warn-access: wrong -Wdangling-pointer with labels [PR106080]
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blobc04fcf40c44ec06f1149174d131c89981fc5e366
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
54 /*************************************************************************
55 Simple Loop Peeling Utilities
57 Utilities to support loop peeling for vectorization purposes.
58 *************************************************************************/
61 /* Renames the use *OP_P. */
63 static void
64 rename_use_op (use_operand_p op_p)
66 tree new_name;
68 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
69 return;
71 new_name = get_current_def (USE_FROM_PTR (op_p));
73 /* Something defined outside of the loop. */
74 if (!new_name)
75 return;
77 /* An ordinary ssa name defined in the loop. */
79 SET_USE (op_p, new_name);
83 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
84 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
85 true. */
87 static void
88 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
90 gimple *stmt;
91 use_operand_p use_p;
92 ssa_op_iter iter;
93 edge e;
94 edge_iterator ei;
95 class loop *loop = bb->loop_father;
96 class loop *outer_loop = NULL;
98 if (rename_from_outer_loop)
100 gcc_assert (loop);
101 outer_loop = loop_outer (loop);
104 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
105 gsi_next (&gsi))
107 stmt = gsi_stmt (gsi);
108 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
109 rename_use_op (use_p);
112 FOR_EACH_EDGE (e, ei, bb->preds)
114 if (!flow_bb_inside_loop_p (loop, e->src))
116 if (!rename_from_outer_loop)
117 continue;
118 if (e->src != outer_loop->header)
120 if (outer_loop->inner->next)
122 /* If outer_loop has 2 inner loops, allow there to
123 be an extra basic block which decides which of the
124 two loops to use using LOOP_VECTORIZED. */
125 if (!single_pred_p (e->src)
126 || single_pred (e->src) != outer_loop->header)
127 continue;
131 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
132 gsi_next (&gsi))
133 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
138 struct adjust_info
140 tree from, to;
141 basic_block bb;
144 /* A stack of values to be adjusted in debug stmts. We have to
145 process them LIFO, so that the closest substitution applies. If we
146 processed them FIFO, without the stack, we might substitute uses
147 with a PHI DEF that would soon become non-dominant, and when we got
148 to the suitable one, it wouldn't have anything to substitute any
149 more. */
150 static vec<adjust_info, va_heap> adjust_vec;
152 /* Adjust any debug stmts that referenced AI->from values to use the
153 loop-closed AI->to, if the references are dominated by AI->bb and
154 not by the definition of AI->from. */
156 static void
157 adjust_debug_stmts_now (adjust_info *ai)
159 basic_block bbphi = ai->bb;
160 tree orig_def = ai->from;
161 tree new_def = ai->to;
162 imm_use_iterator imm_iter;
163 gimple *stmt;
164 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
166 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
168 /* Adjust any debug stmts that held onto non-loop-closed
169 references. */
170 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
172 use_operand_p use_p;
173 basic_block bbuse;
175 if (!is_gimple_debug (stmt))
176 continue;
178 gcc_assert (gimple_debug_bind_p (stmt));
180 bbuse = gimple_bb (stmt);
182 if ((bbuse == bbphi
183 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
184 && !(bbuse == bbdef
185 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
187 if (new_def)
188 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
189 SET_USE (use_p, new_def);
190 else
192 gimple_debug_bind_reset_value (stmt);
193 update_stmt (stmt);
199 /* Adjust debug stmts as scheduled before. */
201 static void
202 adjust_vec_debug_stmts (void)
204 if (!MAY_HAVE_DEBUG_BIND_STMTS)
205 return;
207 gcc_assert (adjust_vec.exists ());
209 while (!adjust_vec.is_empty ())
211 adjust_debug_stmts_now (&adjust_vec.last ());
212 adjust_vec.pop ();
216 /* Adjust any debug stmts that referenced FROM values to use the
217 loop-closed TO, if the references are dominated by BB and not by
218 the definition of FROM. If adjust_vec is non-NULL, adjustments
219 will be postponed until adjust_vec_debug_stmts is called. */
221 static void
222 adjust_debug_stmts (tree from, tree to, basic_block bb)
224 adjust_info ai;
226 if (MAY_HAVE_DEBUG_BIND_STMTS
227 && TREE_CODE (from) == SSA_NAME
228 && ! SSA_NAME_IS_DEFAULT_DEF (from)
229 && ! virtual_operand_p (from))
231 ai.from = from;
232 ai.to = to;
233 ai.bb = bb;
235 if (adjust_vec.exists ())
236 adjust_vec.safe_push (ai);
237 else
238 adjust_debug_stmts_now (&ai);
242 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
243 to adjust any debug stmts that referenced the old phi arg,
244 presumably non-loop-closed references left over from other
245 transformations. */
247 static void
248 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
250 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
252 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
254 if (MAY_HAVE_DEBUG_BIND_STMTS)
255 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
256 gimple_bb (update_phi));
259 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
260 that the control should have during the first iteration and NEXT_CTRL is the
261 value that it should have on subsequent iterations. */
263 static void
264 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
265 tree next_ctrl)
267 gphi *phi = create_phi_node (ctrl, loop->header);
268 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
269 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
272 /* Add SEQ to the end of LOOP's preheader block. */
274 static void
275 add_preheader_seq (class loop *loop, gimple_seq seq)
277 if (seq)
279 edge pe = loop_preheader_edge (loop);
280 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
281 gcc_assert (!new_bb);
285 /* Add SEQ to the beginning of LOOP's header block. */
287 static void
288 add_header_seq (class loop *loop, gimple_seq seq)
290 if (seq)
292 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
293 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
297 /* Return true if the target can interleave elements of two vectors.
298 OFFSET is 0 if the first half of the vectors should be interleaved
299 or 1 if the second half should. When returning true, store the
300 associated permutation in INDICES. */
302 static bool
303 interleave_supported_p (vec_perm_indices *indices, tree vectype,
304 unsigned int offset)
306 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
307 poly_uint64 base = exact_div (nelts, 2) * offset;
308 vec_perm_builder sel (nelts, 2, 3);
309 for (unsigned int i = 0; i < 3; ++i)
311 sel.quick_push (base + i);
312 sel.quick_push (base + i + nelts);
314 indices->new_vector (sel, 2, nelts);
315 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
316 *indices);
319 /* Try to use permutes to define the masks in DEST_RGM using the masks
320 in SRC_RGM, given that the former has twice as many masks as the
321 latter. Return true on success, adding any new statements to SEQ. */
323 static bool
324 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
325 rgroup_controls *src_rgm)
327 tree src_masktype = src_rgm->type;
328 tree dest_masktype = dest_rgm->type;
329 machine_mode src_mode = TYPE_MODE (src_masktype);
330 insn_code icode1, icode2;
331 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
332 && (icode1 = optab_handler (vec_unpacku_hi_optab,
333 src_mode)) != CODE_FOR_nothing
334 && (icode2 = optab_handler (vec_unpacku_lo_optab,
335 src_mode)) != CODE_FOR_nothing)
337 /* Unpacking the source masks gives at least as many mask bits as
338 we need. We can then VIEW_CONVERT any excess bits away. */
339 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
340 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
341 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
342 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
344 tree src = src_rgm->controls[i / 2];
345 tree dest = dest_rgm->controls[i];
346 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
347 ? VEC_UNPACK_HI_EXPR
348 : VEC_UNPACK_LO_EXPR);
349 gassign *stmt;
350 if (dest_masktype == unpack_masktype)
351 stmt = gimple_build_assign (dest, code, src);
352 else
354 tree temp = make_ssa_name (unpack_masktype);
355 stmt = gimple_build_assign (temp, code, src);
356 gimple_seq_add_stmt (seq, stmt);
357 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
358 build1 (VIEW_CONVERT_EXPR,
359 dest_masktype, temp));
361 gimple_seq_add_stmt (seq, stmt);
363 return true;
365 vec_perm_indices indices[2];
366 if (dest_masktype == src_masktype
367 && interleave_supported_p (&indices[0], src_masktype, 0)
368 && interleave_supported_p (&indices[1], src_masktype, 1))
370 /* The destination requires twice as many mask bits as the source, so
371 we can use interleaving permutes to double up the number of bits. */
372 tree masks[2];
373 for (unsigned int i = 0; i < 2; ++i)
374 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
375 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
377 tree src = src_rgm->controls[i / 2];
378 tree dest = dest_rgm->controls[i];
379 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
380 src, src, masks[i & 1]);
381 gimple_seq_add_stmt (seq, stmt);
383 return true;
385 return false;
388 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
389 for all the rgroup controls in RGC and return a control that is nonzero
390 when the loop needs to iterate. Add any new preheader statements to
391 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
393 RGC belongs to loop LOOP. The loop originally iterated NITERS
394 times and has been vectorized according to LOOP_VINFO.
396 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
397 starts with NITERS_SKIP dummy iterations of the scalar loop before
398 the real work starts. The mask elements for these dummy iterations
399 must be 0, to ensure that the extra iterations do not have an effect.
401 It is known that:
403 NITERS * RGC->max_nscalars_per_iter * RGC->factor
405 does not overflow. However, MIGHT_WRAP_P says whether an induction
406 variable that starts at 0 and has step:
408 VF * RGC->max_nscalars_per_iter * RGC->factor
410 might overflow before hitting a value above:
412 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
414 This means that we cannot guarantee that such an induction variable
415 would ever hit a value that produces a set of all-false masks or zero
416 lengths for RGC.
418 Note: the cost of the code generated by this function is modeled
419 by vect_estimate_min_profitable_iters, so changes here may need
420 corresponding changes there. */
422 static tree
423 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
424 gimple_seq *preheader_seq,
425 gimple_seq *header_seq,
426 gimple_stmt_iterator loop_cond_gsi,
427 rgroup_controls *rgc, tree niters,
428 tree niters_skip, bool might_wrap_p)
430 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
431 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
432 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
434 tree ctrl_type = rgc->type;
435 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
436 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
437 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
438 tree length_limit = NULL_TREE;
439 /* For length, we need length_limit to ensure length in range. */
440 if (!use_masks_p)
441 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
443 /* Calculate the maximum number of item values that the rgroup
444 handles in total, the number that it handles for each iteration
445 of the vector loop, and the number that it should skip during the
446 first iteration of the vector loop. */
447 tree nitems_total = niters;
448 tree nitems_step = build_int_cst (iv_type, vf);
449 tree nitems_skip = niters_skip;
450 if (nitems_per_iter != 1)
452 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
453 these multiplications don't overflow. */
454 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
455 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
456 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
457 nitems_total, compare_factor);
458 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
459 nitems_step, iv_factor);
460 if (nitems_skip)
461 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
462 nitems_skip, compare_factor);
465 /* Create an induction variable that counts the number of items
466 processed. */
467 tree index_before_incr, index_after_incr;
468 gimple_stmt_iterator incr_gsi;
469 bool insert_after;
470 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
471 create_iv (build_int_cst (iv_type, 0), nitems_step, NULL_TREE, loop,
472 &incr_gsi, insert_after, &index_before_incr, &index_after_incr);
474 tree zero_index = build_int_cst (compare_type, 0);
475 tree test_index, test_limit, first_limit;
476 gimple_stmt_iterator *test_gsi;
477 if (might_wrap_p)
479 /* In principle the loop should stop iterating once the incremented
480 IV reaches a value greater than or equal to:
482 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
484 However, there's no guarantee that this addition doesn't overflow
485 the comparison type, or that the IV hits a value above it before
486 wrapping around. We therefore adjust the limit down by one
487 IV step:
489 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
490 -[infinite-prec] NITEMS_STEP
492 and compare the IV against this limit _before_ incrementing it.
