1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "diagnostic.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
45 #include "insn-attr.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
52 #include "optabs-tree.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx
, rtx
, rtx
, unsigned, unsigned,
80 HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
81 unsigned HOST_WIDE_INT
,
82 unsigned HOST_WIDE_INT
, bool);
83 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
84 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
85 static rtx_insn
*compress_float_constant (rtx
, rtx
);
86 static rtx
get_subtarget (rtx
);
87 static rtx
store_field (rtx
, poly_int64
, poly_int64
, poly_uint64
, poly_uint64
,
88 machine_mode
, tree
, alias_set_type
, bool, bool);
90 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
92 static int is_aligning_offset (const_tree
, const_tree
);
93 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
94 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
96 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
98 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
,
100 static rtx
const_vector_from_tree (tree
);
101 static tree
tree_expr_size (const_tree
);
102 static void convert_mode_scalar (rtx
, rtx
, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
110 init_expr_target (void)
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
121 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
127 rtx_insn
*insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
128 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
129 PATTERN (insn
) = pat
;
131 for (machine_mode mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
132 mode
= (machine_mode
) ((int) mode
+ 1))
136 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
137 PUT_MODE (mem
, mode
);
138 PUT_MODE (mem1
, mode
);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
144 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
145 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
148 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
151 set_mode_and_regno (reg
, mode
, regno
);
154 SET_DEST (pat
) = reg
;
155 if (recog (pat
, insn
, &num_clobbers
) >= 0)
156 direct_load
[(int) mode
] = 1;
158 SET_SRC (pat
) = mem1
;
159 SET_DEST (pat
) = reg
;
160 if (recog (pat
, insn
, &num_clobbers
) >= 0)
161 direct_load
[(int) mode
] = 1;
164 SET_DEST (pat
) = mem
;
165 if (recog (pat
, insn
, &num_clobbers
) >= 0)
166 direct_store
[(int) mode
] = 1;
169 SET_DEST (pat
) = mem1
;
170 if (recog (pat
, insn
, &num_clobbers
) >= 0)
171 direct_store
[(int) mode
] = 1;
175 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1));
177 opt_scalar_float_mode mode_iter
;
178 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_FLOAT
)
180 scalar_float_mode mode
= mode_iter
.require ();
181 scalar_float_mode srcmode
;
182 FOR_EACH_MODE_UNTIL (srcmode
, mode
)
186 ic
= can_extend_p (mode
, srcmode
, 0);
187 if (ic
== CODE_FOR_nothing
)
190 PUT_MODE (mem
, srcmode
);
192 if (insn_operand_matches (ic
, 1, mem
))
193 float_extend_from_mem
[mode
][srcmode
] = true;
198 /* This is run at the start of compiling a function. */
203 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
213 convert_move (rtx to
, rtx from
, int unsignedp
)
215 machine_mode to_mode
= GET_MODE (to
);
216 machine_mode from_mode
= GET_MODE (from
);
218 gcc_assert (to_mode
!= BLKmode
);
219 gcc_assert (from_mode
!= BLKmode
);
221 /* If the source and destination are already the same, then there's
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
230 scalar_int_mode to_int_mode
;
231 if (GET_CODE (from
) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from
)
233 && is_a
<scalar_int_mode
> (to_mode
, &to_int_mode
)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from
))
235 >= GET_MODE_PRECISION (to_int_mode
))
236 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
238 scalar_int_mode int_orig_mode
;
239 scalar_int_mode int_inner_mode
;
240 machine_mode orig_mode
= GET_MODE (from
);
242 from
= gen_lowpart (to_int_mode
, SUBREG_REG (from
));
243 from_mode
= to_int_mode
;
245 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
246 the original mode, but narrower than the inner mode. */
247 if (GET_CODE (from
) == SUBREG
248 && is_a
<scalar_int_mode
> (orig_mode
, &int_orig_mode
)
249 && GET_MODE_PRECISION (to_int_mode
)
250 > GET_MODE_PRECISION (int_orig_mode
)
251 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (from
)),
253 && GET_MODE_PRECISION (int_inner_mode
)
254 > GET_MODE_PRECISION (to_int_mode
))
256 SUBREG_PROMOTED_VAR_P (from
) = 1;
257 SUBREG_PROMOTED_SET (from
, unsignedp
);
261 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
263 if (to_mode
== from_mode
264 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
266 emit_move_insn (to
, from
);
270 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
272 if (GET_MODE_UNIT_PRECISION (to_mode
)
273 > GET_MODE_UNIT_PRECISION (from_mode
))
275 optab op
= unsignedp
? zext_optab
: sext_optab
;
276 insn_code icode
= convert_optab_handler (op
, to_mode
, from_mode
);
277 if (icode
!= CODE_FOR_nothing
)
279 emit_unop_insn (icode
, to
, from
,
280 unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
);
285 if (GET_MODE_UNIT_PRECISION (to_mode
)
286 < GET_MODE_UNIT_PRECISION (from_mode
))
288 insn_code icode
= convert_optab_handler (trunc_optab
,
290 if (icode
!= CODE_FOR_nothing
)
292 emit_unop_insn (icode
, to
, from
, TRUNCATE
);
297 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode
),
298 GET_MODE_BITSIZE (to_mode
)));
300 if (VECTOR_MODE_P (to_mode
))
301 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
303 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
305 emit_move_insn (to
, from
);
309 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
311 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
312 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
316 convert_mode_scalar (to
, from
, unsignedp
);
319 /* Like convert_move, but deals only with scalar modes. */
322 convert_mode_scalar (rtx to
, rtx from
, int unsignedp
)
324 /* Both modes should be scalar types. */
325 scalar_mode from_mode
= as_a
<scalar_mode
> (GET_MODE (from
));
326 scalar_mode to_mode
= as_a
<scalar_mode
> (GET_MODE (to
));
327 bool to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
328 bool from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
332 gcc_assert (to_real
== from_real
);
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
336 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
344 gcc_assert ((GET_MODE_PRECISION (from_mode
)
345 != GET_MODE_PRECISION (to_mode
))
346 || (DECIMAL_FLOAT_MODE_P (from_mode
)
347 != DECIMAL_FLOAT_MODE_P (to_mode
))
348 || (REAL_MODE_FORMAT (from_mode
) == &arm_bfloat_half_format
349 && REAL_MODE_FORMAT (to_mode
) == &ieee_half_format
)
350 || (REAL_MODE_FORMAT (to_mode
) == &arm_bfloat_half_format
351 && REAL_MODE_FORMAT (from_mode
) == &ieee_half_format
));
353 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
354 /* Conversion between decimal float and binary float, same size. */
355 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
356 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
361 /* Try converting directly if the insn is supported. */
363 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
364 if (code
!= CODE_FOR_nothing
)
366 emit_unop_insn (code
, to
, from
,
367 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
372 if (REAL_MODE_FORMAT (from_mode
) == &arm_bfloat_half_format
373 && REAL_MODE_FORMAT (SFmode
) == &ieee_single_format
)
375 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (SFmode
))
377 /* To cut down on libgcc size, implement
378 BFmode -> {DF,XF,TF}mode conversions by
379 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
380 rtx temp
= gen_reg_rtx (SFmode
);
381 convert_mode_scalar (temp
, from
, unsignedp
);
382 convert_mode_scalar (to
, temp
, unsignedp
);
385 if (REAL_MODE_FORMAT (to_mode
) == &ieee_half_format
)
387 /* Similarly, implement BFmode -> HFmode as
388 BFmode -> SFmode -> HFmode conversion where SFmode
389 has superset of BFmode values. We don't need
390 to handle sNaNs by raising exception and turning
391 into into qNaN though, as that can be done in the
392 SFmode -> HFmode conversion too. */
393 rtx temp
= gen_reg_rtx (SFmode
);
394 int save_flag_finite_math_only
= flag_finite_math_only
;
395 flag_finite_math_only
= true;
396 convert_mode_scalar (temp
, from
, unsignedp
);
397 flag_finite_math_only
= save_flag_finite_math_only
;
398 convert_mode_scalar (to
, temp
, unsignedp
);
401 if (to_mode
== SFmode
402 && !HONOR_NANS (from_mode
)
403 && !HONOR_NANS (to_mode
)
404 && optimize_insn_for_speed_p ())
406 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
407 shift the bits up. */
408 machine_mode fromi_mode
, toi_mode
;
409 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode
),
410 0).exists (&fromi_mode
)
411 && int_mode_for_size (GET_MODE_BITSIZE (to_mode
),
412 0).exists (&toi_mode
))
415 rtx fromi
= lowpart_subreg (fromi_mode
, from
, from_mode
);
420 if (GET_MODE (fromi
) == VOIDmode
)
421 toi
= simplify_unary_operation (ZERO_EXTEND
, toi_mode
,
425 toi
= gen_reg_rtx (toi_mode
);
426 convert_mode_scalar (toi
, fromi
, 1);
429 = maybe_expand_shift (LSHIFT_EXPR
, toi_mode
, toi
,
430 GET_MODE_PRECISION (to_mode
)
431 - GET_MODE_PRECISION (from_mode
),
435 tof
= lowpart_subreg (to_mode
, toi
, toi_mode
);
437 emit_move_insn (to
, tof
);
440 insns
= get_insns ();
450 if (REAL_MODE_FORMAT (from_mode
) == &ieee_single_format
451 && REAL_MODE_FORMAT (to_mode
) == &arm_bfloat_half_format
452 && !HONOR_NANS (from_mode
)
453 && !HONOR_NANS (to_mode
)
454 && !flag_rounding_math
455 && optimize_insn_for_speed_p ())
457 /* If we don't expect qNaNs nor sNaNs and can assume rounding
458 to nearest, we can expand the conversion inline as
459 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
460 machine_mode fromi_mode
, toi_mode
;
461 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode
),
462 0).exists (&fromi_mode
)
463 && int_mode_for_size (GET_MODE_BITSIZE (to_mode
),
464 0).exists (&toi_mode
))
467 rtx fromi
= lowpart_subreg (fromi_mode
, from
, from_mode
);
473 int shift
= (GET_MODE_PRECISION (from_mode
)
474 - GET_MODE_PRECISION (to_mode
));
476 = maybe_expand_shift (RSHIFT_EXPR
, fromi_mode
, fromi
,
481 = expand_binop (fromi_mode
, and_optab
, temp1
, const1_rtx
,
482 NULL_RTX
, 1, OPTAB_DIRECT
);
486 = expand_binop (fromi_mode
, add_optab
, fromi
,
487 gen_int_mode ((HOST_WIDE_INT_1U
489 fromi_mode
), NULL_RTX
,
494 = expand_binop (fromi_mode
, add_optab
, temp3
, temp2
,
495 NULL_RTX
, 1, OPTAB_DIRECT
);
498 rtx temp5
= maybe_expand_shift (RSHIFT_EXPR
, fromi_mode
,
499 temp4
, shift
, NULL_RTX
, 1);
502 rtx temp6
= lowpart_subreg (toi_mode
, temp5
, fromi_mode
);
505 tof
= lowpart_subreg (to_mode
, force_reg (toi_mode
, temp6
),
508 emit_move_insn (to
, tof
);
511 insns
= get_insns ();
522 /* Otherwise use a libcall. */
523 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
525 /* Is this conversion implemented yet? */
526 gcc_assert (libcall
);
529 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
531 insns
= get_insns ();
533 emit_libcall_block (insns
, to
, value
,
534 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
536 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
540 /* Handle pointer conversion. */ /* SPEE 900220. */
541 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
545 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
552 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
555 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
561 /* Targets are expected to provide conversion insns between PxImode and
562 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
563 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
565 scalar_int_mode full_mode
566 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode
));
568 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
569 != CODE_FOR_nothing
);
571 if (full_mode
!= from_mode
)
572 from
= convert_to_mode (full_mode
, from
, unsignedp
);
573 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
577 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
580 scalar_int_mode full_mode
581 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode
));
582 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
583 enum insn_code icode
;
585 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
586 gcc_assert (icode
!= CODE_FOR_nothing
);
588 if (to_mode
== full_mode
)
590 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
594 new_from
= gen_reg_rtx (full_mode
);
595 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
597 /* else proceed to integer conversions below. */
598 from_mode
= full_mode
;
602 /* Make sure both are fixed-point modes or both are not. */
603 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
604 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
605 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
607 /* If we widen from_mode to to_mode and they are in the same class,
608 we won't saturate the result.
609 Otherwise, always saturate the result to play safe. */
610 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
611 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
612 expand_fixed_convert (to
, from
, 0, 0);
614 expand_fixed_convert (to
, from
, 0, 1);
618 /* Now both modes are integers. */
620 /* Handle expanding beyond a word. */
621 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
622 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
629 scalar_mode lowpart_mode
;
630 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
632 /* Try converting directly if the insn is supported. */
633 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
636 /* If FROM is a SUBREG, put it into a register. Do this
637 so that we always generate the same set of insns for
638 better cse'ing; if an intermediate assignment occurred,
639 we won't be doing the operation directly on the SUBREG. */
640 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
641 from
= force_reg (from_mode
, from
);
642 emit_unop_insn (code
, to
, from
, equiv_code
);
645 /* Next, try converting via full word. */
646 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
647 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
648 != CODE_FOR_nothing
))
650 rtx word_to
= gen_reg_rtx (word_mode
);
653 if (reg_overlap_mentioned_p (to
, from
))
654 from
= force_reg (from_mode
, from
);
657 convert_move (word_to
, from
, unsignedp
);
658 emit_unop_insn (code
, to
, word_to
, equiv_code
);
662 /* No special multiword conversion insn; do it by hand. */
665 /* Since we will turn this into a no conflict block, we must ensure
666 the source does not overlap the target so force it into an isolated
667 register when maybe so. Likewise for any MEM input, since the
668 conversion sequence might require several references to it and we
669 must ensure we're getting the same value every time. */
671 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
672 from
= force_reg (from_mode
, from
);
674 /* Get a copy of FROM widened to a word, if necessary. */
675 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
676 lowpart_mode
= word_mode
;
678 lowpart_mode
= from_mode
;
680 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
682 lowpart
= gen_lowpart (lowpart_mode
, to
);
683 emit_move_insn (lowpart
, lowfrom
);
685 /* Compute the value to put in each remaining word. */
687 fill_value
= const0_rtx
;
689 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
690 LT
, lowfrom
, const0_rtx
,
691 lowpart_mode
, 0, -1);
693 /* Fill the remaining words. */
694 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
696 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
697 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
699 gcc_assert (subword
);
701 if (fill_value
!= subword
)
702 emit_move_insn (subword
, fill_value
);
705 insns
= get_insns ();
712 /* Truncating multi-word to a word or less. */
713 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
714 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
717 && ! MEM_VOLATILE_P (from
)
718 && direct_load
[(int) to_mode
]
719 && ! mode_dependent_address_p (XEXP (from
, 0),
720 MEM_ADDR_SPACE (from
)))
722 || GET_CODE (from
) == SUBREG
))
723 from
= force_reg (from_mode
, from
);
724 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
728 /* Now follow all the conversions between integers
729 no more than a word long. */
731 /* For truncation, usually we can just refer to FROM in a narrower mode. */
732 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
733 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
736 && ! MEM_VOLATILE_P (from
)
737 && direct_load
[(int) to_mode
]
738 && ! mode_dependent_address_p (XEXP (from
, 0),
739 MEM_ADDR_SPACE (from
)))
741 || GET_CODE (from
) == SUBREG
))
742 from
= force_reg (from_mode
, from
);
743 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
744 && !targetm
.hard_regno_mode_ok (REGNO (from
), to_mode
))
745 from
= copy_to_reg (from
);
746 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
750 /* Handle extension. */
751 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
753 /* Convert directly if that works. */
754 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
757 emit_unop_insn (code
, to
, from
, equiv_code
);
765 /* Search for a mode to convert via. */
766 opt_scalar_mode intermediate_iter
;
767 FOR_EACH_MODE_FROM (intermediate_iter
, from_mode
)
769 scalar_mode intermediate
= intermediate_iter
.require ();
770 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
772 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
773 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
,
775 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
776 != CODE_FOR_nothing
))
778 convert_move (to
, convert_to_mode (intermediate
, from
,
779 unsignedp
), unsignedp
);
784 /* No suitable intermediate mode.
785 Generate what we need with shifts. */
786 shift_amount
= (GET_MODE_PRECISION (to_mode
)
787 - GET_MODE_PRECISION (from_mode
));
788 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
789 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
791 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
794 emit_move_insn (to
, tmp
);
799 /* Support special truncate insns for certain modes. */
800 if (convert_optab_handler (trunc_optab
, to_mode
,
801 from_mode
) != CODE_FOR_nothing
)
803 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
808 /* Handle truncation of volatile memrefs, and so on;
809 the things that couldn't be truncated directly,
810 and for which there was no special instruction.
812 ??? Code above formerly short-circuited this, for most integer
813 mode pairs, with a force_reg in from_mode followed by a recursive
814 call to this routine. Appears always to have been wrong. */
815 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
817 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
818 emit_move_insn (to
, temp
);
822 /* Mode combination is not recognized. */
826 /* Return an rtx for a value that would result
827 from converting X to mode MODE.
828 Both X and MODE may be floating, or both integer.
829 UNSIGNEDP is nonzero if X is an unsigned value.
830 This can be done by referring to a part of X in place
831 or by copying to a new temporary with conversion. */
834 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
836 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
839 /* Return an rtx for a value that would result
840 from converting X from mode OLDMODE to mode MODE.
841 Both modes may be floating, or both integer.
842 UNSIGNEDP is nonzero if X is an unsigned value.
844 This can be done by referring to a part of X in place
845 or by copying to a new temporary with conversion.
847 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
850 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
853 scalar_int_mode int_mode
;
855 /* If FROM is a SUBREG that indicates that we have already done at least
856 the required extension, strip it. */
858 if (GET_CODE (x
) == SUBREG
859 && SUBREG_PROMOTED_VAR_P (x
)
860 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
861 && (GET_MODE_PRECISION (subreg_promoted_mode (x
))
862 >= GET_MODE_PRECISION (int_mode
))
863 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
865 scalar_int_mode int_orig_mode
;
866 scalar_int_mode int_inner_mode
;
867 machine_mode orig_mode
= GET_MODE (x
);
868 x
= gen_lowpart (int_mode
, SUBREG_REG (x
));
870 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
871 the original mode, but narrower than the inner mode. */
872 if (GET_CODE (x
) == SUBREG
873 && is_a
<scalar_int_mode
> (orig_mode
, &int_orig_mode
)
874 && GET_MODE_PRECISION (int_mode
)
875 > GET_MODE_PRECISION (int_orig_mode
)
876 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)),
878 && GET_MODE_PRECISION (int_inner_mode
)
879 > GET_MODE_PRECISION (int_mode
))
881 SUBREG_PROMOTED_VAR_P (x
) = 1;
882 SUBREG_PROMOTED_SET (x
, unsignedp
);
886 if (GET_MODE (x
) != VOIDmode
)
887 oldmode
= GET_MODE (x
);
892 if (CONST_SCALAR_INT_P (x
)
893 && is_a
<scalar_int_mode
> (mode
, &int_mode
))
895 /* If the caller did not tell us the old mode, then there is not
896 much to do with respect to canonicalization. We have to
897 assume that all the bits are significant. */
898 if (!is_a
<scalar_int_mode
> (oldmode
))
899 oldmode
= MAX_MODE_INT
;
900 wide_int w
= wide_int::from (rtx_mode_t (x
, oldmode
),
901 GET_MODE_PRECISION (int_mode
),
902 unsignedp
? UNSIGNED
: SIGNED
);
903 return immed_wide_int_const (w
, int_mode
);
906 /* We can do this with a gen_lowpart if both desired and current modes
907 are integer, and this is either a constant integer, a register, or a
909 scalar_int_mode int_oldmode
;
910 if (is_int_mode (mode
, &int_mode
)
911 && is_int_mode (oldmode
, &int_oldmode
)
912 && GET_MODE_PRECISION (int_mode
) <= GET_MODE_PRECISION (int_oldmode
)
913 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) int_mode
])
914 || CONST_POLY_INT_P (x
)
916 && (!HARD_REGISTER_P (x
)
917 || targetm
.hard_regno_mode_ok (REGNO (x
), int_mode
))
918 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, GET_MODE (x
)))))
919 return gen_lowpart (int_mode
, x
);
921 /* Converting from integer constant into mode is always equivalent to an
923 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
925 gcc_assert (known_eq (GET_MODE_BITSIZE (mode
),
926 GET_MODE_BITSIZE (oldmode
)));
927 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
930 temp
= gen_reg_rtx (mode
);
931 convert_move (temp
, x
, unsignedp
);
935 /* Variant of convert_modes for ABI parameter passing/return.
936 Return an rtx for a value that would result from converting X from
937 a floating point mode FMODE to wider integer mode MODE. */
940 convert_float_to_wider_int (machine_mode mode
, machine_mode fmode
, rtx x
)
942 gcc_assert (SCALAR_INT_MODE_P (mode
) && SCALAR_FLOAT_MODE_P (fmode
));
943 scalar_int_mode tmp_mode
= int_mode_for_mode (fmode
).require ();
944 rtx tmp
= force_reg (tmp_mode
, gen_lowpart (tmp_mode
, x
));
945 return convert_modes (mode
, tmp_mode
, tmp
, 1);
948 /* Variant of convert_modes for ABI parameter passing/return.
949 Return an rtx for a value that would result from converting X from
950 an integer mode IMODE to a narrower floating point mode MODE. */
953 convert_wider_int_to_float (machine_mode mode
, machine_mode imode
, rtx x
)
955 gcc_assert (SCALAR_FLOAT_MODE_P (mode
) && SCALAR_INT_MODE_P (imode
));
956 scalar_int_mode tmp_mode
= int_mode_for_mode (mode
).require ();
957 rtx tmp
= force_reg (tmp_mode
, gen_lowpart (tmp_mode
, x
));
958 return gen_lowpart_SUBREG (mode
, tmp
);
961 /* Return the largest alignment we can use for doing a move (or store)
962 of MAX_PIECES. ALIGN is the largest alignment we could use. */
965 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
967 scalar_int_mode tmode
968 = int_mode_for_size (max_pieces
* BITS_PER_UNIT
, 0).require ();
970 if (align
>= GET_MODE_ALIGNMENT (tmode
))
971 align
= GET_MODE_ALIGNMENT (tmode
);
974 scalar_int_mode xmode
= NARROWEST_INT_MODE
;
975 opt_scalar_int_mode mode_iter
;
976 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
978 tmode
= mode_iter
.require ();
979 if (GET_MODE_SIZE (tmode
) > max_pieces
980 || targetm
.slow_unaligned_access (tmode
, align
))
985 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
991 /* Return the widest QI vector, if QI_MODE is true, or integer mode
992 that is narrower than SIZE bytes. */
994 static fixed_size_mode
995 widest_fixed_size_mode_for_size (unsigned int size
, bool qi_vector
)
997 fixed_size_mode result
= NARROWEST_INT_MODE
;
999 gcc_checking_assert (size
> 1);
1001 /* Use QI vector only if size is wider than a WORD. */
1002 if (qi_vector
&& size
> UNITS_PER_WORD
)
1005 fixed_size_mode candidate
;
1006 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
1007 if (is_a
<fixed_size_mode
> (mode
, &candidate
)
1008 && GET_MODE_INNER (candidate
) == QImode
)
1010 if (GET_MODE_SIZE (candidate
) >= size
)
1012 if (optab_handler (vec_duplicate_optab
, candidate
)
1013 != CODE_FOR_nothing
)
1017 if (result
!= NARROWEST_INT_MODE
)
1021 opt_scalar_int_mode tmode
;
1022 FOR_EACH_MODE_IN_CLASS (tmode
, MODE_INT
)
1023 if (GET_MODE_SIZE (tmode
.require ()) < size
)
1024 result
= tmode
.require ();
1029 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1030 and should be performed piecewise. */
1033 can_do_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
,
1034 enum by_pieces_operation op
)
1036 return targetm
.use_by_pieces_infrastructure_p (len
, align
, op
,
1037 optimize_insn_for_speed_p ());
1040 /* Determine whether the LEN bytes can be moved by using several move
1041 instructions. Return nonzero if a call to move_by_pieces should
1045 can_move_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
)
1047 return can_do_by_pieces (len
, align
, MOVE_BY_PIECES
);
1050 /* Return number of insns required to perform operation OP by pieces
1051 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1053 unsigned HOST_WIDE_INT
1054 by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1055 unsigned int max_size
, by_pieces_operation op
)
1057 unsigned HOST_WIDE_INT n_insns
= 0;
1058 fixed_size_mode mode
;
1060 if (targetm
.overlap_op_by_pieces_p () && op
!= COMPARE_BY_PIECES
)
1062 /* NB: Round up L and ALIGN to the widest integer mode for
1064 mode
= widest_fixed_size_mode_for_size (max_size
,
1065 op
== SET_BY_PIECES
);
1066 if (optab_handler (mov_optab
, mode
) != CODE_FOR_nothing
)
1068 unsigned HOST_WIDE_INT up
= ROUND_UP (l
, GET_MODE_SIZE (mode
));
1071 align
= GET_MODE_ALIGNMENT (mode
);
1075 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1077 while (max_size
> 1 && l
> 0)
1079 mode
= widest_fixed_size_mode_for_size (max_size
,
1080 op
== SET_BY_PIECES
);
1081 enum insn_code icode
;
1083 unsigned int modesize
= GET_MODE_SIZE (mode
);
1085 icode
= optab_handler (mov_optab
, mode
);
1086 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1088 unsigned HOST_WIDE_INT n_pieces
= l
/ modesize
;
1093 n_insns
+= n_pieces
;
1096 case COMPARE_BY_PIECES
:
1097 int batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1098 int batch_ops
= 4 * batch
- 1;
1099 unsigned HOST_WIDE_INT full
= n_pieces
/ batch
;
1100 n_insns
+= full
* batch_ops
;
1101 if (n_pieces
% batch
!= 0)
1107 max_size
= modesize
;
1114 /* Used when performing piecewise block operations, holds information
1115 about one of the memory objects involved. The member functions
1116 can be used to generate code for loading from the object and
1117 updating the address when iterating. */
1121 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1124 /* The address of the object. Can differ from that seen in the
1125 MEM rtx if we copied the address to a register. */
1127 /* Nonzero if the address on the object has an autoincrement already,
1128 signifies whether that was an increment or decrement. */
1129 signed char m_addr_inc
;
1130 /* Nonzero if we intend to use autoinc without the address already
1131 having autoinc form. We will insert add insns around each memory
1132 reference, expecting later passes to form autoinc addressing modes.
1133 The only supported options are predecrement and postincrement. */
1134 signed char m_explicit_inc
;
1135 /* True if we have either of the two possible cases of using
1138 /* True if this is an address to be used for load operations rather
1142 /* Optionally, a function to obtain constants for any given offset into
1143 the objects, and data associated with it. */
1144 by_pieces_constfn m_constfn
;
1147 pieces_addr (rtx
, bool, by_pieces_constfn
, void *);
1148 rtx
adjust (fixed_size_mode
, HOST_WIDE_INT
, by_pieces_prev
* = nullptr);
1149 void increment_address (HOST_WIDE_INT
);
1150 void maybe_predec (HOST_WIDE_INT
);
1151 void maybe_postinc (HOST_WIDE_INT
);
1152 void decide_autoinc (machine_mode
, bool, HOST_WIDE_INT
);
1159 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1160 true if the operation to be performed on this object is a load
1161 rather than a store. For stores, OBJ can be NULL, in which case we
1162 assume the operation is a stack push. For loads, the optional
1163 CONSTFN and its associated CFNDATA can be used in place of the
1166 pieces_addr::pieces_addr (rtx obj
, bool is_load
, by_pieces_constfn constfn
,
1168 : m_obj (obj
), m_is_load (is_load
), m_constfn (constfn
), m_cfndata (cfndata
)
1174 rtx addr
= XEXP (obj
, 0);
1175 rtx_code code
= GET_CODE (addr
);
1177 bool dec
= code
== PRE_DEC
|| code
== POST_DEC
;
1178 bool inc
= code
== PRE_INC
|| code
== POST_INC
;
1179 m_auto
= inc
|| dec
;
1181 m_addr_inc
= dec
? -1 : 1;
1183 /* While we have always looked for these codes here, the code
1184 implementing the memory operation has never handled them.
1185 Support could be added later if necessary or beneficial. */
1186 gcc_assert (code
!= PRE_INC
&& code
!= POST_DEC
);
1194 if (STACK_GROWS_DOWNWARD
)
1200 gcc_assert (constfn
!= NULL
);
1204 gcc_assert (is_load
);
1207 /* Decide whether to use autoinc for an address involved in a memory op.
1208 MODE is the mode of the accesses, REVERSE is true if we've decided to
1209 perform the operation starting from the end, and LEN is the length of
1210 the operation. Don't override an earlier decision to set m_auto. */
1213 pieces_addr::decide_autoinc (machine_mode
ARG_UNUSED (mode
), bool reverse
,
1216 if (m_auto
|| m_obj
== NULL_RTX
)
1219 bool use_predec
= (m_is_load
1220 ? USE_LOAD_PRE_DECREMENT (mode
)
1221 : USE_STORE_PRE_DECREMENT (mode
));
1222 bool use_postinc
= (m_is_load
1223 ? USE_LOAD_POST_INCREMENT (mode
)
1224 : USE_STORE_POST_INCREMENT (mode
));
1225 machine_mode addr_mode
= get_address_mode (m_obj
);
1227 if (use_predec
&& reverse
)
1229 m_addr
= copy_to_mode_reg (addr_mode
,
1230 plus_constant (addr_mode
,
1233 m_explicit_inc
= -1;
1235 else if (use_postinc
&& !reverse
)
1237 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
1241 else if (CONSTANT_P (m_addr
))
1242 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
1245 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1246 are using autoincrement for this address, we don't add the offset,
1247 but we still modify the MEM's properties. */
1250 pieces_addr::adjust (fixed_size_mode mode
, HOST_WIDE_INT offset
,
1251 by_pieces_prev
*prev
)
1254 /* Pass the previous data to m_constfn. */
1255 return m_constfn (m_cfndata
, prev
, offset
, mode
);
1256 if (m_obj
== NULL_RTX
)
1259 return adjust_automodify_address (m_obj
, mode
, m_addr
, offset
);
1261 return adjust_address (m_obj
, mode
, offset
);
1264 /* Emit an add instruction to increment the address by SIZE. */
1267 pieces_addr::increment_address (HOST_WIDE_INT size
)
1269 rtx amount
= gen_int_mode (size
, GET_MODE (m_addr
));
1270 emit_insn (gen_add2_insn (m_addr
, amount
));
1273 /* If we are supposed to decrement the address after each access, emit code
1274 to do so now. Increment by SIZE (which has should have the correct sign
1278 pieces_addr::maybe_predec (HOST_WIDE_INT size
)
1280 if (m_explicit_inc
>= 0)
1282 gcc_assert (HAVE_PRE_DECREMENT
);
1283 increment_address (size
);
1286 /* If we are supposed to decrement the address after each access, emit code
1287 to do so now. Increment by SIZE. */
1290 pieces_addr::maybe_postinc (HOST_WIDE_INT size
)
1292 if (m_explicit_inc
<= 0)
1294 gcc_assert (HAVE_POST_INCREMENT
);
1295 increment_address (size
);
1298 /* This structure is used by do_op_by_pieces to describe the operation
1301 class op_by_pieces_d
1304 fixed_size_mode
get_usable_mode (fixed_size_mode
, unsigned int);
1305 fixed_size_mode
smallest_fixed_size_mode_for_size (unsigned int);
1308 pieces_addr m_to
, m_from
;
1309 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1310 use it to check the valid mode size. */
1311 const unsigned HOST_WIDE_INT m_len
;
1312 HOST_WIDE_INT m_offset
;
1313 unsigned int m_align
;
1314 unsigned int m_max_size
;
1316 /* True if this is a stack push. */
1318 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1319 bool m_overlap_op_by_pieces
;
1320 /* True if QI vector mode can be used. */
1321 bool m_qi_vector_mode
;
1323 /* Virtual functions, overriden by derived classes for the specific
1325 virtual void generate (rtx
, rtx
, machine_mode
) = 0;
1326 virtual bool prepare_mode (machine_mode
, unsigned int) = 0;
1327 virtual void finish_mode (machine_mode
)
1332 op_by_pieces_d (unsigned int, rtx
, bool, rtx
, bool, by_pieces_constfn
,
1333 void *, unsigned HOST_WIDE_INT
, unsigned int, bool,
1338 /* The constructor for an op_by_pieces_d structure. We require two
1339 objects named TO and FROM, which are identified as loads or stores
1340 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1341 and its associated FROM_CFN_DATA can be used to replace loads with
1342 constant values. MAX_PIECES describes the maximum number of bytes
1343 at a time which can be moved efficiently. LEN describes the length
1344 of the operation. */
1346 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces
, rtx to
,
1347 bool to_load
, rtx from
, bool from_load
,
1348 by_pieces_constfn from_cfn
,
1349 void *from_cfn_data
,
1350 unsigned HOST_WIDE_INT len
,
1351 unsigned int align
, bool push
,
1352 bool qi_vector_mode
)
1353 : m_to (to
, to_load
, NULL
, NULL
),
1354 m_from (from
, from_load
, from_cfn
, from_cfn_data
),
1355 m_len (len
), m_max_size (max_pieces
+ 1),
1356 m_push (push
), m_qi_vector_mode (qi_vector_mode
)
1358 int toi
= m_to
.get_addr_inc ();
1359 int fromi
= m_from
.get_addr_inc ();
1360 if (toi
>= 0 && fromi
>= 0)
1362 else if (toi
<= 0 && fromi
<= 0)
1367 m_offset
= m_reverse
? len
: 0;
1368 align
= MIN (to
? MEM_ALIGN (to
) : align
,
1369 from
? MEM_ALIGN (from
) : align
);
1371 /* If copying requires more than two move insns,
1372 copy addresses to registers (to make displacements shorter)
1373 and use post-increment if available. */
1374 if (by_pieces_ninsns (len
, align
, m_max_size
, MOVE_BY_PIECES
) > 2)
1376 /* Find the mode of the largest comparison. */
1377 fixed_size_mode mode
1378 = widest_fixed_size_mode_for_size (m_max_size
,
1381 m_from
.decide_autoinc (mode
, m_reverse
, len
);
1382 m_to
.decide_autoinc (mode
, m_reverse
, len
);
1385 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1388 m_overlap_op_by_pieces
= targetm
.overlap_op_by_pieces_p ();
1391 /* This function returns the largest usable integer mode for LEN bytes
1392 whose size is no bigger than size of MODE. */
1395 op_by_pieces_d::get_usable_mode (fixed_size_mode mode
, unsigned int len
)
1400 size
= GET_MODE_SIZE (mode
);
1401 if (len
>= size
&& prepare_mode (mode
, m_align
))
1403 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1404 mode
= widest_fixed_size_mode_for_size (size
, m_qi_vector_mode
);
1410 /* Return the smallest integer or QI vector mode that is not narrower
1414 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size
)
1416 /* Use QI vector only for > size of WORD. */
1417 if (m_qi_vector_mode
&& size
> UNITS_PER_WORD
)
1420 fixed_size_mode candidate
;
1421 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
1422 if (is_a
<fixed_size_mode
> (mode
, &candidate
)
1423 && GET_MODE_INNER (candidate
) == QImode
)
1425 /* Don't return a mode wider than M_LEN. */
1426 if (GET_MODE_SIZE (candidate
) > m_len
)
1429 if (GET_MODE_SIZE (candidate
) >= size
1430 && (optab_handler (vec_duplicate_optab
, candidate
)
1431 != CODE_FOR_nothing
))
1436 return smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
1439 /* This function contains the main loop used for expanding a block
1440 operation. First move what we can in the largest integer mode,
1441 then go to successively smaller modes. For every access, call
1442 GENFUN with the two operands and the EXTRA_DATA. */
1445 op_by_pieces_d::run ()
1450 unsigned HOST_WIDE_INT length
= m_len
;
1452 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1453 fixed_size_mode mode
1454 = widest_fixed_size_mode_for_size (m_max_size
, m_qi_vector_mode
);
1455 mode
= get_usable_mode (mode
, length
);
1457 by_pieces_prev to_prev
= { nullptr, mode
};
1458 by_pieces_prev from_prev
= { nullptr, mode
};
1462 unsigned int size
= GET_MODE_SIZE (mode
);
1463 rtx to1
= NULL_RTX
, from1
;
1465 while (length
>= size
)
1470 to1
= m_to
.adjust (mode
, m_offset
, &to_prev
);
1472 to_prev
.mode
= mode
;
1473 from1
= m_from
.adjust (mode
, m_offset
, &from_prev
);
1474 from_prev
.data
= from1
;
1475 from_prev
.mode
= mode
;
1477 m_to
.maybe_predec (-(HOST_WIDE_INT
)size
);
1478 m_from
.maybe_predec (-(HOST_WIDE_INT
)size
);
1480 generate (to1
, from1
, mode
);
1482 m_to
.maybe_postinc (size
);
1483 m_from
.maybe_postinc (size
);
1496 if (!m_push
&& m_overlap_op_by_pieces
)
1498 /* NB: Generate overlapping operations if it is not a stack
1499 push since stack push must not overlap. Get the smallest
1500 fixed size mode for M_LEN bytes. */
1501 mode
= smallest_fixed_size_mode_for_size (length
);
1502 mode
= get_usable_mode (mode
, GET_MODE_SIZE (mode
));
1503 int gap
= GET_MODE_SIZE (mode
) - length
;
1506 /* If size of MODE > M_LEN, generate the last operation
1507 in MODE for the remaining bytes with ovelapping memory
1508 from the previois operation. */
1518 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1519 mode
= widest_fixed_size_mode_for_size (size
,
1521 mode
= get_usable_mode (mode
, length
);
1527 /* Derived class from op_by_pieces_d, providing support for block move
1530 #ifdef PUSH_ROUNDING
1531 #define PUSHG_P(to) ((to) == nullptr)
1533 #define PUSHG_P(to) false
1536 class move_by_pieces_d
: public op_by_pieces_d
1538 insn_gen_fn m_gen_fun
;
1539 void generate (rtx
, rtx
, machine_mode
) final override
;
1540 bool prepare_mode (machine_mode
, unsigned int) final override
;
1543 move_by_pieces_d (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1545 : op_by_pieces_d (MOVE_MAX_PIECES
, to
, false, from
, true, NULL
,
1546 NULL
, len
, align
, PUSHG_P (to
))
1549 rtx
finish_retmode (memop_ret
);
1552 /* Return true if MODE can be used for a set of copies, given an
1553 alignment ALIGN. Prepare whatever data is necessary for later
1554 calls to generate. */
1557 move_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1559 insn_code icode
= optab_handler (mov_optab
, mode
);
1560 m_gen_fun
= GEN_FCN (icode
);
1561 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1564 /* A callback used when iterating for a compare_by_pieces_operation.
1565 OP0 and OP1 are the values that have been loaded and should be
1566 compared in MODE. If OP0 is NULL, this means we should generate a
1567 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1568 gen function that should be used to generate the mode. */
1571 move_by_pieces_d::generate (rtx op0
, rtx op1
,
1572 machine_mode mode ATTRIBUTE_UNUSED
)
1574 #ifdef PUSH_ROUNDING
1575 if (op0
== NULL_RTX
)
1577 emit_single_push_insn (mode
, op1
, NULL
);
1581 emit_insn (m_gen_fun (op0
, op1
));
1584 /* Perform the final adjustment at the end of a string to obtain the
1585 correct return value for the block operation.
1586 Return value is based on RETMODE argument. */
1589 move_by_pieces_d::finish_retmode (memop_ret retmode
)
1591 gcc_assert (!m_reverse
);
1592 if (retmode
== RETURN_END_MINUS_ONE
)
1594 m_to
.maybe_postinc (-1);
1597 return m_to
.adjust (QImode
, m_offset
);
1600 /* Generate several move instructions to copy LEN bytes from block FROM to
1601 block TO. (These are MEM rtx's with BLKmode).
1603 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1604 used to push FROM to the stack.
1606 ALIGN is maximum stack alignment we can assume.
1608 Return value is based on RETMODE argument. */
1611 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1612 unsigned int align
, memop_ret retmode
)
1614 #ifndef PUSH_ROUNDING
1619 move_by_pieces_d
data (to
, from
, len
, align
);
1623 if (retmode
!= RETURN_BEGIN
)
1624 return data
.finish_retmode (retmode
);
1629 /* Derived class from op_by_pieces_d, providing support for block move
1632 class store_by_pieces_d
: public op_by_pieces_d
1634 insn_gen_fn m_gen_fun
;
1635 void generate (rtx
, rtx
, machine_mode
) final override
;
1636 bool prepare_mode (machine_mode
, unsigned int) final override
;
1639 store_by_pieces_d (rtx to
, by_pieces_constfn cfn
, void *cfn_data
,
1640 unsigned HOST_WIDE_INT len
, unsigned int align
,
1641 bool qi_vector_mode
)
1642 : op_by_pieces_d (STORE_MAX_PIECES
, to
, false, NULL_RTX
, true, cfn
,
1643 cfn_data
, len
, align
, false, qi_vector_mode
)
1646 rtx
finish_retmode (memop_ret
);
1649 /* Return true if MODE can be used for a set of stores, given an
1650 alignment ALIGN. Prepare whatever data is necessary for later
1651 calls to generate. */
1654 store_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1656 insn_code icode
= optab_handler (mov_optab
, mode
);
1657 m_gen_fun
= GEN_FCN (icode
);
1658 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1661 /* A callback used when iterating for a store_by_pieces_operation.
1662 OP0 and OP1 are the values that have been loaded and should be
1663 compared in MODE. If OP0 is NULL, this means we should generate a
1664 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1665 gen function that should be used to generate the mode. */
1668 store_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode
)
1670 emit_insn (m_gen_fun (op0
, op1
));
1673 /* Perform the final adjustment at the end of a string to obtain the
1674 correct return value for the block operation.
1675 Return value is based on RETMODE argument. */
1678 store_by_pieces_d::finish_retmode (memop_ret retmode
)
1680 gcc_assert (!m_reverse
);
1681 if (retmode
== RETURN_END_MINUS_ONE
)
1683 m_to
.maybe_postinc (-1);
1686 return m_to
.adjust (QImode
, m_offset
);
1689 /* Determine whether the LEN bytes generated by CONSTFUN can be
1690 stored to memory using several move instructions. CONSTFUNDATA is
1691 a pointer which will be passed as argument in every CONSTFUN call.
1692 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1693 a memset operation and false if it's a copy of a constant string.
1694 Return nonzero if a call to store_by_pieces should succeed. */
1697 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1698 by_pieces_constfn constfun
,
1699 void *constfundata
, unsigned int align
, bool memsetp
)
1701 unsigned HOST_WIDE_INT l
;
1702 unsigned int max_size
;
1703 HOST_WIDE_INT offset
= 0;
1704 enum insn_code icode
;
1706 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1707 rtx cst ATTRIBUTE_UNUSED
;
1712 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
1716 optimize_insn_for_speed_p ()))
1719 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
1721 /* We would first store what we can in the largest integer mode, then go to
1722 successively smaller modes. */
1725 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
1729 max_size
= STORE_MAX_PIECES
+ 1;
1730 while (max_size
> 1 && l
> 0)
1732 fixed_size_mode mode
1733 = widest_fixed_size_mode_for_size (max_size
, memsetp
);
1735 icode
= optab_handler (mov_optab
, mode
);
1736 if (icode
!= CODE_FOR_nothing
1737 && align
>= GET_MODE_ALIGNMENT (mode
))
1739 unsigned int size
= GET_MODE_SIZE (mode
);
1746 cst
= (*constfun
) (constfundata
, nullptr, offset
, mode
);
1747 /* All CONST_VECTORs can be loaded for memset since
1748 vec_duplicate_optab is a precondition to pick a
1749 vector mode for the memset expander. */
1750 if (!((memsetp
&& VECTOR_MODE_P (mode
))
1751 || targetm
.legitimate_constant_p (mode
, cst
)))
1761 max_size
= GET_MODE_SIZE (mode
);
1764 /* The code above should have handled everything. */
1771 /* Generate several move instructions to store LEN bytes generated by
1772 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1773 pointer which will be passed as argument in every CONSTFUN call.
1774 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1775 a memset operation and false if it's a copy of a constant string.
1776 Return value is based on RETMODE argument. */
1779 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
1780 by_pieces_constfn constfun
,
1781 void *constfundata
, unsigned int align
, bool memsetp
,
1786 gcc_assert (retmode
!= RETURN_END_MINUS_ONE
);
1790 gcc_assert (targetm
.use_by_pieces_infrastructure_p
1792 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
,
1793 optimize_insn_for_speed_p ()));
1795 store_by_pieces_d
data (to
, constfun
, constfundata
, len
, align
,
1799 if (retmode
!= RETURN_BEGIN
)
1800 return data
.finish_retmode (retmode
);
1805 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1806 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1809 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
1814 /* Use builtin_memset_read_str to support vector mode broadcast. */
1816 store_by_pieces_d
data (to
, builtin_memset_read_str
, &c
, len
, align
,
1821 /* Context used by compare_by_pieces_genfn. It stores the fail label
1822 to jump to in case of miscomparison, and for branch ratios greater than 1,
1823 it stores an accumulator and the current and maximum counts before
1824 emitting another branch. */
1826 class compare_by_pieces_d
: public op_by_pieces_d
1828 rtx_code_label
*m_fail_label
;
1830 int m_count
, m_batch
;
1832 void generate (rtx
, rtx
, machine_mode
) final override
;
1833 bool prepare_mode (machine_mode
, unsigned int) final override
;
1834 void finish_mode (machine_mode
) final override
;
1836 compare_by_pieces_d (rtx op0
, rtx op1
, by_pieces_constfn op1_cfn
,
1837 void *op1_cfn_data
, HOST_WIDE_INT len
, int align
,
1838 rtx_code_label
*fail_label
)
1839 : op_by_pieces_d (COMPARE_MAX_PIECES
, op0
, true, op1
, true, op1_cfn
,
1840 op1_cfn_data
, len
, align
, false)
1842 m_fail_label
= fail_label
;
1846 /* A callback used when iterating for a compare_by_pieces_operation.
