warn-access: wrong -Wdangling-pointer with labels [PR106080]
[official-gcc.git] / gcc / alias.cc
blob3672bf277b95d4e74a154312fc42b064bbb7fc89
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2023 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
44 /* The aliasing API provided here solves related but different problems:
46 Say there exists (in c)
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
53 struct Y y2, *py;
54 struct Z z2, *pz;
57 py = &x1.y1;
58 px2 = &x1;
60 Consider the four questions:
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
67 The answer to these questions can be yes, yes, yes, and maybe.
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
99 struct S { int i; double d; };
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
108 |/_ _\|
109 int double
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
144 struct T { struct S s; float f; }
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx,
163 HOST_WIDE_INT * = NULL);
165 static void memory_modified_1 (rtx, const_rtx, void *);
167 /* Query statistics for the different low-level disambiguators.
168 A high-level query may trigger multiple of them. */
170 static struct {
171 unsigned long long num_alias_zero;
172 unsigned long long num_same_alias_set;
173 unsigned long long num_same_objects;
174 unsigned long long num_volatile;
175 unsigned long long num_dag;
176 unsigned long long num_universal;
177 unsigned long long num_disambiguated;
178 } alias_stats;
181 /* Set up all info needed to perform alias analysis on memory references. */
183 /* Returns the size in bytes of the mode of X. */
184 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains.
188 ??? 10 is a completely arbitrary choice. This should be based on the
189 maximum loop depth in the CFG, but we do not have this information
190 available (even if current_loops _is_ available). */
191 #define MAX_ALIAS_LOOP_PASSES 10
193 /* reg_base_value[N] gives an address to which register N is related.
194 If all sets after the first add or subtract to the current value
195 or otherwise modify it so it does not point to a different top level
196 object, reg_base_value[N] is equal to the address part of the source
197 of the first set.
199 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
200 expressions represent three types of base:
202 1. incoming arguments. There is just one ADDRESS to represent all
203 arguments, since we do not know at this level whether accesses
204 based on different arguments can alias. The ADDRESS has id 0.
206 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
207 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
208 Each of these rtxes has a separate ADDRESS associated with it,
209 each with a negative id.
211 GCC is (and is required to be) precise in which register it
212 chooses to access a particular region of stack. We can therefore
213 assume that accesses based on one of these rtxes do not alias
214 accesses based on another of these rtxes.
216 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
217 Each such piece of memory has a separate ADDRESS associated
218 with it, each with an id greater than 0.
220 Accesses based on one ADDRESS do not alias accesses based on other
221 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
222 alias globals either; the ADDRESSes have Pmode to indicate this.
223 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
224 indicate this. */
226 static GTY(()) vec<rtx, va_gc> *reg_base_value;
227 static rtx *new_reg_base_value;
229 /* The single VOIDmode ADDRESS that represents all argument bases.
230 It has id 0. */
231 static GTY(()) rtx arg_base_value;
233 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
234 static int unique_id;
236 /* We preserve the copy of old array around to avoid amount of garbage
237 produced. About 8% of garbage produced were attributed to this
238 array. */
239 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
241 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
242 registers. */
243 #define UNIQUE_BASE_VALUE_SP -1
244 #define UNIQUE_BASE_VALUE_ARGP -2
245 #define UNIQUE_BASE_VALUE_FP -3
246 #define UNIQUE_BASE_VALUE_HFP -4
248 #define static_reg_base_value \
249 (this_target_rtl->x_static_reg_base_value)
251 #define REG_BASE_VALUE(X) \
252 (REGNO (X) < vec_safe_length (reg_base_value) \
253 ? (*reg_base_value)[REGNO (X)] : 0)
255 /* Vector indexed by N giving the initial (unchanging) value known for
256 pseudo-register N. This vector is initialized in init_alias_analysis,
257 and does not change until end_alias_analysis is called. */
258 static GTY(()) vec<rtx, va_gc> *reg_known_value;
260 /* Vector recording for each reg_known_value whether it is due to a
261 REG_EQUIV note. Future passes (viz., reload) may replace the
262 pseudo with the equivalent expression and so we account for the
263 dependences that would be introduced if that happens.
265 The REG_EQUIV notes created in assign_parms may mention the arg
266 pointer, and there are explicit insns in the RTL that modify the
267 arg pointer. Thus we must ensure that such insns don't get
268 scheduled across each other because that would invalidate the
269 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
270 wrong, but solving the problem in the scheduler will likely give
271 better code, so we do it here. */
272 static sbitmap reg_known_equiv_p;
274 /* True when scanning insns from the start of the rtl to the
275 NOTE_INSN_FUNCTION_BEG note. */
276 static bool copying_arguments;
279 /* The splay-tree used to store the various alias set entries. */
280 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
282 /* Build a decomposed reference object for querying the alias-oracle
283 from the MEM rtx and store it in *REF.
284 Returns false if MEM is not suitable for the alias-oracle. */
286 static bool
287 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
289 tree expr = MEM_EXPR (mem);
290 tree base;
292 if (!expr)
293 return false;
295 ao_ref_init (ref, expr);
297 /* Get the base of the reference and see if we have to reject or
298 adjust it. */
299 base = ao_ref_base (ref);
300 if (base == NULL_TREE)
301 return false;
303 /* The tree oracle doesn't like bases that are neither decls
304 nor indirect references of SSA names. */
305 if (!(DECL_P (base)
306 || (TREE_CODE (base) == MEM_REF
307 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
308 || (TREE_CODE (base) == TARGET_MEM_REF
309 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
310 return false;
312 ref->ref_alias_set = MEM_ALIAS_SET (mem);
314 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315 is conservative, so trust it. */
316 if (!MEM_OFFSET_KNOWN_P (mem)
317 || !MEM_SIZE_KNOWN_P (mem))
318 return true;
320 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
321 drop ref->ref. */
322 if (maybe_lt (MEM_OFFSET (mem), 0)
323 || (ref->max_size_known_p ()
324 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
325 ref->max_size)))
326 ref->ref = NULL_TREE;
328 /* Refine size and offset we got from analyzing MEM_EXPR by using
329 MEM_SIZE and MEM_OFFSET. */
331 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
332 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
334 /* The MEM may extend into adjacent fields, so adjust max_size if
335 necessary. */
336 if (ref->max_size_known_p ())
337 ref->max_size = upper_bound (ref->max_size, ref->size);
339 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
340 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
341 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342 && (maybe_lt (ref->offset, 0)
343 || (DECL_P (ref->base)
344 && (DECL_SIZE (ref->base) == NULL_TREE
345 || !poly_int_tree_p (DECL_SIZE (ref->base))
346 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
347 ref->offset + ref->size)))))
348 return false;
350 return true;
353 /* Query the alias-oracle on whether the two memory rtx X and MEM may
354 alias. If TBAA_P is set also apply TBAA. Returns true if the
355 two rtxen may alias, false otherwise. */
357 static bool
358 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
360 ao_ref ref1, ref2;
362 if (!ao_ref_from_mem (&ref1, x)
363 || !ao_ref_from_mem (&ref2, mem))
364 return true;
366 return refs_may_alias_p_1 (&ref1, &ref2,
367 tbaa_p
368 && MEM_ALIAS_SET (x) != 0
369 && MEM_ALIAS_SET (mem) != 0);
372 /* Return true if the ref EARLIER behaves the same as LATER with respect
373 to TBAA for every memory reference that might follow LATER. */
375 bool
376 refs_same_for_tbaa_p (tree earlier, tree later)
378 ao_ref earlier_ref, later_ref;
379 ao_ref_init (&earlier_ref, earlier);
380 ao_ref_init (&later_ref, later);
381 alias_set_type earlier_set = ao_ref_alias_set (&earlier_ref);
382 alias_set_type later_set = ao_ref_alias_set (&later_ref);
383 if (!(earlier_set == later_set
384 || alias_set_subset_of (later_set, earlier_set)))
385 return false;
386 alias_set_type later_base_set = ao_ref_base_alias_set (&later_ref);
387 alias_set_type earlier_base_set = ao_ref_base_alias_set (&earlier_ref);
388 return (earlier_base_set == later_base_set
389 || alias_set_subset_of (later_base_set, earlier_base_set));
392 /* Similar to refs_same_for_tbaa_p() but for use on MEM rtxs. */
393 bool
394 mems_same_for_tbaa_p (rtx earlier, rtx later)
396 gcc_assert (MEM_P (earlier));
397 gcc_assert (MEM_P (later));
399 return ((MEM_ALIAS_SET (earlier) == MEM_ALIAS_SET (later)
400 || alias_set_subset_of (MEM_ALIAS_SET (later),
401 MEM_ALIAS_SET (earlier)))
402 && (!MEM_EXPR (earlier)
403 || refs_same_for_tbaa_p (MEM_EXPR (earlier), MEM_EXPR (later))));
406 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
407 such an entry, or NULL otherwise. */
409 static inline alias_set_entry *
410 get_alias_set_entry (alias_set_type alias_set)
412 return (*alias_sets)[alias_set];
415 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
416 the two MEMs cannot alias each other. */
418 static inline int
419 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
421 return (flag_strict_aliasing
422 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
423 MEM_ALIAS_SET (mem2)));
426 /* Return true if the first alias set is a subset of the second. */
428 bool
429 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
431 alias_set_entry *ase2;
433 /* Disable TBAA oracle with !flag_strict_aliasing. */
434 if (!flag_strict_aliasing)
435 return true;
437 /* Everything is a subset of the "aliases everything" set. */
438 if (set2 == 0)
439 return true;
441 /* Check if set1 is a subset of set2. */
442 ase2 = get_alias_set_entry (set2);
443 if (ase2 != 0
444 && (ase2->has_zero_child
445 || (ase2->children && ase2->children->get (set1))))
446 return true;
448 /* As a special case we consider alias set of "void *" to be both subset
449 and superset of every alias set of a pointer. This extra symmetry does
450 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
451 to return true on the following testcase:
453 void *ptr;
454 char **ptr2=(char **)&ptr;
455 *ptr2 = ...
457 Additionally if a set contains universal pointer, we consider every pointer
458 to be a subset of it, but we do not represent this explicitely - doing so
459 would require us to update transitive closure each time we introduce new
460 pointer type. This makes aliasing_component_refs_p to return true
461 on the following testcase:
463 struct a {void *ptr;}
464 char **ptr = (char **)&a.ptr;
465 ptr = ...
467 This makes void * truly universal pointer type. See pointer handling in
468 get_alias_set for more details. */
469 if (ase2 && ase2->has_pointer)
471 alias_set_entry *ase1 = get_alias_set_entry (set1);
473 if (ase1 && ase1->is_pointer)
475 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
476 /* If one is ptr_type_node and other is pointer, then we consider
477 them subset of each other. */
478 if (set1 == voidptr_set || set2 == voidptr_set)
479 return true;
480 /* If SET2 contains universal pointer's alias set, then we consdier
481 every (non-universal) pointer. */
482 if (ase2->children && set1 != voidptr_set
483 && ase2->children->get (voidptr_set))
484 return true;
487 return false;
490 /* Return 1 if the two specified alias sets may conflict. */
493 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
495 alias_set_entry *ase1;
496 alias_set_entry *ase2;
498 /* The easy case. */
499 if (alias_sets_must_conflict_p (set1, set2))
500 return 1;
502 /* See if the first alias set is a subset of the second. */
503 ase1 = get_alias_set_entry (set1);
504 if (ase1 != 0
505 && ase1->children && ase1->children->get (set2))
507 ++alias_stats.num_dag;
508 return 1;
511 /* Now do the same, but with the alias sets reversed. */
512 ase2 = get_alias_set_entry (set2);
513 if (ase2 != 0
514 && ase2->children && ase2->children->get (set1))
516 ++alias_stats.num_dag;
517 return 1;
520 /* We want void * to be compatible with any other pointer without
521 really dropping it to alias set 0. Doing so would make it
522 compatible with all non-pointer types too.