493 Since the comparison type is unsigned, we actually want the
494 subtraction to saturate at zero:
496 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
497 -[sat] NITEMS_STEP
499 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
501 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
503 where the rightmost subtraction can be done directly in
504 COMPARE_TYPE. */
505 test_index = index_before_incr;
506 tree adjust = gimple_convert (preheader_seq, compare_type,
507 nitems_step);
508 if (nitems_skip)
509 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
510 adjust, nitems_skip);
511 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
512 nitems_total, adjust);
513 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
514 test_limit, adjust);
515 test_gsi = &incr_gsi;
517 /* Get a safe limit for the first iteration. */
518 if (nitems_skip)
520 /* The first vector iteration can handle at most NITEMS_STEP
521 items. NITEMS_STEP <= CONST_LIMIT, and adding
522 NITEMS_SKIP to that cannot overflow. */
523 tree const_limit = build_int_cst (compare_type,
524 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
525 * nitems_per_iter);
526 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
527 nitems_total, const_limit);
528 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
529 first_limit, nitems_skip);
531 else
532 /* For the first iteration it doesn't matter whether the IV hits
533 a value above NITEMS_TOTAL. That only matters for the latch
534 condition. */
535 first_limit = nitems_total;
537 else
539 /* Test the incremented IV, which will always hit a value above
540 the bound before wrapping. */
541 test_index = index_after_incr;
542 test_limit = nitems_total;
543 if (nitems_skip)
544 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
545 test_limit, nitems_skip);
546 test_gsi = &loop_cond_gsi;
548 first_limit = test_limit;
551 /* Convert the IV value to the comparison type (either a no-op or
552 a demotion). */
553 gimple_seq test_seq = NULL;
554 test_index = gimple_convert (&test_seq, compare_type, test_index);
555 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
557 /* Provide a definition of each control in the group. */
558 tree next_ctrl = NULL_TREE;
559 tree ctrl;
560 unsigned int i;
561 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
563 /* Previous controls will cover BIAS items. This control covers the
564 next batch. */
565 poly_uint64 bias = nitems_per_ctrl * i;
566 tree bias_tree = build_int_cst (compare_type, bias);
568 /* See whether the first iteration of the vector loop is known
569 to have a full control. */
570 poly_uint64 const_limit;
571 bool first_iteration_full
572 = (poly_int_tree_p (first_limit, &const_limit)
573 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
575 /* Rather than have a new IV that starts at BIAS and goes up to
576 TEST_LIMIT, prefer to use the same 0-based IV for each control
577 and adjust the bound down by BIAS. */
578 tree this_test_limit = test_limit;
579 if (i != 0)
581 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
582 compare_type, this_test_limit,
583 bias_tree);
584 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
585 compare_type, this_test_limit,
586 bias_tree);
589 /* Create the initial control. First include all items that
590 are within the loop limit. */
591 tree init_ctrl = NULL_TREE;
592 if (!first_iteration_full)
594 tree start, end;
595 if (first_limit == test_limit)
597 /* Use a natural test between zero (the initial IV value)
598 and the loop limit. The "else" block would be valid too,
599 but this choice can avoid the need to load BIAS_TREE into
600 a register. */
601 start = zero_index;
602 end = this_test_limit;
604 else
606 /* FIRST_LIMIT is the maximum number of items handled by the
607 first iteration of the vector loop. Test the portion
608 associated with this control. */
609 start = bias_tree;
610 end = first_limit;
613 if (use_masks_p)
614 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
615 start, end, "max_mask");
616 else
618 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
619 gimple_seq seq = vect_gen_len (init_ctrl, start,
620 end, length_limit);
621 gimple_seq_add_seq (preheader_seq, seq);
625 /* Now AND out the bits that are within the number of skipped
626 items. */
627 poly_uint64 const_skip;
628 if (nitems_skip
629 && !(poly_int_tree_p (nitems_skip, &const_skip)
630 && known_le (const_skip, bias)))
632 gcc_assert (use_masks_p);
633 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
634 bias_tree, nitems_skip);
635 if (init_ctrl)
636 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
637 init_ctrl, unskipped_mask);
638 else
639 init_ctrl = unskipped_mask;
642 if (!init_ctrl)
644 /* First iteration is full. */
645 if (use_masks_p)
646 init_ctrl = build_minus_one_cst (ctrl_type);
647 else
648 init_ctrl = length_limit;
651 /* Get the control value for the next iteration of the loop. */
652 if (use_masks_p)
654 gimple_seq stmts = NULL;
655 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
656 this_test_limit, "next_mask");
657 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
659 else
661 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
662 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
663 length_limit);
664 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
667 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
670 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
671 if (partial_load_bias != 0)
673 tree adjusted_len = rgc->bias_adjusted_ctrl;
674 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
675 rgc->controls[0],
676 build_int_cst
677 (TREE_TYPE (rgc->controls[0]),
678 partial_load_bias));
679 gimple_seq_add_stmt (header_seq, minus);
682 return next_ctrl;
685 /* Set up the iteration condition and rgroup controls for LOOP, given
686 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
687 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
688 the number of iterations of the original scalar loop that should be
689 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
690 for vect_set_loop_condition.
692 Insert the branch-back condition before LOOP_COND_GSI and return the
693 final gcond. */
695 static gcond *
696 vect_set_loop_condition_partial_vectors (class loop *loop,
697 loop_vec_info loop_vinfo, tree niters,
698 tree final_iv, bool niters_maybe_zero,
699 gimple_stmt_iterator loop_cond_gsi)
701 gimple_seq preheader_seq = NULL;
702 gimple_seq header_seq = NULL;
704 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
705 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
706 unsigned int compare_precision = TYPE_PRECISION (compare_type);
707 tree orig_niters = niters;
709 /* Type of the initial value of NITERS. */
710 tree ni_actual_type = TREE_TYPE (niters);
711 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
712 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
714 /* Convert NITERS to the same size as the compare. */
715 if (compare_precision > ni_actual_precision
716 && niters_maybe_zero)
718 /* We know that there is always at least one iteration, so if the
719 count is zero then it must have wrapped. Cope with this by
720 subtracting 1 before the conversion and adding 1 to the result. */
721 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
722 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
723 niters, build_minus_one_cst (ni_actual_type));
724 niters = gimple_convert (&preheader_seq, compare_type, niters);
725 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
726 niters, build_one_cst (compare_type));
728 else
729 niters = gimple_convert (&preheader_seq, compare_type, niters);
731 /* Iterate over all the rgroups and fill in their controls. We could use
732 the first control from any rgroup for the loop condition; here we
733 arbitrarily pick the last. */
734 tree test_ctrl = NULL_TREE;
735 rgroup_controls *rgc;
736 unsigned int i;
737 auto_vec<rgroup_controls> *controls = use_masks_p
738 ? &LOOP_VINFO_MASKS (loop_vinfo)
739 : &LOOP_VINFO_LENS (loop_vinfo);
740 FOR_EACH_VEC_ELT (*controls, i, rgc)
741 if (!rgc->controls.is_empty ())
743 /* First try using permutes. This adds a single vector
744 instruction to the loop for each mask, but needs no extra
745 loop invariants or IVs. */
746 unsigned int nmasks = i + 1;
747 if (use_masks_p && (nmasks & 1) == 0)
749 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
750 if (!half_rgc->controls.is_empty ()
751 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
752 continue;
755 /* See whether zero-based IV would ever generate all-false masks
756 or zero length before wrapping around. */
757 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
759 /* Set up all controls for this group. */
760 test_ctrl = vect_set_loop_controls_directly (loop, loop_vinfo,
761 &preheader_seq,
762 &header_seq,
763 loop_cond_gsi, rgc,
764 niters, niters_skip,
765 might_wrap_p);
768 /* Emit all accumulated statements. */
769 add_preheader_seq (loop, preheader_seq);
770 add_header_seq (loop, header_seq);
772 /* Get a boolean result that tells us whether to iterate. */
773 edge exit_edge = single_exit (loop);
774 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
775 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
776 gcond *cond_stmt = gimple_build_cond (code, test_ctrl, zero_ctrl,
777 NULL_TREE, NULL_TREE);
778 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
780 /* The loop iterates (NITERS - 1) / VF + 1 times.
781 Subtract one from this to get the latch count. */
782 tree step = build_int_cst (compare_type,
783 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
784 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
785 build_minus_one_cst (compare_type));
786 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
787 niters_minus_one, step);
789 if (final_iv)
791 gassign *assign = gimple_build_assign (final_iv, orig_niters);
792 gsi_insert_on_edge_immediate (single_exit (loop), assign);
795 return cond_stmt;
798 /* Like vect_set_loop_condition, but handle the case in which the vector
799 loop handles exactly VF scalars per iteration. */
801 static gcond *
802 vect_set_loop_condition_normal (class loop *loop, tree niters, tree step,
803 tree final_iv, bool niters_maybe_zero,
804 gimple_stmt_iterator loop_cond_gsi)
806 tree indx_before_incr, indx_after_incr;
807 gcond *cond_stmt;
808 gcond *orig_cond;
809 edge pe = loop_preheader_edge (loop);
810 edge exit_edge = single_exit (loop);
811 gimple_stmt_iterator incr_gsi;
812 bool insert_after;
813 enum tree_code code;
814 tree niters_type = TREE_TYPE (niters);
816 orig_cond = get_loop_exit_condition (loop);
817 gcc_assert (orig_cond);
818 loop_cond_gsi = gsi_for_stmt (orig_cond);
820 tree init, limit;
821 if (!niters_maybe_zero && integer_onep (step))
823 /* In this case we can use a simple 0-based IV:
826 x = 0;
830 x += 1;
832 while (x < NITERS); */
833 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
834 init = build_zero_cst (niters_type);
835 limit = niters;
837 else
839 /* The following works for all values of NITERS except 0:
842 x = 0;
846 x += STEP;
848 while (x <= NITERS - STEP);
850 so that the loop continues to iterate if x + STEP - 1 < NITERS
851 but stops if x + STEP - 1 >= NITERS.
853 However, if NITERS is zero, x never hits a value above NITERS - STEP
854 before wrapping around. There are two obvious ways of dealing with
855 this:
857 - start at STEP - 1 and compare x before incrementing it
858 - start at -1 and compare x after incrementing it
860 The latter is simpler and is what we use. The loop in this case
861 looks like:
864 x = -1;
868 x += STEP;
870 while (x < NITERS - STEP);
872 In both cases the loop limit is NITERS - STEP. */
873 gimple_seq seq = NULL;
874 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
875 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
876 if (seq)
878 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
879 gcc_assert (!new_bb);
881 if (niters_maybe_zero)
883 /* Case C. */
884 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
885 init = build_all_ones_cst (niters_type);
887 else
889 /* Case B. */
890 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
891 init = build_zero_cst (niters_type);
895 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
896 create_iv (init, step, NULL_TREE, loop,
897 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
898 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
899 true, NULL_TREE, true,
900 GSI_SAME_STMT);
901 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
902 true, GSI_SAME_STMT);
904 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
905 NULL_TREE);
907 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
909 /* Record the number of latch iterations. */
910 if (limit == niters)
911 /* Case A: the loop iterates NITERS times. Subtract one to get the
912 latch count. */
913 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
914 build_int_cst (niters_type, 1));
915 else
916 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
917 Subtract one from this to get the latch count. */
918 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
919 limit, step);
921 if (final_iv)
923 gassign *assign;
924 edge exit = single_exit (loop);
925 gcc_assert (single_pred_p (exit->dest));
926 tree phi_dest
927 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
928 /* Make sure to maintain LC SSA form here and elide the subtraction
929 if the value is zero. */
930 gphi *phi = create_phi_node (phi_dest, exit->dest);
931 add_phi_arg (phi, indx_after_incr, exit, UNKNOWN_LOCATION);
932 if (!integer_zerop (init))
934 assign = gimple_build_assign (final_iv, MINUS_EXPR,
935 phi_dest, init);
936 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
937 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
941 return cond_stmt;
944 /* If we're using fully-masked loops, make LOOP iterate:
946 N == (NITERS - 1) / STEP + 1
948 times. When NITERS is zero, this is equivalent to making the loop
949 execute (1 << M) / STEP times, where M is the precision of NITERS.
950 NITERS_MAYBE_ZERO is true if this last case might occur.
952 If we're not using fully-masked loops, make LOOP iterate:
954 N == (NITERS - STEP) / STEP + 1
956 times, where NITERS is known to be outside the range [1, STEP - 1].
957 This is equivalent to making the loop execute NITERS / STEP times
958 when NITERS is nonzero and (1 << M) / STEP times otherwise.
959 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
961 If FINAL_IV is nonnull, it is an SSA name that should be set to
962 N * STEP on exit from the loop.
964 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
966 void
967 vect_set_loop_condition (class loop *loop, loop_vec_info loop_vinfo,
968 tree niters, tree step, tree final_iv,
969 bool niters_maybe_zero)
971 gcond *cond_stmt;
972 gcond *orig_cond = get_loop_exit_condition (loop);
973 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
975 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
976 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_vinfo,
977 niters, final_iv,
978 niters_maybe_zero,
979 loop_cond_gsi);
980 else
981 cond_stmt = vect_set_loop_condition_normal (loop, niters, step, final_iv,
982 niters_maybe_zero,
983 loop_cond_gsi);
985 /* Remove old loop exit test. */
986 stmt_vec_info orig_cond_info;
987 if (loop_vinfo
988 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
989 loop_vinfo->remove_stmt (orig_cond_info);
990 else
991 gsi_remove (&loop_cond_gsi, true);
993 if (dump_enabled_p ())
994 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
995 (gimple *) cond_stmt);
998 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
999 For all PHI arguments in FROM->dest and TO->dest from those
1000 edges ensure that TO->dest PHI arguments have current_def
1001 to that in from. */
1003 static void
1004 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
1006 gimple_stmt_iterator gsi_from, gsi_to;
1008 for (gsi_from = gsi_start_phis (from->dest),
1009 gsi_to = gsi_start_phis (to->dest);
1010 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
1012 gimple *from_phi = gsi_stmt (gsi_from);
1013 gimple *to_phi = gsi_stmt (gsi_to);
1014 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
1015 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
1016 if (virtual_operand_p (from_arg))
1018 gsi_next (&gsi_from);
1019 continue;
1021 if (virtual_operand_p (to_arg))
1023 gsi_next (&gsi_to);
1024 continue;
1026 if (TREE_CODE (from_arg) != SSA_NAME)
1027 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
1028 else if (TREE_CODE (to_arg) == SSA_NAME
1029 && from_arg != to_arg)
1031 if (get_current_def (to_arg) == NULL_TREE)
1033 gcc_assert (types_compatible_p (TREE_TYPE (to_arg),
1034 TREE_TYPE (get_current_def
1035 (from_arg))));
1036 set_current_def (to_arg, get_current_def (from_arg));
1039 gsi_next (&gsi_from);
1040 gsi_next (&gsi_to);
1043 gphi *from_phi = get_virtual_phi (from->dest);
1044 gphi *to_phi = get_virtual_phi (to->dest);
1045 if (from_phi)
1046 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
1047 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
1051 /* Given LOOP this function generates a new copy of it and puts it
1052 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1053 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1054 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1055 entry or exit of LOOP. */
1057 class loop *
1058 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop,
1059 class loop *scalar_loop, edge e)
1061 class loop *new_loop;
1062 basic_block *new_bbs, *bbs, *pbbs;
1063 bool at_exit;
1064 bool was_imm_dom;
1065 basic_block exit_dest;
1066 edge exit, new_exit;
1067 bool duplicate_outer_loop = false;
1069 exit = single_exit (loop);
1070 at_exit = (e == exit);
1071 if (!at_exit && e != loop_preheader_edge (loop))
1072 return NULL;
1074 if (scalar_loop == NULL)
1075 scalar_loop = loop;
1077 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1078 pbbs = bbs + 1;
1079 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1080 /* Allow duplication of outer loops. */
1081 if (scalar_loop->inner)
1082 duplicate_outer_loop = true;
1083 /* Check whether duplication is possible. */
1084 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1086 free (bbs);
1087 return NULL;
1090 /* Generate new loop structure. */
1091 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1092 duplicate_subloops (scalar_loop, new_loop);
1094 exit_dest = exit->dest;
1095 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1096 exit_dest) == loop->header ?
