1 /* Instruction scheduling pass. This file computes dependencies between
3 Copyright (C) 1992-2024 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
31 #include "insn-config.h"
36 #include "insn-attr.h"
38 #include "sched-int.h"
40 #include "function-abi.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def
*sched_deps_info
;
47 /* The data is specific to the Haifa scheduler. */
48 vec
<haifa_deps_insn_data_def
>
51 /* Return the major type present in the DS. */
59 return REG_DEP_OUTPUT
;
62 return REG_DEP_CONTROL
;
64 gcc_assert (ds
& DEP_ANTI
);
69 /* Return equivalent dep_status. */
71 dk_to_ds (enum reg_note dk
)
85 gcc_assert (dk
== REG_DEP_ANTI
);
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
94 init_dep_1 (dep_t dep
, rtx_insn
*pro
, rtx_insn
*con
, enum reg_note type
, ds_t ds
)
98 DEP_TYPE (dep
) = type
;
99 DEP_STATUS (dep
) = ds
;
100 DEP_COST (dep
) = UNKNOWN_DEP_COST
;
101 DEP_NONREG (dep
) = 0;
102 DEP_MULTIPLE (dep
) = 0;
103 DEP_REPLACE (dep
) = NULL
;
107 /* Init DEP with the arguments.
108 While most of the scheduler (including targets) only need the major type
109 of the dependency, it is convenient to hide full dep_status from them. */
111 init_dep (dep_t dep
, rtx_insn
*pro
, rtx_insn
*con
, enum reg_note kind
)
115 if ((current_sched_info
->flags
& USE_DEPS_LIST
))
116 ds
= dk_to_ds (kind
);
120 init_dep_1 (dep
, pro
, con
, kind
, ds
);
123 /* Make a copy of FROM in TO. */
125 copy_dep (dep_t to
, dep_t from
)
127 memcpy (to
, from
, sizeof (*to
));
130 static void dump_ds (FILE *, ds_t
);
132 /* Define flags for dump_dep (). */
134 /* Dump producer of the dependence. */
135 #define DUMP_DEP_PRO (2)
137 /* Dump consumer of the dependence. */
138 #define DUMP_DEP_CON (4)
140 /* Dump type of the dependence. */
141 #define DUMP_DEP_TYPE (8)
143 /* Dump status of the dependence. */
144 #define DUMP_DEP_STATUS (16)
146 /* Dump all information about the dependence. */
147 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
151 FLAGS is a bit mask specifying what information about DEP needs
153 If FLAGS has the very first bit set, then dump all information about DEP
154 and propagate this bit into the callee dump functions. */
156 dump_dep (FILE *dump
, dep_t dep
, int flags
)
159 flags
|= DUMP_DEP_ALL
;
163 if (flags
& DUMP_DEP_PRO
)
164 fprintf (dump
, "%d; ", INSN_UID (DEP_PRO (dep
)));
166 if (flags
& DUMP_DEP_CON
)
167 fprintf (dump
, "%d; ", INSN_UID (DEP_CON (dep
)));
169 if (flags
& DUMP_DEP_TYPE
)
172 enum reg_note type
= DEP_TYPE (dep
);
184 case REG_DEP_CONTROL
:
197 fprintf (dump
, "%c; ", t
);
200 if (flags
& DUMP_DEP_STATUS
)
202 if (current_sched_info
->flags
& USE_DEPS_LIST
)
203 dump_ds (dump
, DEP_STATUS (dep
));
209 /* Default flags for dump_dep (). */
210 static int dump_dep_flags
= (DUMP_DEP_PRO
| DUMP_DEP_CON
);
212 /* Dump all fields of DEP to STDERR. */
214 sd_debug_dep (dep_t dep
)
216 dump_dep (stderr
, dep
, 1);
217 fprintf (stderr
, "\n");
220 /* Determine whether DEP is a dependency link of a non-debug insn on a
224 depl_on_debug_p (dep_link_t dep
)
226 return (DEBUG_INSN_P (DEP_LINK_PRO (dep
))
227 && !DEBUG_INSN_P (DEP_LINK_CON (dep
)));
230 /* Functions to operate with a single link from the dependencies lists -
233 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
236 attach_dep_link (dep_link_t l
, dep_link_t
*prev_nextp
)
238 dep_link_t next
= *prev_nextp
;
240 gcc_assert (DEP_LINK_PREV_NEXTP (l
) == NULL
241 && DEP_LINK_NEXT (l
) == NULL
);
243 /* Init node being inserted. */
244 DEP_LINK_PREV_NEXTP (l
) = prev_nextp
;
245 DEP_LINK_NEXT (l
) = next
;
250 gcc_assert (DEP_LINK_PREV_NEXTP (next
) == prev_nextp
);
252 DEP_LINK_PREV_NEXTP (next
) = &DEP_LINK_NEXT (l
);
259 /* Add dep_link LINK to deps_list L. */
261 add_to_deps_list (dep_link_t link
, deps_list_t l
)
263 attach_dep_link (link
, &DEPS_LIST_FIRST (l
));
265 /* Don't count debug deps. */
266 if (!depl_on_debug_p (link
))
267 ++DEPS_LIST_N_LINKS (l
);
270 /* Detach dep_link L from the list. */
272 detach_dep_link (dep_link_t l
)
274 dep_link_t
*prev_nextp
= DEP_LINK_PREV_NEXTP (l
);
275 dep_link_t next
= DEP_LINK_NEXT (l
);
280 DEP_LINK_PREV_NEXTP (next
) = prev_nextp
;
282 DEP_LINK_PREV_NEXTP (l
) = NULL
;
283 DEP_LINK_NEXT (l
) = NULL
;
286 /* Remove link LINK from list LIST. */
288 remove_from_deps_list (dep_link_t link
, deps_list_t list
)
290 detach_dep_link (link
);
292 /* Don't count debug deps. */
293 if (!depl_on_debug_p (link
))
294 --DEPS_LIST_N_LINKS (list
);
297 /* Move link LINK from list FROM to list TO. */
299 move_dep_link (dep_link_t link
, deps_list_t from
, deps_list_t to
)
301 remove_from_deps_list (link
, from
);
302 add_to_deps_list (link
, to
);
305 /* Return true of LINK is not attached to any list. */
307 dep_link_is_detached_p (dep_link_t link
)
309 return DEP_LINK_PREV_NEXTP (link
) == NULL
;
312 /* Pool to hold all dependency nodes (dep_node_t). */
313 static object_allocator
<_dep_node
> *dn_pool
;
315 /* Number of dep_nodes out there. */
316 static int dn_pool_diff
= 0;
318 /* Create a dep_node. */
320 create_dep_node (void)
322 dep_node_t n
= dn_pool
->allocate ();
323 dep_link_t back
= DEP_NODE_BACK (n
);
324 dep_link_t forw
= DEP_NODE_FORW (n
);
326 DEP_LINK_NODE (back
) = n
;
327 DEP_LINK_NEXT (back
) = NULL
;
328 DEP_LINK_PREV_NEXTP (back
) = NULL
;
330 DEP_LINK_NODE (forw
) = n
;
331 DEP_LINK_NEXT (forw
) = NULL
;
332 DEP_LINK_PREV_NEXTP (forw
) = NULL
;
339 /* Delete dep_node N. N must not be connected to any deps_list. */
341 delete_dep_node (dep_node_t n
)
343 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n
))
344 && dep_link_is_detached_p (DEP_NODE_FORW (n
)));
346 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n
)));
353 /* Pool to hold dependencies lists (deps_list_t). */
354 static object_allocator
<_deps_list
> *dl_pool
;
356 /* Number of deps_lists out there. */
357 static int dl_pool_diff
= 0;
359 /* Functions to operate with dependences lists - deps_list_t. */
361 /* Return true if list L is empty. */
363 deps_list_empty_p (deps_list_t l
)
365 return DEPS_LIST_N_LINKS (l
) == 0;
368 /* Create a new deps_list. */
370 create_deps_list (void)
372 deps_list_t l
= dl_pool
->allocate ();
374 DEPS_LIST_FIRST (l
) = NULL
;
375 DEPS_LIST_N_LINKS (l
) = 0;
381 /* Free deps_list L. */
383 free_deps_list (deps_list_t l
)
385 gcc_assert (deps_list_empty_p (l
));
392 /* Return true if there is no dep_nodes and deps_lists out there.
393 After the region is scheduled all the dependency nodes and lists
394 should [generally] be returned to pool. */
396 deps_pools_are_empty_p (void)
398 return dn_pool_diff
== 0 && dl_pool_diff
== 0;
401 /* Remove all elements from L. */
403 clear_deps_list (deps_list_t l
)
407 dep_link_t link
= DEPS_LIST_FIRST (l
);
412 remove_from_deps_list (link
, l
);
417 /* Decide whether a dependency should be treated as a hard or a speculative
420 dep_spec_p (dep_t dep
)
422 if (current_sched_info
->flags
& DO_SPECULATION
)
424 if (DEP_STATUS (dep
) & SPECULATIVE
)
427 if (current_sched_info
->flags
& DO_PREDICATION
)
429 if (DEP_TYPE (dep
) == REG_DEP_CONTROL
)
432 if (DEP_REPLACE (dep
) != NULL
)
437 static regset reg_pending_sets
;
438 static regset reg_pending_clobbers
;
439 static regset reg_pending_uses
;
440 static regset reg_pending_control_uses
;
441 static enum reg_pending_barrier_mode reg_pending_barrier
;
443 /* Hard registers implicitly clobbered or used (or may be implicitly
444 clobbered or used) by the currently analyzed insn. For example,
445 insn in its constraint has one register class. Even if there is
446 currently no hard register in the insn, the particular hard
447 register will be in the insn after reload pass because the
448 constraint requires it. */
449 static HARD_REG_SET implicit_reg_pending_clobbers
;
450 static HARD_REG_SET implicit_reg_pending_uses
;
452 /* To speed up the test for duplicate dependency links we keep a
453 record of dependencies created by add_dependence when the average
454 number of instructions in a basic block is very large.
456 Studies have shown that there is typically around 5 instructions between
457 branches for typical C code. So we can make a guess that the average
458 basic block is approximately 5 instructions long; we will choose 100X
459 the average size as a very large basic block.
461 Each insn has associated bitmaps for its dependencies. Each bitmap
462 has enough entries to represent a dependency on any other insn in
463 the insn chain. All bitmap for true dependencies cache is
464 allocated then the rest two ones are also allocated. */
465 static bitmap true_dependency_cache
= NULL
;
466 static bitmap output_dependency_cache
= NULL
;
467 static bitmap anti_dependency_cache
= NULL
;
468 static bitmap control_dependency_cache
= NULL
;
469 static bitmap spec_dependency_cache
= NULL
;
470 static int cache_size
;
472 /* True if we should mark added dependencies as a non-register deps. */
473 static bool mark_as_hard
;
475 static bool deps_may_trap_p (const_rtx
);
476 static void add_dependence_1 (rtx_insn
*, rtx_insn
*, enum reg_note
);
477 static void add_dependence_list (rtx_insn
*, rtx_insn_list
*, int,
478 enum reg_note
, bool);
479 static void add_dependence_list_and_free (class deps_desc
*, rtx_insn
*,
480 rtx_insn_list
**, int, enum reg_note
,
482 static void delete_all_dependences (rtx_insn
*);
483 static void chain_to_prev_insn (rtx_insn
*);
485 static void flush_pending_lists (class deps_desc
*, rtx_insn
*, int, int);
486 static void sched_analyze_1 (class deps_desc
*, rtx
, rtx_insn
*);
487 static void sched_analyze_2 (class deps_desc
*, rtx
, rtx_insn
*);
488 static void sched_analyze_insn (class deps_desc
*, rtx
, rtx_insn
*);
490 static bool sched_has_condition_p (const rtx_insn
*);
491 static bool conditions_mutex_p (const_rtx
, const_rtx
, bool, bool);
493 static enum DEPS_ADJUST_RESULT
maybe_add_or_update_dep_1 (dep_t
, bool,
495 static enum DEPS_ADJUST_RESULT
add_or_update_dep_1 (dep_t
, bool, rtx
, rtx
);
497 static void check_dep (dep_t
, bool);
500 /* Return true if a load of the memory reference MEM can cause a trap. */
503 deps_may_trap_p (const_rtx mem
)
505 const_rtx addr
= XEXP (mem
, 0);
507 if (REG_P (addr
) && REGNO (addr
) >= FIRST_PSEUDO_REGISTER
)
509 const_rtx t
= get_reg_known_value (REGNO (addr
));
513 return rtx_addr_can_trap_p (addr
);
517 /* Find the condition under which INSN is executed. If REV is not NULL,
518 it is set to TRUE when the returned comparison should be reversed
519 to get the actual condition. */
521 sched_get_condition_with_rev_uncached (const rtx_insn
*insn
, bool *rev
)
523 rtx pat
= PATTERN (insn
);
529 if (GET_CODE (pat
) == COND_EXEC
)
530 return COND_EXEC_TEST (pat
);
532 if (!any_condjump_p (insn
) || !onlyjump_p (insn
))
535 src
= SET_SRC (pc_set (insn
));
537 if (XEXP (src
, 2) == pc_rtx
)
538 return XEXP (src
, 0);
539 else if (XEXP (src
, 1) == pc_rtx
)
541 rtx cond
= XEXP (src
, 0);
542 enum rtx_code revcode
= reversed_comparison_code (cond
, insn
);
544 if (revcode
== UNKNOWN
)
555 /* Return the condition under which INSN does not execute (i.e. the
556 not-taken condition for a conditional branch), or NULL if we cannot
557 find such a condition. The caller should make a copy of the condition
560 sched_get_reverse_condition_uncached (const rtx_insn
*insn
)
563 rtx cond
= sched_get_condition_with_rev_uncached (insn
, &rev
);
564 if (cond
== NULL_RTX
)
568 enum rtx_code revcode
= reversed_comparison_code (cond
, insn
);
569 cond
= gen_rtx_fmt_ee (revcode
, GET_MODE (cond
),
576 /* Caching variant of sched_get_condition_with_rev_uncached.
577 We only do actual work the first time we come here for an insn; the
578 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
580 sched_get_condition_with_rev (const rtx_insn
*insn
, bool *rev
)
584 if (INSN_LUID (insn
) == 0)
585 return sched_get_condition_with_rev_uncached (insn
, rev
);
587 if (INSN_CACHED_COND (insn
) == const_true_rtx
)
590 if (INSN_CACHED_COND (insn
) != NULL_RTX
)
593 *rev
= INSN_REVERSE_COND (insn
);
594 return INSN_CACHED_COND (insn
);
597 INSN_CACHED_COND (insn
) = sched_get_condition_with_rev_uncached (insn
, &tmp
);
598 INSN_REVERSE_COND (insn
) = tmp
;
600 if (INSN_CACHED_COND (insn
) == NULL_RTX
)
602 INSN_CACHED_COND (insn
) = const_true_rtx
;
607 *rev
= INSN_REVERSE_COND (insn
);
608 return INSN_CACHED_COND (insn
);
611 /* True when we can find a condition under which INSN is executed. */
613 sched_has_condition_p (const rtx_insn
*insn
)
615 return !! sched_get_condition_with_rev (insn
, NULL
);
620 /* Return true if conditions COND1 and COND2 can never be both true. */
622 conditions_mutex_p (const_rtx cond1
, const_rtx cond2
, bool rev1
, bool rev2
)
624 if (COMPARISON_P (cond1
)
625 && COMPARISON_P (cond2
)
626 && GET_CODE (cond1
) ==
628 ? reversed_comparison_code (cond2
, NULL
)
630 && rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
631 && XEXP (cond1
, 1) == XEXP (cond2
, 1))
636 /* Return true if insn1 and insn2 can never depend on one another because
637 the conditions under which they are executed are mutually exclusive. */
639 sched_insns_conditions_mutex_p (const rtx_insn
*insn1
, const rtx_insn
*insn2
)
642 bool rev1
= false, rev2
= false;
644 /* df doesn't handle conditional lifetimes entirely correctly;
645 calls mess up the conditional lifetimes. */
646 if (!CALL_P (insn1
) && !CALL_P (insn2
))
648 cond1
= sched_get_condition_with_rev (insn1
, &rev1
);
649 cond2
= sched_get_condition_with_rev (insn2
, &rev2
);
651 && conditions_mutex_p (cond1
, cond2
, rev1
, rev2
)
652 /* Make sure first instruction doesn't affect condition of second
653 instruction if switched. */
654 && !modified_in_p (cond1
, insn2
)
655 /* Make sure second instruction doesn't affect condition of first
656 instruction if switched. */
657 && !modified_in_p (cond2
, insn1
))
664 /* Return true if INSN can potentially be speculated with type DS. */
666 sched_insn_is_legitimate_for_speculation_p (const rtx_insn
*insn
, ds_t ds
)
668 if (HAS_INTERNAL_DEP (insn
))
671 if (!NONJUMP_INSN_P (insn
))
674 if (SCHED_GROUP_P (insn
))
677 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn
)))
680 if (side_effects_p (PATTERN (insn
)))
684 /* The following instructions, which depend on a speculatively scheduled
685 instruction, cannot be speculatively scheduled along. */
687 if (may_trap_or_fault_p (PATTERN (insn
)))
688 /* If instruction might fault, it cannot be speculatively scheduled.
689 For control speculation it's obvious why and for data speculation
690 it's because the insn might get wrong input if speculation
691 wasn't successful. */
694 if ((ds
& BE_IN_DATA
)
695 && sched_has_condition_p (insn
))
696 /* If this is a predicated instruction, then it cannot be
697 speculatively scheduled. See PR35659. */
704 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
705 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
706 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
707 This function is used to switch sd_iterator to the next list.
708 !!! For internal use only. Might consider moving it to sched-int.h. */
710 sd_next_list (const_rtx insn
, sd_list_types_def
*types_ptr
,
711 deps_list_t
*list_ptr
, bool *resolved_p_ptr
)
713 sd_list_types_def types
= *types_ptr
;
715 if (types
& SD_LIST_HARD_BACK
)
717 *list_ptr
= INSN_HARD_BACK_DEPS (insn
);
718 *resolved_p_ptr
= false;
719 *types_ptr
= types
& ~SD_LIST_HARD_BACK
;
721 else if (types
& SD_LIST_SPEC_BACK
)
723 *list_ptr
= INSN_SPEC_BACK_DEPS (insn
);
724 *resolved_p_ptr
= false;
725 *types_ptr
= types
& ~SD_LIST_SPEC_BACK
;
727 else if (types
& SD_LIST_FORW
)
729 *list_ptr
= INSN_FORW_DEPS (insn
);
730 *resolved_p_ptr
= false;
731 *types_ptr
= types
& ~SD_LIST_FORW
;
733 else if (types
& SD_LIST_RES_BACK
)
735 *list_ptr
= INSN_RESOLVED_BACK_DEPS (insn
);
736 *resolved_p_ptr
= true;
737 *types_ptr
= types
& ~SD_LIST_RES_BACK
;
739 else if (types
& SD_LIST_RES_FORW
)
741 *list_ptr
= INSN_RESOLVED_FORW_DEPS (insn
);
742 *resolved_p_ptr
= true;
743 *types_ptr
= types
& ~SD_LIST_RES_FORW
;
748 *resolved_p_ptr
= false;
749 *types_ptr
= SD_LIST_NONE
;
753 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
755 sd_lists_size (const_rtx insn
, sd_list_types_def list_types
)
759 while (list_types
!= SD_LIST_NONE
)
764 sd_next_list (insn
, &list_types
, &list
, &resolved_p
);
766 size
+= DEPS_LIST_N_LINKS (list
);
772 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
775 sd_lists_empty_p (const_rtx insn
, sd_list_types_def list_types
)
777 while (list_types
!= SD_LIST_NONE
)
782 sd_next_list (insn
, &list_types
, &list
, &resolved_p
);
783 if (!deps_list_empty_p (list
))
790 /* Initialize data for INSN. */
792 sd_init_insn (rtx_insn
*insn
)
794 INSN_HARD_BACK_DEPS (insn
) = create_deps_list ();
795 INSN_SPEC_BACK_DEPS (insn
) = create_deps_list ();
796 INSN_RESOLVED_BACK_DEPS (insn
) = create_deps_list ();
797 INSN_FORW_DEPS (insn
) = create_deps_list ();
798 INSN_RESOLVED_FORW_DEPS (insn
) = create_deps_list ();
800 /* ??? It would be nice to allocate dependency caches here. */
803 /* Free data for INSN. */
805 sd_finish_insn (rtx_insn
*insn
)
807 /* ??? It would be nice to deallocate dependency caches here. */
809 free_deps_list (INSN_HARD_BACK_DEPS (insn
));
810 INSN_HARD_BACK_DEPS (insn
) = NULL
;
812 free_deps_list (INSN_SPEC_BACK_DEPS (insn
));
813 INSN_SPEC_BACK_DEPS (insn
) = NULL
;
815 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn
));
816 INSN_RESOLVED_BACK_DEPS (insn
) = NULL
;
818 free_deps_list (INSN_FORW_DEPS (insn
));
819 INSN_FORW_DEPS (insn
) = NULL
;
821 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn
));
822 INSN_RESOLVED_FORW_DEPS (insn
) = NULL
;
825 /* Find a dependency between producer PRO and consumer CON.