1847 OP0 and OP1 are the values that have been loaded and should be
1848 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1849 context structure. */
1852 compare_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode mode
)
1856 rtx temp
= expand_binop (mode
, sub_optab
, op0
, op1
, NULL_RTX
,
1857 true, OPTAB_LIB_WIDEN
);
1859 temp
= expand_binop (mode
, ior_optab
, m_accumulator
, temp
, temp
,
1860 true, OPTAB_LIB_WIDEN
);
1861 m_accumulator
= temp
;
1863 if (++m_count
< m_batch
)
1867 op0
= m_accumulator
;
1869 m_accumulator
= NULL_RTX
;
1871 do_compare_rtx_and_jump (op0
, op1
, NE
, true, mode
, NULL_RTX
, NULL
,
1872 m_fail_label
, profile_probability::uninitialized ());
1875 /* Return true if MODE can be used for a set of moves and comparisons,
1876 given an alignment ALIGN. Prepare whatever data is necessary for
1877 later calls to generate. */
1880 compare_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1882 insn_code icode
= optab_handler (mov_optab
, mode
);
1883 if (icode
== CODE_FOR_nothing
1884 || align
< GET_MODE_ALIGNMENT (mode
)
1885 || !can_compare_p (EQ
, mode
, ccp_jump
))
1887 m_batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1890 m_accumulator
= NULL_RTX
;
1895 /* Called after expanding a series of comparisons in MODE. If we have
1896 accumulated results for which we haven't emitted a branch yet, do
1900 compare_by_pieces_d::finish_mode (machine_mode mode
)
1902 if (m_accumulator
!= NULL_RTX
)
1903 do_compare_rtx_and_jump (m_accumulator
, const0_rtx
, NE
, true, mode
,
1904 NULL_RTX
, NULL
, m_fail_label
,
1905 profile_probability::uninitialized ());
1908 /* Generate several move instructions to compare LEN bytes from blocks
1909 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1911 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1912 used to push FROM to the stack.
1914 ALIGN is maximum stack alignment we can assume.
1916 Optionally, the caller can pass a constfn and associated data in A1_CFN
1917 and A1_CFN_DATA. describing that the second operand being compared is a
1918 known constant and how to obtain its data. */
1921 compare_by_pieces (rtx arg0
, rtx arg1
, unsigned HOST_WIDE_INT len
,
1922 rtx target
, unsigned int align
,
1923 by_pieces_constfn a1_cfn
, void *a1_cfn_data
)
1925 rtx_code_label
*fail_label
= gen_label_rtx ();
1926 rtx_code_label
*end_label
= gen_label_rtx ();
1928 if (target
== NULL_RTX
1929 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1930 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
1932 compare_by_pieces_d
data (arg0
, arg1
, a1_cfn
, a1_cfn_data
, len
, align
,
1937 emit_move_insn (target
, const0_rtx
);
1938 emit_jump (end_label
);
1940 emit_label (fail_label
);
1941 emit_move_insn (target
, const1_rtx
);
1942 emit_label (end_label
);
1947 /* Emit code to move a block Y to a block X. This may be done with
1948 string-move instructions, with multiple scalar move instructions,
1949 or with a library call.
1951 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1952 SIZE is an rtx that says how long they are.
1953 ALIGN is the maximum alignment we can assume they have.
1954 METHOD describes what kind of copy this is, and what mechanisms may be used.
1955 MIN_SIZE is the minimal size of block to move
1956 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1957 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1959 Return the address of the new block, if memcpy is called and returns it,
1963 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1964 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1965 unsigned HOST_WIDE_INT min_size
,
1966 unsigned HOST_WIDE_INT max_size
,
1967 unsigned HOST_WIDE_INT probable_max_size
,
1968 bool bail_out_libcall
, bool *is_move_done
,
1976 *is_move_done
= true;
1979 if (CONST_INT_P (size
) && INTVAL (size
) == 0)
1984 case BLOCK_OP_NORMAL
:
1985 case BLOCK_OP_TAILCALL
:
1989 case BLOCK_OP_CALL_PARM
:
1990 may_use_call
= block_move_libcall_safe_for_call_parm ();
1992 /* Make inhibit_defer_pop nonzero around the library call
1993 to force it to pop the arguments right away. */
1997 case BLOCK_OP_NO_LIBCALL
:
2001 case BLOCK_OP_NO_LIBCALL_RET
:
2009 gcc_assert (MEM_P (x
) && MEM_P (y
));
2010 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
2011 gcc_assert (align
>= BITS_PER_UNIT
);
2013 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2014 block copy is more efficient for other large modes, e.g. DCmode. */
2015 x
= adjust_address (x
, BLKmode
, 0);
2016 y
= adjust_address (y
, BLKmode
, 0);
2018 /* If source and destination are the same, no need to copy anything. */
2019 if (rtx_equal_p (x
, y
)
2020 && !MEM_VOLATILE_P (x
)
2021 && !MEM_VOLATILE_P (y
))
2024 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2025 can be incorrect is coming from __builtin_memcpy. */
2026 poly_int64 const_size
;
2027 if (poly_int_rtx_p (size
, &const_size
))
2029 x
= shallow_copy_rtx (x
);
2030 y
= shallow_copy_rtx (y
);
2031 set_mem_size (x
, const_size
);
2032 set_mem_size (y
, const_size
);
2035 bool pieces_ok
= CONST_INT_P (size
)
2036 && can_move_by_pieces (INTVAL (size
), align
);
2037 bool pattern_ok
= false;
2039 if (!pieces_ok
|| might_overlap
)
2042 = emit_block_move_via_pattern (x
, y
, size
, align
,
2043 expected_align
, expected_size
,
2044 min_size
, max_size
, probable_max_size
,
2046 if (!pattern_ok
&& might_overlap
)
2048 /* Do not try any of the other methods below as they are not safe
2049 for overlapping moves. */
2050 *is_move_done
= false;
2058 move_by_pieces (x
, y
, INTVAL (size
), align
, RETURN_BEGIN
);
2059 else if (may_use_call
&& !might_overlap
2060 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
2061 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
2063 if (bail_out_libcall
)
2066 *is_move_done
= false;
2070 if (may_use_call
< 0)
2073 retval
= emit_block_copy_via_libcall (x
, y
, size
,
2074 method
== BLOCK_OP_TAILCALL
);
2076 else if (might_overlap
)
2077 *is_move_done
= false;
2079 emit_block_move_via_loop (x
, y
, size
, align
);
2081 if (method
== BLOCK_OP_CALL_PARM
)
2088 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
2090 unsigned HOST_WIDE_INT max
, min
= 0;
2091 if (GET_CODE (size
) == CONST_INT
)
2092 min
= max
= UINTVAL (size
);
2094 max
= GET_MODE_MASK (GET_MODE (size
));
2095 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
2099 /* A subroutine of emit_block_move. Returns true if calling the
2100 block move libcall will not clobber any parameters which may have
2101 already been placed on the stack. */
2104 block_move_libcall_safe_for_call_parm (void)
2108 /* If arguments are pushed on the stack, then they're safe. */
2109 if (targetm
.calls
.push_argument (0))
2112 /* If registers go on the stack anyway, any argument is sure to clobber
2113 an outgoing argument. */
2114 #if defined (REG_PARM_STACK_SPACE)
2115 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
2116 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2117 depend on its argument. */
2119 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
2120 && REG_PARM_STACK_SPACE (fn
) != 0)
2124 /* If any argument goes in memory, then it might clobber an outgoing
2127 CUMULATIVE_ARGS args_so_far_v
;
2128 cumulative_args_t args_so_far
;
2131 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
2132 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2133 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2135 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2136 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
2138 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2139 function_arg_info
arg_info (mode
, /*named=*/true);
2140 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, arg_info
);
2141 if (!tmp
|| !REG_P (tmp
))
2143 if (targetm
.calls
.arg_partial_bytes (args_so_far
, arg_info
))
2145 targetm
.calls
.function_arg_advance (args_so_far
, arg_info
);
2151 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2152 return true if successful.
2154 X is the destination of the copy or move.
2155 Y is the source of the copy or move.
2156 SIZE is the size of the block to be moved.
2158 MIGHT_OVERLAP indicates this originated with expansion of a
2159 builtin_memmove() and the source and destination blocks may
2164 emit_block_move_via_pattern (rtx x
, rtx y
, rtx size
, unsigned int align
,
2165 unsigned int expected_align
,
2166 HOST_WIDE_INT expected_size
,
2167 unsigned HOST_WIDE_INT min_size
,
2168 unsigned HOST_WIDE_INT max_size
,
2169 unsigned HOST_WIDE_INT probable_max_size
,
2172 if (expected_align
< align
)
2173 expected_align
= align
;
2174 if (expected_size
!= -1)
2176 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
2177 expected_size
= probable_max_size
;
2178 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2179 expected_size
= min_size
;
2182 /* Since this is a move insn, we don't care about volatility. */
2183 temporary_volatile_ok
v (true);
2185 /* Try the most limited insn first, because there's no point
2186 including more than one in the machine description unless
2187 the more limited one has some advantage. */
2189 opt_scalar_int_mode mode_iter
;
2190 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2192 scalar_int_mode mode
= mode_iter
.require ();
2193 enum insn_code code
;
2195 code
= direct_optab_handler (movmem_optab
, mode
);
2197 code
= direct_optab_handler (cpymem_optab
, mode
);
2199 if (code
!= CODE_FOR_nothing
2200 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2201 here because if SIZE is less than the mode mask, as it is
2202 returned by the macro, it will definitely be less than the
2203 actual mode mask. Since SIZE is within the Pmode address
2204 space, we limit MODE to Pmode. */
2205 && ((CONST_INT_P (size
)
2206 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2207 <= (GET_MODE_MASK (mode
) >> 1)))
2208 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2209 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2211 class expand_operand ops
[9];
2214 /* ??? When called via emit_block_move_for_call, it'd be
2215 nice if there were some way to inform the backend, so
2216 that it doesn't fail the expansion because it thinks
2217 emitting the libcall would be more efficient. */
2218 nops
= insn_data
[(int) code
].n_generator_args
;
2219 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2221 create_fixed_operand (&ops
[0], x
);
2222 create_fixed_operand (&ops
[1], y
);
2223 /* The check above guarantees that this size conversion is valid. */
2224 create_convert_operand_to (&ops
[2], size
, mode
, true);
2225 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2228 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2229 create_integer_operand (&ops
[5], expected_size
);
2233 create_integer_operand (&ops
[6], min_size
);
2234 /* If we cannot represent the maximal size,
2235 make parameter NULL. */
2236 if ((HOST_WIDE_INT
) max_size
!= -1)
2237 create_integer_operand (&ops
[7], max_size
);
2239 create_fixed_operand (&ops
[7], NULL
);
2243 /* If we cannot represent the maximal size,
2244 make parameter NULL. */
2245 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2246 create_integer_operand (&ops
[8], probable_max_size
);
2248 create_fixed_operand (&ops
[8], NULL
);
2250 if (maybe_expand_insn (code
, nops
, ops
))
2258 /* A subroutine of emit_block_move. Copy the data via an explicit
2259 loop. This is used only when libcalls are forbidden. */
2260 /* ??? It'd be nice to copy in hunks larger than QImode. */
2263 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
2264 unsigned int align ATTRIBUTE_UNUSED
)
2266 rtx_code_label
*cmp_label
, *top_label
;
2267 rtx iter
, x_addr
, y_addr
, tmp
;
2268 machine_mode x_addr_mode
= get_address_mode (x
);
2269 machine_mode y_addr_mode
= get_address_mode (y
);
2270 machine_mode iter_mode
;
2272 iter_mode
= GET_MODE (size
);
2273 if (iter_mode
== VOIDmode
)
2274 iter_mode
= word_mode
;
2276 top_label
= gen_label_rtx ();
2277 cmp_label
= gen_label_rtx ();
2278 iter
= gen_reg_rtx (iter_mode
);
2280 emit_move_insn (iter
, const0_rtx
);
2282 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
2283 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
2284 do_pending_stack_adjust ();
2286 emit_jump (cmp_label
);
2287 emit_label (top_label
);
2289 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
2290 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
2292 if (x_addr_mode
!= y_addr_mode
)
2293 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
2294 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
2296 x
= change_address (x
, QImode
, x_addr
);
2297 y
= change_address (y
, QImode
, y_addr
);
2299 emit_move_insn (x
, y
);
2301 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
2302 true, OPTAB_LIB_WIDEN
);
2304 emit_move_insn (iter
, tmp
);
2306 emit_label (cmp_label
);
2308 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
2310 profile_probability::guessed_always ()
2311 .apply_scale (9, 10));
2314 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2315 TAILCALL is true if this is a tail call. */
2318 emit_block_op_via_libcall (enum built_in_function fncode
, rtx dst
, rtx src
,
2319 rtx size
, bool tailcall
)
2321 rtx dst_addr
, src_addr
;
2322 tree call_expr
, dst_tree
, src_tree
, size_tree
;
2323 machine_mode size_mode
;
2325 /* Since dst and src are passed to a libcall, mark the corresponding
2326 tree EXPR as addressable. */
2327 tree dst_expr
= MEM_EXPR (dst
);
2328 tree src_expr
= MEM_EXPR (src
);
2330 mark_addressable (dst_expr
);
2332 mark_addressable (src_expr
);
2334 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
2335 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
2336 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
2338 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
2339 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
2340 src_tree
= make_tree (ptr_type_node
, src_addr
);
2342 size_mode
= TYPE_MODE (sizetype
);
2343 size
= convert_to_mode (size_mode
, size
, 1);
2344 size
= copy_to_mode_reg (size_mode
, size
);
2345 size_tree
= make_tree (sizetype
, size
);
2347 /* It is incorrect to use the libcall calling conventions for calls to
2348 memcpy/memmove/memcmp because they can be provided by the user. */
2349 tree fn
= builtin_decl_implicit (fncode
);
2350 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
2351 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2353 return expand_call (call_expr
, NULL_RTX
, false);
2356 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2357 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2358 otherwise return null. */
2361 expand_cmpstrn_or_cmpmem (insn_code icode
, rtx target
, rtx arg1_rtx
,
2362 rtx arg2_rtx
, tree arg3_type
, rtx arg3_rtx
,
2363 HOST_WIDE_INT align
)
2365 machine_mode insn_mode
= insn_data
[icode
].operand
[0].mode
;
2367 if (target
&& (!REG_P (target
) || HARD_REGISTER_P (target
)))
2370 class expand_operand ops
[5];
2371 create_output_operand (&ops
[0], target
, insn_mode
);
2372 create_fixed_operand (&ops
[1], arg1_rtx
);
2373 create_fixed_operand (&ops
[2], arg2_rtx
);
2374 create_convert_operand_from (&ops
[3], arg3_rtx
, TYPE_MODE (arg3_type
),
2375 TYPE_UNSIGNED (arg3_type
));
2376 create_integer_operand (&ops
[4], align
);
2377 if (maybe_expand_insn (icode
, 5, ops
))
2378 return ops
[0].value
;
2382 /* Expand a block compare between X and Y with length LEN using the
2383 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2384 of the expression that was used to calculate the length. ALIGN
2385 gives the known minimum common alignment. */
2388 emit_block_cmp_via_cmpmem (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2391 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2392 implementing memcmp because it will stop if it encounters two
2394 insn_code icode
= direct_optab_handler (cmpmem_optab
, SImode
);
2396 if (icode
== CODE_FOR_nothing
)
2399 return expand_cmpstrn_or_cmpmem (icode
, target
, x
, y
, len_type
, len
, align
);
2402 /* Emit code to compare a block Y to a block X. This may be done with
2403 string-compare instructions, with multiple scalar instructions,
2404 or with a library call.
2406 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2407 they are. LEN_TYPE is the type of the expression that was used to
2410 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2411 value of a normal memcmp call, instead we can just compare for equality.
2412 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2415 Optionally, the caller can pass a constfn and associated data in Y_CFN
2416 and Y_CFN_DATA. describing that the second operand being compared is a
2417 known constant and how to obtain its data.
2418 Return the result of the comparison, or NULL_RTX if we failed to
2419 perform the operation. */
2422 emit_block_cmp_hints (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2423 bool equality_only
, by_pieces_constfn y_cfn
,
2428 if (CONST_INT_P (len
) && INTVAL (len
) == 0)
2431 gcc_assert (MEM_P (x
) && MEM_P (y
));
2432 unsigned int align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
2433 gcc_assert (align
>= BITS_PER_UNIT
);
2435 x
= adjust_address (x
, BLKmode
, 0);
2436 y
= adjust_address (y
, BLKmode
, 0);
2439 && CONST_INT_P (len
)
2440 && can_do_by_pieces (INTVAL (len
), align
, COMPARE_BY_PIECES
))
2441 result
= compare_by_pieces (x
, y
, INTVAL (len
), target
, align
,
2444 result
= emit_block_cmp_via_cmpmem (x
, y
, len
, len_type
, target
, align
);
2449 /* Copy all or part of a value X into registers starting at REGNO.
2450 The number of registers to be filled is NREGS. */
2453 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
2458 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
2459 x
= validize_mem (force_const_mem (mode
, x
));
2461 /* See if the machine can do this with a load multiple insn. */
2462 if (targetm
.have_load_multiple ())
2464 rtx_insn
*last
= get_last_insn ();
2465 rtx first
= gen_rtx_REG (word_mode
, regno
);
2466 if (rtx_insn
*pat
= targetm
.gen_load_multiple (first
, x
,
2473 delete_insns_since (last
);
2476 for (int i
= 0; i
< nregs
; i
++)
2477 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2478 operand_subword_force (x
, i
, mode
));
2481 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2482 The number of registers to be filled is NREGS. */
2485 move_block_from_reg (int regno
, rtx x
, int nregs
)
2490 /* See if the machine can do this with a store multiple insn. */
2491 if (targetm
.have_store_multiple ())
2493 rtx_insn
*last
= get_last_insn ();
2494 rtx first
= gen_rtx_REG (word_mode
, regno
);
2495 if (rtx_insn
*pat
= targetm
.gen_store_multiple (x
, first
,
2502 delete_insns_since (last
);
2505 for (int i
= 0; i
< nregs
; i
++)
2507 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2511 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2515 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2516 ORIG, where ORIG is a non-consecutive group of registers represented by
2517 a PARALLEL. The clone is identical to the original except in that the
2518 original set of registers is replaced by a new set of pseudo registers.
2519 The new set has the same modes as the original set. */
2522 gen_group_rtx (rtx orig
)
2527 gcc_assert (GET_CODE (orig
) == PARALLEL
);
2529 length
= XVECLEN (orig
, 0);
2530 tmps
= XALLOCAVEC (rtx
, length
);
2532 /* Skip a NULL entry in first slot. */
2533 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2538 for (; i
< length
; i
++)
2540 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2541 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2543 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2546 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2549 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2550 except that values are placed in TMPS[i], and must later be moved
2551 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2554 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
,
2559 machine_mode m
= GET_MODE (orig_src
);
2561 gcc_assert (GET_CODE (dst
) == PARALLEL
);
2564 && !SCALAR_INT_MODE_P (m
)
2565 && !MEM_P (orig_src
)
2566 && GET_CODE (orig_src
) != CONCAT
)
2568 scalar_int_mode imode
;
2569 if (int_mode_for_mode (GET_MODE (orig_src
)).exists (&imode
))
2571 src
= gen_reg_rtx (imode
);
2572 emit_move_insn (gen_lowpart (GET_MODE (orig_src
), src
), orig_src
);
2576 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
2577 emit_move_insn (src
, orig_src
);
2579 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2583 /* Check for a NULL entry, used to indicate that the parameter goes
2584 both on the stack and in registers. */
2585 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2590 /* Process the pieces. */
2591 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2593 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2594 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (dst
, 0, i
), 1));
2595 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2596 poly_int64 shift
= 0;
2598 /* Handle trailing fragments that run over the size of the struct.
2599 It's the target's responsibility to make sure that the fragment
2600 cannot be strictly smaller in some cases and strictly larger
2602 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2603 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2605 /* Arrange to shift the fragment to where it belongs.
2606 extract_bit_field loads to the lsb of the reg. */
2608 #ifdef BLOCK_REG_PADDING
2609 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2610 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2615 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2616 bytelen
= ssize
- bytepos
;
2617 gcc_assert (maybe_gt (bytelen
, 0));
2620 /* If we won't be loading directly from memory, protect the real source
2621 from strange tricks we might play; but make sure that the source can
2622 be loaded directly into the destination. */
2624 if (!MEM_P (orig_src
)
2625 && (!CONSTANT_P (orig_src
)
2626 || (GET_MODE (orig_src
) != mode
2627 && GET_MODE (orig_src
) != VOIDmode
)))
2629 if (GET_MODE (orig_src
) == VOIDmode
)
2630 src
= gen_reg_rtx (mode
);
2632 src
= gen_reg_rtx (GET_MODE (orig_src
));
2634 emit_move_insn (src
, orig_src
);
2637 /* Optimize the access just a bit. */
2639 && (! targetm
.slow_unaligned_access (mode
, MEM_ALIGN (src
))
2640 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
2641 && multiple_p (bytepos
* BITS_PER_UNIT
, GET_MODE_ALIGNMENT (mode
))
2642 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2644 tmps
[i
] = gen_reg_rtx (mode
);
2645 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
2647 else if (COMPLEX_MODE_P (mode
)
2648 && GET_MODE (src
) == mode
2649 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2650 /* Let emit_move_complex do the bulk of the work. */
2652 else if (GET_CODE (src
) == CONCAT
)
2654 poly_int64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2655 poly_int64 slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
2659 if (can_div_trunc_p (bytepos
, slen0
, &elt
, &subpos
)
2660 && known_le (subpos
+ bytelen
, slen0
))
2662 /* The following assumes that the concatenated objects all
2663 have the same size. In this case, a simple calculation
2664 can be used to determine the object and the bit field
2666 tmps
[i
] = XEXP (src
, elt
);
2667 if (maybe_ne (subpos
, 0)
2668 || maybe_ne (subpos
+ bytelen
, slen0
)
2669 || (!CONSTANT_P (tmps
[i
])
2670 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
)))
2671 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
2672 subpos
* BITS_PER_UNIT
,
2673 1, NULL_RTX
, mode
, mode
, false,
2680 gcc_assert (known_eq (bytepos
, 0));
2681 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2682 emit_move_insn (mem
, src
);
2683 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
2684 0, 1, NULL_RTX
, mode
, mode
, false,
2688 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
2689 && XVECLEN (dst
, 0) > 1)
2690 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
2691 else if (CONSTANT_P (src
))
2693 if (known_eq (bytelen
, ssize
))
2699 /* TODO: const_wide_int can have sizes other than this... */
2700 gcc_assert (known_eq (2 * bytelen
, ssize
));
2701 split_double (src
, &first
, &second
);
2708 else if (REG_P (src
) && GET_MODE (src
) == mode
)
2711 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
2712 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
2713 mode
, mode
, false, NULL
);
2715 if (maybe_ne (shift
, 0))
2716 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
2721 /* Emit code to move a block SRC of type TYPE to a block DST,
2722 where DST is non-consecutive registers represented by a PARALLEL.
2723 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2727 emit_group_load (rtx dst
, rtx src
, tree type
, poly_int64 ssize
)
2732 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
2733 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2735 /* Copy the extracted pieces into the proper (probable) hard regs. */
2736 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
2738 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
2741 emit_move_insn (d
, tmps
[i
]);
2745 /* Similar, but load SRC into new pseudos in a format that looks like
2746 PARALLEL. This can later be fed to emit_group_move to get things
2747 in the right place. */
2750 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, poly_int64 ssize
)
2755 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
2756 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
2758 /* Convert the vector to look just like the original PARALLEL, except
2759 with the computed values. */
2760 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
2762 rtx e
= XVECEXP (parallel
, 0, i
);
2763 rtx d
= XEXP (e
, 0);
2767 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
2768 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
2770 RTVEC_ELT (vec
, i
) = e
;
2773 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
2776 /* Emit code to move a block SRC to block DST, where SRC and DST are
2777 non-consecutive groups of registers, each represented by a PARALLEL. */
2780 emit_group_move (rtx dst
, rtx src
)
2784 gcc_assert (GET_CODE (src
) == PARALLEL
2785 && GET_CODE (dst
) == PARALLEL
2786 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
2788 /* Skip first entry if NULL. */
2789 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
2790 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
2791 XEXP (XVECEXP (src
, 0, i
), 0));
2794 /* Move a group of registers represented by a PARALLEL into pseudos. */
2797 emit_group_move_into_temps (rtx src
)
2799 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
2802 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
2804 rtx e
= XVECEXP (src
, 0, i
);
2805 rtx d
= XEXP (e
, 0);
2808 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
2809 RTVEC_ELT (vec
, i
) = e
;
2812 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
2815 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2816 where SRC is non-consecutive registers represented by a PARALLEL.
2817 SSIZE represents the total size of block ORIG_DST, or -1 if not
2821 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
,
2825 int start
, finish
, i
;
2826 machine_mode m
= GET_MODE (orig_dst
);
2828 gcc_assert (GET_CODE (src
) == PARALLEL
);
2830 if (!SCALAR_INT_MODE_P (m
)
2831 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
2833 scalar_int_mode imode
;
2834 if (int_mode_for_mode (GET_MODE (orig_dst
)).exists (&imode
))
2836 dst
= gen_reg_rtx (imode
);
2837 emit_group_store (dst
, src
, type
, ssize
);
2838 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
2842 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
2843 emit_group_store (dst
, src
, type
, ssize
);
2845 emit_move_insn (orig_dst
, dst
);
2849 /* Check for a NULL entry, used to indicate that the parameter goes
2850 both on the stack and in registers. */
2851 if (XEXP (XVECEXP (src
, 0, 0), 0))
2855 finish
= XVECLEN (src
, 0);
2857 tmps
= XALLOCAVEC (rtx
, finish
);
2859 /* Copy the (probable) hard regs into pseudos. */
2860 for (i
= start
; i
< finish
; i
++)
2862 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
2863 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
2865 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
2866 emit_move_insn (tmps
[i
], reg
);
2872 /* If we won't be storing directly into memory, protect the real destination
2873 from strange tricks we might play. */
2875 if (GET_CODE (dst
) == PARALLEL
)
2879 /* We can get a PARALLEL dst if there is a conditional expression in
2880 a return statement. In that case, the dst and src are the same,
2881 so no action is necessary. */
2882 if (rtx_equal_p (dst
, src
))
2885 /* It is unclear if we can ever reach here, but we may as well handle
2886 it. Allocate a temporary, and split this into a store/load to/from
2888 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
2889 emit_group_store (temp
, src
, type
, ssize
);
2890 emit_group_load (dst
, temp
, type
, ssize
);
2893 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2895 machine_mode outer
= GET_MODE (dst
);
2901 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2902 dst
= gen_reg_rtx (outer
);
2904 /* Make life a bit easier for combine: if the first element of the
2905 vector is the word (or larger) low part of the destination mode,
2906 use a paradoxical subreg to initialize the destination. */
2909 inner
= GET_MODE (tmps
[start
]);
2910 bytepos
= subreg_lowpart_offset (inner
, outer
);
2911 if (known_ge (GET_MODE_BITSIZE (inner
), BITS_PER_WORD
)
2912 && known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0,
2916 temp
= simplify_gen_subreg (outer
, tmps
[start
], inner
, 0);
2919 emit_move_insn (dst
, temp
);
2926 /* If the first element wasn't the low part, try the last. */
2928 && start
< finish
- 1)
2930 inner
= GET_MODE (tmps
[finish
- 1]);
2931 bytepos
= subreg_lowpart_offset (inner
, outer
);
2932 if (known_ge (GET_MODE_BITSIZE (inner
), BITS_PER_WORD
)
2933 && known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0,
2937 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1], inner
, 0);
2940 emit_move_insn (dst
, temp
);
2947 /* Otherwise, simply initialize the result to zero. */
2949 emit_move_insn (dst
, CONST0_RTX (outer
));
2952 /* Process the pieces. */
2953 for (i
= start
; i
< finish
; i
++)
2955 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, i
), 1));
2956 machine_mode mode
= GET_MODE (tmps
[i
]);
2957 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2958 poly_uint64 adj_bytelen
;
2961 /* Handle trailing fragments that run over the size of the struct.
2962 It's the target's responsibility to make sure that the fragment
2963 cannot be strictly smaller in some cases and strictly larger
2965 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2966 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2967 adj_bytelen
= ssize
- bytepos
;
2969 adj_bytelen
= bytelen
;
2971 /* Deal with destination CONCATs by either storing into one of the parts
2972 or doing a copy after storing into a register or stack temporary. */
2973 if (GET_CODE (dst
) == CONCAT
)
2975 if (known_le (bytepos
+ adj_bytelen
,
2976 GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2977 dest
= XEXP (dst
, 0);
2979 else if (known_ge (bytepos
, GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2981 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2982 dest
= XEXP (dst
, 1);
2987 machine_mode dest_mode
= GET_MODE (dest
);
2988 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2989 scalar_int_mode dest_imode
;
2991 gcc_assert (known_eq (bytepos
, 0) && XVECLEN (src
, 0));
2993 /* If the source is a single scalar integer register, and the
2994 destination has a complex mode for which a same-sized integer
2995 mode exists, then we can take the left-justified part of the
2996 source in the complex mode. */
2997 if (finish
== start
+ 1
2999 && SCALAR_INT_MODE_P (tmp_mode
)
3000 && COMPLEX_MODE_P (dest_mode
)
3001 && int_mode_for_mode (dest_mode
).exists (&dest_imode
))
3003 const scalar_int_mode tmp_imode
3004 = as_a
<scalar_int_mode
> (tmp_mode
);
3006 if (GET_MODE_BITSIZE (dest_imode
)
3007 < GET_MODE_BITSIZE (tmp_imode
))
3009 dest
= gen_reg_rtx (dest_imode
);
3010 if (BYTES_BIG_ENDIAN
)
3011 tmps
[i
] = expand_shift (RSHIFT_EXPR
, tmp_mode
, tmps
[i
],
3012 GET_MODE_BITSIZE (tmp_imode
)
3013 - GET_MODE_BITSIZE (dest_imode
),
3015 emit_move_insn (dest
, gen_lowpart (dest_imode
, tmps
[i
]));
3016 dst
= gen_lowpart (dest_mode
, dest
);
3019 dst
= gen_lowpart (dest_mode
, tmps
[i
]);
3022 /* Otherwise spill the source onto the stack using the more
3023 aligned of the two modes. */
3024 else if (GET_MODE_ALIGNMENT (dest_mode
)
3025 >= GET_MODE_ALIGNMENT (tmp_mode
))
3027 dest
= assign_stack_temp (dest_mode
,
3028 GET_MODE_SIZE (dest_mode
));
3029 emit_move_insn (adjust_address (dest
, tmp_mode
, bytepos
),
3036 dest
= assign_stack_temp (tmp_mode
,
3037 GET_MODE_SIZE (tmp_mode
));
3038 emit_move_insn (dest
, tmps
[i
]);
3039 dst
= adjust_address (dest
, dest_mode
, bytepos
);
3046 /* Handle trailing fragments that run over the size of the struct. */
3047 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
3049 /* store_bit_field always takes its value from the lsb.
3050 Move the fragment to the lsb if it's not already there. */
3052 #ifdef BLOCK_REG_PADDING
3053 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
3054 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
3060 poly_int64 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
3061 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
3065 /* Make sure not to write past the end of the struct. */
3066 store_bit_field (dest
,
3067 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
3068 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
3069 VOIDmode
, tmps
[i
], false, false);
3072 /* Optimize the access just a bit. */
3073 else if (MEM_P (dest
)
3074 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (dest
))
3075 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
3076 && multiple_p (bytepos
* BITS_PER_UNIT
,
3077 GET_MODE_ALIGNMENT (mode
))
3078 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
3079 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
3082 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
3083 0, 0, mode
, tmps
[i
], false, false);
3086 /* Copy from the pseudo into the (probable) hard reg. */
3087 if (orig_dst
!= dst
)
3088 emit_move_insn (orig_dst
, dst
);
3091 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3092 of the value stored in X. */
3095 maybe_emit_group_store (rtx x
, tree type
)
3097 machine_mode mode
= TYPE_MODE (type
);
3098 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
3099 if (GET_CODE (x
) == PARALLEL
)
3101 rtx result
= gen_reg_rtx (mode
);
3102 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
3108 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3110 This is used on targets that return BLKmode values in registers. */
3113 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
3115 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
3116 rtx src
= NULL
, dst
= NULL
;
3117 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
3118 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
3119 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3120 fixed_size_mode mode
= as_a
<fixed_size_mode
> (GET_MODE (srcreg
));
3121 fixed_size_mode tmode
= as_a
<fixed_size_mode
> (GET_MODE (target
));
3122 fixed_size_mode copy_mode
;
3124 /* BLKmode registers created in the back-end shouldn't have survived. */
3125 gcc_assert (mode
!= BLKmode
);
3127 /* If the structure doesn't take up a whole number of words, see whether
3128 SRCREG is padded on the left or on the right. If it's on the left,
3129 set PADDING_CORRECTION to the number of bits to skip.
3131 In most ABIs, the structure will be returned at the least end of
3132 the register, which translates to right padding on little-endian
3133 targets and left padding on big-endian targets. The opposite
3134 holds if the structure is returned at the most significant
3135 end of the register. */
3136 if (bytes
% UNITS_PER_WORD
!= 0
3137 && (targetm
.calls
.return_in_msb (type
)
3139 : BYTES_BIG_ENDIAN
))
3141 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
3143 /* We can use a single move if we have an exact mode for the size. */
3144 else if (MEM_P (target
)
3145 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
))
3146 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
3147 && bytes
== GET_MODE_SIZE (mode
))
3149 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
3153 /* And if we additionally have the same mode for a register. */
3154 else if (REG_P (target
)
3155 && GET_MODE (target
) == mode
3156 && bytes
== GET_MODE_SIZE (mode
))
3158 emit_move_insn (target
, srcreg
);
3162 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3163 into a new pseudo which is a full word. */
3164 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
3166 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
3170 /* Copy the structure BITSIZE bits at a time. If the target lives in
3171 memory, take care of not reading/writing past its end by selecting
3172 a copy mode suited to BITSIZE. This should always be possible given
3175 If the target lives in register, make sure not to select a copy mode
3176 larger than the mode of the register.
3178 We could probably emit more efficient code for machines which do not use
3179 strict alignment, but it doesn't seem worth the effort at the current
3182 copy_mode
= word_mode
;
3185 opt_scalar_int_mode mem_mode
= int_mode_for_size (bitsize
, 1);
3186 if (mem_mode
.exists ())
3187 copy_mode
= mem_mode
.require ();
3189 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
3192 for (bitpos
= 0, xbitpos
= padding_correction
;
3193 bitpos
< bytes
* BITS_PER_UNIT
;
3194 bitpos
+= bitsize
, xbitpos
+= bitsize
)
3196 /* We need a new source operand each time xbitpos is on a
3197 word boundary and when xbitpos == padding_correction
3198 (the first time through). */
3199 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
3200 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
3202 /* We need a new destination operand each time bitpos is on
3204 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
3206 else if (bitpos
% BITS_PER_WORD
== 0)
3207 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
3209 /* Use xbitpos for the source extraction (right justified) and
3210 bitpos for the destination store (left justified). */
3211 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
3212 extract_bit_field (src
, bitsize
,
3213 xbitpos
% BITS_PER_WORD
, 1,
3214 NULL_RTX
, copy_mode
, copy_mode
,
3220 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3221 register if it contains any data, otherwise return null.
3223 This is used on targets that return BLKmode values in registers. */
3226 copy_blkmode_to_reg (machine_mode mode_in
, tree src
)
3229 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
3230 unsigned int bitsize
;
3231 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
3232 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3233 fixed_size_mode mode
= as_a
<fixed_size_mode
> (mode_in
);
3234 fixed_size_mode dst_mode
;
3235 scalar_int_mode min_mode
;
3237 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
3239 x
= expand_normal (src
);
3241 bytes
= arg_int_size_in_bytes (TREE_TYPE (src
));
3245 /* If the structure doesn't take up a whole number of words, see
3246 whether the register value should be padded on the left or on
3247 the right. Set PADDING_CORRECTION to the number of padding
3248 bits needed on the left side.
3250 In most ABIs, the structure will be returned at the least end of
3251 the register, which translates to right padding on little-endian
3252 targets and left padding on big-endian targets. The opposite
3253 holds if the structure is returned at the most significant
3254 end of the register. */
3255 if (bytes
% UNITS_PER_WORD
!= 0
3256 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
3258 : BYTES_BIG_ENDIAN
))
3259 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
3262 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
3263 dst_words
= XALLOCAVEC (rtx
, n_regs
);
3264 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
3265 min_mode
= smallest_int_mode_for_size (bitsize
);
3267 /* Copy the structure BITSIZE bits at a time. */
3268 for (bitpos
= 0, xbitpos
= padding_correction
;
3269 bitpos
< bytes
* BITS_PER_UNIT
;
3270 bitpos
+= bitsize
, xbitpos
+= bitsize
)
3272 /* We need a new destination pseudo each time xbitpos is
3273 on a word boundary and when xbitpos == padding_correction
3274 (the first time through). */
3275 if (xbitpos
% BITS_PER_WORD
== 0
3276 || xbitpos
== padding_correction
)
3278 /* Generate an appropriate register. */
3279 dst_word
= gen_reg_rtx (word_mode
);
3280 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
3282 /* Clear the destination before we move anything into it. */
3283 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
3286 /* Find the largest integer mode that can be used to copy all or as
3287 many bits as possible of the structure if the target supports larger
3288 copies. There are too many corner cases here w.r.t to alignments on
3289 the read/writes. So if there is any padding just use single byte
3291 opt_scalar_int_mode mode_iter
;
3292 if (padding_correction
== 0 && !STRICT_ALIGNMENT
)
3294 FOR_EACH_MODE_FROM (mode_iter
, min_mode
)
3296 unsigned int msize
= GET_MODE_BITSIZE (mode_iter
.require ());
3297 if (msize
<= ((bytes
* BITS_PER_UNIT
) - bitpos
)
3298 && msize
<= BITS_PER_WORD
)
3305 /* We need a new source operand each time bitpos is on a word
3307 if (bitpos
% BITS_PER_WORD
== 0)
3308 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
3310 /* Use bitpos for the source extraction (left justified) and
3311 xbitpos for the destination store (right justified). */
3312 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
3314 extract_bit_field (src_word
, bitsize
,
3315 bitpos
% BITS_PER_WORD
, 1,
3316 NULL_RTX
, word_mode
, word_mode
,
3321 if (mode
== BLKmode
)
3323 /* Find the smallest integer mode large enough to hold the
3324 entire structure. */
3325 opt_scalar_int_mode mode_iter
;
3326 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3327 if (GET_MODE_SIZE (mode_iter
.require ()) >= bytes
)
3330 /* A suitable mode should have been found. */
3331 mode
= mode_iter
.require ();
3334 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
3335 dst_mode
= word_mode
;
3338 dst
= gen_reg_rtx (dst_mode
);
3340 for (i
= 0; i
< n_regs
; i
++)
3341 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
3343 if (mode
!= dst_mode
)
3344 dst
= gen_lowpart (mode
, dst
);
3349 /* Add a USE expression for REG to the (possibly empty) list pointed
3350 to by CALL_FUSAGE. REG must denote a hard register. */
3353 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
3355 gcc_assert (REG_P (reg
));
3357 if (!HARD_REGISTER_P (reg
))
3361 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
3364 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3365 to by CALL_FUSAGE. REG must denote a hard register. */
3368 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
3370 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
3373 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
3376 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3377 starting at REGNO. All of these registers must be hard registers. */
3380 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
3384 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
3386 for (i
= 0; i
< nregs
; i
++)
3387 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
3390 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3391 PARALLEL REGS. This is for calls that pass values in multiple
3392 non-contiguous locations. The Irix 6 ABI has examples of this. */
3395 use_group_regs (rtx
*call_fusage
, rtx regs
)
3399 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
3401 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
3403 /* A NULL entry means the parameter goes both on the stack and in
3404 registers. This can also be a MEM for targets that pass values
3405 partially on the stack and partially in registers. */
3406 if (reg
!= 0 && REG_P (reg
))
3407 use_reg (call_fusage
, reg
);
3411 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3412 assigment and the code of the expresion on the RHS is CODE. Return
3416 get_def_for_expr (tree name
, enum tree_code code
)
3420 if (TREE_CODE (name
) != SSA_NAME
)
3423 def_stmt
= get_gimple_for_ssa_name (name
);
3425 || gimple_assign_rhs_code (def_stmt
) != code
)
3431 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3432 assigment and the class of the expresion on the RHS is CLASS. Return
3436 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
3440 if (TREE_CODE (name
) != SSA_NAME
)
3443 def_stmt
= get_gimple_for_ssa_name (name
);
3445 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
3451 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3452 its length in bytes. */
3455 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
3456 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3457 unsigned HOST_WIDE_INT min_size
,
3458 unsigned HOST_WIDE_INT max_size
,
3459 unsigned HOST_WIDE_INT probable_max_size
,
3462 machine_mode mode
= GET_MODE (object
);
3465 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
3467 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3468 just move a zero. Otherwise, do this a piece at a time. */
3469 poly_int64 size_val
;
3471 && poly_int_rtx_p (size
, &size_val
)
3472 && known_eq (size_val
, GET_MODE_SIZE (mode
)))
3474 rtx zero
= CONST0_RTX (mode
);
3477 emit_move_insn (object
, zero
);
3481 if (COMPLEX_MODE_P (mode
))
3483 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
3486 write_complex_part (object
, zero
, 0, true);
3487 write_complex_part (object
, zero
, 1, false);
3493 if (size
== const0_rtx
)
3496 align
= MEM_ALIGN (object
);
3498 if (CONST_INT_P (size
)
3499 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
3501 optimize_insn_for_speed_p ()))
3502 clear_by_pieces (object
, INTVAL (size
), align
);
3503 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
3504 expected_align
, expected_size
,
3505 min_size
, max_size
, probable_max_size
))
3507 else if (try_store_by_multiple_pieces (object
, size
, ctz_size
,
3509 NULL_RTX
, 0, align
))
3511 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
3512 return set_storage_via_libcall (object
, size
, const0_rtx
,
3513 method
== BLOCK_OP_TAILCALL
);
3521 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
3523 unsigned HOST_WIDE_INT max
, min
= 0;
3524 if (GET_CODE (size
) == CONST_INT
)
3525 min
= max
= UINTVAL (size
);
3527 max
= GET_MODE_MASK (GET_MODE (size
));
3528 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
, 0);
3532 /* A subroutine of clear_storage. Expand a call to memset.
3533 Return the return value of memset, 0 otherwise. */
3536 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
3538 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
3539 machine_mode size_mode
;
3541 object
= copy_addr_to_reg (XEXP (object
, 0));
3542 object_tree
= make_tree (ptr_type_node
, object
);
3544 if (!CONST_INT_P (val
))
3545 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
3546 val_tree
= make_tree (integer_type_node
, val
);
3548 size_mode
= TYPE_MODE (sizetype
);
3549 size
= convert_to_mode (size_mode
, size
, 1);
3550 size
= copy_to_mode_reg (size_mode
, size
);
3551 size_tree
= make_tree (sizetype
, size
);
3553 /* It is incorrect to use the libcall calling conventions for calls to
3554 memset because it can be provided by the user. */
3555 fn
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3556 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
3557 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
3559 return expand_call (call_expr
, NULL_RTX
, false);
3562 /* Expand a setmem pattern; return true if successful. */
3565 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
3566 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3567 unsigned HOST_WIDE_INT min_size
,
3568 unsigned HOST_WIDE_INT max_size
,
3569 unsigned HOST_WIDE_INT probable_max_size
)
3571 /* Try the most limited insn first, because there's no point
3572 including more than one in the machine description unless
3573 the more limited one has some advantage. */
3575 if (expected_align
< align
)
3576 expected_align
= align
;
3577 if (expected_size
!= -1)
3579 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
3580 expected_size
= max_size
;
3581 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
3582 expected_size
= min_size
;
3585 opt_scalar_int_mode mode_iter
;
3586 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3588 scalar_int_mode mode
= mode_iter
.require ();
3589 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
3591 if (code
!= CODE_FOR_nothing
3592 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3593 here because if SIZE is less than the mode mask, as it is
3594 returned by the macro, it will definitely be less than the
3595 actual mode mask. Since SIZE is within the Pmode address
3596 space, we limit MODE to Pmode. */
3597 && ((CONST_INT_P (size
)
3598 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3599 <= (GET_MODE_MASK (mode
) >> 1)))
3600 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
3601 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
3603 class expand_operand ops
[9];
3606 nops
= insn_data
[(int) code
].n_generator_args
;
3607 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
3609 create_fixed_operand (&ops
[0], object
);
3610 /* The check above guarantees that this size conversion is valid. */
3611 create_convert_operand_to (&ops
[1], size
, mode
, true);
3612 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
3613 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
3616 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
3617 create_integer_operand (&ops
[5], expected_size
);
3621 create_integer_operand (&ops
[6], min_size
);
3622 /* If we cannot represent the maximal size,
3623 make parameter NULL. */
3624 if ((HOST_WIDE_INT
) max_size
!= -1)
3625 create_integer_operand (&ops
[7], max_size
);
3627 create_fixed_operand (&ops
[7], NULL
);
3631 /* If we cannot represent the maximal size,
3632 make parameter NULL. */
3633 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3634 create_integer_operand (&ops
[8], probable_max_size
);
3636 create_fixed_operand (&ops
[8], NULL
);
3638 if (maybe_expand_insn (code
, nops
, ops
))
3647 /* Write to one of the components of the complex value CPLX. Write VAL to
3648 the real part if IMAG_P is false, and the imaginary part if its true.
3649 If UNDEFINED_P then the value in CPLX is currently undefined. */
3652 write_complex_part (rtx cplx
, rtx val
, bool imag_p
, bool undefined_p
)
3658 if (GET_CODE (cplx
) == CONCAT
)
3660 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3664 cmode
= GET_MODE (cplx
);
3665 imode
= GET_MODE_INNER (cmode
);
3666 ibitsize
= GET_MODE_BITSIZE (imode
);
3668 /* For MEMs simplify_gen_subreg may generate an invalid new address
3669 because, e.g., the original address is considered mode-dependent
3670 by the target, which restricts simplify_subreg from invoking
3671 adjust_address_nv. Instead of preparing fallback support for an
3672 invalid address, we call adjust_address_nv directly. */
3675 emit_move_insn (adjust_address_nv (cplx
, imode
,
3676 imag_p
? GET_MODE_SIZE (imode
) : 0),
3681 /* If the sub-object is at least word sized, then we know that subregging
3682 will work. This special case is important, since store_bit_field
3683 wants to operate on integer modes, and there's rarely an OImode to
3684 correspond to TCmode. */
3685 if (ibitsize
>= BITS_PER_WORD
3686 /* For hard regs we have exact predicates. Assume we can split
3687 the original object if it spans an even number of hard regs.