1097 true : false);
1099 /* Also copy the pre-header, this avoids jumping through hoops to
1100 duplicate the loop entry PHI arguments. Create an empty
1101 pre-header unconditionally for this. */
1102 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1103 edge entry_e = single_pred_edge (preheader);
1104 bbs[0] = preheader;
1105 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1107 exit = single_exit (scalar_loop);
1108 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1109 &exit, 1, &new_exit, NULL,
1110 at_exit ? loop->latch : e->src, true);
1111 exit = single_exit (loop);
1112 basic_block new_preheader = new_bbs[0];
1114 /* Before installing PHI arguments make sure that the edges
1115 into them match that of the scalar loop we analyzed. This
1116 makes sure the SLP tree matches up between the main vectorized
1117 loop and the epilogue vectorized copies. */
1118 if (single_succ_edge (preheader)->dest_idx
1119 != single_succ_edge (new_bbs[0])->dest_idx)
1121 basic_block swap_bb = new_bbs[1];
1122 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1123 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1124 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1125 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1127 if (duplicate_outer_loop)
1129 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1130 if (loop_preheader_edge (scalar_loop)->dest_idx
1131 != loop_preheader_edge (new_inner_loop)->dest_idx)
1133 basic_block swap_bb = new_inner_loop->header;
1134 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1135 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1136 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1137 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1141 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1143 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1144 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1145 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1147 if (scalar_loop != loop)
1149 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1150 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1151 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1152 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1153 header) to have current_def set, so copy them over. */
1154 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1155 exit);
1156 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1158 EDGE_SUCC (loop->latch, 0));
1161 if (at_exit) /* Add the loop copy at exit. */
1163 if (scalar_loop != loop)
1165 gphi_iterator gsi;
1166 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1168 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1169 gsi_next (&gsi))
1171 gphi *phi = gsi.phi ();
1172 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1173 location_t orig_locus
1174 = gimple_phi_arg_location_from_edge (phi, e);
1176 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1179 redirect_edge_and_branch_force (e, new_preheader);
1180 flush_pending_stmts (e);
1181 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1182 if (was_imm_dom || duplicate_outer_loop)
1183 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1185 /* And remove the non-necessary forwarder again. Keep the other
1186 one so we have a proper pre-header for the loop at the exit edge. */
1187 redirect_edge_pred (single_succ_edge (preheader),
1188 single_pred (preheader));
1189 delete_basic_block (preheader);
1190 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1191 loop_preheader_edge (scalar_loop)->src);
1193 else /* Add the copy at entry. */
1195 if (scalar_loop != loop)
1197 /* Remove the non-necessary forwarder of scalar_loop again. */
1198 redirect_edge_pred (single_succ_edge (preheader),
1199 single_pred (preheader));
1200 delete_basic_block (preheader);
1201 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1202 loop_preheader_edge (scalar_loop)->src);
1203 preheader = split_edge (loop_preheader_edge (loop));
1204 entry_e = single_pred_edge (preheader);
1207 redirect_edge_and_branch_force (entry_e, new_preheader);
1208 flush_pending_stmts (entry_e);
1209 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1211 redirect_edge_and_branch_force (new_exit, preheader);
1212 flush_pending_stmts (new_exit);
1213 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1215 /* And remove the non-necessary forwarder again. Keep the other
1216 one so we have a proper pre-header for the loop at the exit edge. */
1217 redirect_edge_pred (single_succ_edge (new_preheader),
1218 single_pred (new_preheader));
1219 delete_basic_block (new_preheader);
1220 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1221 loop_preheader_edge (new_loop)->src);
1224 if (scalar_loop != loop)
1226 /* Update new_loop->header PHIs, so that on the preheader
1227 edge they are the ones from loop rather than scalar_loop. */
1228 gphi_iterator gsi_orig, gsi_new;
1229 edge orig_e = loop_preheader_edge (loop);
1230 edge new_e = loop_preheader_edge (new_loop);
1232 for (gsi_orig = gsi_start_phis (loop->header),
1233 gsi_new = gsi_start_phis (new_loop->header);
1234 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1235 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1237 gphi *orig_phi = gsi_orig.phi ();
1238 gphi *new_phi = gsi_new.phi ();
1239 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1240 location_t orig_locus
1241 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1243 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1247 free (new_bbs);
1248 free (bbs);
1250 checking_verify_dominators (CDI_DOMINATORS);
1252 return new_loop;
1256 /* Given the condition expression COND, put it as the last statement of
1257 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1258 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1259 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1260 new edge as irreducible if IRREDUCIBLE_P is true. */
1262 static edge
1263 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1264 basic_block guard_to, basic_block dom_bb,
1265 profile_probability probability, bool irreducible_p)
1267 gimple_stmt_iterator gsi;
1268 edge new_e, enter_e;
1269 gcond *cond_stmt;
1270 gimple_seq gimplify_stmt_list = NULL;
1272 enter_e = EDGE_SUCC (guard_bb, 0);
1273 enter_e->flags &= ~EDGE_FALLTHRU;
1274 enter_e->flags |= EDGE_FALSE_VALUE;
1275 gsi = gsi_last_bb (guard_bb);
1277 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1278 is_gimple_condexpr_for_cond, NULL_TREE);
1279 if (gimplify_stmt_list)
1280 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1282 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1283 gsi = gsi_last_bb (guard_bb);
1284 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1286 /* Add new edge to connect guard block to the merge/loop-exit block. */
1287 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1289 new_e->probability = probability;
1290 if (irreducible_p)
1291 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1293 enter_e->probability = probability.invert ();
1294 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1296 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1297 if (enter_e->dest->loop_father->header == enter_e->dest)
1298 split_edge (enter_e);
1300 return new_e;
1304 /* This function verifies that the following restrictions apply to LOOP:
1305 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1306 for innermost loop and 5 basic blocks for outer-loop.
1307 (2) it is single entry, single exit
1308 (3) its exit condition is the last stmt in the header
1309 (4) E is the entry/exit edge of LOOP.
1312 bool
1313 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge e)
1315 edge exit_e = single_exit (loop);
1316 edge entry_e = loop_preheader_edge (loop);
1317 gcond *orig_cond = get_loop_exit_condition (loop);
1318 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1319 unsigned int num_bb = loop->inner? 5 : 2;
1321 /* All loops have an outer scope; the only case loop->outer is NULL is for
1322 the function itself. */
1323 if (!loop_outer (loop)
1324 || loop->num_nodes != num_bb
1325 || !empty_block_p (loop->latch)
1326 || !single_exit (loop)
1327 /* Verify that new loop exit condition can be trivially modified. */
1328 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1329 || (e != exit_e && e != entry_e))
1330 return false;
1332 return true;
1335 /* Function vect_get_loop_location.
1337 Extract the location of the loop in the source code.
1338 If the loop is not well formed for vectorization, an estimated
1339 location is calculated.
1340 Return the loop location if succeed and NULL if not. */
1342 dump_user_location_t
1343 find_loop_location (class loop *loop)
1345 gimple *stmt = NULL;
1346 basic_block bb;
1347 gimple_stmt_iterator si;
1349 if (!loop)
1350 return dump_user_location_t ();
1352 stmt = get_loop_exit_condition (loop);
1354 if (stmt
1355 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1356 return stmt;
1358 /* If we got here the loop is probably not "well formed",
1359 try to estimate the loop location */
1361 if (!loop->header)
1362 return dump_user_location_t ();
1364 bb = loop->header;
1366 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1368 stmt = gsi_stmt (si);
1369 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1370 return stmt;
1373 return dump_user_location_t ();
1376 /* Return true if the phi described by STMT_INFO defines an IV of the
1377 loop to be vectorized. */
1379 static bool
1380 iv_phi_p (stmt_vec_info stmt_info)
1382 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1383 if (virtual_operand_p (PHI_RESULT (phi)))
1384 return false;
1386 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1387 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1388 return false;
1390 return true;
1393 /* Return true if vectorizer can peel for nonlinear iv. */
1394 static bool
1395 vect_can_peel_nonlinear_iv_p (loop_vec_info loop_vinfo,
1396 enum vect_induction_op_type induction_type)
1398 tree niters_skip;
1399 /* Init_expr will be update by vect_update_ivs_after_vectorizer,
1400 if niters or vf is unkown:
1401 For shift, when shift mount >= precision, there would be UD.
1402 For mult, don't known how to generate
1403 init_expr * pow (step, niters) for variable niters.
1404 For neg, it should be ok, since niters of vectorized main loop
1405 will always be multiple of 2. */
1406 if ((!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1407 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ())
1408 && induction_type != vect_step_op_neg)
1410 if (dump_enabled_p ())
1411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1412 "Peeling for epilogue is not supported"
1413 " for nonlinear induction except neg"
1414 " when iteration count is unknown.\n");
1415 return false;
1418 /* Also doens't support peel for neg when niter is variable.
1419 ??? generate something like niter_expr & 1 ? init_expr : -init_expr? */
1420 niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
1421 if ((niters_skip != NULL_TREE
1422 && TREE_CODE (niters_skip) != INTEGER_CST)
1423 || (!vect_use_loop_mask_for_alignment_p (loop_vinfo)
1424 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0))
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "Peeling for alignement is not supported"
1429 " for nonlinear induction when niters_skip"
1430 " is not constant.\n");
1431 return false;
1434 return true;
1437 /* Function vect_can_advance_ivs_p
1439 In case the number of iterations that LOOP iterates is unknown at compile
1440 time, an epilog loop will be generated, and the loop induction variables
1441 (IVs) will be "advanced" to the value they are supposed to take just before
1442 the epilog loop. Here we check that the access function of the loop IVs
1443 and the expression that represents the loop bound are simple enough.
1444 These restrictions will be relaxed in the future. */
1446 bool
1447 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1449 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1450 basic_block bb = loop->header;
1451 gphi_iterator gsi;
1453 /* Analyze phi functions of the loop header. */
1455 if (dump_enabled_p ())
1456 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1457 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1459 tree evolution_part;
1460 enum vect_induction_op_type induction_type;
1462 gphi *phi = gsi.phi ();
1463 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1464 if (dump_enabled_p ())
1465 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
1466 phi_info->stmt);
1468 /* Skip virtual phi's. The data dependences that are associated with
1469 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1471 Skip reduction phis. */
1472 if (!iv_phi_p (phi_info))
1474 if (dump_enabled_p ())
1475 dump_printf_loc (MSG_NOTE, vect_location,
1476 "reduc or virtual phi. skip.\n");
1477 continue;
1480 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1481 if (induction_type != vect_step_op_add)
1483 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, induction_type))
1484 return false;
1486 continue;
1489 /* Analyze the evolution function. */
1491 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1492 if (evolution_part == NULL_TREE)
1494 if (dump_enabled_p ())
1495 dump_printf (MSG_MISSED_OPTIMIZATION,
1496 "No access function or evolution.\n");
1497 return false;
1500 /* FORNOW: We do not transform initial conditions of IVs
1501 which evolution functions are not invariants in the loop. */
1503 if (!expr_invariant_in_loop_p (loop, evolution_part))
1505 if (dump_enabled_p ())
1506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1507 "evolution not invariant in loop.\n");
1508 return false;
1511 /* FORNOW: We do not transform initial conditions of IVs
1512 which evolution functions are a polynomial of degree >= 2. */
1514 if (tree_is_chrec (evolution_part))
1516 if (dump_enabled_p ())
1517 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1518 "evolution is chrec.\n");
1519 return false;
1523 return true;
1527 /* Function vect_update_ivs_after_vectorizer.