826 Search through resolved dependency lists if RESOLVED_P is true.
827 If no such dependency is found return NULL,
828 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
829 with an iterator pointing to it. */
831 sd_find_dep_between_no_cache (rtx pro
, rtx con
, bool resolved_p
,
832 sd_iterator_def
*sd_it_ptr
)
834 sd_list_types_def pro_list_type
;
835 sd_list_types_def con_list_type
;
836 sd_iterator_def sd_it
;
838 bool found_p
= false;
842 pro_list_type
= SD_LIST_RES_FORW
;
843 con_list_type
= SD_LIST_RES_BACK
;
847 pro_list_type
= SD_LIST_FORW
;
848 con_list_type
= SD_LIST_BACK
;
851 /* Walk through either back list of INSN or forw list of ELEM
852 depending on which one is shorter. */
853 if (sd_lists_size (con
, con_list_type
) < sd_lists_size (pro
, pro_list_type
))
855 /* Find the dep_link with producer PRO in consumer's back_deps. */
856 FOR_EACH_DEP (con
, con_list_type
, sd_it
, dep
)
857 if (DEP_PRO (dep
) == pro
)
865 /* Find the dep_link with consumer CON in producer's forw_deps. */
866 FOR_EACH_DEP (pro
, pro_list_type
, sd_it
, dep
)
867 if (DEP_CON (dep
) == con
)
876 if (sd_it_ptr
!= NULL
)
885 /* Find a dependency between producer PRO and consumer CON.
886 Use dependency [if available] to check if dependency is present at all.
887 Search through resolved dependency lists if RESOLVED_P is true.
888 If the dependency or NULL if none found. */
890 sd_find_dep_between (rtx pro
, rtx con
, bool resolved_p
)
892 if (true_dependency_cache
!= NULL
)
893 /* Avoiding the list walk below can cut compile times dramatically
896 int elem_luid
= INSN_LUID (pro
);
897 int insn_luid
= INSN_LUID (con
);
899 if (!bitmap_bit_p (&true_dependency_cache
[insn_luid
], elem_luid
)
900 && !bitmap_bit_p (&output_dependency_cache
[insn_luid
], elem_luid
)
901 && !bitmap_bit_p (&anti_dependency_cache
[insn_luid
], elem_luid
)
902 && !bitmap_bit_p (&control_dependency_cache
[insn_luid
], elem_luid
))
906 return sd_find_dep_between_no_cache (pro
, con
, resolved_p
, NULL
);
909 /* Add or update a dependence described by DEP.
910 MEM1 and MEM2, if non-null, correspond to memory locations in case of
913 The function returns a value indicating if an old entry has been changed
914 or a new entry has been added to insn's backward deps.
916 This function merely checks if producer and consumer is the same insn
917 and doesn't create a dep in this case. Actual manipulation of
918 dependence data structures is performed in add_or_update_dep_1. */
919 static enum DEPS_ADJUST_RESULT
920 maybe_add_or_update_dep_1 (dep_t dep
, bool resolved_p
, rtx mem1
, rtx mem2
)
922 rtx_insn
*elem
= DEP_PRO (dep
);
923 rtx_insn
*insn
= DEP_CON (dep
);
925 gcc_assert (INSN_P (insn
) && INSN_P (elem
));
927 /* Don't depend an insn on itself. */
930 if (sched_deps_info
->generate_spec_deps
)
931 /* INSN has an internal dependence, which we can't overcome. */
932 HAS_INTERNAL_DEP (insn
) = 1;
937 return add_or_update_dep_1 (dep
, resolved_p
, mem1
, mem2
);
940 /* Ask dependency caches what needs to be done for dependence DEP.
941 Return DEP_CREATED if new dependence should be created and there is no
942 need to try to find one searching the dependencies lists.
943 Return DEP_PRESENT if there already is a dependence described by DEP and
944 hence nothing is to be done.
945 Return DEP_CHANGED if there already is a dependence, but it should be
946 updated to incorporate additional information from DEP. */
947 static enum DEPS_ADJUST_RESULT
948 ask_dependency_caches (dep_t dep
)
950 int elem_luid
= INSN_LUID (DEP_PRO (dep
));
951 int insn_luid
= INSN_LUID (DEP_CON (dep
));
953 gcc_assert (true_dependency_cache
!= NULL
954 && output_dependency_cache
!= NULL
955 && anti_dependency_cache
!= NULL
956 && control_dependency_cache
!= NULL
);
958 if (!(current_sched_info
->flags
& USE_DEPS_LIST
))
960 enum reg_note present_dep_type
;
962 if (bitmap_bit_p (&true_dependency_cache
[insn_luid
], elem_luid
))
963 present_dep_type
= REG_DEP_TRUE
;
964 else if (bitmap_bit_p (&output_dependency_cache
[insn_luid
], elem_luid
))
965 present_dep_type
= REG_DEP_OUTPUT
;
966 else if (bitmap_bit_p (&anti_dependency_cache
[insn_luid
], elem_luid
))
967 present_dep_type
= REG_DEP_ANTI
;
968 else if (bitmap_bit_p (&control_dependency_cache
[insn_luid
], elem_luid
))
969 present_dep_type
= REG_DEP_CONTROL
;
971 /* There is no existing dep so it should be created. */
974 if ((int) DEP_TYPE (dep
) >= (int) present_dep_type
)
975 /* DEP does not add anything to the existing dependence. */
980 ds_t present_dep_types
= 0;
982 if (bitmap_bit_p (&true_dependency_cache
[insn_luid
], elem_luid
))
983 present_dep_types
|= DEP_TRUE
;
984 if (bitmap_bit_p (&output_dependency_cache
[insn_luid
], elem_luid
))
985 present_dep_types
|= DEP_OUTPUT
;
986 if (bitmap_bit_p (&anti_dependency_cache
[insn_luid
], elem_luid
))
987 present_dep_types
|= DEP_ANTI
;
988 if (bitmap_bit_p (&control_dependency_cache
[insn_luid
], elem_luid
))
989 present_dep_types
|= DEP_CONTROL
;
991 if (present_dep_types
== 0)
992 /* There is no existing dep so it should be created. */
995 if (!(current_sched_info
->flags
& DO_SPECULATION
)
996 || !bitmap_bit_p (&spec_dependency_cache
[insn_luid
], elem_luid
))
998 if ((present_dep_types
| (DEP_STATUS (dep
) & DEP_TYPES
))
999 == present_dep_types
)
1000 /* DEP does not add anything to the existing dependence. */
1005 /* Only true dependencies can be data speculative and
1006 only anti dependencies can be control speculative. */
1007 gcc_assert ((present_dep_types
& (DEP_TRUE
| DEP_ANTI
))
1008 == present_dep_types
);
1010 /* if (DEP is SPECULATIVE) then
1011 ..we should update DEP_STATUS
1013 ..we should reset existing dep to non-speculative. */
1020 /* Set dependency caches according to DEP. */
1022 set_dependency_caches (dep_t dep
)
1024 int elem_luid
= INSN_LUID (DEP_PRO (dep
));
1025 int insn_luid
= INSN_LUID (DEP_CON (dep
));
1027 if (!(current_sched_info
->flags
& USE_DEPS_LIST
))
1029 switch (DEP_TYPE (dep
))
1032 bitmap_set_bit (&true_dependency_cache
[insn_luid
], elem_luid
);
1035 case REG_DEP_OUTPUT
:
1036 bitmap_set_bit (&output_dependency_cache
[insn_luid
], elem_luid
);
1040 bitmap_set_bit (&anti_dependency_cache
[insn_luid
], elem_luid
);
1043 case REG_DEP_CONTROL
:
1044 bitmap_set_bit (&control_dependency_cache
[insn_luid
], elem_luid
);
1053 ds_t ds
= DEP_STATUS (dep
);
1056 bitmap_set_bit (&true_dependency_cache
[insn_luid
], elem_luid
);
1057 if (ds
& DEP_OUTPUT
)
1058 bitmap_set_bit (&output_dependency_cache
[insn_luid
], elem_luid
);
1060 bitmap_set_bit (&anti_dependency_cache
[insn_luid
], elem_luid
);
1061 if (ds
& DEP_CONTROL
)
1062 bitmap_set_bit (&control_dependency_cache
[insn_luid
], elem_luid
);
1064 if (ds
& SPECULATIVE
)
1066 gcc_assert (current_sched_info
->flags
& DO_SPECULATION
);
1067 bitmap_set_bit (&spec_dependency_cache
[insn_luid
], elem_luid
);
1072 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1073 caches accordingly. */
1075 update_dependency_caches (dep_t dep
, enum reg_note old_type
)
1077 int elem_luid
= INSN_LUID (DEP_PRO (dep
));
1078 int insn_luid
= INSN_LUID (DEP_CON (dep
));
1080 /* Clear corresponding cache entry because type of the link
1081 may have changed. Keep them if we use_deps_list. */
1082 if (!(current_sched_info
->flags
& USE_DEPS_LIST
))
1086 case REG_DEP_OUTPUT
:
1087 bitmap_clear_bit (&output_dependency_cache
[insn_luid
], elem_luid
);
1091 bitmap_clear_bit (&anti_dependency_cache
[insn_luid
], elem_luid
);
1094 case REG_DEP_CONTROL
:
1095 bitmap_clear_bit (&control_dependency_cache
[insn_luid
], elem_luid
);
1103 set_dependency_caches (dep
);
1106 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1108 change_spec_dep_to_hard (sd_iterator_def sd_it
)
1110 dep_node_t node
= DEP_LINK_NODE (*sd_it
.linkp
);
1111 dep_link_t link
= DEP_NODE_BACK (node
);
1112 dep_t dep
= DEP_NODE_DEP (node
);
1113 rtx_insn
*elem
= DEP_PRO (dep
);
1114 rtx_insn
*insn
= DEP_CON (dep
);
1116 move_dep_link (link
, INSN_SPEC_BACK_DEPS (insn
), INSN_HARD_BACK_DEPS (insn
));
1118 DEP_STATUS (dep
) &= ~SPECULATIVE
;
1120 if (true_dependency_cache
!= NULL
)
1121 /* Clear the cache entry. */
1122 bitmap_clear_bit (&spec_dependency_cache
[INSN_LUID (insn
)],
1126 /* Update DEP to incorporate information from NEW_DEP.
1127 SD_IT points to DEP in case it should be moved to another list.
1128 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1129 data-speculative dependence should be updated. */
1130 static enum DEPS_ADJUST_RESULT
1131 update_dep (dep_t dep
, dep_t new_dep
,
1132 sd_iterator_def sd_it ATTRIBUTE_UNUSED
,
1133 rtx mem1 ATTRIBUTE_UNUSED
,
1134 rtx mem2 ATTRIBUTE_UNUSED
)
1136 enum DEPS_ADJUST_RESULT res
= DEP_PRESENT
;
1137 enum reg_note old_type
= DEP_TYPE (dep
);
1138 bool was_spec
= dep_spec_p (dep
);
1140 DEP_NONREG (dep
) |= DEP_NONREG (new_dep
);
1141 DEP_MULTIPLE (dep
) = 1;
1143 /* If this is a more restrictive type of dependence than the
1144 existing one, then change the existing dependence to this
1146 if ((int) DEP_TYPE (new_dep
) < (int) old_type
)
1148 DEP_TYPE (dep
) = DEP_TYPE (new_dep
);
1152 if (current_sched_info
->flags
& USE_DEPS_LIST
)
1153 /* Update DEP_STATUS. */
1155 ds_t dep_status
= DEP_STATUS (dep
);
1156 ds_t ds
= DEP_STATUS (new_dep
);
1157 ds_t new_status
= ds
| dep_status
;
1159 if (new_status
& SPECULATIVE
)
1161 /* Either existing dep or a dep we're adding or both are
1163 if (!(ds
& SPECULATIVE
)
1164 || !(dep_status
& SPECULATIVE
))
1165 /* The new dep can't be speculative. */
1166 new_status
&= ~SPECULATIVE
;
1169 /* Both are speculative. Merge probabilities. */
1174 dw
= estimate_dep_weak (mem1
, mem2
);
1175 ds
= set_dep_weak (ds
, BEGIN_DATA
, dw
);
1178 new_status
= ds_merge (dep_status
, ds
);
1184 if (dep_status
!= ds
)
1186 DEP_STATUS (dep
) = ds
;
1191 if (was_spec
&& !dep_spec_p (dep
))
1192 /* The old dep was speculative, but now it isn't. */
1193 change_spec_dep_to_hard (sd_it
);
1195 if (true_dependency_cache
!= NULL
1196 && res
== DEP_CHANGED
)
1197 update_dependency_caches (dep
, old_type
);
1202 /* Add or update a dependence described by DEP.
1203 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1206 The function returns a value indicating if an old entry has been changed
1207 or a new entry has been added to insn's backward deps or nothing has
1208 been updated at all. */
1209 static enum DEPS_ADJUST_RESULT
1210 add_or_update_dep_1 (dep_t new_dep
, bool resolved_p
,
1211 rtx mem1 ATTRIBUTE_UNUSED
, rtx mem2 ATTRIBUTE_UNUSED
)
1213 bool maybe_present_p
= true;
1214 bool present_p
= false;
1216 gcc_assert (INSN_P (DEP_PRO (new_dep
)) && INSN_P (DEP_CON (new_dep
))
1217 && DEP_PRO (new_dep
) != DEP_CON (new_dep
));
1220 check_dep (new_dep
, mem1
!= NULL
);
1222 if (true_dependency_cache
!= NULL
)
1224 switch (ask_dependency_caches (new_dep
))
1228 sd_iterator_def sd_it
;
1230 present_dep
= sd_find_dep_between_no_cache (DEP_PRO (new_dep
),
1232 resolved_p
, &sd_it
);
1233 DEP_MULTIPLE (present_dep
) = 1;
1237 maybe_present_p
= true;
1242 maybe_present_p
= false;
1252 /* Check that we don't already have this dependence. */
1253 if (maybe_present_p
)
1256 sd_iterator_def sd_it
;
1258 gcc_assert (true_dependency_cache
== NULL
|| present_p
);
1260 present_dep
= sd_find_dep_between_no_cache (DEP_PRO (new_dep
),
1262 resolved_p
, &sd_it
);
1264 if (present_dep
!= NULL
)
1265 /* We found an existing dependency between ELEM and INSN. */
1266 return update_dep (present_dep
, new_dep
, sd_it
, mem1
, mem2
);
1268 /* We didn't find a dep, it shouldn't present in the cache. */
1269 gcc_assert (!present_p
);
1272 /* Might want to check one level of transitivity to save conses.
1273 This check should be done in maybe_add_or_update_dep_1.
1274 Since we made it to add_or_update_dep_1, we must create
1275 (or update) a link. */
1277 if (mem1
!= NULL_RTX
)
1279 gcc_assert (sched_deps_info
->generate_spec_deps
);
1280 DEP_STATUS (new_dep
) = set_dep_weak (DEP_STATUS (new_dep
), BEGIN_DATA
,
1281 estimate_dep_weak (mem1
, mem2
));
1284 sd_add_dep (new_dep
, resolved_p
);
1289 /* Initialize BACK_LIST_PTR with consumer's backward list and
1290 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1291 initialize with lists that hold resolved deps. */
1293 get_back_and_forw_lists (dep_t dep
, bool resolved_p
,
1294 deps_list_t
*back_list_ptr
,
1295 deps_list_t
*forw_list_ptr
)
1297 rtx_insn
*con
= DEP_CON (dep
);
1301 if (dep_spec_p (dep
))
1302 *back_list_ptr
= INSN_SPEC_BACK_DEPS (con
);
1304 *back_list_ptr
= INSN_HARD_BACK_DEPS (con
);
1306 *forw_list_ptr
= INSN_FORW_DEPS (DEP_PRO (dep
));
1310 *back_list_ptr
= INSN_RESOLVED_BACK_DEPS (con
);
1311 *forw_list_ptr
= INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep
));
1315 /* Add dependence described by DEP.
1316 If RESOLVED_P is true treat the dependence as a resolved one. */
1318 sd_add_dep (dep_t dep
, bool resolved_p
)
1320 dep_node_t n
= create_dep_node ();
1321 deps_list_t con_back_deps
;
1322 deps_list_t pro_forw_deps
;
1323 rtx_insn
*elem
= DEP_PRO (dep
);
1324 rtx_insn
*insn
= DEP_CON (dep
);
1326 gcc_assert (INSN_P (insn
) && INSN_P (elem
) && insn
!= elem
);
1328 if ((current_sched_info
->flags
& DO_SPECULATION
) == 0
1329 || !sched_insn_is_legitimate_for_speculation_p (insn
, DEP_STATUS (dep
)))
1330 DEP_STATUS (dep
) &= ~SPECULATIVE
;
1332 copy_dep (DEP_NODE_DEP (n
), dep
);
1334 get_back_and_forw_lists (dep
, resolved_p
, &con_back_deps
, &pro_forw_deps
);
1336 add_to_deps_list (DEP_NODE_BACK (n
), con_back_deps
);
1339 check_dep (dep
, false);
1341 add_to_deps_list (DEP_NODE_FORW (n
), pro_forw_deps
);
1343 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1344 in the bitmap caches of dependency information. */
1345 if (true_dependency_cache
!= NULL
)
1346 set_dependency_caches (dep
);
1349 /* Add or update backward dependence between INSN and ELEM
1350 with given type DEP_TYPE and dep_status DS.
1351 This function is a convenience wrapper. */
1352 enum DEPS_ADJUST_RESULT
1353 sd_add_or_update_dep (dep_t dep
, bool resolved_p
)
1355 return add_or_update_dep_1 (dep
, resolved_p
, NULL_RTX
, NULL_RTX
);
1358 /* Resolved dependence pointed to by SD_IT.