3688 This special case is important for SCmode on 64-bit platforms
3689 where the natural size of floating-point regs is 32-bit. */
3691 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3692 && REG_NREGS (cplx
) % 2 == 0))
3694 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3695 imag_p
? GET_MODE_SIZE (imode
) : 0);
3698 emit_move_insn (part
, val
);
3702 /* simplify_gen_subreg may fail for sub-word MEMs. */
3703 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3706 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
,
3707 false, undefined_p
);
3710 /* Extract one of the components of the complex value CPLX. Extract the
3711 real part if IMAG_P is false, and the imaginary part if it's true. */
3714 read_complex_part (rtx cplx
, bool imag_p
)
3720 if (GET_CODE (cplx
) == CONCAT
)
3721 return XEXP (cplx
, imag_p
);
3723 cmode
= GET_MODE (cplx
);
3724 imode
= GET_MODE_INNER (cmode
);
3725 ibitsize
= GET_MODE_BITSIZE (imode
);
3727 /* Special case reads from complex constants that got spilled to memory. */
3728 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3730 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3731 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3733 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3734 if (CONSTANT_CLASS_P (part
))
3735 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3739 /* For MEMs simplify_gen_subreg may generate an invalid new address
3740 because, e.g., the original address is considered mode-dependent
3741 by the target, which restricts simplify_subreg from invoking
3742 adjust_address_nv. Instead of preparing fallback support for an
3743 invalid address, we call adjust_address_nv directly. */
3745 return adjust_address_nv (cplx
, imode
,
3746 imag_p
? GET_MODE_SIZE (imode
) : 0);
3748 /* If the sub-object is at least word sized, then we know that subregging
3749 will work. This special case is important, since extract_bit_field
3750 wants to operate on integer modes, and there's rarely an OImode to
3751 correspond to TCmode. */
3752 if (ibitsize
>= BITS_PER_WORD
3753 /* For hard regs we have exact predicates. Assume we can split
3754 the original object if it spans an even number of hard regs.
3755 This special case is important for SCmode on 64-bit platforms
3756 where the natural size of floating-point regs is 32-bit. */
3758 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3759 && REG_NREGS (cplx
) % 2 == 0))
3761 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3762 imag_p
? GET_MODE_SIZE (imode
) : 0);
3766 /* simplify_gen_subreg may fail for sub-word MEMs. */
3767 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3770 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3771 true, NULL_RTX
, imode
, imode
, false, NULL
);
3774 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3775 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3776 represented in NEW_MODE. If FORCE is true, this will never happen, as
3777 we'll force-create a SUBREG if needed. */
3780 emit_move_change_mode (machine_mode new_mode
,
3781 machine_mode old_mode
, rtx x
, bool force
)
3785 if (push_operand (x
, GET_MODE (x
)))
3787 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3788 MEM_COPY_ATTRIBUTES (ret
, x
);
3792 /* We don't have to worry about changing the address since the
3793 size in bytes is supposed to be the same. */
3794 if (reload_in_progress
)
3796 /* Copy the MEM to change the mode and move any
3797 substitutions from the old MEM to the new one. */
3798 ret
= adjust_address_nv (x
, new_mode
, 0);
3799 copy_replacements (x
, ret
);
3802 ret
= adjust_address (x
, new_mode
, 0);
3806 /* Note that we do want simplify_subreg's behavior of validating
3807 that the new mode is ok for a hard register. If we were to use
3808 simplify_gen_subreg, we would create the subreg, but would
3809 probably run into the target not being able to implement it. */
3810 /* Except, of course, when FORCE is true, when this is exactly what
3811 we want. Which is needed for CCmodes on some targets. */
3813 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3815 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3821 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3822 an integer mode of the same size as MODE. Returns the instruction
3823 emitted, or NULL if such a move could not be generated. */
3826 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3828 scalar_int_mode imode
;
3829 enum insn_code code
;
3831 /* There must exist a mode of the exact size we require. */
3832 if (!int_mode_for_mode (mode
).exists (&imode
))
3835 /* The target must support moves in this mode. */
3836 code
= optab_handler (mov_optab
, imode
);
3837 if (code
== CODE_FOR_nothing
)
3840 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3843 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3846 return emit_insn (GEN_FCN (code
) (x
, y
));
3849 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3850 Return an equivalent MEM that does not use an auto-increment. */
3853 emit_move_resolve_push (machine_mode mode
, rtx x
)
3855 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3858 poly_int64 adjust
= GET_MODE_SIZE (mode
);
3859 #ifdef PUSH_ROUNDING
3860 adjust
= PUSH_ROUNDING (adjust
);
3862 if (code
== PRE_DEC
|| code
== POST_DEC
)
3864 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3866 rtx expr
= XEXP (XEXP (x
, 0), 1);
3868 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3869 poly_int64 val
= rtx_to_poly_int64 (XEXP (expr
, 1));
3870 if (GET_CODE (expr
) == MINUS
)
3872 gcc_assert (known_eq (adjust
, val
) || known_eq (adjust
, -val
));
3876 /* Do not use anti_adjust_stack, since we don't want to update
3877 stack_pointer_delta. */
3878 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3879 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3880 0, OPTAB_LIB_WIDEN
);
3881 if (temp
!= stack_pointer_rtx
)
3882 emit_move_insn (stack_pointer_rtx
, temp
);
3889 temp
= stack_pointer_rtx
;
3894 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3900 return replace_equiv_address (x
, temp
);
3903 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3904 X is known to satisfy push_operand, and MODE is known to be complex.
3905 Returns the last instruction emitted. */
3908 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3910 scalar_mode submode
= GET_MODE_INNER (mode
);
3913 #ifdef PUSH_ROUNDING
3914 poly_int64 submodesize
= GET_MODE_SIZE (submode
);
3916 /* In case we output to the stack, but the size is smaller than the
3917 machine can push exactly, we need to use move instructions. */
3918 if (maybe_ne (PUSH_ROUNDING (submodesize
), submodesize
))
3920 x
= emit_move_resolve_push (mode
, x
);
3921 return emit_move_insn (x
, y
);
3925 /* Note that the real part always precedes the imag part in memory
3926 regardless of machine's endianness. */
3927 switch (GET_CODE (XEXP (x
, 0)))
3941 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3942 read_complex_part (y
, imag_first
));
3943 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3944 read_complex_part (y
, !imag_first
));
3947 /* A subroutine of emit_move_complex. Perform the move from Y to X
3948 via two moves of the parts. Returns the last instruction emitted. */
3951 emit_move_complex_parts (rtx x
, rtx y
)
3953 /* Show the output dies here. This is necessary for SUBREGs
3954 of pseudos since we cannot track their lifetimes correctly;
3955 hard regs shouldn't appear here except as return values. */
3956 if (!reload_completed
&& !reload_in_progress
3957 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3960 write_complex_part (x
, read_complex_part (y
, false), false, true);
3961 write_complex_part (x
, read_complex_part (y
, true), true, false);
3963 return get_last_insn ();
3966 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3967 MODE is known to be complex. Returns the last instruction emitted. */
3970 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3974 /* Need to take special care for pushes, to maintain proper ordering
3975 of the data, and possibly extra padding. */
3976 if (push_operand (x
, mode
))
3977 return emit_move_complex_push (mode
, x
, y
);
3979 /* See if we can coerce the target into moving both values at once, except
3980 for floating point where we favor moving as parts if this is easy. */
3981 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3982 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3984 && HARD_REGISTER_P (x
)
3985 && REG_NREGS (x
) == 1)
3987 && HARD_REGISTER_P (y
)
3988 && REG_NREGS (y
) == 1))
3990 /* Not possible if the values are inherently not adjacent. */
3991 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3993 /* Is possible if both are registers (or subregs of registers). */
3994 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3996 /* If one of the operands is a memory, and alignment constraints
3997 are friendly enough, we may be able to do combined memory operations.
3998 We do not attempt this if Y is a constant because that combination is
3999 usually better with the by-parts thing below. */
4000 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
4001 && (!STRICT_ALIGNMENT
4002 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
4011 /* For memory to memory moves, optimal behavior can be had with the
4012 existing block move logic. But use normal expansion if optimizing
4014 if (MEM_P (x
) && MEM_P (y
))
4016 emit_block_move (x
, y
, gen_int_mode (GET_MODE_SIZE (mode
), Pmode
),
4017 (optimize_insn_for_speed_p()
4018 ? BLOCK_OP_NO_LIBCALL
: BLOCK_OP_NORMAL
));
4019 return get_last_insn ();
4022 ret
= emit_move_via_integer (mode
, x
, y
, true);
4027 return emit_move_complex_parts (x
, y
);
4030 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4031 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4034 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
4038 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4041 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
4042 if (code
!= CODE_FOR_nothing
)
4044 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
4045 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
4046 return emit_insn (GEN_FCN (code
) (x
, y
));
4050 /* Otherwise, find the MODE_INT mode of the same width. */
4051 ret
= emit_move_via_integer (mode
, x
, y
, false);
4052 gcc_assert (ret
!= NULL
);
4056 /* Return true if word I of OP lies entirely in the
4057 undefined bits of a paradoxical subreg. */
4060 undefined_operand_subword_p (const_rtx op
, int i
)
4062 if (GET_CODE (op
) != SUBREG
)
4064 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
4065 poly_int64 offset
= i
* UNITS_PER_WORD
+ subreg_memory_offset (op
);
4066 return (known_ge (offset
, GET_MODE_SIZE (innermostmode
))
4067 || known_le (offset
, -UNITS_PER_WORD
));
4070 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4071 MODE is any multi-word or full-word mode that lacks a move_insn
4072 pattern. Note that you will get better code if you define such
4073 patterns, even if they must turn into multiple assembler instructions. */
4076 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
4078 rtx_insn
*last_insn
= 0;
4084 /* This function can only handle cases where the number of words is
4085 known at compile time. */
4086 mode_size
= GET_MODE_SIZE (mode
).to_constant ();
4087 gcc_assert (mode_size
>= UNITS_PER_WORD
);
4089 /* If X is a push on the stack, do the push now and replace
4090 X with a reference to the stack pointer. */
4091 if (push_operand (x
, mode
))
4092 x
= emit_move_resolve_push (mode
, x
);
4094 /* If we are in reload, see if either operand is a MEM whose address
4095 is scheduled for replacement. */
4096 if (reload_in_progress
&& MEM_P (x
)
4097 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
4098 x
= replace_equiv_address_nv (x
, inner
);
4099 if (reload_in_progress
&& MEM_P (y
)
4100 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
4101 y
= replace_equiv_address_nv (y
, inner
);
4105 need_clobber
= false;
4106 for (i
= 0; i
< CEIL (mode_size
, UNITS_PER_WORD
); i
++)
4108 /* Do not generate code for a move if it would go entirely
4109 to the non-existing bits of a paradoxical subreg. */
4110 if (undefined_operand_subword_p (x
, i
))
4113 rtx xpart
= operand_subword (x
, i
, 1, mode
);
4116 /* Do not generate code for a move if it would come entirely
4117 from the undefined bits of a paradoxical subreg. */
4118 if (undefined_operand_subword_p (y
, i
))
4121 ypart
= operand_subword (y
, i
, 1, mode
);
4123 /* If we can't get a part of Y, put Y into memory if it is a
4124 constant. Otherwise, force it into a register. Then we must
4125 be able to get a part of Y. */
4126 if (ypart
== 0 && CONSTANT_P (y
))
4128 y
= use_anchored_address (force_const_mem (mode
, y
));
4129 ypart
= operand_subword (y
, i
, 1, mode
);
4131 else if (ypart
== 0)
4132 ypart
= operand_subword_force (y
, i
, mode
);
4134 gcc_assert (xpart
&& ypart
);
4136 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
4138 last_insn
= emit_move_insn (xpart
, ypart
);
4144 /* Show the output dies here. This is necessary for SUBREGs
4145 of pseudos since we cannot track their lifetimes correctly;
4146 hard regs shouldn't appear here except as return values.
4147 We never want to emit such a clobber after reload. */
4149 && ! (reload_in_progress
|| reload_completed
)
4150 && need_clobber
!= 0)
4158 /* Low level part of emit_move_insn.
4159 Called just like emit_move_insn, but assumes X and Y
4160 are basically valid. */
4163 emit_move_insn_1 (rtx x
, rtx y
)
4165 machine_mode mode
= GET_MODE (x
);
4166 enum insn_code code
;
4168 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
4170 code
= optab_handler (mov_optab
, mode
);
4171 if (code
!= CODE_FOR_nothing
)
4172 return emit_insn (GEN_FCN (code
) (x
, y
));
4174 /* Expand complex moves by moving real part and imag part. */
4175 if (COMPLEX_MODE_P (mode
))
4176 return emit_move_complex (mode
, x
, y
);
4178 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
4179 || ALL_FIXED_POINT_MODE_P (mode
))
4181 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
4183 /* If we can't find an integer mode, use multi words. */
4187 return emit_move_multi_word (mode
, x
, y
);
4190 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4191 return emit_move_ccmode (mode
, x
, y
);
4193 /* Try using a move pattern for the corresponding integer mode. This is
4194 only safe when simplify_subreg can convert MODE constants into integer
4195 constants. At present, it can only do this reliably if the value
4196 fits within a HOST_WIDE_INT. */
4198 || known_le (GET_MODE_BITSIZE (mode
), HOST_BITS_PER_WIDE_INT
))
4200 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
4204 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
4209 return emit_move_multi_word (mode
, x
, y
);
4212 /* Generate code to copy Y into X.
4213 Both Y and X must have the same mode, except that
4214 Y can be a constant with VOIDmode.
4215 This mode cannot be BLKmode; use emit_block_move for that.
4217 Return the last instruction emitted. */
4220 emit_move_insn (rtx x
, rtx y
)
4222 machine_mode mode
= GET_MODE (x
);
4223 rtx y_cst
= NULL_RTX
;
4224 rtx_insn
*last_insn
;
4227 gcc_assert (mode
!= BLKmode
4228 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
4230 /* If we have a copy that looks like one of the following patterns:
4231 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4232 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4233 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4234 (set (subreg:M1 (reg:M2 ...)) (constant C))
4235 where mode M1 is equal in size to M2, try to detect whether the
4236 mode change involves an implicit round trip through memory.
4237 If so, see if we can avoid that by removing the subregs and
4238 doing the move in mode M2 instead. */
4240 rtx x_inner
= NULL_RTX
;
4241 rtx y_inner
= NULL_RTX
;
4243 auto candidate_subreg_p
= [&](rtx subreg
) {
4244 return (REG_P (SUBREG_REG (subreg
))
4245 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg
))),
4246 GET_MODE_SIZE (GET_MODE (subreg
)))
4247 && optab_handler (mov_optab
, GET_MODE (SUBREG_REG (subreg
)))
4248 != CODE_FOR_nothing
);
4251 auto candidate_mem_p
= [&](machine_mode innermode
, rtx mem
) {
4252 return (!targetm
.can_change_mode_class (innermode
, GET_MODE (mem
), ALL_REGS
)
4253 && !push_operand (mem
, GET_MODE (mem
))
4254 /* Not a candiate if innermode requires too much alignment. */
4255 && (MEM_ALIGN (mem
) >= GET_MODE_ALIGNMENT (innermode
)
4256 || targetm
.slow_unaligned_access (GET_MODE (mem
),
4258 || !targetm
.slow_unaligned_access (innermode
,
4262 if (SUBREG_P (x
) && candidate_subreg_p (x
))
4263 x_inner
= SUBREG_REG (x
);
4265 if (SUBREG_P (y
) && candidate_subreg_p (y
))
4266 y_inner
= SUBREG_REG (y
);
4268 if (x_inner
!= NULL_RTX
4269 && y_inner
!= NULL_RTX
4270 && GET_MODE (x_inner
) == GET_MODE (y_inner
)
4271 && !targetm
.can_change_mode_class (GET_MODE (x_inner
), mode
, ALL_REGS
))
4275 mode
= GET_MODE (x_inner
);
4277 else if (x_inner
!= NULL_RTX
4279 && candidate_mem_p (GET_MODE (x_inner
), y
))
4282 y
= adjust_address (y
, GET_MODE (x_inner
), 0);
4283 mode
= GET_MODE (x_inner
);
4285 else if (y_inner
!= NULL_RTX
4287 && candidate_mem_p (GET_MODE (y_inner
), x
))
4289 x
= adjust_address (x
, GET_MODE (y_inner
), 0);
4291 mode
= GET_MODE (y_inner
);
4293 else if (x_inner
!= NULL_RTX
4295 && !targetm
.can_change_mode_class (GET_MODE (x_inner
),
4297 && (y_inner
= simplify_subreg (GET_MODE (x_inner
), y
, mode
, 0)))
4301 mode
= GET_MODE (x_inner
);
4307 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
4308 && (last_insn
= compress_float_constant (x
, y
)))
4313 if (!targetm
.legitimate_constant_p (mode
, y
))
4315 y
= force_const_mem (mode
, y
);
4317 /* If the target's cannot_force_const_mem prevented the spill,
4318 assume that the target's move expanders will also take care
4319 of the non-legitimate constant. */
4323 y
= use_anchored_address (y
);
4327 /* If X or Y are memory references, verify that their addresses are valid
4330 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4332 && ! push_operand (x
, GET_MODE (x
))))
4333 x
= validize_mem (x
);
4336 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
4337 MEM_ADDR_SPACE (y
)))
4338 y
= validize_mem (y
);
4340 gcc_assert (mode
!= BLKmode
);
4342 last_insn
= emit_move_insn_1 (x
, y
);
4344 if (y_cst
&& REG_P (x
)
4345 && (set
= single_set (last_insn
)) != NULL_RTX
4346 && SET_DEST (set
) == x
4347 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
4348 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
4353 /* Generate the body of an instruction to copy Y into X.
4354 It may be a list of insns, if one insn isn't enough. */
4357 gen_move_insn (rtx x
, rtx y
)
4362 emit_move_insn_1 (x
, y
);
4368 /* If Y is representable exactly in a narrower mode, and the target can
4369 perform the extension directly from constant or memory, then emit the
4370 move as an extension. */
4373 compress_float_constant (rtx x
, rtx y
)
4375 machine_mode dstmode
= GET_MODE (x
);
4376 machine_mode orig_srcmode
= GET_MODE (y
);
4377 machine_mode srcmode
;
4378 const REAL_VALUE_TYPE
*r
;
4379 int oldcost
, newcost
;
4380 bool speed
= optimize_insn_for_speed_p ();
4382 r
= CONST_DOUBLE_REAL_VALUE (y
);
4384 if (targetm
.legitimate_constant_p (dstmode
, y
))
4385 oldcost
= set_src_cost (y
, orig_srcmode
, speed
);
4387 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), dstmode
, speed
);
4389 FOR_EACH_MODE_UNTIL (srcmode
, orig_srcmode
)
4393 rtx_insn
*last_insn
;
4395 /* Skip if the target can't extend this way. */
4396 ic
= can_extend_p (dstmode
, srcmode
, 0);
4397 if (ic
== CODE_FOR_nothing
)
4400 /* Skip if the narrowed value isn't exact. */
4401 if (! exact_real_truncate (srcmode
, r
))
4404 trunc_y
= const_double_from_real_value (*r
, srcmode
);
4406 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
4408 /* Skip if the target needs extra instructions to perform
4410 if (!insn_operand_matches (ic
, 1, trunc_y
))
4412 /* This is valid, but may not be cheaper than the original. */
4413 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
4415 if (oldcost
< newcost
)
4418 else if (float_extend_from_mem
[dstmode
][srcmode
])
4420 trunc_y
= force_const_mem (srcmode
, trunc_y
);
4421 /* This is valid, but may not be cheaper than the original. */
4422 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
4424 if (oldcost
< newcost
)
4426 trunc_y
= validize_mem (trunc_y
);
4431 /* For CSE's benefit, force the compressed constant pool entry
4432 into a new pseudo. This constant may be used in different modes,
4433 and if not, combine will put things back together for us. */
4434 trunc_y
= force_reg (srcmode
, trunc_y
);
4436 /* If x is a hard register, perform the extension into a pseudo,
4437 so that e.g. stack realignment code is aware of it. */
4439 if (REG_P (x
) && HARD_REGISTER_P (x
))
4440 target
= gen_reg_rtx (dstmode
);
4442 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
4443 last_insn
= get_last_insn ();
4446 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
4449 return emit_move_insn (x
, target
);
4456 /* Pushing data onto the stack. */
4458 /* Push a block of length SIZE (perhaps variable)
4459 and return an rtx to address the beginning of the block.
4460 The value may be virtual_outgoing_args_rtx.
4462 EXTRA is the number of bytes of padding to push in addition to SIZE.
4463 BELOW nonzero means this padding comes at low addresses;
4464 otherwise, the padding comes at high addresses. */
4467 push_block (rtx size
, poly_int64 extra
, int below
)
4471 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
4472 if (CONSTANT_P (size
))
4473 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
4474 else if (REG_P (size
) && known_eq (extra
, 0))
4475 anti_adjust_stack (size
);
4478 temp
= copy_to_mode_reg (Pmode
, size
);
4479 if (maybe_ne (extra
, 0))
4480 temp
= expand_binop (Pmode
, add_optab
, temp
,
4481 gen_int_mode (extra
, Pmode
),
4482 temp
, 0, OPTAB_LIB_WIDEN
);
4483 anti_adjust_stack (temp
);
4486 if (STACK_GROWS_DOWNWARD
)
4488 temp
= virtual_outgoing_args_rtx
;
4489 if (maybe_ne (extra
, 0) && below
)
4490 temp
= plus_constant (Pmode
, temp
, extra
);
4495 if (poly_int_rtx_p (size
, &csize
))
4496 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
4497 -csize
- (below
? 0 : extra
));
4498 else if (maybe_ne (extra
, 0) && !below
)
4499 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4500 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
4503 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4504 negate_rtx (Pmode
, size
));
4507 return memory_address (NARROWEST_INT_MODE
, temp
);
4510 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4513 mem_autoinc_base (rtx mem
)
4517 rtx addr
= XEXP (mem
, 0);
4518 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
4519 return XEXP (addr
, 0);
4524 /* A utility routine used here, in reload, and in try_split. The insns
4525 after PREV up to and including LAST are known to adjust the stack,
4526 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4527 placing notes as appropriate. PREV may be NULL, indicating the
4528 entire insn sequence prior to LAST should be scanned.
4530 The set of allowed stack pointer modifications is small:
4531 (1) One or more auto-inc style memory references (aka pushes),
4532 (2) One or more addition/subtraction with the SP as destination,
4533 (3) A single move insn with the SP as destination,
4534 (4) A call_pop insn,
4535 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4537 Insns in the sequence that do not modify the SP are ignored,
4538 except for noreturn calls.
4540 The return value is the amount of adjustment that can be trivially
4541 verified, via immediate operand or auto-inc. If the adjustment
4542 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4545 find_args_size_adjust (rtx_insn
*insn
)
4550 pat
= PATTERN (insn
);
4553 /* Look for a call_pop pattern. */
4556 /* We have to allow non-call_pop patterns for the case
4557 of emit_single_push_insn of a TLS address. */
4558 if (GET_CODE (pat
) != PARALLEL
)
4561 /* All call_pop have a stack pointer adjust in the parallel.
4562 The call itself is always first, and the stack adjust is
4563 usually last, so search from the end. */
4564 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
4566 set
= XVECEXP (pat
, 0, i
);
4567 if (GET_CODE (set
) != SET
)
4569 dest
= SET_DEST (set
);
4570 if (dest
== stack_pointer_rtx
)
4573 /* We'd better have found the stack pointer adjust. */
4576 /* Fall through to process the extracted SET and DEST
4577 as if it was a standalone insn. */
4579 else if (GET_CODE (pat
) == SET
)
4581 else if ((set
= single_set (insn
)) != NULL
)
4583 else if (GET_CODE (pat
) == PARALLEL
)
4585 /* ??? Some older ports use a parallel with a stack adjust
4586 and a store for a PUSH_ROUNDING pattern, rather than a
4587 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4588 /* ??? See h8300 and m68k, pushqi1. */
4589 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
4591 set
= XVECEXP (pat
, 0, i
);
4592 if (GET_CODE (set
) != SET
)
4594 dest
= SET_DEST (set
);
4595 if (dest
== stack_pointer_rtx
)
4598 /* We do not expect an auto-inc of the sp in the parallel. */
4599 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
4600 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4601 != stack_pointer_rtx
);
4609 dest
= SET_DEST (set
);
4611 /* Look for direct modifications of the stack pointer. */
4612 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
4614 /* Look for a trivial adjustment, otherwise assume nothing. */
4615 /* Note that the SPU restore_stack_block pattern refers to
4616 the stack pointer in V4SImode. Consider that non-trivial. */
4618 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
4619 && strip_offset (SET_SRC (set
), &offset
) == stack_pointer_rtx
)
4621 /* ??? Reload can generate no-op moves, which will be cleaned
4622 up later. Recognize it and continue searching. */
4623 else if (rtx_equal_p (dest
, SET_SRC (set
)))
4626 return HOST_WIDE_INT_MIN
;
4632 /* Otherwise only think about autoinc patterns. */
4633 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
4636 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4637 != stack_pointer_rtx
);
4639 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
4640 mem
= SET_SRC (set
);
4644 addr
= XEXP (mem
, 0);
4645 switch (GET_CODE (addr
))
4649 return GET_MODE_SIZE (GET_MODE (mem
));
4652 return -GET_MODE_SIZE (GET_MODE (mem
));
4655 addr
= XEXP (addr
, 1);
4656 gcc_assert (GET_CODE (addr
) == PLUS
);
4657 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
4658 return rtx_to_poly_int64 (XEXP (addr
, 1));
4666 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
,
4667 poly_int64 end_args_size
)
4669 poly_int64 args_size
= end_args_size
;
4670 bool saw_unknown
= false;
4673 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
4675 if (!NONDEBUG_INSN_P (insn
))
4678 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4679 a call argument containing a TLS address that itself requires
4680 a call to __tls_get_addr. The handling of stack_pointer_delta
4681 in emit_single_push_insn is supposed to ensure that any such
4682 notes are already correct. */
4683 rtx note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4684 gcc_assert (!note
|| known_eq (args_size
, get_args_size (note
)));
4686 poly_int64 this_delta
= find_args_size_adjust (insn
);
4687 if (known_eq (this_delta
, 0))
4690 || ACCUMULATE_OUTGOING_ARGS
4691 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
4695 gcc_assert (!saw_unknown
);
4696 if (known_eq (this_delta
, HOST_WIDE_INT_MIN
))
4700 add_args_size_note (insn
, args_size
);
4701 if (STACK_GROWS_DOWNWARD
)
4702 this_delta
= -poly_uint64 (this_delta
);
4705 args_size
= HOST_WIDE_INT_MIN
;
4707 args_size
-= this_delta
;
4713 #ifdef PUSH_ROUNDING
4714 /* Emit single push insn. */
4717 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4720 poly_int64 rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4722 enum insn_code icode
;
4724 /* If there is push pattern, use it. Otherwise try old way of throwing
4725 MEM representing push operation to move expander. */
4726 icode
= optab_handler (push_optab
, mode
);
4727 if (icode
!= CODE_FOR_nothing
)
4729 class expand_operand ops
[1];
4731 create_input_operand (&ops
[0], x
, mode
);
4732 if (maybe_expand_insn (icode
, 1, ops
))
4735 if (known_eq (GET_MODE_SIZE (mode
), rounded_size
))
4736 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4737 /* If we are to pad downward, adjust the stack pointer first and
4738 then store X into the stack location using an offset. This is
4739 because emit_move_insn does not know how to pad; it does not have
4741 else if (targetm
.calls
.function_arg_padding (mode
, type
) == PAD_DOWNWARD
)
4743 emit_move_insn (stack_pointer_rtx
,
4744 expand_binop (Pmode
,
4745 STACK_GROWS_DOWNWARD
? sub_optab
4748 gen_int_mode (rounded_size
, Pmode
),
4749 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4751 poly_int64 offset
= rounded_size
- GET_MODE_SIZE (mode
);
4752 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4753 /* We have already decremented the stack pointer, so get the
4755 offset
+= rounded_size
;
4757 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4758 /* We have already incremented the stack pointer, so get the
4760 offset
-= rounded_size
;
4762 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, offset
);
4766 if (STACK_GROWS_DOWNWARD
)
4767 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4768 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, -rounded_size
);
4770 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4771 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, rounded_size
);
4773 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4776 dest
= gen_rtx_MEM (mode
, dest_addr
);
4780 set_mem_attributes (dest
, type
, 1);
4782 if (cfun
->tail_call_marked
)
4783 /* Function incoming arguments may overlap with sibling call
4784 outgoing arguments and we cannot allow reordering of reads
4785 from function arguments with stores to outgoing arguments
4786 of sibling calls. */
4787 set_mem_alias_set (dest
, 0);
4789 emit_move_insn (dest
, x
);
4792 /* Emit and annotate a single push insn. */
4795 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4797 poly_int64 delta
, old_delta
= stack_pointer_delta
;
4798 rtx_insn
*prev
= get_last_insn ();
4801 emit_single_push_insn_1 (mode
, x
, type
);
4803 /* Adjust stack_pointer_delta to describe the situation after the push
4804 we just performed. Note that we must do this after the push rather
4805 than before the push in case calculating X needs pushes and pops of
4806 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4807 for such pushes and pops must not include the effect of the future
4809 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4811 last
= get_last_insn ();
4813 /* Notice the common case where we emitted exactly one insn. */
4814 if (PREV_INSN (last
) == prev
)
4816 add_args_size_note (last
, stack_pointer_delta
);
4820 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4821 gcc_assert (known_eq (delta
, HOST_WIDE_INT_MIN
)
4822 || known_eq (delta
, old_delta
));
4826 /* If reading SIZE bytes from X will end up reading from
4827 Y return the number of bytes that overlap. Return -1
4828 if there is no overlap or -2 if we can't determine
4829 (for example when X and Y have different base registers). */
4832 memory_load_overlap (rtx x
, rtx y
, HOST_WIDE_INT size
)
4834 rtx tmp
= plus_constant (Pmode
, x
, size
);
4835 rtx sub
= simplify_gen_binary (MINUS
, Pmode
, tmp
, y
);
4837 if (!CONST_INT_P (sub
))
4840 HOST_WIDE_INT val
= INTVAL (sub
);
4842 return IN_RANGE (val
, 1, size
) ? val
: -1;
4845 /* Generate code to push X onto the stack, assuming it has mode MODE and
4847 MODE is redundant except when X is a CONST_INT (since they don't
4849 SIZE is an rtx for the size of data to be copied (in bytes),
4850 needed only if X is BLKmode.
4851 Return true if successful. May return false if asked to push a
4852 partial argument during a sibcall optimization (as specified by
4853 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4856 ALIGN (in bits) is maximum alignment we can assume.
4858 If PARTIAL and REG are both nonzero, then copy that many of the first
4859 bytes of X into registers starting with REG, and push the rest of X.
4860 The amount of space pushed is decreased by PARTIAL bytes.
4861 REG must be a hard register in this case.
4862 If REG is zero but PARTIAL is not, take any all others actions for an
4863 argument partially in registers, but do not actually load any
4866 EXTRA is the amount in bytes of extra space to leave next to this arg.
4867 This is ignored if an argument block has already been allocated.
4869 On a machine that lacks real push insns, ARGS_ADDR is the address of
4870 the bottom of the argument block for this call. We use indexing off there
4871 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4872 argument block has not been preallocated.
4874 ARGS_SO_FAR is the size of args previously pushed for this call.
4876 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4877 for arguments passed in registers. If nonzero, it will be the number
4878 of bytes required. */
4881 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4882 unsigned int align
, int partial
, rtx reg
, poly_int64 extra
,
4883 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4884 rtx alignment_pad
, bool sibcall_p
)
4887 pad_direction stack_direction
4888 = STACK_GROWS_DOWNWARD
? PAD_DOWNWARD
: PAD_UPWARD
;
4890 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4891 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4892 Default is below for small data on big-endian machines; else above. */
4893 pad_direction where_pad
= targetm
.calls
.function_arg_padding (mode
, type
);
4895 /* Invert direction if stack is post-decrement.
4897 if (STACK_PUSH_CODE
== POST_DEC
)
4898 if (where_pad
!= PAD_NONE
)
4899 where_pad
= (where_pad
== PAD_DOWNWARD
? PAD_UPWARD
: PAD_DOWNWARD
);
4903 int nregs
= partial
/ UNITS_PER_WORD
;
4904 rtx
*tmp_regs
= NULL
;
4905 int overlapping
= 0;
4908 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4910 /* Copy a block into the stack, entirely or partially. */
4917 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4918 used
= partial
- offset
;
4920 if (mode
!= BLKmode
)
4922 /* A value is to be stored in an insufficiently aligned
4923 stack slot; copy via a suitably aligned slot if
4925 size
= gen_int_mode (GET_MODE_SIZE (mode
), Pmode
);
4926 if (!MEM_P (xinner
))
4928 temp
= assign_temp (type
, 1, 1);
4929 emit_move_insn (temp
, xinner
);
4936 /* USED is now the # of bytes we need not copy to the stack
4937 because registers will take care of them. */
4940 xinner
= adjust_address (xinner
, BLKmode
, used
);
4942 /* If the partial register-part of the arg counts in its stack size,
4943 skip the part of stack space corresponding to the registers.
4944 Otherwise, start copying to the beginning of the stack space,
4945 by setting SKIP to 0. */
4946 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4948 #ifdef PUSH_ROUNDING
4949 /* NB: Let the backend known the number of bytes to push and
4950 decide if push insns should be generated. */
4951 unsigned int push_size
;
4952 if (CONST_INT_P (size
))
4953 push_size
= INTVAL (size
);
4957 /* Do it with several push insns if that doesn't take lots of insns
4958 and if there is no difficulty with push insns that skip bytes
4959 on the stack for alignment purposes. */
4961 && targetm
.calls
.push_argument (push_size
)
4962 && CONST_INT_P (size
)
4964 && MEM_ALIGN (xinner
) >= align
4965 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4966 /* Here we avoid the case of a structure whose weak alignment
4967 forces many pushes of a small amount of data,
4968 and such small pushes do rounding that causes trouble. */
4969 && ((!targetm
.slow_unaligned_access (word_mode
, align
))
4970 || align
>= BIGGEST_ALIGNMENT
4971 || known_eq (PUSH_ROUNDING (align
/ BITS_PER_UNIT
),
4972 align
/ BITS_PER_UNIT
))
4973 && known_eq (PUSH_ROUNDING (INTVAL (size
)), INTVAL (size
)))
4975 /* Push padding now if padding above and stack grows down,
4976 or if padding below and stack grows up.
4977 But if space already allocated, this has already been done. */
4978 if (maybe_ne (extra
, 0)
4980 && where_pad
!= PAD_NONE
4981 && where_pad
!= stack_direction
)
4982 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4984 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
,
4988 #endif /* PUSH_ROUNDING */
4992 /* Otherwise make space on the stack and copy the data
4993 to the address of that space. */
4995 /* Deduct words put into registers from the size we must copy. */
4998 if (CONST_INT_P (size
))
4999 size
= GEN_INT (INTVAL (size
) - used
);
5001 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
5002 gen_int_mode (used
, GET_MODE (size
)),
5003 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5006 /* Get the address of the stack space.
5007 In this case, we do not deal with EXTRA separately.
5008 A single stack adjust will do. */
5009 poly_int64 const_args_so_far
;
5012 temp
= push_block (size
, extra
, where_pad
== PAD_DOWNWARD
);
5015 else if (poly_int_rtx_p (args_so_far
, &const_args_so_far
))
5016 temp
= memory_address (BLKmode
,
5017 plus_constant (Pmode
, args_addr
,
5018 skip
+ const_args_so_far
));
5020 temp
= memory_address (BLKmode
,
5021 plus_constant (Pmode
,
5022 gen_rtx_PLUS (Pmode
,
5027 if (!ACCUMULATE_OUTGOING_ARGS
)
5029 /* If the source is referenced relative to the stack pointer,
5030 copy it to another register to stabilize it. We do not need
5031 to do this if we know that we won't be changing sp. */
5033 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
5034 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
5035 temp
= copy_to_reg (temp
);
5038 target
= gen_rtx_MEM (BLKmode
, temp
);
5040 /* We do *not* set_mem_attributes here, because incoming arguments
5041 may overlap with sibling call outgoing arguments and we cannot
5042 allow reordering of reads from function arguments with stores
5043 to outgoing arguments of sibling calls. We do, however, want
5044 to record the alignment of the stack slot. */
5045 /* ALIGN may well be better aligned than TYPE, e.g. due to
5046 PARM_BOUNDARY. Assume the caller isn't lying. */
5047 set_mem_align (target
, align
);
5049 /* If part should go in registers and pushing to that part would
5050 overwrite some of the values that need to go into regs, load the
5051 overlapping values into temporary pseudos to be moved into the hard
5052 regs at the end after the stack pushing has completed.
5053 We cannot load them directly into the hard regs here because
5054 they can be clobbered by the block move expansions.
5057 if (partial
> 0 && reg
!= 0 && mode
== BLKmode
5058 && GET_CODE (reg
) != PARALLEL
)
5060 overlapping
= memory_load_overlap (XEXP (x
, 0), temp
, partial
);
5061 if (overlapping
> 0)
5063 gcc_assert (overlapping
% UNITS_PER_WORD
== 0);
5064 overlapping
/= UNITS_PER_WORD
;
5066 tmp_regs
= XALLOCAVEC (rtx
, overlapping
);
5068 for (int i
= 0; i
< overlapping
; i
++)
5069 tmp_regs
[i
] = gen_reg_rtx (word_mode
);
5071 for (int i
= 0; i
< overlapping
; i
++)
5072 emit_move_insn (tmp_regs
[i
],
5073 operand_subword_force (target
, i
, mode
));
5075 else if (overlapping
== -1)
5077 /* Could not determine whether there is overlap.
5078 Fail the sibcall. */
5087 /* If source is a constant VAR_DECL with a simple constructor,
5088 store the constructor to the stack instead of moving it. */
5092 && SYMBOL_REF_P (XEXP (xinner
, 0))
5093 && (decl
= SYMBOL_REF_DECL (XEXP (xinner
, 0))) != NULL_TREE
5095 && TREE_READONLY (decl
)
5096 && !TREE_SIDE_EFFECTS (decl
)
5097 && immediate_const_ctor_p (DECL_INITIAL (decl
), 2))
5098 store_constructor (DECL_INITIAL (decl
), target
, 0,
5099 int_expr_size (DECL_INITIAL (decl
)), false);
5101 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
5104 else if (partial
> 0)
5106 /* Scalar partly in registers. This case is only supported
5107 for fixed-wdth modes. */
5108 int num_words
= GET_MODE_SIZE (mode
).to_constant ();
5109 num_words
/= UNITS_PER_WORD
;
5112 /* # bytes of start of argument
5113 that we must make space for but need not store. */
5114 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
5115 int args_offset
= INTVAL (args_so_far
);
5118 /* Push padding now if padding above and stack grows down,
5119 or if padding below and stack grows up.
5120 But if space already allocated, this has already been done. */
5121 if (maybe_ne (extra
, 0)
5123 && where_pad
!= PAD_NONE
5124 && where_pad
!= stack_direction
)
5125 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5127 /* If we make space by pushing it, we might as well push
5128 the real data. Otherwise, we can leave OFFSET nonzero
5129 and leave the space uninitialized. */
5133 /* Now NOT_STACK gets the number of words that we don't need to
5134 allocate on the stack. Convert OFFSET to words too. */
5135 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
5136 offset
/= UNITS_PER_WORD
;
5138 /* If the partial register-part of the arg counts in its stack size,
5139 skip the part of stack space corresponding to the registers.
5140 Otherwise, start copying to the beginning of the stack space,
5141 by setting SKIP to 0. */
5142 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
5144 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
5145 x
= validize_mem (force_const_mem (mode
, x
));
5147 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5148 SUBREGs of such registers are not allowed. */
5149 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
5150 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
5151 x
= copy_to_reg (x
);
5153 /* Loop over all the words allocated on the stack for this arg. */
5154 /* We can do it by words, because any scalar bigger than a word
5155 has a size a multiple of a word. */
5156 for (i
= num_words
- 1; i
>= not_stack
; i
--)
5157 if (i
>= not_stack
+ offset
)
5158 if (!emit_push_insn (operand_subword_force (x
, i
, mode
),
5159 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
5161 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
5163 reg_parm_stack_space
, alignment_pad
, sibcall_p
))
5171 /* Push padding now if padding above and stack grows down,
5172 or if padding below and stack grows up.
5173 But if space already allocated, this has already been done. */
5174 if (maybe_ne (extra
, 0)
5176 && where_pad
!= PAD_NONE
5177 && where_pad
!= stack_direction
)
5178 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5180 #ifdef PUSH_ROUNDING
5181 if (args_addr
== 0 && targetm
.calls
.push_argument (0))
5182 emit_single_push_insn (mode
, x
, type
);
5186 addr
= simplify_gen_binary (PLUS
, Pmode
, args_addr
, args_so_far
);
5187 dest
= gen_rtx_MEM (mode
, memory_address (mode
, addr
));
5189 /* We do *not* set_mem_attributes here, because incoming arguments
5190 may overlap with sibling call outgoing arguments and we cannot
5191 allow reordering of reads from function arguments with stores
5192 to outgoing arguments of sibling calls. We do, however, want
5193 to record the alignment of the stack slot. */
5194 /* ALIGN may well be better aligned than TYPE, e.g. due to
5195 PARM_BOUNDARY. Assume the caller isn't lying. */
5196 set_mem_align (dest
, align
);
5198 emit_move_insn (dest
, x
);
5202 /* Move the partial arguments into the registers and any overlapping
5203 values that we moved into the pseudos in tmp_regs. */
5204 if (partial
> 0 && reg
!= 0)
5206 /* Handle calls that pass values in multiple non-contiguous locations.
5207 The Irix 6 ABI has examples of this. */
5208 if (GET_CODE (reg
) == PARALLEL
)
5209 emit_group_load (reg
, x
, type
, -1);
5212 gcc_assert (partial
% UNITS_PER_WORD
== 0);
5213 move_block_to_reg (REGNO (reg
), x
, nregs
- overlapping
, mode
);
5215 for (int i
= 0; i
< overlapping
; i
++)
5216 emit_move_insn (gen_rtx_REG (word_mode
, REGNO (reg
)
5217 + nregs
- overlapping
+ i
),
5223 if (maybe_ne (extra
, 0) && args_addr
== 0 && where_pad
== stack_direction
)
5224 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
5226 if (alignment_pad
&& args_addr
== 0)
5227 anti_adjust_stack (alignment_pad
);
5232 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5236 get_subtarget (rtx x
)
5240 /* Only registers can be subtargets. */
5242 /* Don't use hard regs to avoid extending their life. */
5243 || REGNO (x
) < FIRST_PSEUDO_REGISTER
5247 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5248 FIELD is a bitfield. Returns true if the optimization was successful,
5249 and there's nothing else to do. */
5252 optimize_bitfield_assignment_op (poly_uint64 pbitsize
,
5253 poly_uint64 pbitpos
,
5254 poly_uint64 pbitregion_start
,
5255 poly_uint64 pbitregion_end
,
5256 machine_mode mode1
, rtx str_rtx
,
5257 tree to
, tree src
, bool reverse
)
5259 /* str_mode is not guaranteed to be a scalar type. */
5260 machine_mode str_mode
= GET_MODE (str_rtx
);
5261 unsigned int str_bitsize
;
5266 enum tree_code code
;
5268 unsigned HOST_WIDE_INT bitsize
, bitpos
, bitregion_start
, bitregion_end
;
5269 if (mode1
!= VOIDmode
5270 || !pbitsize
.is_constant (&bitsize
)
5271 || !pbitpos
.is_constant (&bitpos
)
5272 || !pbitregion_start
.is_constant (&bitregion_start
)
5273 || !pbitregion_end
.is_constant (&bitregion_end
)
5274 || bitsize
>= BITS_PER_WORD
5275 || !GET_MODE_BITSIZE (str_mode
).is_constant (&str_bitsize
)
5276 || str_bitsize
> BITS_PER_WORD
5277 || TREE_SIDE_EFFECTS (to
)
5278 || TREE_THIS_VOLATILE (to
))
5282 if (TREE_CODE (src
) != SSA_NAME
)
5284 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
5287 srcstmt
= get_gimple_for_ssa_name (src
);
5289 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
5292 code
= gimple_assign_rhs_code (srcstmt
);
5294 op0
= gimple_assign_rhs1 (srcstmt
);
5296 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5297 to find its initialization. Hopefully the initialization will
5298 be from a bitfield load. */
5299 if (TREE_CODE (op0
) == SSA_NAME
)
5301 gimple
*op0stmt
= get_gimple_for_ssa_name (op0
);
5303 /* We want to eventually have OP0 be the same as TO, which
5304 should be a bitfield. */
5306 || !is_gimple_assign (op0stmt
)
5307 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
5309 op0
= gimple_assign_rhs1 (op0stmt
);
5312 op1
= gimple_assign_rhs2 (srcstmt
);
5314 if (!operand_equal_p (to
, op0
, 0))
5317 if (MEM_P (str_rtx
))
5319 unsigned HOST_WIDE_INT offset1
;
5321 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
5322 str_bitsize
= BITS_PER_WORD
;
5324 scalar_int_mode best_mode
;
5325 if (!get_best_mode (bitsize
, bitpos
, bitregion_start
, bitregion_end
,
5326 MEM_ALIGN (str_rtx
), str_bitsize
, false, &best_mode
))
5328 str_mode
= best_mode
;
5329 str_bitsize
= GET_MODE_BITSIZE (best_mode
);
5332 bitpos
%= str_bitsize
;
5333 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
5334 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
5336 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
5339 /* If the bit field covers the whole REG/MEM, store_field
5340 will likely generate better code. */
5341 if (bitsize
>= str_bitsize
)
5344 /* We can't handle fields split across multiple entities. */
5345 if (bitpos
+ bitsize
> str_bitsize
)
5348 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5349 bitpos
= str_bitsize
- bitpos
- bitsize
;
5355 /* For now, just optimize the case of the topmost bitfield
5356 where we don't need to do any masking and also
5357 1 bit bitfields where xor can be used.