1529 "Advance" the induction variables of LOOP to the value they should take
1530 after the execution of LOOP. This is currently necessary because the
1531 vectorizer does not handle induction variables that are used after the
1532 loop. Such a situation occurs when the last iterations of LOOP are
1533 peeled, because:
1534 1. We introduced new uses after LOOP for IVs that were not originally used
1535 after LOOP: the IVs of LOOP are now used by an epilog loop.
1536 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1537 times, whereas the loop IVs should be bumped N times.
1539 Input:
1540 - LOOP - a loop that is going to be vectorized. The last few iterations
1541 of LOOP were peeled.
1542 - NITERS - the number of iterations that LOOP executes (before it is
1543 vectorized). i.e, the number of times the ivs should be bumped.
1544 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1545 coming out from LOOP on which there are uses of the LOOP ivs
1546 (this is the path from LOOP->exit to epilog_loop->preheader).
1548 The new definitions of the ivs are placed in LOOP->exit.
1549 The phi args associated with the edge UPDATE_E in the bb
1550 UPDATE_E->dest are updated accordingly.
1552 Assumption 1: Like the rest of the vectorizer, this function assumes
1553 a single loop exit that has a single predecessor.
1555 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1556 organized in the same order.
1558 Assumption 3: The access function of the ivs is simple enough (see
1559 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1561 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1562 coming out of LOOP on which the ivs of LOOP are used (this is the path
1563 that leads to the epilog loop; other paths skip the epilog loop). This
1564 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1565 needs to have its phis updated.
1568 static void
1569 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1570 tree niters, edge update_e)
1572 gphi_iterator gsi, gsi1;
1573 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1574 basic_block update_bb = update_e->dest;
1575 basic_block exit_bb = single_exit (loop)->dest;
1577 /* Make sure there exists a single-predecessor exit bb: */
1578 gcc_assert (single_pred_p (exit_bb));
1579 gcc_assert (single_succ_edge (exit_bb) == update_e);
1581 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1582 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1583 gsi_next (&gsi), gsi_next (&gsi1))
1585 tree init_expr;
1586 tree step_expr, off;
1587 tree type;
1588 tree var, ni, ni_name;
1589 gimple_stmt_iterator last_gsi;
1591 gphi *phi = gsi.phi ();
1592 gphi *phi1 = gsi1.phi ();
1593 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1594 if (dump_enabled_p ())
1595 dump_printf_loc (MSG_NOTE, vect_location,
1596 "vect_update_ivs_after_vectorizer: phi: %G",
1597 (gimple *) phi);
1599 /* Skip reduction and virtual phis. */
1600 if (!iv_phi_p (phi_info))
1602 if (dump_enabled_p ())
1603 dump_printf_loc (MSG_NOTE, vect_location,
1604 "reduc or virtual phi. skip.\n");
1605 continue;
1608 type = TREE_TYPE (gimple_phi_result (phi));
1609 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1610 step_expr = unshare_expr (step_expr);
1612 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1613 of degree >= 2 or exponential. */
1614 gcc_assert (!tree_is_chrec (step_expr));
1616 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1617 gimple_seq stmts = NULL;
1618 enum vect_induction_op_type induction_type
1619 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1621 if (induction_type == vect_step_op_add)
1623 tree stype = TREE_TYPE (step_expr);
1624 off = fold_build2 (MULT_EXPR, stype,
1625 fold_convert (stype, niters), step_expr);
1626 if (POINTER_TYPE_P (type))
1627 ni = fold_build_pointer_plus (init_expr, off);
1628 else
1629 ni = fold_convert (type,
1630 fold_build2 (PLUS_EXPR, stype,
1631 fold_convert (stype, init_expr),
1632 off));
1634 /* Don't bother call vect_peel_nonlinear_iv_init. */
1635 else if (induction_type == vect_step_op_neg)
1636 ni = init_expr;
1637 else
1638 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
1639 niters, step_expr,
1640 induction_type);
1642 var = create_tmp_var (type, "tmp");
1644 last_gsi = gsi_last_bb (exit_bb);
1645 gimple_seq new_stmts = NULL;
1646 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1647 /* Exit_bb shouldn't be empty. */
1648 if (!gsi_end_p (last_gsi))
1650 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
1651 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1653 else
1655 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
1656 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1659 /* Fix phi expressions in the successor bb. */
1660 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1664 /* Return a gimple value containing the misalignment (measured in vector
1665 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1666 it is away from a perfectly aligned address. Add any new statements
1667 to SEQ. */
1669 static tree
1670 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1672 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1673 stmt_vec_info stmt_info = dr_info->stmt;
1674 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1676 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1677 unsigned HOST_WIDE_INT target_align_c;
1678 tree target_align_minus_1;
1680 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1681 size_zero_node) < 0;
1682 tree offset = (negative
1683 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1684 * TREE_INT_CST_LOW
1685 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
1686 : size_zero_node);
1687 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
1688 stmt_info, seq,
1689 offset);
1690 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1691 if (target_align.is_constant (&target_align_c))
1692 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
1693 else
1695 tree vla = build_int_cst (type, target_align);
1696 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
1697 fold_build2 (MINUS_EXPR, type,
1698 build_int_cst (type, 0), vla));
1699 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
1700 build_int_cst (type, 1));
1703 HOST_WIDE_INT elem_size
1704 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1705 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1707 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1708 tree int_start_addr = fold_convert (type, start_addr);
1709 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1710 target_align_minus_1);
1712 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1713 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1714 elem_size_log);
1716 return misalign_in_elems;
1719 /* Function vect_gen_prolog_loop_niters
1721 Generate the number of iterations which should be peeled as prolog for the
1722 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1723 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1724 As a result, after the execution of this loop, the data reference DR will
1725 refer to an aligned location. The following computation is generated:
1727 If the misalignment of DR is known at compile time:
1728 addr_mis = int mis = DR_MISALIGNMENT (dr);
1729 Else, compute address misalignment in bytes:
1730 addr_mis = addr & (target_align - 1)
1732 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1734 (elem_size = element type size; an element is the scalar element whose type
1735 is the inner type of the vectype)
1737 The computations will be emitted at the end of BB. We also compute and
1738 store upper bound (included) of the result in BOUND.
1740 When the step of the data-ref in the loop is not 1 (as in interleaved data
1741 and SLP), the number of iterations of the prolog must be divided by the step
1742 (which is equal to the size of interleaved group).
1744 The above formulas assume that VF == number of elements in the vector. This
1745 may not hold when there are multiple-types in the loop.
1746 In this case, for some data-references in the loop the VF does not represent
1747 the number of elements that fit in the vector. Therefore, instead of VF we
1748 use TYPE_VECTOR_SUBPARTS. */
1750 static tree
1751 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1752 basic_block bb, int *bound)
1754 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1755 tree var;
1756 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1757 gimple_seq stmts = NULL, new_stmts = NULL;
1758 tree iters, iters_name;
1759 stmt_vec_info stmt_info = dr_info->stmt;
1760 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1761 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1763 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1765 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1767 if (dump_enabled_p ())
1768 dump_printf_loc (MSG_NOTE, vect_location,
1769 "known peeling = %d.\n", npeel);
1771 iters = build_int_cst (niters_type, npeel);
1772 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1774 else
1776 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1777 tree type = TREE_TYPE (misalign_in_elems);
1778 HOST_WIDE_INT elem_size
1779 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1780 /* We only do prolog peeling if the target alignment is known at compile
1781 time. */
1782 poly_uint64 align_in_elems =
1783 exact_div (target_align, elem_size);
1784 tree align_in_elems_minus_1 =
1785 build_int_cst (type, align_in_elems - 1);
1786 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1788 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1789 & (align_in_elems - 1)). */
1790 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1791 size_zero_node) < 0;
1792 if (negative)
1793 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1794 align_in_elems_tree);
1795 else
1796 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1797 misalign_in_elems);
1798 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1799 iters = fold_convert (niters_type, iters);
1800 unsigned HOST_WIDE_INT align_in_elems_c;
1801 if (align_in_elems.is_constant (&align_in_elems_c))
1802 *bound = align_in_elems_c - 1;
1803 else
1804 *bound = -1;
1807 if (dump_enabled_p ())
1808 dump_printf_loc (MSG_NOTE, vect_location,
1809 "niters for prolog loop: %T\n", iters);
1811 var = create_tmp_var (niters_type, "prolog_loop_niters");
1812 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1814 if (new_stmts)
1815 gimple_seq_add_seq (&stmts, new_stmts);
1816 if (stmts)
1818 gcc_assert (single_succ_p (bb));
1819 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1820 if (gsi_end_p (gsi))
1821 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1822 else
1823 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1825 return iters_name;
1829 /* Function vect_update_init_of_dr
1831 If CODE is PLUS, the vector loop starts NITERS iterations after the
1832 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1833 iterations before the scalar one (using masking to skip inactive
1834 elements). This function updates the information recorded in DR to
1835 account for the difference. Specifically, it updates the OFFSET
1836 field of DR_INFO. */
1838 static void
1839 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
1841 struct data_reference *dr = dr_info->dr;
1842 tree offset = dr_info->offset;
1843 if (!offset)
1844 offset = build_zero_cst (sizetype);
1846 niters = fold_build2 (MULT_EXPR, sizetype,
1847 fold_convert (sizetype, niters),
1848 fold_convert (sizetype, DR_STEP (dr)));
1849 offset = fold_build2 (code, sizetype,
1850 fold_convert (sizetype, offset), niters);
1851 dr_info->offset = offset;
1855 /* Function vect_update_inits_of_drs
1857 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1858 CODE and NITERS are as for vect_update_inits_of_dr. */
1860 void
1861 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1862 tree_code code)
1864 unsigned int i;
1865 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1866 struct data_reference *dr;
1868 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
1870 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
1871 here, but since we might use these niters to update the epilogues niters
1872 and data references we can't insert them here as this definition might not
1873 always dominate its uses. */
1874 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1875 niters = fold_convert (sizetype, niters);
1877 FOR_EACH_VEC_ELT (datarefs, i, dr)
1879 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1880 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
1881 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
1882 vect_update_init_of_dr (dr_info, niters, code);
1886 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1887 by masking. This involves calculating the number of iterations to
1888 be peeled and then aligning all memory references appropriately. */
1890 void
1891 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1893 tree misalign_in_elems;
1894 tree type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
1896 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1898 /* From the information recorded in LOOP_VINFO get the number of iterations
1899 that need to be skipped via masking. */
1900 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1902 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1903 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1904 misalign_in_elems = build_int_cst (type, misalign);
1906 else
1908 gimple_seq seq1 = NULL, seq2 = NULL;
1909 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1910 misalign_in_elems = fold_convert (type, misalign_in_elems);
1911 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1912 &seq2, true, NULL_TREE);
1913 gimple_seq_add_seq (&seq1, seq2);
1914 if (seq1)
1916 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1917 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1918 gcc_assert (!new_bb);
1922 if (dump_enabled_p ())
1923 dump_printf_loc (MSG_NOTE, vect_location,
1924 "misalignment for fully-masked loop: %T\n",
1925 misalign_in_elems);
1927 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1929 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1932 /* This function builds ni_name = number of iterations. Statements
1933 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1934 it to TRUE if new ssa_var is generated. */
1936 tree
1937 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1939 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1940 if (TREE_CODE (ni) == INTEGER_CST)
1941 return ni;
1942 else
1944 tree ni_name, var;
1945 gimple_seq stmts = NULL;
1946 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1948 var = create_tmp_var (TREE_TYPE (ni), "niters");
1949 ni_name = force_gimple_operand (ni, &stmts, false, var);
1950 if (stmts)
1952 gsi_insert_seq_on_edge_immediate (pe, stmts);
1953 if (new_var_p != NULL)
1954 *new_var_p = true;
1957 return ni_name;
1961 /* Calculate the number of iterations above which vectorized loop will be
1962 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1963 of prolog loop. If it's integer const, the integer number is also passed
1964 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1965 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1966 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1967 threshold below which the scalar (rather than vectorized) loop will be
1968 executed. This function stores the upper bound (inclusive) of the result
1969 in BOUND_SCALAR. */
1971 static tree
1972 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1973 int bound_prolog, poly_int64 bound_epilog, int th,
1974 poly_uint64 *bound_scalar,
1975 bool check_profitability)
1977 tree type = TREE_TYPE (niters_prolog);
1978 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1979 build_int_cst (type, bound_epilog));
1981 *bound_scalar = bound_prolog + bound_epilog;
1982 if (check_profitability)
1984 /* TH indicates the minimum niters of vectorized loop, while we
1985 compute the maximum niters of scalar loop. */
1986 th--;
1987 /* Peeling for constant times. */
1988 if (int_niters_prolog >= 0)
1990 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1991 return build_int_cst (type, *bound_scalar);
1993 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1994 and BOUND_EPILOG are inclusive upper bounds. */
1995 if (known_ge (th, bound_prolog + bound_epilog))
1997 *bound_scalar = th;
1998 return build_int_cst (type, th);
2000 /* Need to do runtime comparison. */
2001 else if (maybe_gt (th, bound_epilog))
2003 *bound_scalar = upper_bound (*bound_scalar, th);
2004 return fold_build2 (MAX_EXPR, type,
2005 build_int_cst (type, th), niters);
2008 return niters;
2011 /* NITERS is the number of times that the original scalar loop executes
2012 after peeling. Work out the maximum number of iterations N that can
2013 be handled by the vectorized form of the loop and then either:
2015 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
2017 niters_vector = N
2019 b) set *STEP_VECTOR_PTR to one and generate:
2021 niters_vector = N / vf
2023 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
2024 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
2025 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
2027 void
2028 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
2029 tree *niters_vector_ptr, tree *step_vector_ptr,
2030 bool niters_no_overflow)
2032 tree ni_minus_gap, var;
2033 tree niters_vector, step_vector, type = TREE_TYPE (niters);
2034 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2035 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
2036 tree log_vf = NULL_TREE;
2038 /* If epilogue loop is required because of data accesses with gaps, we
2039 subtract one iteration from the total number of iterations here for
2040 correct calculation of RATIO. */
2041 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2043 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2044 build_one_cst (type));
2045 if (!is_gimple_val (ni_minus_gap))
2047 var = create_tmp_var (type, "ni_gap");
2048 gimple *stmts = NULL;
2049 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2050 true, var);
2051 gsi_insert_seq_on_edge_immediate (pe, stmts);
2054 else
2055 ni_minus_gap = niters;
2057 /* To silence some unexpected warnings, simply initialize to 0. */
2058 unsigned HOST_WIDE_INT const_vf = 0;
2059 if (vf.is_constant (&const_vf)
2060 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2062 /* Create: niters >> log2(vf) */
2063 /* If it's known that niters == number of latch executions + 1 doesn't
2064 overflow, we can generate niters >> log2(vf); otherwise we generate
2065 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2066 will be at least one. */
2067 log_vf = build_int_cst (type, exact_log2 (const_vf));
2068 if (niters_no_overflow)
2069 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2070 else
2071 niters_vector
2072 = fold_build2 (PLUS_EXPR, type,
2073 fold_build2 (RSHIFT_EXPR, type,
2074 fold_build2 (MINUS_EXPR, type,
2075 ni_minus_gap,
2076 build_int_cst (type, vf)),
2077 log_vf),
2078 build_int_cst (type, 1));
2079 step_vector = build_one_cst (type);
2081 else
2083 niters_vector = ni_minus_gap;
2084 step_vector = build_int_cst (type, vf);
2087 if (!is_gimple_val (niters_vector))
2089 var = create_tmp_var (type, "bnd");
2090 gimple_seq stmts = NULL;
2091 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2092 gsi_insert_seq_on_edge_immediate (pe, stmts);
2093 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2094 we set range information to make niters analyzer's life easier.