1359 SD_IT will advance to the next element. */
1361 sd_resolve_dep (sd_iterator_def sd_it
)
1363 dep_node_t node
= DEP_LINK_NODE (*sd_it
.linkp
);
1364 dep_t dep
= DEP_NODE_DEP (node
);
1365 rtx_insn
*pro
= DEP_PRO (dep
);
1366 rtx_insn
*con
= DEP_CON (dep
);
1368 if (dep_spec_p (dep
))
1369 move_dep_link (DEP_NODE_BACK (node
), INSN_SPEC_BACK_DEPS (con
),
1370 INSN_RESOLVED_BACK_DEPS (con
));
1372 move_dep_link (DEP_NODE_BACK (node
), INSN_HARD_BACK_DEPS (con
),
1373 INSN_RESOLVED_BACK_DEPS (con
));
1375 move_dep_link (DEP_NODE_FORW (node
), INSN_FORW_DEPS (pro
),
1376 INSN_RESOLVED_FORW_DEPS (pro
));
1379 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1380 pointed to by SD_IT to unresolved state. */
1382 sd_unresolve_dep (sd_iterator_def sd_it
)
1384 dep_node_t node
= DEP_LINK_NODE (*sd_it
.linkp
);
1385 dep_t dep
= DEP_NODE_DEP (node
);
1386 rtx_insn
*pro
= DEP_PRO (dep
);
1387 rtx_insn
*con
= DEP_CON (dep
);
1389 if (dep_spec_p (dep
))
1390 move_dep_link (DEP_NODE_BACK (node
), INSN_RESOLVED_BACK_DEPS (con
),
1391 INSN_SPEC_BACK_DEPS (con
));
1393 move_dep_link (DEP_NODE_BACK (node
), INSN_RESOLVED_BACK_DEPS (con
),
1394 INSN_HARD_BACK_DEPS (con
));
1396 move_dep_link (DEP_NODE_FORW (node
), INSN_RESOLVED_FORW_DEPS (pro
),
1397 INSN_FORW_DEPS (pro
));
1400 /* Make TO depend on all the FROM's producers.
1401 If RESOLVED_P is true add dependencies to the resolved lists. */
1403 sd_copy_back_deps (rtx_insn
*to
, rtx_insn
*from
, bool resolved_p
)
1405 sd_list_types_def list_type
;
1406 sd_iterator_def sd_it
;
1409 list_type
= resolved_p
? SD_LIST_RES_BACK
: SD_LIST_BACK
;
1411 FOR_EACH_DEP (from
, list_type
, sd_it
, dep
)
1413 dep_def _new_dep
, *new_dep
= &_new_dep
;
1415 copy_dep (new_dep
, dep
);
1416 DEP_CON (new_dep
) = to
;
1417 sd_add_dep (new_dep
, resolved_p
);
1421 /* Remove a dependency referred to by SD_IT.
1422 SD_IT will point to the next dependence after removal. */
1424 sd_delete_dep (sd_iterator_def sd_it
)
1426 dep_node_t n
= DEP_LINK_NODE (*sd_it
.linkp
);
1427 dep_t dep
= DEP_NODE_DEP (n
);
1428 rtx_insn
*pro
= DEP_PRO (dep
);
1429 rtx_insn
*con
= DEP_CON (dep
);
1430 deps_list_t con_back_deps
;
1431 deps_list_t pro_forw_deps
;
1433 if (true_dependency_cache
!= NULL
)
1435 int elem_luid
= INSN_LUID (pro
);
1436 int insn_luid
= INSN_LUID (con
);
1438 bitmap_clear_bit (&true_dependency_cache
[insn_luid
], elem_luid
);
1439 bitmap_clear_bit (&anti_dependency_cache
[insn_luid
], elem_luid
);
1440 bitmap_clear_bit (&control_dependency_cache
[insn_luid
], elem_luid
);
1441 bitmap_clear_bit (&output_dependency_cache
[insn_luid
], elem_luid
);
1443 if (current_sched_info
->flags
& DO_SPECULATION
)
1444 bitmap_clear_bit (&spec_dependency_cache
[insn_luid
], elem_luid
);
1447 get_back_and_forw_lists (dep
, sd_it
.resolved_p
,
1448 &con_back_deps
, &pro_forw_deps
);
1450 remove_from_deps_list (DEP_NODE_BACK (n
), con_back_deps
);
1451 remove_from_deps_list (DEP_NODE_FORW (n
), pro_forw_deps
);
1453 delete_dep_node (n
);
1456 /* Dump size of the lists. */
1457 #define DUMP_LISTS_SIZE (2)
1459 /* Dump dependencies of the lists. */
1460 #define DUMP_LISTS_DEPS (4)
1462 /* Dump all information about the lists. */
1463 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1465 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1466 FLAGS is a bit mask specifying what information about the lists needs
1468 If FLAGS has the very first bit set, then dump all information about
1469 the lists and propagate this bit into the callee dump functions. */
1471 dump_lists (FILE *dump
, rtx insn
, sd_list_types_def types
, int flags
)
1473 sd_iterator_def sd_it
;
1480 flags
|= DUMP_LISTS_ALL
;
1482 fprintf (dump
, "[");
1484 if (flags
& DUMP_LISTS_SIZE
)
1485 fprintf (dump
, "%d; ", sd_lists_size (insn
, types
));
1487 if (flags
& DUMP_LISTS_DEPS
)
1489 FOR_EACH_DEP (insn
, types
, sd_it
, dep
)
1491 dump_dep (dump
, dep
, dump_dep_flags
| all
);
1492 fprintf (dump
, " ");
1497 /* Dump all information about deps_lists of INSN specified by TYPES
1500 sd_debug_lists (rtx insn
, sd_list_types_def types
)
1502 dump_lists (stderr
, insn
, types
, 1);
1503 fprintf (stderr
, "\n");
1506 /* A wrapper around add_dependence_1, to add a dependence of CON on
1507 PRO, with type DEP_TYPE. This function implements special handling
1508 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1509 the type to REG_DEP_ANTI if we can determine that predication is
1510 impossible; otherwise we add additional true dependencies on the
1511 INSN_COND_DEPS list of the jump (which PRO must be). */
1513 add_dependence (rtx_insn
*con
, rtx_insn
*pro
, enum reg_note dep_type
)
1515 if (dep_type
== REG_DEP_CONTROL
1516 && !(current_sched_info
->flags
& DO_PREDICATION
))
1517 dep_type
= REG_DEP_ANTI
;
1519 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1520 so we must also make the insn dependent on the setter of the
1522 if (dep_type
== REG_DEP_CONTROL
)
1524 rtx_insn
*real_pro
= pro
;
1525 rtx_insn
*other
= real_insn_for_shadow (real_pro
);
1528 if (other
!= NULL_RTX
)
1530 cond
= sched_get_reverse_condition_uncached (real_pro
);
1531 /* Verify that the insn does not use a different value in
1532 the condition register than the one that was present at
1534 if (cond
== NULL_RTX
)
1535 dep_type
= REG_DEP_ANTI
;
1536 else if (INSN_CACHED_COND (real_pro
) == const_true_rtx
)
1539 CLEAR_HARD_REG_SET (uses
);
1540 note_uses (&PATTERN (con
), record_hard_reg_uses
, &uses
);
1541 if (TEST_HARD_REG_BIT (uses
, REGNO (XEXP (cond
, 0))))
1542 dep_type
= REG_DEP_ANTI
;
1544 if (dep_type
== REG_DEP_CONTROL
)
1546 if (sched_verbose
>= 5)
1547 fprintf (sched_dump
, "making DEP_CONTROL for %d\n",
1548 INSN_UID (real_pro
));
1549 add_dependence_list (con
, INSN_COND_DEPS (real_pro
), 0,
1550 REG_DEP_TRUE
, false);
1554 add_dependence_1 (con
, pro
, dep_type
);
1557 /* A convenience wrapper to operate on an entire list. HARD should be
1558 true if DEP_NONREG should be set on newly created dependencies. */
1561 add_dependence_list (rtx_insn
*insn
, rtx_insn_list
*list
, int uncond
,
1562 enum reg_note dep_type
, bool hard
)
1564 mark_as_hard
= hard
;
1565 for (; list
; list
= list
->next ())
1567 if (uncond
|| ! sched_insns_conditions_mutex_p (insn
, list
->insn ()))
1568 add_dependence (insn
, list
->insn (), dep_type
);
1570 mark_as_hard
= false;
1573 /* Similar, but free *LISTP at the same time, when the context
1574 is not readonly. HARD should be true if DEP_NONREG should be set on
1575 newly created dependencies. */
1578 add_dependence_list_and_free (class deps_desc
*deps
, rtx_insn
*insn
,
1579 rtx_insn_list
**listp
,
1580 int uncond
, enum reg_note dep_type
, bool hard
)
1582 add_dependence_list (insn
, *listp
, uncond
, dep_type
, hard
);
1584 /* We don't want to short-circuit dependencies involving debug
1585 insns, because they may cause actual dependencies to be
1587 if (deps
->readonly
|| DEBUG_INSN_P (insn
))
1590 free_INSN_LIST_list (listp
);
1593 /* Remove all occurrences of INSN from LIST. Return the number of
1594 occurrences removed. */
1597 remove_from_dependence_list (rtx_insn
*insn
, rtx_insn_list
**listp
)
1603 if ((*listp
)->insn () == insn
)
1605 remove_free_INSN_LIST_node (listp
);
1610 listp
= (rtx_insn_list
**)&XEXP (*listp
, 1);
1616 /* Same as above, but process two lists at once. */
1618 remove_from_both_dependence_lists (rtx_insn
*insn
,
1619 rtx_insn_list
**listp
,
1620 rtx_expr_list
**exprp
)
1626 if (XEXP (*listp
, 0) == insn
)
1628 remove_free_INSN_LIST_node (listp
);
1629 remove_free_EXPR_LIST_node (exprp
);
1634 listp
= (rtx_insn_list
**)&XEXP (*listp
, 1);
1635 exprp
= (rtx_expr_list
**)&XEXP (*exprp
, 1);
1641 /* Clear all dependencies for an insn. */
1643 delete_all_dependences (rtx_insn
*insn
)
1645 sd_iterator_def sd_it
;
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1652 for (sd_it
= sd_iterator_start (insn
, SD_LIST_BACK
);
1653 sd_iterator_cond (&sd_it
, &dep
);)
1654 sd_delete_dep (sd_it
);
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1664 chain_to_prev_insn (rtx_insn
*insn
)
1666 sd_iterator_def sd_it
;
1668 rtx_insn
*prev_nonnote
;
1670 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
1673 rtx_insn
*pro
= DEP_PRO (dep
);
1677 i
= prev_nonnote_insn (i
);
1681 } while (SCHED_GROUP_P (i
) || DEBUG_INSN_P (i
));
1683 if (! sched_insns_conditions_mutex_p (i
, pro
))
1684 add_dependence (i
, pro
, DEP_TYPE (dep
));
1688 delete_all_dependences (insn
);
1690 prev_nonnote
= prev_nonnote_nondebug_insn (insn
);
1691 if (BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (prev_nonnote
)
1692 && ! sched_insns_conditions_mutex_p (insn
, prev_nonnote
))
1693 add_dependence (insn
, prev_nonnote
, REG_DEP_ANTI
);
1696 /* Process an insn's memory dependencies. There are four kinds of
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1712 add_insn_mem_dependence (class deps_desc
*deps
, bool read_p
,
1713 rtx_insn
*insn
, rtx mem
)
1715 rtx_insn_list
**insn_list
;
1716 rtx_insn_list
*insn_node
;
1717 rtx_expr_list
**mem_list
;
1718 rtx_expr_list
*mem_node
;
1720 gcc_assert (!deps
->readonly
);
1723 insn_list
= &deps
->pending_read_insns
;
1724 mem_list
= &deps
->pending_read_mems
;
1725 if (!DEBUG_INSN_P (insn
))
1726 deps
->pending_read_list_length
++;
1730 insn_list
= &deps
->pending_write_insns
;
1731 mem_list
= &deps
->pending_write_mems
;
1732 deps
->pending_write_list_length
++;
1735 insn_node
= alloc_INSN_LIST (insn
, *insn_list
);
1736 *insn_list
= insn_node
;
1738 if (sched_deps_info
->use_cselib
)
1740 mem
= shallow_copy_rtx (mem
);
1741 XEXP (mem
, 0) = cselib_subst_to_values_from_insn (XEXP (mem
, 0),
1742 GET_MODE (mem
), insn
);
1744 mem_node
= alloc_EXPR_LIST (VOIDmode
, canon_rtx (mem
), *mem_list
);
1745 *mem_list
= mem_node
;
1748 /* Make a dependency between every memory reference on the pending lists
1749 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1750 dependencies for a read operation, similarly with FOR_WRITE. */
1753 flush_pending_lists (class deps_desc
*deps
, rtx_insn
*insn
, int for_read
,
1758 add_dependence_list_and_free (deps
, insn
, &deps
->pending_read_insns
,
1759 1, REG_DEP_ANTI
, true);
1760 if (!deps
->readonly
)
1762 free_EXPR_LIST_list (&deps
->pending_read_mems
);
1763 deps
->pending_read_list_length
= 0;
1767 add_dependence_list_and_free (deps
, insn
, &deps
->pending_write_insns
, 1,
1768 for_read
? REG_DEP_ANTI
: REG_DEP_OUTPUT
,
1771 add_dependence_list_and_free (deps
, insn
,
1772 &deps
->last_pending_memory_flush
, 1,
1773 for_read
? REG_DEP_ANTI
: REG_DEP_OUTPUT
,
1776 add_dependence_list_and_free (deps
, insn
, &deps
->pending_jump_insns
, 1,
1777 REG_DEP_ANTI
, true);
1779 if (DEBUG_INSN_P (insn
))
1782 free_INSN_LIST_list (&deps
->pending_read_insns
);
1783 free_INSN_LIST_list (&deps
->pending_write_insns
);
1784 free_INSN_LIST_list (&deps
->last_pending_memory_flush
);
1785 free_INSN_LIST_list (&deps
->pending_jump_insns
);
1788 if (!deps
->readonly
)
1790 free_EXPR_LIST_list (&deps
->pending_write_mems
);
1791 deps
->pending_write_list_length
= 0;
1793 deps
->last_pending_memory_flush
= alloc_INSN_LIST (insn
, NULL_RTX
);
1794 deps
->pending_flush_length
= 1;
1796 mark_as_hard
= false;
1799 /* Instruction which dependencies we are analyzing. */
1800 static rtx_insn
*cur_insn
= NULL
;
1802 /* Implement hooks for haifa scheduler. */
1805 haifa_start_insn (rtx_insn
*insn
)
1807 gcc_assert (insn
&& !cur_insn
);
1813 haifa_finish_insn (void)
1819 haifa_note_reg_set (int regno
)
1821 SET_REGNO_REG_SET (reg_pending_sets
, regno
);
1825 haifa_note_reg_clobber (int regno
)
1827 SET_REGNO_REG_SET (reg_pending_clobbers
, regno
);
1831 haifa_note_reg_use (int regno
)
1833 SET_REGNO_REG_SET (reg_pending_uses
, regno
);
1837 haifa_note_mem_dep (rtx mem
, rtx pending_mem
, rtx_insn
*pending_insn
, ds_t ds
)
1839 if (!(ds
& SPECULATIVE
))
1842 pending_mem
= NULL_RTX
;
1845 gcc_assert (ds
& BEGIN_DATA
);
1848 dep_def _dep
, *dep
= &_dep
;
1850 init_dep_1 (dep
, pending_insn
, cur_insn
, ds_to_dt (ds
),
1851 current_sched_info
->flags
& USE_DEPS_LIST
? ds
: 0);
1852 DEP_NONREG (dep
) = 1;
1853 maybe_add_or_update_dep_1 (dep
, false, pending_mem
, mem
);
1859 haifa_note_dep (rtx_insn
*elem
, ds_t ds
)
1864 init_dep (dep
, elem
, cur_insn
, ds_to_dt (ds
));
1866 DEP_NONREG (dep
) = 1;
1867 maybe_add_or_update_dep_1 (dep
, false, NULL_RTX
, NULL_RTX
);
1871 note_reg_use (int r
)
1873 if (sched_deps_info
->note_reg_use
)
1874 sched_deps_info
->note_reg_use (r
);
1878 note_reg_set (int r
)
1880 if (sched_deps_info
->note_reg_set
)
1881 sched_deps_info
->note_reg_set (r
);
1885 note_reg_clobber (int r
)
1887 if (sched_deps_info
->note_reg_clobber
)
1888 sched_deps_info
->note_reg_clobber (r
);
1892 note_mem_dep (rtx m1
, rtx m2
, rtx_insn
*e
, ds_t ds
)
1894 if (sched_deps_info
->note_mem_dep
)
1895 sched_deps_info
->note_mem_dep (m1
, m2
, e
, ds
);
1899 note_dep (rtx_insn
*e
, ds_t ds
)
1901 if (sched_deps_info
->note_dep
)
1902 sched_deps_info
->note_dep (e
, ds
);
1905 /* Return corresponding to DS reg_note. */
1910 return REG_DEP_TRUE
;
1911 else if (ds
& DEP_OUTPUT
)
1912 return REG_DEP_OUTPUT
;
1913 else if (ds
& DEP_ANTI
)
1914 return REG_DEP_ANTI
;
1917 gcc_assert (ds
& DEP_CONTROL
);
1918 return REG_DEP_CONTROL
;
1924 /* Functions for computation of info needed for register pressure
1925 sensitive insn scheduling. */
1928 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1929 static struct reg_use_data
*
1930 create_insn_reg_use (int regno
, rtx_insn
*insn
)
1932 struct reg_use_data
*use
;
1934 use
= (struct reg_use_data
*) xmalloc (sizeof (struct reg_use_data
));
1937 use
->next_insn_use
= INSN_REG_USE_LIST (insn
);
1938 INSN_REG_USE_LIST (insn
) = use
;
1942 /* Allocate reg_set_data structure for REGNO and INSN. */
1944 create_insn_reg_set (int regno
, rtx insn
)
1946 struct reg_set_data
*set
;
1948 set
= (struct reg_set_data
*) xmalloc (sizeof (struct reg_set_data
));
1951 set
->next_insn_set
= INSN_REG_SET_LIST (insn
);
1952 INSN_REG_SET_LIST (insn
) = set
;
1955 /* Set up insn register uses for INSN and dependency context DEPS. */
1957 setup_insn_reg_uses (class deps_desc
*deps
, rtx_insn
*insn
)
1960 reg_set_iterator rsi
;
1961 struct reg_use_data
*use
, *use2
, *next
;
1962 struct deps_reg
*reg_last
;
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses
, 0, i
, rsi
)
1966 if (i
< FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs
, i
))
1970 if (find_regno_note (insn
, REG_DEAD
, i
) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets
, i
)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers
, i
))
1973 /* Ignore use which is not dying. */
1976 use
= create_insn_reg_use (i
, insn
);
1977 use
->next_regno_use
= use
;
1978 reg_last
= &deps
->reg_last
[i
];
1980 /* Create the cycle list of uses. */
1981 for (rtx_insn_list
*list
= reg_last
->uses
; list
; list
= list
->next ())
1983 use2
= create_insn_reg_use (i
, list
->insn ());
1984 next
= use
->next_regno_use
;
1985 use
->next_regno_use
= use2
;
1986 use2
->next_regno_use
= next
;
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info
[N_REG_CLASSES
];
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1996 insn_use_p (rtx insn
, int regno
)
1998 struct reg_use_data
*use
;
2000 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
2001 if (use
->regno
== regno
)
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2010 mark_insn_pseudo_birth (rtx insn
, int regno
, bool clobber_p
, bool unused_p
)
2015 gcc_assert (regno
>= FIRST_PSEUDO_REGISTER
);
2016 cl
= sched_regno_pressure_class
[regno
];
2019 incr
= ira_reg_class_max_nregs
[cl
][PSEUDO_REGNO_MODE (regno
)];
2022 new_incr
= reg_pressure_info
[cl
].clobber_increase
+ incr
;
2023 reg_pressure_info
[cl
].clobber_increase
= new_incr
;
2027 new_incr
= reg_pressure_info
[cl
].unused_set_increase
+ incr
;
2028 reg_pressure_info
[cl
].unused_set_increase
= new_incr
;
2032 new_incr
= reg_pressure_info
[cl
].set_increase
+ incr
;
2033 reg_pressure_info
[cl
].set_increase
= new_incr
;
2034 if (! insn_use_p (insn
, regno
))
2035 reg_pressure_info
[cl
].change
+= incr
;
2036 create_insn_reg_set (regno