5358 We might win by one instruction for the other bitfields
5359 too if insv/extv instructions aren't used, so that
5360 can be added later. */
5361 if ((reverse
|| bitpos
+ bitsize
!= str_bitsize
)
5362 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
5365 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
5366 value
= convert_modes (str_mode
,
5367 TYPE_MODE (TREE_TYPE (op1
)), value
,
5368 TYPE_UNSIGNED (TREE_TYPE (op1
)));
5370 /* We may be accessing data outside the field, which means
5371 we can alias adjacent data. */
5372 if (MEM_P (str_rtx
))
5374 str_rtx
= shallow_copy_rtx (str_rtx
);
5375 set_mem_alias_set (str_rtx
, 0);
5376 set_mem_expr (str_rtx
, 0);
5379 if (bitsize
== 1 && (reverse
|| bitpos
+ bitsize
!= str_bitsize
))
5381 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
5385 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
5387 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
5389 value
= flip_storage_order (str_mode
, value
);
5390 result
= expand_binop (str_mode
, binop
, str_rtx
,
5391 value
, str_rtx
, 1, OPTAB_WIDEN
);
5392 if (result
!= str_rtx
)
5393 emit_move_insn (str_rtx
, result
);
5398 if (TREE_CODE (op1
) != INTEGER_CST
)
5400 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
5401 value
= convert_modes (str_mode
,
5402 TYPE_MODE (TREE_TYPE (op1
)), value
,
5403 TYPE_UNSIGNED (TREE_TYPE (op1
)));
5405 /* We may be accessing data outside the field, which means
5406 we can alias adjacent data. */
5407 if (MEM_P (str_rtx
))
5409 str_rtx
= shallow_copy_rtx (str_rtx
);
5410 set_mem_alias_set (str_rtx
, 0);
5411 set_mem_expr (str_rtx
, 0);
5414 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
5415 if (bitpos
+ bitsize
!= str_bitsize
)
5417 rtx mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< bitsize
) - 1,
5419 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
5421 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
5423 value
= flip_storage_order (str_mode
, value
);
5424 result
= expand_binop (str_mode
, binop
, str_rtx
,
5425 value
, str_rtx
, 1, OPTAB_WIDEN
);
5426 if (result
!= str_rtx
)
5427 emit_move_insn (str_rtx
, result
);
5437 /* In the C++ memory model, consecutive bit fields in a structure are
5438 considered one memory location.
5440 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5441 returns the bit range of consecutive bits in which this COMPONENT_REF
5442 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5443 and *OFFSET may be adjusted in the process.
5445 If the access does not need to be restricted, 0 is returned in both
5446 *BITSTART and *BITEND. */
5449 get_bit_range (poly_uint64_pod
*bitstart
, poly_uint64_pod
*bitend
, tree exp
,
5450 poly_int64_pod
*bitpos
, tree
*offset
)
5452 poly_int64 bitoffset
;
5455 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
5457 field
= TREE_OPERAND (exp
, 1);
5458 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
5459 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5460 need to limit the range we can access. */
5463 *bitstart
= *bitend
= 0;
5467 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5468 part of a larger bit field, then the representative does not serve any
5469 useful purpose. This can occur in Ada. */
5470 if (handled_component_p (TREE_OPERAND (exp
, 0)))
5473 poly_int64 rbitsize
, rbitpos
;
5475 int unsignedp
, reversep
, volatilep
= 0;
5476 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
5477 &roffset
, &rmode
, &unsignedp
, &reversep
,
5479 if (!multiple_p (rbitpos
, BITS_PER_UNIT
))
5481 *bitstart
= *bitend
= 0;
5486 /* Compute the adjustment to bitpos from the offset of the field
5487 relative to the representative. DECL_FIELD_OFFSET of field and
5488 repr are the same by construction if they are not constants,
5489 see finish_bitfield_layout. */
5490 poly_uint64 field_offset
, repr_offset
;
5491 if (poly_int_tree_p (DECL_FIELD_OFFSET (field
), &field_offset
)
5492 && poly_int_tree_p (DECL_FIELD_OFFSET (repr
), &repr_offset
))
5493 bitoffset
= (field_offset
- repr_offset
) * BITS_PER_UNIT
;
5496 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
5497 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
5499 /* If the adjustment is larger than bitpos, we would have a negative bit
5500 position for the lower bound and this may wreak havoc later. Adjust
5501 offset and bitpos to make the lower bound non-negative in that case. */
5502 if (maybe_gt (bitoffset
, *bitpos
))
5504 poly_int64 adjust_bits
= upper_bound (bitoffset
, *bitpos
) - *bitpos
;
5505 poly_int64 adjust_bytes
= exact_div (adjust_bits
, BITS_PER_UNIT
);
5507 *bitpos
+= adjust_bits
;
5508 if (*offset
== NULL_TREE
)
5509 *offset
= size_int (-adjust_bytes
);
5511 *offset
= size_binop (MINUS_EXPR
, *offset
, size_int (adjust_bytes
));
5515 *bitstart
= *bitpos
- bitoffset
;
5517 *bitend
= *bitstart
+ tree_to_poly_uint64 (DECL_SIZE (repr
)) - 1;
5520 /* Returns true if BASE is a DECL that does not reside in memory and
5521 has non-BLKmode. DECL_RTL must not be a MEM; if
5522 DECL_RTL was not set yet, return false. */
5525 non_mem_decl_p (tree base
)
5528 || TREE_ADDRESSABLE (base
)
5529 || DECL_MODE (base
) == BLKmode
)
5532 if (!DECL_RTL_SET_P (base
))
5535 return (!MEM_P (DECL_RTL (base
)));
5538 /* Returns true if REF refers to an object that does not
5539 reside in memory and has non-BLKmode. */
5542 mem_ref_refers_to_non_mem_p (tree ref
)
5546 if (TREE_CODE (ref
) == MEM_REF
5547 || TREE_CODE (ref
) == TARGET_MEM_REF
)
5549 tree addr
= TREE_OPERAND (ref
, 0);
5551 if (TREE_CODE (addr
) != ADDR_EXPR
)
5554 base
= TREE_OPERAND (addr
, 0);
5559 return non_mem_decl_p (base
);
5562 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5563 is true, try generating a nontemporal store. */
5566 expand_assignment (tree to
, tree from
, bool nontemporal
)
5572 enum insn_code icode
;
5574 /* Don't crash if the lhs of the assignment was erroneous. */
5575 if (TREE_CODE (to
) == ERROR_MARK
)
5577 expand_normal (from
);
5581 /* Optimize away no-op moves without side-effects. */
5582 if (operand_equal_p (to
, from
, 0))
5585 /* Handle misaligned stores. */
5586 mode
= TYPE_MODE (TREE_TYPE (to
));
5587 if ((TREE_CODE (to
) == MEM_REF
5588 || TREE_CODE (to
) == TARGET_MEM_REF
5591 && !mem_ref_refers_to_non_mem_p (to
)
5592 && ((align
= get_object_alignment (to
))
5593 < GET_MODE_ALIGNMENT (mode
))
5594 && (((icode
= optab_handler (movmisalign_optab
, mode
))
5595 != CODE_FOR_nothing
)
5596 || targetm
.slow_unaligned_access (mode
, align
)))
5600 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
5601 /* Handle PARALLEL. */
5602 reg
= maybe_emit_group_store (reg
, TREE_TYPE (from
));
5603 reg
= force_not_mem (reg
);
5604 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5605 if (TREE_CODE (to
) == MEM_REF
&& REF_REVERSE_STORAGE_ORDER (to
))
5606 reg
= flip_storage_order (mode
, reg
);
5608 if (icode
!= CODE_FOR_nothing
)
5610 class expand_operand ops
[2];
5612 create_fixed_operand (&ops
[0], mem
);
5613 create_input_operand (&ops
[1], reg
, mode
);
5614 /* The movmisalign<mode> pattern cannot fail, else the assignment
5615 would silently be omitted. */
5616 expand_insn (icode
, 2, ops
);
5619 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
,
5624 /* Assignment of a structure component needs special treatment
5625 if the structure component's rtx is not simply a MEM.
5626 Assignment of an array element at a constant index, and assignment of
5627 an array element in an unaligned packed structure field, has the same
5628 problem. Same for (partially) storing into a non-memory object. */
5629 if (handled_component_p (to
)
5630 || (TREE_CODE (to
) == MEM_REF
5631 && (REF_REVERSE_STORAGE_ORDER (to
)
5632 || mem_ref_refers_to_non_mem_p (to
)))
5633 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
5636 poly_int64 bitsize
, bitpos
;
5637 poly_uint64 bitregion_start
= 0;
5638 poly_uint64 bitregion_end
= 0;
5640 int unsignedp
, reversep
, volatilep
= 0;
5644 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
5645 &unsignedp
, &reversep
, &volatilep
);
5647 /* Make sure bitpos is not negative, it can wreak havoc later. */
5648 if (maybe_lt (bitpos
, 0))
5650 gcc_assert (offset
== NULL_TREE
);
5651 offset
= size_int (bits_to_bytes_round_down (bitpos
));
5652 bitpos
= num_trailing_bits (bitpos
);
5655 if (TREE_CODE (to
) == COMPONENT_REF
5656 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
5657 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
5658 /* The C++ memory model naturally applies to byte-aligned fields.
5659 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5660 BITSIZE are not byte-aligned, there is no need to limit the range
5661 we can access. This can occur with packed structures in Ada. */
5662 else if (maybe_gt (bitsize
, 0)
5663 && multiple_p (bitsize
, BITS_PER_UNIT
)
5664 && multiple_p (bitpos
, BITS_PER_UNIT
))
5666 bitregion_start
= bitpos
;
5667 bitregion_end
= bitpos
+ bitsize
- 1;
5670 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5672 /* If the field has a mode, we want to access it in the
5673 field's mode, not the computed mode.
5674 If a MEM has VOIDmode (external with incomplete type),
5675 use BLKmode for it instead. */
5678 if (mode1
!= VOIDmode
)
5679 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
5680 else if (GET_MODE (to_rtx
) == VOIDmode
)
5681 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
5686 machine_mode address_mode
;
5689 if (!MEM_P (to_rtx
))
5691 /* We can get constant negative offsets into arrays with broken
5692 user code. Translate this to a trap instead of ICEing. */
5693 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
5694 expand_builtin_trap ();
5695 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
5698 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
5699 address_mode
= get_address_mode (to_rtx
);
5700 if (GET_MODE (offset_rtx
) != address_mode
)
5702 /* We cannot be sure that the RTL in offset_rtx is valid outside
5703 of a memory address context, so force it into a register
5704 before attempting to convert it to the desired mode. */
5705 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
5706 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5709 /* If we have an expression in OFFSET_RTX and a non-zero
5710 byte offset in BITPOS, adding the byte offset before the
5711 OFFSET_RTX results in better intermediate code, which makes
5712 later rtl optimization passes perform better.
5714 We prefer intermediate code like this:
5716 r124:DI=r123:DI+0x18
5721 r124:DI=r123:DI+0x10
5722 [r124:DI+0x8]=r121:DI
5724 This is only done for aligned data values, as these can
5725 be expected to result in single move instructions. */
5727 if (mode1
!= VOIDmode
5728 && maybe_ne (bitpos
, 0)
5729 && maybe_gt (bitsize
, 0)
5730 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
5731 && multiple_p (bitpos
, bitsize
)
5732 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
5733 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
5735 to_rtx
= adjust_address (to_rtx
, mode1
, bytepos
);
5736 bitregion_start
= 0;
5737 if (known_ge (bitregion_end
, poly_uint64 (bitpos
)))
5738 bitregion_end
-= bitpos
;
5742 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5743 highest_pow2_factor_for_target (to
,
5747 /* No action is needed if the target is not a memory and the field
5748 lies completely outside that target. This can occur if the source
5749 code contains an out-of-bounds access to a small array. */
5751 && GET_MODE (to_rtx
) != BLKmode
5752 && known_ge (bitpos
, GET_MODE_PRECISION (GET_MODE (to_rtx
))))
5754 expand_normal (from
);
5757 /* Handle expand_expr of a complex value returning a CONCAT. */
5758 else if (GET_CODE (to_rtx
) == CONCAT
)
5760 machine_mode to_mode
= GET_MODE (to_rtx
);
5761 gcc_checking_assert (COMPLEX_MODE_P (to_mode
));
5762 poly_int64 mode_bitsize
= GET_MODE_BITSIZE (to_mode
);
5763 unsigned short inner_bitsize
= GET_MODE_UNIT_BITSIZE (to_mode
);
5764 if (TYPE_MODE (TREE_TYPE (from
)) == to_mode
5765 && known_eq (bitpos
, 0)
5766 && known_eq (bitsize
, mode_bitsize
))
5767 result
= store_expr (from
, to_rtx
, false, nontemporal
, reversep
);
5768 else if (TYPE_MODE (TREE_TYPE (from
)) == GET_MODE_INNER (to_mode
)
5769 && known_eq (bitsize
, inner_bitsize
)
5770 && (known_eq (bitpos
, 0)
5771 || known_eq (bitpos
, inner_bitsize
)))
5772 result
= store_expr (from
, XEXP (to_rtx
, maybe_ne (bitpos
, 0)),
5773 false, nontemporal
, reversep
);
5774 else if (known_le (bitpos
+ bitsize
, inner_bitsize
))
5775 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
5776 bitregion_start
, bitregion_end
,
5777 mode1
, from
, get_alias_set (to
),
5778 nontemporal
, reversep
);
5779 else if (known_ge (bitpos
, inner_bitsize
))
5780 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
5781 bitpos
- inner_bitsize
,
5782 bitregion_start
, bitregion_end
,
5783 mode1
, from
, get_alias_set (to
),
5784 nontemporal
, reversep
);
5785 else if (known_eq (bitpos
, 0) && known_eq (bitsize
, mode_bitsize
))
5787 result
= expand_normal (from
);
5788 if (GET_CODE (result
) == CONCAT
)
5790 to_mode
= GET_MODE_INNER (to_mode
);
5791 machine_mode from_mode
= GET_MODE_INNER (GET_MODE (result
));
5793 = simplify_gen_subreg (to_mode
, XEXP (result
, 0),
5796 = simplify_gen_subreg (to_mode
, XEXP (result
, 1),
5798 if (!from_real
|| !from_imag
)
5799 goto concat_store_slow
;
5800 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5801 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5805 machine_mode from_mode
5806 = GET_MODE (result
) == VOIDmode
5807 ? TYPE_MODE (TREE_TYPE (from
))
5808 : GET_MODE (result
);
5811 from_rtx
= change_address (result
, to_mode
, NULL_RTX
);
5814 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
5817 emit_move_insn (XEXP (to_rtx
, 0),
5818 read_complex_part (from_rtx
, false));
5819 emit_move_insn (XEXP (to_rtx
, 1),
5820 read_complex_part (from_rtx
, true));
5824 to_mode
= GET_MODE_INNER (to_mode
);
5826 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
5828 = simplify_gen_subreg (to_mode
, result
, from_mode
,
5829 GET_MODE_SIZE (to_mode
));
5830 if (!from_real
|| !from_imag
)
5831 goto concat_store_slow
;
5832 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5833 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5840 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
5841 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5842 write_complex_part (temp
, XEXP (to_rtx
, 0), false, true);
5843 write_complex_part (temp
, XEXP (to_rtx
, 1), true, false);
5844 result
= store_field (temp
, bitsize
, bitpos
,
5845 bitregion_start
, bitregion_end
,
5846 mode1
, from
, get_alias_set (to
),
5847 nontemporal
, reversep
);
5848 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
5849 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
5852 /* For calls to functions returning variable length structures, if TO_RTX
5853 is not a MEM, go through a MEM because we must not create temporaries
5855 else if (!MEM_P (to_rtx
)
5856 && TREE_CODE (from
) == CALL_EXPR
5857 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5858 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) != INTEGER_CST
)
5860 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
5861 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5862 result
= store_field (temp
, bitsize
, bitpos
, bitregion_start
,
5863 bitregion_end
, mode1
, from
, get_alias_set (to
),
5864 nontemporal
, reversep
);
5865 emit_move_insn (to_rtx
, temp
);
5871 /* If the field is at offset zero, we could have been given the
5872 DECL_RTX of the parent struct. Don't munge it. */
5873 to_rtx
= shallow_copy_rtx (to_rtx
);
5874 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
5876 MEM_VOLATILE_P (to_rtx
) = 1;
5879 gcc_checking_assert (known_ge (bitpos
, 0));
5880 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
5881 bitregion_start
, bitregion_end
,
5882 mode1
, to_rtx
, to
, from
,
5885 else if (SUBREG_P (to_rtx
)
5886 && SUBREG_PROMOTED_VAR_P (to_rtx
))
5888 /* If to_rtx is a promoted subreg, we need to zero or sign
5889 extend the value afterwards. */
5890 if (TREE_CODE (to
) == MEM_REF
5891 && TYPE_MODE (TREE_TYPE (from
)) != BLKmode
5892 && !REF_REVERSE_STORAGE_ORDER (to
)
5893 && known_eq (bitpos
, 0)
5894 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (to_rtx
))))
5895 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
5899 = lowpart_subreg (subreg_unpromoted_mode (to_rtx
),
5900 SUBREG_REG (to_rtx
),
5901 subreg_promoted_mode (to_rtx
));
5902 result
= store_field (to_rtx1
, bitsize
, bitpos
,
5903 bitregion_start
, bitregion_end
,
5904 mode1
, from
, get_alias_set (to
),
5905 nontemporal
, reversep
);
5906 convert_move (SUBREG_REG (to_rtx
), to_rtx1
,
5907 SUBREG_PROMOTED_SIGN (to_rtx
));
5911 result
= store_field (to_rtx
, bitsize
, bitpos
,
5912 bitregion_start
, bitregion_end
,
5913 mode1
, from
, get_alias_set (to
),
5914 nontemporal
, reversep
);
5918 preserve_temp_slots (result
);
5923 /* If the rhs is a function call and its value is not an aggregate,
5924 call the function before we start to compute the lhs.
5925 This is needed for correct code for cases such as
5926 val = setjmp (buf) on machines where reference to val
5927 requires loading up part of an address in a separate insn.
5929 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5930 since it might be a promoted variable where the zero- or sign- extension
5931 needs to be done. Handling this in the normal way is safe because no
5932 computation is done before the call. The same is true for SSA names. */
5933 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5934 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5935 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5937 || TREE_CODE (to
) == PARM_DECL
5938 || TREE_CODE (to
) == RESULT_DECL
)
5939 && REG_P (DECL_RTL (to
)))
5940 || TREE_CODE (to
) == SSA_NAME
))
5945 value
= expand_normal (from
);
5948 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5950 /* Handle calls that return values in multiple non-contiguous locations.
5951 The Irix 6 ABI has examples of this. */
5952 if (GET_CODE (to_rtx
) == PARALLEL
)
5954 if (GET_CODE (value
) == PARALLEL
)
5955 emit_group_move (to_rtx
, value
);
5957 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5958 int_size_in_bytes (TREE_TYPE (from
)));
5960 else if (GET_CODE (value
) == PARALLEL
)
5961 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5962 int_size_in_bytes (TREE_TYPE (from
)));
5963 else if (GET_MODE (to_rtx
) == BLKmode
)
5965 /* Handle calls that return BLKmode values in registers. */
5967 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5969 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5973 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5974 value
= convert_memory_address_addr_space
5975 (as_a
<scalar_int_mode
> (GET_MODE (to_rtx
)), value
,
5976 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5978 emit_move_insn (to_rtx
, value
);
5981 preserve_temp_slots (to_rtx
);
5986 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5987 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5989 /* Don't move directly into a return register. */
5990 if (TREE_CODE (to
) == RESULT_DECL
5991 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5997 /* If the source is itself a return value, it still is in a pseudo at
5998 this point so we can move it back to the return register directly. */
6000 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
6001 && TREE_CODE (from
) != CALL_EXPR
)
6002 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
6004 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
6006 /* Handle calls that return values in multiple non-contiguous locations.
6007 The Irix 6 ABI has examples of this. */
6008 if (GET_CODE (to_rtx
) == PARALLEL
)
6010 if (GET_CODE (temp
) == PARALLEL
)
6011 emit_group_move (to_rtx
, temp
);
6013 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
6014 int_size_in_bytes (TREE_TYPE (from
)));
6017 emit_move_insn (to_rtx
, temp
);
6019 preserve_temp_slots (to_rtx
);
6024 /* In case we are returning the contents of an object which overlaps
6025 the place the value is being stored, use a safe function when copying
6026 a value through a pointer into a structure value return block. */
6027 if (TREE_CODE (to
) == RESULT_DECL
6028 && TREE_CODE (from
) == INDIRECT_REF
6029 && ADDR_SPACE_GENERIC_P
6030 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
6031 && refs_may_alias_p (to
, from
)
6032 && cfun
->returns_struct
6033 && !cfun
->returns_pcc_struct
)
6038 size
= expr_size (from
);
6039 from_rtx
= expand_normal (from
);
6041 emit_block_move_via_libcall (XEXP (to_rtx
, 0), XEXP (from_rtx
, 0), size
);
6043 preserve_temp_slots (to_rtx
);
6048 /* Compute FROM and store the value in the rtx we got. */
6051 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
6052 preserve_temp_slots (result
);
6057 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6058 succeeded, false otherwise. */
6061 emit_storent_insn (rtx to
, rtx from
)
6063 class expand_operand ops
[2];
6064 machine_mode mode
= GET_MODE (to
);
6065 enum insn_code code
= optab_handler (storent_optab
, mode
);
6067 if (code
== CODE_FOR_nothing
)
6070 create_fixed_operand (&ops
[0], to
);
6071 create_input_operand (&ops
[1], from
, mode
);
6072 return maybe_expand_insn (code
, 2, ops
);
6075 /* Helper function for store_expr storing of STRING_CST. */
6078 string_cst_read_str (void *data
, void *, HOST_WIDE_INT offset
,
6079 fixed_size_mode mode
)
6081 tree str
= (tree
) data
;
6083 gcc_assert (offset
>= 0);
6084 if (offset
>= TREE_STRING_LENGTH (str
))
6087 if ((unsigned HOST_WIDE_INT
) offset
+ GET_MODE_SIZE (mode
)
6088 > (unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (str
))
6090 char *p
= XALLOCAVEC (char, GET_MODE_SIZE (mode
));
6091 size_t l
= TREE_STRING_LENGTH (str
) - offset
;
6092 memcpy (p
, TREE_STRING_POINTER (str
) + offset
, l
);
6093 memset (p
+ l
, '\0', GET_MODE_SIZE (mode
) - l
);
6094 return c_readstr (p
, as_a
<scalar_int_mode
> (mode
), false);
6097 /* The by-pieces infrastructure does not try to pick a vector mode
6098 for storing STRING_CST. */
6099 return c_readstr (TREE_STRING_POINTER (str
) + offset
,
6100 as_a
<scalar_int_mode
> (mode
), false);
6103 /* Generate code for computing expression EXP,
6104 and storing the value into TARGET.
6106 If the mode is BLKmode then we may return TARGET itself.
6107 It turns out that in BLKmode it doesn't cause a problem.
6108 because C has no operators that could combine two different
6109 assignments into the same BLKmode object with different values
6110 with no sequence point. Will other languages need this to
6113 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6114 stack, and block moves may need to be treated specially.
6116 If NONTEMPORAL is true, try using a nontemporal store instruction.
6118 If REVERSE is true, the store is to be done in reverse order. */
6121 store_expr (tree exp
, rtx target
, int call_param_p
,
6122 bool nontemporal
, bool reverse
)
6125 rtx alt_rtl
= NULL_RTX
;
6126 location_t loc
= curr_insn_location ();
6127 bool shortened_string_cst
= false;
6129 if (VOID_TYPE_P (TREE_TYPE (exp
)))
6131 /* C++ can generate ?: expressions with a throw expression in one
6132 branch and an rvalue in the other. Here, we resolve attempts to
6133 store the throw expression's nonexistent result. */
6134 gcc_assert (!call_param_p
);
6135 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6138 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
6140 /* Perform first part of compound expression, then assign from second
6142 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6143 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
6144 return store_expr (TREE_OPERAND (exp
, 1), target
,
6145 call_param_p
, nontemporal
, reverse
);
6147 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
6149 /* For conditional expression, get safe form of the target. Then
6150 test the condition, doing the appropriate assignment on either
6151 side. This avoids the creation of unnecessary temporaries.
6152 For non-BLKmode, it is more efficient not to do this. */
6154 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
6156 do_pending_stack_adjust ();
6158 jumpifnot (TREE_OPERAND (exp
, 0), lab1
,
6159 profile_probability::uninitialized ());
6160 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
6161 nontemporal
, reverse
);
6162 emit_jump_insn (targetm
.gen_jump (lab2
));
6165 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
6166 nontemporal
, reverse
);
6172 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
6173 /* If this is a scalar in a register that is stored in a wider mode
6174 than the declared mode, compute the result into its declared mode
6175 and then convert to the wider mode. Our value is the computed
6178 rtx inner_target
= 0;
6179 scalar_int_mode outer_mode
= subreg_unpromoted_mode (target
);
6180 scalar_int_mode inner_mode
= subreg_promoted_mode (target
);
6182 /* We can do the conversion inside EXP, which will often result
6183 in some optimizations. Do the conversion in two steps: first
6184 change the signedness, if needed, then the extend. But don't
6185 do this if the type of EXP is a subtype of something else
6186 since then the conversion might involve more than just
6187 converting modes. */
6188 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6189 && TREE_TYPE (TREE_TYPE (exp
)) == 0
6190 && GET_MODE_PRECISION (outer_mode
)
6191 == TYPE_PRECISION (TREE_TYPE (exp
)))
6193 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
6194 TYPE_UNSIGNED (TREE_TYPE (exp
))))
6196 /* Some types, e.g. Fortran's logical*4, won't have a signed
6197 version, so use the mode instead. */
6199 = (signed_or_unsigned_type_for
6200 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
6202 ntype
= lang_hooks
.types
.type_for_mode
6203 (TYPE_MODE (TREE_TYPE (exp
)),
6204 SUBREG_PROMOTED_SIGN (target
));
6206 exp
= fold_convert_loc (loc
, ntype
, exp
);
6209 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
6210 (inner_mode
, SUBREG_PROMOTED_SIGN (target
)),
6213 inner_target
= SUBREG_REG (target
);
6216 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
6217 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
6220 /* If TEMP is a VOIDmode constant, use convert_modes to make
6221 sure that we properly convert it. */
6222 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
6224 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
6225 temp
, SUBREG_PROMOTED_SIGN (target
));
6226 temp
= convert_modes (inner_mode
, outer_mode
, temp
,
6227 SUBREG_PROMOTED_SIGN (target
));
6229 else if (!SCALAR_INT_MODE_P (GET_MODE (temp
)))
6230 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
6231 temp
, SUBREG_PROMOTED_SIGN (target
));
6233 convert_move (SUBREG_REG (target
), temp
,
6234 SUBREG_PROMOTED_SIGN (target
));
6238 else if ((TREE_CODE (exp
) == STRING_CST
6239 || (TREE_CODE (exp
) == MEM_REF
6240 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6241 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6243 && integer_zerop (TREE_OPERAND (exp
, 1))))
6244 && !nontemporal
&& !call_param_p
6247 /* Optimize initialization of an array with a STRING_CST. */
6248 HOST_WIDE_INT exp_len
, str_copy_len
;
6250 tree str
= TREE_CODE (exp
) == STRING_CST
6251 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6253 exp_len
= int_expr_size (exp
);
6257 if (TREE_STRING_LENGTH (str
) <= 0)
6260 if (can_store_by_pieces (exp_len
, string_cst_read_str
, (void *) str
,
6261 MEM_ALIGN (target
), false))
6263 store_by_pieces (target
, exp_len
, string_cst_read_str
, (void *) str
,
6264 MEM_ALIGN (target
), false, RETURN_BEGIN
);
6268 str_copy_len
= TREE_STRING_LENGTH (str
);
6270 /* Trailing NUL bytes in EXP will be handled by the call to
6271 clear_storage, which is more efficient than copying them from
6272 the STRING_CST, so trim those from STR_COPY_LEN. */
6273 while (str_copy_len
)
6275 if (TREE_STRING_POINTER (str
)[str_copy_len
- 1])
6280 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
6282 str_copy_len
+= STORE_MAX_PIECES
- 1;
6283 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
6285 if (str_copy_len
>= exp_len
)
6288 if (!can_store_by_pieces (str_copy_len
, string_cst_read_str
,
6289 (void *) str
, MEM_ALIGN (target
), false))
6292 dest_mem
= store_by_pieces (target
, str_copy_len
, string_cst_read_str
,
6293 (void *) str
, MEM_ALIGN (target
), false,
6295 clear_storage (adjust_address_1 (dest_mem
, BLKmode
, 0, 1, 1, 0,
6296 exp_len
- str_copy_len
),
6297 GEN_INT (exp_len
- str_copy_len
), BLOCK_OP_NORMAL
);
6305 /* If we want to use a nontemporal or a reverse order store, force the
6306 value into a register first. */
6307 tmp_target
= nontemporal
|| reverse
? NULL_RTX
: target
;
6309 if (TREE_CODE (exp
) == STRING_CST
6310 && tmp_target
== target
6311 && GET_MODE (target
) == BLKmode
6312 && TYPE_MODE (TREE_TYPE (exp
)) == BLKmode
)
6314 rtx size
= expr_size (exp
);
6315 if (CONST_INT_P (size
)
6316 && size
!= const0_rtx
6318 > ((unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (exp
) + 32)))
6320 /* If the STRING_CST has much larger array type than
6321 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6322 it into the rodata section as the code later on will use
6323 memset zero for the remainder anyway. See PR95052. */
6324 tmp_target
= NULL_RTX
;
6325 rexp
= copy_node (exp
);
6327 = build_index_type (size_int (TREE_STRING_LENGTH (exp
) - 1));
6328 TREE_TYPE (rexp
) = build_array_type (TREE_TYPE (TREE_TYPE (exp
)),
6330 shortened_string_cst
= true;
6333 temp
= expand_expr_real (rexp
, tmp_target
, GET_MODE (target
),
6335 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
6337 if (shortened_string_cst
)
6339 gcc_assert (MEM_P (temp
));
6340 temp
= change_address (temp
, BLKmode
, NULL_RTX
);
6344 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6345 the same as that of TARGET, adjust the constant. This is needed, for
6346 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6347 only a word-sized value. */
6348 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
6349 && TREE_CODE (exp
) != ERROR_MARK
6350 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
6352 gcc_assert (!shortened_string_cst
);
6353 if (GET_MODE_CLASS (GET_MODE (target
))
6354 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
)))
6355 && known_eq (GET_MODE_BITSIZE (GET_MODE (target
)),
6356 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)))))
6358 rtx t
= simplify_gen_subreg (GET_MODE (target
), temp
,
6359 TYPE_MODE (TREE_TYPE (exp
)), 0);
6363 if (GET_MODE (temp
) == VOIDmode
)
6364 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
6365 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
6368 /* If value was not generated in the target, store it there.
6369 Convert the value to TARGET's type first if necessary and emit the
6370 pending incrementations that have been queued when expanding EXP.
6371 Note that we cannot emit the whole queue blindly because this will
6372 effectively disable the POST_INC optimization later.
6374 If TEMP and TARGET compare equal according to rtx_equal_p, but
6375 one or both of them are volatile memory refs, we have to distinguish
6377 - expand_expr has used TARGET. In this case, we must not generate
6378 another copy. This can be detected by TARGET being equal according
6380 - expand_expr has not used TARGET - that means that the source just
6381 happens to have the same RTX form. Since temp will have been created
6382 by expand_expr, it will compare unequal according to == .
6383 We must generate a copy in this case, to reach the correct number
6384 of volatile memory references. */
6386 if ((! rtx_equal_p (temp
, target
)
6387 || (temp
!= target
&& (side_effects_p (temp
)
6388 || side_effects_p (target
)
6390 && !mems_same_for_tbaa_p (temp
, target
)))))
6391 && TREE_CODE (exp
) != ERROR_MARK
6392 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6393 but TARGET is not valid memory reference, TEMP will differ
6394 from TARGET although it is really the same location. */
6396 && rtx_equal_p (alt_rtl
, target
)
6397 && !side_effects_p (alt_rtl
)
6398 && !side_effects_p (target
))
6399 /* If there's nothing to copy, don't bother. Don't call
6400 expr_size unless necessary, because some front-ends (C++)
6401 expr_size-hook must not be given objects that are not
6402 supposed to be bit-copied or bit-initialized. */
6403 && expr_size (exp
) != const0_rtx
)
6405 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
6407 gcc_assert (!shortened_string_cst
);
6408 if (GET_MODE (target
) == BLKmode
)
6410 /* Handle calls that return BLKmode values in registers. */
6411 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6412 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
6414 store_bit_field (target
,
6415 rtx_to_poly_int64 (expr_size (exp
))
6417 0, 0, 0, GET_MODE (temp
), temp
, reverse
,
6421 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
6424 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
6426 /* Handle copying a string constant into an array. The string
6427 constant may be shorter than the array. So copy just the string's
6428 actual length, and clear the rest. First get the size of the data
6429 type of the string, which is actually the size of the target. */
6430 rtx size
= expr_size (exp
);
6432 if (CONST_INT_P (size
)
6433 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
6434 emit_block_move (target
, temp
, size
,
6436 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6439 machine_mode pointer_mode
6440 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
6441 machine_mode address_mode
= get_address_mode (target
);
6443 /* Compute the size of the data to copy from the string. */
6445 = size_binop_loc (loc
, MIN_EXPR
,
6446 make_tree (sizetype
, size
),
6447 size_int (TREE_STRING_LENGTH (exp
)));
6449 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
6451 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
6452 rtx_code_label
*label
= 0;
6454 /* Copy that much. */
6455 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
6456 TYPE_UNSIGNED (sizetype
));
6457 emit_block_move (target
, temp
, copy_size_rtx
,
6459 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6461 /* Figure out how much is left in TARGET that we have to clear.
6462 Do all calculations in pointer_mode. */
6463 poly_int64 const_copy_size
;
6464 if (poly_int_rtx_p (copy_size_rtx
, &const_copy_size
))
6466 size
= plus_constant (address_mode
, size
, -const_copy_size
);
6467 target
= adjust_address (target
, BLKmode
, const_copy_size
);
6471 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
6472 copy_size_rtx
, NULL_RTX
, 0,
6475 if (GET_MODE (copy_size_rtx
) != address_mode
)
6476 copy_size_rtx
= convert_to_mode (address_mode
,
6478 TYPE_UNSIGNED (sizetype
));
6480 target
= offset_address (target
, copy_size_rtx
,
6481 highest_pow2_factor (copy_size
));
6482 label
= gen_label_rtx ();
6483 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
6484 GET_MODE (size
), 0, label
);
6487 if (size
!= const0_rtx
)
6488 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
6494 else if (shortened_string_cst
)
6496 /* Handle calls that return values in multiple non-contiguous locations.
6497 The Irix 6 ABI has examples of this. */
6498 else if (GET_CODE (target
) == PARALLEL
)
6500 if (GET_CODE (temp
) == PARALLEL
)
6501 emit_group_move (target
, temp
);
6503 emit_group_load (target
, temp
, TREE_TYPE (exp
),
6504 int_size_in_bytes (TREE_TYPE (exp
)));
6506 else if (GET_CODE (temp
) == PARALLEL
)
6507 emit_group_store (target
, temp
, TREE_TYPE (exp
),
6508 int_size_in_bytes (TREE_TYPE (exp
)));
6509 else if (GET_MODE (temp
) == BLKmode
)
6510 emit_block_move (target
, temp
, expr_size (exp
),
6512 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
6513 /* If we emit a nontemporal store, there is nothing else to do. */
6514 else if (nontemporal
&& emit_storent_insn (target
, temp
))
6519 temp
= flip_storage_order (GET_MODE (target
), temp
);
6520 temp
= force_operand (temp
, target
);
6522 emit_move_insn (target
, temp
);
6526 gcc_assert (!shortened_string_cst
);
6531 /* Return true if field F of structure TYPE is a flexible array. */
6534 flexible_array_member_p (const_tree f
, const_tree type
)
6539 return (DECL_CHAIN (f
) == NULL
6540 && TREE_CODE (tf
) == ARRAY_TYPE
6542 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
6543 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
6544 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
6545 && int_size_in_bytes (type
) >= 0);
6548 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6549 must have in order for it to completely initialize a value of type TYPE.
6550 Return -1 if the number isn't known.
6552 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6554 static HOST_WIDE_INT
6555 count_type_elements (const_tree type
, bool for_ctor_p
)
6557 switch (TREE_CODE (type
))
6563 nelts
= array_type_nelts (type
);
6564 if (nelts
&& tree_fits_uhwi_p (nelts
))
6566 unsigned HOST_WIDE_INT n
;
6568 n
= tree_to_uhwi (nelts
) + 1;
6569 if (n
== 0 || for_ctor_p
)
6572 return n
* count_type_elements (TREE_TYPE (type
), false);
6574 return for_ctor_p
? -1 : 1;
6579 unsigned HOST_WIDE_INT n
;
6583 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
6584 if (TREE_CODE (f
) == FIELD_DECL
)
6587 n
+= count_type_elements (TREE_TYPE (f
), false);
6588 else if (!flexible_array_member_p (f
, type
))
6589 /* Don't count flexible arrays, which are not supposed
6590 to be initialized. */
6598 case QUAL_UNION_TYPE
:
6603 gcc_assert (!for_ctor_p
);
6604 /* Estimate the number of scalars in each field and pick the
6605 maximum. Other estimates would do instead; the idea is simply
6606 to make sure that the estimate is not sensitive to the ordering
6609 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
6610 if (TREE_CODE (f
) == FIELD_DECL
)
6612 m
= count_type_elements (TREE_TYPE (f
), false);
6613 /* If the field doesn't span the whole union, add an extra
6614 scalar for the rest. */
6615 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
6616 TYPE_SIZE (type
)) != 1)
6629 unsigned HOST_WIDE_INT nelts
;
6630 if (TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
6638 case FIXED_POINT_TYPE
:
6643 case REFERENCE_TYPE
:
6660 /* Helper for categorize_ctor_elements. Identical interface. */
6663 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6664 HOST_WIDE_INT
*p_unique_nz_elts
,
6665 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6667 unsigned HOST_WIDE_INT idx
;
6668 HOST_WIDE_INT nz_elts
, unique_nz_elts
, init_elts
, num_fields
;
6669 tree value
, purpose
, elt_type
;
6671 /* Whether CTOR is a valid constant initializer, in accordance with what
6672 initializer_constant_valid_p does. If inferred from the constructor
6673 elements, true until proven otherwise. */
6674 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
6675 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
6681 elt_type
= NULL_TREE
;
6683 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
6685 HOST_WIDE_INT mult
= 1;
6687 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
6689 tree lo_index
= TREE_OPERAND (purpose
, 0);
6690 tree hi_index
= TREE_OPERAND (purpose
, 1);
6692 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
6693 mult
= (tree_to_uhwi (hi_index
)
6694 - tree_to_uhwi (lo_index
) + 1);
6697 elt_type
= TREE_TYPE (value
);
6699 switch (TREE_CODE (value
))
6703 HOST_WIDE_INT nz
= 0, unz
= 0, ic
= 0;
6705 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &unz
,
6708 nz_elts
+= mult
* nz
;
6709 unique_nz_elts
+= unz
;
6710 init_elts
+= mult
* ic
;
6712 if (const_from_elts_p
&& const_p
)
6713 const_p
= const_elt_p
;
6720 if (!initializer_zerop (value
))
6729 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
6730 unique_nz_elts
+= TREE_STRING_LENGTH (value
);
6731 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
6735 if (!initializer_zerop (TREE_REALPART (value
)))
6740 if (!initializer_zerop (TREE_IMAGPART (value
)))
6745 init_elts
+= 2 * mult
;
6750 /* We can only construct constant-length vectors using
6752 unsigned int nunits
= VECTOR_CST_NELTS (value
).to_constant ();
6753 for (unsigned int i
= 0; i
< nunits
; ++i
)
6755 tree v
= VECTOR_CST_ELT (value
, i
);
6756 if (!initializer_zerop (v
))
6768 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
6769 nz_elts
+= mult
* tc
;
6770 unique_nz_elts
+= tc
;
6771 init_elts
+= mult
* tc
;
6773 if (const_from_elts_p
&& const_p
)
6775 = initializer_constant_valid_p (value
,
6777 TYPE_REVERSE_STORAGE_ORDER
6785 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
6786 num_fields
, elt_type
))
6787 *p_complete
= false;
6789 *p_nz_elts
+= nz_elts
;
6790 *p_unique_nz_elts
+= unique_nz_elts
;
6791 *p_init_elts
+= init_elts
;
6796 /* Examine CTOR to discover:
6797 * how many scalar fields are set to nonzero values,
6798 and place it in *P_NZ_ELTS;
6799 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6800 high - low + 1 (this can be useful for callers to determine ctors
6801 that could be cheaply initialized with - perhaps nested - loops
6802 compared to copied from huge read-only data),
6803 and place it in *P_UNIQUE_NZ_ELTS;
6804 * how many scalar fields in total are in CTOR,
6805 and place it in *P_ELT_COUNT.
6806 * whether the constructor is complete -- in the sense that every
6807 meaningful byte is explicitly given a value --
6808 and place it in *P_COMPLETE.
6810 Return whether or not CTOR is a valid static constant initializer, the same
6811 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6814 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6815 HOST_WIDE_INT
*p_unique_nz_elts
,
6816 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6819 *p_unique_nz_elts
= 0;
6823 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_unique_nz_elts
,
6824 p_init_elts
, p_complete
);
6827 /* Return true if constructor CTOR is simple enough to be materialized
6828 in an integer mode register. Limit the size to WORDS words, which
6832 immediate_const_ctor_p (const_tree ctor
, unsigned int words
)
6834 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
6835 if (!ctor
|| TREE_CODE (ctor
) != CONSTRUCTOR
)
6838 return TREE_CONSTANT (ctor
)
6839 && !TREE_ADDRESSABLE (ctor
)
6840 && CONSTRUCTOR_NELTS (ctor
)
6841 && TREE_CODE (TREE_TYPE (ctor
)) != ARRAY_TYPE
6842 && int_expr_size (ctor
) <= words
* UNITS_PER_WORD
6843 && initializer_constant_valid_for_bitfield_p (ctor
);
6846 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6847 of which had type LAST_TYPE. Each element was itself a complete
6848 initializer, in the sense that every meaningful byte was explicitly
6849 given a value. Return true if the same is true for the constructor
6853 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
6854 const_tree last_type
)
6856 if (TREE_CODE (type
) == UNION_TYPE
6857 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6862 gcc_assert (num_elts
== 1 && last_type
);
6864 /* ??? We could look at each element of the union, and find the
6865 largest element. Which would avoid comparing the size of the
6866 initialized element against any tail padding in the union.
6867 Doesn't seem worth the effort... */
6868 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
6871 return count_type_elements (type
, true) == num_elts
;
6874 /* Return 1 if EXP contains mostly (3/4) zeros. */
6877 mostly_zeros_p (const_tree exp
)
6879 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6881 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6884 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6886 return !complete_p
|| nz_elts
< init_elts
/ 4;
6889 return initializer_zerop (exp
);
6892 /* Return 1 if EXP contains all zeros. */
6895 all_zeros_p (const_tree exp
)
6897 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6899 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6902 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6904 return nz_elts
== 0;
6907 return initializer_zerop (exp
);
6910 /* Helper function for store_constructor.
6911 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6912 CLEARED is as for store_constructor.
6913 ALIAS_SET is the alias set to use for any stores.
6914 If REVERSE is true, the store is to be done in reverse order.
6916 This provides a recursive shortcut back to store_constructor when it isn't
6917 necessary to go through store_field. This is so that we can pass through
6918 the cleared field to let store_constructor know that we may not have to
6919 clear a substructure if the outer structure has already been cleared. */
6922 store_constructor_field (rtx target
, poly_uint64 bitsize
, poly_int64 bitpos
,
6923 poly_uint64 bitregion_start
,
6924 poly_uint64 bitregion_end
,
6926 tree exp
, int cleared
,
6927 alias_set_type alias_set
, bool reverse
)
6930 poly_uint64 bytesize
;
6931 if (TREE_CODE (exp
) == CONSTRUCTOR
6932 /* We can only call store_constructor recursively if the size and
6933 bit position are on a byte boundary. */
6934 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
6935 && maybe_ne (bitsize
, 0U)
6936 && multiple_p (bitsize
, BITS_PER_UNIT
, &bytesize
)
6937 /* If we have a nonzero bitpos for a register target, then we just
6938 let store_field do the bitfield handling. This is unlikely to
6939 generate unnecessary clear instructions anyways. */
6940 && (known_eq (bitpos
, 0) || MEM_P (target
)))
6944 machine_mode target_mode
= GET_MODE (target
);
6945 if (target_mode
!= BLKmode
6946 && !multiple_p (bitpos
, GET_MODE_ALIGNMENT (target_mode
)))
6947 target_mode
= BLKmode
;
6948 target
= adjust_address (target
, target_mode
, bytepos
);
6952 /* Update the alias set, if required. */
6953 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
6954 && MEM_ALIAS_SET (target
) != 0)
6956 target
= copy_rtx (target
);
6957 set_mem_alias_set (target
, alias_set
);
6960 store_constructor (exp
, target
, cleared
, bytesize
, reverse
);
6963 store_field (target
, bitsize
, bitpos
, bitregion_start
, bitregion_end
, mode
,
6964 exp
, alias_set
, false, reverse
);
6968 /* Returns the number of FIELD_DECLs in TYPE. */
6971 fields_length (const_tree type
)
6973 tree t
= TYPE_FIELDS (type
);
6976 for (; t
; t
= DECL_CHAIN (t
))
6977 if (TREE_CODE (t
) == FIELD_DECL
)
6984 /* Store the value of constructor EXP into the rtx TARGET.
6985 TARGET is either a REG or a MEM; we know it cannot conflict, since
6986 safe_from_p has been called.
6987 CLEARED is true if TARGET is known to have been zero'd.
6988 SIZE is the number of bytes of TARGET we are allowed to modify: this
6989 may not be the same as the size of EXP if we are assigning to a field
6990 which has been packed to exclude padding bits.