2095 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2096 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2097 if (stmts != NULL && log_vf)
2099 if (niters_no_overflow)
2101 value_range vr (type,
2102 wi::one (TYPE_PRECISION (type)),
2103 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2104 TYPE_SIGN (type)),
2105 exact_log2 (const_vf),
2106 TYPE_SIGN (type)));
2107 set_range_info (niters_vector, vr);
2109 /* For VF == 1 the vector IV might also overflow so we cannot
2110 assert a minimum value of 1. */
2111 else if (const_vf > 1)
2113 value_range vr (type,
2114 wi::one (TYPE_PRECISION (type)),
2115 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2116 TYPE_SIGN (type))
2117 - (const_vf - 1),
2118 exact_log2 (const_vf), TYPE_SIGN (type))
2119 + 1);
2120 set_range_info (niters_vector, vr);
2124 *niters_vector_ptr = niters_vector;
2125 *step_vector_ptr = step_vector;
2127 return;
2130 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2131 loop specified by LOOP_VINFO after vectorization, compute the number
2132 of iterations before vectorization (niters_vector * vf) and store it
2133 to NITERS_VECTOR_MULT_VF_PTR. */
2135 static void
2136 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2137 tree niters_vector,
2138 tree *niters_vector_mult_vf_ptr)
2140 /* We should be using a step_vector of VF if VF is variable. */
2141 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2142 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2143 tree type = TREE_TYPE (niters_vector);
2144 tree log_vf = build_int_cst (type, exact_log2 (vf));
2145 basic_block exit_bb = single_exit (loop)->dest;
2147 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2148 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2149 niters_vector, log_vf);
2150 if (!is_gimple_val (niters_vector_mult_vf))
2152 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2153 gimple_seq stmts = NULL;
2154 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2155 &stmts, true, var);
2156 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2157 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2159 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2162 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2163 this function searches for the corresponding lcssa phi node in exit
2164 bb of LOOP. If it is found, return the phi result; otherwise return
2165 NULL. */
2167 static tree
2168 find_guard_arg (class loop *loop, class loop *epilog ATTRIBUTE_UNUSED,
2169 gphi *lcssa_phi)
2171 gphi_iterator gsi;
2172 edge e = single_exit (loop);
2174 gcc_assert (single_pred_p (e->dest));
2175 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2177 gphi *phi = gsi.phi ();
2178 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2179 PHI_ARG_DEF (lcssa_phi, 0), 0))
2180 return PHI_RESULT (phi);
2182 return NULL_TREE;
2185 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2186 from SECOND/FIRST and puts it at the original loop's preheader/exit
2187 edge, the two loops are arranged as below:
2189 preheader_a:
2190 first_loop:
2191 header_a:
2192 i_1 = PHI<i_0, i_2>;
2194 i_2 = i_1 + 1;
2195 if (cond_a)
2196 goto latch_a;
2197 else
2198 goto between_bb;
2199 latch_a:
2200 goto header_a;
2202 between_bb:
2203 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2205 second_loop:
2206 header_b:
2207 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2208 or with i_2 if no LCSSA phi is created
2209 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2211 i_4 = i_3 + 1;
2212 if (cond_b)
2213 goto latch_b;
2214 else
2215 goto exit_bb;
2216 latch_b:
2217 goto header_b;
2219 exit_bb:
2221 This function creates loop closed SSA for the first loop; update the
2222 second loop's PHI nodes by replacing argument on incoming edge with the
2223 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2224 is false, Loop closed ssa phis will only be created for non-iv phis for
2225 the first loop.
2227 This function assumes exit bb of the first loop is preheader bb of the
2228 second loop, i.e, between_bb in the example code. With PHIs updated,
2229 the second loop will execute rest iterations of the first. */
2231 static void
2232 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2233 class loop *first, class loop *second,
2234 bool create_lcssa_for_iv_phis)
2236 gphi_iterator gsi_update, gsi_orig;
2237 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2239 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2240 edge second_preheader_e = loop_preheader_edge (second);
2241 basic_block between_bb = single_exit (first)->dest;
2243 gcc_assert (between_bb == second_preheader_e->src);
2244 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2245 /* Either the first loop or the second is the loop to be vectorized. */
2246 gcc_assert (loop == first || loop == second);
2248 for (gsi_orig = gsi_start_phis (first->header),
2249 gsi_update = gsi_start_phis (second->header);
2250 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2251 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2253 gphi *orig_phi = gsi_orig.phi ();
2254 gphi *update_phi = gsi_update.phi ();
2256 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2257 /* Generate lcssa PHI node for the first loop. */
2258 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2259 stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
2260 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
2262 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2263 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2264 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2265 arg = new_res;
2268 /* Update PHI node in the second loop by replacing arg on the loop's
2269 incoming edge. */
2270 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2273 /* For epilogue peeling we have to make sure to copy all LC PHIs
2274 for correct vectorization of live stmts. */
2275 if (loop == first)
2277 basic_block orig_exit = single_exit (second)->dest;
2278 for (gsi_orig = gsi_start_phis (orig_exit);
2279 !gsi_end_p (gsi_orig); gsi_next (&gsi_orig))
2281 gphi *orig_phi = gsi_orig.phi ();
2282 tree orig_arg = PHI_ARG_DEF (orig_phi, 0);
2283 if (TREE_CODE (orig_arg) != SSA_NAME || virtual_operand_p (orig_arg))
2284 continue;
2286 /* Already created in the above loop. */
2287 if (find_guard_arg (first, second, orig_phi))
2288 continue;
2290 tree new_res = copy_ssa_name (orig_arg);
2291 gphi *lcphi = create_phi_node (new_res, between_bb);
2292 add_phi_arg (lcphi, orig_arg, single_exit (first), UNKNOWN_LOCATION);
2297 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2298 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2299 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2300 appear like below:
2302 guard_bb:
2303 if (cond)
2304 goto merge_bb;
2305 else
2306 goto skip_loop;
2308 skip_loop:
2309 header_a:
2310 i_1 = PHI<i_0, i_2>;
2312 i_2 = i_1 + 1;
2313 if (cond_a)
2314 goto latch_a;
2315 else
2316 goto exit_a;
2317 latch_a:
2318 goto header_a;
2320 exit_a:
2321 i_5 = PHI<i_2>;
2323 merge_bb:
2324 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2326 update_loop:
2327 header_b:
2328 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2330 i_4 = i_3 + 1;
2331 if (cond_b)
2332 goto latch_b;
2333 else
2334 goto exit_bb;
2335 latch_b:
2336 goto header_b;
2338 exit_bb:
2340 This function creates PHI nodes at merge_bb and replaces the use of i_5
2341 in the update_loop's PHI node with the result of new PHI result. */
2343 static void
2344 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2345 class loop *update_loop,
2346 edge guard_edge, edge merge_edge)
2348 location_t merge_loc, guard_loc;
2349 edge orig_e = loop_preheader_edge (skip_loop);
2350 edge update_e = loop_preheader_edge (update_loop);
2351 gphi_iterator gsi_orig, gsi_update;
2353 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2354 gsi_update = gsi_start_phis (update_loop->header));
2355 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2356 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2358 gphi *orig_phi = gsi_orig.phi ();
2359 gphi *update_phi = gsi_update.phi ();
2361 /* Generate new phi node at merge bb of the guard. */
2362 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2363 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2365 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2366 args in NEW_PHI for these edges. */
2367 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2368 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2369 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2370 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2371 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2372 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2374 /* Update phi in UPDATE_PHI. */
2375 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2379 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2380 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2381 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2382 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2383 The CFG looks like:
2385 loop:
2386 header_a:
2387 i_1 = PHI<i_0, i_2>;
2389 i_2 = i_1 + 1;
2390 if (cond_a)
2391 goto latch_a;
2392 else
2393 goto exit_a;
2394 latch_a:
2395 goto header_a;
2397 exit_a:
2399 guard_bb:
2400 if (cond)
2401 goto merge_bb;
2402 else
2403 goto epilog_loop;
2405 ;; fall_through_bb
2407 epilog_loop:
2408 header_b:
2409 i_3 = PHI<i_2, i_4>;
2411 i_4 = i_3 + 1;
2412 if (cond_b)
2413 goto latch_b;
2414 else
2415 goto merge_bb;
2416 latch_b:
2417 goto header_b;
2419 merge_bb:
2420 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2422 exit_bb:
2423 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2425 For each name used out side EPILOG (i.e - for each name that has a lcssa
2426 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2427 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2428 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2429 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2430 in exit_bb will also be updated. */
2432 static void
2433 slpeel_update_phi_nodes_for_guard2 (class loop *loop, class loop *epilog,
2434 edge guard_edge, edge merge_edge)
2436 gphi_iterator gsi;
2437 basic_block merge_bb = guard_edge->dest;
2439 gcc_assert (single_succ_p (merge_bb));
2440 edge e = single_succ_edge (merge_bb);
2441 basic_block exit_bb = e->dest;
2442 gcc_assert (single_pred_p (exit_bb));
2443 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2445 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2447 gphi *update_phi = gsi.phi ();
2448 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2450 tree merge_arg = NULL_TREE;
2452 /* If the old argument is a SSA_NAME use its current_def. */
2453 if (TREE_CODE (old_arg) == SSA_NAME)
2454 merge_arg = get_current_def (old_arg);
2455 /* If it's a constant or doesn't have a current_def, just use the old
2456 argument. */
2457 if (!merge_arg)
2458 merge_arg = old_arg;
2460 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2461 /* If the var is live after loop but not a reduction, we simply
2462 use the old arg. */
2463 if (!guard_arg)
2464 guard_arg = old_arg;
2466 /* Create new phi node in MERGE_BB: */
2467 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2468 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2470 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2471 the two PHI args in merge_phi for these edges. */
2472 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2473 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2475 /* Update the original phi in exit_bb. */
2476 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2480 /* EPILOG loop is duplicated from the original loop for vectorizing,
2481 the arg of its loop closed ssa PHI needs to be updated. */
2483 static void
2484 slpeel_update_phi_nodes_for_lcssa (class loop *epilog)
2486 gphi_iterator gsi;
2487 basic_block exit_bb = single_exit (epilog)->dest;
2489 gcc_assert (single_pred_p (exit_bb));
2490 edge e = EDGE_PRED (exit_bb, 0);
2491 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2492 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2495 /* EPILOGUE_VINFO is an epilogue loop that we now know would need to
2496 iterate exactly CONST_NITERS times. Make a final decision about
2497 whether the epilogue loop should be used, returning true if so. */
2499 static bool
2500 vect_update_epilogue_niters (loop_vec_info epilogue_vinfo,
2501 unsigned HOST_WIDE_INT const_niters)
2503 /* Avoid wrap-around when computing const_niters - 1. Also reject
2504 using an epilogue loop for a single scalar iteration, even if
2505 we could in principle implement that using partial vectors. */
2506 unsigned int gap_niters = LOOP_VINFO_PEELING_FOR_GAPS (epilogue_vinfo);
2507 if (const_niters <= gap_niters + 1)
2508 return false;
2510 /* Install the number of iterations. */
2511 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (epilogue_vinfo));
2512 tree niters_tree = build_int_cst (niters_type, const_niters);
2513 tree nitersm1_tree = build_int_cst (niters_type, const_niters - 1);
2515 LOOP_VINFO_NITERS (epilogue_vinfo) = niters_tree;
2516 LOOP_VINFO_NITERSM1 (epilogue_vinfo) = nitersm1_tree;
2518 /* Decide what to do if the number of epilogue iterations is not
2519 a multiple of the epilogue loop's vectorization factor. */
2520 return vect_determine_partial_vectors_and_peeling (epilogue_vinfo, true);
2523 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2524 Return a value that equals:
2526 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2527 - SKIP_VALUE when the main loop is skipped. */
2529 tree
2530 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2531 tree skip_value)
2533 gcc_assert (loop_vinfo->main_loop_edge);
2535 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2536 basic_block bb = loop_vinfo->main_loop_edge->dest;
2537 gphi *new_phi = create_phi_node (phi_result, bb);
2538 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2539 UNKNOWN_LOCATION);
2540 add_phi_arg (new_phi, skip_value,
2541 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2542 return phi_result;
2545 /* Function vect_do_peeling.