524 This is not strictly necessary by the C/C++ language
525 standards, but avoids common type punning mistakes. In
526 addition to that, we need the existence of such universal
527 pointer to implement Fortran's C_PTR type (which is defined as
528 type compatible with all C pointers). */
529 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
531 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
533 /* If one of the sets corresponds to universal pointer,
534 we consider it to conflict with anything that is
535 or contains pointer. */
536 if (set1 == voidptr_set || set2 == voidptr_set)
538 ++alias_stats.num_universal;
539 return true;
541 /* If one of sets is (non-universal) pointer and the other
542 contains universal pointer, we also get conflict. */
543 if (ase1->is_pointer && set2 != voidptr_set
544 && ase2->children && ase2->children->get (voidptr_set))
546 ++alias_stats.num_universal;
547 return true;
549 if (ase2->is_pointer && set1 != voidptr_set
550 && ase1->children && ase1->children->get (voidptr_set))
552 ++alias_stats.num_universal;
553 return true;
557 ++alias_stats.num_disambiguated;
559 /* The two alias sets are distinct and neither one is the
560 child of the other. Therefore, they cannot conflict. */
561 return 0;
564 /* Return 1 if the two specified alias sets will always conflict. */
567 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
569 /* Disable TBAA oracle with !flag_strict_aliasing. */
570 if (!flag_strict_aliasing)
571 return 1;
572 if (set1 == 0 || set2 == 0)
574 ++alias_stats.num_alias_zero;
575 return 1;
577 if (set1 == set2)
579 ++alias_stats.num_same_alias_set;
580 return 1;
583 return 0;
586 /* Return 1 if any MEM object of type T1 will always conflict (using the
587 dependency routines in this file) with any MEM object of type T2.
588 This is used when allocating temporary storage. If T1 and/or T2 are
589 NULL_TREE, it means we know nothing about the storage. */
592 objects_must_conflict_p (tree t1, tree t2)
594 alias_set_type set1, set2;
596 /* If neither has a type specified, we don't know if they'll conflict
597 because we may be using them to store objects of various types, for
598 example the argument and local variables areas of inlined functions. */
599 if (t1 == 0 && t2 == 0)
600 return 0;
602 /* If they are the same type, they must conflict. */
603 if (t1 == t2)
605 ++alias_stats.num_same_objects;
606 return 1;
608 /* Likewise if both are volatile. */
609 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
611 ++alias_stats.num_volatile;
612 return 1;
615 set1 = t1 ? get_alias_set (t1) : 0;
616 set2 = t2 ? get_alias_set (t2) : 0;
618 /* We can't use alias_sets_conflict_p because we must make sure
619 that every subtype of t1 will conflict with every subtype of
620 t2 for which a pair of subobjects of these respective subtypes
621 overlaps on the stack. */
622 return alias_sets_must_conflict_p (set1, set2);
625 /* Return true if T is an end of the access path which can be used
626 by type based alias oracle. */
628 bool
629 ends_tbaa_access_path_p (const_tree t)
631 switch (TREE_CODE (t))
633 case COMPONENT_REF:
634 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
635 return true;
636 /* Permit type-punning when accessing a union, provided the access
637 is directly through the union. For example, this code does not
638 permit taking the address of a union member and then storing
639 through it. Even the type-punning allowed here is a GCC
640 extension, albeit a common and useful one; the C standard says
641 that such accesses have implementation-defined behavior. */
642 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
643 return true;
644 break;
646 case ARRAY_REF:
647 case ARRAY_RANGE_REF:
648 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
649 return true;
650 break;
652 case REALPART_EXPR:
653 case IMAGPART_EXPR:
654 break;
656 case BIT_FIELD_REF:
657 case VIEW_CONVERT_EXPR:
658 /* Bitfields and casts are never addressable. */
659 return true;
660 break;
662 default:
663 gcc_unreachable ();
665 return false;
668 /* Return the outermost parent of component present in the chain of
669 component references handled by get_inner_reference in T with the
670 following property:
671 - the component is non-addressable
672 or NULL_TREE if no such parent exists. In the former cases, the alias
673 set of this parent is the alias set that must be used for T itself. */
675 tree
676 component_uses_parent_alias_set_from (const_tree t)
678 const_tree found = NULL_TREE;
680 while (handled_component_p (t))
682 if (ends_tbaa_access_path_p (t))
683 found = t;
685 t = TREE_OPERAND (t, 0);
688 if (found)
689 return TREE_OPERAND (found, 0);
691 return NULL_TREE;
695 /* Return whether the pointer-type T effective for aliasing may
696 access everything and thus the reference has to be assigned
697 alias-set zero. */
699 static bool
700 ref_all_alias_ptr_type_p (const_tree t)
702 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
703 || TYPE_REF_CAN_ALIAS_ALL (t));
706 /* Return the alias set for the memory pointed to by T, which may be
707 either a type or an expression. Return -1 if there is nothing
708 special about dereferencing T. */
710 static alias_set_type
711 get_deref_alias_set_1 (tree t)
713 /* All we care about is the type. */
714 if (! TYPE_P (t))
715 t = TREE_TYPE (t);
717 /* If we have an INDIRECT_REF via a void pointer, we don't
718 know anything about what that might alias. Likewise if the
719 pointer is marked that way. */
720 if (ref_all_alias_ptr_type_p (t))
721 return 0;
723 return -1;
726 /* Return the alias set for the memory pointed to by T, which may be
727 either a type or an expression. */
729 alias_set_type
730 get_deref_alias_set (tree t)
732 /* If we're not doing any alias analysis, just assume everything
733 aliases everything else. */
734 if (!flag_strict_aliasing)
735 return 0;
737 alias_set_type set = get_deref_alias_set_1 (t);
739 /* Fall back to the alias-set of the pointed-to type. */
740 if (set == -1)
742 if (! TYPE_P (t))
743 t = TREE_TYPE (t);
744 set = get_alias_set (TREE_TYPE (t));
747 return set;
750 /* Return the pointer-type relevant for TBAA purposes from the
751 memory reference tree *T or NULL_TREE in which case *T is
752 adjusted to point to the outermost component reference that
753 can be used for assigning an alias set. */
755 tree
756 reference_alias_ptr_type_1 (tree *t)
758 tree inner;
760 /* Get the base object of the reference. */
761 inner = *t;
762 while (handled_component_p (inner))
764 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
765 the type of any component references that wrap it to
766 determine the alias-set. */
767 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
768 *t = TREE_OPERAND (inner, 0);
769 inner = TREE_OPERAND (inner, 0);
772 /* Handle pointer dereferences here, they can override the
773 alias-set. */
774 if (INDIRECT_REF_P (inner)
775 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
776 return TREE_TYPE (TREE_OPERAND (inner, 0));
777 else if (TREE_CODE (inner) == TARGET_MEM_REF)
778 return TREE_TYPE (TMR_OFFSET (inner));
779 else if (TREE_CODE (inner) == MEM_REF
780 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
781 return TREE_TYPE (TREE_OPERAND (inner, 1));
783 /* If the innermost reference is a MEM_REF that has a
784 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
785 using the memory access type for determining the alias-set. */
786 if (TREE_CODE (inner) == MEM_REF
787 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
788 != TYPE_MAIN_VARIANT
789 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
790 return TREE_TYPE (TREE_OPERAND (inner, 1));
792 /* Otherwise, pick up the outermost object that we could have
793 a pointer to. */
794 tree tem = component_uses_parent_alias_set_from (*t);
795 if (tem)
796 *t = tem;
798 return NULL_TREE;
801 /* Return the pointer-type relevant for TBAA purposes from the
802 gimple memory reference tree T. This is the type to be used for
803 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
804 and guarantees that get_alias_set will return the same alias
805 set for T and the replacement. */
807 tree
808 reference_alias_ptr_type (tree t)
810 /* If the frontend assigns this alias-set zero, preserve that. */
811 if (lang_hooks.get_alias_set (t) == 0)
812 return ptr_type_node;
814 tree ptype = reference_alias_ptr_type_1 (&t);
815 /* If there is a given pointer type for aliasing purposes, return it. */
816 if (ptype != NULL_TREE)
817 return ptype;
819 /* Otherwise build one from the outermost component reference we
820 may use. */
821 if (TREE_CODE (t) == MEM_REF
822 || TREE_CODE (t) == TARGET_MEM_REF)
823 return TREE_TYPE (TREE_OPERAND (t, 1));
824 else
825 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
828 /* Return whether the pointer-types T1 and T2 used to determine
829 two alias sets of two references will yield the same answer
830 from get_deref_alias_set. */
832 bool
833 alias_ptr_types_compatible_p (tree t1, tree t2)
835 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
836 return true;
838 if (ref_all_alias_ptr_type_p (t1)
839 || ref_all_alias_ptr_type_p (t2))
840 return false;
842 /* This function originally abstracts from simply comparing
843 get_deref_alias_set so that we are sure this still computes
844 the same result after LTO type merging is applied.
845 When in LTO type merging is done we can actually do this compare.
847 if (in_lto_p)
848 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
849 else
850 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
851 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
854 /* Create emptry alias set entry. */
856 alias_set_entry *
857 init_alias_set_entry (alias_set_type set)
859 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
860 ase->alias_set = set;
861 ase->children = NULL;
862 ase->has_zero_child = false;
863 ase->is_pointer = false;
864 ase->has_pointer = false;
865 gcc_checking_assert (!get_alias_set_entry (set));
866 (*alias_sets)[set] = ase;
867 return ase;
870 /* Return the alias set for T, which may be either a type or an
871 expression. Call language-specific routine for help, if needed. */
873 alias_set_type
874 get_alias_set (tree t)
876 alias_set_type set;
878 /* We cannot give up with -fno-strict-aliasing because we need to build
879 proper type representations for possible functions which are built with
880 -fstrict-aliasing. */
882 /* return 0 if this or its type is an error. */
883 if (t == error_mark_node
884 || (! TYPE_P (t)
885 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
886 return 0;
888 /* We can be passed either an expression or a type. This and the
889 language-specific routine may make mutually-recursive calls to each other
890 to figure out what to do. At each juncture, we see if this is a tree
891 that the language may need to handle specially. First handle things that
892 aren't types. */
893 if (! TYPE_P (t))
895 /* Give the language a chance to do something with this tree
896 before we look at it. */
897 STRIP_NOPS (t);
898 set = lang_hooks.get_alias_set (t);
899 if (set != -1)
900 return set;
902 /* Get the alias pointer-type to use or the outermost object
903 that we could have a pointer to. */
904 tree ptype = reference_alias_ptr_type_1 (&t);
905 if (ptype != NULL)
906 return get_deref_alias_set (ptype);
908 /* If we've already determined the alias set for a decl, just return
909 it. This is necessary for C++ anonymous unions, whose component
910 variables don't look like union members (boo!). */
911 if (VAR_P (t)
912 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
913 return MEM_ALIAS_SET (DECL_RTL (t));
915 /* Now all we care about is the type. */
916 t = TREE_TYPE (t);
919 /* Variant qualifiers don't affect the alias set, so get the main
920 variant. */
921 t = TYPE_MAIN_VARIANT (t);
923 if (AGGREGATE_TYPE_P (t)
924 && TYPE_TYPELESS_STORAGE (t))
925 return 0;
927 /* Always use the canonical type as well. If this is a type that
928 requires structural comparisons to identify compatible types
929 use alias set zero. */
930 if (TYPE_STRUCTURAL_EQUALITY_P (t))
932 /* Allow the language to specify another alias set for this
933 type. */
934 set = lang_hooks.get_alias_set (t);
935 if (set != -1)
936 return set;
937 /* Handle structure type equality for pointer types, arrays and vectors.
938 This is easy to do, because the code below ignores canonical types on
939 these anyway. This is important for LTO, where TYPE_CANONICAL for
940 pointers cannot be meaningfully computed by the frontend. */
941 if (canonical_type_used_p (t))
943 /* In LTO we set canonical types for all types where it makes
944 sense to do so. Double check we did not miss some type. */
945 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
946 return 0;
949 else
951 t = TYPE_CANONICAL (t);
952 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
955 /* If this is a type with a known alias set, return it. */
956 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
957 if (TYPE_ALIAS_SET_KNOWN_P (t))
958 return TYPE_ALIAS_SET (t);
960 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
961 if (!COMPLETE_TYPE_P (t))
963 /* For arrays with unknown size the conservative answer is the
964 alias set of the element type. */
965 if (TREE_CODE (t) == ARRAY_TYPE)
966 return get_alias_set (TREE_TYPE (t));
968 /* But return zero as a conservative answer for incomplete types. */
969 return 0;
972 /* See if the language has special handling for this type. */
973 set = lang_hooks.get_alias_set (t);
974 if (set != -1)
975 return set;
977 /* There are no objects of FUNCTION_TYPE, so there's no point in
978 using up an alias set for them. (There are, of course, pointers
979 and references to functions, but that's different.) */
980 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
981 set = 0;
983 /* Unless the language specifies otherwise, let vector types alias
984 their components. This avoids some nasty type punning issues in
985 normal usage. And indeed lets vectors be treated more like an
986 array slice. */
987 else if (TREE_CODE (t) == VECTOR_TYPE)
988 set = get_alias_set (TREE_TYPE (t));
990 /* Unless the language specifies otherwise, treat array types the
991 same as their components. This avoids the asymmetry we get
992 through recording the components. Consider accessing a
993 character(kind=1) through a reference to a character(kind=1)[1:1].