6991 If REVERSE is true, the store is to be done in reverse order. */
6994 store_constructor (tree exp
, rtx target
, int cleared
, poly_int64 size
,
6997 tree type
= TREE_TYPE (exp
);
6998 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
6999 poly_int64 bitregion_end
= known_gt (size
, 0) ? size
* BITS_PER_UNIT
- 1 : 0;
7001 switch (TREE_CODE (type
))
7005 case QUAL_UNION_TYPE
:
7007 unsigned HOST_WIDE_INT idx
;
7010 /* The storage order is specified for every aggregate type. */
7011 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
7013 /* If size is zero or the target is already cleared, do nothing. */
7014 if (known_eq (size
, 0) || cleared
)
7016 /* We either clear the aggregate or indicate the value is dead. */
7017 else if ((TREE_CODE (type
) == UNION_TYPE
7018 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
7019 && ! CONSTRUCTOR_ELTS (exp
))
7020 /* If the constructor is empty, clear the union. */
7022 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7026 /* If we are building a static constructor into a register,
7027 set the initial value as zero so we can fold the value into
7028 a constant. But if more than one register is involved,
7029 this probably loses. */
7030 else if (REG_P (target
) && TREE_STATIC (exp
)
7031 && known_le (GET_MODE_SIZE (GET_MODE (target
)),
7032 REGMODE_NATURAL_SIZE (GET_MODE (target
))))
7034 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
7038 /* If the constructor has fewer fields than the structure or
7039 if we are initializing the structure to mostly zeros, clear
7040 the whole structure first. Don't do this if TARGET is a
7041 register whose mode size isn't equal to SIZE since
7042 clear_storage can't handle this case. */
7043 else if (known_size_p (size
)
7044 && (((int) CONSTRUCTOR_NELTS (exp
) != fields_length (type
))
7045 || mostly_zeros_p (exp
))
7047 || known_eq (GET_MODE_SIZE (GET_MODE (target
)), size
)))
7049 clear_storage (target
, gen_int_mode (size
, Pmode
),
7054 if (REG_P (target
) && !cleared
)
7055 emit_clobber (target
);
7057 /* Store each element of the constructor into the
7058 corresponding field of TARGET. */
7059 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
7062 HOST_WIDE_INT bitsize
;
7063 HOST_WIDE_INT bitpos
= 0;
7065 rtx to_rtx
= target
;
7067 /* Just ignore missing fields. We cleared the whole
7068 structure, above, if any fields are missing. */
7072 if (cleared
&& initializer_zerop (value
))
7075 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
7076 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
7080 mode
= DECL_MODE (field
);
7081 if (DECL_BIT_FIELD (field
))
7084 offset
= DECL_FIELD_OFFSET (field
);
7085 if (tree_fits_shwi_p (offset
)
7086 && tree_fits_shwi_p (bit_position (field
)))
7088 bitpos
= int_bit_position (field
);
7094 /* If this initializes a field that is smaller than a
7095 word, at the start of a word, try to widen it to a full
7096 word. This special case allows us to output C++ member
7097 function initializations in a form that the optimizers
7099 if (WORD_REGISTER_OPERATIONS
7101 && bitsize
< BITS_PER_WORD
7102 && bitpos
% BITS_PER_WORD
== 0
7103 && GET_MODE_CLASS (mode
) == MODE_INT
7104 && TREE_CODE (value
) == INTEGER_CST
7106 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
7108 type
= TREE_TYPE (value
);
7110 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
7112 type
= lang_hooks
.types
.type_for_mode
7113 (word_mode
, TYPE_UNSIGNED (type
));
7114 value
= fold_convert (type
, value
);
7115 /* Make sure the bits beyond the original bitsize are zero
7116 so that we can correctly avoid extra zeroing stores in
7117 later constructor elements. */
7119 = wide_int_to_tree (type
, wi::mask (bitsize
, false,
7121 value
= fold_build2 (BIT_AND_EXPR
, type
, value
, bitsize_mask
);
7124 if (BYTES_BIG_ENDIAN
)
7126 = fold_build2 (LSHIFT_EXPR
, type
, value
,
7127 build_int_cst (type
,
7128 BITS_PER_WORD
- bitsize
));
7129 bitsize
= BITS_PER_WORD
;
7133 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
7134 && DECL_NONADDRESSABLE_P (field
))
7136 to_rtx
= copy_rtx (to_rtx
);
7137 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
7140 store_constructor_field (to_rtx
, bitsize
, bitpos
,
7141 0, bitregion_end
, mode
,
7143 get_alias_set (TREE_TYPE (field
)),
7151 unsigned HOST_WIDE_INT i
;
7154 tree elttype
= TREE_TYPE (type
);
7156 HOST_WIDE_INT minelt
= 0;
7157 HOST_WIDE_INT maxelt
= 0;
7159 /* The storage order is specified for every aggregate type. */
7160 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
7162 domain
= TYPE_DOMAIN (type
);
7163 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
7164 && TYPE_MAX_VALUE (domain
)
7165 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
7166 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
7168 /* If we have constant bounds for the range of the type, get them. */
7171 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
7172 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
7175 /* If the constructor has fewer elements than the array, clear
7176 the whole array first. Similarly if this is static
7177 constructor of a non-BLKmode object. */
7180 else if (REG_P (target
) && TREE_STATIC (exp
))
7184 unsigned HOST_WIDE_INT idx
;
7185 HOST_WIDE_INT count
= 0, zero_count
= 0;
7186 need_to_clear
= ! const_bounds_p
;
7188 /* This loop is a more accurate version of the loop in
7189 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7190 is also needed to check for missing elements. */
7191 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
7193 HOST_WIDE_INT this_node_count
;
7198 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
7200 tree lo_index
= TREE_OPERAND (index
, 0);
7201 tree hi_index
= TREE_OPERAND (index
, 1);
7203 if (! tree_fits_uhwi_p (lo_index
)
7204 || ! tree_fits_uhwi_p (hi_index
))
7210 this_node_count
= (tree_to_uhwi (hi_index
)
7211 - tree_to_uhwi (lo_index
) + 1);
7214 this_node_count
= 1;
7216 count
+= this_node_count
;
7217 if (mostly_zeros_p (value
))
7218 zero_count
+= this_node_count
;
7221 /* Clear the entire array first if there are any missing
7222 elements, or if the incidence of zero elements is >=
7225 && (count
< maxelt
- minelt
+ 1
7226 || 4 * zero_count
>= 3 * count
))
7230 if (need_to_clear
&& maybe_gt (size
, 0))
7233 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
7235 clear_storage (target
, gen_int_mode (size
, Pmode
),
7240 if (!cleared
&& REG_P (target
))
7241 /* Inform later passes that the old value is dead. */
7242 emit_clobber (target
);
7244 /* Store each element of the constructor into the
7245 corresponding element of TARGET, determined by counting the
7247 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
7251 HOST_WIDE_INT bitpos
;
7252 rtx xtarget
= target
;
7254 if (cleared
&& initializer_zerop (value
))
7257 mode
= TYPE_MODE (elttype
);
7258 if (mode
!= BLKmode
)
7259 bitsize
= GET_MODE_BITSIZE (mode
);
7260 else if (!poly_int_tree_p (TYPE_SIZE (elttype
), &bitsize
))
7263 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
7265 tree lo_index
= TREE_OPERAND (index
, 0);
7266 tree hi_index
= TREE_OPERAND (index
, 1);
7267 rtx index_r
, pos_rtx
;
7268 HOST_WIDE_INT lo
, hi
, count
;
7271 /* If the range is constant and "small", unroll the loop. */
7273 && tree_fits_shwi_p (lo_index
)
7274 && tree_fits_shwi_p (hi_index
)
7275 && (lo
= tree_to_shwi (lo_index
),
7276 hi
= tree_to_shwi (hi_index
),
7277 count
= hi
- lo
+ 1,
7280 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
7281 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
7284 lo
-= minelt
; hi
-= minelt
;
7285 for (; lo
<= hi
; lo
++)
7287 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
7290 && !MEM_KEEP_ALIAS_SET_P (target
)
7291 && TREE_CODE (type
) == ARRAY_TYPE
7292 && TYPE_NONALIASED_COMPONENT (type
))
7294 target
= copy_rtx (target
);
7295 MEM_KEEP_ALIAS_SET_P (target
) = 1;
7298 store_constructor_field
7299 (target
, bitsize
, bitpos
, 0, bitregion_end
,
7300 mode
, value
, cleared
,
7301 get_alias_set (elttype
), reverse
);
7306 rtx_code_label
*loop_start
= gen_label_rtx ();
7307 rtx_code_label
*loop_end
= gen_label_rtx ();
7310 expand_normal (hi_index
);
7312 index
= build_decl (EXPR_LOCATION (exp
),
7313 VAR_DECL
, NULL_TREE
, domain
);
7314 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
7315 SET_DECL_RTL (index
, index_r
);
7316 store_expr (lo_index
, index_r
, 0, false, reverse
);
7318 /* Build the head of the loop. */
7319 do_pending_stack_adjust ();
7320 emit_label (loop_start
);
7322 /* Assign value to element index. */
7324 fold_convert (ssizetype
,
7325 fold_build2 (MINUS_EXPR
,
7328 TYPE_MIN_VALUE (domain
)));
7331 size_binop (MULT_EXPR
, position
,
7332 fold_convert (ssizetype
,
7333 TYPE_SIZE_UNIT (elttype
)));
7335 pos_rtx
= expand_normal (position
);
7336 xtarget
= offset_address (target
, pos_rtx
,
7337 highest_pow2_factor (position
));
7338 xtarget
= adjust_address (xtarget
, mode
, 0);
7339 if (TREE_CODE (value
) == CONSTRUCTOR
)
7340 store_constructor (value
, xtarget
, cleared
,
7341 exact_div (bitsize
, BITS_PER_UNIT
),
7344 store_expr (value
, xtarget
, 0, false, reverse
);
7346 /* Generate a conditional jump to exit the loop. */
7347 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
7349 jumpif (exit_cond
, loop_end
,
7350 profile_probability::uninitialized ());
7352 /* Update the loop counter, and jump to the head of
7354 expand_assignment (index
,
7355 build2 (PLUS_EXPR
, TREE_TYPE (index
),
7356 index
, integer_one_node
),
7359 emit_jump (loop_start
);
7361 /* Build the end of the loop. */
7362 emit_label (loop_end
);
7365 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
7366 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
7371 index
= ssize_int (1);
7374 index
= fold_convert (ssizetype
,
7375 fold_build2 (MINUS_EXPR
,
7378 TYPE_MIN_VALUE (domain
)));
7381 size_binop (MULT_EXPR
, index
,
7382 fold_convert (ssizetype
,
7383 TYPE_SIZE_UNIT (elttype
)));
7384 xtarget
= offset_address (target
,
7385 expand_normal (position
),
7386 highest_pow2_factor (position
));
7387 xtarget
= adjust_address (xtarget
, mode
, 0);
7388 store_expr (value
, xtarget
, 0, false, reverse
);
7393 bitpos
= ((tree_to_shwi (index
) - minelt
)
7394 * tree_to_uhwi (TYPE_SIZE (elttype
)));
7396 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
7398 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
7399 && TREE_CODE (type
) == ARRAY_TYPE
7400 && TYPE_NONALIASED_COMPONENT (type
))
7402 target
= copy_rtx (target
);
7403 MEM_KEEP_ALIAS_SET_P (target
) = 1;
7405 store_constructor_field (target
, bitsize
, bitpos
, 0,
7406 bitregion_end
, mode
, value
,
7407 cleared
, get_alias_set (elttype
),
7416 unsigned HOST_WIDE_INT idx
;
7417 constructor_elt
*ce
;
7420 insn_code icode
= CODE_FOR_nothing
;
7422 tree elttype
= TREE_TYPE (type
);
7423 int elt_size
= vector_element_bits (type
);
7424 machine_mode eltmode
= TYPE_MODE (elttype
);
7425 HOST_WIDE_INT bitsize
;
7426 HOST_WIDE_INT bitpos
;
7427 rtvec vector
= NULL
;
7429 unsigned HOST_WIDE_INT const_n_elts
;
7430 alias_set_type alias
;
7431 bool vec_vec_init_p
= false;
7432 machine_mode mode
= GET_MODE (target
);
7434 gcc_assert (eltmode
!= BLKmode
);
7436 /* Try using vec_duplicate_optab for uniform vectors. */
7437 if (!TREE_SIDE_EFFECTS (exp
)
7438 && VECTOR_MODE_P (mode
)
7439 && eltmode
== GET_MODE_INNER (mode
)
7440 && ((icode
= optab_handler (vec_duplicate_optab
, mode
))
7441 != CODE_FOR_nothing
)
7442 && (elt
= uniform_vector_p (exp
))
7443 && !VECTOR_TYPE_P (TREE_TYPE (elt
)))
7445 class expand_operand ops
[2];
7446 create_output_operand (&ops
[0], target
, mode
);
7447 create_input_operand (&ops
[1], expand_normal (elt
), eltmode
);
7448 expand_insn (icode
, 2, ops
);
7449 if (!rtx_equal_p (target
, ops
[0].value
))
7450 emit_move_insn (target
, ops
[0].value
);
7454 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
7456 && VECTOR_MODE_P (mode
)
7457 && n_elts
.is_constant (&const_n_elts
))
7459 machine_mode emode
= eltmode
;
7460 bool vector_typed_elts_p
= false;
7462 if (CONSTRUCTOR_NELTS (exp
)
7463 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
))
7466 tree etype
= TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
);
7467 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp
)
7468 * TYPE_VECTOR_SUBPARTS (etype
),
7470 emode
= TYPE_MODE (etype
);
7471 vector_typed_elts_p
= true;
7473 icode
= convert_optab_handler (vec_init_optab
, mode
, emode
);
7474 if (icode
!= CODE_FOR_nothing
)
7476 unsigned int n
= const_n_elts
;
7478 if (vector_typed_elts_p
)
7480 n
= CONSTRUCTOR_NELTS (exp
);
7481 vec_vec_init_p
= true;
7483 vector
= rtvec_alloc (n
);
7484 for (unsigned int k
= 0; k
< n
; k
++)
7485 RTVEC_ELT (vector
, k
) = CONST0_RTX (emode
);
7489 /* Compute the size of the elements in the CTOR. It differs
7490 from the size of the vector type elements only when the
7491 CTOR elements are vectors themselves. */
7492 tree val_type
= (CONSTRUCTOR_NELTS (exp
) != 0
7493 ? TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
)
7495 if (VECTOR_TYPE_P (val_type
))
7496 bitsize
= tree_to_uhwi (TYPE_SIZE (val_type
));
7500 /* If the constructor has fewer elements than the vector,
7501 clear the whole array first. Similarly if this is static
7502 constructor of a non-BLKmode object. */
7505 else if (REG_P (target
) && TREE_STATIC (exp
))
7509 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
7512 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7514 int n_elts_here
= bitsize
/ elt_size
;
7515 count
+= n_elts_here
;
7516 if (mostly_zeros_p (value
))
7517 zero_count
+= n_elts_here
;
7520 /* Clear the entire vector first if there are any missing elements,
7521 or if the incidence of zero elements is >= 75%. */
7522 need_to_clear
= (maybe_lt (count
, n_elts
)
7523 || 4 * zero_count
>= 3 * count
);
7526 if (need_to_clear
&& maybe_gt (size
, 0) && !vector
)
7529 emit_move_insn (target
, CONST0_RTX (mode
));
7531 clear_storage (target
, gen_int_mode (size
, Pmode
),
7536 /* Inform later passes that the old value is dead. */
7537 if (!cleared
&& !vector
&& REG_P (target
))
7538 emit_move_insn (target
, CONST0_RTX (mode
));
7541 alias
= MEM_ALIAS_SET (target
);
7543 alias
= get_alias_set (elttype
);
7545 /* Store each element of the constructor into the corresponding
7546 element of TARGET, determined by counting the elements. */
7547 for (idx
= 0, i
= 0;
7548 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
7549 idx
++, i
+= bitsize
/ elt_size
)
7551 HOST_WIDE_INT eltpos
;
7552 tree value
= ce
->value
;
7554 if (cleared
&& initializer_zerop (value
))
7558 eltpos
= tree_to_uhwi (ce
->index
);
7566 gcc_assert (ce
->index
== NULL_TREE
);
7567 gcc_assert (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
);
7571 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
7572 RTVEC_ELT (vector
, eltpos
) = expand_normal (value
);
7576 machine_mode value_mode
7577 = (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
7578 ? TYPE_MODE (TREE_TYPE (value
)) : eltmode
);
7579 bitpos
= eltpos
* elt_size
;
7580 store_constructor_field (target
, bitsize
, bitpos
, 0,
7581 bitregion_end
, value_mode
,
7582 value
, cleared
, alias
, reverse
);
7587 emit_insn (GEN_FCN (icode
) (target
,
7588 gen_rtx_PARALLEL (mode
, vector
)));
7597 /* Store the value of EXP (an expression tree)
7598 into a subfield of TARGET which has mode MODE and occupies
7599 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7600 If MODE is VOIDmode, it means that we are storing into a bit-field.
7602 BITREGION_START is bitpos of the first bitfield in this region.
7603 BITREGION_END is the bitpos of the ending bitfield in this region.
7604 These two fields are 0, if the C++ memory model does not apply,
7605 or we are not interested in keeping track of bitfield regions.
7607 Always return const0_rtx unless we have something particular to
7610 ALIAS_SET is the alias set for the destination. This value will
7611 (in general) be different from that for TARGET, since TARGET is a
7612 reference to the containing structure.
7614 If NONTEMPORAL is true, try generating a nontemporal store.
7616 If REVERSE is true, the store is to be done in reverse order. */
7619 store_field (rtx target
, poly_int64 bitsize
, poly_int64 bitpos
,
7620 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
7621 machine_mode mode
, tree exp
,
7622 alias_set_type alias_set
, bool nontemporal
, bool reverse
)
7624 if (TREE_CODE (exp
) == ERROR_MARK
)
7627 /* If we have nothing to store, do nothing unless the expression has
7628 side-effects. Don't do that for zero sized addressable lhs of
7630 if (known_eq (bitsize
, 0)
7631 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
7632 || TREE_CODE (exp
) != CALL_EXPR
))
7633 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
7635 if (GET_CODE (target
) == CONCAT
)
7637 /* We're storing into a struct containing a single __complex. */
7639 gcc_assert (known_eq (bitpos
, 0));
7640 return store_expr (exp
, target
, 0, nontemporal
, reverse
);
7643 /* If the structure is in a register or if the component
7644 is a bit field, we cannot use addressing to access it.
7645 Use bit-field techniques or SUBREG to store in it. */
7647 poly_int64 decl_bitsize
;
7648 if (mode
== VOIDmode
7649 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
7650 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7651 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
7653 || GET_CODE (target
) == SUBREG
7654 /* If the field isn't aligned enough to store as an ordinary memref,
7655 store it as a bit field. */
7657 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
7658 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
7659 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
)))
7660 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
7661 || (known_size_p (bitsize
)
7663 && maybe_gt (GET_MODE_BITSIZE (mode
), bitsize
))
7664 /* If the RHS and field are a constant size and the size of the
7665 RHS isn't the same size as the bitfield, we must use bitfield
7667 || (known_size_p (bitsize
)
7668 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
7669 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
7671 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7672 we will handle specially below. */
7673 && !(TREE_CODE (exp
) == CONSTRUCTOR
7674 && multiple_p (bitsize
, BITS_PER_UNIT
))
7675 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7676 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7677 includes some extra padding. store_expr / expand_expr will in
7678 that case call get_inner_reference that will have the bitsize
7679 we check here and thus the block move will not clobber the
7680 padding that shouldn't be clobbered. In the future we could
7681 replace the TREE_ADDRESSABLE check with a check that
7682 get_base_address needs to live in memory. */
7683 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
7684 || TREE_CODE (exp
) != COMPONENT_REF
7685 || !multiple_p (bitsize
, BITS_PER_UNIT
)
7686 || !multiple_p (bitpos
, BITS_PER_UNIT
)
7687 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp
, 1)),
7689 || maybe_ne (decl_bitsize
, bitsize
))
7690 /* A call with an addressable return type and return-slot
7691 optimization must not need bitfield operations but we must
7692 pass down the original target. */
7693 && (TREE_CODE (exp
) != CALL_EXPR
7694 || !TREE_ADDRESSABLE (TREE_TYPE (exp
))
7695 || !CALL_EXPR_RETURN_SLOT_OPT (exp
)))
7696 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7697 decl we must use bitfield operations. */
7698 || (known_size_p (bitsize
)
7699 && TREE_CODE (exp
) == MEM_REF
7700 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7701 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7702 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7703 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
7708 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7709 implies a mask operation. If the precision is the same size as
7710 the field we're storing into, that mask is redundant. This is
7711 particularly common with bit field assignments generated by the
7713 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
7716 tree type
= TREE_TYPE (exp
);
7717 if (INTEGRAL_TYPE_P (type
)
7718 && maybe_ne (TYPE_PRECISION (type
),
7719 GET_MODE_BITSIZE (TYPE_MODE (type
)))
7720 && known_eq (bitsize
, TYPE_PRECISION (type
)))
7722 tree op
= gimple_assign_rhs1 (nop_def
);
7723 type
= TREE_TYPE (op
);
7724 if (INTEGRAL_TYPE_P (type
)
7725 && known_ge (TYPE_PRECISION (type
), bitsize
))
7730 temp
= expand_normal (exp
);
7732 /* We don't support variable-sized BLKmode bitfields, since our
7733 handling of BLKmode is bound up with the ability to break
7734 things into words. */
7735 gcc_assert (mode
!= BLKmode
|| bitsize
.is_constant ());
7737 /* Handle calls that return values in multiple non-contiguous locations.
7738 The Irix 6 ABI has examples of this. */
7739 if (GET_CODE (temp
) == PARALLEL
)
7741 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
7742 machine_mode temp_mode
= GET_MODE (temp
);
7743 if (temp_mode
== BLKmode
|| temp_mode
== VOIDmode
)
7744 temp_mode
= smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
7745 rtx temp_target
= gen_reg_rtx (temp_mode
);
7746 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
7750 /* Handle calls that return BLKmode values in registers. */
7751 else if (mode
== BLKmode
&& REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
7753 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
7754 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
7758 /* If the value has aggregate type and an integral mode then, if BITSIZE
7759 is narrower than this mode and this is for big-endian data, we first
7760 need to put the value into the low-order bits for store_bit_field,
7761 except when MODE is BLKmode and BITSIZE larger than the word size
7762 (see the handling of fields larger than a word in store_bit_field).
7763 Moreover, the field may be not aligned on a byte boundary; in this
7764 case, if it has reverse storage order, it needs to be accessed as a
7765 scalar field with reverse storage order and we must first put the
7766 value into target order. */
7767 scalar_int_mode temp_mode
;
7768 if (AGGREGATE_TYPE_P (TREE_TYPE (exp
))
7769 && is_int_mode (GET_MODE (temp
), &temp_mode
))
7771 HOST_WIDE_INT size
= GET_MODE_BITSIZE (temp_mode
);
7773 reverse
= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp
));
7776 temp
= flip_storage_order (temp_mode
, temp
);
7778 gcc_checking_assert (known_le (bitsize
, size
));
7779 if (maybe_lt (bitsize
, size
)
7780 && reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
7781 /* Use of to_constant for BLKmode was checked above. */
7782 && !(mode
== BLKmode
&& bitsize
.to_constant () > BITS_PER_WORD
))
7783 temp
= expand_shift (RSHIFT_EXPR
, temp_mode
, temp
,
7784 size
- bitsize
, NULL_RTX
, 1);
7787 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7788 if (mode
!= VOIDmode
&& mode
!= BLKmode
7789 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
7790 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
7792 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7793 and BITPOS must be aligned on a byte boundary. If so, we simply do
7794 a block copy. Likewise for a BLKmode-like TARGET. */
7795 if (GET_MODE (temp
) == BLKmode
7796 && (GET_MODE (target
) == BLKmode
7798 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
7799 && multiple_p (bitpos
, BITS_PER_UNIT
)
7800 && multiple_p (bitsize
, BITS_PER_UNIT
))))
7802 gcc_assert (MEM_P (target
) && MEM_P (temp
));
7803 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
7804 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
7806 target
= adjust_address (target
, VOIDmode
, bytepos
);
7807 emit_block_move (target
, temp
,
7808 gen_int_mode (bytesize
, Pmode
),
7814 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7815 word size, we need to load the value (see again store_bit_field). */
7816 if (GET_MODE (temp
) == BLKmode
&& known_le (bitsize
, BITS_PER_WORD
))
7818 temp_mode
= smallest_int_mode_for_size (bitsize
);
7819 temp
= extract_bit_field (temp
, bitsize
, 0, 1, NULL_RTX
, temp_mode
,
7820 temp_mode
, false, NULL
);
7823 /* Store the value in the bitfield. */
7824 gcc_checking_assert (known_ge (bitpos
, 0));
7825 store_bit_field (target
, bitsize
, bitpos
,
7826 bitregion_start
, bitregion_end
,
7827 mode
, temp
, reverse
, false);
7833 /* Now build a reference to just the desired component. */
7834 rtx to_rtx
= adjust_address (target
, mode
,
7835 exact_div (bitpos
, BITS_PER_UNIT
));
7837 if (to_rtx
== target
)
7838 to_rtx
= copy_rtx (to_rtx
);
7840 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
7841 set_mem_alias_set (to_rtx
, alias_set
);
7843 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7844 into a target smaller than its type; handle that case now. */
7845 if (TREE_CODE (exp
) == CONSTRUCTOR
&& known_size_p (bitsize
))
7847 poly_int64 bytesize
= exact_div (bitsize
, BITS_PER_UNIT
);
7848 store_constructor (exp
, to_rtx
, 0, bytesize
, reverse
);
7852 return store_expr (exp
, to_rtx
, 0, nontemporal
, reverse
);
7856 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7857 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7858 codes and find the ultimate containing object, which we return.
7860 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7861 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7862 storage order of the field.
7863 If the position of the field is variable, we store a tree
7864 giving the variable offset (in units) in *POFFSET.
7865 This offset is in addition to the bit position.
7866 If the position is not variable, we store 0 in *POFFSET.
7868 If any of the extraction expressions is volatile,
7869 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7871 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7872 Otherwise, it is a mode that can be used to access the field.
7874 If the field describes a variable-sized object, *PMODE is set to
7875 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7876 this case, but the address of the object can be found. */
7879 get_inner_reference (tree exp
, poly_int64_pod
*pbitsize
,
7880 poly_int64_pod
*pbitpos
, tree
*poffset
,
7881 machine_mode
*pmode
, int *punsignedp
,
7882 int *preversep
, int *pvolatilep
)
7885 machine_mode mode
= VOIDmode
;
7886 bool blkmode_bitfield
= false;
7887 tree offset
= size_zero_node
;
7888 poly_offset_int bit_offset
= 0;
7890 /* First get the mode, signedness, storage order and size. We do this from
7891 just the outermost expression. */
7893 if (TREE_CODE (exp
) == COMPONENT_REF
)
7895 tree field
= TREE_OPERAND (exp
, 1);
7896 size_tree
= DECL_SIZE (field
);
7897 if (flag_strict_volatile_bitfields
> 0
7898 && TREE_THIS_VOLATILE (exp
)
7899 && DECL_BIT_FIELD_TYPE (field
)
7900 && DECL_MODE (field
) != BLKmode
)
7901 /* Volatile bitfields should be accessed in the mode of the
7902 field's type, not the mode computed based on the bit
7904 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
7905 else if (!DECL_BIT_FIELD (field
))
7907 mode
= DECL_MODE (field
);
7908 /* For vector fields re-check the target flags, as DECL_MODE
7909 could have been set with different target flags than
7910 the current function has. */
7911 if (VECTOR_TYPE_P (TREE_TYPE (field
))
7912 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field
))))
7913 mode
= TYPE_MODE (TREE_TYPE (field
));
7915 else if (DECL_MODE (field
) == BLKmode
)
7916 blkmode_bitfield
= true;
7918 *punsignedp
= DECL_UNSIGNED (field
);
7920 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
7922 size_tree
= TREE_OPERAND (exp
, 1);
7923 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
7924 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
7926 /* For vector element types with the correct size of access or for
7927 vector typed accesses use the mode of the access type. */
7928 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
7929 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
7930 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
7931 || VECTOR_TYPE_P (TREE_TYPE (exp
)))
7932 mode
= TYPE_MODE (TREE_TYPE (exp
));
7936 mode
= TYPE_MODE (TREE_TYPE (exp
));
7937 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
7939 if (mode
== BLKmode
)
7940 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
7942 *pbitsize
= GET_MODE_BITSIZE (mode
);
7947 if (! tree_fits_uhwi_p (size_tree
))
7948 mode
= BLKmode
, *pbitsize
= -1;
7950 *pbitsize
= tree_to_uhwi (size_tree
);
7953 *preversep
= reverse_storage_order_for_component_p (exp
);
7955 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7956 and find the ultimate containing object. */
7959 switch (TREE_CODE (exp
))
7962 bit_offset
+= wi::to_poly_offset (TREE_OPERAND (exp
, 2));
7967 tree field
= TREE_OPERAND (exp
, 1);
7968 tree this_offset
= component_ref_field_offset (exp
);
7970 /* If this field hasn't been filled in yet, don't go past it.
7971 This should only happen when folding expressions made during
7972 type construction. */
7973 if (this_offset
== 0)
7976 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
7977 bit_offset
+= wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field
));
7979 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7984 case ARRAY_RANGE_REF
:
7986 tree index
= TREE_OPERAND (exp
, 1);
7987 tree low_bound
= array_ref_low_bound (exp
);
7988 tree unit_size
= array_ref_element_size (exp
);
7990 /* We assume all arrays have sizes that are a multiple of a byte.
7991 First subtract the lower bound, if any, in the type of the
7992 index, then convert to sizetype and multiply by the size of
7993 the array element. */
7994 if (! integer_zerop (low_bound
))
7995 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
7998 offset
= size_binop (PLUS_EXPR
, offset
,
7999 size_binop (MULT_EXPR
,
8000 fold_convert (sizetype
, index
),
8009 bit_offset
+= *pbitsize
;
8012 case VIEW_CONVERT_EXPR
:
8016 /* Hand back the decl for MEM[&decl, off]. */
8017 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
8019 tree off
= TREE_OPERAND (exp
, 1);
8020 if (!integer_zerop (off
))
8022 poly_offset_int boff
= mem_ref_offset (exp
);
8023 boff
<<= LOG2_BITS_PER_UNIT
;
8026 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8034 /* If any reference in the chain is volatile, the effect is volatile. */
8035 if (TREE_THIS_VOLATILE (exp
))
8038 exp
= TREE_OPERAND (exp
, 0);
8042 /* If OFFSET is constant, see if we can return the whole thing as a
8043 constant bit position. Make sure to handle overflow during
8045 if (poly_int_tree_p (offset
))
8047 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset
),
8048 TYPE_PRECISION (sizetype
));
8049 tem
<<= LOG2_BITS_PER_UNIT
;
8051 if (tem
.to_shwi (pbitpos
))
8052 *poffset
= offset
= NULL_TREE
;
8055 /* Otherwise, split it up. */
8058 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8059 if (!bit_offset
.to_shwi (pbitpos
) || maybe_lt (*pbitpos
, 0))
8061 *pbitpos
= num_trailing_bits (bit_offset
.force_shwi ());
8062 poly_offset_int bytes
= bits_to_bytes_round_down (bit_offset
);
8063 offset
= size_binop (PLUS_EXPR
, offset
,
8064 build_int_cst (sizetype
, bytes
.force_shwi ()));
8070 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8071 if (mode
== VOIDmode
8073 && multiple_p (*pbitpos
, BITS_PER_UNIT
)
8074 && multiple_p (*pbitsize
, BITS_PER_UNIT
))
8082 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8084 static unsigned HOST_WIDE_INT
8085 target_align (const_tree target
)
8087 /* We might have a chain of nested references with intermediate misaligning
8088 bitfields components, so need to recurse to find out. */
8090 unsigned HOST_WIDE_INT this_align
, outer_align
;
8092 switch (TREE_CODE (target
))
8098 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
8099 outer_align
= target_align (TREE_OPERAND (target
, 0));
8100 return MIN (this_align
, outer_align
);
8103 case ARRAY_RANGE_REF
:
8104 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
8105 outer_align
= target_align (TREE_OPERAND (target
, 0));
8106 return MIN (this_align
, outer_align
);
8109 case NON_LVALUE_EXPR
:
8110 case VIEW_CONVERT_EXPR
:
8111 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
8112 outer_align
= target_align (TREE_OPERAND (target
, 0));
8113 return MAX (this_align
, outer_align
);
8116 return TYPE_ALIGN (TREE_TYPE (target
));
8121 /* Given an rtx VALUE that may contain additions and multiplications, return
8122 an equivalent value that just refers to a register, memory, or constant.
8123 This is done by generating instructions to perform the arithmetic and
8124 returning a pseudo-register containing the value.
8126 The returned value may be a REG, SUBREG, MEM or constant. */
8129 force_operand (rtx value
, rtx target
)
8132 /* Use subtarget as the target for operand 0 of a binary operation. */
8133 rtx subtarget
= get_subtarget (target
);
8134 enum rtx_code code
= GET_CODE (value
);
8136 /* Check for subreg applied to an expression produced by loop optimizer. */
8138 && !REG_P (SUBREG_REG (value
))
8139 && !MEM_P (SUBREG_REG (value
)))
8142 = simplify_gen_subreg (GET_MODE (value
),
8143 force_reg (GET_MODE (SUBREG_REG (value
)),
8144 force_operand (SUBREG_REG (value
),
8146 GET_MODE (SUBREG_REG (value
)),
8147 SUBREG_BYTE (value
));
8148 code
= GET_CODE (value
);
8151 /* Check for a PIC address load. */
8152 if ((code
== PLUS
|| code
== MINUS
)
8153 && XEXP (value
, 0) == pic_offset_table_rtx
8154 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
8155 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
8156 || GET_CODE (XEXP (value
, 1)) == CONST
))
8159 subtarget
= gen_reg_rtx (GET_MODE (value
));
8160 emit_move_insn (subtarget
, value
);
8164 if (ARITHMETIC_P (value
))
8166 op2
= XEXP (value
, 1);
8167 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
8169 if (code
== MINUS
&& CONST_INT_P (op2
))
8172 op2
= negate_rtx (GET_MODE (value
), op2
);
8175 /* Check for an addition with OP2 a constant integer and our first
8176 operand a PLUS of a virtual register and something else. In that
8177 case, we want to emit the sum of the virtual register and the
8178 constant first and then add the other value. This allows virtual
8179 register instantiation to simply modify the constant rather than
8180 creating another one around this addition. */
8181 if (code
== PLUS
&& CONST_INT_P (op2
)
8182 && GET_CODE (XEXP (value
, 0)) == PLUS
8183 && REG_P (XEXP (XEXP (value
, 0), 0))
8184 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
8185 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
8187 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
8188 XEXP (XEXP (value
, 0), 0), op2
,
8189 subtarget
, 0, OPTAB_LIB_WIDEN
);
8190 return expand_simple_binop (GET_MODE (value
), code
, temp
,
8191 force_operand (XEXP (XEXP (value
,
8193 target
, 0, OPTAB_LIB_WIDEN
);
8196 op1
= force_operand (XEXP (value
, 0), subtarget
);
8197 op2
= force_operand (op2
, NULL_RTX
);
8201 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
8203 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
8204 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8205 target
, 1, OPTAB_LIB_WIDEN
);
8207 return expand_divmod (0,
8208 FLOAT_MODE_P (GET_MODE (value
))
8209 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
8210 GET_MODE (value
), NULL
, NULL
, op1
, op2
,
8213 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), NULL
, NULL
,
8214 op1
, op2
, target
, 0);
8216 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), NULL
, NULL
,
8217 op1
, op2
, target
, 1);
8219 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), NULL
, NULL
,
8220 op1
, op2
, target
, 1);
8222 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8223 target
, 0, OPTAB_LIB_WIDEN
);
8225 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
8226 target
, 1, OPTAB_LIB_WIDEN
);
8229 if (UNARY_P (value
))
8232 target
= gen_reg_rtx (GET_MODE (value
));
8233 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
8240 case FLOAT_TRUNCATE
:
8241 convert_move (target
, op1
, code
== ZERO_EXTEND
);
8246 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
8250 case UNSIGNED_FLOAT
:
8251 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
8255 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
8259 #ifdef INSN_SCHEDULING
8260 /* On machines that have insn scheduling, we want all memory reference to be
8261 explicit, so we need to deal with such paradoxical SUBREGs. */
8262 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
8264 = simplify_gen_subreg (GET_MODE (value
),
8265 force_reg (GET_MODE (SUBREG_REG (value
)),
8266 force_operand (SUBREG_REG (value
),
8268 GET_MODE (SUBREG_REG (value
)),
8269 SUBREG_BYTE (value
));
8275 /* Subroutine of expand_expr: return nonzero iff there is no way that
8276 EXP can reference X, which is being modified. TOP_P is nonzero if this
8277 call is going to be used to determine whether we need a temporary
8278 for EXP, as opposed to a recursive call to this function.
8280 It is always safe for this routine to return zero since it merely
8281 searches for optimization opportunities. */
8284 safe_from_p (const_rtx x
, tree exp
, int top_p
)
8290 /* If EXP has varying size, we MUST use a target since we currently
8291 have no way of allocating temporaries of variable size
8292 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8293 So we assume here that something at a higher level has prevented a
8294 clash. This is somewhat bogus, but the best we can do. Only
8295 do this when X is BLKmode and when we are at the top level. */
8296 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
8297 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
8298 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
8299 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
8300 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
8302 && GET_MODE (x
) == BLKmode
)
8303 /* If X is in the outgoing argument area, it is always safe. */
8305 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
8306 || (GET_CODE (XEXP (x
, 0)) == PLUS
8307 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
8310 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8311 find the underlying pseudo. */
8312 if (GET_CODE (x
) == SUBREG
)
8315 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
8319 /* Now look at our tree code and possibly recurse. */
8320 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
8322 case tcc_declaration
:
8323 exp_rtl
= DECL_RTL_IF_SET (exp
);
8329 case tcc_exceptional
:
8330 if (TREE_CODE (exp
) == TREE_LIST
)
8334 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
8336 exp
= TREE_CHAIN (exp
);
8339 if (TREE_CODE (exp
) != TREE_LIST
)
8340 return safe_from_p (x
, exp
, 0);
8343 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
8345 constructor_elt
*ce
;
8346 unsigned HOST_WIDE_INT idx
;
8348 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
8349 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
8350 || !safe_from_p (x
, ce
->value
, 0))
8354 else if (TREE_CODE (exp
) == ERROR_MARK
)
8355 return 1; /* An already-visited SAVE_EXPR? */
8360 /* The only case we look at here is the DECL_INITIAL inside a
8362 return (TREE_CODE (exp
) != DECL_EXPR
8363 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
8364 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
8365 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
8368 case tcc_comparison
:
8369 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
8374 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
8376 case tcc_expression
:
8379 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8380 the expression. If it is set, we conflict iff we are that rtx or
8381 both are in memory. Otherwise, we check all operands of the
8382 expression recursively. */
8384 switch (TREE_CODE (exp
))
8387 /* If the operand is static or we are static, we can't conflict.
8388 Likewise if we don't conflict with the operand at all. */
8389 if (staticp (TREE_OPERAND (exp
, 0))
8390 || TREE_STATIC (exp
)
8391 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
8394 /* Otherwise, the only way this can conflict is if we are taking
8395 the address of a DECL a that address if part of X, which is
8397 exp
= TREE_OPERAND (exp
, 0);
8400 if (!DECL_RTL_SET_P (exp
)
8401 || !MEM_P (DECL_RTL (exp
)))
8404 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
8410 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
8411 get_alias_set (exp
)))
8416 /* Assume that the call will clobber all hard registers and
8418 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
8423 case WITH_CLEANUP_EXPR
:
8424 case CLEANUP_POINT_EXPR
:
8425 /* Lowered by gimplify.cc. */
8429 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
8435 /* If we have an rtx, we do not need to scan our operands. */
8439 nops
= TREE_OPERAND_LENGTH (exp
);
8440 for (i
= 0; i
< nops
; i
++)
8441 if (TREE_OPERAND (exp
, i
) != 0
8442 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
8448 /* Should never get a type here. */
8452 /* If we have an rtl, find any enclosed object. Then see if we conflict
8456 if (GET_CODE (exp_rtl
) == SUBREG
)
8458 exp_rtl
= SUBREG_REG (exp_rtl
);
8460 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
8464 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8465 are memory and they conflict. */
8466 return ! (rtx_equal_p (x
, exp_rtl
)
8467 || (MEM_P (x
) && MEM_P (exp_rtl
)
8468 && true_dependence (exp_rtl
, VOIDmode
, x
)));
8471 /* If we reach here, it is safe. */
8476 /* Return the highest power of two that EXP is known to be a multiple of.
8477 This is used in updating alignment of MEMs in array references. */
8479 unsigned HOST_WIDE_INT
8480 highest_pow2_factor (const_tree exp
)
8482 unsigned HOST_WIDE_INT ret
;
8483 int trailing_zeros
= tree_ctz (exp
);
8484 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
8485 return BIGGEST_ALIGNMENT
;
8486 ret
= HOST_WIDE_INT_1U
<< trailing_zeros
;
8487 if (ret
> BIGGEST_ALIGNMENT
)
8488 return BIGGEST_ALIGNMENT
;
8492 /* Similar, except that the alignment requirements of TARGET are
8493 taken into account. Assume it is at least as aligned as its
8494 type, unless it is a COMPONENT_REF in which case the layout of
8495 the structure gives the alignment. */
8497 static unsigned HOST_WIDE_INT
8498 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
8500 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
8501 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
8503 return MAX (factor
, talign
);
8506 /* Convert the tree comparison code TCODE to the rtl one where the
8507 signedness is UNSIGNEDP. */
8509 static enum rtx_code
8510 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
8522 code
= unsignedp
? LTU
: LT
;
8525 code
= unsignedp
? LEU
: LE
;
8528 code
= unsignedp
? GTU
: GT
;
8531 code
= unsignedp
? GEU
: GE
;
8533 case UNORDERED_EXPR
:
8564 /* Subroutine of expand_expr. Expand the two operands of a binary
8565 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8566 The value may be stored in TARGET if TARGET is nonzero. The
8567 MODIFIER argument is as documented by expand_expr. */
8570 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
8571 enum expand_modifier modifier
)
8573 if (! safe_from_p (target
, exp1
, 1))
8575 if (operand_equal_p (exp0
, exp1
, 0))
8577 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
8578 *op1
= copy_rtx (*op0
);
8582 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
8583 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
8588 /* Return a MEM that contains constant EXP. DEFER is as for
8589 output_constant_def and MODIFIER is as for expand_expr. */
8592 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
8596 mem
= output_constant_def (exp
, defer
);
8597 if (modifier
!= EXPAND_INITIALIZER
)
8598 mem
= use_anchored_address (mem
);
8602 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8603 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8606 expand_expr_addr_expr_1 (tree exp
, rtx target
, scalar_int_mode tmode
,
8607 enum expand_modifier modifier
, addr_space_t as
)
8609 rtx result
, subtarget
;
8611 poly_int64 bitsize
, bitpos
;
8612 int unsignedp
, reversep
, volatilep
= 0;
8615 /* If we are taking the address of a constant and are at the top level,
8616 we have to use output_constant_def since we can't call force_const_mem
8618 /* ??? This should be considered a front-end bug. We should not be
8619 generating ADDR_EXPR of something that isn't an LVALUE. The only
8620 exception here is STRING_CST. */
8621 if (CONSTANT_CLASS_P (exp
))
8623 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
8624 if (modifier
< EXPAND_SUM
)
8625 result
= force_operand (result
, target
);
8629 /* Everything must be something allowed by is_gimple_addressable. */
8630 switch (TREE_CODE (exp
))
8633 /* This case will happen via recursion for &a->b. */
8634 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
8638 tree tem
= TREE_OPERAND (exp
, 0);
8639 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
8640 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
8641 return expand_expr (tem
, target
, tmode
, modifier
);
8644 case TARGET_MEM_REF
:
8645 return addr_for_mem_ref (exp
, as
, true);
8648 /* Expand the initializer like constants above. */
8649 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
8651 if (modifier
< EXPAND_SUM
)
8652 result
= force_operand (result
, target
);
8656 /* The real part of the complex number is always first, therefore
8657 the address is the same as the address of the parent object. */
8660 inner
= TREE_OPERAND (exp
, 0);
8664 /* The imaginary part of the complex number is always second.