2547 Input:
2548 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2550 preheader:
2551 LOOP:
2552 header_bb:
2553 loop_body
2554 if (exit_loop_cond) goto exit_bb
2555 else goto header_bb
2556 exit_bb:
2558 - NITERS: The number of iterations of the loop.
2559 - NITERSM1: The number of iterations of the loop's latch.
2560 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2561 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2562 CHECK_PROFITABILITY is true.
2563 Output:
2564 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2565 iterate after vectorization; see vect_set_loop_condition for details.
2566 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2567 should be set to the number of scalar iterations handled by the
2568 vector loop. The SSA name is only used on exit from the loop.
2570 This function peels prolog and epilog from the loop, adds guards skipping
2571 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2572 would look like:
2574 guard_bb_1:
2575 if (prefer_scalar_loop) goto merge_bb_1
2576 else goto guard_bb_2
2578 guard_bb_2:
2579 if (skip_prolog) goto merge_bb_2
2580 else goto prolog_preheader
2582 prolog_preheader:
2583 PROLOG:
2584 prolog_header_bb:
2585 prolog_body
2586 if (exit_prolog_cond) goto prolog_exit_bb
2587 else goto prolog_header_bb
2588 prolog_exit_bb:
2590 merge_bb_2:
2592 vector_preheader:
2593 VECTOR LOOP:
2594 vector_header_bb:
2595 vector_body
2596 if (exit_vector_cond) goto vector_exit_bb
2597 else goto vector_header_bb
2598 vector_exit_bb:
2600 guard_bb_3:
2601 if (skip_epilog) goto merge_bb_3
2602 else goto epilog_preheader
2604 merge_bb_1:
2606 epilog_preheader:
2607 EPILOG:
2608 epilog_header_bb:
2609 epilog_body
2610 if (exit_epilog_cond) goto merge_bb_3
2611 else goto epilog_header_bb
2613 merge_bb_3:
2615 Note this function peels prolog and epilog only if it's necessary,
2616 as well as guards.
2617 This function returns the epilogue loop if a decision was made to vectorize
2618 it, otherwise NULL.
2620 The analysis resulting in this epilogue loop's loop_vec_info was performed
2621 in the same vect_analyze_loop call as the main loop's. At that time
2622 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2623 vectorization factors than the main loop. This list is stored in the main
2624 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2625 vectorize the epilogue loop for a lower vectorization factor, the
2626 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2627 updated and linked to the epilogue loop. This is later used to vectorize
2628 the epilogue. The reason the loop_vec_info needs updating is that it was
2629 constructed based on the original main loop, and the epilogue loop is a
2630 copy of this loop, so all links pointing to statements in the original loop
2631 need updating. Furthermore, these loop_vec_infos share the
2632 data_reference's records, which will also need to be updated.
2634 TODO: Guard for prefer_scalar_loop should be emitted along with
2635 versioning conditions if loop versioning is needed. */
2638 class loop *
2639 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2640 tree *niters_vector, tree *step_vector,
2641 tree *niters_vector_mult_vf_var, int th,
2642 bool check_profitability, bool niters_no_overflow,
2643 tree *advance)
2645 edge e, guard_e;
2646 tree type = TREE_TYPE (niters), guard_cond;
2647 basic_block guard_bb, guard_to;
2648 profile_probability prob_prolog, prob_vector, prob_epilog;
2649 int estimated_vf;
2650 int prolog_peeling = 0;
2651 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
2652 bool vect_epilogues_updated_niters = false;
2653 /* We currently do not support prolog peeling if the target alignment is not
2654 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
2655 target alignment being constant. */
2656 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2657 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
2658 return NULL;
2660 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2661 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2663 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2664 poly_uint64 bound_epilog = 0;
2665 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2666 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2667 bound_epilog += vf - 1;
2668 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2669 bound_epilog += 1;
2670 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2671 poly_uint64 bound_scalar = bound_epilog;
2673 if (!prolog_peeling && !epilog_peeling)
2674 return NULL;
2676 /* Before doing any peeling make sure to reset debug binds outside of
2677 the loop refering to defs not in LC SSA. */
2678 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2679 for (unsigned i = 0; i < loop->num_nodes; ++i)
2681 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2682 imm_use_iterator ui;
2683 gimple *use_stmt;
2684 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2685 gsi_next (&gsi))
2687 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
2688 if (gimple_debug_bind_p (use_stmt)
2689 && loop != gimple_bb (use_stmt)->loop_father
2690 && !flow_loop_nested_p (loop,
2691 gimple_bb (use_stmt)->loop_father))
2693 gimple_debug_bind_reset_value (use_stmt);
2694 update_stmt (use_stmt);
2697 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2698 gsi_next (&gsi))
2700 ssa_op_iter op_iter;
2701 def_operand_p def_p;
2702 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
2703 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
2704 if (gimple_debug_bind_p (use_stmt)
2705 && loop != gimple_bb (use_stmt)->loop_father
2706 && !flow_loop_nested_p (loop,
2707 gimple_bb (use_stmt)->loop_father))
2709 gimple_debug_bind_reset_value (use_stmt);
2710 update_stmt (use_stmt);
2715 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2716 estimated_vf = vect_vf_for_cost (loop_vinfo);
2717 if (estimated_vf == 2)
2718 estimated_vf = 3;
2719 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2720 .apply_scale (estimated_vf - 1, estimated_vf);
2722 class loop *prolog, *epilog = NULL;
2723 class loop *first_loop = loop;
2724 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2726 /* SSA form needs to be up-to-date since we are going to manually
2727 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
2728 update SSA state after that, so we have to make sure to not lose any
2729 pending update needs. */
2730 gcc_assert (!need_ssa_update_p (cfun));
2732 /* If we're vectorizing an epilogue loop, we have ensured that the
2733 virtual operand is in SSA form throughout the vectorized main loop.
2734 Normally it is possible to trace the updated
2735 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
2736 back to scalar-stmt vuses, meaning that the effect of the SSA update
2737 remains local to the main loop. However, there are rare cases in
2738 which the vectorized loop should have vdefs even when the original scalar
2739 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
2740 introduces clobbers of the temporary vector array, which in turn
2741 needs new vdefs. If the scalar loop doesn't write to memory, these
2742 new vdefs will be the only ones in the vector loop.
2743 We are currently defering updating virtual SSA form and creating
2744 of a virtual PHI for this case so we do not have to make sure the
2745 newly introduced virtual def is in LCSSA form. */
2747 if (MAY_HAVE_DEBUG_BIND_STMTS)
2749 gcc_assert (!adjust_vec.exists ());
2750 adjust_vec.create (32);
2752 initialize_original_copy_tables ();
2754 /* Record the anchor bb at which the guard should be placed if the scalar
2755 loop might be preferred. */
2756 basic_block anchor = loop_preheader_edge (loop)->src;
2758 /* Generate the number of iterations for the prolog loop. We do this here
2759 so that we can also get the upper bound on the number of iterations. */
2760 tree niters_prolog;
2761 int bound_prolog = 0;
2762 if (prolog_peeling)
2763 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2764 &bound_prolog);
2765 else
2766 niters_prolog = build_int_cst (type, 0);
2768 loop_vec_info epilogue_vinfo = NULL;
2769 if (vect_epilogues)
2771 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2772 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2775 tree niters_vector_mult_vf = NULL_TREE;
2776 /* Saving NITERs before the loop, as this may be changed by prologue. */
2777 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
2778 edge update_e = NULL, skip_e = NULL;
2779 unsigned int lowest_vf = constant_lower_bound (vf);
2780 /* If we know the number of scalar iterations for the main loop we should
2781 check whether after the main loop there are enough iterations left over
2782 for the epilogue. */
2783 if (vect_epilogues
2784 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2785 && prolog_peeling >= 0
2786 && known_eq (vf, lowest_vf))
2788 unsigned HOST_WIDE_INT eiters
2789 = (LOOP_VINFO_INT_NITERS (loop_vinfo)
2790 - LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
2792 eiters -= prolog_peeling;
2793 eiters
2794 = eiters % lowest_vf + LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
2796 while (!vect_update_epilogue_niters (epilogue_vinfo, eiters))
2798 delete epilogue_vinfo;
2799 epilogue_vinfo = NULL;
2800 if (loop_vinfo->epilogue_vinfos.length () == 0)
2802 vect_epilogues = false;
2803 break;
2805 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2806 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2808 vect_epilogues_updated_niters = true;
2810 /* Prolog loop may be skipped. */
2811 bool skip_prolog = (prolog_peeling != 0);
2812 /* Skip this loop to epilog when there are not enough iterations to enter this
2813 vectorized loop. If true we should perform runtime checks on the NITERS
2814 to check whether we should skip the current vectorized loop. If we know
2815 the number of scalar iterations we may choose to add a runtime check if
2816 this number "maybe" smaller than the number of iterations required
2817 when we know the number of scalar iterations may potentially
2818 be smaller than the number of iterations required to enter this loop, for
2819 this we use the upper bounds on the prolog and epilog peeling. When we
2820 don't know the number of iterations and don't require versioning it is
2821 because we have asserted that there are enough scalar iterations to enter
2822 the main loop, so this skip is not necessary. When we are versioning then
2823 we only add such a skip if we have chosen to vectorize the epilogue. */
2824 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2825 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2826 bound_prolog + bound_epilog)
2827 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2828 || vect_epilogues));
2829 /* Epilog loop must be executed if the number of iterations for epilog
2830 loop is known at compile time, otherwise we need to add a check at
2831 the end of vector loop and skip to the end of epilog loop. */
2832 bool skip_epilog = (prolog_peeling < 0
2833 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2834 || !vf.is_constant ());
2835 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2836 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2837 skip_epilog = false;
2839 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2840 auto_vec<profile_count> original_counts;
2841 basic_block *original_bbs = NULL;
2843 if (skip_vector)
2845 split_edge (loop_preheader_edge (loop));
2847 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
2849 original_bbs = get_loop_body (loop);
2850 for (unsigned int i = 0; i < loop->num_nodes; i++)
2851 original_counts.safe_push(original_bbs[i]->count);
2854 /* Due to the order in which we peel prolog and epilog, we first
2855 propagate probability to the whole loop. The purpose is to
2856 avoid adjusting probabilities of both prolog and vector loops
2857 separately. Note in this case, the probability of epilog loop
2858 needs to be scaled back later. */
2859 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2860 if (prob_vector.initialized_p ())
2862 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2863 scale_loop_profile (loop, prob_vector, 0);
2867 dump_user_location_t loop_loc = find_loop_location (loop);
2868 if (vect_epilogues)
2869 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
2870 use the original scalar loop as remaining epilogue if necessary. */
2871 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
2872 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2874 if (prolog_peeling)
2876 e = loop_preheader_edge (loop);
2877 if (!slpeel_can_duplicate_loop_p (loop, e))
2879 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2880 "loop can't be duplicated to preheader edge.\n");
2881 gcc_unreachable ();
2883 /* Peel prolog and put it on preheader edge of loop. */
2884 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2885 if (!prolog)
2887 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2888 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2889 gcc_unreachable ();
2891 prolog->force_vectorize = false;
2892 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2893 first_loop = prolog;
2894 reset_original_copy_tables ();
2896 /* Update the number of iterations for prolog loop. */
2897 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2898 vect_set_loop_condition (prolog, NULL, niters_prolog,
2899 step_prolog, NULL_TREE, false);
2901 /* Skip the prolog loop. */
2902 if (skip_prolog)
2904 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2905 niters_prolog, build_int_cst (type, 0));
2906 guard_bb = loop_preheader_edge (prolog)->src;
2907 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2908 guard_to = split_edge (loop_preheader_edge (loop));
2909 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2910 guard_to, guard_bb,
2911 prob_prolog.invert (),
2912 irred_flag);
2913 e = EDGE_PRED (guard_to, 0);
2914 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2915 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2917 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2918 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2921 /* Update init address of DRs. */
2922 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2923 /* Update niters for vector loop. */
2924 LOOP_VINFO_NITERS (loop_vinfo)
2925 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2926 LOOP_VINFO_NITERSM1 (loop_vinfo)
2927 = fold_build2 (MINUS_EXPR, type,
2928 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2929 bool new_var_p = false;
2930 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2931 /* It's guaranteed that vector loop bound before vectorization is at
2932 least VF, so set range information for newly generated var. */
2933 if (new_var_p)
2935 value_range vr (type,
2936 wi::to_wide (build_int_cst (type, vf)),
2937 wi::to_wide (TYPE_MAX_VALUE (type)));
2938 set_range_info (niters, vr);
2941 /* Prolog iterates at most bound_prolog times, latch iterates at
2942 most bound_prolog - 1 times. */
2943 record_niter_bound (prolog, bound_prolog - 1, false, true);
2944 delete_update_ssa ();
2945 adjust_vec_debug_stmts ();
2946 scev_reset ();
2949 if (epilog_peeling)
2951 e = single_exit (loop);
2952 if (!slpeel_can_duplicate_loop_p (loop, e))
2954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2955 "loop can't be duplicated to exit edge.\n");
2956 gcc_unreachable ();
2958 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
2959 said epilog then we should use a copy of the main loop as a starting
2960 point. This loop may have already had some preliminary transformations
2961 to allow for more optimal vectorization, for example if-conversion.