994 Or consider if we want to assign integer(kind=4)[0:D.1387] and
995 integer(kind=4)[4] the same alias set or not.
996 Just be pragmatic here and make sure the array and its element
997 type get the same alias set assigned. */
998 else if (TREE_CODE (t) == ARRAY_TYPE
999 && (!TYPE_NONALIASED_COMPONENT (t)
1000 || TYPE_STRUCTURAL_EQUALITY_P (t)))
1001 set = get_alias_set (TREE_TYPE (t));
1003 /* From the former common C and C++ langhook implementation:
1005 Unfortunately, there is no canonical form of a pointer type.
1006 In particular, if we have `typedef int I', then `int *', and
1007 `I *' are different types. So, we have to pick a canonical
1008 representative. We do this below.
1010 Technically, this approach is actually more conservative that
1011 it needs to be. In particular, `const int *' and `int *'
1012 should be in different alias sets, according to the C and C++
1013 standard, since their types are not the same, and so,
1014 technically, an `int **' and `const int **' cannot point at
1015 the same thing.
1017 But, the standard is wrong. In particular, this code is
1018 legal C++:
1020 int *ip;
1021 int **ipp = &ip;
1022 const int* const* cipp = ipp;
1023 And, it doesn't make sense for that to be legal unless you
1024 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
1025 the pointed-to types. This issue has been reported to the
1026 C++ committee.
1028 For this reason go to canonical type of the unqalified pointer type.
1029 Until GCC 6 this code set all pointers sets to have alias set of
1030 ptr_type_node but that is a bad idea, because it prevents disabiguations
1031 in between pointers. For Firefox this accounts about 20% of all
1032 disambiguations in the program. */
1033 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1035 tree p;
1036 auto_vec <bool, 8> reference;
1038 /* Unnest all pointers and references.
1039 We also want to make pointer to array/vector equivalent to pointer to
1040 its element (see the reasoning above). Skip all those types, too. */
1041 for (p = t; POINTER_TYPE_P (p)
1042 || (TREE_CODE (p) == ARRAY_TYPE
1043 && (!TYPE_NONALIASED_COMPONENT (p)
1044 || !COMPLETE_TYPE_P (p)
1045 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1046 || TREE_CODE (p) == VECTOR_TYPE;
1047 p = TREE_TYPE (p))
1049 /* Ada supports recursive pointers. Instead of doing recursion
1050 check, just give up once the preallocated space of 8 elements
1051 is up. In this case just punt to void * alias set. */
1052 if (reference.length () == 8)
1054 p = ptr_type_node;
1055 break;
1057 if (TREE_CODE (p) == REFERENCE_TYPE)
1058 /* In LTO we want languages that use references to be compatible
1059 with languages that use pointers. */
1060 reference.safe_push (true && !in_lto_p);
1061 if (TREE_CODE (p) == POINTER_TYPE)
1062 reference.safe_push (false);
1064 p = TYPE_MAIN_VARIANT (p);
1066 /* In LTO for C++ programs we can turn incomplete types to complete
1067 using ODR name lookup. */
1068 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1070 p = prevailing_odr_type (p);
1071 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1074 /* Make void * compatible with char * and also void **.
1075 Programs are commonly violating TBAA by this.
1077 We also make void * to conflict with every pointer
1078 (see record_component_aliases) and thus it is safe it to use it for
1079 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1080 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1081 set = get_alias_set (ptr_type_node);
1082 else
1084 /* Rebuild pointer type starting from canonical types using
1085 unqualified pointers and references only. This way all such
1086 pointers will have the same alias set and will conflict with
1087 each other.
1089 Most of time we already have pointers or references of a given type.
1090 If not we build new one just to be sure that if someone later
1091 (probably only middle-end can, as we should assign all alias
1092 classes only after finishing translation unit) builds the pointer
1093 type, the canonical type will match. */
1094 p = TYPE_CANONICAL (p);
1095 while (!reference.is_empty ())
1097 if (reference.pop ())
1098 p = build_reference_type (p);
1099 else
1100 p = build_pointer_type (p);
1101 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1102 /* build_pointer_type should always return the canonical type.
1103 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1104 them. Be sure that frontends do not glob canonical types of
1105 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1106 in all other cases. */
1107 gcc_checking_assert (!TYPE_CANONICAL (p)
1108 || p == TYPE_CANONICAL (p));
1111 /* Assign the alias set to both p and t.
1112 We cannot call get_alias_set (p) here as that would trigger
1113 infinite recursion when p == t. In other cases it would just
1114 trigger unnecesary legwork of rebuilding the pointer again. */
1115 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1116 if (TYPE_ALIAS_SET_KNOWN_P (p))
1117 set = TYPE_ALIAS_SET (p);
1118 else
1120 set = new_alias_set ();
1121 TYPE_ALIAS_SET (p) = set;
1125 /* Alias set of ptr_type_node is special and serve as universal pointer which
1126 is TBAA compatible with every other pointer type. Be sure we have the
1127 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1128 of pointer types NULL. */
1129 else if (t == ptr_type_node)
1130 set = new_alias_set ();
1132 /* Otherwise make a new alias set for this type. */
1133 else
1135 /* Each canonical type gets its own alias set, so canonical types
1136 shouldn't form a tree. It doesn't really matter for types
1137 we handle specially above, so only check it where it possibly
1138 would result in a bogus alias set. */
1139 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1141 set = new_alias_set ();
1144 TYPE_ALIAS_SET (t) = set;
1146 /* If this is an aggregate type or a complex type, we must record any
1147 component aliasing information. */
1148 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1149 record_component_aliases (t);
1151 /* We treat pointer types specially in alias_set_subset_of. */
1152 if (POINTER_TYPE_P (t) && set)
1154 alias_set_entry *ase = get_alias_set_entry (set);
1155 if (!ase)
1156 ase = init_alias_set_entry (set);
1157 ase->is_pointer = true;
1158 ase->has_pointer = true;
1161 return set;
1164 /* Return a brand-new alias set. */
1166 alias_set_type
1167 new_alias_set (void)
1169 if (alias_sets == 0)
1170 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1171 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1172 return alias_sets->length () - 1;
1175 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1176 not everything that aliases SUPERSET also aliases SUBSET. For example,
1177 in C, a store to an `int' can alias a load of a structure containing an
1178 `int', and vice versa. But it can't alias a load of a 'double' member
1179 of the same structure. Here, the structure would be the SUPERSET and
1180 `int' the SUBSET. This relationship is also described in the comment at
1181 the beginning of this file.
1183 This function should be called only once per SUPERSET/SUBSET pair.
1185 It is illegal for SUPERSET to be zero; everything is implicitly a
1186 subset of alias set zero. */
1188 void
1189 record_alias_subset (alias_set_type superset, alias_set_type subset)
1191 alias_set_entry *superset_entry;
1192 alias_set_entry *subset_entry;
1194 /* It is possible in complex type situations for both sets to be the same,
1195 in which case we can ignore this operation. */
1196 if (superset == subset)
1197 return;
1199 gcc_assert (superset);
1201 superset_entry = get_alias_set_entry (superset);
1202 if (superset_entry == 0)
1204 /* Create an entry for the SUPERSET, so that we have a place to
1205 attach the SUBSET. */
1206 superset_entry = init_alias_set_entry (superset);
1209 if (subset == 0)
1210 superset_entry->has_zero_child = 1;
1211 else
1213 if (!superset_entry->children)
1214 superset_entry->children
1215 = hash_map<alias_set_hash, int>::create_ggc (64);
1217 /* Enter the SUBSET itself as a child of the SUPERSET. If it was
1218 already there we're done. */
1219 if (superset_entry->children->put (subset, 0))
1220 return;
1222 subset_entry = get_alias_set_entry (subset);
1223 /* If there is an entry for the subset, enter all of its children
1224 (if they are not already present) as children of the SUPERSET. */
1225 if (subset_entry)
1227 if (subset_entry->has_zero_child)
1228 superset_entry->has_zero_child = true;
1229 if (subset_entry->has_pointer)
1230 superset_entry->has_pointer = true;
1232 if (subset_entry->children)
1234 hash_map<alias_set_hash, int>::iterator iter
1235 = subset_entry->children->begin ();
1236 for (; iter != subset_entry->children->end (); ++iter)
1237 superset_entry->children->put ((*iter).first, (*iter).second);
1243 /* Record that component types of TYPE, if any, are part of SUPERSET for
1244 aliasing purposes. For record types, we only record component types
1245 for fields that are not marked non-addressable. For array types, we
1246 only record the component type if it is not marked non-aliased. */
1248 void
1249 record_component_aliases (tree type, alias_set_type superset)
1251 tree field;
1253 if (superset == 0)
1254 return;
1256 switch (TREE_CODE (type))
1258 case RECORD_TYPE:
1259 case UNION_TYPE:
1260 case QUAL_UNION_TYPE:
1262 /* LTO non-ODR type merging does not make any difference between
1263 component pointer types. We may have
1265 struct foo {int *a;};
1267 as TYPE_CANONICAL of
1269 struct bar {float *a;};
1271 Because accesses to int * and float * do not alias, we would get
1272 false negative when accessing the same memory location by
1273 float ** and bar *. We thus record the canonical type as:
1275 struct {void *a;};
1277 void * is special cased and works as a universal pointer type.
1278 Accesses to it conflicts with accesses to any other pointer
1279 type. */
1280 bool void_pointers = in_lto_p
1281 && (!odr_type_p (type)
1282 || !odr_based_tbaa_p (type));
1283 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1284 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1286 tree t = TREE_TYPE (field);
1287 if (void_pointers)
1289 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1290 element type and that type has to be normalized to void *,
1291 too, in the case it is a pointer. */
1292 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1294 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1295 t = TREE_TYPE (t);
1297 if (POINTER_TYPE_P (t))
1298 t = ptr_type_node;
1299 else if (flag_checking)
1300 gcc_checking_assert (get_alias_set (t)
1301 == get_alias_set (TREE_TYPE (field)));
1304 alias_set_type set = get_alias_set (t);
1305 record_alias_subset (superset, set);
1306 /* If the field has alias-set zero make sure to still record
1307 any componets of it. This makes sure that for
1308 struct A {
1309 struct B {
1310 int i;
1311 char c[4];
1312 } b;
1314 in C++ even though 'B' has alias-set zero because
1315 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1316 'int' as subset. */
1317 if (set == 0)
1318 record_component_aliases (t, superset);
1321 break;
1323 case COMPLEX_TYPE:
1324 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1325 break;
1327 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1328 element type. */
1330 default:
1331 break;
1335 /* Record that component types of TYPE, if any, are part of that type for
1336 aliasing purposes. For record types, we only record component types
1337 for fields that are not marked non-addressable. For array types, we
1338 only record the component type if it is not marked non-aliased. */
1340 void
1341 record_component_aliases (tree type)
1343 alias_set_type superset = get_alias_set (type);
1344 record_component_aliases (type, superset);
1348 /* Allocate an alias set for use in storing and reading from the varargs
1349 spill area. */
1351 static GTY(()) alias_set_type varargs_set = -1;
1353 alias_set_type
1354 get_varargs_alias_set (void)
1356 #if 1
1357 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1358 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1359 consistently use the varargs alias set for loads from the varargs
1360 area. So don't use it anywhere. */
1361 return 0;
1362 #else
1363 if (varargs_set == -1)
1364 varargs_set = new_alias_set ();
1366 return varargs_set;
1367 #endif
1370 /* Likewise, but used for the fixed portions of the frame, e.g., register
1371 save areas. */
1373 static GTY(()) alias_set_type frame_set = -1;
1375 alias_set_type
1376 get_frame_alias_set (void)
1378 if (frame_set == -1)
1379 frame_set = new_alias_set ();
1381 return frame_set;
1384 /* Create a new, unique base with id ID. */
1386 static rtx
1387 unique_base_value (HOST_WIDE_INT id)
1389 return gen_rtx_ADDRESS (Pmode, id);
1392 /* Return true if accesses based on any other base value cannot alias
1393 those based on X. */
1395 static bool
1396 unique_base_value_p (rtx x)
1398 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1401 /* Return true if X is known to be a base value. */
1403 static bool
1404 known_base_value_p (rtx x)
1406 switch (GET_CODE (x))
1408 case LABEL_REF:
1409 case SYMBOL_REF:
1410 return true;
1412 case ADDRESS:
1413 /* Arguments may or may not be bases; we don't know for sure. */
1414 return GET_MODE (x) != VOIDmode;
1416 default:
1417 return false;
1421 /* Inside SRC, the source of a SET, find a base address. */
1423 static rtx
1424 find_base_value (rtx src)
1426 unsigned int regno;
1427 scalar_int_mode int_mode;
1429 #if defined (FIND_BASE_TERM)
1430 /* Try machine-dependent ways to find the base term. */
1431 src = FIND_BASE_TERM (src);
1432 #endif
1434 switch (GET_CODE (src))
1436 case SYMBOL_REF:
1437 case LABEL_REF:
1438 return src;
1440 case REG:
1441 regno = REGNO (src);
1442 /* At the start of a function, argument registers have known base
1443 values which may be lost later. Returning an ADDRESS
1444 expression here allows optimization based on argument values
1445 even when the argument registers are used for other purposes. */
1446 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1447 return new_reg_base_value[regno];
1449 /* If a pseudo has a known base value, return it. Do not do this
1450 for non-fixed hard regs since it can result in a circular
1451 dependency chain for registers which have values at function entry.