, insn
);
2038 gcc_assert (new_incr
< (1 << INCREASE_BITS
));
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2045 mark_insn_hard_regno_birth (rtx insn
, int regno
, int nregs
,
2046 bool clobber_p
, bool unused_p
)
2049 int new_incr
, last
= regno
+ nregs
;
2051 while (regno
< last
)
2053 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
2056 cl
= sched_regno_pressure_class
[regno
];
2061 new_incr
= reg_pressure_info
[cl
].clobber_increase
+ 1;
2062 reg_pressure_info
[cl
].clobber_increase
= new_incr
;
2066 new_incr
= reg_pressure_info
[cl
].unused_set_increase
+ 1;
2067 reg_pressure_info
[cl
].unused_set_increase
= new_incr
;
2071 new_incr
= reg_pressure_info
[cl
].set_increase
+ 1;
2072 reg_pressure_info
[cl
].set_increase
= new_incr
;
2073 if (! insn_use_p (insn
, regno
))
2074 reg_pressure_info
[cl
].change
+= 1;
2075 create_insn_reg_set (regno
, insn
);
2077 gcc_assert (new_incr
< (1 << INCREASE_BITS
));
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2089 mark_insn_reg_birth (rtx insn
, rtx reg
, bool clobber_p
, bool unused_p
)
2093 if (GET_CODE (reg
) == SUBREG
)
2094 reg
= SUBREG_REG (reg
);
2099 regno
= REGNO (reg
);
2100 if (regno
< FIRST_PSEUDO_REGISTER
)
2101 mark_insn_hard_regno_birth (insn
, regno
, REG_NREGS (reg
),
2102 clobber_p
, unused_p
);
2104 mark_insn_pseudo_birth (insn
, regno
, clobber_p
, unused_p
);
2107 /* Update the register pressure info after death of pseudo register
2110 mark_pseudo_death (int regno
)
2115 gcc_assert (regno
>= FIRST_PSEUDO_REGISTER
);
2116 cl
= sched_regno_pressure_class
[regno
];
2119 incr
= ira_reg_class_max_nregs
[cl
][PSEUDO_REGNO_MODE (regno
)];
2120 reg_pressure_info
[cl
].change
-= incr
;
2124 /* Like mark_pseudo_death except that NREGS saying how many hard
2125 registers involved in the death. */
2127 mark_hard_regno_death (int regno
, int nregs
)
2130 int last
= regno
+ nregs
;
2132 while (regno
< last
)
2134 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
2135 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
2137 cl
= sched_regno_pressure_class
[regno
];
2139 reg_pressure_info
[cl
].change
-= 1;
2145 /* Update the register pressure info after death of pseudo or hard
2148 mark_reg_death (rtx reg
)
2152 if (GET_CODE (reg
) == SUBREG
)
2153 reg
= SUBREG_REG (reg
);
2158 regno
= REGNO (reg
);
2159 if (regno
< FIRST_PSEUDO_REGISTER
)
2160 mark_hard_regno_death (regno
, REG_NREGS (reg
));
2162 mark_pseudo_death (regno
);
2165 /* Process SETTER of REG. DATA is an insn containing the setter. */
2167 mark_insn_reg_store (rtx reg
, const_rtx setter
, void *data
)
2169 if (setter
!= NULL_RTX
&& GET_CODE (setter
) != SET
)
2172 ((rtx
) data
, reg
, false,
2173 find_reg_note ((const_rtx
) data
, REG_UNUSED
, reg
) != NULL_RTX
);
2176 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2178 mark_insn_reg_clobber (rtx reg
, const_rtx setter
, void *data
)
2180 if (GET_CODE (setter
) == CLOBBER
)
2181 mark_insn_reg_birth ((rtx
) data
, reg
, true, false);
2184 /* Set up reg pressure info related to INSN. */
2186 init_insn_reg_pressure_info (rtx_insn
*insn
)
2190 static struct reg_pressure_data
*pressure_info
;
2193 gcc_assert (sched_pressure
!= SCHED_PRESSURE_NONE
);
2195 if (! INSN_P (insn
))
2198 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2200 cl
= ira_pressure_classes
[i
];
2201 reg_pressure_info
[cl
].clobber_increase
= 0;
2202 reg_pressure_info
[cl
].set_increase
= 0;
2203 reg_pressure_info
[cl
].unused_set_increase
= 0;
2204 reg_pressure_info
[cl
].change
= 0;
2207 note_stores (insn
, mark_insn_reg_clobber
, insn
);
2209 note_stores (insn
, mark_insn_reg_store
, insn
);
2212 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2213 if (REG_NOTE_KIND (link
) == REG_INC
)
2214 mark_insn_reg_store (XEXP (link
, 0), NULL_RTX
, insn
);
2216 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2217 if (REG_NOTE_KIND (link
) == REG_DEAD
)
2218 mark_reg_death (XEXP (link
, 0));
2220 len
= sizeof (struct reg_pressure_data
) * ira_pressure_classes_num
;
2222 = INSN_REG_PRESSURE (insn
) = (struct reg_pressure_data
*) xmalloc (len
);
2223 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
2224 INSN_MAX_REG_PRESSURE (insn
) = (int *) xcalloc (ira_pressure_classes_num
2226 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
2228 cl
= ira_pressure_classes
[i
];
2229 pressure_info
[i
].clobber_increase
2230 = reg_pressure_info
[cl
].clobber_increase
;
2231 pressure_info
[i
].set_increase
= reg_pressure_info
[cl
].set_increase
;
2232 pressure_info
[i
].unused_set_increase
2233 = reg_pressure_info
[cl
].unused_set_increase
;
2234 pressure_info
[i
].change
= reg_pressure_info
[cl
].change
;
2241 /* Internal variable for sched_analyze_[12] () functions.
2242 If it is nonzero, this means that sched_analyze_[12] looks
2243 at the most toplevel SET. */
2244 static bool can_start_lhs_rhs_p
;
2246 /* Extend reg info for the deps context DEPS given that
2247 we have just generated a register numbered REGNO. */
2249 extend_deps_reg_info (class deps_desc
*deps
, int regno
)
2251 int max_regno
= regno
+ 1;
2253 gcc_assert (!reload_completed
);
2255 /* In a readonly context, it would not hurt to extend info,
2256 but it should not be needed. */
2257 if (reload_completed
&& deps
->readonly
)
2259 deps
->max_reg
= max_regno
;
2263 if (max_regno
> deps
->max_reg
)
2265 deps
->reg_last
= XRESIZEVEC (struct deps_reg
, deps
->reg_last
,
2267 memset (&deps
->reg_last
[deps
->max_reg
],
2268 0, (max_regno
- deps
->max_reg
)
2269 * sizeof (struct deps_reg
));
2270 deps
->max_reg
= max_regno
;
2274 /* Extends REG_INFO_P if needed. */
2276 maybe_extend_reg_info_p (void)
2278 /* Extend REG_INFO_P, if needed. */
2279 if ((unsigned int)max_regno
- 1 >= reg_info_p_size
)
2281 size_t new_reg_info_p_size
= max_regno
+ 128;
2283 gcc_assert (!reload_completed
&& sel_sched_p ());
2285 reg_info_p
= (struct reg_info_t
*) xrecalloc (reg_info_p
,
2286 new_reg_info_p_size
,
2288 sizeof (*reg_info_p
));
2289 reg_info_p_size
= new_reg_info_p_size
;
2293 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2294 The type of the reference is specified by REF and can be SET,
2295 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2298 sched_analyze_reg (class deps_desc
*deps
, int regno
, machine_mode mode
,
2299 enum rtx_code ref
, rtx_insn
*insn
)
2301 /* We could emit new pseudos in renaming. Extend the reg structures. */
2302 if (!reload_completed
&& sel_sched_p ()
2303 && (regno
>= max_reg_num () - 1 || regno
>= deps
->max_reg
))
2304 extend_deps_reg_info (deps
, regno
);
2306 maybe_extend_reg_info_p ();
2308 /* A hard reg in a wide mode may really be multiple registers.
2309 If so, mark all of them just like the first. */
2310 if (regno
< FIRST_PSEUDO_REGISTER
)
2312 int i
= hard_regno_nregs (regno
, mode
);
2316 note_reg_set (regno
+ i
);
2318 else if (ref
== USE
)
2321 note_reg_use (regno
+ i
);
2326 note_reg_clobber (regno
+ i
);
2330 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2331 it does not reload. Ignore these as they have served their
2333 else if (regno
>= deps
->max_reg
)
2335 enum rtx_code code
= GET_CODE (PATTERN (insn
));
2336 gcc_assert (code
== USE
|| code
== CLOBBER
);
2342 note_reg_set (regno
);
2343 else if (ref
== USE
)
2344 note_reg_use (regno
);
2346 note_reg_clobber (regno
);
2348 /* Pseudos that are REG_EQUIV to something may be replaced
2349 by that during reloading. We need only add dependencies for
2350 the address in the REG_EQUIV note. */
2351 if (!reload_completed
&& get_reg_known_equiv_p (regno
))
2353 rtx t
= get_reg_known_value (regno
);
2355 sched_analyze_2 (deps
, XEXP (t
, 0), insn
);
2358 /* Don't let it cross a call after scheduling if it doesn't
2359 already cross one. */
2360 if (REG_N_CALLS_CROSSED (regno
) == 0)
2362 if (!deps
->readonly
&& ref
== USE
&& !DEBUG_INSN_P (insn
))
2363 deps
->sched_before_next_call
2364 = alloc_INSN_LIST (insn
, deps
->sched_before_next_call
);
2366 add_dependence_list (insn
, deps
->last_function_call
, 1,
2367 REG_DEP_ANTI
, false);
2372 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2373 rtx, X, creating all dependencies generated by the write to the
2374 destination of X, and reads of everything mentioned. */
2377 sched_analyze_1 (class deps_desc
*deps
, rtx x
, rtx_insn
*insn
)
2379 rtx dest
= XEXP (x
, 0);
2380 enum rtx_code code
= GET_CODE (x
);
2381 bool cslr_p
= can_start_lhs_rhs_p
;
2383 can_start_lhs_rhs_p
= false;
2389 if (cslr_p
&& sched_deps_info
->start_lhs
)
2390 sched_deps_info
->start_lhs (dest
);
2392 if (GET_CODE (dest
) == PARALLEL
)
2396 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
2397 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
2398 sched_analyze_1 (deps
,
2399 gen_rtx_CLOBBER (VOIDmode
,
2400 XEXP (XVECEXP (dest
, 0, i
), 0)),
2403 if (cslr_p
&& sched_deps_info
->finish_lhs
)
2404 sched_deps_info
->finish_lhs ();
2408 can_start_lhs_rhs_p
= cslr_p
;
2410 sched_analyze_2 (deps
, SET_SRC (x
), insn
);
2412 can_start_lhs_rhs_p
= false;
2418 while (GET_CODE (dest
) == STRICT_LOW_PART
|| GET_CODE (dest
) == SUBREG
2419 || GET_CODE (dest
) == ZERO_EXTRACT
)
2421 if (GET_CODE (dest
) == STRICT_LOW_PART
2422 || GET_CODE (dest
) == ZERO_EXTRACT
2423 || read_modify_subreg_p (dest
))
2425 /* These both read and modify the result. We must handle
2426 them as writes to get proper dependencies for following
2427 instructions. We must handle them as reads to get proper
2428 dependencies from this to previous instructions.
2429 Thus we need to call sched_analyze_2. */
2431 sched_analyze_2 (deps
, XEXP (dest
, 0), insn
);
2433 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2435 /* The second and third arguments are values read by this insn. */
2436 sched_analyze_2 (deps
, XEXP (dest
, 1), insn
);
2437 sched_analyze_2 (deps
, XEXP (dest
, 2), insn
);
2439 dest
= XEXP (dest
, 0);
2444 int regno
= REGNO (dest
);
2445 machine_mode mode
= GET_MODE (dest
);
2447 sched_analyze_reg (deps
, regno
, mode
, code
, insn
);
2450 /* Treat all writes to a stack register as modifying the TOS. */
2451 if (regno
>= FIRST_STACK_REG
&& regno
<= LAST_STACK_REG
)
2453 /* Avoid analyzing the same register twice. */
2454 if (regno
!= FIRST_STACK_REG
)
2455 sched_analyze_reg (deps
, FIRST_STACK_REG
, mode
, code
, insn
);
2457 add_to_hard_reg_set (&implicit_reg_pending_uses
, mode
,
2462 else if (MEM_P (dest
))
2464 /* Writing memory. */
2467 if (sched_deps_info
->use_cselib
)
2469 machine_mode address_mode
= get_address_mode (dest
);
2471 t
= shallow_copy_rtx (dest
);
2472 cselib_lookup_from_insn (XEXP (t
, 0), address_mode
, 1,
2473 GET_MODE (t
), insn
);
2475 = cselib_subst_to_values_from_insn (XEXP (t
, 0), GET_MODE (t
),
2480 /* Pending lists can't get larger with a readonly context. */
2482 && ((deps
->pending_read_list_length
+ deps
->pending_write_list_length
)
2483 >= param_max_pending_list_length
))
2485 /* Flush all pending reads and writes to prevent the pending lists
2486 from getting any larger. Insn scheduling runs too slowly when
2487 these lists get long. When compiling GCC with itself,
2488 this flush occurs 8 times for sparc, and 10 times for m88k using
2489 the default value of 32. */
2490 flush_pending_lists (deps
, insn
, false, true);
2494 rtx_insn_list
*pending
;
2495 rtx_expr_list
*pending_mem
;
2497 pending
= deps
->pending_read_insns
;
2498 pending_mem
= deps
->pending_read_mems
;
2501 if (anti_dependence (pending_mem
->element (), t
)
2502 && ! sched_insns_conditions_mutex_p (insn
, pending
->insn ()))
2503 note_mem_dep (t
, pending_mem
->element (), pending
->insn (),
2506 pending
= pending
->next ();
2507 pending_mem
= pending_mem
->next ();
2510 pending
= deps
->pending_write_insns
;
2511 pending_mem
= deps
->pending_write_mems
;
2514 if (output_dependence (pending_mem
->element (), t
)
2515 && ! sched_insns_conditions_mutex_p (insn
, pending
->insn ()))
2516 note_mem_dep (t
, pending_mem
->element (),
2520 pending
= pending
->next ();
2521 pending_mem
= pending_mem
-> next ();
2524 add_dependence_list (insn
, deps
->last_pending_memory_flush
, 1,
2525 REG_DEP_ANTI
, true);
2526 add_dependence_list (insn
, deps
->pending_jump_insns
, 1,
2527 REG_DEP_CONTROL
, true);
2529 if (!deps
->readonly
)
2530 add_insn_mem_dependence (deps
, false, insn
, dest
);
2532 sched_analyze_2 (deps
, XEXP (dest
, 0), insn
);
2535 if (cslr_p
&& sched_deps_info
->finish_lhs
)
2536 sched_deps_info
->finish_lhs ();
2538 /* Analyze reads. */
2539 if (GET_CODE (x
) == SET
)
2541 can_start_lhs_rhs_p
= cslr_p
;
2543 sched_analyze_2 (deps
, SET_SRC (x
), insn
);
2545 can_start_lhs_rhs_p
= false;
2549 /* Analyze the uses of memory and registers in rtx X in INSN. */
2551 sched_analyze_2 (class deps_desc
*deps
, rtx x
, rtx_insn
*insn
)
2557 bool cslr_p
= can_start_lhs_rhs_p
;
2559 can_start_lhs_rhs_p
= false;
2565 if (cslr_p
&& sched_deps_info
->start_rhs
)
2566 sched_deps_info
->start_rhs (x
);
2568 code
= GET_CODE (x
);
2576 /* Ignore constants. */
2577 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2578 sched_deps_info
->finish_rhs ();
2584 int regno
= REGNO (x
);
2585 machine_mode mode
= GET_MODE (x
);
2587 sched_analyze_reg (deps
, regno
, mode
, USE
, insn
);
2590 /* Treat all reads of a stack register as modifying the TOS. */
2591 if (regno
>= FIRST_STACK_REG
&& regno
<= LAST_STACK_REG
)
2593 /* Avoid analyzing the same register twice. */
2594 if (regno
!= FIRST_STACK_REG
)
2595 sched_analyze_reg (deps
, FIRST_STACK_REG
, mode
, USE
, insn
);
2596 sched_analyze_reg (deps
, FIRST_STACK_REG
, mode
, SET
, insn
);
2600 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2601 sched_deps_info
->finish_rhs ();
2608 if (DEBUG_INSN_P (insn
) && sched_deps_info
->use_cselib
)
2610 machine_mode address_mode
= get_address_mode (x
);
2612 cselib_lookup_from_insn (XEXP (x
, 0), address_mode
, 1,
2613 GET_MODE (x
), insn
);
2615 else if (!DEBUG_INSN_P (insn
))
2617 /* Reading memory. */
2619 rtx_insn_list
*pending
;
2620 rtx_expr_list
*pending_mem
;
2623 if (sched_deps_info
->use_cselib
)
2625 machine_mode address_mode
= get_address_mode (t
);
2627 t
= shallow_copy_rtx (t
);
2628 cselib_lookup_from_insn (XEXP (t
, 0), address_mode
, 1,
2629 GET_MODE (t
), insn
);
2631 = cselib_subst_to_values_from_insn (XEXP (t
, 0), GET_MODE (t
),
2636 pending
= deps
->pending_read_insns
;
2637 pending_mem
= deps
->pending_read_mems
;
2640 if (read_dependence (pending_mem
->element (), t
)
2641 && ! sched_insns_conditions_mutex_p (insn
,
2643 note_mem_dep (t
, pending_mem
->element (),
2647 pending
= pending
->next ();
2648 pending_mem
= pending_mem
->next ();
2651 pending
= deps
->pending_write_insns
;
2652 pending_mem
= deps
->pending_write_mems
;
2655 if (true_dependence (pending_mem
->element (), VOIDmode
, t
)
2656 && ! sched_insns_conditions_mutex_p (insn
,
2658 note_mem_dep (t
, pending_mem
->element (),
2660 sched_deps_info
->generate_spec_deps
2661 ? BEGIN_DATA
| DEP_TRUE
: DEP_TRUE
);
2663 pending
= pending
->next ();
2664 pending_mem
= pending_mem
->next ();
2667 for (u
= deps
->last_pending_memory_flush
; u
; u
= u
->next ())
2668 add_dependence (insn
, u
->insn (), REG_DEP_ANTI
);
2670 for (u
= deps
->pending_jump_insns
; u
; u
= u
->next ())
2671 if (deps_may_trap_p (x
))
2673 if ((sched_deps_info
->generate_spec_deps
)
2674 && sel_sched_p () && (spec_info
->mask
& BEGIN_CONTROL
))
2676 ds_t ds
= set_dep_weak (DEP_ANTI
, BEGIN_CONTROL
,
2679 note_dep (u
->insn (), ds
);
2682 add_dependence (insn
, u
->insn (), REG_DEP_CONTROL
);
2686 /* Always add these dependencies to pending_reads, since
2687 this insn may be followed by a write. */
2688 if (!deps
->readonly
)
2690 if ((deps
->pending_read_list_length
2691 + deps
->pending_write_list_length
)
2692 >= param_max_pending_list_length
2693 && !DEBUG_INSN_P (insn
))
2694 flush_pending_lists (deps
, insn
, true, true);
2695 add_insn_mem_dependence (deps
, true, insn
, x
);
2698 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
2700 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2701 sched_deps_info
->finish_rhs ();
2706 /* Force pending stores to memory in case a trap handler needs them.
