & BE_IN_CONTROL)
4506 ds |= BE_IN_CONTROL;
4508 return ds & SPECULATIVE;
4511 /* Return a dep status that contains maximal weakness for each speculation
4512 type present in DS. */
4513 ds_t
4514 ds_get_max_dep_weak (ds_t ds)
4516 if (ds & BEGIN_DATA)
4517 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4518 if (ds & BE_IN_DATA)
4519 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4520 if (ds & BEGIN_CONTROL)
4521 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4522 if (ds & BE_IN_CONTROL)
4523 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4525 return ds;
4528 /* Dump information about the dependence status S. */
4529 static void
4530 dump_ds (FILE *f, ds_t s)
4532 fprintf (f, "{");
4534 if (s & BEGIN_DATA)
4535 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4536 if (s & BE_IN_DATA)
4537 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4538 if (s & BEGIN_CONTROL)
4539 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4540 if (s & BE_IN_CONTROL)
4541 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4543 if (s & HARD_DEP)
4544 fprintf (f, "HARD_DEP; ");
4546 if (s & DEP_TRUE)
4547 fprintf (f, "DEP_TRUE; ");
4548 if (s & DEP_OUTPUT)
4549 fprintf (f, "DEP_OUTPUT; ");
4550 if (s & DEP_ANTI)
4551 fprintf (f, "DEP_ANTI; ");
4552 if (s & DEP_CONTROL)
4553 fprintf (f, "DEP_CONTROL; ");
4555 fprintf (f, "}");
4558 DEBUG_FUNCTION void
4559 debug_ds (ds_t s)
4561 dump_ds (stderr, s);
4562 fprintf (stderr, "\n");
4565 /* Verify that dependence type and status are consistent.
4566 If RELAXED_P is true, then skip dep_weakness checks. */
4567 static void
4568 check_dep (dep_t dep, bool relaxed_p)
4570 enum reg_note dt = DEP_TYPE (dep);
4571 ds_t ds = DEP_STATUS (dep);
4573 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4575 if (!(current_sched_info->flags & USE_DEPS_LIST))
4577 gcc_assert (ds == 0);
4578 return;
4581 /* Check that dependence type contains the same bits as the status. */
4582 if (dt == REG_DEP_TRUE)
4583 gcc_assert (ds & DEP_TRUE);
4584 else if (dt == REG_DEP_OUTPUT)
4585 gcc_assert ((ds & DEP_OUTPUT)
4586 && !(ds & DEP_TRUE));
4587 else if (dt == REG_DEP_ANTI)
4588 gcc_assert ((ds & DEP_ANTI)
4589 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4590 else
4591 gcc_assert (dt == REG_DEP_CONTROL
4592 && (ds & DEP_CONTROL)
4593 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4595 /* HARD_DEP cannot appear in dep_status of a link. */
4596 gcc_assert (!(ds & HARD_DEP));
4598 /* Check that dependence status is set correctly when speculation is not
4599 supported. */
4600 if (!sched_deps_info->generate_spec_deps)
4601 gcc_assert (!(ds & SPECULATIVE));
4602 else if (ds & SPECULATIVE)
4604 if (!relaxed_p)
4606 ds_t type = FIRST_SPEC_TYPE;
4608 /* Check that dependence weakness is in proper range. */
4611 if (ds & type)
4612 get_dep_weak (ds, type);
4614 if (type == LAST_SPEC_TYPE)
4615 break;
4616 type <<= SPEC_TYPE_SHIFT;
4618 while (1);
4621 if (ds & BEGIN_SPEC)
4623 /* Only true dependence can be data speculative. */
4624 if (ds & BEGIN_DATA)
4625 gcc_assert (ds & DEP_TRUE);
4627 /* Control dependencies in the insn scheduler are represented by
4628 anti-dependencies, therefore only anti dependence can be
4629 control speculative. */
4630 if (ds & BEGIN_CONTROL)
4631 gcc_assert (ds & DEP_ANTI);
4633 else
4635 /* Subsequent speculations should resolve true dependencies. */
4636 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4639 /* Check that true and anti dependencies can't have other speculative
4640 statuses. */
4641 if (ds & DEP_TRUE)
4642 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4643 /* An output dependence can't be speculative at all. */
4644 gcc_assert (!(ds & DEP_OUTPUT));
4645 if (ds & DEP_ANTI)
4646 gcc_assert (ds & BEGIN_CONTROL);
4650 /* The following code discovers opportunities to switch a memory reference
4651 and an increment by modifying the address. We ensure that this is done
4652 only for dependencies that are only used to show a single register
4653 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4654 instruction involved is subject to only one dep that can cause a pattern
4655 change.