1453 The test above is not sufficient because the scheduler may move
1454 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1455 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1456 && regno < vec_safe_length (reg_base_value))
1458 /* If we're inside init_alias_analysis, use new_reg_base_value
1459 to reduce the number of relaxation iterations. */
1460 if (new_reg_base_value && new_reg_base_value[regno]
1461 && DF_REG_DEF_COUNT (regno) == 1)
1462 return new_reg_base_value[regno];
1464 if ((*reg_base_value)[regno])
1465 return (*reg_base_value)[regno];
1468 return 0;
1470 case MEM:
1471 /* Check for an argument passed in memory. Only record in the
1472 copying-arguments block; it is too hard to track changes
1473 otherwise. */
1474 if (copying_arguments
1475 && (XEXP (src, 0) == arg_pointer_rtx
1476 || (GET_CODE (XEXP (src, 0)) == PLUS
1477 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1478 return arg_base_value;
1479 return 0;
1481 case CONST:
1482 src = XEXP (src, 0);
1483 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1484 break;
1486 /* fall through */
1488 case PLUS:
1489 case MINUS:
1491 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1493 /* If either operand is a REG that is a known pointer, then it
1494 is the base. */
1495 if (REG_P (src_0) && REG_POINTER (src_0))
1496 return find_base_value (src_0);
1497 if (REG_P (src_1) && REG_POINTER (src_1))
1498 return find_base_value (src_1);
1500 /* If either operand is a REG, then see if we already have
1501 a known value for it. */
1502 if (REG_P (src_0))
1504 temp = find_base_value (src_0);
1505 if (temp != 0)
1506 src_0 = temp;
1509 if (REG_P (src_1))
1511 temp = find_base_value (src_1);
1512 if (temp!= 0)
1513 src_1 = temp;
1516 /* If either base is named object or a special address
1517 (like an argument or stack reference), then use it for the
1518 base term. */
1519 if (src_0 != 0 && known_base_value_p (src_0))
1520 return src_0;
1522 if (src_1 != 0 && known_base_value_p (src_1))
1523 return src_1;
1525 /* Guess which operand is the base address:
1526 If either operand is a symbol, then it is the base. If
1527 either operand is a CONST_INT, then the other is the base. */
1528 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1529 return find_base_value (src_0);
1530 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1531 return find_base_value (src_1);
1533 return 0;
1536 case LO_SUM:
1537 /* The standard form is (lo_sum reg sym) so look only at the
1538 second operand. */
1539 return find_base_value (XEXP (src, 1));
1541 case AND:
1542 /* Look through aligning ANDs. And AND with zero or one with
1543 the LSB set isn't one (see for example PR92462). */
1544 if (CONST_INT_P (XEXP (src, 1))
1545 && INTVAL (XEXP (src, 1)) != 0
1546 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1547 return find_base_value (XEXP (src, 0));
1548 return 0;
1550 case TRUNCATE:
1551 /* As we do not know which address space the pointer is referring to, we can
1552 handle this only if the target does not support different pointer or
1553 address modes depending on the address space. */
1554 if (!target_default_pointer_address_modes_p ())
1555 break;
1556 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1557 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1558 break;
1559 /* Fall through. */
1560 case HIGH:
1561 case PRE_INC:
1562 case PRE_DEC:
1563 case POST_INC:
1564 case POST_DEC:
1565 case PRE_MODIFY:
1566 case POST_MODIFY:
1567 return find_base_value (XEXP (src, 0));
1569 case ZERO_EXTEND:
1570 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1571 /* As we do not know which address space the pointer is referring to, we can
1572 handle this only if the target does not support different pointer or
1573 address modes depending on the address space. */
1574 if (!target_default_pointer_address_modes_p ())
1575 break;
1578 rtx temp = find_base_value (XEXP (src, 0));
1580 if (temp != 0 && CONSTANT_P (temp))
1581 temp = convert_memory_address (Pmode, temp);
1583 return temp;
1586 default:
1587 break;
1590 return 0;
1593 /* Called from init_alias_analysis indirectly through note_stores,
1594 or directly if DEST is a register with a REG_NOALIAS note attached.
1595 SET is null in the latter case. */
1597 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1598 register N has been set in this function. */
1599 static sbitmap reg_seen;
1601 static void
1602 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1604 unsigned regno;
1605 rtx src;
1606 int n;
1608 if (!REG_P (dest))
1609 return;
1611 regno = REGNO (dest);
1613 gcc_checking_assert (regno < reg_base_value->length ());
1615 n = REG_NREGS (dest);
1616 if (n != 1)
1618 while (--n >= 0)
1620 bitmap_set_bit (reg_seen, regno + n);
1621 new_reg_base_value[regno + n] = 0;
1623 return;
1626 if (set)
1628 /* A CLOBBER wipes out any old value but does not prevent a previously
1629 unset register from acquiring a base address (i.e. reg_seen is not
1630 set). */
1631 if (GET_CODE (set) == CLOBBER)
1633 new_reg_base_value[regno] = 0;
1634 return;
1637 src = SET_SRC (set);
1639 else
1641 /* There's a REG_NOALIAS note against DEST. */
1642 if (bitmap_bit_p (reg_seen, regno))
1644 new_reg_base_value[regno] = 0;
1645 return;
1647 bitmap_set_bit (reg_seen, regno);
1648 new_reg_base_value[regno] = unique_base_value (unique_id++);
1649 return;
1652 /* If this is not the first set of REGNO, see whether the new value
1653 is related to the old one. There are two cases of interest:
1655 (1) The register might be assigned an entirely new value
1656 that has the same base term as the original set.
1658 (2) The set might be a simple self-modification that
1659 cannot change REGNO's base value.
1661 If neither case holds, reject the original base value as invalid.
1662 Note that the following situation is not detected:
1664 extern int x, y; int *p = &x; p += (&y-&x);
1666 ANSI C does not allow computing the difference of addresses
1667 of distinct top level objects. */
1668 if (new_reg_base_value[regno] != 0
1669 && find_base_value (src) != new_reg_base_value[regno])
1670 switch (GET_CODE (src))
1672 case LO_SUM:
1673 case MINUS:
1674 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1675 new_reg_base_value[regno] = 0;
1676 break;
1677 case PLUS:
1678 /* If the value we add in the PLUS is also a valid base value,
1679 this might be the actual base value, and the original value
1680 an index. */
1682 rtx other = NULL_RTX;
1684 if (XEXP (src, 0) == dest)
1685 other = XEXP (src, 1);
1686 else if (XEXP (src, 1) == dest)
1687 other = XEXP (src, 0);
1689 if (! other || find_base_value (other))
1690 new_reg_base_value[regno] = 0;
1691 break;
1693 case AND:
1694 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1695 new_reg_base_value[regno] = 0;
1696 break;
1697 default:
1698 new_reg_base_value[regno] = 0;
1699 break;
1701 /* If this is the first set of a register, record the value. */
1702 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1703 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1704 new_reg_base_value[regno] = find_base_value (src);
1706 bitmap_set_bit (reg_seen, regno);
1709 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1710 using hard registers with non-null REG_BASE_VALUE for renaming. */
1712 get_reg_base_value (unsigned int regno)
1714 return (*reg_base_value)[regno];
1717 /* If a value is known for REGNO, return it. */
1720 get_reg_known_value (unsigned int regno)
1722 if (regno >= FIRST_PSEUDO_REGISTER)
1724 regno -= FIRST_PSEUDO_REGISTER;
1725 if (regno < vec_safe_length (reg_known_value))
1726 return (*reg_known_value)[regno];
1728 return NULL;
1731 /* Set it. */
1733 static void
1734 set_reg_known_value (unsigned int regno, rtx val)
1736 if (regno >= FIRST_PSEUDO_REGISTER)
1738 regno -= FIRST_PSEUDO_REGISTER;
1739 if (regno < vec_safe_length (reg_known_value))
1740 (*reg_known_value)[regno] = val;
1744 /* Similarly for reg_known_equiv_p. */
1746 bool
1747 get_reg_known_equiv_p (unsigned int regno)
1749 if (regno >= FIRST_PSEUDO_REGISTER)
1751 regno -= FIRST_PSEUDO_REGISTER;
1752 if (regno < vec_safe_length (reg_known_value))
1753 return bitmap_bit_p (reg_known_equiv_p, regno);
1755 return false;
1758 static void
1759 set_reg_known_equiv_p (unsigned int regno, bool val)
1761 if (regno >= FIRST_PSEUDO_REGISTER)
1763 regno -= FIRST_PSEUDO_REGISTER;
1764 if (regno < vec_safe_length (reg_known_value))
1766 if (val)
1767 bitmap_set_bit (reg_known_equiv_p, regno);
1768 else
1769 bitmap_clear_bit (reg_known_equiv_p, regno);
1775 /* Returns a canonical version of X, from the point of view alias
1776 analysis. (For example, if X is a MEM whose address is a register,
1777 and the register has a known value (say a SYMBOL_REF), then a MEM
1778 whose address is the SYMBOL_REF is returned.) */
1781 canon_rtx (rtx x)
1783 /* Recursively look for equivalences. */
1784 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1786 rtx t = get_reg_known_value (REGNO (x));
1787 if (t == x)
1788 return x;
1789 if (t)
1790 return canon_rtx (t);
1793 if (GET_CODE (x) == PLUS)
1795 rtx x0 = canon_rtx (XEXP (x, 0));
1796 rtx x1 = canon_rtx (XEXP (x, 1));
1798 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1799 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1802 /* This gives us much better alias analysis when called from
1803 the loop optimizer. Note we want to leave the original
1804 MEM alone, but need to return the canonicalized MEM with
1805 all the flags with their original values. */
1806 else if (MEM_P (x))
1807 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1809 return x;
1812 /* Return 1 if X and Y are identical-looking rtx's.
1813 Expect that X and Y has been already canonicalized.
1815 We use the data in reg_known_value above to see if two registers with
1816 different numbers are, in fact, equivalent. */
1818 static int
1819 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1821 int i;
1822 int j;
1823 enum rtx_code code;
1824 const char *fmt;
1826 if (x == 0 && y == 0)
1827 return 1;
1828 if (x == 0 || y == 0)
1829 return 0;
1831 if (x == y)
1832 return 1;
1834 code = GET_CODE (x);
1835 /* Rtx's of different codes cannot be equal. */
1836 if (code != GET_CODE (y))
1837 return 0;
1839 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1840 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1842 if (GET_MODE (x) != GET_MODE (y))
1843 return 0;
1845 /* Some RTL can be compared without a recursive examination. */
1846 switch (code)
1848 case REG:
1849 return REGNO (x) == REGNO (y);
1851 case LABEL_REF:
1852 return label_ref_label (x) == label_ref_label (y);
1854 case SYMBOL_REF:
1856 HOST_WIDE_INT distance = 0;
1857 return (compare_base_symbol_refs (x, y, &distance) == 1
1858 && distance == 0);
1861 case ENTRY_VALUE:
1862 /* This is magic, don't go through canonicalization et al. */
1863 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1865 case VALUE:
1866 CASE_CONST_UNIQUE:
1867 /* Pointer equality guarantees equality for these nodes. */
1868 return 0;
1870 default:
1871 break;
1874 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1875 if (code == PLUS)
1876 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1877 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1878 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1879 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1880 /* For commutative operations, the RTX match if the operand match in any
1881 order. Also handle the simple binary and unary cases without a loop. */
1882 if (COMMUTATIVE_P (x))
1884 rtx xop0 = canon_rtx (XEXP (x, 0));
1885 rtx yop0 = canon_rtx (XEXP (y, 0));
1886 rtx yop1 = canon_rtx (XEXP (y, 1));
1888 return ((rtx_equal_for_memref_p (xop0, yop0)
1889 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1890 || (rtx_equal_for_memref_p (xop0, yop1)
1891 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1893 else if (NON_COMMUTATIVE_P (x))
1895 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1896 canon_rtx (XEXP (y, 0)))
1897 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1898 canon_rtx (XEXP (y, 1))));
1900 else if (UNARY_P (x))
1901 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1902 canon_rtx (XEXP (y, 0)));
1904 /* Compare the elements. If any pair of corresponding elements
1905 fail to match, return 0 for the whole things.