2707 Also force pending loads from memory; loads and stores can segfault
2708 and the signal handler won't be triggered if the trap insn was moved
2709 above load or store insn. */
2711 flush_pending_lists (deps
, insn
, true, true);
2715 if (PREFETCH_SCHEDULE_BARRIER_P (x
))
2716 reg_pending_barrier
= TRUE_BARRIER
;
2717 /* Prefetch insn contains addresses only. So if the prefetch
2718 address has no registers, there will be no dependencies on
2719 the prefetch insn. This is wrong with result code
2720 correctness point of view as such prefetch can be moved below
2721 a jump insn which usually generates MOVE_BARRIER preventing
2722 to move insns containing registers or memories through the
2723 barrier. It is also wrong with generated code performance
2724 point of view as prefetch withouth dependecies will have a
2725 tendency to be issued later instead of earlier. It is hard
2726 to generate accurate dependencies for prefetch insns as
2727 prefetch has only the start address but it is better to have
2728 something than nothing. */
2729 if (!deps
->readonly
)
2731 rtx x
= gen_rtx_MEM (Pmode
, XEXP (PATTERN (insn
), 0));
2732 if (sched_deps_info
->use_cselib
)
2733 cselib_lookup_from_insn (x
, Pmode
, true, VOIDmode
, insn
);
2734 add_insn_mem_dependence (deps
, true, insn
, x
);
2738 case UNSPEC_VOLATILE
:
2739 flush_pending_lists (deps
, insn
, true, true);
2745 /* Traditional and volatile asm instructions must be considered to use
2746 and clobber all hard registers, all pseudo-registers and all of
2747 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2749 Consider for instance a volatile asm that changes the fpu rounding
2750 mode. An insn should not be moved across this even if it only uses
2751 pseudo-regs because it might give an incorrectly rounded result. */
2752 if ((code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
2753 && !DEBUG_INSN_P (insn
))
2754 reg_pending_barrier
= TRUE_BARRIER
;
2756 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2757 We cannot just fall through here since then we would be confused
2758 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2759 traditional asms unlike their normal usage. */
2761 if (code
== ASM_OPERANDS
)
2763 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
2764 sched_analyze_2 (deps
, ASM_OPERANDS_INPUT (x
, j
), insn
);
2766 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2767 sched_deps_info
->finish_rhs ();
2778 /* These both read and modify the result. We must handle them as writes
2779 to get proper dependencies for following instructions. We must handle
2780 them as reads to get proper dependencies from this to previous
2781 instructions. Thus we need to pass them to both sched_analyze_1
2782 and sched_analyze_2. We must call sched_analyze_2 first in order
2783 to get the proper antecedent for the read. */
2784 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
2785 sched_analyze_1 (deps
, x
, insn
);
2787 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2788 sched_deps_info
->finish_rhs ();
2794 /* op0 = op0 + op1 */
2795 sched_analyze_2 (deps
, XEXP (x
, 0), insn
);
2796 sched_analyze_2 (deps
, XEXP (x
, 1), insn
);
2797 sched_analyze_1 (deps
, x
, insn
);
2799 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2800 sched_deps_info
->finish_rhs ();
2808 /* Other cases: walk the insn. */
2809 fmt
= GET_RTX_FORMAT (code
);
2810 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2813 sched_analyze_2 (deps
, XEXP (x
, i
), insn
);
2814 else if (fmt
[i
] == 'E')
2815 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2816 sched_analyze_2 (deps
, XVECEXP (x
, i
, j
), insn
);
2819 if (cslr_p
&& sched_deps_info
->finish_rhs
)
2820 sched_deps_info
->finish_rhs ();
2823 /* Try to group two fusible insns together to prevent scheduler
2824 from scheduling them apart. */
2827 sched_macro_fuse_insns (rtx_insn
*insn
)
2830 /* No target hook would return true for debug insn as any of the
2831 hook operand, and with very large sequences of only debug insns
2832 where on each we call sched_macro_fuse_insns it has quadratic
2833 compile time complexity. */
2834 if (DEBUG_INSN_P (insn
))
2836 prev
= prev_nonnote_nondebug_insn_bb (insn
);
2840 if (any_condjump_p (insn
))
2842 unsigned int condreg1
, condreg2
;
2844 if (targetm
.fixed_condition_code_regs (&condreg1
, &condreg2
))
2846 cc_reg_1
= gen_rtx_REG (CCmode
, condreg1
);
2847 if (reg_referenced_p (cc_reg_1
, PATTERN (insn
))
2848 && modified_in_p (cc_reg_1
, prev
))
2850 if (targetm
.sched
.macro_fusion_pair_p (prev
, insn
))
2851 SCHED_GROUP_P (insn
) = 1;
2857 if (single_set (insn
) && single_set (prev
))
2859 if (targetm
.sched
.macro_fusion_pair_p (prev
, insn
))
2860 SCHED_GROUP_P (insn
) = 1;
2864 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2866 get_implicit_reg_pending_clobbers (HARD_REG_SET
*temp
, rtx_insn
*insn
)
2868 extract_insn (insn
);
2869 preprocess_constraints (insn
);
2870 alternative_mask preferred
= get_preferred_alternatives (insn
);
2871 ira_implicitly_set_insn_hard_regs (temp
, preferred
);
2872 *temp
&= ~ira_no_alloc_regs
;
2875 /* Analyze an INSN with pattern X to find all dependencies. */
2877 sched_analyze_insn (class deps_desc
*deps
, rtx x
, rtx_insn
*insn
)
2879 RTX_CODE code
= GET_CODE (x
);
2882 reg_set_iterator rsi
;
2884 if (! reload_completed
)
2887 get_implicit_reg_pending_clobbers (&temp
, insn
);
2888 implicit_reg_pending_clobbers
|= temp
;
2891 can_start_lhs_rhs_p
= (NONJUMP_INSN_P (insn
)
2894 /* Group compare and branch insns for macro-fusion. */
2896 && targetm
.sched
.macro_fusion_p
2897 && targetm
.sched
.macro_fusion_p ())
2898 sched_macro_fuse_insns (insn
);
2901 /* Avoid moving trapping instructions across function calls that might
2902 not always return. */
2903 add_dependence_list (insn
, deps
->last_function_call_may_noreturn
,
2904 1, REG_DEP_ANTI
, true);
2906 /* We must avoid creating a situation in which two successors of the
2907 current block have different unwind info after scheduling. If at any
2908 point the two paths re-join this leads to incorrect unwind info. */
2909 /* ??? There are certain situations involving a forced frame pointer in
2910 which, with extra effort, we could fix up the unwind info at a later
2911 CFG join. However, it seems better to notice these cases earlier
2912 during prologue generation and avoid marking the frame pointer setup
2913 as frame-related at all. */
2914 if (RTX_FRAME_RELATED_P (insn
))
2916 /* Make sure prologue insn is scheduled before next jump. */
2917 deps
->sched_before_next_jump
2918 = alloc_INSN_LIST (insn
, deps
->sched_before_next_jump
);
2920 /* Make sure epilogue insn is scheduled after preceding jumps. */
2921 add_dependence_list (insn
, deps
->last_pending_memory_flush
, 1,
2922 REG_DEP_ANTI
, true);
2923 add_dependence_list (insn
, deps
->pending_jump_insns
, 1, REG_DEP_ANTI
,
2927 if (code
== COND_EXEC
)
2929 sched_analyze_2 (deps
, COND_EXEC_TEST (x
), insn
);
2931 /* ??? Should be recording conditions so we reduce the number of
2932 false dependencies. */
2933 x
= COND_EXEC_CODE (x
);
2934 code
= GET_CODE (x
);
2936 if (code
== SET
|| code
== CLOBBER
)
2938 sched_analyze_1 (deps
, x
, insn
);
2940 /* Bare clobber insns are used for letting life analysis, reg-stack
2941 and others know that a value is dead. Depend on the last call
2942 instruction so that reg-stack won't get confused. */
2943 if (code
== CLOBBER
)
2944 add_dependence_list (insn
, deps
->last_function_call
, 1,
2945 REG_DEP_OUTPUT
, true);
2947 else if (code
== PARALLEL
)
2949 for (i
= XVECLEN (x
, 0); i
--;)
2951 rtx sub
= XVECEXP (x
, 0, i
);
2952 code
= GET_CODE (sub
);
2954 if (code
== COND_EXEC
)
2956 sched_analyze_2 (deps
, COND_EXEC_TEST (sub
), insn
);
2957 sub
= COND_EXEC_CODE (sub
);
2958 code
= GET_CODE (sub
);
2960 else if (code
== SET
|| code
== CLOBBER
)
2961 sched_analyze_1 (deps
, sub
, insn
);
2963 sched_analyze_2 (deps
, sub
, insn
);
2967 sched_analyze_2 (deps
, x
, insn
);
2969 /* Mark registers CLOBBERED or used by called function. */
2972 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2974 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
2975 sched_analyze_1 (deps
, XEXP (link
, 0), insn
);
2976 else if (GET_CODE (XEXP (link
, 0)) != SET
)
2977 sched_analyze_2 (deps
, XEXP (link
, 0), insn
);
2979 /* Don't schedule anything after a tail call, tail call needs
2980 to use at least all call-saved registers. */
2981 if (SIBLING_CALL_P (insn
))
2982 reg_pending_barrier
= TRUE_BARRIER
;
2983 else if (find_reg_note (insn
, REG_SETJMP
, NULL
))
2984 reg_pending_barrier
= MOVE_BARRIER
;
2989 rtx_insn
*next
= next_nonnote_nondebug_insn (insn
);
2990 /* ??? For tablejumps, the barrier may appear not immediately after
2991 the jump, but after a label and a jump_table_data insn. */
2992 if (next
&& LABEL_P (next
) && NEXT_INSN (next
)
2993 && JUMP_TABLE_DATA_P (NEXT_INSN (next
)))
2994 next
= NEXT_INSN (NEXT_INSN (next
));
2995 if (next
&& BARRIER_P (next
))
2996 reg_pending_barrier
= MOVE_BARRIER
;
2999 rtx_insn_list
*pending
;
3000 rtx_expr_list
*pending_mem
;
3002 if (sched_deps_info
->compute_jump_reg_dependencies
)
3004 (*sched_deps_info
->compute_jump_reg_dependencies
)
3005 (insn
, reg_pending_control_uses
);
3007 /* Make latency of jump equal to 0 by using anti-dependence. */
3008 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses
, 0, i
, rsi
)
3010 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3011 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_ANTI
,
3013 add_dependence_list (insn
, reg_last
->implicit_sets
,
3014 0, REG_DEP_ANTI
, false);
3015 add_dependence_list (insn
, reg_last
->clobbers
, 0,
3016 REG_DEP_ANTI
, false);
3020 /* All memory writes and volatile reads must happen before the
3021 jump. Non-volatile reads must happen before the jump iff
3022 the result is needed by the above register used mask. */
3024 pending
= deps
->pending_write_insns
;
3025 pending_mem
= deps
->pending_write_mems
;
3028 if (! sched_insns_conditions_mutex_p (insn
, pending
->insn ()))
3029 add_dependence (insn
, pending
->insn (),
3031 pending
= pending
->next ();
3032 pending_mem
= pending_mem
->next ();
3035 pending
= deps
->pending_read_insns
;
3036 pending_mem
= deps
->pending_read_mems
;
3039 if (MEM_VOLATILE_P (pending_mem
->element ())
3040 && ! sched_insns_conditions_mutex_p (insn
, pending
->insn ()))
3041 add_dependence (insn
, pending
->insn (),
3043 pending
= pending
->next ();
3044 pending_mem
= pending_mem
->next ();
3047 add_dependence_list (insn
, deps
->last_pending_memory_flush
, 1,
3048 REG_DEP_ANTI
, true);
3049 add_dependence_list (insn
, deps
->pending_jump_insns
, 1,
3050 REG_DEP_ANTI
, true);
3054 /* If this instruction can throw an exception, then moving it changes
3055 where block boundaries fall. This is mighty confusing elsewhere.
3056 Therefore, prevent such an instruction from being moved. Same for
3057 non-jump instructions that define block boundaries.
3058 ??? Unclear whether this is still necessary in EBB mode. If not,
3059 add_branch_dependences should be adjusted for RGN mode instead. */
3060 if (((CALL_P (insn
) || JUMP_P (insn
)) && can_throw_internal (insn
))
3061 || (NONJUMP_INSN_P (insn
) && control_flow_insn_p (insn
)))
3062 reg_pending_barrier
= MOVE_BARRIER
;
3064 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
3066 setup_insn_reg_uses (deps
, insn
);
3067 init_insn_reg_pressure_info (insn
);
3070 /* Add register dependencies for insn. */
3071 if (DEBUG_INSN_P (insn
))
3073 rtx_insn
*prev
= deps
->last_debug_insn
;
3076 if (!deps
->readonly
)
3077 deps
->last_debug_insn
= insn
;
3080 add_dependence (insn
, prev
, REG_DEP_ANTI
);
3082 add_dependence_list (insn
, deps
->last_function_call
, 1,
3083 REG_DEP_ANTI
, false);
3085 if (!sel_sched_p ())
3086 for (u
= deps
->last_pending_memory_flush
; u
; u
= u
->next ())
3087 add_dependence (insn
, u
->insn (), REG_DEP_ANTI
);
3089 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses
, 0, i
, rsi
)
3091 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3092 add_dependence_list (insn
, reg_last
->sets
, 1, REG_DEP_ANTI
, false);
3093 /* There's no point in making REG_DEP_CONTROL dependencies for
3095 add_dependence_list (insn
, reg_last
->clobbers
, 1, REG_DEP_ANTI
,
3098 if (!deps
->readonly
)
3099 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
3101 CLEAR_REG_SET (reg_pending_uses
);
3103 /* Quite often, a debug insn will refer to stuff in the
3104 previous instruction, but the reason we want this
3105 dependency here is to make sure the scheduler doesn't
3106 gratuitously move a debug insn ahead. This could dirty
3107 DF flags and cause additional analysis that wouldn't have
3108 occurred in compilation without debug insns, and such
3109 additional analysis can modify the generated code. */
3110 prev
= PREV_INSN (insn
);
3112 if (prev
&& NONDEBUG_INSN_P (prev
))
3113 add_dependence (insn
, prev
, REG_DEP_ANTI
);
3117 regset_head set_or_clobbered
;
3119 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses
, 0, i
, rsi
)
3121 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3122 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_TRUE
, false);
3123 add_dependence_list (insn
, reg_last
->implicit_sets
, 0, REG_DEP_ANTI
,
3125 add_dependence_list (insn
, reg_last
->clobbers
, 0, REG_DEP_TRUE
,
3128 if (!deps
->readonly
)
3130 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
3131 reg_last
->uses_length
++;
3135 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3136 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses
, i
))
3138 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3139 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_TRUE
, false);
3140 add_dependence_list (insn
, reg_last
->implicit_sets
, 0,
3141 REG_DEP_ANTI
, false);
3142 add_dependence_list (insn
, reg_last
->clobbers
, 0, REG_DEP_TRUE
,
3145 if (!deps
->readonly
)
3147 reg_last
->uses
= alloc_INSN_LIST (insn
, reg_last
->uses
);
3148 reg_last
->uses_length
++;
3152 if (targetm
.sched
.exposed_pipeline
)
3154 INIT_REG_SET (&set_or_clobbered
);
3155 bitmap_ior (&set_or_clobbered
, reg_pending_clobbers
,
3157 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered
, 0, i
, rsi
)
3159 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3161 for (list
= reg_last
->uses
; list
; list
= XEXP (list
, 1))
3163 rtx other
= XEXP (list
, 0);
3164 if (INSN_CACHED_COND (other
) != const_true_rtx
3165 && refers_to_regno_p (i
, INSN_CACHED_COND (other
)))
3166 INSN_CACHED_COND (other
) = const_true_rtx
;
3171 /* If the current insn is conditional, we can't free any
3173 if (sched_has_condition_p (insn
))
3175 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers
, 0, i
, rsi
)
3177 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3178 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_OUTPUT
,
3180 add_dependence_list (insn
, reg_last
->implicit_sets
, 0,
3181 REG_DEP_ANTI
, false);
3182 add_dependence_list (insn
, reg_last
->uses
, 0, REG_DEP_ANTI
,
3184 add_dependence_list (insn
, reg_last
->control_uses
, 0,
3185 REG_DEP_CONTROL
, false);
3187 if (!deps
->readonly
)
3190 = alloc_INSN_LIST (insn
, reg_last
->clobbers
);
3191 reg_last
->clobbers_length
++;
3194 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets
, 0, i
, rsi
)
3196 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3197 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_OUTPUT
,
3199 add_dependence_list (insn
, reg_last
->implicit_sets
, 0,
3200 REG_DEP_ANTI
, false);
3201 add_dependence_list (insn
, reg_last
->clobbers
, 0, REG_DEP_OUTPUT
,
3203 add_dependence_list (insn
, reg_last
->uses
, 0, REG_DEP_ANTI
,
3205 add_dependence_list (insn
, reg_last
->control_uses
, 0,
3206 REG_DEP_CONTROL
, false);
3208 if (!deps
->readonly
)
3209 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
3214 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers
, 0, i
, rsi
)
3216 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3217 if (reg_last
->uses_length
>= param_max_pending_list_length
3218 || reg_last
->clobbers_length
>= param_max_pending_list_length
)
3220 add_dependence_list_and_free (deps
, insn
, ®_last
->sets
, 0,
3221 REG_DEP_OUTPUT
, false);
3222 add_dependence_list_and_free (deps
, insn
,
3223 ®_last
->implicit_sets
, 0,
3224 REG_DEP_ANTI
, false);
3225 add_dependence_list_and_free (deps
, insn
, ®_last
->uses
, 0,
3226 REG_DEP_ANTI
, false);
3227 add_dependence_list_and_free (deps
, insn
,
3228 ®_last
->control_uses
, 0,
3229 REG_DEP_ANTI
, false);
3230 add_dependence_list_and_free (deps
, insn
,
3231 ®_last
->clobbers
, 0,
3232 REG_DEP_OUTPUT
, false);
3234 if (!deps
->readonly
)
3236 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
3237 reg_last
->clobbers_length
= 0;
3238 reg_last
->uses_length
= 0;
3243 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_OUTPUT
,
3245 add_dependence_list (insn
, reg_last
->implicit_sets
, 0,
3246 REG_DEP_ANTI
, false);
3247 add_dependence_list (insn
, reg_last
->uses
, 0, REG_DEP_ANTI
,
3249 add_dependence_list (insn
, reg_last
->control_uses
, 0,
3250 REG_DEP_CONTROL
, false);
3253 if (!deps
->readonly
)
3255 reg_last
->clobbers_length
++;
3257 = alloc_INSN_LIST (insn
, reg_last
->clobbers
);
3260 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets
, 0, i
, rsi
)
3262 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3264 add_dependence_list_and_free (deps
, insn
, ®_last
->sets
, 0,
3265 REG_DEP_OUTPUT
, false);
3266 add_dependence_list_and_free (deps
, insn
,
3267 ®_last
->implicit_sets
,
3268 0, REG_DEP_ANTI
, false);
3269 add_dependence_list_and_free (deps
, insn
, ®_last
->clobbers
, 0,
3270 REG_DEP_OUTPUT
, false);
3271 add_dependence_list_and_free (deps
, insn
, ®_last
->uses
, 0,
3272 REG_DEP_ANTI
, false);
3273 add_dependence_list (insn
, reg_last
->control_uses
, 0,
3274 REG_DEP_CONTROL
, false);
3276 if (!deps
->readonly
)
3278 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
3279 reg_last
->uses_length
= 0;
3280 reg_last
->clobbers_length
= 0;
3284 if (!deps
->readonly
)
3286 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses
, 0, i
, rsi
)
3288 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3289 reg_last
->control_uses
3290 = alloc_INSN_LIST (insn
, reg_last
->control_uses
);
3295 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3296 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers
, i
))
3298 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3299 add_dependence_list (insn
, reg_last
->sets
, 0, REG_DEP_ANTI
, false);
3300 add_dependence_list (insn
, reg_last
->clobbers
, 0, REG_DEP_ANTI
, false);
3301 add_dependence_list (insn
, reg_last
->uses
, 0, REG_DEP_ANTI
, false);
3302 add_dependence_list (insn
, reg_last
->control_uses
, 0, REG_DEP_ANTI
,
3305 if (!deps
->readonly
)
3306 reg_last
->implicit_sets
3307 = alloc_INSN_LIST (insn
, reg_last
->implicit_sets
);
3310 if (!deps
->readonly
)
3312 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_uses
);
3313 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_clobbers
);
3314 IOR_REG_SET (&deps
->reg_last_in_use
, reg_pending_sets
);
3315 IOR_REG_SET_HRS (&deps
->reg_last_in_use
,
3316 implicit_reg_pending_uses
3317 | implicit_reg_pending_clobbers
);
3319 /* Set up the pending barrier found. */
3320 deps
->last_reg_pending_barrier
= reg_pending_barrier
;
3323 CLEAR_REG_SET (reg_pending_uses
);
3324 CLEAR_REG_SET (reg_pending_clobbers
);
3325 CLEAR_REG_SET (reg_pending_sets
);
3326 CLEAR_REG_SET (reg_pending_control_uses
);
3327 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers
);
3328 CLEAR_HARD_REG_SET (implicit_reg_pending_uses
);
3330 /* Add dependencies if a scheduling barrier was found. */
3331 if (reg_pending_barrier
)
3333 /* In the case of barrier the most added dependencies are not
3334 real, so we use anti-dependence here. */
3335 if (sched_has_condition_p (insn
))
3337 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
, rsi
)
3339 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3340 add_dependence_list (insn
, reg_last
->uses
, 0, REG_DEP_ANTI
,
3342 add_dependence_list (insn
, reg_last
->sets
, 0,
3343 reg_pending_barrier
== TRUE_BARRIER
3344 ? REG_DEP_TRUE
: REG_DEP_ANTI
, true);
3345 add_dependence_list (insn
, reg_last
->implicit_sets
, 0,
3346 REG_DEP_ANTI
, true);
3347 add_dependence_list (insn
, reg_last
->clobbers
, 0,
3348 reg_pending_barrier
== TRUE_BARRIER
3349 ? REG_DEP_TRUE
: REG_DEP_ANTI
, true);
3354 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
, rsi
)
3356 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3357 add_dependence_list_and_free (deps
, insn
, ®_last
->uses
, 0,
3358 REG_DEP_ANTI
, true);
3359 add_dependence_list_and_free (deps
, insn
,
3360 ®_last
->control_uses
, 0,
3361 REG_DEP_CONTROL
, true);
3362 add_dependence_list_and_free (deps
, insn
, ®_last
->sets
, 0,
3363 reg_pending_barrier
== TRUE_BARRIER
3364 ? REG_DEP_TRUE
: REG_DEP_ANTI
,
3366 add_dependence_list_and_free (deps
, insn
,
3367 ®_last
->implicit_sets
, 0,
3368 REG_DEP_ANTI
, true);
3369 add_dependence_list_and_free (deps
, insn
, ®_last
->clobbers
, 0,
3370 reg_pending_barrier
== TRUE_BARRIER
3371 ? REG_DEP_TRUE
: REG_DEP_ANTI
,
3374 if (!deps
->readonly
)
3376 reg_last
->uses_length
= 0;
3377 reg_last
->clobbers_length
= 0;
3382 if (!deps
->readonly
)
3383 for (i
= 0; i
< (unsigned)deps
->max_reg
; i
++)
3385 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3386 reg_last
->sets
= alloc_INSN_LIST (insn
, reg_last
->sets
);
3387 SET_REGNO_REG_SET (&deps
->reg_last_in_use
, i
);
3390 /* Don't flush pending lists on speculative checks for
3391 selective scheduling. */
3392 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn
))
3393 flush_pending_lists (deps
, insn
, true, true);
3395 reg_pending_barrier
= NOT_A_BARRIER
;
3398 /* If a post-call group is still open, see if it should remain so.