8665 The expression is therefore always offset by the size of the
8668 bitpos
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp
)));
8669 inner
= TREE_OPERAND (exp
, 0);
8672 case COMPOUND_LITERAL_EXPR
:
8673 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8674 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8675 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8676 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8677 the initializers aren't gimplified. */
8678 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
8679 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp
)))
8680 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
8681 target
, tmode
, modifier
, as
);
8684 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8685 expand_expr, as that can have various side effects; LABEL_DECLs for
8686 example, may not have their DECL_RTL set yet. Expand the rtl of
8687 CONSTRUCTORs too, which should yield a memory reference for the
8688 constructor's contents. Assume language specific tree nodes can
8689 be expanded in some interesting way. */
8690 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
8692 || TREE_CODE (exp
) == CONSTRUCTOR
8693 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
8695 result
= expand_expr (exp
, target
, tmode
,
8696 modifier
== EXPAND_INITIALIZER
8697 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
8699 /* If the DECL isn't in memory, then the DECL wasn't properly
8700 marked TREE_ADDRESSABLE, which will be either a front-end
8701 or a tree optimizer bug. */
8703 gcc_assert (MEM_P (result
));
8704 result
= XEXP (result
, 0);
8706 /* ??? Is this needed anymore? */
8708 TREE_USED (exp
) = 1;
8710 if (modifier
!= EXPAND_INITIALIZER
8711 && modifier
!= EXPAND_CONST_ADDRESS
8712 && modifier
!= EXPAND_SUM
)
8713 result
= force_operand (result
, target
);
8717 /* Pass FALSE as the last argument to get_inner_reference although
8718 we are expanding to RTL. The rationale is that we know how to
8719 handle "aligning nodes" here: we can just bypass them because
8720 they won't change the final object whose address will be returned
8721 (they actually exist only for that purpose). */
8722 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
8723 &unsignedp
, &reversep
, &volatilep
);
8727 /* We must have made progress. */
8728 gcc_assert (inner
!= exp
);
8730 subtarget
= offset
|| maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8731 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8732 inner alignment, force the inner to be sufficiently aligned. */
8733 if (CONSTANT_CLASS_P (inner
)
8734 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
8736 inner
= copy_node (inner
);
8737 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
8738 SET_TYPE_ALIGN (TREE_TYPE (inner
), TYPE_ALIGN (TREE_TYPE (exp
)));
8739 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
8741 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
8747 if (modifier
!= EXPAND_NORMAL
)
8748 result
= force_operand (result
, NULL
);
8749 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
8750 modifier
== EXPAND_INITIALIZER
8751 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
8753 /* expand_expr is allowed to return an object in a mode other
8754 than TMODE. If it did, we need to convert. */
8755 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
8756 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
8757 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
8758 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8759 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
8761 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8762 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
8765 subtarget
= maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8766 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
8767 1, OPTAB_LIB_WIDEN
);
8771 if (maybe_ne (bitpos
, 0))
8773 /* Someone beforehand should have rejected taking the address
8774 of an object that isn't byte-aligned. */
8775 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
8776 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8777 result
= plus_constant (tmode
, result
, bytepos
);
8778 if (modifier
< EXPAND_SUM
)
8779 result
= force_operand (result
, target
);
8785 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8786 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8789 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
8790 enum expand_modifier modifier
)
8792 addr_space_t as
= ADDR_SPACE_GENERIC
;
8793 scalar_int_mode address_mode
= Pmode
;
8794 scalar_int_mode pointer_mode
= ptr_mode
;
8798 /* Target mode of VOIDmode says "whatever's natural". */
8799 if (tmode
== VOIDmode
)
8800 tmode
= TYPE_MODE (TREE_TYPE (exp
));
8802 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
8804 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
8805 address_mode
= targetm
.addr_space
.address_mode (as
);
8806 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
8809 /* We can get called with some Weird Things if the user does silliness
8810 like "(short) &a". In that case, convert_memory_address won't do
8811 the right thing, so ignore the given target mode. */
8812 scalar_int_mode new_tmode
= (tmode
== pointer_mode
8816 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
8817 new_tmode
, modifier
, as
);
8819 /* Despite expand_expr claims concerning ignoring TMODE when not
8820 strictly convenient, stuff breaks if we don't honor it. Note
8821 that combined with the above, we only do this for pointer modes. */
8822 rmode
= GET_MODE (result
);
8823 if (rmode
== VOIDmode
)
8825 if (rmode
!= new_tmode
)
8826 result
= convert_memory_address_addr_space (new_tmode
, result
, as
);
8831 /* Generate code for computing CONSTRUCTOR EXP.
8832 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8833 is TRUE, instead of creating a temporary variable in memory
8834 NULL is returned and the caller needs to handle it differently. */
8837 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
8838 bool avoid_temp_mem
)
8840 tree type
= TREE_TYPE (exp
);
8841 machine_mode mode
= TYPE_MODE (type
);
8843 /* Try to avoid creating a temporary at all. This is possible
8844 if all of the initializer is zero.
8845 FIXME: try to handle all [0..255] initializers we can handle
8847 if (TREE_STATIC (exp
)
8848 && !TREE_ADDRESSABLE (exp
)
8849 && target
!= 0 && mode
== BLKmode
8850 && all_zeros_p (exp
))
8852 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
8856 /* All elts simple constants => refer to a constant in memory. But
8857 if this is a non-BLKmode mode, let it store a field at a time
8858 since that should make a CONST_INT, CONST_WIDE_INT or
8859 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8860 use, it is best to store directly into the target unless the type
8861 is large enough that memcpy will be used. If we are making an
8862 initializer and all operands are constant, put it in memory as
8865 FIXME: Avoid trying to fill vector constructors piece-meal.
8866 Output them with output_constant_def below unless we're sure
8867 they're zeros. This should go away when vector initializers
8868 are treated like VECTOR_CST instead of arrays. */
8869 if ((TREE_STATIC (exp
)
8870 && ((mode
== BLKmode
8871 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
8872 || TREE_ADDRESSABLE (exp
)
8873 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
8874 && (! can_move_by_pieces
8875 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
8877 && ! mostly_zeros_p (exp
))))
8878 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
8879 && TREE_CONSTANT (exp
)))
8886 constructor
= expand_expr_constant (exp
, 1, modifier
);
8888 if (modifier
!= EXPAND_CONST_ADDRESS
8889 && modifier
!= EXPAND_INITIALIZER
8890 && modifier
!= EXPAND_SUM
)
8891 constructor
= validize_mem (constructor
);
8896 /* If the CTOR is available in static storage and not mostly
8897 zeros and we can move it by pieces prefer to do so since
8898 that's usually more efficient than performing a series of
8899 stores from immediates. */
8901 && TREE_STATIC (exp
)
8902 && TREE_CONSTANT (exp
)
8903 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
8904 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
8906 && ! mostly_zeros_p (exp
))
8909 /* Handle calls that pass values in multiple non-contiguous
8910 locations. The Irix 6 ABI has examples of this. */
8911 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
8912 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
8913 /* Also make a temporary if the store is to volatile memory, to
8914 avoid individual accesses to aggregate members. */
8915 || (GET_CODE (target
) == MEM
8916 && MEM_VOLATILE_P (target
)
8917 && !TREE_ADDRESSABLE (TREE_TYPE (exp
))))
8922 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
8925 store_constructor (exp
, target
, 0, int_expr_size (exp
), false);
8930 /* expand_expr: generate code for computing expression EXP.
8931 An rtx for the computed value is returned. The value is never null.
8932 In the case of a void EXP, const0_rtx is returned.
8934 The value may be stored in TARGET if TARGET is nonzero.
8935 TARGET is just a suggestion; callers must assume that
8936 the rtx returned may not be the same as TARGET.
8938 If TARGET is CONST0_RTX, it means that the value will be ignored.
8940 If TMODE is not VOIDmode, it suggests generating the
8941 result in mode TMODE. But this is done only when convenient.
8942 Otherwise, TMODE is ignored and the value generated in its natural mode.
8943 TMODE is just a suggestion; callers must assume that
8944 the rtx returned may not have mode TMODE.
8946 Note that TARGET may have neither TMODE nor MODE. In that case, it
8947 probably will not be used.
8949 If MODIFIER is EXPAND_SUM then when EXP is an addition
8950 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8951 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8952 products as above, or REG or MEM, or constant.
8953 Ordinarily in such cases we would output mul or add instructions
8954 and then return a pseudo reg containing the sum.
8956 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8957 it also marks a label as absolutely required (it can't be dead).
8958 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8959 This is used for outputting expressions used in initializers.
8961 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8962 with a constant address even if that address is not normally legitimate.
8963 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8965 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8966 a call parameter. Such targets require special care as we haven't yet
8967 marked TARGET so that it's safe from being trashed by libcalls. We
8968 don't want to use TARGET for anything but the final result;
8969 Intermediate values must go elsewhere. Additionally, calls to
8970 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8972 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8973 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8974 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8975 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8977 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8978 then *ALT_RTL is set to TARGET (before legitimziation).
8980 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8981 In this case, we don't adjust a returned MEM rtx that wouldn't be
8982 sufficiently aligned for its mode; instead, it's up to the caller
8983 to deal with it afterwards. This is used to make sure that unaligned
8984 base objects for which out-of-bounds accesses are supported, for
8985 example record types with trailing arrays, aren't realigned behind
8986 the back of the caller.
8987 The normal operating mode is to pass FALSE for this parameter. */
8990 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8991 enum expand_modifier modifier
, rtx
*alt_rtl
,
8992 bool inner_reference_p
)
8996 /* Handle ERROR_MARK before anybody tries to access its type. */
8997 if (TREE_CODE (exp
) == ERROR_MARK
8998 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
9000 ret
= CONST0_RTX (tmode
);
9001 return ret
? ret
: const0_rtx
;
9004 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
9009 /* Try to expand the conditional expression which is represented by
9010 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9011 return the rtl reg which represents the result. Otherwise return
9015 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
9016 tree treeop1 ATTRIBUTE_UNUSED
,
9017 tree treeop2 ATTRIBUTE_UNUSED
)
9020 rtx op00
, op01
, op1
, op2
;
9021 enum rtx_code comparison_code
;
9022 machine_mode comparison_mode
;
9025 tree type
= TREE_TYPE (treeop1
);
9026 int unsignedp
= TYPE_UNSIGNED (type
);
9027 machine_mode mode
= TYPE_MODE (type
);
9028 machine_mode orig_mode
= mode
;
9029 static bool expanding_cond_expr_using_cmove
= false;
9031 /* Conditional move expansion can end up TERing two operands which,
9032 when recursively hitting conditional expressions can result in
9033 exponential behavior if the cmove expansion ultimatively fails.
9034 It's hardly profitable to TER a cmove into a cmove so avoid doing
9035 that by failing early if we end up recursing. */
9036 if (expanding_cond_expr_using_cmove
)
9039 /* If we cannot do a conditional move on the mode, try doing it
9040 with the promoted mode. */
9041 if (!can_conditionally_move_p (mode
))
9043 mode
= promote_mode (type
, mode
, &unsignedp
);
9044 if (!can_conditionally_move_p (mode
))
9046 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
9049 temp
= assign_temp (type
, 0, 1);
9051 expanding_cond_expr_using_cmove
= true;
9053 expand_operands (treeop1
, treeop2
,
9054 mode
== orig_mode
? temp
: NULL_RTX
, &op1
, &op2
,
9057 if (TREE_CODE (treeop0
) == SSA_NAME
9058 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
9060 type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
9061 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
9062 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
9063 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
9064 comparison_mode
= TYPE_MODE (type
);
9065 unsignedp
= TYPE_UNSIGNED (type
);
9066 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
9068 else if (COMPARISON_CLASS_P (treeop0
))
9070 type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
9071 enum tree_code cmpcode
= TREE_CODE (treeop0
);
9072 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
9073 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
9074 unsignedp
= TYPE_UNSIGNED (type
);
9075 comparison_mode
= TYPE_MODE (type
);
9076 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
9080 op00
= expand_normal (treeop0
);
9082 comparison_code
= NE
;
9083 comparison_mode
= GET_MODE (op00
);
9084 if (comparison_mode
== VOIDmode
)
9085 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9087 expanding_cond_expr_using_cmove
= false;
9089 if (GET_MODE (op1
) != mode
)
9090 op1
= gen_lowpart (mode
, op1
);
9092 if (GET_MODE (op2
) != mode
)
9093 op2
= gen_lowpart (mode
, op2
);
9095 /* Try to emit the conditional move. */
9096 insn
= emit_conditional_move (temp
,
9097 { comparison_code
, op00
, op01
,
9102 /* If we could do the conditional move, emit the sequence,
9106 rtx_insn
*seq
= get_insns ();
9109 return convert_modes (orig_mode
, mode
, temp
, 0);
9112 /* Otherwise discard the sequence and fall back to code with
9118 /* A helper function for expand_expr_real_2 to be used with a
9119 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9120 is nonzero, with alignment ALIGN in bits.
9121 Store the value at TARGET if possible (if TARGET is nonzero).
9122 Regardless of TARGET, we return the rtx for where the value is placed.
9123 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9124 then *ALT_RTL is set to TARGET (before legitimziation). */
9127 expand_misaligned_mem_ref (rtx temp
, machine_mode mode
, int unsignedp
,
9128 unsigned int align
, rtx target
, rtx
*alt_rtl
)
9130 enum insn_code icode
;
9132 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9133 != CODE_FOR_nothing
)
9135 class expand_operand ops
[2];
9137 /* We've already validated the memory, and we're creating a
9138 new pseudo destination. The predicates really can't fail,
9139 nor can the generator. */
9140 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9141 create_fixed_operand (&ops
[1], temp
);
9142 expand_insn (icode
, 2, ops
);
9143 temp
= ops
[0].value
;
9145 else if (targetm
.slow_unaligned_access (mode
, align
))
9146 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9147 0, unsignedp
, target
,
9148 mode
, mode
, false, alt_rtl
);
9152 /* Helper function of expand_expr_2, expand a division or modulo.
9153 op0 and op1 should be already expanded treeop0 and treeop1, using
9157 expand_expr_divmod (tree_code code
, machine_mode mode
, tree treeop0
,
9158 tree treeop1
, rtx op0
, rtx op1
, rtx target
, int unsignedp
)
9160 bool mod_p
= (code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
9161 || code
== CEIL_MOD_EXPR
|| code
== ROUND_MOD_EXPR
);
9162 if (SCALAR_INT_MODE_P (mode
)
9164 && get_range_pos_neg (treeop0
) == 1
9165 && get_range_pos_neg (treeop1
) == 1)
9167 /* If both arguments are known to be positive when interpreted
9168 as signed, we can expand it as both signed and unsigned
9169 division or modulo. Choose the cheaper sequence in that case. */
9170 bool speed_p
= optimize_insn_for_speed_p ();
9171 do_pending_stack_adjust ();
9173 rtx uns_ret
= expand_divmod (mod_p
, code
, mode
, treeop0
, treeop1
,
9174 op0
, op1
, target
, 1);
9175 rtx_insn
*uns_insns
= get_insns ();
9178 rtx sgn_ret
= expand_divmod (mod_p
, code
, mode
, treeop0
, treeop1
,
9179 op0
, op1
, target
, 0);
9180 rtx_insn
*sgn_insns
= get_insns ();
9182 unsigned uns_cost
= seq_cost (uns_insns
, speed_p
);
9183 unsigned sgn_cost
= seq_cost (sgn_insns
, speed_p
);
9185 /* If costs are the same then use as tie breaker the other other
9187 if (uns_cost
== sgn_cost
)
9189 uns_cost
= seq_cost (uns_insns
, !speed_p
);
9190 sgn_cost
= seq_cost (sgn_insns
, !speed_p
);
9193 if (uns_cost
< sgn_cost
|| (uns_cost
== sgn_cost
&& unsignedp
))
9195 emit_insn (uns_insns
);
9198 emit_insn (sgn_insns
);
9201 return expand_divmod (mod_p
, code
, mode
, treeop0
, treeop1
,
9202 op0
, op1
, target
, unsignedp
);
9206 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
9207 enum expand_modifier modifier
)
9209 rtx op0
, op1
, op2
, temp
;
9210 rtx_code_label
*lab
;
9214 scalar_int_mode int_mode
;
9215 enum tree_code code
= ops
->code
;
9217 rtx subtarget
, original_target
;
9219 bool reduce_bit_field
;
9220 location_t loc
= ops
->location
;
9221 tree treeop0
, treeop1
, treeop2
;
9222 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9223 ? reduce_to_bit_field_precision ((expr), \
9229 mode
= TYPE_MODE (type
);
9230 unsignedp
= TYPE_UNSIGNED (type
);
9236 /* We should be called only on simple (binary or unary) expressions,
9237 exactly those that are valid in gimple expressions that aren't
9238 GIMPLE_SINGLE_RHS (or invalid). */
9239 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
9240 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
9241 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
9243 ignore
= (target
== const0_rtx
9244 || ((CONVERT_EXPR_CODE_P (code
)
9245 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9246 && TREE_CODE (type
) == VOID_TYPE
));
9248 /* We should be called only if we need the result. */
9249 gcc_assert (!ignore
);
9251 /* An operation in what may be a bit-field type needs the
9252 result to be reduced to the precision of the bit-field type,
9253 which is narrower than that of the type's mode. */
9254 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
9255 && !type_has_mode_precision_p (type
));
9257 if (reduce_bit_field
9258 && (modifier
== EXPAND_STACK_PARM
9259 || (target
&& GET_MODE (target
) != mode
)))
9262 /* Use subtarget as the target for operand 0 of a binary operation. */
9263 subtarget
= get_subtarget (target
);
9264 original_target
= target
;
9268 case NON_LVALUE_EXPR
:
9271 if (treeop0
== error_mark_node
)
9274 if (TREE_CODE (type
) == UNION_TYPE
)
9276 tree valtype
= TREE_TYPE (treeop0
);
9278 /* If both input and output are BLKmode, this conversion isn't doing
9279 anything except possibly changing memory attribute. */
9280 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
9282 rtx result
= expand_expr (treeop0
, target
, tmode
,
9285 result
= copy_rtx (result
);
9286 set_mem_attributes (result
, type
, 0);
9292 if (TYPE_MODE (type
) != BLKmode
)
9293 target
= gen_reg_rtx (TYPE_MODE (type
));
9295 target
= assign_temp (type
, 1, 1);
9299 /* Store data into beginning of memory target. */
9300 store_expr (treeop0
,
9301 adjust_address (target
, TYPE_MODE (valtype
), 0),
9302 modifier
== EXPAND_STACK_PARM
,
9303 false, TYPE_REVERSE_STORAGE_ORDER (type
));
9307 gcc_assert (REG_P (target
)
9308 && !TYPE_REVERSE_STORAGE_ORDER (type
));
9310 /* Store this field into a union of the proper type. */
9311 poly_uint64 op0_size
9312 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0
)));
9313 poly_uint64 union_size
= GET_MODE_BITSIZE (mode
);
9314 store_field (target
,
9315 /* The conversion must be constructed so that
9316 we know at compile time how many bits
9318 ordered_min (op0_size
, union_size
),
9319 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0,
9323 /* Return the entire union. */
9327 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
9329 op0
= expand_expr (treeop0
, target
, VOIDmode
,
9332 /* If the signedness of the conversion differs and OP0 is
9333 a promoted SUBREG, clear that indication since we now
9334 have to do the proper extension. */
9335 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
9336 && GET_CODE (op0
) == SUBREG
)
9337 SUBREG_PROMOTED_VAR_P (op0
) = 0;
9339 return REDUCE_BIT_FIELD (op0
);
9342 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
9343 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
9344 if (GET_MODE (op0
) == mode
)
9347 /* If OP0 is a constant, just convert it into the proper mode. */
9348 else if (CONSTANT_P (op0
))
9350 tree inner_type
= TREE_TYPE (treeop0
);
9351 machine_mode inner_mode
= GET_MODE (op0
);
9353 if (inner_mode
== VOIDmode
)
9354 inner_mode
= TYPE_MODE (inner_type
);
9356 if (modifier
== EXPAND_INITIALIZER
)
9357 op0
= lowpart_subreg (mode
, op0
, inner_mode
);
9359 op0
= convert_modes (mode
, inner_mode
, op0
,
9360 TYPE_UNSIGNED (inner_type
));
9363 else if (modifier
== EXPAND_INITIALIZER
)
9364 op0
= gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
9365 ? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
9367 else if (target
== 0)
9368 op0
= convert_to_mode (mode
, op0
,
9369 TYPE_UNSIGNED (TREE_TYPE
9373 convert_move (target
, op0
,
9374 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9378 return REDUCE_BIT_FIELD (op0
);
9380 case ADDR_SPACE_CONVERT_EXPR
:
9382 tree treeop0_type
= TREE_TYPE (treeop0
);
9384 gcc_assert (POINTER_TYPE_P (type
));
9385 gcc_assert (POINTER_TYPE_P (treeop0_type
));
9387 addr_space_t as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
9388 addr_space_t as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
9390 /* Conversions between pointers to the same address space should
9391 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9392 gcc_assert (as_to
!= as_from
);
9394 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
9396 /* Ask target code to handle conversion between pointers
9397 to overlapping address spaces. */
9398 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
9399 || targetm
.addr_space
.subset_p (as_from
, as_to
))
9401 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
9405 /* For disjoint address spaces, converting anything but a null
9406 pointer invokes undefined behavior. We truncate or extend the
9407 value as if we'd converted via integers, which handles 0 as
9408 required, and all others as the programmer likely expects. */
9409 #ifndef POINTERS_EXTEND_UNSIGNED
9410 const int POINTERS_EXTEND_UNSIGNED
= 1;
9412 op0
= convert_modes (mode
, TYPE_MODE (treeop0_type
),
9413 op0
, POINTERS_EXTEND_UNSIGNED
);
9419 case POINTER_PLUS_EXPR
:
9420 /* Even though the sizetype mode and the pointer's mode can be different
9421 expand is able to handle this correctly and get the correct result out
9422 of the PLUS_EXPR code. */
9423 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9424 if sizetype precision is smaller than pointer precision. */
9425 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
9426 treeop1
= fold_convert_loc (loc
, type
,
9427 fold_convert_loc (loc
, ssizetype
,
9429 /* If sizetype precision is larger than pointer precision, truncate the
9430 offset to have matching modes. */
9431 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
9432 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
9436 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9437 something else, make sure we add the register to the constant and
9438 then to the other thing. This case can occur during strength
9439 reduction and doing it this way will produce better code if the
9440 frame pointer or argument pointer is eliminated.
9442 fold-const.cc will ensure that the constant is always in the inner
9443 PLUS_EXPR, so the only case we need to do anything about is if
9444 sp, ap, or fp is our second argument, in which case we must swap
9445 the innermost first argument and our second argument. */
9447 if (TREE_CODE (treeop0
) == PLUS_EXPR
9448 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
9450 && (DECL_RTL (treeop1
) == frame_pointer_rtx
9451 || DECL_RTL (treeop1
) == stack_pointer_rtx
9452 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
9457 /* If the result is to be ptr_mode and we are adding an integer to
9458 something, we might be forming a constant. So try to use
9459 plus_constant. If it produces a sum and we can't accept it,
9460 use force_operand. This allows P = &ARR[const] to generate
9461 efficient code on machines where a SYMBOL_REF is not a valid
9464 If this is an EXPAND_SUM call, always return the sum. */
9465 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
9466 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
9468 if (modifier
== EXPAND_STACK_PARM
)
9470 if (TREE_CODE (treeop0
) == INTEGER_CST
9471 && HWI_COMPUTABLE_MODE_P (mode
)
9472 && TREE_CONSTANT (treeop1
))
9476 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
9478 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
9480 /* Use wi::shwi to ensure that the constant is
9481 truncated according to the mode of OP1, then sign extended
9482 to a HOST_WIDE_INT. Using the constant directly can result
9483 in non-canonical RTL in a 64x32 cross compile. */
9484 wc
= TREE_INT_CST_LOW (treeop0
);
9486 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
9487 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
9488 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
9489 op1
= force_operand (op1
, target
);
9490 return REDUCE_BIT_FIELD (op1
);
9493 else if (TREE_CODE (treeop1
) == INTEGER_CST
9494 && HWI_COMPUTABLE_MODE_P (mode
)
9495 && TREE_CONSTANT (treeop0
))
9499 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
9501 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
9502 (modifier
== EXPAND_INITIALIZER
9503 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
9504 if (! CONSTANT_P (op0
))
9506 op1
= expand_expr (treeop1
, NULL_RTX
,
9507 VOIDmode
, modifier
);
9508 /* Return a PLUS if modifier says it's OK. */
9509 if (modifier
== EXPAND_SUM
9510 || modifier
== EXPAND_INITIALIZER
)
9511 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
9514 /* Use wi::shwi to ensure that the constant is
9515 truncated according to the mode of OP1, then sign extended
9516 to a HOST_WIDE_INT. Using the constant directly can result
9517 in non-canonical RTL in a 64x32 cross compile. */
9518 wc
= TREE_INT_CST_LOW (treeop1
);
9520 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
9521 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
9522 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
9523 op0
= force_operand (op0
, target
);
9524 return REDUCE_BIT_FIELD (op0
);
9528 /* Use TER to expand pointer addition of a negated value
9529 as pointer subtraction. */
9530 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
9531 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
9532 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
9533 && TREE_CODE (treeop1
) == SSA_NAME
9534 && TYPE_MODE (TREE_TYPE (treeop0
))
9535 == TYPE_MODE (TREE_TYPE (treeop1
)))
9537 gimple
*def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
9540 treeop1
= gimple_assign_rhs1 (def
);
9546 /* No sense saving up arithmetic to be done
9547 if it's all in the wrong mode to form part of an address.
9548 And force_operand won't know whether to sign-extend or
9550 if (modifier
!= EXPAND_INITIALIZER
9551 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
9553 expand_operands (treeop0
, treeop1
,
9554 subtarget
, &op0
, &op1
, modifier
);
9555 if (op0
== const0_rtx
)
9557 if (op1
== const0_rtx
)
9562 expand_operands (treeop0
, treeop1
,
9563 subtarget
, &op0
, &op1
, modifier
);
9564 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
9567 case POINTER_DIFF_EXPR
:
9569 /* For initializers, we are allowed to return a MINUS of two
9570 symbolic constants. Here we handle all cases when both operands
9572 /* Handle difference of two symbolic constants,
9573 for the sake of an initializer. */
9574 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
9575 && really_constant_p (treeop0
)
9576 && really_constant_p (treeop1
))
9578 expand_operands (treeop0
, treeop1
,
9579 NULL_RTX
, &op0
, &op1
, modifier
);
9580 return simplify_gen_binary (MINUS
, mode
, op0
, op1
);
9583 /* No sense saving up arithmetic to be done
9584 if it's all in the wrong mode to form part of an address.
9585 And force_operand won't know whether to sign-extend or
9587 if (modifier
!= EXPAND_INITIALIZER
9588 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
9591 expand_operands (treeop0
, treeop1
,
9592 subtarget
, &op0
, &op1
, modifier
);
9594 /* Convert A - const to A + (-const). */
9595 if (CONST_INT_P (op1
))
9597 op1
= negate_rtx (mode
, op1
);
9598 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
9603 case WIDEN_MULT_PLUS_EXPR
:
9604 case WIDEN_MULT_MINUS_EXPR
:
9605 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9606 op2
= expand_normal (treeop2
);
9607 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9611 case WIDEN_PLUS_EXPR
:
9612 case WIDEN_MINUS_EXPR
:
9613 case WIDEN_MULT_EXPR
:
9614 /* If first operand is constant, swap them.
9615 Thus the following special case checks need only
9616 check the second operand. */
9617 if (TREE_CODE (treeop0
) == INTEGER_CST
)
9618 std::swap (treeop0
, treeop1
);
9620 /* First, check if we have a multiplication of one signed and one
9621 unsigned operand. */
9622 if (TREE_CODE (treeop1
) != INTEGER_CST
9623 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
9624 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
9626 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
9627 this_optab
= usmul_widen_optab
;
9628 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
9629 != CODE_FOR_nothing
)
9631 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9632 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
9635 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
9637 /* op0 and op1 might still be constant, despite the above
9638 != INTEGER_CST check. Handle it. */
9639 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
9641 op0
= convert_modes (mode
, innermode
, op0
, true);
9642 op1
= convert_modes (mode
, innermode
, op1
, false);
9643 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
9644 target
, unsignedp
));
9649 /* Check for a multiplication with matching signedness. */
9650 else if ((TREE_CODE (treeop1
) == INTEGER_CST
9651 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
9652 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
9653 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
9655 tree op0type
= TREE_TYPE (treeop0
);
9656 machine_mode innermode
= TYPE_MODE (op0type
);
9657 bool zextend_p
= TYPE_UNSIGNED (op0type
);
9658 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
9659 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
9661 if (TREE_CODE (treeop0
) != INTEGER_CST
)
9663 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
9664 != CODE_FOR_nothing
)
9666 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
9668 /* op0 and op1 might still be constant, despite the above
9669 != INTEGER_CST check. Handle it. */
9670 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
9673 op0
= convert_modes (mode
, innermode
, op0
, zextend_p
);
9675 = convert_modes (mode
, innermode
, op1
,
9676 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
9677 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
9681 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
9682 unsignedp
, this_optab
);
9683 return REDUCE_BIT_FIELD (temp
);
9685 if (find_widening_optab_handler (other_optab
, mode
, innermode
)
9687 && innermode
== word_mode
)
9690 op0
= expand_normal (treeop0
);
9691 op1
= expand_normal (treeop1
);
9692 /* op0 and op1 might be constants, despite the above
9693 != INTEGER_CST check. Handle it. */
9694 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
9695 goto widen_mult_const
;
9696 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
9697 unsignedp
, OPTAB_LIB_WIDEN
);
9698 hipart
= gen_highpart (word_mode
, temp
);
9699 htem
= expand_mult_highpart_adjust (word_mode
, hipart
,
9703 emit_move_insn (hipart
, htem
);
9704 return REDUCE_BIT_FIELD (temp
);
9708 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
9709 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
9710 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9711 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
9714 /* If this is a fixed-point operation, then we cannot use the code
9715 below because "expand_mult" doesn't support sat/no-sat fixed-point
9717 if (ALL_FIXED_POINT_MODE_P (mode
))
9720 /* If first operand is constant, swap them.
9721 Thus the following special case checks need only
9722 check the second operand. */
9723 if (TREE_CODE (treeop0
) == INTEGER_CST
)
9724 std::swap (treeop0
, treeop1
);
9726 /* Attempt to return something suitable for generating an
9727 indexed address, for machines that support that. */
9729 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
9730 && tree_fits_shwi_p (treeop1
))
9732 tree exp1
= treeop1
;
9734 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
9738 op0
= force_operand (op0
, NULL_RTX
);
9740 op0
= copy_to_mode_reg (mode
, op0
);
9742 op1
= gen_int_mode (tree_to_shwi (exp1
),
9743 TYPE_MODE (TREE_TYPE (exp1
)));
9744 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
, op1
));
9747 if (modifier
== EXPAND_STACK_PARM
)
9750 if (SCALAR_INT_MODE_P (mode
) && optimize
>= 2)
9752 gimple
*def_stmt0
= get_def_for_expr (treeop0
, TRUNC_DIV_EXPR
);
9753 gimple
*def_stmt1
= get_def_for_expr (treeop1
, TRUNC_DIV_EXPR
);
9755 && !operand_equal_p (treeop1
, gimple_assign_rhs2 (def_stmt0
), 0))
9758 && !operand_equal_p (treeop0
, gimple_assign_rhs2 (def_stmt1
), 0))
9761 if (def_stmt0
|| def_stmt1
)
9763 /* X / Y * Y can be expanded as X - X % Y too.
9764 Choose the cheaper sequence of those two. */
9766 treeop0
= gimple_assign_rhs1 (def_stmt0
);
9770 treeop0
= gimple_assign_rhs1 (def_stmt1
);
9772 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
,
9774 bool speed_p
= optimize_insn_for_speed_p ();
9775 do_pending_stack_adjust ();
9778 = expand_expr_divmod (TRUNC_DIV_EXPR
, mode
, treeop0
, treeop1
,
9779 op0
, op1
, NULL_RTX
, unsignedp
);
9780 divmul_ret
= expand_mult (mode
, divmul_ret
, op1
, target
,
9782 rtx_insn
*divmul_insns
= get_insns ();
9786 = expand_expr_divmod (TRUNC_MOD_EXPR
, mode
, treeop0
, treeop1
,
9787 op0
, op1
, NULL_RTX
, unsignedp
);
9788 this_optab
= optab_for_tree_code (MINUS_EXPR
, type
,
9790 modsub_ret
= expand_binop (mode
, this_optab
, op0
, modsub_ret
,
9791 target
, unsignedp
, OPTAB_LIB_WIDEN
);
9792 rtx_insn
*modsub_insns
= get_insns ();
9794 unsigned divmul_cost
= seq_cost (divmul_insns
, speed_p
);
9795 unsigned modsub_cost
= seq_cost (modsub_insns
, speed_p
);
9796 /* If costs are the same then use as tie breaker the other other
9798 if (divmul_cost
== modsub_cost
)
9800 divmul_cost
= seq_cost (divmul_insns
, !speed_p
);
9801 modsub_cost
= seq_cost (modsub_insns
, !speed_p
);
9804 if (divmul_cost
<= modsub_cost
)
9806 emit_insn (divmul_insns
);
9807 return REDUCE_BIT_FIELD (divmul_ret
);
9809 emit_insn (modsub_insns
);
9810 return REDUCE_BIT_FIELD (modsub_ret
);
9814 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9816 /* Expand X*Y as X&-Y when Y must be zero or one. */
9817 if (SCALAR_INT_MODE_P (mode
))
9819 bool bit0_p
= tree_nonzero_bits (treeop0
) == 1;
9820 bool bit1_p
= tree_nonzero_bits (treeop1
) == 1;
9822 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
9823 if (bit0_p
&& bit1_p
)
9824 return REDUCE_BIT_FIELD (expand_and (mode
, op0
, op1
, target
));
9826 if (bit0_p
|| bit1_p
)
9828 bool speed
= optimize_insn_for_speed_p ();
9829 int cost
= add_cost (speed
, mode
) + neg_cost (speed
, mode
);
9830 struct algorithm algorithm
;
9831 enum mult_variant variant
;
9832 if (CONST_INT_P (op1
)
9833 ? !choose_mult_variant (mode
, INTVAL (op1
),
9834 &algorithm
, &variant
, cost
)
9835 : cost
< mul_cost (speed
, mode
))
9837 target
= bit0_p
? expand_and (mode
, negate_rtx (mode
, op0
),
9839 : expand_and (mode
, op0
,
9840 negate_rtx (mode
, op1
),
9842 return REDUCE_BIT_FIELD (target
);
9847 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
9849 case TRUNC_MOD_EXPR
:
9850 case FLOOR_MOD_EXPR
:
9852 case ROUND_MOD_EXPR
:
9854 case TRUNC_DIV_EXPR
:
9855 case FLOOR_DIV_EXPR
:
9857 case ROUND_DIV_EXPR
:
9858 case EXACT_DIV_EXPR
:
9859 /* If this is a fixed-point operation, then we cannot use the code
9860 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9862 if (ALL_FIXED_POINT_MODE_P (mode
))
9865 if (modifier
== EXPAND_STACK_PARM
)
9867 /* Possible optimization: compute the dividend with EXPAND_SUM
9868 then if the divisor is constant can optimize the case
9869 where some terms of the dividend have coeffs divisible by it. */
9870 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9871 return expand_expr_divmod (code
, mode
, treeop0
, treeop1
, op0
, op1
,
9877 case MULT_HIGHPART_EXPR
:
9878 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9879 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
9883 case FIXED_CONVERT_EXPR
:
9884 op0
= expand_normal (treeop0
);
9885 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9886 target
= gen_reg_rtx (mode
);
9888 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
9889 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9890 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
9891 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
9893 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
9896 case FIX_TRUNC_EXPR
:
9897 op0
= expand_normal (treeop0
);
9898 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9899 target
= gen_reg_rtx (mode
);
9900 expand_fix (target
, op0
, unsignedp
);
9904 op0
= expand_normal (treeop0
);
9905 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9906 target
= gen_reg_rtx (mode
);
9907 /* expand_float can't figure out what to do if FROM has VOIDmode.
9908 So give it the correct mode. With -O, cse will optimize this. */
9909 if (GET_MODE (op0
) == VOIDmode
)
9910 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
9912 expand_float (target
, op0
,
9913 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9917 op0
= expand_expr (treeop0
, subtarget
,
9918 VOIDmode
, EXPAND_NORMAL
);
9919 if (modifier
== EXPAND_STACK_PARM
)
9921 temp
= expand_unop (mode
,
9922 optab_for_tree_code (NEGATE_EXPR
, type
,
9926 return REDUCE_BIT_FIELD (temp
);
9930 op0
= expand_expr (treeop0
, subtarget
,
9931 VOIDmode
, EXPAND_NORMAL
);
9932 if (modifier
== EXPAND_STACK_PARM
)
9935 /* ABS_EXPR is not valid for complex arguments. */
9936 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9937 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
9939 /* Unsigned abs is simply the operand. Testing here means we don't
9940 risk generating incorrect code below. */
9941 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9944 return expand_abs (mode
, op0
, target
, unsignedp
,
9945 safe_from_p (target
, treeop0
, 1));
9949 target
= original_target
;
9951 || modifier
== EXPAND_STACK_PARM
9952 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
9953 || GET_MODE (target
) != mode
9955 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
9956 target
= gen_reg_rtx (mode
);
9957 expand_operands (treeop0
, treeop1
,
9958 target
, &op0
, &op1
, EXPAND_NORMAL
);
9960 /* First try to do it with a special MIN or MAX instruction.
9961 If that does not win, use a conditional jump to select the proper
9963 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9964 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9969 if (VECTOR_TYPE_P (type
))
9972 /* At this point, a MEM target is no longer useful; we will get better
9975 if (! REG_P (target
))
9976 target
= gen_reg_rtx (mode
);
9978 /* If op1 was placed in target, swap op0 and op1. */
9979 if (target
!= op0
&& target
== op1
)
9980 std::swap (op0
, op1
);
9982 /* We generate better code and avoid problems with op1 mentioning
9983 target by forcing op1 into a pseudo if it isn't a constant. */
9984 if (! CONSTANT_P (op1
))
9985 op1
= force_reg (mode
, op1
);
9988 enum rtx_code comparison_code
;
9991 if (code
== MAX_EXPR
)
9992 comparison_code
= unsignedp
? GEU
: GE
;
9994 comparison_code
= unsignedp
? LEU
: LE
;
9996 /* Canonicalize to comparisons against 0. */
9997 if (op1
== const1_rtx
)
9999 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
10000 or (a != 0 ? a : 1) for unsigned.
10001 For MIN we are safe converting (a <= 1 ? a : 1)
10002 into (a <= 0 ? a : 1) */
10003 cmpop1
= const0_rtx
;
10004 if (code
== MAX_EXPR
)
10005 comparison_code
= unsignedp
? NE
: GT
;
10007 if (op1
== constm1_rtx
&& !unsignedp
)
10009 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10010 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10011 cmpop1
= const0_rtx
;
10012 if (code
== MIN_EXPR
)
10013 comparison_code
= LT
;
10016 /* Use a conditional move if possible. */
10017 if (can_conditionally_move_p (mode
))
10023 /* Try to emit the conditional move. */
10024 insn
= emit_conditional_move (target
,
10026 op0
, cmpop1
, mode
},
10030 /* If we could do the conditional move, emit the sequence,
10034 rtx_insn
*seq
= get_insns ();
10040 /* Otherwise discard the sequence and fall back to code with
10046 emit_move_insn (target
, op0
);
10048 lab
= gen_label_rtx ();
10049 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
10050 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
10051 profile_probability::uninitialized ());
10053 emit_move_insn (target
, op1
);
10058 op0
= expand_expr (treeop0
, subtarget
,
10059 VOIDmode
, EXPAND_NORMAL
);
10060 if (modifier
== EXPAND_STACK_PARM
)
10062 /* In case we have to reduce the result to bitfield precision
10063 for unsigned bitfield expand this as XOR with a proper constant
10065 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
10067 int_mode
= SCALAR_INT_TYPE_MODE (type
);
10068 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
10069 false, GET_MODE_PRECISION (int_mode
));
10071 temp
= expand_binop (int_mode
, xor_optab
, op0
,
10072 immed_wide_int_const (mask
, int_mode
),
10073 target
, 1, OPTAB_LIB_WIDEN
);
10076 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
10080 /* ??? Can optimize bitwise operations with one arg constant.
10081 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10082 and (a bitwise1 b) bitwise2 b (etc)
10083 but that is probably not worth while. */
10092 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
10093 || type_has_mode_precision_p (type
));
10099 /* If this is a fixed-point operation, then we cannot use the code
10100 below because "expand_shift" doesn't support sat/no-sat fixed-point
10102 if (ALL_FIXED_POINT_MODE_P (mode
))
10105 if (! safe_from_p (subtarget
, treeop1
, 1))
10107 if (modifier
== EXPAND_STACK_PARM
)
10109 op0
= expand_expr (treeop0
, subtarget
,
10110 VOIDmode
, EXPAND_NORMAL
);
10112 /* Left shift optimization when shifting across word_size boundary.
10114 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10115 there isn't native instruction to support this wide mode
10116 left shift. Given below scenario:
10118 Type A = (Type) B << C
10121 | dest_high | dest_low |
10125 If the shift amount C caused we shift B to across the word
10126 size boundary, i.e part of B shifted into high half of
10127 destination register, and part of B remains in the low
10128 half, then GCC will use the following left shift expand
10131 1. Initialize dest_low to B.
10132 2. Initialize every bit of dest_high to the sign bit of B.
10133 3. Logic left shift dest_low by C bit to finalize dest_low.
10134 The value of dest_low before this shift is kept in a temp D.
10135 4. Logic left shift dest_high by C.
10136 5. Logic right shift D by (word_size - C).
10137 6. Or the result of 4 and 5 to finalize dest_high.
10139 While, by checking gimple statements, if operand B is
10140 coming from signed extension, then we can simplify above
10143 1. dest_high = src_low >> (word_size - C).
10144 2. dest_low = src_low << C.
10146 We can use one arithmetic right shift to finish all the
10147 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10148 needed from 6 into 2.