1907 Limit cases to types which actually appear in addresses. */
1909 fmt = GET_RTX_FORMAT (code);
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1912 switch (fmt[i])
1914 case 'i':
1915 if (XINT (x, i) != XINT (y, i))
1916 return 0;
1917 break;
1919 case 'p':
1920 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1921 return 0;
1922 break;
1924 case 'E':
1925 /* Two vectors must have the same length. */
1926 if (XVECLEN (x, i) != XVECLEN (y, i))
1927 return 0;
1929 /* And the corresponding elements must match. */
1930 for (j = 0; j < XVECLEN (x, i); j++)
1931 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1932 canon_rtx (XVECEXP (y, i, j))) == 0)
1933 return 0;
1934 break;
1936 case 'e':
1937 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1938 canon_rtx (XEXP (y, i))) == 0)
1939 return 0;
1940 break;
1942 /* This can happen for asm operands. */
1943 case 's':
1944 if (strcmp (XSTR (x, i), XSTR (y, i)))
1945 return 0;
1946 break;
1948 /* This can happen for an asm which clobbers memory. */
1949 case '0':
1950 break;
1952 /* It is believed that rtx's at this level will never
1953 contain anything but integers and other rtx's,
1954 except for within LABEL_REFs and SYMBOL_REFs. */
1955 default:
1956 gcc_unreachable ();
1959 return 1;
1962 static rtx
1963 find_base_term (rtx x, vec<std::pair<cselib_val *,
1964 struct elt_loc_list *> > &visited_vals)
1966 cselib_val *val;
1967 struct elt_loc_list *l, *f;
1968 rtx ret;
1969 scalar_int_mode int_mode;
1971 #if defined (FIND_BASE_TERM)
1972 /* Try machine-dependent ways to find the base term. */
1973 x = FIND_BASE_TERM (x);
1974 #endif
1976 switch (GET_CODE (x))
1978 case REG:
1979 return REG_BASE_VALUE (x);
1981 case TRUNCATE:
1982 /* As we do not know which address space the pointer is referring to, we can
1983 handle this only if the target does not support different pointer or
1984 address modes depending on the address space. */
1985 if (!target_default_pointer_address_modes_p ())
1986 return 0;
1987 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1988 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1989 return 0;
1990 /* Fall through. */
1991 case HIGH:
1992 case PRE_INC:
1993 case PRE_DEC:
1994 case POST_INC:
1995 case POST_DEC:
1996 case PRE_MODIFY:
1997 case POST_MODIFY:
1998 return find_base_term (XEXP (x, 0), visited_vals);
2000 case ZERO_EXTEND:
2001 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
2002 /* As we do not know which address space the pointer is referring to, we can
2003 handle this only if the target does not support different pointer or
2004 address modes depending on the address space. */
2005 if (!target_default_pointer_address_modes_p ())
2006 return 0;
2009 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
2011 if (temp != 0 && CONSTANT_P (temp))
2012 temp = convert_memory_address (Pmode, temp);
2014 return temp;
2017 case VALUE:
2018 val = CSELIB_VAL_PTR (x);
2019 ret = NULL_RTX;
2021 if (!val)
2022 return ret;
2024 if (cselib_sp_based_value_p (val))
2025 return static_reg_base_value[STACK_POINTER_REGNUM];
2027 if (visited_vals.length () > (unsigned) param_max_find_base_term_values)
2028 return ret;
2030 f = val->locs;
2031 /* Reset val->locs to avoid infinite recursion. */
2032 if (f)
2033 visited_vals.safe_push (std::make_pair (val, f));
2034 val->locs = NULL;
2036 for (l = f; l; l = l->next)
2037 if (GET_CODE (l->loc) == VALUE
2038 && CSELIB_VAL_PTR (l->loc)->locs
2039 && !CSELIB_VAL_PTR (l->loc)->locs->next
2040 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
2041 continue;
2042 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
2043 break;
2045 return ret;
2047 case LO_SUM:
2048 /* The standard form is (lo_sum reg sym) so look only at the
2049 second operand. */
2050 return find_base_term (XEXP (x, 1), visited_vals);
2052 case CONST:
2053 x = XEXP (x, 0);
2054 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
2055 return 0;
2056 /* Fall through. */
2057 case PLUS:
2058 case MINUS:
2060 rtx tmp1 = XEXP (x, 0);
2061 rtx tmp2 = XEXP (x, 1);
2063 /* This is a little bit tricky since we have to determine which of
2064 the two operands represents the real base address. Otherwise this
2065 routine may return the index register instead of the base register.
2067 That may cause us to believe no aliasing was possible, when in
2068 fact aliasing is possible.
2070 We use a few simple tests to guess the base register. Additional
2071 tests can certainly be added. For example, if one of the operands
2072 is a shift or multiply, then it must be the index register and the
2073 other operand is the base register. */
2075 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2076 return find_base_term (tmp2, visited_vals);
2078 /* If either operand is known to be a pointer, then prefer it
2079 to determine the base term. */
2080 if (REG_P (tmp1) && REG_POINTER (tmp1))
2082 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2083 std::swap (tmp1, tmp2);
2084 /* If second argument is constant which has base term, prefer it
2085 over variable tmp1. See PR64025. */
2086 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2087 std::swap (tmp1, tmp2);
2089 /* Go ahead and find the base term for both operands. If either base
2090 term is from a pointer or is a named object or a special address
2091 (like an argument or stack reference), then use it for the
2092 base term. */
2093 rtx base = find_base_term (tmp1, visited_vals);
2094 if (base != NULL_RTX
2095 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2096 || known_base_value_p (base)))
2097 return base;
2098 base = find_base_term (tmp2, visited_vals);
2099 if (base != NULL_RTX
2100 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2101 || known_base_value_p (base)))
2102 return base;
2104 /* We could not determine which of the two operands was the
2105 base register and which was the index. So we can determine
2106 nothing from the base alias check. */
2107 return 0;
2110 case AND:
2111 /* Look through aligning ANDs. And AND with zero or one with
2112 the LSB set isn't one (see for example PR92462). */
2113 if (CONST_INT_P (XEXP (x, 1))
2114 && INTVAL (XEXP (x, 1)) != 0
2115 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2116 return find_base_term (XEXP (x, 0), visited_vals);
2117 return 0;
2119 case SYMBOL_REF:
2120 case LABEL_REF:
2121 return x;
2123 default:
2124 return 0;
2128 /* Wrapper around the worker above which removes locs from visited VALUEs
2129 to avoid visiting them multiple times. We unwind that changes here. */
2131 static rtx
2132 find_base_term (rtx x)
2134 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2135 rtx res = find_base_term (x, visited_vals);
2136 for (unsigned i = 0; i < visited_vals.length (); ++i)
2137 visited_vals[i].first->locs = visited_vals[i].second;
2138 return res;
2141 /* Return true if accesses to address X may alias accesses based
2142 on the stack pointer. */
2144 bool
2145 may_be_sp_based_p (rtx x)
2147 rtx base = find_base_term (x);
2148 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2151 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2152 if they refer to different objects and -1 if we cannot decide. */
2155 compare_base_decls (tree base1, tree base2)
2157 int ret;
2158 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2159 if (base1 == base2)
2160 return 1;
2162 /* If we have two register decls with register specification we
2163 cannot decide unless their assembler names are the same. */
2164 if (VAR_P (base1)
2165 && VAR_P (base2)
2166 && DECL_HARD_REGISTER (base1)
2167 && DECL_HARD_REGISTER (base2)
2168 && DECL_ASSEMBLER_NAME_SET_P (base1)
2169 && DECL_ASSEMBLER_NAME_SET_P (base2))
2171 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2172 return 1;
2173 return -1;
2176 /* Declarations of non-automatic variables may have aliases. All other
2177 decls are unique. */
2178 if (!decl_in_symtab_p (base1)
2179 || !decl_in_symtab_p (base2))
2180 return 0;
2182 /* Don't cause symbols to be inserted by the act of checking. */
2183 symtab_node *node1 = symtab_node::get (base1);
2184 if (!node1)
2185 return 0;
2186 symtab_node *node2 = symtab_node::get (base2);
2187 if (!node2)
2188 return 0;
2190 ret = node1->equal_address_to (node2, true);
2191 return ret;
2194 /* Compare SYMBOL_REFs X_BASE and Y_BASE.
2196 - Return 1 if Y_BASE - X_BASE is constant, adding that constant
2197 to *DISTANCE if DISTANCE is nonnull.
2199 - Return 0 if no accesses based on X_BASE can alias Y_BASE.