3399 This insn must be a simple move of a hard reg to a pseudo or
3402 We must avoid moving these insns for correctness on targets
3403 with small register classes, and for special registers like
3404 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3405 hard regs for all targets. */
3407 if (deps
->in_post_call_group_p
)
3409 rtx tmp
, set
= single_set (insn
);
3410 int src_regno
, dest_regno
;
3414 if (DEBUG_INSN_P (insn
))
3415 /* We don't want to mark debug insns as part of the same
3416 sched group. We know they really aren't, but if we use
3417 debug insns to tell that a call group is over, we'll
3418 get different code if debug insns are not there and
3419 instructions that follow seem like they should be part
3422 Also, if we did, chain_to_prev_insn would move the
3423 deps of the debug insn to the call insn, modifying
3424 non-debug post-dependency counts of the debug insn
3425 dependencies and otherwise messing with the scheduling
3428 Instead, let such debug insns be scheduled freely, but
3429 keep the call group open in case there are insns that
3430 should be part of it afterwards. Since we grant debug
3431 insns higher priority than even sched group insns, it
3432 will all turn out all right. */
3433 goto debug_dont_end_call_group
;
3435 goto end_call_group
;
3438 tmp
= SET_DEST (set
);
3439 if (GET_CODE (tmp
) == SUBREG
)
3440 tmp
= SUBREG_REG (tmp
);
3442 dest_regno
= REGNO (tmp
);
3444 goto end_call_group
;
3446 tmp
= SET_SRC (set
);
3447 if (GET_CODE (tmp
) == SUBREG
)
3448 tmp
= SUBREG_REG (tmp
);
3449 if ((GET_CODE (tmp
) == PLUS
3450 || GET_CODE (tmp
) == MINUS
)
3451 && REG_P (XEXP (tmp
, 0))
3452 && REGNO (XEXP (tmp
, 0)) == STACK_POINTER_REGNUM
3453 && dest_regno
== STACK_POINTER_REGNUM
)
3454 src_regno
= STACK_POINTER_REGNUM
;
3455 else if (REG_P (tmp
))
3456 src_regno
= REGNO (tmp
);
3458 goto end_call_group
;
3460 if (src_regno
< FIRST_PSEUDO_REGISTER
3461 || dest_regno
< FIRST_PSEUDO_REGISTER
)
3464 && deps
->in_post_call_group_p
== post_call_initial
)
3465 deps
->in_post_call_group_p
= post_call
;
3467 if (!sel_sched_p () || sched_emulate_haifa_p
)
3469 SCHED_GROUP_P (insn
) = 1;
3470 CANT_MOVE (insn
) = 1;
3476 if (!deps
->readonly
)
3477 deps
->in_post_call_group_p
= not_post_call
;
3481 debug_dont_end_call_group
:
3482 if ((current_sched_info
->flags
& DO_SPECULATION
)
3483 && !sched_insn_is_legitimate_for_speculation_p (insn
, 0))
3484 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3488 sel_mark_hard_insn (insn
);
3491 sd_iterator_def sd_it
;
3494 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
3495 sd_iterator_cond (&sd_it
, &dep
);)
3496 change_spec_dep_to_hard (sd_it
);
3500 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3501 honor their original ordering. */
3502 if (find_reg_note (insn
, REG_ARGS_SIZE
, NULL
))
3504 if (deps
->last_args_size
)
3505 add_dependence (insn
, deps
->last_args_size
, REG_DEP_OUTPUT
);
3506 if (!deps
->readonly
)
3507 deps
->last_args_size
= insn
;
3510 /* We must not mix prologue and epilogue insns. See PR78029. */
3511 if (prologue_contains (insn
))
3513 add_dependence_list (insn
, deps
->last_epilogue
, true, REG_DEP_ANTI
, true);
3514 if (!deps
->readonly
)
3516 if (deps
->last_logue_was_epilogue
)
3517 free_INSN_LIST_list (&deps
->last_prologue
);
3518 deps
->last_prologue
= alloc_INSN_LIST (insn
, deps
->last_prologue
);
3519 deps
->last_logue_was_epilogue
= false;
3523 if (epilogue_contains (insn
))
3525 add_dependence_list (insn
, deps
->last_prologue
, true, REG_DEP_ANTI
, true);
3526 if (!deps
->readonly
)
3528 if (!deps
->last_logue_was_epilogue
)
3529 free_INSN_LIST_list (&deps
->last_epilogue
);
3530 deps
->last_epilogue
= alloc_INSN_LIST (insn
, deps
->last_epilogue
);
3531 deps
->last_logue_was_epilogue
= true;
3536 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3537 longjmp, loop forever, ...). */
3538 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3539 test for ECF_NORETURN? */
3541 call_may_noreturn_p (rtx_insn
*insn
)
3545 /* const or pure calls that aren't looping will always return. */
3546 if (RTL_CONST_OR_PURE_CALL_P (insn
)
3547 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
))
3550 call
= get_call_rtx_from (insn
);
3551 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
3553 rtx symbol
= XEXP (XEXP (call
, 0), 0);
3554 if (SYMBOL_REF_DECL (symbol
)
3555 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
3557 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
3559 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
)))
3562 case BUILT_IN_BCOPY
:
3563 case BUILT_IN_BZERO
:
3564 case BUILT_IN_INDEX
:
3565 case BUILT_IN_MEMCHR
:
3566 case BUILT_IN_MEMCMP
:
3567 case BUILT_IN_MEMCPY
:
3568 case BUILT_IN_MEMMOVE
:
3569 case BUILT_IN_MEMPCPY
:
3570 case BUILT_IN_MEMSET
:
3571 case BUILT_IN_RINDEX
:
3572 case BUILT_IN_STPCPY
:
3573 case BUILT_IN_STPNCPY
:
3574 case BUILT_IN_STRCAT
:
3575 case BUILT_IN_STRCHR
:
3576 case BUILT_IN_STRCMP
:
3577 case BUILT_IN_STRCPY
:
3578 case BUILT_IN_STRCSPN
:
3579 case BUILT_IN_STRLEN
:
3580 case BUILT_IN_STRNCAT
:
3581 case BUILT_IN_STRNCMP
:
3582 case BUILT_IN_STRNCPY
:
3583 case BUILT_IN_STRPBRK
:
3584 case BUILT_IN_STRRCHR
:
3585 case BUILT_IN_STRSPN
:
3586 case BUILT_IN_STRSTR
:
3587 /* Assume certain string/memory builtins always return. */
3595 /* For all other calls assume that they might not always return. */
3599 /* Return true if INSN should be made dependent on the previous instruction
3600 group, and if all INSN's dependencies should be moved to the first
3601 instruction of that group. */
3604 chain_to_prev_insn_p (rtx_insn
*insn
)
3606 /* INSN forms a group with the previous instruction. */
3607 if (SCHED_GROUP_P (insn
))
3610 /* If the previous instruction clobbers a register R and this one sets
3611 part of R, the clobber was added specifically to help us track the
3612 liveness of R. There's no point scheduling the clobber and leaving
3613 INSN behind, especially if we move the clobber to another block. */
3614 rtx_insn
*prev
= prev_nonnote_nondebug_insn (insn
);
3617 && BLOCK_FOR_INSN (prev
) == BLOCK_FOR_INSN (insn
)
3618 && GET_CODE (PATTERN (prev
)) == CLOBBER
)
3620 rtx x
= XEXP (PATTERN (prev
), 0);
3621 if (set_of (x
, insn
))
3628 /* Analyze INSN with DEPS as a context. */
3630 deps_analyze_insn (class deps_desc
*deps
, rtx_insn
*insn
)
3632 if (sched_deps_info
->start_insn
)
3633 sched_deps_info
->start_insn (insn
);
3635 /* Record the condition for this insn. */
3636 if (NONDEBUG_INSN_P (insn
))
3639 sched_get_condition_with_rev (insn
, NULL
);
3640 t
= INSN_CACHED_COND (insn
);
3641 INSN_COND_DEPS (insn
) = NULL
;
3642 if (reload_completed
3643 && (current_sched_info
->flags
& DO_PREDICATION
)
3645 && REG_P (XEXP (t
, 0))
3646 && CONSTANT_P (XEXP (t
, 1)))
3650 rtx_insn_list
*cond_deps
= NULL
;
3653 nregs
= REG_NREGS (t
);
3656 struct deps_reg
*reg_last
= &deps
->reg_last
[regno
+ nregs
];
3657 cond_deps
= concat_INSN_LIST (reg_last
->sets
, cond_deps
);
3658 cond_deps
= concat_INSN_LIST (reg_last
->clobbers
, cond_deps
);
3659 cond_deps
= concat_INSN_LIST (reg_last
->implicit_sets
, cond_deps
);
3661 INSN_COND_DEPS (insn
) = cond_deps
;
3667 /* Make each JUMP_INSN (but not a speculative check)
3668 a scheduling barrier for memory references. */
3671 && sel_insn_is_speculation_check (insn
)))
3673 /* Keep the list a reasonable size. */
3674 if (deps
->pending_flush_length
++ >= param_max_pending_list_length
)
3675 flush_pending_lists (deps
, insn
, true, true);
3677 deps
->pending_jump_insns
3678 = alloc_INSN_LIST (insn
, deps
->pending_jump_insns
);
3681 /* For each insn which shouldn't cross a jump, add a dependence. */
3682 add_dependence_list_and_free (deps
, insn
,
3683 &deps
->sched_before_next_jump
, 1,
3684 REG_DEP_ANTI
, true);
3686 sched_analyze_insn (deps
, PATTERN (insn
), insn
);
3688 else if (NONJUMP_INSN_P (insn
) || DEBUG_INSN_P (insn
))
3690 sched_analyze_insn (deps
, PATTERN (insn
), insn
);
3692 else if (CALL_P (insn
))
3696 CANT_MOVE (insn
) = 1;
3698 if (!reload_completed
)
3700 /* Scheduling across calls may increase register pressure by extending
3701 live ranges of pseudos over the call. Worse, in presence of setjmp
3702 it may incorrectly move up an assignment over a longjmp. */
3703 reg_pending_barrier
= MOVE_BARRIER
;
3705 else if (find_reg_note (insn
, REG_SETJMP
, NULL
))
3707 /* This is setjmp. Assume that all registers, not just
3708 hard registers, may be clobbered by this call. */
3709 reg_pending_barrier
= MOVE_BARRIER
;
3713 function_abi callee_abi
= insn_callee_abi (insn
);
3714 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3715 /* A call may read and modify global register variables. */
3718 SET_REGNO_REG_SET (reg_pending_sets
, i
);
3719 SET_HARD_REG_BIT (implicit_reg_pending_uses
, i
);
3721 /* Other call-clobbered hard regs may be clobbered.
3722 Since we only have a choice between 'might be clobbered'
3723 and 'definitely not clobbered', we must include all
3724 partly call-clobbered registers here. */
3725 else if (callee_abi
.clobbers_at_least_part_of_reg_p (i
))
3726 SET_REGNO_REG_SET (reg_pending_clobbers
, i
);
3727 /* We don't know what set of fixed registers might be used
3728 by the function, but it is certain that the stack pointer
3729 is among them, but be conservative. */
3730 else if (fixed_regs
[i
])
3731 SET_HARD_REG_BIT (implicit_reg_pending_uses
, i
);
3732 /* The frame pointer is normally not used by the function
3733 itself, but by the debugger. */
3734 /* ??? MIPS o32 is an exception. It uses the frame pointer
3735 in the macro expansion of jal but does not represent this
3736 fact in the call_insn rtl. */
3737 else if (i
== FRAME_POINTER_REGNUM
3738 || (i
== HARD_FRAME_POINTER_REGNUM
3739 && (! reload_completed
|| frame_pointer_needed
)))
3740 SET_HARD_REG_BIT (implicit_reg_pending_uses
, i
);
3743 /* For each insn which shouldn't cross a call, add a dependence
3744 between that insn and this call insn. */
3745 add_dependence_list_and_free (deps
, insn
,
3746 &deps
->sched_before_next_call
, 1,
3747 REG_DEP_ANTI
, true);
3749 sched_analyze_insn (deps
, PATTERN (insn
), insn
);
3751 /* If CALL would be in a sched group, then this will violate
3752 convention that sched group insns have dependencies only on the
3753 previous instruction.
3755 Of course one can say: "Hey! What about head of the sched group?"
3756 And I will answer: "Basic principles (one dep per insn) are always
3758 gcc_assert (!SCHED_GROUP_P (insn
));
3760 /* In the absence of interprocedural alias analysis, we must flush
3761 all pending reads and writes, and start new dependencies starting
3762 from here. But only flush writes for constant calls (which may
3763 be passed a pointer to something we haven't written yet). */
3764 flush_pending_lists (deps
, insn
, true, ! RTL_CONST_OR_PURE_CALL_P (insn
));
3766 if (!deps
->readonly
)
3768 /* Remember the last function call for limiting lifetimes. */
3769 free_INSN_LIST_list (&deps
->last_function_call
);
3770 deps
->last_function_call
= alloc_INSN_LIST (insn
, NULL_RTX
);
3772 if (call_may_noreturn_p (insn
))
3774 /* Remember the last function call that might not always return
3775 normally for limiting moves of trapping insns. */
3776 free_INSN_LIST_list (&deps
->last_function_call_may_noreturn
);
3777 deps
->last_function_call_may_noreturn
3778 = alloc_INSN_LIST (insn
, NULL_RTX
);
3781 /* Before reload, begin a post-call group, so as to keep the
3782 lifetimes of hard registers correct. */
3783 if (! reload_completed
)
3784 deps
->in_post_call_group_p
= post_call
;
3788 if (sched_deps_info
->use_cselib
)
3789 cselib_process_insn (insn
);
3791 if (sched_deps_info
->finish_insn
)
3792 sched_deps_info
->finish_insn ();
3794 /* Fixup the dependencies in the sched group. */
3795 if ((NONJUMP_INSN_P (insn
) || JUMP_P (insn
))
3796 && chain_to_prev_insn_p (insn
)
3798 chain_to_prev_insn (insn
);
3801 /* Initialize DEPS for the new block beginning with HEAD. */
3803 deps_start_bb (class deps_desc
*deps
, rtx_insn
*head
)
3805 gcc_assert (!deps
->readonly
);
3807 /* Before reload, if the previous block ended in a call, show that
3808 we are inside a post-call group, so as to keep the lifetimes of
3809 hard registers correct. */
3810 if (! reload_completed
&& !LABEL_P (head
))
3812 rtx_insn
*insn
= prev_nonnote_nondebug_insn (head
);
3814 if (insn
&& CALL_P (insn
))
3815 deps
->in_post_call_group_p
= post_call_initial
;
3819 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3820 dependencies for each insn. */
3822 sched_analyze (class deps_desc
*deps
, rtx_insn
*head
, rtx_insn
*tail
)
3826 if (sched_deps_info
->use_cselib
)
3827 cselib_init (CSELIB_RECORD_MEMORY
);
3829 deps_start_bb (deps
, head
);
3831 for (insn
= head
;; insn
= NEXT_INSN (insn
))
3835 /* And initialize deps_lists. */
3836 sd_init_insn (insn
);
3837 /* Clean up SCHED_GROUP_P which may be set by last
3839 if (SCHED_GROUP_P (insn
))
3840 SCHED_GROUP_P (insn
) = 0;
3843 deps_analyze_insn (deps
, insn
);
3847 if (sched_deps_info
->use_cselib
)
3854 /* Helper for sched_free_deps ().