2962 If we are not vectorizing the epilog then we should use the scalar loop
2963 as the transformations mentioned above make less or no sense when not
2964 vectorizing. */
2965 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
2966 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, epilog, e);
2967 if (!epilog)
2969 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2970 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2971 gcc_unreachable ();
2973 epilog->force_vectorize = false;
2974 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2976 /* Scalar version loop may be preferred. In this case, add guard
2977 and skip to epilog. Note this only happens when the number of
2978 iterations of loop is unknown at compile time, otherwise this
2979 won't be vectorized. */
2980 if (skip_vector)
2982 /* Additional epilogue iteration is peeled if gap exists. */
2983 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2984 bound_prolog, bound_epilog,
2985 th, &bound_scalar,
2986 check_profitability);
2987 /* Build guard against NITERSM1 since NITERS may overflow. */
2988 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2989 guard_bb = anchor;
2990 guard_to = split_edge (loop_preheader_edge (epilog));
2991 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2992 guard_to, guard_bb,
2993 prob_vector.invert (),
2994 irred_flag);
2995 skip_e = guard_e;
2996 e = EDGE_PRED (guard_to, 0);
2997 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2998 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
3000 /* Simply propagate profile info from guard_bb to guard_to which is
3001 a merge point of control flow. */
3002 guard_to->count = guard_bb->count;
3004 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
3005 if (vect_epilogues || scalar_loop == NULL)
3007 gcc_assert(epilog->num_nodes == loop->num_nodes);
3008 basic_block *bbs = get_loop_body (epilog);
3009 for (unsigned int i = 0; i < epilog->num_nodes; i++)
3011 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
3012 bbs[i]->count = original_counts[i];
3014 free (bbs);
3015 free (original_bbs);
3019 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
3020 /* If loop is peeled for non-zero constant times, now niters refers to
3021 orig_niters - prolog_peeling, it won't overflow even the orig_niters
3022 overflows. */
3023 niters_no_overflow |= (prolog_peeling > 0);
3024 vect_gen_vector_loop_niters (loop_vinfo, niters,
3025 niters_vector, step_vector,
3026 niters_no_overflow);
3027 if (!integer_onep (*step_vector))
3029 /* On exit from the loop we will have an easy way of calcalating
3030 NITERS_VECTOR / STEP * STEP. Install a dummy definition
3031 until then. */
3032 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
3033 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
3034 *niters_vector_mult_vf_var = niters_vector_mult_vf;
3036 else
3037 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
3038 &niters_vector_mult_vf);
3039 /* Update IVs of original loop as if they were advanced by
3040 niters_vector_mult_vf steps. */
3041 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
3042 update_e = skip_vector ? e : loop_preheader_edge (epilog);
3043 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3044 update_e);
3046 if (skip_epilog)
3048 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3049 niters, niters_vector_mult_vf);
3050 guard_bb = single_exit (loop)->dest;
3051 guard_to = split_edge (single_exit (epilog));
3052 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3053 skip_vector ? anchor : guard_bb,
3054 prob_epilog.invert (),
3055 irred_flag);
3056 if (vect_epilogues)
3057 epilogue_vinfo->skip_this_loop_edge = guard_e;
3058 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
3059 single_exit (epilog));
3060 /* Only need to handle basic block before epilog loop if it's not
3061 the guard_bb, which is the case when skip_vector is true. */
3062 if (guard_bb != bb_before_epilog)
3064 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3066 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3068 scale_loop_profile (epilog, prob_epilog, 0);
3070 else
3071 slpeel_update_phi_nodes_for_lcssa (epilog);
3073 unsigned HOST_WIDE_INT bound;
3074 if (bound_scalar.is_constant (&bound))
3076 gcc_assert (bound != 0);
3077 /* -1 to convert loop iterations to latch iterations. */
3078 record_niter_bound (epilog, bound - 1, false, true);
3081 delete_update_ssa ();
3082 adjust_vec_debug_stmts ();
3083 scev_reset ();
3086 if (vect_epilogues)
3088 epilog->aux = epilogue_vinfo;
3089 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3091 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3093 /* We now must calculate the number of NITERS performed by the previous
3094 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3095 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3096 niters_prolog, niters_vector_mult_vf);
3098 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3099 determine whether we are coming from the previous vectorized loop
3100 using the update_e edge or the skip_vector basic block using the
3101 skip_e edge. */
3102 if (skip_vector)
3104 gcc_assert (update_e != NULL
3105 && skip_e != NULL
3106 && !vect_epilogues_updated_niters);
3107 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3108 update_e->dest);
3109 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3110 gimple *stmt = gimple_build_assign (new_ssa, niters);
3111 gimple_stmt_iterator gsi;
3112 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3113 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3115 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3116 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3118 else
3120 gsi = gsi_last_bb (update_e->src);
3121 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3124 niters = new_ssa;
3125 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3126 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3127 UNKNOWN_LOCATION);
3128 niters = PHI_RESULT (new_phi);
3129 epilogue_vinfo->main_loop_edge = update_e;
3130 epilogue_vinfo->skip_main_loop_edge = skip_e;
3133 /* Set ADVANCE to the number of iterations performed by the previous
3134 loop and its prologue. */
3135 *advance = niters;
3137 if (!vect_epilogues_updated_niters)
3139 /* Subtract the number of iterations performed by the vectorized loop
3140 from the number of total iterations. */
3141 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3142 before_loop_niters,
3143 niters);
3145 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3146 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3147 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3148 epilogue_niters,
3149 build_one_cst (TREE_TYPE (epilogue_niters)));
3151 /* Decide what to do if the number of epilogue iterations is not
3152 a multiple of the epilogue loop's vectorization factor.
3153 We should have rejected the loop during the analysis phase
3154 if this fails. */
3155 if (!vect_determine_partial_vectors_and_peeling (epilogue_vinfo,
3156 true))
3157 gcc_unreachable ();
3161 adjust_vec.release ();
3162 free_original_copy_tables ();
3164 return vect_epilogues ? epilog : NULL;
3167 /* Function vect_create_cond_for_niters_checks.
3169 Create a conditional expression that represents the run-time checks for
3170 loop's niter. The loop is guaranteed to terminate if the run-time
3171 checks hold.
3173 Input:
3174 COND_EXPR - input conditional expression. New conditions will be chained
3175 with logical AND operation. If it is NULL, then the function
3176 is used to return the number of alias checks.
3177 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3178 to be checked.
3180 Output:
3181 COND_EXPR - conditional expression.
3183 The returned COND_EXPR is the conditional expression to be used in the
3184 if statement that controls which version of the loop gets executed at
3185 runtime. */
3187 static void
3188 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3190 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3192 if (*cond_expr)
3193 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3194 *cond_expr, part_cond_expr);
3195 else
3196 *cond_expr = part_cond_expr;
3199 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3200 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3202 static void
3203 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3205 if (*cond_expr)
3206 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3207 *cond_expr, part_cond_expr);
3208 else
3209 *cond_expr = part_cond_expr;
3212 /* Function vect_create_cond_for_align_checks.
3214 Create a conditional expression that represents the alignment checks for
3215 all of data references (array element references) whose alignment must be
3216 checked at runtime.
3218 Input:
3219 COND_EXPR - input conditional expression. New conditions will be chained
3220 with logical AND operation.
3221 LOOP_VINFO - two fields of the loop information are used.
3222 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3223 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3225 Output:
3226 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3227 expression.
3228 The returned value is the conditional expression to be used in the if
3229 statement that controls which version of the loop gets executed at runtime.
3231 The algorithm makes two assumptions:
3232 1) The number of bytes "n" in a vector is a power of 2.
3233 2) An address "a" is aligned if a%n is zero and that this
3234 test can be done as a&(n-1) == 0. For example, for 16
3235 byte vectors the test is a&0xf == 0. */
3237 static void
3238 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3239 tree *cond_expr,
3240 gimple_seq *cond_expr_stmt_list)
3242 const vec<stmt_vec_info> &may_misalign_stmts
3243 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3244 stmt_vec_info stmt_info;
3245 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3246 tree mask_cst;
3247 unsigned int i;
3248 tree int_ptrsize_type;
3249 char tmp_name[20];
3250 tree or_tmp_name = NULL_TREE;
3251 tree and_tmp_name;
3252 gimple *and_stmt;
3253 tree ptrsize_zero;
3254 tree part_cond_expr;
3256 /* Check that mask is one less than a power of 2, i.e., mask is
3257 all zeros followed by all ones. */
3258 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3260 int_ptrsize_type = signed_type_for (ptr_type_node);
3262 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3263 of the first vector of the i'th data reference. */
3265 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3267 gimple_seq new_stmt_list = NULL;
3268 tree addr_base;
3269 tree addr_tmp_name;
3270 tree new_or_tmp_name;
3271 gimple *addr_stmt, *or_stmt;
3272 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3273 bool negative = tree_int_cst_compare
3274 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3275 tree offset = negative
3276 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3277 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3278 : size_zero_node;
3280 /* create: addr_tmp = (int)(address_of_first_vector) */
3281 addr_base =
3282 vect_create_addr_base_for_vector_ref (loop_vinfo,
3283 stmt_info, &new_stmt_list,
3284 offset);
3285 if (new_stmt_list != NULL)
3286 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3288 sprintf (tmp_name, "addr2int%d", i);
3289 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3290 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3291 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3293 /* The addresses are OR together. */
3295 if (or_tmp_name != NULL_TREE)
3297 /* create: or_tmp = or_tmp | addr_tmp */
3298 sprintf (tmp_name, "orptrs%d", i);
3299 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3300 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3301 or_tmp_name, addr_tmp_name);
3302 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3303 or_tmp_name = new_or_tmp_name;
3305 else
3306 or_tmp_name = addr_tmp_name;
3308 } /* end for i */
3310 mask_cst = build_int_cst (int_ptrsize_type, mask);
3312 /* create: and_tmp = or_tmp & mask */
3313 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3315 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3316 or_tmp_name, mask_cst);
3317 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3319 /* Make and_tmp the left operand of the conditional test against zero.