4657 When we discover a suitable dependency, we fill in the dep_replacement
4658 structure to show how to modify the memory reference. */
4660 /* Holds information about a pair of memory reference and register increment
4661 insns which depend on each other, but could possibly be interchanged. */
4662 struct mem_inc_info
4664 rtx_insn *inc_insn;
4665 rtx_insn *mem_insn;
4667 rtx *mem_loc;
4668 /* A register occurring in the memory address for which we wish to break
4669 the dependence. This must be identical to the destination register of
4670 the increment. */
4671 rtx mem_reg0;
4672 /* Any kind of index that is added to that register. */
4673 rtx mem_index;
4674 /* The constant offset used in the memory address. */
4675 HOST_WIDE_INT mem_constant;
4676 /* The constant added in the increment insn. Negated if the increment is
4677 after the memory address. */
4678 HOST_WIDE_INT inc_constant;
4679 /* The source register used in the increment. May be different from mem_reg0
4680 if the increment occurs before the memory address. */
4681 rtx inc_input;
4684 /* Verify that the memory location described in MII can be replaced with
4685 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4686 insn remains unchanged by this function. */
4688 static rtx
4689 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4691 rtx mem = *mii->mem_loc;
4692 rtx new_mem;
4694 if (!targetm.new_address_profitable_p (mem, mii->mem_insn, new_addr))
4695 return NULL_RTX;
4697 /* Jump through a lot of hoops to keep the attributes up to date. We
4698 do not want to call one of the change address variants that take
4699 an offset even though we know the offset in many cases. These
4700 assume you are changing where the address is pointing by the
4701 offset. */
4702 new_mem = replace_equiv_address_nv (mem, new_addr);
4703 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4705 if (sched_verbose >= 5)
4706 fprintf (sched_dump, "validation failure\n");
4707 return NULL_RTX;
4710 /* Put back the old one. */
4711 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4713 return new_mem;
4716 /* Return true if INSN is of a form "a = b op c" where a and b are
4717 regs. op is + if c is a reg and +|- if c is a const. Fill in
4718 informantion in MII about what is found.
4719 BEFORE_MEM indicates whether the increment is found before or after
4720 a corresponding memory reference. */
4722 static bool
4723 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4725 rtx pat = single_set (insn);
4726 rtx src, cst;
4727 bool regs_equal;
4729 if (RTX_FRAME_RELATED_P (insn) || !pat)
4730 return false;
4732 /* Do not allow breaking data dependencies for insns that are marked
4733 with REG_STACK_CHECK. */
4734 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4735 return false;
4737 /* Result must be single reg. */
4738 if (!REG_P (SET_DEST (pat)))
4739 return false;
4741 if (GET_CODE (SET_SRC (pat)) != PLUS)
4742 return false;
4744 mii->inc_insn = insn;
4745 src = SET_SRC (pat);
4746 mii->inc_input = XEXP (src, 0);
4748 if (!REG_P (XEXP (src, 0)))
4749 return false;
4751 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4752 return false;
4754 cst = XEXP (src, 1);
4755 if (!CONST_INT_P (cst))
4756 return false;
4757 mii->inc_constant = INTVAL (cst);
4759 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4761 if (!before_mem)
4763 mii->inc_constant = -mii->inc_constant;
4764 if (!regs_equal)
4765 return false;
4768 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4770 /* Note that the sign has already been reversed for !before_mem. */
4771 if (STACK_GROWS_DOWNWARD)
4772 return mii->inc_constant > 0;
4773 else
4774 return mii->inc_constant < 0;
4776 return true;
4779 /* Once a suitable mem reference has been found and the corresponding data
4780 in MII has been filled in, this function is called to find a suitable
4781 add or inc insn involving the register we found in the memory
4782 reference.
4783 If successful, this function will create additional dependencies between
4784 - mii->inc_insn's producers and mii->mem_insn as a consumer (if backwards)
4785 - mii->inc_insn's consumers and mii->mem_insn as a producer (if !backwards).
4788 static bool
4789 find_inc (struct mem_inc_info *mii, bool backwards)
4791 sd_iterator_def sd_it;
4792 dep_t dep;
4793 sd_list_types_def mem_deps = backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW;
4794 int n_mem_deps = sd_lists_size (mii->mem_insn, mem_deps);
4796 sd_it = sd_iterator_start (mii->mem_insn, mem_deps);
4797 while (sd_iterator_cond (&sd_it, &dep))
4799 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4800 rtx_insn *pro = DEP_PRO (dep);
4801 rtx_insn *con = DEP_CON (dep);
4802 rtx_insn *inc_cand;
4803 int n_inc_deps;
4805 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4806 goto next;
4808 if (backwards)
4810 inc_cand = pro;
4811 n_inc_deps = sd_lists_size (inc_cand, SD_LIST_BACK);
4813 else
4815 inc_cand = con;
4816 n_inc_deps = sd_lists_size (inc_cand, SD_LIST_FORW);
4819 /* In the FOR_EACH_DEP loop below we will create additional n_inc_deps
4820 for mem_insn. This by itself is not a problem, since each mem_insn
4821 will have only a few inc_insns associated with it. However, if
4822 we consider that a single inc_insn may have a lot of mem_insns, AND,
4823 on top of that, a few other inc_insns associated with it --
4824 those _other inc_insns_ will get (n_mem_deps * number of MEM insns)
4825 dependencies created for them. This may cause an exponential
4826 growth of memory usage and scheduling time.