3855 Delete INSN's (RESOLVED_P) backward dependencies. */
3857 delete_dep_nodes_in_back_deps (rtx_insn
*insn
, bool resolved_p
)
3859 sd_iterator_def sd_it
;
3861 sd_list_types_def types
;
3864 types
= SD_LIST_RES_BACK
;
3866 types
= SD_LIST_BACK
;
3868 for (sd_it
= sd_iterator_start (insn
, types
);
3869 sd_iterator_cond (&sd_it
, &dep
);)
3871 dep_link_t link
= *sd_it
.linkp
;
3872 dep_node_t node
= DEP_LINK_NODE (link
);
3873 deps_list_t back_list
;
3874 deps_list_t forw_list
;
3876 get_back_and_forw_lists (dep
, resolved_p
, &back_list
, &forw_list
);
3877 remove_from_deps_list (link
, back_list
);
3878 delete_dep_node (node
);
3882 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3885 sched_free_deps (rtx_insn
*head
, rtx_insn
*tail
, bool resolved_p
)
3888 rtx_insn
*next_tail
= NEXT_INSN (tail
);
3890 /* We make two passes since some insns may be scheduled before their
3891 dependencies are resolved. */
3892 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
3893 if (INSN_P (insn
) && INSN_LUID (insn
) > 0)
3895 /* Clear forward deps and leave the dep_nodes to the
3896 corresponding back_deps list. */
3898 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn
));
3900 clear_deps_list (INSN_FORW_DEPS (insn
));
3902 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
3903 if (INSN_P (insn
) && INSN_LUID (insn
) > 0)
3905 /* Clear resolved back deps together with its dep_nodes. */
3906 delete_dep_nodes_in_back_deps (insn
, resolved_p
);
3908 sd_finish_insn (insn
);
3912 /* Initialize variables for region data dependence analysis.
3913 When LAZY_REG_LAST is true, do not allocate reg_last array
3914 of class deps_desc immediately. */
3917 init_deps (class deps_desc
*deps
, bool lazy_reg_last
)
3919 int max_reg
= (reload_completed
? FIRST_PSEUDO_REGISTER
: max_reg_num ());
3921 deps
->max_reg
= max_reg
;
3923 deps
->reg_last
= NULL
;
3925 deps
->reg_last
= XCNEWVEC (struct deps_reg
, max_reg
);
3926 INIT_REG_SET (&deps
->reg_last_in_use
);
3928 deps
->pending_read_insns
= 0;
3929 deps
->pending_read_mems
= 0;
3930 deps
->pending_write_insns
= 0;
3931 deps
->pending_write_mems
= 0;
3932 deps
->pending_jump_insns
= 0;
3933 deps
->pending_read_list_length
= 0;
3934 deps
->pending_write_list_length
= 0;
3935 deps
->pending_flush_length
= 0;
3936 deps
->last_pending_memory_flush
= 0;
3937 deps
->last_function_call
= 0;
3938 deps
->last_function_call_may_noreturn
= 0;
3939 deps
->sched_before_next_call
= 0;
3940 deps
->sched_before_next_jump
= 0;
3941 deps
->in_post_call_group_p
= not_post_call
;
3942 deps
->last_debug_insn
= 0;
3943 deps
->last_args_size
= 0;
3944 deps
->last_prologue
= 0;
3945 deps
->last_epilogue
= 0;
3946 deps
->last_logue_was_epilogue
= false;
3947 deps
->last_reg_pending_barrier
= NOT_A_BARRIER
;
3951 /* Init only reg_last field of DEPS, which was not allocated before as
3952 we inited DEPS lazily. */
3954 init_deps_reg_last (class deps_desc
*deps
)
3956 gcc_assert (deps
&& deps
->max_reg
> 0);
3957 gcc_assert (deps
->reg_last
== NULL
);
3959 deps
->reg_last
= XCNEWVEC (struct deps_reg
, deps
->max_reg
);
3963 /* Free insn lists found in DEPS. */
3966 free_deps (class deps_desc
*deps
)
3969 reg_set_iterator rsi
;
3971 /* We set max_reg to 0 when this context was already freed. */
3972 if (deps
->max_reg
== 0)
3974 gcc_assert (deps
->reg_last
== NULL
);
3979 free_INSN_LIST_list (&deps
->pending_read_insns
);
3980 free_EXPR_LIST_list (&deps
->pending_read_mems
);
3981 free_INSN_LIST_list (&deps
->pending_write_insns
);
3982 free_EXPR_LIST_list (&deps
->pending_write_mems
);
3983 free_INSN_LIST_list (&deps
->last_pending_memory_flush
);
3985 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3986 times. For a testcase with 42000 regs and 8000 small basic blocks,
3987 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3988 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
, rsi
)
3990 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
3992 free_INSN_LIST_list (®_last
->uses
);
3994 free_INSN_LIST_list (®_last
->sets
);
3995 if (reg_last
->implicit_sets
)
3996 free_INSN_LIST_list (®_last
->implicit_sets
);
3997 if (reg_last
->control_uses
)
3998 free_INSN_LIST_list (®_last
->control_uses
);
3999 if (reg_last
->clobbers
)
4000 free_INSN_LIST_list (®_last
->clobbers
);
4002 CLEAR_REG_SET (&deps
->reg_last_in_use
);
4004 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4006 free (deps
->reg_last
);
4007 deps
->reg_last
= NULL
;
4012 /* Remove INSN from dependence contexts DEPS. */
4014 remove_from_deps (class deps_desc
*deps
, rtx_insn
*insn
)
4018 reg_set_iterator rsi
;
4020 removed
= remove_from_both_dependence_lists (insn
, &deps
->pending_read_insns
,
4021 &deps
->pending_read_mems
);
4022 if (!DEBUG_INSN_P (insn
))
4023 deps
->pending_read_list_length
-= removed
;
4024 removed
= remove_from_both_dependence_lists (insn
, &deps
->pending_write_insns
,
4025 &deps
->pending_write_mems
);
4026 deps
->pending_write_list_length
-= removed
;
4028 removed
= remove_from_dependence_list (insn
, &deps
->pending_jump_insns
);
4029 deps
->pending_flush_length
-= removed
;
4030 removed
= remove_from_dependence_list (insn
, &deps
->last_pending_memory_flush
);
4031 deps
->pending_flush_length
-= removed
;
4033 unsigned to_clear
= -1U;
4034 EXECUTE_IF_SET_IN_REG_SET (&deps
->reg_last_in_use
, 0, i
, rsi
)
4036 if (to_clear
!= -1U)
4038 CLEAR_REGNO_REG_SET (&deps
->reg_last_in_use
, to_clear
);
4041 struct deps_reg
*reg_last
= &deps
->reg_last
[i
];
4043 remove_from_dependence_list (insn
, ®_last
->uses
);
4045 remove_from_dependence_list (insn
, ®_last
->sets
);
4046 if (reg_last
->implicit_sets
)
4047 remove_from_dependence_list (insn
, ®_last
->implicit_sets
);
4048 if (reg_last
->clobbers
)
4049 remove_from_dependence_list (insn
, ®_last
->clobbers
);
4050 if (!reg_last
->uses
&& !reg_last
->sets
&& !reg_last
->implicit_sets
4051 && !reg_last
->clobbers
)
4054 if (to_clear
!= -1U)
4055 CLEAR_REGNO_REG_SET (&deps
->reg_last_in_use
, to_clear
);
4059 remove_from_dependence_list (insn
, &deps
->last_function_call
);
4060 remove_from_dependence_list (insn
,
4061 &deps
->last_function_call_may_noreturn
);
4063 remove_from_dependence_list (insn
, &deps
->sched_before_next_call
);
4066 /* Init deps data vector. */
4068 init_deps_data_vector (void)
4070 int reserve
= (sched_max_luid
+ 1 - h_d_i_d
.length ());
4071 if (reserve
> 0 && ! h_d_i_d
.space (reserve
))
4072 h_d_i_d
.safe_grow_cleared (3 * sched_max_luid
/ 2, true);
4075 /* If it is profitable to use them, initialize or extend (depending on
4076 GLOBAL_P) dependency data. */
4078 sched_deps_init (bool global_p
)
4080 /* Average number of insns in the basic block.
4081 '+ 1' is used to make it nonzero. */
4082 int insns_in_block
= sched_max_luid
/ n_basic_blocks_for_fn (cfun
) + 1;
4084 init_deps_data_vector ();
4086 /* We use another caching mechanism for selective scheduling, so
4087 we don't use this one. */
4088 if (!sel_sched_p () && global_p
&& insns_in_block
> 100 * 5)
4090 /* ?!? We could save some memory by computing a per-region luid mapping
4091 which could reduce both the number of vectors in the cache and the
4092 size of each vector. Instead we just avoid the cache entirely unless
4093 the average number of instructions in a basic block is very high. See
4094 the comment before the declaration of true_dependency_cache for
4095 what we consider "very high". */
4097 extend_dependency_caches (sched_max_luid
, true);
4102 dl_pool
= new object_allocator
<_deps_list
> ("deps_list");
4103 /* Allocate lists for one block at a time. */
4104 dn_pool
= new object_allocator
<_dep_node
> ("dep_node");
4105 /* Allocate nodes for one block at a time. */
4110 /* Create or extend (depending on CREATE_P) dependency caches to
4113 extend_dependency_caches (int n
, bool create_p
)
4115 if (create_p
|| true_dependency_cache
)
4117 int i
, luid
= cache_size
+ n
;
4119 true_dependency_cache
= XRESIZEVEC (bitmap_head
, true_dependency_cache
,
4121 output_dependency_cache
= XRESIZEVEC (bitmap_head
,
4122 output_dependency_cache
, luid
);
4123 anti_dependency_cache
= XRESIZEVEC (bitmap_head
, anti_dependency_cache
,
4125 control_dependency_cache
= XRESIZEVEC (bitmap_head
, control_dependency_cache
,
4128 if (current_sched_info
->flags
& DO_SPECULATION
)
4129 spec_dependency_cache
= XRESIZEVEC (bitmap_head
, spec_dependency_cache
,
4132 for (i
= cache_size
; i
< luid
; i
++)
4134 bitmap_initialize (&true_dependency_cache
[i
], 0);
4135 bitmap_initialize (&output_dependency_cache
[i
], 0);
4136 bitmap_initialize (&anti_dependency_cache
[i
], 0);
4137 bitmap_initialize (&control_dependency_cache
[i
], 0);
4139 if (current_sched_info
->flags
& DO_SPECULATION
)
4140 bitmap_initialize (&spec_dependency_cache
[i
], 0);
4146 /* Finalize dependency information for the whole function. */
4148 sched_deps_finish (void)
4150 gcc_assert (deps_pools_are_empty_p ());
4159 if (true_dependency_cache
)
4163 for (i
= 0; i
< cache_size
; i
++)
4165 bitmap_clear (&true_dependency_cache
[i
]);
4166 bitmap_clear (&output_dependency_cache
[i
]);
4167 bitmap_clear (&anti_dependency_cache
[i
]);
4168 bitmap_clear (&control_dependency_cache
[i
]);
4170 if (sched_deps_info
->generate_spec_deps
)
4171 bitmap_clear (&spec_dependency_cache
[i
]);
4173 free (true_dependency_cache
);
4174 true_dependency_cache
= NULL
;
4175 free (output_dependency_cache
);
4176 output_dependency_cache
= NULL
;
4177 free (anti_dependency_cache
);
4178 anti_dependency_cache
= NULL
;
4179 free (control_dependency_cache
);
4180 control_dependency_cache
= NULL
;
4182 if (sched_deps_info
->generate_spec_deps
)
4184 free (spec_dependency_cache
);
4185 spec_dependency_cache
= NULL
;
4191 /* Initialize some global variables needed by the dependency analysis
4195 init_deps_global (void)
4197 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers
);
4198 CLEAR_HARD_REG_SET (implicit_reg_pending_uses
);
4199 reg_pending_sets
= ALLOC_REG_SET (®_obstack
);
4200 reg_pending_clobbers
= ALLOC_REG_SET (®_obstack
);
4201 reg_pending_uses
= ALLOC_REG_SET (®_obstack
);
4202 reg_pending_control_uses
= ALLOC_REG_SET (®_obstack
);
4203 reg_pending_barrier
= NOT_A_BARRIER
;
4205 if (!sel_sched_p () || sched_emulate_haifa_p
)
4207 sched_deps_info
->start_insn
= haifa_start_insn
;
4208 sched_deps_info
->finish_insn
= haifa_finish_insn
;
4210 sched_deps_info
->note_reg_set
= haifa_note_reg_set
;
4211 sched_deps_info
->note_reg_clobber
= haifa_note_reg_clobber
;
4212 sched_deps_info
->note_reg_use
= haifa_note_reg_use
;
4214 sched_deps_info
->note_mem_dep
= haifa_note_mem_dep
;
4215 sched_deps_info
->note_dep
= haifa_note_dep
;
4219 /* Free everything used by the dependency analysis code. */
4222 finish_deps_global (void)
4224 FREE_REG_SET (reg_pending_sets
);
4225 FREE_REG_SET (reg_pending_clobbers
);
4226 FREE_REG_SET (reg_pending_uses
);
4227 FREE_REG_SET (reg_pending_control_uses
);
4230 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4232 estimate_dep_weak (rtx mem1
, rtx mem2
)
4235 /* MEMs are the same - don't speculate. */
4236 return MIN_DEP_WEAK
;
4238 rtx r1
= XEXP (mem1
, 0);
4239 rtx r2
= XEXP (mem2
, 0);
4241 if (sched_deps_info
->use_cselib
)
4243 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4244 dangling at this point, since we never preserve them. Instead we
4245 canonicalize manually to get stable VALUEs out of hashing. */
4246 if (GET_CODE (r1
) == VALUE
&& CSELIB_VAL_PTR (r1
))
4247 r1
= canonical_cselib_val (CSELIB_VAL_PTR (r1
))->val_rtx
;
4248 if (GET_CODE (r2
) == VALUE
&& CSELIB_VAL_PTR (r2
))
4249 r2
= canonical_cselib_val (CSELIB_VAL_PTR (r2
))->val_rtx
;
4253 || (REG_P (r1
) && REG_P (r2
) && REGNO (r1
) == REGNO (r2
)))
4254 /* Again, MEMs are the same. */
4255 return MIN_DEP_WEAK
;
4256 else if ((REG_P (r1
) && !REG_P (r2
)) || (!REG_P (r1
) && REG_P (r2
)))
4257 /* Different addressing modes - reason to be more speculative,
4259 return NO_DEP_WEAK
- (NO_DEP_WEAK
- UNCERTAIN_DEP_WEAK
) / 2;
4261 /* We can't say anything about the dependence. */
4262 return UNCERTAIN_DEP_WEAK
;
4265 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4266 This function can handle same INSN and ELEM (INSN == ELEM).
4267 It is a convenience wrapper. */
4269 add_dependence_1 (rtx_insn
*insn
, rtx_insn
*elem
, enum reg_note dep_type
)
4274 if (dep_type
== REG_DEP_TRUE
)
4276 else if (dep_type
== REG_DEP_OUTPUT
)
4278 else if (dep_type
== REG_DEP_CONTROL
)
4282 gcc_assert (dep_type
== REG_DEP_ANTI
);
4286 /* When add_dependence is called from inside sched-deps.cc, we expect
4287 cur_insn to be non-null. */
4288 internal
= cur_insn
!= NULL
;
4290 gcc_assert (insn
== cur_insn
);
4294 note_dep (elem
, ds
);
4299 /* Return weakness of speculative type TYPE in the dep_status DS,
4300 without checking to prevent ICEs on malformed input. */
4302 get_dep_weak_1 (ds_t ds
, ds_t type
)
4308 case BEGIN_DATA
: ds
>>= BEGIN_DATA_BITS_OFFSET
; break;
4309 case BE_IN_DATA
: ds
>>= BE_IN_DATA_BITS_OFFSET
; break;
4310 case BEGIN_CONTROL
: ds
>>= BEGIN_CONTROL_BITS_OFFSET
; break;
4311 case BE_IN_CONTROL
: ds
>>= BE_IN_CONTROL_BITS_OFFSET
; break;
4312 default: gcc_unreachable ();
4318 /* Return weakness of speculative type TYPE in the dep_status DS. */
4320 get_dep_weak (ds_t ds
, ds_t type
)
4322 dw_t dw
= get_dep_weak_1 (ds
, type
);
4324 gcc_assert (MIN_DEP_WEAK
<= dw
&& dw
<= MAX_DEP_WEAK
);
4328 /* Return the dep_status, which has the same parameters as DS, except for
4329 speculative type TYPE, that will have weakness DW. */
4331 set_dep_weak (ds_t ds
, ds_t type
, dw_t dw
)
4333 gcc_assert (MIN_DEP_WEAK
<= dw
&& dw
<= MAX_DEP_WEAK
);
4338 case BEGIN_DATA
: ds
|= ((ds_t
) dw
) << BEGIN_DATA_BITS_OFFSET
; break;
4339 case BE_IN_DATA
: ds
|= ((ds_t
) dw
) << BE_IN_DATA_BITS_OFFSET
; break;
4340 case BEGIN_CONTROL
: ds
|= ((ds_t
) dw
) << BEGIN_CONTROL_BITS_OFFSET
; break;
4341 case BE_IN_CONTROL
: ds
|= ((ds_t
) dw
) << BE_IN_CONTROL_BITS_OFFSET
; break;
4342 default: gcc_unreachable ();
4347 /* Return the join of two dep_statuses DS1 and DS2.
4348 If MAX_P is true then choose the greater probability,
4349 otherwise multiply probabilities.