2201 - Return -1 if one of the two results applies, but we can't tell
2202 which at compile time. Update DISTANCE in the same way as
2203 for a return value of 1, for the case in which that holds. */
2205 static int
2206 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base,
2207 HOST_WIDE_INT *distance)
2209 tree x_decl = SYMBOL_REF_DECL (x_base);
2210 tree y_decl = SYMBOL_REF_DECL (y_base);
2211 bool binds_def = true;
2212 bool swap = false;
2214 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2215 return 1;
2216 if (x_decl && y_decl)
2217 return compare_base_decls (x_decl, y_decl);
2218 if (x_decl || y_decl)
2220 if (!x_decl)
2222 swap = true;
2223 std::swap (x_decl, y_decl);
2224 std::swap (x_base, y_base);
2226 /* We handle specially only section anchors. Other symbols are
2227 either equal (via aliasing) or refer to different objects. */
2228 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2229 return -1;
2230 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2231 to ignore CONST_DECLs because they are readonly. */
2232 if (!VAR_P (x_decl)
2233 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2234 return 0;
2236 symtab_node *x_node = symtab_node::get_create (x_decl)
2237 ->ultimate_alias_target ();
2238 /* External variable cannot be in section anchor. */
2239 if (!x_node->definition)
2240 return 0;
2241 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2242 /* If not in anchor, we can disambiguate. */
2243 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2244 return 0;
2246 /* We have an alias of anchored variable. If it can be interposed;
2247 we must assume it may or may not alias its anchor. */
2248 binds_def = decl_binds_to_current_def_p (x_decl);
2250 /* If we have variable in section anchor, we can compare by offset. */
2251 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2252 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2254 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2255 return 0;
2256 if (distance)
2257 *distance += (swap ? -1 : 1) * (SYMBOL_REF_BLOCK_OFFSET (y_base)
2258 - SYMBOL_REF_BLOCK_OFFSET (x_base));
2259 return binds_def ? 1 : -1;
2261 /* Either the symbols are equal (via aliasing) or they refer to
2262 different objects. */
2263 return -1;
2266 /* Return 0 if the addresses X and Y are known to point to different
2267 objects, 1 if they might be pointers to the same object. */
2269 static int
2270 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2271 machine_mode x_mode, machine_mode y_mode)
2273 /* If the address itself has no known base see if a known equivalent
2274 value has one. If either address still has no known base, nothing
2275 is known about aliasing. */
2276 if (x_base == 0)
2278 rtx x_c;
2280 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2281 return 1;
2283 x_base = find_base_term (x_c);
2284 if (x_base == 0)
2285 return 1;
2288 if (y_base == 0)
2290 rtx y_c;
2291 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2292 return 1;
2294 y_base = find_base_term (y_c);
2295 if (y_base == 0)
2296 return 1;
2299 /* If the base addresses are equal nothing is known about aliasing. */
2300 if (rtx_equal_p (x_base, y_base))
2301 return 1;
2303 /* The base addresses are different expressions. If they are not accessed
2304 via AND, there is no conflict. We can bring knowledge of object
2305 alignment into play here. For example, on alpha, "char a, b;" can
2306 alias one another, though "char a; long b;" cannot. AND addresses may
2307 implicitly alias surrounding objects; i.e. unaligned access in DImode
2308 via AND address can alias all surrounding object types except those
2309 with aligment 8 or higher. */
2310 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2311 return 1;
2312 if (GET_CODE (x) == AND
2313 && (!CONST_INT_P (XEXP (x, 1))
2314 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2315 return 1;
2316 if (GET_CODE (y) == AND
2317 && (!CONST_INT_P (XEXP (y, 1))
2318 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2319 return 1;
2321 /* Differing symbols not accessed via AND never alias. */
2322 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2323 return compare_base_symbol_refs (x_base, y_base) != 0;
2325 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2326 return 0;
2328 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2329 return 0;
2331 return 1;
2334 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2335 (or equal to) that of V. */
2337 static bool
2338 refs_newer_value_p (const_rtx expr, rtx v)
2340 int minuid = CSELIB_VAL_PTR (v)->uid;
2341 subrtx_iterator::array_type array;
2342 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2343 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2344 return true;
2345 return false;
2348 /* Convert the address X into something we can use. This is done by returning
2349 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2350 we call cselib to get a more useful rtx. */
2353 get_addr (rtx x)
2355 cselib_val *v;
2356 struct elt_loc_list *l;
2358 if (GET_CODE (x) != VALUE)
2360 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2361 && GET_CODE (XEXP (x, 0)) == VALUE
2362 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2364 rtx op0 = get_addr (XEXP (x, 0));
2365 if (op0 != XEXP (x, 0))
2367 poly_int64 c;
2368 if (GET_CODE (x) == PLUS
2369 && poly_int_rtx_p (XEXP (x, 1), &c))
2370 return plus_constant (GET_MODE (x), op0, c);
2371 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2372 op0, XEXP (x, 1));
2375 return x;
2377 v = CSELIB_VAL_PTR (x);
2378 if (v)
2380 bool have_equivs = cselib_have_permanent_equivalences ();
2381 if (have_equivs)
2382 v = canonical_cselib_val (v);
2383 for (l = v->locs; l; l = l->next)
2384 if (CONSTANT_P (l->loc))
2385 return l->loc;
2386 for (l = v->locs; l; l = l->next)
2387 if (!REG_P (l->loc) && !MEM_P (l->loc)
2388 /* Avoid infinite recursion when potentially dealing with
2389 var-tracking artificial equivalences, by skipping the
2390 equivalences themselves, and not choosing expressions
2391 that refer to newer VALUEs. */
2392 && (!have_equivs
2393 || (GET_CODE (l->loc) != VALUE
2394 && !refs_newer_value_p (l->loc, x))))
2395 return l->loc;
2396 if (have_equivs)
2398 for (l = v->locs; l; l = l->next)
2399 if (REG_P (l->loc)
2400 || (GET_CODE (l->loc) != VALUE
2401 && !refs_newer_value_p (l->loc, x)))
2402 return l->loc;
2403 /* Return the canonical value. */
2404 return v->val_rtx;
2406 if (v->locs)
2407 return v->locs->loc;
2409 return x;
2412 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2413 where SIZE is the size in bytes of the memory reference. If ADDR
2414 is not modified by the memory reference then ADDR is returned. */
2416 static rtx
2417 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2419 poly_int64 offset = 0;
2421 switch (GET_CODE (addr))
2423 case PRE_INC:
2424 offset = (n_refs + 1) * size;
2425 break;
2426 case PRE_DEC:
2427 offset = -(n_refs + 1) * size;
2428 break;
2429 case POST_INC:
2430 offset = n_refs * size;
2431 break;
2432 case POST_DEC:
2433 offset = -n_refs * size;
2434 break;
2436 default:
2437 return addr;
2440 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2441 addr = canon_rtx (addr);
2443 return addr;
2446 /* Return TRUE if an object X sized at XSIZE bytes and another object
2447 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2448 any of the sizes is zero, assume an overlap, otherwise use the
2449 absolute value of the sizes as the actual sizes. */
2451 static inline bool
2452 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2454 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2455 return true;
2457 if (maybe_ge (c, 0))
2458 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2459 else
2460 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2463 /* Return one if X and Y (memory addresses) reference the
2464 same location in memory or if the references overlap.
2465 Return zero if they do not overlap, else return
2466 minus one in which case they still might reference the same location.
2468 C is an offset accumulator. When
2469 C is nonzero, we are testing aliases between X and Y + C.
2470 XSIZE is the size in bytes of the X reference,
2471 similarly YSIZE is the size in bytes for Y.
2472 Expect that canon_rtx has been already called for X and Y.
2474 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2475 referenced (the reference was BLKmode), so make the most pessimistic
2476 assumptions.
2478 If XSIZE or YSIZE is negative, we may access memory outside the object
2479 being referenced as a side effect. This can happen when using AND to
2480 align memory references, as is done on the Alpha.
2482 Nice to notice that varying addresses cannot conflict with fp if no
2483 local variables had their addresses taken, but that's too hard now.
2485 ??? Contrary to the tree alias oracle this does not return
2486 one for X + non-constant and Y + non-constant when X and Y are equal.
2487 If that is fixed the TBAA hack for union type-punning can be removed. */
2489 static int
2490 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2491 poly_int64 c)
2493 if (GET_CODE (x) == VALUE)
2495 if (REG_P (y))
2497 struct elt_loc_list *l = NULL;
2498 if (CSELIB_VAL_PTR (x))
2499 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2500 l; l = l->next)
2501 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2502 break;
2503 if (l)
2504 x = y;
2505 else
2506 x = get_addr (x);
2508 /* Don't call get_addr if y is the same VALUE. */
2509 else if (x != y)
2510 x = get_addr (x);
2512 if (GET_CODE (y) == VALUE)
2514 if (REG_P (x))
2516 struct elt_loc_list *l = NULL;
2517 if (CSELIB_VAL_PTR (y))
2518 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2519 l; l = l->next)
2520 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2521 break;
2522 if (l)
2523 y = x;
2524 else
2525 y = get_addr (y);
2527 /* Don't call get_addr if x is the same VALUE. */
2528 else if (y != x)
2529 y = get_addr (y);
2531 if (GET_CODE (x) == HIGH)
2532 x = XEXP (x, 0);
2533 else if (GET_CODE (x) == LO_SUM)
2534 x = XEXP (x, 1);
2535 else
2536 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2537 if (GET_CODE (y) == HIGH)
2538 y = XEXP (y, 0);
2539 else if (GET_CODE (y) == LO_SUM)
2540 y = XEXP (y, 1);
2541 else
2542 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2544 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2546 HOST_WIDE_INT distance = 0;
2547 int cmp = compare_base_symbol_refs (x, y, &distance);
2549 /* If both decls are the same, decide by offsets. */
2550 if (cmp == 1)
2551 return offset_overlap_p (c + distance, xsize, ysize);
2552 /* Assume a potential overlap for symbolic addresses that went
2553 through alignment adjustments (i.e., that have negative
2554 sizes), because we can't know how far they are from each
2555 other. */
2556 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2557 return -1;
2558 /* If decls are different or we know by offsets that there is no overlap,
2559 we win. */
2560 if (!cmp || !offset_overlap_p (c + distance, xsize, ysize))
2561 return 0;
2562 /* Decls may or may not be different and offsets overlap....*/
2563 return -1;
2565 else if (rtx_equal_for_memref_p (x, y))
2567 return offset_overlap_p (c, xsize, ysize);
2570 /* This code used to check for conflicts involving stack references and
2571 globals but the base address alias code now handles these cases. */
2573 if (GET_CODE (x) == PLUS)
2575 /* The fact that X is canonicalized means that this
2576 PLUS rtx is canonicalized. */
2577 rtx x0 = XEXP (x, 0);
2578 rtx x1 = XEXP (x, 1);
2580 /* However, VALUEs might end up in different positions even in
2581 canonical PLUSes. Comparing their addresses is enough. */
2582 if (x0 == y)
2583 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2584 else if (x1 == y)
2585 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2587 poly_int64 cx1, cy1;
2588 if (GET_CODE (y) == PLUS)
2590 /* The fact that Y is canonicalized means that this
2591 PLUS rtx is canonicalized. */
2592 rtx y0 = XEXP (y, 0);
2593 rtx y1 = XEXP (y, 1);
2595 if (x0 == y1)
2596 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2597 if (x1 == y0)
2598 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2600 if (rtx_equal_for_memref_p (x1, y1))
2601 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2602 if (rtx_equal_for_memref_p (x0, y0))
2603 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2604 if (poly_int_rtx_p (x1, &cx1))
2606 if (poly_int_rtx_p (y1, &cy1))
2607 return memrefs_conflict_p (xsize, x0, ysize, y0,
2608 c - cx1 + cy1);
2609 else
2610 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2612 else if (poly_int_rtx_p (y1, &cy1))
2613 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2615 return -1;
2617 else if (poly_int_rtx_p (x1, &cx1))
2618 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2620 else if (GET_CODE (y) == PLUS)
2622 /* The fact that Y is canonicalized means that this
2623 PLUS rtx is canonicalized. */
2624 rtx y0 = XEXP (y, 0);
2625 rtx y1 = XEXP (y, 1);
2627 if (x == y0)
2628 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2629 if (x == y1)
2630 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2632 poly_int64 cy1;
2633 if (poly_int_rtx_p (y1, &cy1))
2634 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2635 else
2636 return -1;
2639 if (GET_CODE (x) == GET_CODE (y))
2640 switch (GET_CODE (x))
2642 case MULT:
2644 /* Handle cases where we expect the second operands to be the
2645 same, and check only whether the first operand would conflict
2646 or not. */
2647 rtx x0, y0;
2648 rtx x1 = canon_rtx (XEXP (x, 1));
2649 rtx y1 = canon_rtx (XEXP (y, 1));
2650 if (! rtx_equal_for_memref_p (x1, y1))
2651 return -1;
2652 x0 = canon_rtx (XEXP (x, 0));
2653 y0 = canon_rtx (XEXP (y, 0));
2654 if (rtx_equal_for_memref_p (x0, y0))
2655 return offset_overlap_p (c, xsize, ysize);
2657 /* Can't properly adjust our sizes. */
2658 poly_int64 c1;
2659 if (!poly_int_rtx_p (x1, &c1)
2660 || !can_div_trunc_p (xsize, c1, &xsize)
2661 || !can_div_trunc_p (ysize, c1, &ysize)
2662 || !can_div_trunc_p (c, c1, &c))
2663 return -1;
2664 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2667 default:
2668 break;
2671 /* Deal with alignment ANDs by adjusting offset and size so as to
2672 cover the maximum range, without taking any previously known
2673 alignment into account. Make a size negative after such an
2674 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2675 assume a potential overlap, because they may end up in contiguous
2676 memory locations and the stricter-alignment access may span over
2677 part of both. */
2678 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2680 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2681 unsigned HOST_WIDE_INT uc = sc;
2682 if (sc < 0 && pow2_or_zerop (-uc))
2684 if (maybe_gt (xsize, 0))
2685 xsize = -xsize;
2686 if (maybe_ne (xsize, 0))
2687 xsize += sc + 1;
2688 c -= sc + 1;
2689 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2690 ysize, y, c);
2693 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2695 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2696 unsigned HOST_WIDE_INT uc = sc;
2697 if (sc < 0 && pow2_or_zerop (-uc))
2699 if (maybe_gt (ysize, 0))
2700 ysize = -ysize;
2701 if (maybe_ne (ysize, 0))
2702 ysize += sc + 1;
2703 c += sc + 1;
2704 return memrefs_conflict_p (xsize, x,
2705 ysize, canon_rtx (XEXP (y, 0)), c);
2709 if (CONSTANT_P (x))
2711 poly_int64 cx, cy;
2712 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2714 c += cy - cx;
2715 return offset_overlap_p (c, xsize, ysize);
2718 if (GET_CODE (x) == CONST)
2720 if (GET_CODE (y) == CONST)
2721 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2722 ysize, canon_rtx (XEXP (y, 0)), c);
2723 else
2724 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2725 ysize, y, c);
2727 if (GET_CODE (y) == CONST)
2728 return memrefs_conflict_p (xsize, x, ysize,
2729 canon_rtx (XEXP (y, 0)), c);
2731 /* Assume a potential overlap for symbolic addresses that went
2732 through alignment adjustments (i.e., that have negative
2733 sizes), because we can't know how far they are from each
2734 other. */
2735 if (CONSTANT_P (y))
2736 return (maybe_lt (xsize, 0)
2737 || maybe_lt (ysize, 0)
2738 || offset_overlap_p (c, xsize, ysize));
2740 return -1;
2743 return -1;
2746 /* Functions to compute memory dependencies.