10150 The case is similar for zero extension, except that we
10151 initialize dest_high to zero rather than copies of the sign
10152 bit from B. Furthermore, we need to use a logical right shift
10155 The choice of sign-extension versus zero-extension is
10156 determined entirely by whether or not B is signed and is
10157 independent of the current setting of unsignedp. */
10160 if (code
== LSHIFT_EXPR
10163 && GET_MODE_2XWIDER_MODE (word_mode
).exists (&int_mode
)
10164 && mode
== int_mode
10165 && TREE_CONSTANT (treeop1
)
10166 && TREE_CODE (treeop0
) == SSA_NAME
)
10168 gimple
*def
= SSA_NAME_DEF_STMT (treeop0
);
10169 if (is_gimple_assign (def
)
10170 && gimple_assign_rhs_code (def
) == NOP_EXPR
)
10172 scalar_int_mode rmode
= SCALAR_INT_TYPE_MODE
10173 (TREE_TYPE (gimple_assign_rhs1 (def
)));
10175 if (GET_MODE_SIZE (rmode
) < GET_MODE_SIZE (int_mode
)
10176 && TREE_INT_CST_LOW (treeop1
) < GET_MODE_BITSIZE (word_mode
)
10177 && ((TREE_INT_CST_LOW (treeop1
) + GET_MODE_BITSIZE (rmode
))
10178 >= GET_MODE_BITSIZE (word_mode
)))
10180 rtx_insn
*seq
, *seq_old
;
10181 poly_uint64 high_off
= subreg_highpart_offset (word_mode
,
10183 bool extend_unsigned
10184 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def
)));
10185 rtx low
= lowpart_subreg (word_mode
, op0
, int_mode
);
10186 rtx dest_low
= lowpart_subreg (word_mode
, target
, int_mode
);
10187 rtx dest_high
= simplify_gen_subreg (word_mode
, target
,
10188 int_mode
, high_off
);
10189 HOST_WIDE_INT ramount
= (BITS_PER_WORD
10190 - TREE_INT_CST_LOW (treeop1
));
10191 tree rshift
= build_int_cst (TREE_TYPE (treeop1
), ramount
);
10194 /* dest_high = src_low >> (word_size - C). */
10195 temp
= expand_variable_shift (RSHIFT_EXPR
, word_mode
, low
,
10198 if (temp
!= dest_high
)
10199 emit_move_insn (dest_high
, temp
);
10201 /* dest_low = src_low << C. */
10202 temp
= expand_variable_shift (LSHIFT_EXPR
, word_mode
, low
,
10203 treeop1
, dest_low
, unsignedp
);
10204 if (temp
!= dest_low
)
10205 emit_move_insn (dest_low
, temp
);
10207 seq
= get_insns ();
10211 if (have_insn_for (ASHIFT
, int_mode
))
10213 bool speed_p
= optimize_insn_for_speed_p ();
10215 rtx ret_old
= expand_variable_shift (code
, int_mode
,
10220 seq_old
= get_insns ();
10222 if (seq_cost (seq
, speed_p
)
10223 >= seq_cost (seq_old
, speed_p
))
10234 if (temp
== NULL_RTX
)
10235 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
10237 if (code
== LSHIFT_EXPR
)
10238 temp
= REDUCE_BIT_FIELD (temp
);
10242 /* Could determine the answer when only additive constants differ. Also,
10243 the addition of one can be handled by changing the condition. */
10250 case UNORDERED_EXPR
:
10259 temp
= do_store_flag (ops
,
10260 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
10261 tmode
!= VOIDmode
? tmode
: mode
);
10265 /* Use a compare and a jump for BLKmode comparisons, or for function
10266 type comparisons is have_canonicalize_funcptr_for_compare. */
10269 || modifier
== EXPAND_STACK_PARM
10270 || ! safe_from_p (target
, treeop0
, 1)
10271 || ! safe_from_p (target
, treeop1
, 1)
10272 /* Make sure we don't have a hard reg (such as function's return
10273 value) live across basic blocks, if not optimizing. */
10274 || (!optimize
&& REG_P (target
)
10275 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
10276 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10278 emit_move_insn (target
, const0_rtx
);
10280 rtx_code_label
*lab1
= gen_label_rtx ();
10281 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
,
10282 profile_probability::uninitialized ());
10284 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
10285 emit_move_insn (target
, constm1_rtx
);
10287 emit_move_insn (target
, const1_rtx
);
10293 /* Get the rtx code of the operands. */
10294 op0
= expand_normal (treeop0
);
10295 op1
= expand_normal (treeop1
);
10298 target
= gen_reg_rtx (TYPE_MODE (type
));
10300 /* If target overlaps with op1, then either we need to force
10301 op1 into a pseudo (if target also overlaps with op0),
10302 or write the complex parts in reverse order. */
10303 switch (GET_CODE (target
))
10306 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
10308 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
10310 complex_expr_force_op1
:
10311 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
10312 emit_move_insn (temp
, op1
);
10316 complex_expr_swap_order
:
10317 /* Move the imaginary (op1) and real (op0) parts to their
10319 write_complex_part (target
, op1
, true, true);
10320 write_complex_part (target
, op0
, false, false);
10326 temp
= adjust_address_nv (target
,
10327 GET_MODE_INNER (GET_MODE (target
)), 0);
10328 if (reg_overlap_mentioned_p (temp
, op1
))
10330 scalar_mode imode
= GET_MODE_INNER (GET_MODE (target
));
10331 temp
= adjust_address_nv (target
, imode
,
10332 GET_MODE_SIZE (imode
));
10333 if (reg_overlap_mentioned_p (temp
, op0
))
10334 goto complex_expr_force_op1
;
10335 goto complex_expr_swap_order
;
10339 if (reg_overlap_mentioned_p (target
, op1
))
10341 if (reg_overlap_mentioned_p (target
, op0
))
10342 goto complex_expr_force_op1
;
10343 goto complex_expr_swap_order
;
10348 /* Move the real (op0) and imaginary (op1) parts to their location. */
10349 write_complex_part (target
, op0
, false, true);
10350 write_complex_part (target
, op1
, true, false);
10354 case WIDEN_SUM_EXPR
:
10356 tree oprnd0
= treeop0
;
10357 tree oprnd1
= treeop1
;
10359 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10360 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
10361 target
, unsignedp
);
10365 case VEC_UNPACK_HI_EXPR
:
10366 case VEC_UNPACK_LO_EXPR
:
10367 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
10368 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
10370 op0
= expand_normal (treeop0
);
10371 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
10372 target
, unsignedp
);
10377 case VEC_UNPACK_FLOAT_HI_EXPR
:
10378 case VEC_UNPACK_FLOAT_LO_EXPR
:
10380 op0
= expand_normal (treeop0
);
10381 /* The signedness is determined from input operand. */
10382 temp
= expand_widen_pattern_expr
10383 (ops
, op0
, NULL_RTX
, NULL_RTX
,
10384 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10390 case VEC_WIDEN_PLUS_HI_EXPR
:
10391 case VEC_WIDEN_PLUS_LO_EXPR
:
10392 case VEC_WIDEN_MINUS_HI_EXPR
:
10393 case VEC_WIDEN_MINUS_LO_EXPR
:
10394 case VEC_WIDEN_MULT_HI_EXPR
:
10395 case VEC_WIDEN_MULT_LO_EXPR
:
10396 case VEC_WIDEN_MULT_EVEN_EXPR
:
10397 case VEC_WIDEN_MULT_ODD_EXPR
:
10398 case VEC_WIDEN_LSHIFT_HI_EXPR
:
10399 case VEC_WIDEN_LSHIFT_LO_EXPR
:
10400 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10401 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
10402 target
, unsignedp
);
10403 gcc_assert (target
);
10406 case VEC_PACK_SAT_EXPR
:
10407 case VEC_PACK_FIX_TRUNC_EXPR
:
10408 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10409 subtarget
= NULL_RTX
;
10412 case VEC_PACK_TRUNC_EXPR
:
10413 if (VECTOR_BOOLEAN_TYPE_P (type
)
10414 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0
))
10415 && mode
== TYPE_MODE (TREE_TYPE (treeop0
))
10416 && SCALAR_INT_MODE_P (mode
))
10418 class expand_operand eops
[4];
10419 machine_mode imode
= TYPE_MODE (TREE_TYPE (treeop0
));
10420 expand_operands (treeop0
, treeop1
,
10421 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10422 this_optab
= vec_pack_sbool_trunc_optab
;
10423 enum insn_code icode
= optab_handler (this_optab
, imode
);
10424 create_output_operand (&eops
[0], target
, mode
);
10425 create_convert_operand_from (&eops
[1], op0
, imode
, false);
10426 create_convert_operand_from (&eops
[2], op1
, imode
, false);
10427 temp
= GEN_INT (TYPE_VECTOR_SUBPARTS (type
).to_constant ());
10428 create_input_operand (&eops
[3], temp
, imode
);
10429 expand_insn (icode
, 4, eops
);
10430 return eops
[0].value
;
10432 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10433 subtarget
= NULL_RTX
;
10436 case VEC_PACK_FLOAT_EXPR
:
10437 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
10438 expand_operands (treeop0
, treeop1
,
10439 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10440 this_optab
= optab_for_tree_code (code
, TREE_TYPE (treeop0
),
10442 target
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
10443 TYPE_UNSIGNED (TREE_TYPE (treeop0
)),
10445 gcc_assert (target
);
10448 case VEC_PERM_EXPR
:
10450 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
10451 vec_perm_builder sel
;
10452 if (TREE_CODE (treeop2
) == VECTOR_CST
10453 && tree_to_vec_perm_builder (&sel
, treeop2
))
10455 machine_mode sel_mode
= TYPE_MODE (TREE_TYPE (treeop2
));
10456 temp
= expand_vec_perm_const (mode
, op0
, op1
, sel
,
10461 op2
= expand_normal (treeop2
);
10462 temp
= expand_vec_perm_var (mode
, op0
, op1
, op2
, target
);
10468 case DOT_PROD_EXPR
:
10470 tree oprnd0
= treeop0
;
10471 tree oprnd1
= treeop1
;
10472 tree oprnd2
= treeop2
;
10474 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10475 op2
= expand_normal (oprnd2
);
10476 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
10477 target
, unsignedp
);
10483 tree oprnd0
= treeop0
;
10484 tree oprnd1
= treeop1
;
10485 tree oprnd2
= treeop2
;
10487 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10488 op2
= expand_normal (oprnd2
);
10489 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
10490 target
, unsignedp
);
10494 case REALIGN_LOAD_EXPR
:
10496 tree oprnd0
= treeop0
;
10497 tree oprnd1
= treeop1
;
10498 tree oprnd2
= treeop2
;
10500 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
10501 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
10502 op2
= expand_normal (oprnd2
);
10503 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
10504 target
, unsignedp
);
10511 /* A COND_EXPR with its type being VOID_TYPE represents a
10512 conditional jump and is handled in
10513 expand_gimple_cond_expr. */
10514 gcc_assert (!VOID_TYPE_P (type
));
10516 /* Note that COND_EXPRs whose type is a structure or union
10517 are required to be constructed to contain assignments of
10518 a temporary variable, so that we can evaluate them here
10519 for side effect only. If type is void, we must do likewise. */
10521 gcc_assert (!TREE_ADDRESSABLE (type
)
10523 && TREE_TYPE (treeop1
) != void_type_node
10524 && TREE_TYPE (treeop2
) != void_type_node
);
10526 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
10530 /* If we are not to produce a result, we have no target. Otherwise,
10531 if a target was specified use it; it will not be used as an
10532 intermediate target unless it is safe. If no target, use a
10535 if (modifier
!= EXPAND_STACK_PARM
10537 && safe_from_p (original_target
, treeop0
, 1)
10538 && GET_MODE (original_target
) == mode
10539 && !MEM_P (original_target
))
10540 temp
= original_target
;
10542 temp
= assign_temp (type
, 0, 1);
10544 do_pending_stack_adjust ();
10546 rtx_code_label
*lab0
= gen_label_rtx ();
10547 rtx_code_label
*lab1
= gen_label_rtx ();
10548 jumpifnot (treeop0
, lab0
,
10549 profile_probability::uninitialized ());
10550 store_expr (treeop1
, temp
,
10551 modifier
== EXPAND_STACK_PARM
,
10554 emit_jump_insn (targetm
.gen_jump (lab1
));
10557 store_expr (treeop2
, temp
,
10558 modifier
== EXPAND_STACK_PARM
,
10566 case VEC_DUPLICATE_EXPR
:
10567 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
10568 target
= expand_vector_broadcast (mode
, op0
);
10569 gcc_assert (target
);
10572 case VEC_SERIES_EXPR
:
10573 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, modifier
);
10574 return expand_vec_series_expr (mode
, op0
, op1
, target
);
10576 case BIT_INSERT_EXPR
:
10578 unsigned bitpos
= tree_to_uhwi (treeop2
);
10580 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1
)))
10581 bitsize
= TYPE_PRECISION (TREE_TYPE (treeop1
));
10583 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1
)));
10584 op0
= expand_normal (treeop0
);
10585 op1
= expand_normal (treeop1
);
10586 rtx dst
= gen_reg_rtx (mode
);
10587 emit_move_insn (dst
, op0
);
10588 store_bit_field (dst
, bitsize
, bitpos
, 0, 0,
10589 TYPE_MODE (TREE_TYPE (treeop1
)), op1
, false, false);
10594 gcc_unreachable ();
10597 /* Here to do an ordinary binary operator. */
10599 expand_operands (treeop0
, treeop1
,
10600 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10602 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
10604 if (modifier
== EXPAND_STACK_PARM
)
10606 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
10607 unsignedp
, OPTAB_LIB_WIDEN
);
10609 /* Bitwise operations do not need bitfield reduction as we expect their
10610 operands being properly truncated. */
10611 if (code
== BIT_XOR_EXPR
10612 || code
== BIT_AND_EXPR
10613 || code
== BIT_IOR_EXPR
)
10615 return REDUCE_BIT_FIELD (temp
);
10617 #undef REDUCE_BIT_FIELD
10620 /* Return TRUE if expression STMT is suitable for replacement.
10621 Never consider memory loads as replaceable, because those don't ever lead
10622 into constant expressions. */
10625 stmt_is_replaceable_p (gimple
*stmt
)
10627 if (ssa_is_replaceable_p (stmt
))
10629 /* Don't move around loads. */
10630 if (!gimple_assign_single_p (stmt
)
10631 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
10638 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
10639 enum expand_modifier modifier
, rtx
*alt_rtl
,
10640 bool inner_reference_p
)
10642 rtx op0
, op1
, temp
, decl_rtl
;
10645 machine_mode mode
, dmode
;
10646 enum tree_code code
= TREE_CODE (exp
);
10647 rtx subtarget
, original_target
;
10649 bool reduce_bit_field
;
10650 location_t loc
= EXPR_LOCATION (exp
);
10651 struct separate_ops ops
;
10652 tree treeop0
, treeop1
, treeop2
;
10653 tree ssa_name
= NULL_TREE
;
10656 type
= TREE_TYPE (exp
);
10657 mode
= TYPE_MODE (type
);
10658 unsignedp
= TYPE_UNSIGNED (type
);
10660 treeop0
= treeop1
= treeop2
= NULL_TREE
;
10661 if (!VL_EXP_CLASS_P (exp
))
10662 switch (TREE_CODE_LENGTH (code
))
10665 case 3: treeop2
= TREE_OPERAND (exp
, 2); /* FALLTHRU */
10666 case 2: treeop1
= TREE_OPERAND (exp
, 1); /* FALLTHRU */
10667 case 1: treeop0
= TREE_OPERAND (exp
, 0); /* FALLTHRU */
10675 ops
.location
= loc
;
10677 ignore
= (target
== const0_rtx
10678 || ((CONVERT_EXPR_CODE_P (code
)
10679 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
10680 && TREE_CODE (type
) == VOID_TYPE
));
10682 /* An operation in what may be a bit-field type needs the
10683 result to be reduced to the precision of the bit-field type,
10684 which is narrower than that of the type's mode. */
10685 reduce_bit_field
= (!ignore
10686 && INTEGRAL_TYPE_P (type
)
10687 && !type_has_mode_precision_p (type
));
10689 /* If we are going to ignore this result, we need only do something
10690 if there is a side-effect somewhere in the expression. If there
10691 is, short-circuit the most common cases here. Note that we must
10692 not call expand_expr with anything but const0_rtx in case this
10693 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10697 if (! TREE_SIDE_EFFECTS (exp
))
10700 /* Ensure we reference a volatile object even if value is ignored, but
10701 don't do this if all we are doing is taking its address. */
10702 if (TREE_THIS_VOLATILE (exp
)
10703 && TREE_CODE (exp
) != FUNCTION_DECL
10704 && mode
!= VOIDmode
&& mode
!= BLKmode
10705 && modifier
!= EXPAND_CONST_ADDRESS
)
10707 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
10709 copy_to_reg (temp
);
10713 if (TREE_CODE_CLASS (code
) == tcc_unary
10714 || code
== BIT_FIELD_REF
10715 || code
== COMPONENT_REF
10716 || code
== INDIRECT_REF
)
10717 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
10720 else if (TREE_CODE_CLASS (code
) == tcc_binary
10721 || TREE_CODE_CLASS (code
) == tcc_comparison
10722 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
10724 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
10725 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
10732 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
10735 /* Use subtarget as the target for operand 0 of a binary operation. */
10736 subtarget
= get_subtarget (target
);
10737 original_target
= target
;
10743 tree function
= decl_function_context (exp
);
10745 temp
= label_rtx (exp
);
10746 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
10748 if (function
!= current_function_decl
10750 LABEL_REF_NONLOCAL_P (temp
) = 1;
10752 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
10757 /* ??? ivopts calls expander, without any preparation from
10758 out-of-ssa. So fake instructions as if this was an access to the
10759 base variable. This unnecessarily allocates a pseudo, see how we can
10760 reuse it, if partition base vars have it set already. */
10761 if (!currently_expanding_to_rtl
)
10763 tree var
= SSA_NAME_VAR (exp
);
10764 if (var
&& DECL_RTL_SET_P (var
))
10765 return DECL_RTL (var
);
10766 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
10767 LAST_VIRTUAL_REGISTER
+ 1);
10770 g
= get_gimple_for_ssa_name (exp
);
10771 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10773 && modifier
== EXPAND_INITIALIZER
10774 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
10775 && (optimize
|| !SSA_NAME_VAR (exp
)
10776 || DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
10777 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
10778 g
= SSA_NAME_DEF_STMT (exp
);
10782 location_t saved_loc
= curr_insn_location ();
10783 loc
= gimple_location (g
);
10784 if (loc
!= UNKNOWN_LOCATION
)
10785 set_curr_insn_location (loc
);
10786 ops
.code
= gimple_assign_rhs_code (g
);
10787 switch (get_gimple_rhs_class (ops
.code
))
10789 case GIMPLE_TERNARY_RHS
:
10790 ops
.op2
= gimple_assign_rhs3 (g
);
10792 case GIMPLE_BINARY_RHS
:
10793 ops
.op1
= gimple_assign_rhs2 (g
);
10795 /* Try to expand conditonal compare. */
10796 if (targetm
.gen_ccmp_first
)
10798 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
10799 r
= expand_ccmp_expr (g
, mode
);
10804 case GIMPLE_UNARY_RHS
:
10805 ops
.op0
= gimple_assign_rhs1 (g
);
10806 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
10807 ops
.location
= loc
;
10808 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10810 case GIMPLE_SINGLE_RHS
:
10812 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
10813 tmode
, modifier
, alt_rtl
,
10814 inner_reference_p
);
10818 gcc_unreachable ();
10820 set_curr_insn_location (saved_loc
);
10821 if (REG_P (r
) && !REG_EXPR (r
))
10822 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
10827 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
10828 exp
= SSA_NAME_VAR (ssa_name
);
10829 goto expand_decl_rtl
;
10832 /* Allow accel compiler to handle variables that require special
10833 treatment, e.g. if they have been modified in some way earlier in
10834 compilation by the adjust_private_decl OpenACC hook. */
10835 if (flag_openacc
&& targetm
.goacc
.expand_var_decl
)
10837 temp
= targetm
.goacc
.expand_var_decl (exp
);
10841 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
10842 have scalar integer modes to a reg via store_constructor. */
10843 if (TREE_READONLY (exp
)
10844 && !TREE_SIDE_EFFECTS (exp
)
10845 && (modifier
== EXPAND_NORMAL
|| modifier
== EXPAND_STACK_PARM
)
10846 && immediate_const_ctor_p (DECL_INITIAL (exp
))
10847 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp
)))
10848 && crtl
->emit
.regno_pointer_align_length
10851 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
10852 store_constructor (DECL_INITIAL (exp
), target
, 0,
10853 int_expr_size (DECL_INITIAL (exp
)), false);
10856 /* ... fall through ... */
10859 /* If a static var's type was incomplete when the decl was written,
10860 but the type is complete now, lay out the decl now. */
10861 if (DECL_SIZE (exp
) == 0
10862 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
10863 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
10864 layout_decl (exp
, 0);
10868 case FUNCTION_DECL
:
10870 decl_rtl
= DECL_RTL (exp
);
10872 gcc_assert (decl_rtl
);
10874 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10875 settings for VECTOR_TYPE_P that might switch for the function. */
10876 if (currently_expanding_to_rtl
10877 && code
== VAR_DECL
&& MEM_P (decl_rtl
)
10878 && VECTOR_TYPE_P (type
) && exp
&& DECL_MODE (exp
) != mode
)
10879 decl_rtl
= change_address (decl_rtl
, TYPE_MODE (type
), 0);
10881 decl_rtl
= copy_rtx (decl_rtl
);
10883 /* Record writes to register variables. */
10884 if (modifier
== EXPAND_WRITE
10885 && REG_P (decl_rtl
)
10886 && HARD_REGISTER_P (decl_rtl
))
10887 add_to_hard_reg_set (&crtl
->asm_clobbers
,
10888 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
10890 /* Ensure variable marked as used even if it doesn't go through
10891 a parser. If it hasn't be used yet, write out an external
10894 TREE_USED (exp
) = 1;
10896 /* Show we haven't gotten RTL for this yet. */
10899 /* Variables inherited from containing functions should have
10900 been lowered by this point. */
10903 tree context
= decl_function_context (exp
);
10904 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
10905 || context
== current_function_decl
10906 || TREE_STATIC (exp
)
10907 || DECL_EXTERNAL (exp
)
10908 /* ??? C++ creates functions that are not
10910 || TREE_CODE (exp
) == FUNCTION_DECL
);
10913 /* This is the case of an array whose size is to be determined
10914 from its initializer, while the initializer is still being parsed.
10915 ??? We aren't parsing while expanding anymore. */
10917 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
10918 temp
= validize_mem (decl_rtl
);
10920 /* If DECL_RTL is memory, we are in the normal case and the
10921 address is not valid, get the address into a register. */
10923 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
10926 *alt_rtl
= decl_rtl
;
10927 decl_rtl
= use_anchored_address (decl_rtl
);
10928 if (modifier
!= EXPAND_CONST_ADDRESS
10929 && modifier
!= EXPAND_SUM
10930 && !memory_address_addr_space_p (exp
? DECL_MODE (exp
)
10931 : GET_MODE (decl_rtl
),
10932 XEXP (decl_rtl
, 0),
10933 MEM_ADDR_SPACE (decl_rtl
)))
10934 temp
= replace_equiv_address (decl_rtl
,
10935 copy_rtx (XEXP (decl_rtl
, 0)));
10938 /* If we got something, return it. But first, set the alignment
10939 if the address is a register. */
10942 if (exp
&& MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
10943 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
10945 else if (MEM_P (decl_rtl
))
10951 && modifier
!= EXPAND_WRITE
10952 && modifier
!= EXPAND_MEMORY
10953 && modifier
!= EXPAND_INITIALIZER
10954 && modifier
!= EXPAND_CONST_ADDRESS
10955 && modifier
!= EXPAND_SUM
10956 && !inner_reference_p
10958 && MEM_ALIGN (temp
) < GET_MODE_ALIGNMENT (mode
))
10959 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
10960 MEM_ALIGN (temp
), NULL_RTX
, NULL
);
10966 dmode
= DECL_MODE (exp
);
10968 dmode
= TYPE_MODE (TREE_TYPE (ssa_name
));
10970 /* If the mode of DECL_RTL does not match that of the decl,
10971 there are two cases: we are dealing with a BLKmode value
10972 that is returned in a register, or we are dealing with
10973 a promoted value. In the latter case, return a SUBREG
10974 of the wanted mode, but mark it so that we know that it
10975 was already extended. */
10976 if (REG_P (decl_rtl
)
10977 && dmode
!= BLKmode
10978 && GET_MODE (decl_rtl
) != dmode
)
10980 machine_mode pmode
;
10982 /* Get the signedness to be used for this variable. Ensure we get
10983 the same mode we got when the variable was declared. */
10984 if (code
!= SSA_NAME
)
10985 pmode
= promote_decl_mode (exp
, &unsignedp
);
10986 else if ((g
= SSA_NAME_DEF_STMT (ssa_name
))
10987 && gimple_code (g
) == GIMPLE_CALL
10988 && !gimple_call_internal_p (g
))
10989 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
10990 gimple_call_fntype (g
),
10993 pmode
= promote_ssa_mode (ssa_name
, &unsignedp
);
10994 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
10996 /* Some ABIs require scalar floating point modes to be passed
10997 in a wider scalar integer mode. We need to explicitly
10998 truncate to an integer mode of the correct precision before
10999 using a SUBREG to reinterpret as a floating point value. */
11000 if (SCALAR_FLOAT_MODE_P (mode
)
11001 && SCALAR_INT_MODE_P (pmode
)
11002 && known_lt (GET_MODE_SIZE (mode
), GET_MODE_SIZE (pmode
)))
11003 return convert_wider_int_to_float (mode
, pmode
, decl_rtl
);
11005 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
11006 SUBREG_PROMOTED_VAR_P (temp
) = 1;
11007 SUBREG_PROMOTED_SET (temp
, unsignedp
);
11015 /* Given that TYPE_PRECISION (type) is not always equal to
11016 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11017 the former to the latter according to the signedness of the
11019 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (type
);
11020 temp
= immed_wide_int_const
11021 (wi::to_wide (exp
, GET_MODE_PRECISION (int_mode
)), int_mode
);
11027 tree tmp
= NULL_TREE
;
11028 if (VECTOR_MODE_P (mode
))
11029 return const_vector_from_tree (exp
);
11030 scalar_int_mode int_mode
;
11031 if (is_int_mode (mode
, &int_mode
))
11033 tree type_for_mode
= lang_hooks
.types
.type_for_mode (int_mode
, 1);
11035 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
,
11036 type_for_mode
, exp
);
11040 vec
<constructor_elt
, va_gc
> *v
;
11041 /* Constructors need to be fixed-length. FIXME. */
11042 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
11043 vec_alloc (v
, nunits
);
11044 for (unsigned int i
= 0; i
< nunits
; ++i
)
11045 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
11046 tmp
= build_constructor (type
, v
);
11048 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
11053 if (modifier
== EXPAND_WRITE
)
11055 /* Writing into CONST_DECL is always invalid, but handle it
11057 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (exp
));
11058 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
11059 op0
= expand_expr_addr_expr_1 (exp
, NULL_RTX
, address_mode
,
11060 EXPAND_NORMAL
, as
);
11061 op0
= memory_address_addr_space (mode
, op0
, as
);
11062 temp
= gen_rtx_MEM (mode
, op0
);
11063 set_mem_addr_space (temp
, as
);
11066 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
11069 /* If optimized, generate immediate CONST_DOUBLE
11070 which will be turned into memory by reload if necessary.
11072 We used to force a register so that loop.c could see it. But
11073 this does not allow gen_* patterns to perform optimizations with
11074 the constants. It also produces two insns in cases like "x = 1.0;".
11075 On most machines, floating-point constants are not permitted in
11076 many insns, so we'd end up copying it to a register in any case.
11078 Now, we do the copying in expand_binop, if appropriate. */
11079 return const_double_from_real_value (TREE_REAL_CST (exp
),
11080 TYPE_MODE (TREE_TYPE (exp
)));
11083 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
11084 TYPE_MODE (TREE_TYPE (exp
)));
11087 /* Handle evaluating a complex constant in a CONCAT target. */
11088 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
11092 mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
11093 rtarg
= XEXP (original_target
, 0);
11094 itarg
= XEXP (original_target
, 1);
11096 /* Move the real and imaginary parts separately. */
11097 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
11098 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
11101 emit_move_insn (rtarg
, op0
);
11103 emit_move_insn (itarg
, op1
);
11105 return original_target
;
11111 temp
= expand_expr_constant (exp
, 1, modifier
);
11113 /* temp contains a constant address.
11114 On RISC machines where a constant address isn't valid,
11115 make some insns to get that address into a register. */
11116 if (modifier
!= EXPAND_CONST_ADDRESS
11117 && modifier
!= EXPAND_INITIALIZER
11118 && modifier
!= EXPAND_SUM
11119 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
11120 MEM_ADDR_SPACE (temp
)))
11121 return replace_equiv_address (temp
,
11122 copy_rtx (XEXP (temp
, 0)));
11126 return immed_wide_int_const (poly_int_cst_value (exp
), mode
);
11130 tree val
= treeop0
;
11131 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
11132 inner_reference_p
);
11134 if (!SAVE_EXPR_RESOLVED_P (exp
))
11136 /* We can indeed still hit this case, typically via builtin
11137 expanders calling save_expr immediately before expanding
11138 something. Assume this means that we only have to deal
11139 with non-BLKmode values. */
11140 gcc_assert (GET_MODE (ret
) != BLKmode
);
11142 val
= build_decl (curr_insn_location (),
11143 VAR_DECL
, NULL
, TREE_TYPE (exp
));
11144 DECL_ARTIFICIAL (val
) = 1;
11145 DECL_IGNORED_P (val
) = 1;
11147 TREE_OPERAND (exp
, 0) = treeop0
;
11148 SAVE_EXPR_RESOLVED_P (exp
) = 1;
11150 if (!CONSTANT_P (ret
))
11151 ret
= copy_to_reg (ret
);
11152 SET_DECL_RTL (val
, ret
);
11160 /* If we don't need the result, just ensure we evaluate any
11164 unsigned HOST_WIDE_INT idx
;
11167 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
11168 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
11173 return expand_constructor (exp
, target
, modifier
, false);
11175 case TARGET_MEM_REF
:
11178 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
11179 unsigned int align
;
11181 op0
= addr_for_mem_ref (exp
, as
, true);
11182 op0
= memory_address_addr_space (mode
, op0
, as
);
11183 temp
= gen_rtx_MEM (mode
, op0
);
11184 set_mem_attributes (temp
, exp
, 0);
11185 set_mem_addr_space (temp
, as
);
11186 align
= get_object_alignment (exp
);
11187 if (modifier
!= EXPAND_WRITE
11188 && modifier
!= EXPAND_MEMORY
11190 && align
< GET_MODE_ALIGNMENT (mode
))
11191 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
11192 align
, NULL_RTX
, NULL
);
11198 const bool reverse
= REF_REVERSE_STORAGE_ORDER (exp
);
11200 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
11201 machine_mode address_mode
;
11202 tree base
= TREE_OPERAND (exp
, 0);
11205 /* Handle expansion of non-aliased memory with non-BLKmode. That
11206 might end up in a register. */
11207 if (mem_ref_refers_to_non_mem_p (exp
))
11209 poly_int64 offset
= mem_ref_offset (exp
).force_shwi ();
11210 base
= TREE_OPERAND (base
, 0);
11211 poly_uint64 type_size
;
11212 if (known_eq (offset
, 0)
11214 && poly_int_tree_p (TYPE_SIZE (type
), &type_size
)
11215 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base
)), type_size
))
11216 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
11217 target
, tmode
, modifier
);
11218 if (TYPE_MODE (type
) == BLKmode
)
11220 temp
= assign_stack_temp (DECL_MODE (base
),
11221 GET_MODE_SIZE (DECL_MODE (base
)));
11222 store_expr (base
, temp
, 0, false, false);
11223 temp
= adjust_address (temp
, BLKmode
, offset
);
11224 set_mem_size (temp
, int_size_in_bytes (type
));
11227 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
11228 bitsize_int (offset
* BITS_PER_UNIT
));
11229 REF_REVERSE_STORAGE_ORDER (exp
) = reverse
;
11230 return expand_expr (exp
, target
, tmode
, modifier
);
11232 address_mode
= targetm
.addr_space
.address_mode (as
);
11233 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
11235 tree mask
= gimple_assign_rhs2 (def_stmt
);
11236 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
11237 gimple_assign_rhs1 (def_stmt
), mask
);
11238 TREE_OPERAND (exp
, 0) = base
;
11240 align
= get_object_alignment (exp
);
11241 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
11242 op0
= memory_address_addr_space (mode
, op0
, as
);
11243 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
11245 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
11246 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
11247 op0
= memory_address_addr_space (mode
, op0
, as
);
11249 temp
= gen_rtx_MEM (mode
, op0
);
11250 set_mem_attributes (temp
, exp
, 0);
11251 set_mem_addr_space (temp
, as
);
11252 if (TREE_THIS_VOLATILE (exp
))
11253 MEM_VOLATILE_P (temp
) = 1;
11254 if (modifier
!= EXPAND_WRITE
11255 && modifier
!= EXPAND_MEMORY
11256 && !inner_reference_p
11258 && align
< GET_MODE_ALIGNMENT (mode
))
11259 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
, align
,
11260 modifier
== EXPAND_STACK_PARM
11261 ? NULL_RTX
: target
, alt_rtl
);
11263 && modifier
!= EXPAND_MEMORY
11264 && modifier
!= EXPAND_WRITE
)
11265 temp
= flip_storage_order (mode
, temp
);
11272 tree array
= treeop0
;
11273 tree index
= treeop1
;
11276 /* Fold an expression like: "foo"[2].
11277 This is not done in fold so it won't happen inside &.
11278 Don't fold if this is for wide characters since it's too
11279 difficult to do correctly and this is a very rare case. */
11281 if (modifier
!= EXPAND_CONST_ADDRESS
11282 && modifier
!= EXPAND_INITIALIZER
11283 && modifier
!= EXPAND_MEMORY
)
11285 tree t
= fold_read_from_constant_string (exp
);
11288 return expand_expr (t
, target
, tmode
, modifier
);
11291 /* If this is a constant index into a constant array,
11292 just get the value from the array. Handle both the cases when
11293 we have an explicit constructor and when our operand is a variable
11294 that was declared const. */
11296 if (modifier
!= EXPAND_CONST_ADDRESS
11297 && modifier
!= EXPAND_INITIALIZER
11298 && modifier
!= EXPAND_MEMORY
11299 && TREE_CODE (array
) == CONSTRUCTOR
11300 && ! TREE_SIDE_EFFECTS (array
)
11301 && TREE_CODE (index
) == INTEGER_CST
)
11303 unsigned HOST_WIDE_INT ix
;
11306 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
11308 if (tree_int_cst_equal (field
, index
))
11310 if (!TREE_SIDE_EFFECTS (value
))
11311 return expand_expr (fold (value
), target
, tmode
, modifier
);
11316 else if (optimize
>= 1
11317 && modifier
!= EXPAND_CONST_ADDRESS
11318 && modifier
!= EXPAND_INITIALIZER
11319 && modifier
!= EXPAND_MEMORY
11320 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
11321 && TREE_CODE (index
) == INTEGER_CST
11322 && (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
11323 && (init
= ctor_for_folding (array
)) != error_mark_node
)
11325 if (init
== NULL_TREE
)
11327 tree value
= build_zero_cst (type
);
11328 if (TREE_CODE (value
) == CONSTRUCTOR
)
11330 /* If VALUE is a CONSTRUCTOR, this optimization is only
11331 useful if this doesn't store the CONSTRUCTOR into
11332 memory. If it does, it is more efficient to just
11333 load the data from the array directly. */
11334 rtx ret
= expand_constructor (value
, target
,
11336 if (ret
== NULL_RTX
)
11341 return expand_expr (value
, target
, tmode
, modifier
);
11343 else if (TREE_CODE (init
) == CONSTRUCTOR
)
11345 unsigned HOST_WIDE_INT ix
;
11348 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
11350 if (tree_int_cst_equal (field
, index
))
11352 if (TREE_SIDE_EFFECTS (value
))
11355 if (TREE_CODE (value
) == CONSTRUCTOR
)
11357 /* If VALUE is a CONSTRUCTOR, this
11358 optimization is only useful if
11359 this doesn't store the CONSTRUCTOR
11360 into memory. If it does, it is more
11361 efficient to just load the data from
11362 the array directly. */
11363 rtx ret
= expand_constructor (value
, target
,
11365 if (ret
== NULL_RTX
)
11370 expand_expr (fold (value
), target
, tmode
, modifier
);
11373 else if (TREE_CODE (init
) == STRING_CST
)
11375 tree low_bound
= array_ref_low_bound (exp
);
11376 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
11378 /* Optimize the special case of a zero lower bound.
11380 We convert the lower bound to sizetype to avoid problems
11381 with constant folding. E.g. suppose the lower bound is
11382 1 and its mode is QI. Without the conversion
11383 (ARRAY + (INDEX - (unsigned char)1))
11385 (ARRAY + (-(unsigned char)1) + INDEX)
11387 (ARRAY + 255 + INDEX). Oops! */
11388 if (!integer_zerop (low_bound
))
11389 index1
= size_diffop_loc (loc
, index1
,
11390 fold_convert_loc (loc
, sizetype
,
11393 if (tree_fits_uhwi_p (index1
)
11394 && compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
11396 tree char_type
= TREE_TYPE (TREE_TYPE (init
));
11397 scalar_int_mode char_mode
;
11399 if (is_int_mode (TYPE_MODE (char_type
), &char_mode
)
11400 && GET_MODE_SIZE (char_mode
) == 1)
11401 return gen_int_mode (TREE_STRING_POINTER (init
)
11402 [TREE_INT_CST_LOW (index1
)],
11408 goto normal_inner_ref
;
11410 case COMPONENT_REF
:
11411 gcc_assert (TREE_CODE (treeop0
) != CONSTRUCTOR
);
11412 /* Fall through. */
11413 case BIT_FIELD_REF
:
11414 case ARRAY_RANGE_REF
:
11417 machine_mode mode1
, mode2
;
11418 poly_int64 bitsize
, bitpos
, bytepos
;
11420 int reversep
, volatilep
= 0;
11422 = get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
11423 &unsignedp
, &reversep
, &volatilep
);
11424 rtx orig_op0
, memloc
;
11425 bool clear_mem_expr
= false;
11426 bool must_force_mem
;
11428 /* If we got back the original object, something is wrong. Perhaps
11429 we are evaluating an expression too early. In any event, don't
11430 infinitely recurse. */
11431 gcc_assert (tem
!= exp
);
11433 /* Make sure bitpos is not negative, this can wreak havoc later. */
11434 if (maybe_lt (bitpos
, 0))
11436 gcc_checking_assert (offset
== NULL_TREE
);
11437 offset
= size_int (bits_to_bytes_round_down (bitpos
));
11438 bitpos
= num_trailing_bits (bitpos
);
11441 /* If we have either an offset, a BLKmode result, or a reference
11442 outside the underlying object, we must force it to memory.
11443 Such a case can occur in Ada if we have unchecked conversion
11444 of an expression from a scalar type to an aggregate type or
11445 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11446 passed a partially uninitialized object or a view-conversion
11447 to a larger size. */
11448 must_force_mem
= offset
!= NULL_TREE
11449 || mode1
== BLKmode
11450 || (mode
== BLKmode
11451 && !int_mode_for_size (bitsize
, 1).exists ());
11453 const enum expand_modifier tem_modifier
11456 : modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
;
11458 /* If TEM's type is a union of variable size, pass TARGET to the inner
11459 computation, since it will need a temporary and TARGET is known
11460 to have to do. This occurs in unchecked conversion in Ada. */
11461 const rtx tem_target
11462 = TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11463 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
11464 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
))) != INTEGER_CST
11465 && modifier
!= EXPAND_STACK_PARM
11470 = expand_expr_real (tem
, tem_target
, VOIDmode
, tem_modifier
, NULL
,
11473 /* If the field has a mode, we want to access it in the
11474 field's mode, not the computed mode.
11475 If a MEM has VOIDmode (external with incomplete type),
11476 use BLKmode for it instead. */
11479 if (mode1
!= VOIDmode
)
11480 op0
= adjust_address (op0
, mode1
, 0);
11481 else if (GET_MODE (op0
) == VOIDmode
)
11482 op0
= adjust_address (op0
, BLKmode
, 0);
11486 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
11488 /* See above for the rationale. */
11489 if (maybe_gt (bitpos
+ bitsize
, GET_MODE_BITSIZE (mode2
)))
11490 must_force_mem
= true;
11492 /* Handle CONCAT first. */
11493 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
11495 if (known_eq (bitpos
, 0)
11496 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
11497 && COMPLEX_MODE_P (mode1
)
11498 && COMPLEX_MODE_P (GET_MODE (op0
))
11499 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1
))
11500 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0
)))))
11503 op0
= flip_storage_order (GET_MODE (op0
), op0
);
11504 if (mode1
!= GET_MODE (op0
))
11507 for (int i
= 0; i
< 2; i
++)
11509 rtx op
= read_complex_part (op0
, i
!= 0);
11510 if (GET_CODE (op
) == SUBREG
)
11511 op
= force_reg (GET_MODE (op
), op
);
11512 temp
= gen_lowpart_common (GET_MODE_INNER (mode1
), op
);
11517 if (!REG_P (op
) && !MEM_P (op
))
11518 op
= force_reg (GET_MODE (op
), op
);
11519 op
= gen_lowpart (GET_MODE_INNER (mode1
), op
);
11523 op0
= gen_rtx_CONCAT (mode1
, parts
[0], parts
[1]);
11527 if (known_eq (bitpos
, 0)
11528 && known_eq (bitsize
,
11529 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
11530 && maybe_ne (bitsize
, 0))
11532 op0
= XEXP (op0
, 0);
11533 mode2
= GET_MODE (op0
);
11535 else if (known_eq (bitpos
,
11536 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
11537 && known_eq (bitsize
,
11538 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1))))
11539 && maybe_ne (bitpos
, 0)
11540 && maybe_ne (bitsize
, 0))
11542 op0
= XEXP (op0
, 1);
11544 mode2
= GET_MODE (op0
);
11547 /* Otherwise force into memory. */
11548 must_force_mem
= true;
11551 /* If this is a constant, put it in a register if it is a legitimate
11552 constant and we don't need a memory reference. */
11553 if (CONSTANT_P (op0
)
11554 && mode2
!= BLKmode
11555 && targetm
.legitimate_constant_p (mode2
, op0
)
11556 && !must_force_mem
)
11557 op0
= force_reg (mode2
, op0
);
11559 /* Otherwise, if this is a constant, try to force it to the constant
11560 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
11561 is a legitimate constant. */
11562 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
11563 op0
= validize_mem (memloc
);
11565 /* Otherwise, if this is a constant or the object is not in memory
11566 and need be, put it there. */
11567 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
11569 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
11570 emit_move_insn (memloc
, op0
);
11572 clear_mem_expr
= true;
11577 machine_mode address_mode
;
11578 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
11581 gcc_assert (MEM_P (op0
));
11583 address_mode
= get_address_mode (op0
);
11584 if (GET_MODE (offset_rtx
) != address_mode
)
11586 /* We cannot be sure that the RTL in offset_rtx is valid outside
11587 of a memory address context, so force it into a register
11588 before attempting to convert it to the desired mode. */
11589 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
11590 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
11593 /* See the comment in expand_assignment for the rationale. */
11594 if (mode1
!= VOIDmode
11595 && maybe_ne (bitpos
, 0)
11596 && maybe_gt (bitsize
, 0)
11597 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
11598 && multiple_p (bitpos
, bitsize
)
11599 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
11600 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
11602 op0
= adjust_address (op0
, mode1
, bytepos
);
11606 op0
= offset_address (op0
, offset_rtx
,
11607 highest_pow2_factor (offset
));
11610 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
11611 record its alignment as BIGGEST_ALIGNMENT. */
11613 && known_eq (bitpos
, 0)
11615 && is_aligning_offset (offset
, tem
))
11616 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
11618 /* Don't forget about volatility even if this is a bitfield. */
11619 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
11621 if (op0
== orig_op0
)
11622 op0
= copy_rtx (op0
);
11624 MEM_VOLATILE_P (op0
) = 1;
11627 if (MEM_P (op0
) && TREE_CODE (tem
) == FUNCTION_DECL
)
11629 if (op0
== orig_op0
)
11630 op0
= copy_rtx (op0
);
11632 set_mem_align (op0
, BITS_PER_UNIT
);
11635 /* In cases where an aligned union has an unaligned object
11636 as a field, we might be extracting a BLKmode value from
11637 an integer-mode (e.g., SImode) object. Handle this case
11638 by doing the extract into an object as wide as the field
11639 (which we know to be the width of a basic mode), then
11640 storing into memory, and changing the mode to BLKmode. */
11641 if (mode1
== VOIDmode
11642 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
11643 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
11644 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
11645 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
11646 && modifier
!= EXPAND_CONST_ADDRESS
11647 && modifier
!= EXPAND_INITIALIZER
11648 && modifier
!= EXPAND_MEMORY
)
11649 /* If the bitfield is volatile and the bitsize
11650 is narrower than the access size of the bitfield,
11651 we need to extract bitfields from the access. */
11652 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
11653 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
11654 && mode1
!= BLKmode
11655 && maybe_lt (bitsize
, GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
))
11656 /* If the field isn't aligned enough to fetch as a memref,
11657 fetch it as a bit field. */
11658 || (mode1
!= BLKmode
11660 ? MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
11661 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode1
))
11662 : TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
11663 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
11664 && modifier
!= EXPAND_MEMORY
11665 && ((modifier
== EXPAND_CONST_ADDRESS
11666 || modifier
== EXPAND_INITIALIZER
)
11668 : targetm
.slow_unaligned_access (mode1
,
11670 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
11671 /* If the type and the field are a constant size and the
11672 size of the type isn't the same size as the bitfield,
11673 we must use bitfield operations. */
11674 || (known_size_p (bitsize
)
11675 && TYPE_SIZE (TREE_TYPE (exp
))
11676 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
11677 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
11680 machine_mode ext_mode
= mode
;
11682 if (ext_mode
== BLKmode
11683 && ! (target
!= 0 && MEM_P (op0
)
11685 && multiple_p (bitpos
, BITS_PER_UNIT
)))
11686 ext_mode
= int_mode_for_size (bitsize
, 1).else_blk ();
11688 if (ext_mode
== BLKmode
)
11691 target
= assign_temp (type
, 1, 1);
11693 /* ??? Unlike the similar test a few lines below, this one is
11694 very likely obsolete. */
11695 if (known_eq (bitsize
, 0))
11698 /* In this case, BITPOS must start at a byte boundary and
11699 TARGET, if specified, must be a MEM. */
11700 gcc_assert (MEM_P (op0
)
11701 && (!target
|| MEM_P (target
)));
11703 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
11704 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
11705 emit_block_move (target
,
11706 adjust_address (op0
, VOIDmode
, bytepos
),
11707 gen_int_mode (bytesize
, Pmode
),
11708 (modifier
== EXPAND_STACK_PARM
11709 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
11714 /* If we have nothing to extract, the result will be 0 for targets
11715 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11716 return 0 for the sake of consistency, as reading a zero-sized
11717 bitfield is valid in Ada and the value is fully specified. */
11718 if (known_eq (bitsize
, 0))
11721 op0
= validize_mem (op0
);
11723 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
11724 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11726 /* If the result has aggregate type and the extraction is done in
11727 an integral mode, then the field may be not aligned on a byte
11728 boundary; in this case, if it has reverse storage order, it
11729 needs to be extracted as a scalar field with reverse storage
11730 order and put back into memory order afterwards. */
11731 if (AGGREGATE_TYPE_P (type
)
11732 && GET_MODE_CLASS (ext_mode
) == MODE_INT
)
11733 reversep
= TYPE_REVERSE_STORAGE_ORDER (type
);
11735 gcc_checking_assert (known_ge (bitpos
, 0));
11736 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
11737 (modifier
== EXPAND_STACK_PARM
11738 ? NULL_RTX
: target
),
11739 ext_mode
, ext_mode
, reversep
, alt_rtl
);
11741 /* If the result has aggregate type and the mode of OP0 is an
11742 integral mode then, if BITSIZE is narrower than this mode
11743 and this is for big-endian data, we must put the field
11744 into the high-order bits. And we must also put it back
11745 into memory order if it has been previously reversed. */
11746 scalar_int_mode op0_mode
;
11747 if (AGGREGATE_TYPE_P (type
)
11748 && is_int_mode (GET_MODE (op0
), &op0_mode
))
11750 HOST_WIDE_INT size
= GET_MODE_BITSIZE (op0_mode
);
11752 gcc_checking_assert (known_le (bitsize
, size
));
11753 if (maybe_lt (bitsize
, size
)
11754 && reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
11755 op0
= expand_shift (LSHIFT_EXPR
, op0_mode
, op0
,
11756 size
- bitsize
, op0
, 1);
11759 op0
= flip_storage_order (op0_mode
, op0
);
11762 /* If the result type is BLKmode, store the data into a temporary
11763 of the appropriate type, but with the mode corresponding to the
11764 mode for the data we have (op0's mode). */
11765 if (mode
== BLKmode
)
11768 = assign_stack_temp_for_type (ext_mode
,
11769 GET_MODE_BITSIZE (ext_mode
),
11771 emit_move_insn (new_rtx
, op0
);
11772 op0
= copy_rtx (new_rtx
);
11773 PUT_MODE (op0
, BLKmode
);
11779 /* If the result is BLKmode, use that to access the object
11781 if (mode
== BLKmode
)
11784 /* Get a reference to just this component. */
11785 bytepos
= bits_to_bytes_round_down (bitpos
);
11786 if (modifier
== EXPAND_CONST_ADDRESS
11787 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
11788 op0
= adjust_address_nv (op0
, mode1
, bytepos
);
11790 op0
= adjust_address (op0
, mode1
, bytepos
);
11792 if (op0
== orig_op0
)
11793 op0
= copy_rtx (op0
);
11795 /* Don't set memory attributes if the base expression is
11796 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11797 we should just honor its original memory attributes. */
11798 if (!(TREE_CODE (tem
) == SSA_NAME
11799 && (MEM_P (orig_op0
) || CONSTANT_P (orig_op0
))))
11800 set_mem_attributes (op0
, exp
, 0);
11802 if (REG_P (XEXP (op0
, 0)))
11803 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11805 /* If op0 is a temporary because the original expressions was forced
11806 to memory, clear MEM_EXPR so that the original expression cannot
11807 be marked as addressable through MEM_EXPR of the temporary. */
11808 if (clear_mem_expr
)
11809 set_mem_expr (op0
, NULL_TREE
);
11811 MEM_VOLATILE_P (op0
) |= volatilep
;
11814 && modifier
!= EXPAND_MEMORY
11815 && modifier
!= EXPAND_WRITE
)
11816 op0
= flip_storage_order (mode1
, op0
);
11818 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
11819 || modifier
== EXPAND_CONST_ADDRESS
11820 || modifier
== EXPAND_INITIALIZER
)
11824 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
11826 convert_move (target
, op0
, unsignedp
);
11831 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
11834 /* All valid uses of __builtin_va_arg_pack () are removed during
11836 if (CALL_EXPR_VA_ARG_PACK (exp
))
11837 error ("invalid use of %<__builtin_va_arg_pack ()%>");
11839 tree fndecl
= get_callee_fndecl (exp
), attr
;
11842 /* Don't diagnose the error attribute in thunks, those are
11843 artificially created. */
11844 && !CALL_FROM_THUNK_P (exp
)
11845 && (attr
= lookup_attribute ("error",
11846 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11848 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11849 error ("call to %qs declared with attribute error: %s",
11850 identifier_to_locale (ident
),
11851 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11854 /* Don't diagnose the warning attribute in thunks, those are
11855 artificially created. */
11856 && !CALL_FROM_THUNK_P (exp
)
11857 && (attr
= lookup_attribute ("warning",
11858 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11860 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11861 warning_at (EXPR_LOCATION (exp
),
11862 OPT_Wattribute_warning
,
11863 "call to %qs declared with attribute warning: %s",
11864 identifier_to_locale (ident
),
11865 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11868 /* Check for a built-in function. */
11869 if (fndecl
&& fndecl_built_in_p (fndecl
))
11871 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
11872 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
11875 return expand_call (exp
, target
, ignore
);
11877 case VIEW_CONVERT_EXPR
:
11880 /* If we are converting to BLKmode, try to avoid an intermediate
11881 temporary by fetching an inner memory reference. */
11882 if (mode
== BLKmode
11883 && poly_int_tree_p (TYPE_SIZE (type
))
11884 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
11885 && handled_component_p (treeop0
))
11887 machine_mode mode1
;
11888 poly_int64 bitsize
, bitpos
, bytepos
;
11890 int reversep
, volatilep
= 0;
11892 = get_inner_reference (treeop0
, &bitsize
, &bitpos
, &offset
, &mode1
,
11893 &unsignedp
, &reversep
, &volatilep
);
11895 /* ??? We should work harder and deal with non-zero offsets. */
11897 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
11899 && known_size_p (bitsize
)
11900 && known_eq (wi::to_poly_offset (TYPE_SIZE (type
)), bitsize
))
11902 /* See the normal_inner_ref case for the rationale. */
11904 = expand_expr_real (tem
,
11905 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11906 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
11908 && modifier
!= EXPAND_STACK_PARM
11909 ? target
: NULL_RTX
),
11911 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
11914 if (MEM_P (orig_op0
))
11918 /* Get a reference to just this component. */
11919 if (modifier
== EXPAND_CONST_ADDRESS
11920 || modifier
== EXPAND_SUM
11921 || modifier
== EXPAND_INITIALIZER
)
11922 op0
= adjust_address_nv (op0
, mode
, bytepos
);
11924 op0
= adjust_address (op0
, mode
, bytepos
);
11926 if (op0
== orig_op0
)
11927 op0
= copy_rtx (op0
);
11929 set_mem_attributes (op0
, treeop0
, 0);
11930 if (REG_P (XEXP (op0
, 0)))
11931 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11933 MEM_VOLATILE_P (op0
) |= volatilep
;
11939 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
11940 NULL
, inner_reference_p
);
11942 /* If the input and output modes are both the same, we are done. */
11943 if (mode
== GET_MODE (op0
))
11945 /* If neither mode is BLKmode, and both modes are the same size
11946 then we can use gen_lowpart. */
11947 else if (mode
!= BLKmode
11948 && GET_MODE (op0
) != BLKmode
11949 && known_eq (GET_MODE_PRECISION (mode
),
11950 GET_MODE_PRECISION (GET_MODE (op0
)))
11951 && !COMPLEX_MODE_P (GET_MODE (op0
)))
11953 if (GET_CODE (op0
) == SUBREG
)
11954 op0
= force_reg (GET_MODE (op0
), op0
);
11955 temp
= gen_lowpart_common (mode
, op0
);
11960 if (!REG_P (op0
) && !MEM_P (op0
))
11961 op0
= force_reg (GET_MODE (op0
), op0
);
11962 op0
= gen_lowpart (mode
, op0
);
11965 /* If both types are integral, convert from one mode to the other. */
11966 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
11967 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
11968 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
11969 /* If the output type is a bit-field type, do an extraction. */
11970 else if (reduce_bit_field
)
11971 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
11972 TYPE_UNSIGNED (type
), NULL_RTX
,
11973 mode
, mode
, false, NULL
);
11974 /* As a last resort, spill op0 to memory, and reload it in a
11976 else if (!MEM_P (op0
))
11978 /* If the operand is not a MEM, force it into memory. Since we
11979 are going to be changing the mode of the MEM, don't call
11980 force_const_mem for constants because we don't allow pool
11981 constants to change mode. */
11982 tree inner_type
= TREE_TYPE (treeop0
);
11984 gcc_assert (!TREE_ADDRESSABLE (exp
));
11986 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
11988 = assign_stack_temp_for_type
11989 (TYPE_MODE (inner_type
),
11990 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
11992 emit_move_insn (target
, op0
);
11996 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11997 output type is such that the operand is known to be aligned, indicate
11998 that it is. Otherwise, we need only be concerned about alignment for
11999 non-BLKmode results. */
12002 enum insn_code icode
;
12004 if (modifier
!= EXPAND_WRITE
12005 && modifier
!= EXPAND_MEMORY
12006 && !inner_reference_p
12008 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
12010 /* If the target does have special handling for unaligned
12011 loads of mode then use them. */
12012 if ((icode
= optab_handler (movmisalign_optab
, mode
))
12013 != CODE_FOR_nothing
)
12017 op0
= adjust_address (op0
, mode
, 0);
12018 /* We've already validated the memory, and we're creating a
12019 new pseudo destination. The predicates really can't
12021 reg
= gen_reg_rtx (mode
);
12023 /* Nor can the insn generator. */
12024 rtx_insn
*insn
= GEN_FCN (icode
) (reg
, op0
);
12028 else if (STRICT_ALIGNMENT
)
12030 poly_uint64 mode_size
= GET_MODE_SIZE (mode
);
12031 poly_uint64 temp_size
= mode_size
;
12032 if (GET_MODE (op0
) != BLKmode
)
12033 temp_size
= upper_bound (temp_size
,
12034 GET_MODE_SIZE (GET_MODE (op0
)));
12036 = assign_stack_temp_for_type (mode
, temp_size
, type
);
12037 rtx new_with_op0_mode
12038 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
12040 gcc_assert (!TREE_ADDRESSABLE (exp
));
12042 if (GET_MODE (op0
) == BLKmode
)
12044 rtx size_rtx
= gen_int_mode (mode_size
, Pmode
);
12045 emit_block_move (new_with_op0_mode
, op0
, size_rtx
,
12046 (modifier
== EXPAND_STACK_PARM
12047 ? BLOCK_OP_CALL_PARM
12048 : BLOCK_OP_NORMAL
));
12051 emit_move_insn (new_with_op0_mode
, op0
);
12057 op0
= adjust_address (op0
, mode
, 0);
12064 tree lhs
= treeop0
;
12065 tree rhs
= treeop1
;
12066 gcc_assert (ignore
);
12068 /* Check for |= or &= of a bitfield of size one into another bitfield
12069 of size 1. In this case, (unless we need the result of the
12070 assignment) we can do this more efficiently with a
12071 test followed by an assignment, if necessary.