4350 This function assumes that both DS1 and DS2 contain speculative bits. */
4352 ds_merge_1 (ds_t ds1
, ds_t ds2
, bool max_p
)
4356 gcc_assert ((ds1
& SPECULATIVE
) && (ds2
& SPECULATIVE
));
4358 ds
= (ds1
& DEP_TYPES
) | (ds2
& DEP_TYPES
);
4360 t
= FIRST_SPEC_TYPE
;
4363 if ((ds1
& t
) && !(ds2
& t
))
4365 else if (!(ds1
& t
) && (ds2
& t
))
4367 else if ((ds1
& t
) && (ds2
& t
))
4369 dw_t dw1
= get_dep_weak (ds1
, t
);
4370 dw_t dw2
= get_dep_weak (ds2
, t
);
4375 dw
= ((ds_t
) dw1
) * ((ds_t
) dw2
);
4377 if (dw
< MIN_DEP_WEAK
)
4388 ds
= set_dep_weak (ds
, t
, (dw_t
) dw
);
4391 if (t
== LAST_SPEC_TYPE
)
4393 t
<<= SPEC_TYPE_SHIFT
;
4400 /* Return the join of two dep_statuses DS1 and DS2.
4401 This function assumes that both DS1 and DS2 contain speculative bits. */
4403 ds_merge (ds_t ds1
, ds_t ds2
)
4405 return ds_merge_1 (ds1
, ds2
, false);
4408 /* Return the join of two dep_statuses DS1 and DS2. */
4410 ds_full_merge (ds_t ds
, ds_t ds2
, rtx mem1
, rtx mem2
)
4412 ds_t new_status
= ds
| ds2
;
4414 if (new_status
& SPECULATIVE
)
4416 if ((ds
&& !(ds
& SPECULATIVE
))
4417 || (ds2
&& !(ds2
& SPECULATIVE
)))
4418 /* Then this dep can't be speculative. */
4419 new_status
&= ~SPECULATIVE
;
4422 /* Both are speculative. Merging probabilities. */
4427 dw
= estimate_dep_weak (mem1
, mem2
);
4428 ds
= set_dep_weak (ds
, BEGIN_DATA
, dw
);
4436 new_status
= ds_merge (ds2
, ds
);
4443 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4446 ds_max_merge (ds_t ds1
, ds_t ds2
)
4448 if (ds1
== 0 && ds2
== 0)
4451 if (ds1
== 0 && ds2
!= 0)
4454 if (ds1
!= 0 && ds2
== 0)
4457 return ds_merge_1 (ds1
, ds2
, true);
4460 /* Return the probability of speculation success for the speculation
4468 dt
= FIRST_SPEC_TYPE
;
4473 res
*= (ds_t
) get_dep_weak (ds
, dt
);
4477 if (dt
== LAST_SPEC_TYPE
)
4479 dt
<<= SPEC_TYPE_SHIFT
;
4485 res
/= MAX_DEP_WEAK
;
4487 if (res
< MIN_DEP_WEAK
)
4490 gcc_assert (res
<= MAX_DEP_WEAK
);
4495 /* Return a dep status that contains all speculation types of DS. */
4497 ds_get_speculation_types (ds_t ds
)
4499 if (ds
& BEGIN_DATA
)
4501 if (ds
& BE_IN_DATA
)
4503 if (ds
& BEGIN_CONTROL
)
4504 ds
|= BEGIN_CONTROL
;
4505 if (ds
& BE_IN_CONTROL
)
4506 ds
|= BE_IN_CONTROL
;
4508 return ds
& SPECULATIVE
;
4511 /* Return a dep status that contains maximal weakness for each speculation
4512 type present in DS. */
4514 ds_get_max_dep_weak (ds_t ds
)
4516 if (ds
& BEGIN_DATA
)
4517 ds
= set_dep_weak (ds
, BEGIN_DATA
, MAX_DEP_WEAK
);
4518 if (ds
& BE_IN_DATA
)
4519 ds
= set_dep_weak (ds
, BE_IN_DATA
, MAX_DEP_WEAK
);
4520 if (ds
& BEGIN_CONTROL
)
4521 ds
= set_dep_weak (ds
, BEGIN_CONTROL
, MAX_DEP_WEAK
);
4522 if (ds
& BE_IN_CONTROL
)
4523 ds
= set_dep_weak (ds
, BE_IN_CONTROL
, MAX_DEP_WEAK
);
4528 /* Dump information about the dependence status S. */
4530 dump_ds (FILE *f
, ds_t s
)
4535 fprintf (f
, "BEGIN_DATA: %d; ", get_dep_weak_1 (s
, BEGIN_DATA
));
4537 fprintf (f
, "BE_IN_DATA: %d; ", get_dep_weak_1 (s
, BE_IN_DATA
));
4538 if (s
& BEGIN_CONTROL
)
4539 fprintf (f
, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s
, BEGIN_CONTROL
));
4540 if (s
& BE_IN_CONTROL
)
4541 fprintf (f
, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s
, BE_IN_CONTROL
));
4544 fprintf (f
, "HARD_DEP; ");
4547 fprintf (f
, "DEP_TRUE; ");
4549 fprintf (f
, "DEP_OUTPUT; ");
4551 fprintf (f
, "DEP_ANTI; ");
4552 if (s
& DEP_CONTROL
)
4553 fprintf (f
, "DEP_CONTROL; ");
4561 dump_ds (stderr
, s
);
4562 fprintf (stderr
, "\n");
4565 /* Verify that dependence type and status are consistent.
4566 If RELAXED_P is true, then skip dep_weakness checks. */
4568 check_dep (dep_t dep
, bool relaxed_p
)
4570 enum reg_note dt
= DEP_TYPE (dep
);
4571 ds_t ds
= DEP_STATUS (dep
);
4573 gcc_assert (DEP_PRO (dep
) != DEP_CON (dep
));
4575 if (!(current_sched_info
->flags
& USE_DEPS_LIST
))
4577 gcc_assert (ds
== 0);
4581 /* Check that dependence type contains the same bits as the status. */
4582 if (dt
== REG_DEP_TRUE
)
4583 gcc_assert (ds
& DEP_TRUE
);
4584 else if (dt
== REG_DEP_OUTPUT
)
4585 gcc_assert ((ds
& DEP_OUTPUT
)
4586 && !(ds
& DEP_TRUE
));
4587 else if (dt
== REG_DEP_ANTI
)
4588 gcc_assert ((ds
& DEP_ANTI
)
4589 && !(ds
& (DEP_OUTPUT
| DEP_TRUE
)));
4591 gcc_assert (dt
== REG_DEP_CONTROL
4592 && (ds
& DEP_CONTROL
)
4593 && !(ds
& (DEP_OUTPUT
| DEP_ANTI
| DEP_TRUE
)));
4595 /* HARD_DEP cannot appear in dep_status of a link. */
4596 gcc_assert (!(ds
& HARD_DEP
));
4598 /* Check that dependence status is set correctly when speculation is not
4600 if (!sched_deps_info
->generate_spec_deps
)
4601 gcc_assert (!(ds
& SPECULATIVE
));
4602 else if (ds
& SPECULATIVE
)
4606 ds_t type
= FIRST_SPEC_TYPE
;
4608 /* Check that dependence weakness is in proper range. */
4612 get_dep_weak (ds
, type
);
4614 if (type
== LAST_SPEC_TYPE
)
4616 type
<<= SPEC_TYPE_SHIFT
;
4621 if (ds
& BEGIN_SPEC
)
4623 /* Only true dependence can be data speculative. */
4624 if (ds
& BEGIN_DATA
)
4625 gcc_assert (ds
& DEP_TRUE
);
4627 /* Control dependencies in the insn scheduler are represented by
4628 anti-dependencies, therefore only anti dependence can be
4629 control speculative. */
4630 if (ds
& BEGIN_CONTROL
)
4631 gcc_assert (ds
& DEP_ANTI
);
4635 /* Subsequent speculations should resolve true dependencies. */
4636 gcc_assert ((ds
& DEP_TYPES
) == DEP_TRUE
);
4639 /* Check that true and anti dependencies can't have other speculative
4642 gcc_assert (ds
& (BEGIN_DATA
| BE_IN_SPEC
));
4643 /* An output dependence can't be speculative at all. */
4644 gcc_assert (!(ds
& DEP_OUTPUT
));
4646 gcc_assert (ds
& BEGIN_CONTROL
);
4650 /* The following code discovers opportunities to switch a memory reference
4651 and an increment by modifying the address. We ensure that this is done
4652 only for dependencies that are only used to show a single register
4653 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4654 instruction involved is subject to only one dep that can cause a pattern
4657 When we discover a suitable dependency, we fill in the dep_replacement
4658 structure to show how to modify the memory reference. */
4660 /* Holds information about a pair of memory reference and register increment
4661 insns which depend on each other, but could possibly be interchanged. */
4668 /* A register occurring in the memory address for which we wish to break
4669 the dependence. This must be identical to the destination register of
4672 /* Any kind of index that is added to that register. */
4674 /* The constant offset used in the memory address. */
4675 HOST_WIDE_INT mem_constant
;
4676 /* The constant added in the increment insn. Negated if the increment is
4677 after the memory address. */
4678 HOST_WIDE_INT inc_constant
;
4679 /* The source register used in the increment. May be different from mem_reg0
4680 if the increment occurs before the memory address. */
4684 /* Verify that the memory location described in MII can be replaced with
4685 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4686 insn remains unchanged by this function. */
4689 attempt_change (struct mem_inc_info
*mii
, rtx new_addr
)
4691 rtx mem
= *mii
->mem_loc
;
4694 if (!targetm
.new_address_profitable_p (mem
, mii
->mem_insn
, new_addr
))
4697 /* Jump through a lot of hoops to keep the attributes up to date. We
4698 do not want to call one of the change address variants that take
4699 an offset even though we know the offset in many cases. These
4700 assume you are changing where the address is pointing by the
4702 new_mem
= replace_equiv_address_nv (mem
, new_addr
);
4703 if (! validate_change (mii
->mem_insn
, mii
->mem_loc
, new_mem
, 0))
4705 if (sched_verbose
>= 5)
4706 fprintf (sched_dump
, "validation failure\n");
4710 /* Put back the old one. */
4711 validate_change (mii
->mem_insn
, mii
->mem_loc
, mem
, 0);
4716 /* Return true if INSN is of a form "a = b op c" where a and b are
4717 regs. op is + if c is a reg and +|- if c is a const. Fill in
4718 informantion in MII about what is found.
4719 BEFORE_MEM indicates whether the increment is found before or after
4720 a corresponding memory reference. */
4723 parse_add_or_inc (struct mem_inc_info
*mii
, rtx_insn
*insn
, bool before_mem
)
4725 rtx pat
= single_set (insn
);
4729 if (RTX_FRAME_RELATED_P (insn
) || !pat
)
4732 /* Do not allow breaking data dependencies for insns that are marked
4733 with REG_STACK_CHECK. */
4734 if (find_reg_note (insn
, REG_STACK_CHECK
, NULL
))
4737 /* Result must be single reg. */
4738 if (!REG_P (SET_DEST (pat
)))
4741 if (GET_CODE (SET_SRC (pat
)) != PLUS
)
4744 mii
->inc_insn
= insn
;
4745 src
= SET_SRC (pat
);
4746 mii
->inc_input
= XEXP (src
, 0);
4748 if (!REG_P (XEXP (src
, 0)))
4751 if (!rtx_equal_p (SET_DEST (pat
), mii
->mem_reg0
))
4754 cst
= XEXP (src
, 1);
4755 if (!CONST_INT_P (cst
))
4757 mii
->inc_constant
= INTVAL (cst
);
4759 regs_equal
= rtx_equal_p (mii
->inc_input
, mii
->mem_reg0
);
4763 mii
->inc_constant
= -mii
->inc_constant
;
4768 if (regs_equal
&& REGNO (SET_DEST (pat
)) == STACK_POINTER_REGNUM
)
4770 /* Note that the sign has already been reversed for !before_mem. */
4771 if (STACK_GROWS_DOWNWARD
)
4772 return mii
->inc_constant
> 0;
4774 return mii
->inc_constant
< 0;
4779 /* Once a suitable mem reference has been found and the corresponding data
4780 in MII has been filled in, this function is called to find a suitable
4781 add or inc insn involving the register we found in the memory
4783 If successful, this function will create additional dependencies between
4784 - mii->inc_insn's producers and mii->mem_insn as a consumer (if backwards)
4785 - mii->inc_insn's consumers and mii->mem_insn as a producer (if !backwards).
4789 find_inc (struct mem_inc_info
*mii
, bool backwards
)
4791 sd_iterator_def sd_it
;
4793 sd_list_types_def mem_deps
= backwards
? SD_LIST_HARD_BACK
: SD_LIST_FORW
;
4794 int n_mem_deps
= sd_lists_size (mii
->mem_insn
, mem_deps
);
4796 sd_it
= sd_iterator_start (mii
->mem_insn
, mem_deps
);
4797 while (sd_iterator_cond (&sd_it
, &dep
))
4799 dep_node_t node
= DEP_LINK_NODE (*sd_it
.linkp
);
4800 rtx_insn
*pro
= DEP_PRO (dep
);
4801 rtx_insn
*con
= DEP_CON (dep
);
4805 if (DEP_NONREG (dep
) || DEP_MULTIPLE (dep
))
4811 n_inc_deps
= sd_lists_size (inc_cand
, SD_LIST_BACK
);
4816 n_inc_deps
= sd_lists_size (inc_cand
, SD_LIST_FORW
);
4819 /* In the FOR_EACH_DEP loop below we will create additional n_inc_deps
4820 for mem_insn. This by itself is not a problem, since each mem_insn
4821 will have only a few inc_insns associated with it. However, if
4822 we consider that a single inc_insn may have a lot of mem_insns, AND,
4823 on top of that, a few other inc_insns associated with it --
4824 those _other inc_insns_ will get (n_mem_deps * number of MEM insns)
4825 dependencies created for them. This may cause an exponential
4826 growth of memory usage and scheduling time.
4827 See PR96388 for details.
4828 We [heuristically] use n_inc_deps as a proxy for the number of MEM
4829 insns, and drop opportunities for breaking modifiable_mem dependencies
4830 when dependency lists grow beyond reasonable size. */
4831 if (n_mem_deps
* n_inc_deps
4832 >= param_max_pending_list_length
* param_max_pending_list_length
)
4835 if (parse_add_or_inc (mii
, inc_cand
, backwards
))
4837 struct dep_replacement
*desc
;
4839 rtx newaddr
, newmem
;
4841 if (sched_verbose
>= 5)
4842 fprintf (sched_dump
, "candidate mem/inc pair: %d %d\n",
4843 INSN_UID (mii
->mem_insn
), INSN_UID (inc_cand
));
4845 /* Need to assure that none of the operands of the inc
4846 instruction are assigned to by the mem insn. */
4847 FOR_EACH_INSN_DEF (def
, mii
->mem_insn
)
4848 if (reg_overlap_mentioned_p (DF_REF_REG (def
), mii
->inc_input
)
4849 || reg_overlap_mentioned_p (DF_REF_REG (def
), mii
->mem_reg0
))
4851 if (sched_verbose
>= 5)
4852 fprintf (sched_dump
,
4853 "inc conflicts with store failure.\n");
4857 newaddr
= mii
->inc_input
;
4858 if (mii
->mem_index
!= NULL_RTX
)
4859 newaddr
= gen_rtx_PLUS (GET_MODE (newaddr
), newaddr
,
4861 newaddr
= plus_constant (GET_MODE (newaddr
), newaddr
,
4862 mii
->mem_constant
+ mii
->inc_constant
);
4863 newmem
= attempt_change (mii
, newaddr
);
4864 if (newmem
== NULL_RTX
)
4866 if (sched_verbose
>= 5)
4867 fprintf (sched_dump
, "successful address replacement\n");
4868 desc
= XCNEW (struct dep_replacement
);
4869 DEP_REPLACE (dep
) = desc
;
4870 desc
->loc
= mii
->mem_loc
;
4871 desc
->newval
= newmem
;
4872 desc
->orig
= *desc
->loc
;
4873 desc
->insn
= mii
->mem_insn
;
4874 move_dep_link (DEP_NODE_BACK (node
), INSN_HARD_BACK_DEPS (con
),
4875 INSN_SPEC_BACK_DEPS (con
));
4877 /* Make sure that n_inc_deps above is consistent with dependencies
4879 gcc_assert (mii
->inc_insn
== inc_cand
);
4883 FOR_EACH_DEP (mii
->inc_insn
, SD_LIST_BACK
, sd_it
, dep
)
4884 add_dependence_1 (mii
->mem_insn
, DEP_PRO (dep
),
4889 FOR_EACH_DEP (mii
->inc_insn
, SD_LIST_FORW
, sd_it
, dep
)
4890 add_dependence_1 (DEP_CON (dep
), mii
->mem_insn
,
4896 sd_iterator_next (&sd_it
);
4901 /* A recursive function that walks ADDRESS_OF_X to find memory references
4902 which could be modified during scheduling. We call find_inc for each
4903 one we find that has a recognizable form. MII holds information about
4904 the pair of memory/increment instructions.
4905 We ensure that every instruction with a memory reference (which will be
4906 the location of the replacement) is assigned at most one breakable
4910 find_mem (struct mem_inc_info
*mii
, rtx
*address_of_x
)
4912 rtx x
= *address_of_x
;
4913 enum rtx_code code
= GET_CODE (x
);
4914 const char *const fmt
= GET_RTX_FORMAT (code
);
4919 rtx reg0
= XEXP (x
, 0);
4921 mii
->mem_loc
= address_of_x
;
4922 mii
->mem_index
= NULL_RTX
;
4923 mii
->mem_constant
= 0;
4924 if (GET_CODE (reg0
) == PLUS
&& CONST_INT_P (XEXP (reg0
, 1)))
4926 mii
->mem_constant
= INTVAL (XEXP (reg0
, 1));
4927 reg0
= XEXP (reg0
, 0);
4929 if (GET_CODE (reg0
) == PLUS
)
4931 mii
->mem_index
= XEXP (reg0
, 1);
4932 reg0
= XEXP (reg0
, 0);
4937 int occurrences
= 0;
4939 /* Make sure this reg appears only once in this insn. Can't use
4940 count_occurrences since that only works for pseudos. */
4941 FOR_EACH_INSN_USE (use
, mii
->mem_insn
)
4942 if (reg_overlap_mentioned_p (reg0
, DF_REF_REG (use
)))
4943 if (++occurrences
> 1)
4945 if (sched_verbose
>= 5)
4946 fprintf (sched_dump
, "mem count failure\n");
4950 mii
->mem_reg0
= reg0
;
4951 return find_inc (mii
, true) || find_inc (mii
, false);
4956 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
4958 /* If REG occurs inside a MEM used in a bit-field reference,
4959 that is unacceptable. */
4963 /* Time for some deep diving. */
4964 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4968 if (find_mem (mii
, &XEXP (x
, i
)))
4971 else if (fmt
[i
] == 'E')
4974 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4975 if (find_mem (mii
, &XVECEXP (x
, i
, j
)))
4983 /* Examine the instructions between HEAD and TAIL and try to find
4984 dependencies that can be broken by modifying one of the patterns. */
4987 find_modifiable_mems (rtx_insn
*head
, rtx_insn
*tail
)
4989 rtx_insn
*insn
, *next_tail
= NEXT_INSN (tail
);
4990 int success_in_block
= 0;
4992 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
4994 struct mem_inc_info mii
;
4996 if (!NONDEBUG_INSN_P (insn
) || RTX_FRAME_RELATED_P (insn
))
4999 mii
.mem_insn
= insn
;
5000 if (find_mem (&mii
, &PATTERN (insn
)))
5003 if (success_in_block
&& sched_verbose
>= 5)
5004 fprintf (sched_dump
, "%d candidates for address modification found.\n",
5008 #endif /* INSN_SCHEDULING */