2748 Since we process the insns in execution order, we can build tables
2749 to keep track of what registers are fixed (and not aliased), what registers
2750 are varying in known ways, and what registers are varying in unknown
2751 ways.
2753 If both memory references are volatile, then there must always be a
2754 dependence between the two references, since their order cannot be
2755 changed. A volatile and non-volatile reference can be interchanged
2756 though.
2758 We also must allow AND addresses, because they may generate accesses
2759 outside the object being referenced. This is used to generate aligned
2760 addresses from unaligned addresses, for instance, the alpha
2761 storeqi_unaligned pattern. */
2763 /* Read dependence: X is read after read in MEM takes place. There can
2764 only be a dependence here if both reads are volatile, or if either is
2765 an explicit barrier. */
2768 read_dependence (const_rtx mem, const_rtx x)
2770 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2771 return true;
2772 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2773 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2774 return true;
2775 return false;
2778 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2780 static tree
2781 decl_for_component_ref (tree x)
2785 x = TREE_OPERAND (x, 0);
2787 while (x && TREE_CODE (x) == COMPONENT_REF);
2789 return x && DECL_P (x) ? x : NULL_TREE;
2792 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2793 for the offset of the field reference. *KNOWN_P says whether the
2794 offset is known. */
2796 static void
2797 adjust_offset_for_component_ref (tree x, bool *known_p,
2798 poly_int64 *offset)
2800 if (!*known_p)
2801 return;
2804 tree xoffset = component_ref_field_offset (x);
2805 tree field = TREE_OPERAND (x, 1);
2806 if (!poly_int_tree_p (xoffset))
2808 *known_p = false;
2809 return;
2812 poly_offset_int woffset
2813 = (wi::to_poly_offset (xoffset)
2814 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2815 >> LOG2_BITS_PER_UNIT)
2816 + *offset);
2817 if (!woffset.to_shwi (offset))
2819 *known_p = false;
2820 return;
2823 x = TREE_OPERAND (x, 0);
2825 while (x && TREE_CODE (x) == COMPONENT_REF);
2828 /* Return nonzero if we can determine the exprs corresponding to memrefs
2829 X and Y and they do not overlap.
2830 If LOOP_VARIANT is set, skip offset-based disambiguation */
2833 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2835 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2836 rtx rtlx, rtly;
2837 rtx basex, basey;
2838 bool moffsetx_known_p, moffsety_known_p;
2839 poly_int64 moffsetx = 0, moffsety = 0;
2840 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2842 /* Unless both have exprs, we can't tell anything. */
2843 if (exprx == 0 || expry == 0)
2844 return 0;
2846 /* For spill-slot accesses make sure we have valid offsets. */
2847 if ((exprx == get_spill_slot_decl (false)
2848 && ! MEM_OFFSET_KNOWN_P (x))
2849 || (expry == get_spill_slot_decl (false)
2850 && ! MEM_OFFSET_KNOWN_P (y)))
2851 return 0;
2853 /* If the field reference test failed, look at the DECLs involved. */
2854 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2855 if (moffsetx_known_p)
2856 moffsetx = MEM_OFFSET (x);
2857 if (TREE_CODE (exprx) == COMPONENT_REF)
2859 tree t = decl_for_component_ref (exprx);
2860 if (! t)
2861 return 0;
2862 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2863 exprx = t;
2866 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2867 if (moffsety_known_p)
2868 moffsety = MEM_OFFSET (y);
2869 if (TREE_CODE (expry) == COMPONENT_REF)
2871 tree t = decl_for_component_ref (expry);
2872 if (! t)
2873 return 0;
2874 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2875 expry = t;
2878 if (! DECL_P (exprx) || ! DECL_P (expry))
2879 return 0;
2881 /* If we refer to different gimple registers, or one gimple register
2882 and one non-gimple-register, we know they can't overlap. First,
2883 gimple registers don't have their addresses taken. Now, there
2884 could be more than one stack slot for (different versions of) the
2885 same gimple register, but we can presumably tell they don't
2886 overlap based on offsets from stack base addresses elsewhere.
2887 It's important that we don't proceed to DECL_RTL, because gimple
2888 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2889 able to do anything about them since no SSA information will have
2890 remained to guide it. */
2891 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2892 return exprx != expry
2893 || (moffsetx_known_p && moffsety_known_p
2894 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2895 && !offset_overlap_p (moffsety - moffsetx,
2896 MEM_SIZE (x), MEM_SIZE (y)));
2898 /* With invalid code we can end up storing into the constant pool.
2899 Bail out to avoid ICEing when creating RTL for this.
2900 See gfortran.dg/lto/20091028-2_0.f90. */
2901 if (TREE_CODE (exprx) == CONST_DECL
2902 || TREE_CODE (expry) == CONST_DECL)
2903 return 1;
2905 /* If one decl is known to be a function or label in a function and
2906 the other is some kind of data, they can't overlap. */
2907 if ((TREE_CODE (exprx) == FUNCTION_DECL
2908 || TREE_CODE (exprx) == LABEL_DECL)
2909 != (TREE_CODE (expry) == FUNCTION_DECL
2910 || TREE_CODE (expry) == LABEL_DECL))
2911 return 1;
2913 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2914 living in multiple places), we can't tell anything. Exception
2915 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2916 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2917 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2918 return 0;
2920 rtlx = DECL_RTL (exprx);
2921 rtly = DECL_RTL (expry);
2923 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2924 can't overlap unless they are the same because we never reuse that part
2925 of the stack frame used for locals for spilled pseudos. */
2926 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2927 && ! rtx_equal_p (rtlx, rtly))
2928 return 1;
2930 /* If we have MEMs referring to different address spaces (which can
2931 potentially overlap), we cannot easily tell from the addresses
2932 whether the references overlap. */
2933 if (MEM_P (rtlx) && MEM_P (rtly)
2934 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2935 return 0;
2937 /* Get the base and offsets of both decls. If either is a register, we
2938 know both are and are the same, so use that as the base. The only
2939 we can avoid overlap is if we can deduce that they are nonoverlapping
2940 pieces of that decl, which is very rare. */
2941 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2942 basex = strip_offset_and_add (basex, &offsetx);
2944 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2945 basey = strip_offset_and_add (basey, &offsety);
2947 /* If the bases are different, we know they do not overlap if both
2948 are constants or if one is a constant and the other a pointer into the
2949 stack frame. Otherwise a different base means we can't tell if they
2950 overlap or not. */
2951 if (compare_base_decls (exprx, expry) == 0)
2952 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2953 || (CONSTANT_P (basex) && REG_P (basey)
2954 && REGNO_PTR_FRAME_P (REGNO (basey)))
2955 || (CONSTANT_P (basey) && REG_P (basex)
2956 && REGNO_PTR_FRAME_P (REGNO (basex))));
2958 /* Offset based disambiguation not appropriate for loop invariant */
2959 if (loop_invariant)
2960 return 0;
2962 /* Offset based disambiguation is OK even if we do not know that the
2963 declarations are necessarily different
2964 (i.e. compare_base_decls (exprx, expry) == -1) */
2966 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2967 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2968 : -1);
2969 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2970 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2971 : -1);
2973 /* If we have an offset for either memref, it can update the values computed
2974 above. */
2975 if (moffsetx_known_p)
2976 offsetx += moffsetx, sizex -= moffsetx;
2977 if (moffsety_known_p)
2978 offsety += moffsety, sizey -= moffsety;
2980 /* If a memref has both a size and an offset, we can use the smaller size.
2981 We can't do this if the offset isn't known because we must view this
2982 memref as being anywhere inside the DECL's MEM. */
2983 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2984 sizex = MEM_SIZE (x);
2985 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2986 sizey = MEM_SIZE (y);
2988 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2991 /* Helper for true_dependence and canon_true_dependence.
2992 Checks for true dependence: X is read after store in MEM takes place.
2994 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2995 NULL_RTX, and the canonical addresses of MEM and X are both computed
2996 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2998 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
3000 Returns 1 if there is a true dependence, 0 otherwise. */
3002 static int
3003 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3004 const_rtx x, rtx x_addr, bool mem_canonicalized)
3006 rtx true_mem_addr;
3007 rtx base;
3008 int ret;
3010 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
3011 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
3013 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3014 return 1;
3016 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3017 This is used in epilogue deallocation functions, and in cselib. */
3018 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3019 return 1;
3020 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3021 return 1;
3022 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3023 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3024 return 1;
3026 if (! x_addr)
3027 x_addr = XEXP (x, 0);
3028 x_addr = get_addr (x_addr);
3030 if (! mem_addr)
3032 mem_addr = XEXP (mem, 0);
3033 if (mem_mode == VOIDmode)
3034 mem_mode = GET_MODE (mem);
3036 true_mem_addr = get_addr (mem_addr);
3038 /* Read-only memory is by definition never modified, and therefore can't
3039 conflict with anything. However, don't assume anything when AND
3040 addresses are involved and leave to the code below to determine
3041 dependence. We don't expect to find read-only set on MEM, but
3042 stupid user tricks can produce them, so don't die. */
3043 if (MEM_READONLY_P (x)
3044 && GET_CODE (x_addr) != AND
3045 && GET_CODE (true_mem_addr) != AND)
3046 return 0;
3048 /* If we have MEMs referring to different address spaces (which can
3049 potentially overlap), we cannot easily tell from the addresses
3050 whether the references overlap. */
3051 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3052 return 1;
3054 base = find_base_term (x_addr);
3055 if (base && (GET_CODE (base) == LABEL_REF
3056 || (GET_CODE (base) == SYMBOL_REF
3057 && CONSTANT_POOL_ADDRESS_P (base))))
3058 return 0;
3060 rtx mem_base = find_base_term (true_mem_addr);
3061 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
3062 GET_MODE (x), mem_mode))
3063 return 0;
3065 x_addr = canon_rtx (x_addr);
3066 if (!mem_canonicalized)
3067 mem_addr = canon_rtx (true_mem_addr);
3069 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
3070 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
3071 return ret;
3073 if (mems_in_disjoint_alias_sets_p (x, mem))
3074 return 0;
3076 if (nonoverlapping_memrefs_p (mem, x, false))
3077 return 0;
3079 return rtx_refs_may_alias_p (x, mem, true);
3082 /* True dependence: X is read after store in MEM takes place. */
3085 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3087 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3088 x, NULL_RTX, /*mem_canonicalized=*/false);
3091 /* Canonical true dependence: X is read after store in MEM takes place.
3092 Variant of true_dependence which assumes MEM has already been
3093 canonicalized (hence we no longer do that here).
3094 The mem_addr argument has been added, since true_dependence_1 computed
3095 this value prior to canonicalizing. */
3098 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3099 const_rtx x, rtx x_addr)
3101 return true_dependence_1 (mem, mem_mode, mem_addr,
3102 x, x_addr, /*mem_canonicalized=*/true);
3105 /* Returns nonzero if a write to X might alias a previous read from
3106 (or, if WRITEP is true, a write to) MEM.
3107 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3108 and X_MODE the mode for that access.
3109 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3111 static int
3112 write_dependence_p (const_rtx mem,
3113 const_rtx x, machine_mode x_mode, rtx x_addr,
3114 bool mem_canonicalized, bool x_canonicalized, bool writep)
3116 rtx mem_addr;
3117 rtx true_mem_addr, true_x_addr;
3118 rtx base;
3119 int ret;
3121 gcc_checking_assert (x_canonicalized
3122 ? (x_addr != NULL_RTX
3123 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3124 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3126 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3127 return 1;
3129 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3130 This is used in epilogue deallocation functions. */
3131 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3132 return 1;
3133 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3134 return 1;
3135 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3136 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3137 return 1;
3139 if (!x_addr)
3140 x_addr = XEXP (x, 0);
3141 true_x_addr = get_addr (x_addr);
3143 mem_addr = XEXP (mem, 0);
3144 true_mem_addr = get_addr (mem_addr);
3146 /* A read from read-only memory can't conflict with read-write memory.