12073 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12074 things change so we do, this code should be enhanced to
12076 if (TREE_CODE (lhs
) == COMPONENT_REF
12077 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
12078 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
12079 && TREE_OPERAND (rhs
, 0) == lhs
12080 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
12081 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
12082 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
12084 rtx_code_label
*label
= gen_label_rtx ();
12085 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
12086 profile_probability prob
= profile_probability::uninitialized ();
12088 jumpifnot (TREE_OPERAND (rhs
, 1), label
, prob
);
12090 jumpif (TREE_OPERAND (rhs
, 1), label
, prob
);
12091 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
12093 do_pending_stack_adjust ();
12094 emit_label (label
);
12098 expand_assignment (lhs
, rhs
, false);
12103 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
12105 case REALPART_EXPR
:
12106 op0
= expand_normal (treeop0
);
12107 return read_complex_part (op0
, false);
12109 case IMAGPART_EXPR
:
12110 op0
= expand_normal (treeop0
);
12111 return read_complex_part (op0
, true);
12118 /* Expanded in cfgexpand.cc. */
12119 gcc_unreachable ();
12121 case TRY_CATCH_EXPR
:
12123 case EH_FILTER_EXPR
:
12124 case TRY_FINALLY_EXPR
:
12126 /* Lowered by tree-eh.cc. */
12127 gcc_unreachable ();
12129 case WITH_CLEANUP_EXPR
:
12130 case CLEANUP_POINT_EXPR
:
12132 case CASE_LABEL_EXPR
:
12137 case COMPOUND_EXPR
:
12138 case PREINCREMENT_EXPR
:
12139 case PREDECREMENT_EXPR
:
12140 case POSTINCREMENT_EXPR
:
12141 case POSTDECREMENT_EXPR
:
12144 case COMPOUND_LITERAL_EXPR
:
12145 /* Lowered by gimplify.cc. */
12146 gcc_unreachable ();
12149 /* Function descriptors are not valid except for as
12150 initialization constants, and should not be expanded. */
12151 gcc_unreachable ();
12153 case WITH_SIZE_EXPR
:
12154 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12155 have pulled out the size to use in whatever context it needed. */
12156 return expand_expr_real (treeop0
, original_target
, tmode
,
12157 modifier
, alt_rtl
, inner_reference_p
);
12160 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
12164 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12165 signedness of TYPE), possibly returning the result in TARGET.
12166 TYPE is known to be a partial integer type. */
12168 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
12170 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
12171 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
12172 gcc_assert ((GET_MODE (exp
) == VOIDmode
|| GET_MODE (exp
) == mode
)
12173 && (!target
|| GET_MODE (target
) == mode
));
12175 /* For constant values, reduce using wide_int_to_tree. */
12176 if (poly_int_rtx_p (exp
))
12178 auto value
= wi::to_poly_wide (exp
, mode
);
12179 tree t
= wide_int_to_tree (type
, value
);
12180 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
12182 else if (TYPE_UNSIGNED (type
))
12184 rtx mask
= immed_wide_int_const
12185 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
12186 return expand_and (mode
, exp
, mask
, target
);
12190 int count
= GET_MODE_PRECISION (mode
) - prec
;
12191 exp
= expand_shift (LSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
12192 return expand_shift (RSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
12196 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
12197 when applied to the address of EXP produces an address known to be
12198 aligned more than BIGGEST_ALIGNMENT. */
12201 is_aligning_offset (const_tree offset
, const_tree exp
)
12203 /* Strip off any conversions. */
12204 while (CONVERT_EXPR_P (offset
))
12205 offset
= TREE_OPERAND (offset
, 0);
12207 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12208 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12209 if (TREE_CODE (offset
) != BIT_AND_EXPR
12210 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
12211 || compare_tree_int (TREE_OPERAND (offset
, 1),
12212 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
12213 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1))
12216 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12217 It must be NEGATE_EXPR. Then strip any more conversions. */
12218 offset
= TREE_OPERAND (offset
, 0);
12219 while (CONVERT_EXPR_P (offset
))
12220 offset
= TREE_OPERAND (offset
, 0);
12222 if (TREE_CODE (offset
) != NEGATE_EXPR
)
12225 offset
= TREE_OPERAND (offset
, 0);
12226 while (CONVERT_EXPR_P (offset
))
12227 offset
= TREE_OPERAND (offset
, 0);
12229 /* This must now be the address of EXP. */
12230 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
12233 /* Return a STRING_CST corresponding to ARG's constant initializer either
12234 if it's a string constant, or, when VALREP is set, any other constant,
12236 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12237 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12238 to the size of the byte string. If nonnull, set *DECL to the constant
12239 declaration ARG refers to. */
12242 constant_byte_string (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
,
12243 bool valrep
= false)
12245 tree dummy
= NULL_TREE
;
12249 /* Store the type of the original expression before conversions
12250 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12252 tree argtype
= TREE_TYPE (arg
);
12257 /* Non-constant index into the character array in an ARRAY_REF
12258 expression or null. */
12259 tree varidx
= NULL_TREE
;
12261 poly_int64 base_off
= 0;
12263 if (TREE_CODE (arg
) == ADDR_EXPR
)
12265 arg
= TREE_OPERAND (arg
, 0);
12267 if (TREE_CODE (arg
) == ARRAY_REF
)
12269 tree idx
= TREE_OPERAND (arg
, 1);
12270 if (TREE_CODE (idx
) != INTEGER_CST
)
12272 /* From a pointer (but not array) argument extract the variable
12273 index to prevent get_addr_base_and_unit_offset() from failing
12274 due to it. Use it later to compute the non-constant offset
12275 into the string and return it to the caller. */
12277 ref
= TREE_OPERAND (arg
, 0);
12279 if (TREE_CODE (TREE_TYPE (arg
)) == ARRAY_TYPE
)
12282 if (!integer_zerop (array_ref_low_bound (arg
)))
12285 if (!integer_onep (array_ref_element_size (arg
)))
12289 array
= get_addr_base_and_unit_offset (ref
, &base_off
);
12291 || (TREE_CODE (array
) != VAR_DECL
12292 && TREE_CODE (array
) != CONST_DECL
12293 && TREE_CODE (array
) != STRING_CST
))
12296 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
12298 tree arg0
= TREE_OPERAND (arg
, 0);
12299 tree arg1
= TREE_OPERAND (arg
, 1);
12302 tree str
= string_constant (arg0
, &offset
, mem_size
, decl
);
12305 str
= string_constant (arg1
, &offset
, mem_size
, decl
);
12311 /* Avoid pointers to arrays (see bug 86622). */
12312 if (POINTER_TYPE_P (TREE_TYPE (arg
))
12313 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg
))) == ARRAY_TYPE
12314 && !(decl
&& !*decl
)
12315 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
12316 && tree_fits_uhwi_p (*mem_size
)
12317 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
12320 tree type
= TREE_TYPE (offset
);
12321 arg1
= fold_convert (type
, arg1
);
12322 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, arg1
);
12327 else if (TREE_CODE (arg
) == SSA_NAME
)
12329 gimple
*stmt
= SSA_NAME_DEF_STMT (arg
);
12330 if (!is_gimple_assign (stmt
))
12333 tree rhs1
= gimple_assign_rhs1 (stmt
);
12334 tree_code code
= gimple_assign_rhs_code (stmt
);
12335 if (code
== ADDR_EXPR
)
12336 return string_constant (rhs1
, ptr_offset
, mem_size
, decl
);
12337 else if (code
!= POINTER_PLUS_EXPR
)
12341 if (tree str
= string_constant (rhs1
, &offset
, mem_size
, decl
))
12343 /* Avoid pointers to arrays (see bug 86622). */
12344 if (POINTER_TYPE_P (TREE_TYPE (rhs1
))
12345 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1
))) == ARRAY_TYPE
12346 && !(decl
&& !*decl
)
12347 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
12348 && tree_fits_uhwi_p (*mem_size
)
12349 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
12352 tree rhs2
= gimple_assign_rhs2 (stmt
);
12353 tree type
= TREE_TYPE (offset
);
12354 rhs2
= fold_convert (type
, rhs2
);
12355 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, rhs2
);
12360 else if (DECL_P (arg
))
12365 tree offset
= wide_int_to_tree (sizetype
, base_off
);
12368 if (TREE_CODE (TREE_TYPE (array
)) != ARRAY_TYPE
)
12371 gcc_assert (TREE_CODE (arg
) == ARRAY_REF
);
12372 tree chartype
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg
, 0)));
12373 if (TREE_CODE (chartype
) != INTEGER_TYPE
)
12376 offset
= fold_convert (sizetype
, varidx
);
12379 if (TREE_CODE (array
) == STRING_CST
)
12381 *ptr_offset
= fold_convert (sizetype
, offset
);
12382 *mem_size
= TYPE_SIZE_UNIT (TREE_TYPE (array
));
12385 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array
)))
12386 >= TREE_STRING_LENGTH (array
));
12390 tree init
= ctor_for_folding (array
);
12391 if (!init
|| init
== error_mark_node
)
12396 HOST_WIDE_INT cstoff
;
12397 if (!base_off
.is_constant (&cstoff
))
12400 /* Check that the host and target are sane. */
12401 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
12404 HOST_WIDE_INT typesz
= int_size_in_bytes (TREE_TYPE (init
));
12405 if (typesz
<= 0 || (int) typesz
!= typesz
)
12408 HOST_WIDE_INT size
= typesz
;
12410 && DECL_SIZE_UNIT (array
)
12411 && tree_fits_shwi_p (DECL_SIZE_UNIT (array
)))
12413 size
= tree_to_shwi (DECL_SIZE_UNIT (array
));
12414 gcc_checking_assert (size
>= typesz
);
12417 /* If value representation was requested convert the initializer
12418 for the whole array or object into a string of bytes forming
12419 its value representation and return it. */
12420 unsigned char *bytes
= XNEWVEC (unsigned char, size
);
12421 int r
= native_encode_initializer (init
, bytes
, size
);
12424 XDELETEVEC (bytes
);
12429 memset (bytes
+ r
, '\0', size
- r
);
12431 const char *p
= reinterpret_cast<const char *>(bytes
);
12432 init
= build_string_literal (size
, p
, char_type_node
);
12433 init
= TREE_OPERAND (init
, 0);
12434 init
= TREE_OPERAND (init
, 0);
12437 *mem_size
= size_int (TREE_STRING_LENGTH (init
));
12438 *ptr_offset
= wide_int_to_tree (ssizetype
, base_off
);
12446 if (TREE_CODE (init
) == CONSTRUCTOR
)
12448 /* Convert the 64-bit constant offset to a wider type to avoid
12449 overflow and use it to obtain the initializer for the subobject
12452 if (!base_off
.is_constant (&wioff
))
12455 wioff
*= BITS_PER_UNIT
;
12456 if (!wi::fits_uhwi_p (wioff
))
12459 base_off
= wioff
.to_uhwi ();
12460 unsigned HOST_WIDE_INT fieldoff
= 0;
12461 init
= fold_ctor_reference (TREE_TYPE (arg
), init
, base_off
, 0, array
,
12463 if (!init
|| init
== error_mark_node
)
12466 HOST_WIDE_INT cstoff
;
12467 if (!base_off
.is_constant (&cstoff
))
12470 cstoff
= (cstoff
- fieldoff
) / BITS_PER_UNIT
;
12471 tree off
= build_int_cst (sizetype
, cstoff
);
12473 offset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
, off
);
12478 *ptr_offset
= offset
;
12480 tree inittype
= TREE_TYPE (init
);
12482 if (TREE_CODE (init
) == INTEGER_CST
12483 && (TREE_CODE (TREE_TYPE (array
)) == INTEGER_TYPE
12484 || TYPE_MAIN_VARIANT (inittype
) == char_type_node
))
12486 /* Check that the host and target are sane. */
12487 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
12490 /* For a reference to (address of) a single constant character,
12491 store the native representation of the character in CHARBUF.
12492 If the reference is to an element of an array or a member
12493 of a struct, only consider narrow characters until ctors
12494 for wide character arrays are transformed to STRING_CSTs
12495 like those for narrow arrays. */
12496 unsigned char charbuf
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
12497 int len
= native_encode_expr (init
, charbuf
, sizeof charbuf
, 0);
12500 /* Construct a string literal with elements of INITTYPE and
12501 the representation above. Then strip
12502 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12503 init
= build_string_literal (len
, (char *)charbuf
, inittype
);
12504 init
= TREE_OPERAND (TREE_OPERAND (init
, 0), 0);
12508 tree initsize
= TYPE_SIZE_UNIT (inittype
);
12510 if (TREE_CODE (init
) == CONSTRUCTOR
&& initializer_zerop (init
))
12512 /* Fold an empty/zero constructor for an implicitly initialized
12513 object or subobject into the empty string. */
12515 /* Determine the character type from that of the original
12517 tree chartype
= argtype
;
12518 if (POINTER_TYPE_P (chartype
))
12519 chartype
= TREE_TYPE (chartype
);
12520 while (TREE_CODE (chartype
) == ARRAY_TYPE
)
12521 chartype
= TREE_TYPE (chartype
);
12523 if (INTEGRAL_TYPE_P (chartype
)
12524 && TYPE_PRECISION (chartype
) == TYPE_PRECISION (char_type_node
))
12526 /* Convert a char array to an empty STRING_CST having an array
12527 of the expected type and size. */
12529 initsize
= integer_zero_node
;
12531 unsigned HOST_WIDE_INT size
= tree_to_uhwi (initsize
);
12532 if (size
> (unsigned HOST_WIDE_INT
) INT_MAX
)
12535 init
= build_string_literal (size
, NULL
, chartype
, size
);
12536 init
= TREE_OPERAND (init
, 0);
12537 init
= TREE_OPERAND (init
, 0);
12539 *ptr_offset
= integer_zero_node
;
12546 if (TREE_CODE (init
) != STRING_CST
)
12549 *mem_size
= initsize
;
12551 gcc_checking_assert (tree_to_shwi (initsize
) >= TREE_STRING_LENGTH (init
));
12556 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12557 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12558 non-constant) offset in bytes within the string that ARG is accessing.
12559 If MEM_SIZE is non-zero the storage size of the memory is returned.
12560 If DECL is non-zero the constant declaration is returned if available. */
12563 string_constant (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
12565 return constant_byte_string (arg
, ptr_offset
, mem_size
, decl
, false);
12568 /* Similar to string_constant, return a STRING_CST corresponding
12569 to the value representation of the first argument if it's
12573 byte_representation (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
12575 return constant_byte_string (arg
, ptr_offset
, mem_size
, decl
, true);
12578 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
12579 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
12580 for C2 > 0 to x & C3 == C2
12581 for C2 < 0 to x & C3 == (C2 & C3). */
12583 maybe_optimize_pow2p_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
12585 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
12586 tree treeop0
= gimple_assign_rhs1 (stmt
);
12587 tree treeop1
= gimple_assign_rhs2 (stmt
);
12588 tree type
= TREE_TYPE (*arg0
);
12589 scalar_int_mode mode
;
12590 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
12592 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
12593 || TYPE_PRECISION (type
) <= 1
12594 || TYPE_UNSIGNED (type
)
12595 /* Signed x % c == 0 should have been optimized into unsigned modulo
12597 || integer_zerop (*arg1
)
12598 /* If c is known to be non-negative, modulo will be expanded as unsigned
12600 || get_range_pos_neg (treeop0
) == 1)
12603 /* x % c == d where d < 0 && d <= -c should be always false. */
12604 if (tree_int_cst_sgn (*arg1
) == -1
12605 && -wi::to_widest (treeop1
) >= wi::to_widest (*arg1
))
12608 int prec
= TYPE_PRECISION (type
);
12609 wide_int w
= wi::to_wide (treeop1
) - 1;
12610 w
|= wi::shifted_mask (0, prec
- 1, true, prec
);
12611 tree c3
= wide_int_to_tree (type
, w
);
12613 if (tree_int_cst_sgn (*arg1
) == -1)
12614 c4
= wide_int_to_tree (type
, w
& wi::to_wide (*arg1
));
12616 rtx op0
= expand_normal (treeop0
);
12617 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
12619 bool speed_p
= optimize_insn_for_speed_p ();
12621 do_pending_stack_adjust ();
12623 location_t loc
= gimple_location (stmt
);
12624 struct separate_ops ops
;
12625 ops
.code
= TRUNC_MOD_EXPR
;
12626 ops
.location
= loc
;
12627 ops
.type
= TREE_TYPE (treeop0
);
12630 ops
.op2
= NULL_TREE
;
12632 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
12634 rtx_insn
*moinsns
= get_insns ();
12637 unsigned mocost
= seq_cost (moinsns
, speed_p
);
12638 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
12639 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
12641 ops
.code
= BIT_AND_EXPR
;
12642 ops
.location
= loc
;
12643 ops
.type
= TREE_TYPE (treeop0
);
12646 ops
.op2
= NULL_TREE
;
12648 rtx mur
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
12650 rtx_insn
*muinsns
= get_insns ();
12653 unsigned mucost
= seq_cost (muinsns
, speed_p
);
12654 mucost
+= rtx_cost (mur
, mode
, EQ
, 0, speed_p
);
12655 mucost
+= rtx_cost (expand_normal (c4
), mode
, EQ
, 1, speed_p
);
12657 if (mocost
<= mucost
)
12659 emit_insn (moinsns
);
12660 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
12664 emit_insn (muinsns
);
12665 *arg0
= make_tree (TREE_TYPE (*arg0
), mur
);
12670 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
12672 (X - C2) * C3 <= C4 (or >), where
12673 C3 is modular multiplicative inverse of C1 and 1<<prec and
12674 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
12675 if C2 > ((1<<prec) - 1) % C1).
12676 If C1 is even, S = ctz (C1) and C2 is 0, use
12677 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
12678 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
12680 For signed (X % C1) == 0 if C1 is odd to (all operations in it
12682 (X * C3) + C4 <= 2 * C4, where
12683 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12684 C4 is ((1<<(prec - 1) - 1) / C1).
12685 If C1 is even, S = ctz(C1), use
12686 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12687 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12688 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12690 See the Hacker's Delight book, section 10-17. */
12692 maybe_optimize_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
12694 gcc_checking_assert (code
== EQ_EXPR
|| code
== NE_EXPR
);
12695 gcc_checking_assert (TREE_CODE (*arg1
) == INTEGER_CST
);
12700 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
12704 tree treeop0
= gimple_assign_rhs1 (stmt
);
12705 tree treeop1
= gimple_assign_rhs2 (stmt
);
12706 if (TREE_CODE (treeop0
) != SSA_NAME
12707 || TREE_CODE (treeop1
) != INTEGER_CST
12708 /* Don't optimize the undefined behavior case x % 0;
12709 x % 1 should have been optimized into zero, punt if
12710 it makes it here for whatever reason;
12711 x % -c should have been optimized into x % c. */
12712 || compare_tree_int (treeop1
, 2) <= 0
12713 /* Likewise x % c == d where d >= c should be always false. */
12714 || tree_int_cst_le (treeop1
, *arg1
))
12717 /* Unsigned x % pow2 is handled right already, for signed
12718 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12719 if (integer_pow2p (treeop1
))
12720 return maybe_optimize_pow2p_mod_cmp (code
, arg0
, arg1
);
12722 tree type
= TREE_TYPE (*arg0
);
12723 scalar_int_mode mode
;
12724 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
12726 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
12727 || TYPE_PRECISION (type
) <= 1)
12730 signop sgn
= UNSIGNED
;
12731 /* If both operands are known to have the sign bit clear, handle
12732 even the signed modulo case as unsigned. treeop1 is always
12733 positive >= 2, checked above. */
12734 if (!TYPE_UNSIGNED (type
) && get_range_pos_neg (treeop0
) != 1)
12737 if (!TYPE_UNSIGNED (type
))
12739 if (tree_int_cst_sgn (*arg1
) == -1)
12741 type
= unsigned_type_for (type
);
12742 if (!type
|| TYPE_MODE (type
) != TYPE_MODE (TREE_TYPE (*arg0
)))
12746 int prec
= TYPE_PRECISION (type
);
12747 wide_int w
= wi::to_wide (treeop1
);
12748 int shift
= wi::ctz (w
);
12749 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12750 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12751 If C1 is odd, we can handle all cases by subtracting
12752 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12753 e.g. by testing for overflow on the subtraction, punt on that for now
12755 if ((sgn
== SIGNED
|| shift
) && !integer_zerop (*arg1
))
12759 wide_int x
= wi::umod_trunc (wi::mask (prec
, false, prec
), w
);
12760 if (wi::gtu_p (wi::to_wide (*arg1
), x
))
12764 imm_use_iterator imm_iter
;
12765 use_operand_p use_p
;
12766 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, treeop0
)
12768 gimple
*use_stmt
= USE_STMT (use_p
);
12769 /* Punt if treeop0 is used in the same bb in a division
12770 or another modulo with the same divisor. We should expect
12771 the division and modulo combined together. */
12772 if (use_stmt
== stmt
12773 || gimple_bb (use_stmt
) != gimple_bb (stmt
))
12775 if (!is_gimple_assign (use_stmt
)
12776 || (gimple_assign_rhs_code (use_stmt
) != TRUNC_DIV_EXPR
12777 && gimple_assign_rhs_code (use_stmt
) != TRUNC_MOD_EXPR
))
12779 if (gimple_assign_rhs1 (use_stmt
) != treeop0
12780 || !operand_equal_p (gimple_assign_rhs2 (use_stmt
), treeop1
, 0))
12785 w
= wi::lrshift (w
, shift
);
12786 wide_int a
= wide_int::from (w
, prec
+ 1, UNSIGNED
);
12787 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
12788 wide_int m
= wide_int::from (wi::mod_inv (a
, b
), prec
, UNSIGNED
);
12789 tree c3
= wide_int_to_tree (type
, m
);
12790 tree c5
= NULL_TREE
;
12792 if (sgn
== UNSIGNED
)
12794 d
= wi::divmod_trunc (wi::mask (prec
, false, prec
), w
, UNSIGNED
, &e
);
12795 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12796 otherwise use < or subtract one from C4. E.g. for
12797 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12798 x % 3U == 1 already needs to be
12799 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12800 if (!shift
&& wi::gtu_p (wi::to_wide (*arg1
), e
))
12803 d
= wi::lrshift (d
, shift
);
12807 e
= wi::udiv_trunc (wi::mask (prec
- 1, false, prec
), w
);
12809 d
= wi::lshift (e
, 1);
12812 e
= wi::bit_and (e
, wi::mask (shift
, true, prec
));
12813 d
= wi::lrshift (e
, shift
- 1);
12815 c5
= wide_int_to_tree (type
, e
);
12817 tree c4
= wide_int_to_tree (type
, d
);
12819 rtx op0
= expand_normal (treeop0
);
12820 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
12822 bool speed_p
= optimize_insn_for_speed_p ();
12824 do_pending_stack_adjust ();
12826 location_t loc
= gimple_location (stmt
);
12827 struct separate_ops ops
;
12828 ops
.code
= TRUNC_MOD_EXPR
;
12829 ops
.location
= loc
;
12830 ops
.type
= TREE_TYPE (treeop0
);
12833 ops
.op2
= NULL_TREE
;
12835 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
12837 rtx_insn
*moinsns
= get_insns ();
12840 unsigned mocost
= seq_cost (moinsns
, speed_p
);
12841 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
12842 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
12844 tree t
= fold_convert_loc (loc
, type
, treeop0
);
12845 if (!integer_zerop (*arg1
))
12846 t
= fold_build2_loc (loc
, MINUS_EXPR
, type
, t
, fold_convert (type
, *arg1
));
12847 t
= fold_build2_loc (loc
, MULT_EXPR
, type
, t
, c3
);
12849 t
= fold_build2_loc (loc
, PLUS_EXPR
, type
, t
, c5
);
12852 tree s
= build_int_cst (NULL_TREE
, shift
);
12853 t
= fold_build2_loc (loc
, RROTATE_EXPR
, type
, t
, s
);
12857 rtx mur
= expand_normal (t
);
12858 rtx_insn
*muinsns
= get_insns ();
12861 unsigned mucost
= seq_cost (muinsns
, speed_p
);
12862 mucost
+= rtx_cost (mur
, mode
, LE
, 0, speed_p
);
12863 mucost
+= rtx_cost (expand_normal (c4
), mode
, LE
, 1, speed_p
);
12865 if (mocost
<= mucost
)
12867 emit_insn (moinsns
);
12868 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
12872 emit_insn (muinsns
);
12873 *arg0
= make_tree (type
, mur
);
12875 return code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
12878 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
12881 maybe_optimize_sub_cmp_0 (enum tree_code code
, tree
*arg0
, tree
*arg1
)
12883 gcc_checking_assert (code
== GT_EXPR
|| code
== GE_EXPR
12884 || code
== LT_EXPR
|| code
== LE_EXPR
);
12885 gcc_checking_assert (integer_zerop (*arg1
));
12890 gimple
*stmt
= get_def_for_expr (*arg0
, MINUS_EXPR
);
12894 tree treeop0
= gimple_assign_rhs1 (stmt
);
12895 tree treeop1
= gimple_assign_rhs2 (stmt
);
12896 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0
)))
12899 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON
))
12900 warning_at (gimple_location (stmt
), OPT_Wstrict_overflow
,
12901 "assuming signed overflow does not occur when "
12902 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
12903 op_symbol_code (code
), op_symbol_code (code
));
12909 /* Generate code to calculate OPS, and exploded expression
12910 using a store-flag instruction and return an rtx for the result.
12911 OPS reflects a comparison.
12913 If TARGET is nonzero, store the result there if convenient.
12915 Return zero if there is no suitable set-flag instruction
12916 available on this machine.
12918 Once expand_expr has been called on the arguments of the comparison,
12919 we are committed to doing the store flag, since it is not safe to
12920 re-evaluate the expression. We emit the store-flag insn by calling
12921 emit_store_flag, but only expand the arguments if we have a reason
12922 to believe that emit_store_flag will be successful. If we think that
12923 it will, but it isn't, we have to simulate the store-flag with a
12924 set/jump/set sequence. */
12927 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
12929 enum rtx_code code
;
12930 tree arg0
, arg1
, type
;
12931 machine_mode operand_mode
;
12934 rtx subtarget
= target
;
12935 location_t loc
= ops
->location
;
12940 /* Don't crash if the comparison was erroneous. */
12941 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
12944 type
= TREE_TYPE (arg0
);
12945 operand_mode
= TYPE_MODE (type
);
12946 unsignedp
= TYPE_UNSIGNED (type
);
12948 /* We won't bother with BLKmode store-flag operations because it would mean
12949 passing a lot of information to emit_store_flag. */
12950 if (operand_mode
== BLKmode
)
12953 /* We won't bother with store-flag operations involving function pointers
12954 when function pointers must be canonicalized before comparisons. */
12955 if (targetm
.have_canonicalize_funcptr_for_compare ()
12956 && ((POINTER_TYPE_P (TREE_TYPE (arg0
))
12957 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0
))))
12958 || (POINTER_TYPE_P (TREE_TYPE (arg1
))
12959 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1
))))))
12965 /* For vector typed comparisons emit code to generate the desired
12966 all-ones or all-zeros mask. */
12967 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
12969 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
12970 if (VECTOR_BOOLEAN_TYPE_P (ops
->type
)
12971 && expand_vec_cmp_expr_p (TREE_TYPE (arg0
), ops
->type
, ops
->code
))
12972 return expand_vec_cmp_expr (ops
->type
, ifexp
, target
);
12974 gcc_unreachable ();
12977 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12978 into (x - C2) * C3 < C4. */
12979 if ((ops
->code
== EQ_EXPR
|| ops
->code
== NE_EXPR
)
12980 && TREE_CODE (arg0
) == SSA_NAME
12981 && TREE_CODE (arg1
) == INTEGER_CST
)
12983 enum tree_code new_code
= maybe_optimize_mod_cmp (ops
->code
,
12985 if (new_code
!= ops
->code
)
12987 struct separate_ops nops
= *ops
;
12988 nops
.code
= ops
->code
= new_code
;
12991 nops
.type
= TREE_TYPE (arg0
);
12992 return do_store_flag (&nops
, target
, mode
);
12996 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
12998 && (ops
->code
== LT_EXPR
|| ops
->code
== LE_EXPR
12999 || ops
->code
== GT_EXPR
|| ops
->code
== GE_EXPR
)
13000 && integer_zerop (arg1
)
13001 && TREE_CODE (arg0
) == SSA_NAME
)
13002 maybe_optimize_sub_cmp_0 (ops
->code
, &arg0
, &arg1
);
13004 /* Get the rtx comparison code to use. We know that EXP is a comparison
13005 operation of some type. Some comparisons against 1 and -1 can be
13006 converted to comparisons with zero. Do so here so that the tests
13007 below will be aware that we have a comparison with zero. These
13008 tests will not catch constants in the first operand, but constants
13009 are rarely passed as the first operand. */
13020 if (integer_onep (arg1
))
13021 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
13023 code
= unsignedp
? LTU
: LT
;
13026 if (! unsignedp
&& integer_all_onesp (arg1
))
13027 arg1
= integer_zero_node
, code
= LT
;
13029 code
= unsignedp
? LEU
: LE
;
13032 if (! unsignedp
&& integer_all_onesp (arg1
))
13033 arg1
= integer_zero_node
, code
= GE
;
13035 code
= unsignedp
? GTU
: GT
;
13038 if (integer_onep (arg1
))
13039 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
13041 code
= unsignedp
? GEU
: GE
;
13044 case UNORDERED_EXPR
:
13070 gcc_unreachable ();
13073 /* Put a constant second. */
13074 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
13075 || TREE_CODE (arg0
) == FIXED_CST
)
13077 std::swap (arg0
, arg1
);
13078 code
= swap_condition (code
);
13081 /* If this is an equality or inequality test of a single bit, we can
13082 do this by shifting the bit being tested to the low-order bit and
13083 masking the result with the constant 1. If the condition was EQ,
13084 we xor it with 1. This does not require an scc insn and is faster
13085 than an scc insn even if we have it.
13087 The code to make this transformation was moved into fold_single_bit_test,
13088 so we just call into the folder and expand its result. */
13090 if ((code
== NE
|| code
== EQ
)
13091 && integer_zerop (arg1
)
13092 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
13094 gimple
*srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
13096 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
13098 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
13099 type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
13100 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
13101 gimple_assign_rhs1 (srcstmt
),
13102 gimple_assign_rhs2 (srcstmt
));
13103 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
13105 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
13109 if (! get_subtarget (target
)
13110 || GET_MODE (subtarget
) != operand_mode
)
13113 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
13116 target
= gen_reg_rtx (mode
);
13118 /* Try a cstore if possible. */
13119 return emit_store_flag_force (target
, code
, op0
, op1
,
13120 operand_mode
, unsignedp
,
13121 (TYPE_PRECISION (ops
->type
) == 1
13122 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
13125 /* Attempt to generate a casesi instruction. Returns 1 if successful,
13126 0 otherwise (i.e. if there is no casesi instruction).
13128 DEFAULT_PROBABILITY is the probability of jumping to the default
13131 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
13132 rtx table_label
, rtx default_label
, rtx fallback_label
,
13133 profile_probability default_probability
)
13135 class expand_operand ops
[5];
13136 scalar_int_mode index_mode
= SImode
;
13137 rtx op1
, op2
, index
;
13139 if (! targetm
.have_casesi ())
13142 /* The index must be some form of integer. Convert it to SImode. */
13143 scalar_int_mode omode
= SCALAR_INT_TYPE_MODE (index_type
);
13144 if (GET_MODE_BITSIZE (omode
) > GET_MODE_BITSIZE (index_mode
))
13146 rtx rangertx
= expand_normal (range
);
13148 /* We must handle the endpoints in the original mode. */
13149 index_expr
= build2 (MINUS_EXPR
, index_type
,
13150 index_expr
, minval
);
13151 minval
= integer_zero_node
;
13152 index
= expand_normal (index_expr
);
13154 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
13155 omode
, 1, default_label
,
13156 default_probability
);
13157 /* Now we can safely truncate. */
13158 index
= convert_to_mode (index_mode
, index
, 0);
13162 if (omode
!= index_mode
)
13164 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
13165 index_expr
= fold_convert (index_type
, index_expr
);
13168 index
= expand_normal (index_expr
);
13171 do_pending_stack_adjust ();
13173 op1
= expand_normal (minval
);
13174 op2
= expand_normal (range
);
13176 create_input_operand (&ops
[0], index
, index_mode
);
13177 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
13178 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
13179 create_fixed_operand (&ops
[3], table_label
);
13180 create_fixed_operand (&ops
[4], (default_label
13182 : fallback_label
));
13183 expand_jump_insn (targetm
.code_for_casesi
, 5, ops
);
13187 /* Attempt to generate a tablejump instruction; same concept. */
13188 /* Subroutine of the next function.
13190 INDEX is the value being switched on, with the lowest value
13191 in the table already subtracted.
13192 MODE is its expected mode (needed if INDEX is constant).
13193 RANGE is the length of the jump table.
13194 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13196 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13197 index value is out of range.
13198 DEFAULT_PROBABILITY is the probability of jumping to
13199 the default label. */
13202 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
13203 rtx default_label
, profile_probability default_probability
)
13207 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
13208 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
13210 /* Do an unsigned comparison (in the proper mode) between the index
13211 expression and the value which represents the length of the range.
13212 Since we just finished subtracting the lower bound of the range
13213 from the index expression, this comparison allows us to simultaneously
13214 check that the original index expression value is both greater than
13215 or equal to the minimum value of the range and less than or equal to
13216 the maximum value of the range. */
13219 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
13220 default_label
, default_probability
);
13222 /* If index is in range, it must fit in Pmode.
13223 Convert to Pmode so we can index with it. */
13226 unsigned int width
;
13228 /* We know the value of INDEX is between 0 and RANGE. If we have a
13229 sign-extended subreg, and RANGE does not have the sign bit set, then
13230 we have a value that is valid for both sign and zero extension. In
13231 this case, we get better code if we sign extend. */
13232 if (GET_CODE (index
) == SUBREG
13233 && SUBREG_PROMOTED_VAR_P (index
)
13234 && SUBREG_PROMOTED_SIGNED_P (index
)
13235 && ((width
= GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
)))
13236 <= HOST_BITS_PER_WIDE_INT
)
13237 && ! (UINTVAL (range
) & (HOST_WIDE_INT_1U
<< (width
- 1))))
13238 index
= convert_to_mode (Pmode
, index
, 0);
13240 index
= convert_to_mode (Pmode
, index
, 1);
13243 /* Don't let a MEM slip through, because then INDEX that comes
13244 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13245 and break_out_memory_refs will go to work on it and mess it up. */
13246 #ifdef PIC_CASE_VECTOR_ADDRESS
13247 if (flag_pic
&& !REG_P (index
))
13248 index
= copy_to_mode_reg (Pmode
, index
);
13251 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13252 GET_MODE_SIZE, because this indicates how large insns are. The other
13253 uses should all be Pmode, because they are addresses. This code
13254 could fail if addresses and insns are not the same size. */
13255 index
= simplify_gen_binary (MULT
, Pmode
, index
,
13256 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
13258 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
13259 gen_rtx_LABEL_REF (Pmode
, table_label
));
13261 #ifdef PIC_CASE_VECTOR_ADDRESS
13263 index
= PIC_CASE_VECTOR_ADDRESS (index
);
13266 index
= memory_address (CASE_VECTOR_MODE
, index
);
13267 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
13268 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
13269 convert_move (temp
, vector
, 0);
13271 emit_jump_insn (targetm
.gen_tablejump (temp
, table_label
));
13273 /* If we are generating PIC code or if the table is PC-relative, the
13274 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13275 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
13280 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
13281 rtx table_label
, rtx default_label
,
13282 profile_probability default_probability
)
13286 if (! targetm
.have_tablejump ())
13289 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
13290 fold_convert (index_type
, index_expr
),
13291 fold_convert (index_type
, minval
));
13292 index
= expand_normal (index_expr
);
13293 do_pending_stack_adjust ();
13295 do_tablejump (index
, TYPE_MODE (index_type
),
13296 convert_modes (TYPE_MODE (index_type
),
13297 TYPE_MODE (TREE_TYPE (range
)),
13298 expand_normal (range
),
13299 TYPE_UNSIGNED (TREE_TYPE (range
))),
13300 table_label
, default_label
, default_probability
);
13304 /* Return a CONST_VECTOR rtx representing vector mask for
13305 a VECTOR_CST of booleans. */
13307 const_vector_mask_from_tree (tree exp
)
13309 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
13310 machine_mode inner
= GET_MODE_INNER (mode
);
13312 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
13313 VECTOR_CST_NELTS_PER_PATTERN (exp
));
13314 unsigned int count
= builder
.encoded_nelts ();
13315 for (unsigned int i
= 0; i
< count
; ++i
)
13317 tree elt
= VECTOR_CST_ELT (exp
, i
);
13318 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
13319 if (integer_zerop (elt
))
13320 builder
.quick_push (CONST0_RTX (inner
));
13321 else if (integer_onep (elt
)
13322 || integer_minus_onep (elt
))
13323 builder
.quick_push (CONSTM1_RTX (inner
));
13325 gcc_unreachable ();
13327 return builder
.build ();
13330 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13332 const_vector_from_tree (tree exp
)
13334 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
13336 if (initializer_zerop (exp
))
13337 return CONST0_RTX (mode
);
13339 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
13340 return const_vector_mask_from_tree (exp
);
13342 machine_mode inner
= GET_MODE_INNER (mode
);
13344 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
13345 VECTOR_CST_NELTS_PER_PATTERN (exp
));
13346 unsigned int count
= builder
.encoded_nelts ();
13347 for (unsigned int i
= 0; i
< count
; ++i
)
13349 tree elt
= VECTOR_CST_ELT (exp
, i
);
13350 if (TREE_CODE (elt
) == REAL_CST
)
13351 builder
.quick_push (const_double_from_real_value (TREE_REAL_CST (elt
),
13353 else if (TREE_CODE (elt
) == FIXED_CST
)
13354 builder
.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
13357 builder
.quick_push (immed_wide_int_const (wi::to_poly_wide (elt
),
13360 return builder
.build ();
13363 /* Build a decl for a personality function given a language prefix. */
13366 build_personality_function (const char *lang
)
13368 const char *unwind_and_version
;
13372 switch (targetm_common
.except_unwind_info (&global_options
))
13377 unwind_and_version
= "_sj0";
13381 unwind_and_version
= "_v0";
13384 unwind_and_version
= "_seh0";
13387 gcc_unreachable ();
13390 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
13392 type
= build_function_type_list (unsigned_type_node
,
13393 integer_type_node
, integer_type_node
,
13394 long_long_unsigned_type_node
,
13395 ptr_type_node
, ptr_type_node
, NULL_TREE
);
13396 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
13397 get_identifier (name
), type
);
13398 DECL_ARTIFICIAL (decl
) = 1;
13399 DECL_EXTERNAL (decl
) = 1;
13400 TREE_PUBLIC (decl
) = 1;
13402 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13403 are the flags assigned by targetm.encode_section_info. */
13404 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
13409 /* Extracts the personality function of DECL and returns the corresponding
13413 get_personality_function (tree decl
)
13415 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
13416 enum eh_personality_kind pk
;
13418 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
13419 if (pk
== eh_personality_none
)
13423 && pk
== eh_personality_any
)
13424 personality
= lang_hooks
.eh_personality ();
13426 if (pk
== eh_personality_lang
)
13427 gcc_assert (personality
!= NULL_TREE
);
13429 return XEXP (DECL_RTL (personality
), 0);
13432 /* Returns a tree for the size of EXP in bytes. */
13435 tree_expr_size (const_tree exp
)
13438 && DECL_SIZE_UNIT (exp
) != 0)
13439 return DECL_SIZE_UNIT (exp
);
13441 return size_in_bytes (TREE_TYPE (exp
));
13444 /* Return an rtx for the size in bytes of the value of EXP. */
13447 expr_size (tree exp
)
13451 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
13452 size
= TREE_OPERAND (exp
, 1);
13455 size
= tree_expr_size (exp
);
13457 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
13460 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
13463 /* Return a wide integer for the size in bytes of the value of EXP, or -1
13464 if the size can vary or is larger than an integer. */
13467 int_expr_size (const_tree exp
)
13471 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
13472 size
= TREE_OPERAND (exp
, 1);
13475 size
= tree_expr_size (exp
);
13479 if (size
== 0 || !tree_fits_shwi_p (size
))
13482 return tree_to_shwi (size
);