3320 if and_tmp has a nonzero bit then some address is unaligned. */
3321 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3322 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3323 and_tmp_name, ptrsize_zero);
3324 chain_cond_expr (cond_expr, part_cond_expr);
3327 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3328 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3329 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3330 and this new condition are true. Treat a null *COND_EXPR as "true". */
3332 static void
3333 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3335 const vec<vec_object_pair> &pairs
3336 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3337 unsigned int i;
3338 vec_object_pair *pair;
3339 FOR_EACH_VEC_ELT (pairs, i, pair)
3341 tree addr1 = build_fold_addr_expr (pair->first);
3342 tree addr2 = build_fold_addr_expr (pair->second);
3343 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3344 addr1, addr2);
3345 chain_cond_expr (cond_expr, part_cond_expr);
3349 /* Create an expression that is true when all lower-bound conditions for
3350 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3352 static void
3353 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3355 const vec<vec_lower_bound> &lower_bounds
3356 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3357 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3359 tree expr = lower_bounds[i].expr;
3360 tree type = unsigned_type_for (TREE_TYPE (expr));
3361 expr = fold_convert (type, expr);
3362 poly_uint64 bound = lower_bounds[i].min_value;
3363 if (!lower_bounds[i].unsigned_p)
3365 expr = fold_build2 (PLUS_EXPR, type, expr,
3366 build_int_cstu (type, bound - 1));
3367 bound += bound - 1;
3369 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3370 build_int_cstu (type, bound));
3371 chain_cond_expr (cond_expr, part_cond_expr);
3375 /* Function vect_create_cond_for_alias_checks.
3377 Create a conditional expression that represents the run-time checks for
3378 overlapping of address ranges represented by a list of data references
3379 relations passed as input.
3381 Input:
3382 COND_EXPR - input conditional expression. New conditions will be chained
3383 with logical AND operation. If it is NULL, then the function
3384 is used to return the number of alias checks.
3385 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3386 to be checked.
3388 Output:
3389 COND_EXPR - conditional expression.
3391 The returned COND_EXPR is the conditional expression to be used in the if
3392 statement that controls which version of the loop gets executed at runtime.
3395 void
3396 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3398 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3399 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3401 if (comp_alias_ddrs.is_empty ())
3402 return;
3404 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3405 &comp_alias_ddrs, cond_expr);
3406 if (dump_enabled_p ())
3407 dump_printf_loc (MSG_NOTE, vect_location,
3408 "created %u versioning for alias checks.\n",
3409 comp_alias_ddrs.length ());
3413 /* Function vect_loop_versioning.
3415 If the loop has data references that may or may not be aligned or/and
3416 has data reference relations whose independence was not proven then
3417 two versions of the loop need to be generated, one which is vectorized
3418 and one which isn't. A test is then generated to control which of the
3419 loops is executed. The test checks for the alignment of all of the
3420 data references that may or may not be aligned. An additional
3421 sequence of runtime tests is generated for each pairs of DDRs whose
3422 independence was not proven. The vectorized version of loop is
3423 executed only if both alias and alignment tests are passed.
3425 The test generated to check which version of loop is executed
3426 is modified to also check for profitability as indicated by the
3427 cost model threshold TH.
3429 The versioning precondition(s) are placed in *COND_EXPR and
3430 *COND_EXPR_STMT_LIST. */
3432 class loop *
3433 vect_loop_versioning (loop_vec_info loop_vinfo,
3434 gimple *loop_vectorized_call)
3436 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3437 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3438 basic_block condition_bb;
3439 gphi_iterator gsi;
3440 gimple_stmt_iterator cond_exp_gsi;
3441 basic_block merge_bb;
3442 basic_block new_exit_bb;
3443 edge new_exit_e, e;
3444 gphi *orig_phi, *new_phi;
3445 tree cond_expr = NULL_TREE;
3446 gimple_seq cond_expr_stmt_list = NULL;
3447 tree arg;
3448 profile_probability prob = profile_probability::likely ();
3449 gimple_seq gimplify_stmt_list = NULL;
3450 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3451 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3452 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3453 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3454 poly_uint64 versioning_threshold
3455 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3456 tree version_simd_if_cond
3457 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3458 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3460 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3461 && !ordered_p (th, versioning_threshold))
3462 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3463 build_int_cst (TREE_TYPE (scalar_loop_iters),
3464 th - 1));
3465 if (maybe_ne (versioning_threshold, 0U))
3467 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3468 build_int_cst (TREE_TYPE (scalar_loop_iters),
3469 versioning_threshold - 1));
3470 if (cond_expr)
3471 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3472 expr, cond_expr);
3473 else
3474 cond_expr = expr;
3477 tree cost_name = NULL_TREE;
3478 profile_probability prob2 = profile_probability::uninitialized ();
3479 if (cond_expr
3480 && !integer_truep (cond_expr)
3481 && (version_niter
3482 || version_align
3483 || version_alias
3484 || version_simd_if_cond))
3486 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3487 &cond_expr_stmt_list,
3488 is_gimple_val, NULL_TREE);
3489 /* Split prob () into two so that the overall probability of passing
3490 both the cost-model and versioning checks is the orig prob. */
3491 prob2 = prob.split (prob);
3494 if (version_niter)
3495 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3497 if (cond_expr)
3499 gimple_seq tem = NULL;
3500 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3501 &tem, is_gimple_condexpr_for_cond,
3502 NULL_TREE);
3503 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3506 if (version_align)
3507 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3508 &cond_expr_stmt_list);
3510 if (version_alias)
3512 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3513 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3514 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3517 if (version_simd_if_cond)
3519 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3520 if (flag_checking)
3521 if (basic_block bb
3522 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3523 gcc_assert (bb != loop->header
3524 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3525 && (scalar_loop == NULL
3526 || (bb != scalar_loop->header
3527 && dominated_by_p (CDI_DOMINATORS,
3528 scalar_loop->header, bb))));
3529 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3530 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3531 version_simd_if_cond, zero);
3532 if (cond_expr)
3533 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3534 c, cond_expr);
3535 else
3536 cond_expr = c;
3537 if (dump_enabled_p ())
3538 dump_printf_loc (MSG_NOTE, vect_location,
3539 "created versioning for simd if condition check.\n");
3542 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3543 &gimplify_stmt_list,
3544 is_gimple_condexpr_for_cond, NULL_TREE);
3545 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3547 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3548 invariant in. */
3549 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3550 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
3551 !gsi_end_p (gsi); gsi_next (&gsi))
3553 gimple *stmt = gsi_stmt (gsi);
3554 update_stmt (stmt);
3555 ssa_op_iter iter;
3556 use_operand_p use_p;
3557 basic_block def_bb;
3558 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
3559 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
3560 && flow_bb_inside_loop_p (outermost, def_bb))
3561 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
3564 /* Search for the outermost loop we can version. Avoid versioning of
3565 non-perfect nests but allow if-conversion versioned loops inside. */
3566 class loop *loop_to_version = loop;
3567 if (flow_loop_nested_p (outermost, loop))
3569 if (dump_enabled_p ())
3570 dump_printf_loc (MSG_NOTE, vect_location,
3571 "trying to apply versioning to outer loop %d\n",
3572 outermost->num);
3573 if (outermost->num == 0)
3574 outermost = superloop_at_depth (loop, 1);
3575 /* And avoid applying versioning on non-perfect nests. */
3576 while (loop_to_version != outermost
3577 && (e = single_exit (loop_outer (loop_to_version)))
3578 && !(e->flags & EDGE_COMPLEX)
3579 && (!loop_outer (loop_to_version)->inner->next
3580 || vect_loop_vectorized_call (loop_to_version))
3581 && (!loop_outer (loop_to_version)->inner->next
3582 || !loop_outer (loop_to_version)->inner->next->next))
3583 loop_to_version = loop_outer (loop_to_version);
3586 /* Apply versioning. If there is already a scalar version created by
3587 if-conversion re-use that. Note we cannot re-use the copy of
3588 an if-converted outer-loop when vectorizing the inner loop only. */
3589 gcond *cond;
3590 if ((!loop_to_version->inner || loop == loop_to_version)
3591 && loop_vectorized_call)
3593 gcc_assert (scalar_loop);
3594 condition_bb = gimple_bb (loop_vectorized_call);
3595 cond = as_a <gcond *> (last_stmt (condition_bb));
3596 gimple_cond_set_condition_from_tree (cond, cond_expr);
3597 update_stmt (cond);
3599 if (cond_expr_stmt_list)
3601 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
3602 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3603 GSI_SAME_STMT);
3606 /* if-conversion uses profile_probability::always () for both paths,
3607 reset the paths probabilities appropriately. */
3608 edge te, fe;
3609 extract_true_false_edges_from_block (condition_bb, &te, &fe);
3610 te->probability = prob;
3611 fe->probability = prob.invert ();
3612 /* We can scale loops counts immediately but have to postpone
3613 scaling the scalar loop because we re-use it during peeling. */
3614 scale_loop_frequencies (loop_to_version, te->probability);
3615 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = fe->probability;
3617 nloop = scalar_loop;
3618 if (dump_enabled_p ())
3619 dump_printf_loc (MSG_NOTE, vect_location,
3620 "reusing %sloop version created by if conversion\n",
3621 loop_to_version != loop ? "outer " : "");
3623 else
3625 if (loop_to_version != loop
3626 && dump_enabled_p ())
3627 dump_printf_loc (MSG_NOTE, vect_location,
3628 "applying loop versioning to outer loop %d\n",
3629 loop_to_version->num);
3631 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
3633 initialize_original_copy_tables ();
3634 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
3635 prob, prob.invert (), prob, prob.invert (), true);
3636 gcc_assert (nloop);
3637 nloop = get_loop_copy (loop);
3639 /* For cycle vectorization with SLP we rely on the PHI arguments
3640 appearing in the same order as the SLP node operands which for the
3641 loop PHI nodes means the preheader edge dest index needs to remain
3642 the same for the analyzed loop which also becomes the vectorized one.
3643 Make it so in case the state after versioning differs by redirecting
3644 the first edge into the header to the same destination which moves
3645 it last. */
3646 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
3648 edge e = EDGE_PRED (loop->header, 0);
3649 ssa_redirect_edge (e, e->dest);
3650 flush_pending_stmts (e);
3652 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
3654 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
3655 reap those otherwise; they also refer to the original
3656 loops. */
3657 class loop *l = loop;
3658 while (gimple *call = vect_loop_vectorized_call (l))
3660 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
3661 fold_loop_internal_call (call, boolean_false_node);
3662 l = loop_outer (l);
3664 free_original_copy_tables ();
3666 if (cond_expr_stmt_list)
3668 cond_exp_gsi = gsi_last_bb (condition_bb);
3669 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3670 GSI_SAME_STMT);
3673 /* Loop versioning violates an assumption we try to maintain during
3674 vectorization - that the loop exit block has a single predecessor.
3675 After versioning, the exit block of both loop versions is the same
3676 basic block (i.e. it has two predecessors). Just in order to simplify
3677 following transformations in the vectorizer, we fix this situation
3678 here by adding a new (empty) block on the exit-edge of the loop,
3679 with the proper loop-exit phis to maintain loop-closed-form.
3680 If loop versioning wasn't done from loop, but scalar_loop instead,
3681 merge_bb will have already just a single successor. */
3683 merge_bb = single_exit (loop_to_version)->dest;
3684 if (EDGE_COUNT (merge_bb->preds) >= 2)
3686 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3687 new_exit_bb = split_edge (single_exit (loop_to_version));
3688 new_exit_e = single_exit (loop_to_version);
3689 e = EDGE_SUCC (new_exit_bb, 0);
3691 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
3692 gsi_next (&gsi))
3694 tree new_res;
3695 orig_phi = gsi.phi ();
3696 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3697 new_phi = create_phi_node (new_res, new_exit_bb);
3698 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3699 add_phi_arg (new_phi, arg, new_exit_e,
3700 gimple_phi_arg_location_from_edge (orig_phi, e));
3701 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3705 update_ssa (TODO_update_ssa_no_phi);
3708 /* Split the cost model check off to a separate BB. Costing assumes
3709 this is the only thing we perform when we enter the scalar loop
3710 from a failed cost decision. */
3711 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
3713 gimple *def = SSA_NAME_DEF_STMT (cost_name);
3714 /* All uses of the cost check are 'true' after the check we
3715 are going to insert. */
3716 replace_uses_by (cost_name, boolean_true_node);
3717 /* And we're going to build the new single use of it. */
3718 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
3719 NULL_TREE, NULL_TREE);
3720 edge e = split_block (gimple_bb (def), def);
3721 gimple_stmt_iterator gsi = gsi_for_stmt (def);
3722 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
3723 edge true_e, false_e;
3724 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
3725 e->flags &= ~EDGE_FALLTHRU;
3726 e->flags |= EDGE_TRUE_VALUE;
3727 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
3728 e->probability = prob2;
3729 e2->probability = prob2.invert ();
3730 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
3731 auto_vec<basic_block, 3> adj;
3732 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
3733 son;
3734 son = next_dom_son (CDI_DOMINATORS, son))
3735 if (EDGE_COUNT (son->preds) > 1)
3736 adj.safe_push (son);
3737 for (auto son : adj)
3738 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
3741 if (version_niter)
3743 /* The versioned loop could be infinite, we need to clear existing
3744 niter information which is copied from the original loop. */
3745 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3746 vect_free_loop_info_assumptions (nloop);
3749 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
3750 && dump_enabled_p ())
3752 if (version_alias)
3753 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3754 vect_location,
3755 "loop versioned for vectorization because of "
3756 "possible aliasing\n");
3757 if (version_align)
3758 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3759 vect_location,
3760 "loop versioned for vectorization to enhance "
3761 "alignment\n");
3765 return nloop;