4827 See PR96388 for details.
4828 We [heuristically] use n_inc_deps as a proxy for the number of MEM
4829 insns, and drop opportunities for breaking modifiable_mem dependencies
4830 when dependency lists grow beyond reasonable size. */
4831 if (n_mem_deps * n_inc_deps
4832 >= param_max_pending_list_length * param_max_pending_list_length)
4833 goto next;
4835 if (parse_add_or_inc (mii, inc_cand, backwards))
4837 struct dep_replacement *desc;
4838 df_ref def;
4839 rtx newaddr, newmem;
4841 if (sched_verbose >= 5)
4842 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4843 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4845 /* Need to assure that none of the operands of the inc
4846 instruction are assigned to by the mem insn. */
4847 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4848 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4849 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4851 if (sched_verbose >= 5)
4852 fprintf (sched_dump,
4853 "inc conflicts with store failure.\n");
4854 goto next;
4857 newaddr = mii->inc_input;
4858 if (mii->mem_index != NULL_RTX)
4859 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4860 mii->mem_index);
4861 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4862 mii->mem_constant + mii->inc_constant);
4863 newmem = attempt_change (mii, newaddr);
4864 if (newmem == NULL_RTX)
4865 goto next;
4866 if (sched_verbose >= 5)
4867 fprintf (sched_dump, "successful address replacement\n");
4868 desc = XCNEW (struct dep_replacement);
4869 DEP_REPLACE (dep) = desc;
4870 desc->loc = mii->mem_loc;
4871 desc->newval = newmem;
4872 desc->orig = *desc->loc;
4873 desc->insn = mii->mem_insn;
4874 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4875 INSN_SPEC_BACK_DEPS (con));
4877 /* Make sure that n_inc_deps above is consistent with dependencies
4878 we create. */
4879 gcc_assert (mii->inc_insn == inc_cand);
4881 if (backwards)
4883 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4884 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4885 REG_DEP_TRUE);
4887 else
4889 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4890 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4891 REG_DEP_ANTI);
4893 return true;
4895 next:
4896 sd_iterator_next (&sd_it);
4898 return false;
4901 /* A recursive function that walks ADDRESS_OF_X to find memory references
4902 which could be modified during scheduling. We call find_inc for each
4903 one we find that has a recognizable form. MII holds information about
4904 the pair of memory/increment instructions.
4905 We ensure that every instruction with a memory reference (which will be
4906 the location of the replacement) is assigned at most one breakable
4907 dependency. */
4909 static bool
4910 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4912 rtx x = *address_of_x;
4913 enum rtx_code code = GET_CODE (x);
4914 const char *const fmt = GET_RTX_FORMAT (code);
4915 int i;
4917 if (code == MEM)
4919 rtx reg0 = XEXP (x, 0);
4921 mii->mem_loc = address_of_x;
4922 mii->mem_index = NULL_RTX;
4923 mii->mem_constant = 0;
4924 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4926 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4927 reg0 = XEXP (reg0, 0);
4929 if (GET_CODE (reg0) == PLUS)
4931 mii->mem_index = XEXP (reg0, 1);
4932 reg0 = XEXP (reg0, 0);
4934 if (REG_P (reg0))
4936 df_ref use;
4937 int occurrences = 0;
4939 /* Make sure this reg appears only once in this insn. Can't use
4940 count_occurrences since that only works for pseudos. */
4941 FOR_EACH_INSN_USE (use, mii->mem_insn)
4942 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4943 if (++occurrences > 1)
4945 if (sched_verbose >= 5)
4946 fprintf (sched_dump, "mem count failure\n");
4947 return false;
4950 mii->mem_reg0 = reg0;
4951 return find_inc (mii, true) || find_inc (mii, false);
4953 return false;
4956 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4958 /* If REG occurs inside a MEM used in a bit-field reference,
4959 that is unacceptable. */
4960 return false;
4963 /* Time for some deep diving. */
4964 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4966 if (fmt[i] == 'e')
4968 if (find_mem (mii, &XEXP (x, i)))
4969 return true;
4971 else if (fmt[i] == 'E')
4973 int j;
4974 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4975 if (find_mem (mii, &XVECEXP (x, i, j)))
4976 return true;
4979 return false;
4983 /* Examine the instructions between HEAD and TAIL and try to find
4984 dependencies that can be broken by modifying one of the patterns. */
4986 void
4987 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4989 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4990 int success_in_block = 0;
4992 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4994 struct mem_inc_info mii;
4996 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4997 continue;
4999 mii.mem_insn = insn;
5000 if (find_mem (&mii, &PATTERN (insn)))
5001 success_in_block++;
5003 if (success_in_block && sched_verbose >= 5)
5004 fprintf (sched_dump, "%d candidates for address modification found.\n",
5005 success_in_block);
5008 #endif /* INSN_SCHEDULING */