3147 Don't assume anything when AND addresses are involved and leave to
3148 the code below to determine dependence. */
3149 if (!writep
3150 && MEM_READONLY_P (mem)
3151 && GET_CODE (true_x_addr) != AND
3152 && GET_CODE (true_mem_addr) != AND)
3153 return 0;
3155 /* If we have MEMs referring to different address spaces (which can
3156 potentially overlap), we cannot easily tell from the addresses
3157 whether the references overlap. */
3158 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3159 return 1;
3161 base = find_base_term (true_mem_addr);
3162 if (! writep
3163 && base
3164 && (GET_CODE (base) == LABEL_REF
3165 || (GET_CODE (base) == SYMBOL_REF
3166 && CONSTANT_POOL_ADDRESS_P (base))))
3167 return 0;
3169 rtx x_base = find_base_term (true_x_addr);
3170 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3171 GET_MODE (x), GET_MODE (mem)))
3172 return 0;
3174 if (!x_canonicalized)
3176 x_addr = canon_rtx (true_x_addr);
3177 x_mode = GET_MODE (x);
3179 if (!mem_canonicalized)
3180 mem_addr = canon_rtx (true_mem_addr);
3182 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3183 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3184 return ret;
3186 if (nonoverlapping_memrefs_p (x, mem, false))
3187 return 0;
3189 return rtx_refs_may_alias_p (x, mem, false);
3192 /* Anti dependence: X is written after read in MEM takes place. */
3195 anti_dependence (const_rtx mem, const_rtx x)
3197 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3198 /*mem_canonicalized=*/false,
3199 /*x_canonicalized*/false, /*writep=*/false);
3202 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3203 Also, consider X in X_MODE (which might be from an enclosing
3204 STRICT_LOW_PART / ZERO_EXTRACT).
3205 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3208 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3209 const_rtx x, machine_mode x_mode, rtx x_addr)
3211 return write_dependence_p (mem, x, x_mode, x_addr,
3212 mem_canonicalized, /*x_canonicalized=*/true,
3213 /*writep=*/false);
3216 /* Output dependence: X is written after store in MEM takes place. */
3219 output_dependence (const_rtx mem, const_rtx x)
3221 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3222 /*mem_canonicalized=*/false,
3223 /*x_canonicalized*/false, /*writep=*/true);
3226 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3227 Also, consider X in X_MODE (which might be from an enclosing
3228 STRICT_LOW_PART / ZERO_EXTRACT).
3229 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3232 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3233 const_rtx x, machine_mode x_mode, rtx x_addr)
3235 return write_dependence_p (mem, x, x_mode, x_addr,
3236 mem_canonicalized, /*x_canonicalized=*/true,
3237 /*writep=*/true);
3242 /* Check whether X may be aliased with MEM. Don't do offset-based
3243 memory disambiguation & TBAA. */
3245 may_alias_p (const_rtx mem, const_rtx x)
3247 rtx x_addr, mem_addr;
3249 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3250 return 1;
3252 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3253 This is used in epilogue deallocation functions. */
3254 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3255 return 1;
3256 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3257 return 1;
3258 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3259 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3260 return 1;
3262 x_addr = XEXP (x, 0);
3263 x_addr = get_addr (x_addr);
3265 mem_addr = XEXP (mem, 0);
3266 mem_addr = get_addr (mem_addr);
3268 /* Read-only memory is by definition never modified, and therefore can't
3269 conflict with anything. However, don't assume anything when AND
3270 addresses are involved and leave to the code below to determine
3271 dependence. We don't expect to find read-only set on MEM, but
3272 stupid user tricks can produce them, so don't die. */
3273 if (MEM_READONLY_P (x)
3274 && GET_CODE (x_addr) != AND
3275 && GET_CODE (mem_addr) != AND)
3276 return 0;
3278 /* If we have MEMs referring to different address spaces (which can
3279 potentially overlap), we cannot easily tell from the addresses
3280 whether the references overlap. */
3281 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3282 return 1;
3284 rtx x_base = find_base_term (x_addr);
3285 rtx mem_base = find_base_term (mem_addr);
3286 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3287 GET_MODE (x), GET_MODE (mem_addr)))
3288 return 0;
3290 if (nonoverlapping_memrefs_p (mem, x, true))
3291 return 0;
3293 /* TBAA not valid for loop_invarint */
3294 return rtx_refs_may_alias_p (x, mem, false);
3297 void
3298 init_alias_target (void)
3300 int i;
3302 if (!arg_base_value)
3303 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3305 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3307 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3308 /* Check whether this register can hold an incoming pointer
3309 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3310 numbers, so translate if necessary due to register windows. */
3311 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3312 && targetm.hard_regno_mode_ok (i, Pmode))
3313 static_reg_base_value[i] = arg_base_value;
3315 /* RTL code is required to be consistent about whether it uses the
3316 stack pointer, the frame pointer or the argument pointer to
3317 access a given area of the frame. We can therefore use the
3318 base address to distinguish between the different areas. */
3319 static_reg_base_value[STACK_POINTER_REGNUM]
3320 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3321 static_reg_base_value[ARG_POINTER_REGNUM]
3322 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3323 static_reg_base_value[FRAME_POINTER_REGNUM]
3324 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3326 /* The above rules extend post-reload, with eliminations applying
3327 consistently to each of the three pointers. Cope with cases in
3328 which the frame pointer is eliminated to the hard frame pointer
3329 rather than the stack pointer. */
3330 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3331 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3332 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3335 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3336 to be memory reference. */
3337 static bool memory_modified;
3338 static void
3339 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3341 if (MEM_P (x))
3343 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3344 memory_modified = true;
3349 /* Return true when INSN possibly modify memory contents of MEM
3350 (i.e. address can be modified). */
3351 bool
3352 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3354 if (!INSN_P (insn))
3355 return false;
3356 /* Conservatively assume all non-readonly MEMs might be modified in
3357 calls. */
3358 if (CALL_P (insn))
3359 return true;
3360 memory_modified = false;
3361 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3362 CONST_CAST_RTX(mem));
3363 return memory_modified;
3366 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3367 array. */
3369 void
3370 init_alias_analysis (void)
3372 const bool frame_pointer_eliminated
3373 = reload_completed
3374 && !frame_pointer_needed
3375 && targetm.can_eliminate (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM);
3376 unsigned int maxreg = max_reg_num ();
3377 int changed, pass;
3378 int i;
3379 unsigned int ui;
3380 rtx_insn *insn;
3381 rtx val;
3382 int rpo_cnt;
3383 int *rpo;
3385 timevar_push (TV_ALIAS_ANALYSIS);
3387 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER,
3388 true);
3389 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3390 bitmap_clear (reg_known_equiv_p);
3392 /* If we have memory allocated from the previous run, use it. */
3393 if (old_reg_base_value)
3394 reg_base_value = old_reg_base_value;
3396 if (reg_base_value)
3397 reg_base_value->truncate (0);
3399 vec_safe_grow_cleared (reg_base_value, maxreg, true);
3401 new_reg_base_value = XNEWVEC (rtx, maxreg);
3402 reg_seen = sbitmap_alloc (maxreg);
3404 /* The basic idea is that each pass through this loop will use the
3405 "constant" information from the previous pass to propagate alias
3406 information through another level of assignments.
3408 The propagation is done on the CFG in reverse post-order, to propagate
3409 things forward as far as possible in each iteration.
3411 This could get expensive if the assignment chains are long. Maybe
3412 we should throttle the number of iterations, possibly based on
3413 the optimization level or flag_expensive_optimizations.
3415 We could propagate more information in the first pass by making use
3416 of DF_REG_DEF_COUNT to determine immediately that the alias information
3417 for a pseudo is "constant".
3419 A program with an uninitialized variable can cause an infinite loop
3420 here. Instead of doing a full dataflow analysis to detect such problems
3421 we just cap the number of iterations for the loop.
3423 The state of the arrays for the set chain in question does not matter
3424 since the program has undefined behavior. */
3426 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3427 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3429 pass = 0;
3432 /* Assume nothing will change this iteration of the loop. */
3433 changed = 0;
3435 /* We want to assign the same IDs each iteration of this loop, so
3436 start counting from one each iteration of the loop. */
3437 unique_id = 1;
3439 /* We're at the start of the function each iteration through the
3440 loop, so we're copying arguments. */
3441 copying_arguments = true;
3443 /* Wipe the potential alias information clean for this pass. */
3444 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3446 /* Wipe the reg_seen array clean. */
3447 bitmap_clear (reg_seen);
3449 /* Initialize the alias information for this pass. */
3450 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3451 if (static_reg_base_value[i]
3452 /* Don't treat the hard frame pointer as special if we
3453 eliminated the frame pointer to the stack pointer. */
3454 && !(i == HARD_FRAME_POINTER_REGNUM && frame_pointer_eliminated))
3456 new_reg_base_value[i] = static_reg_base_value[i];
3457 bitmap_set_bit (reg_seen, i);
3460 /* Walk the insns adding values to the new_reg_base_value array. */
3461 for (i = 0; i < rpo_cnt; i++)
3463 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3464 FOR_BB_INSNS (bb, insn)
3466 if (NONDEBUG_INSN_P (insn))
3468 rtx note, set;
3470 /* Treat the hard frame pointer as special unless we
3471 eliminated the frame pointer to the stack pointer. */
3472 if (!frame_pointer_eliminated
3473 && modified_in_p (hard_frame_pointer_rtx, insn))
3474 continue;
3476 /* If this insn has a noalias note, process it, Otherwise,
3477 scan for sets. A simple set will have no side effects
3478 which could change the base value of any other register. */
3479 if (GET_CODE (PATTERN (insn)) == SET
3480 && REG_NOTES (insn) != 0
3481 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3482 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3483 else
3484 note_stores (insn, record_set, NULL);
3486 set = single_set (insn);
3488 if (set != 0
3489 && REG_P (SET_DEST (set))
3490 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3492 unsigned int regno = REGNO (SET_DEST (set));
3493 rtx src = SET_SRC (set);
3494 rtx t;
3496 note = find_reg_equal_equiv_note (insn);
3497 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3498 && DF_REG_DEF_COUNT (regno) != 1)
3499 note = NULL_RTX;
3501 poly_int64 offset;
3502 if (note != NULL_RTX
3503 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3504 && ! rtx_varies_p (XEXP (note, 0), 1)
3505 && ! reg_overlap_mentioned_p (SET_DEST (set),
3506 XEXP (note, 0)))
3508 set_reg_known_value (regno, XEXP (note, 0));
3509 set_reg_known_equiv_p (regno,
3510 REG_NOTE_KIND (note) == REG_EQUIV);
3512 else if (DF_REG_DEF_COUNT (regno) == 1
3513 && GET_CODE (src) == PLUS
3514 && REG_P (XEXP (src, 0))
3515 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3516 && poly_int_rtx_p (XEXP (src, 1), &offset))
3518 t = plus_constant (GET_MODE (src), t, offset);
3519 set_reg_known_value (regno, t);
3520 set_reg_known_equiv_p (regno, false);
3522 else if (DF_REG_DEF_COUNT (regno) == 1
3523 && ! rtx_varies_p (src, 1))
3525 set_reg_known_value (regno, src);
3526 set_reg_known_equiv_p (regno, false);
3530 else if (NOTE_P (insn)
3531 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3532 copying_arguments = false;
3536 /* Now propagate values from new_reg_base_value to reg_base_value. */
3537 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3539 for (ui = 0; ui < maxreg; ui++)
3541 if (new_reg_base_value[ui]
3542 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3543 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3545 (*reg_base_value)[ui] = new_reg_base_value[ui];
3546 changed = 1;
3550 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3551 XDELETEVEC (rpo);
3553 /* Fill in the remaining entries. */
3554 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3556 int regno = i + FIRST_PSEUDO_REGISTER;
3557 if (! val)
3558 set_reg_known_value (regno, regno_reg_rtx[regno]);
3561 /* Clean up. */
3562 free (new_reg_base_value);
3563 new_reg_base_value = 0;
3564 sbitmap_free (reg_seen);
3565 reg_seen = 0;
3566 timevar_pop (TV_ALIAS_ANALYSIS);
3569 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3570 Special API for var-tracking pass purposes. */
3572 void
3573 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3575 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3578 void
3579 end_alias_analysis (void)
3581 old_reg_base_value = reg_base_value;
3582 vec_free (reg_known_value);
3583 sbitmap_free (reg_known_equiv_p);
3586 void
3587 dump_alias_stats_in_alias_c (FILE *s)
3589 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3590 " %llu are in alias set 0\n"
3591 " %llu queries asked about the same object\n"
3592 " %llu queries asked about the same alias set\n"
3593 " %llu access volatile\n"
3594 " %llu are dependent in the DAG\n"
3595 " %llu are aritificially in conflict with void *\n",
3596 alias_stats.num_disambiguated,
3597 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3598 + alias_stats.num_same_objects + alias_stats.num_volatile
3599 + alias_stats.num_dag + alias_stats.num_disambiguated
3600 + alias_stats.num_universal,
3601 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3602 alias_stats.num_same_objects, alias_stats.num_volatile,
3603 alias_stats.num_dag, alias_stats.num_universal);
3605 #include "gt-alias.h"