2014-10-31 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob7df725d800fd3370e95d9455e362088b88ac69ef
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
76 procedure Analyze_Expression (N : Node_Id);
77 -- For expressions that are not names, this is just a call to analyze. If
78 -- the expression is a name, it may be a call to a parameterless function,
79 -- and if so must be converted into an explicit call node and analyzed as
80 -- such. This deproceduring must be done during the first pass of overload
81 -- resolution, because otherwise a procedure call with overloaded actuals
82 -- may fail to resolve.
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
86 -- operator name or an expanded name whose selector is an operator name,
87 -- and one possible interpretation is as a predefined operator.
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
104 procedure Ambiguous_Operands (N : Node_Id);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
108 procedure Analyze_One_Call
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
135 -- Give possible misspelling message if Sel seems likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- L and R are the operands of an arithmetic operator. Find consistent
151 -- pairs of interpretations for L and R that have a numeric type consistent
152 -- with the semantics of the operator.
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
158 -- L and R are operands of a comparison operator. Find consistent pairs of
159 -- interpretations for L and R.
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
165 -- For the four varieties of concatenation
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
171 -- Ditto for equality operators
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
177 -- Ditto for binary logical operations
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
183 -- Find consistent interpretation for operand of negation operator
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Unary arithmetic types: plus, minus, abs
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
230 procedure Operator_Check (N : Node_Id);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
238 function Process_Implicit_Dereference_Prefix
239 (E : Entity_Id;
240 P : Node_Id) return Entity_Id;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
258 Exprs : List_Id) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
261 function Try_Indexed_Call
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
274 function Try_Indirect_Call
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
282 function Try_Object_Operation
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
303 procedure Ambiguous_Operands (N : Node_Id) is
304 procedure List_Operand_Interps (Opnd : Node_Id);
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
310 procedure List_Operand_Interps (Opnd : Node_Id) is
311 Nam : Node_Id;
312 Err : Node_Id := N;
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
338 return;
339 end if;
341 else
342 return;
343 end if;
345 if Opnd = Left_Opnd (N) then
346 Error_Msg_N ("\left operand has the following interpretations", N);
347 else
348 Error_Msg_N
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
356 -- Start of processing for Ambiguous_Operands
358 begin
359 if Nkind (N) in N_Membership_Test then
360 Error_Msg_N ("ambiguous operands for membership", N);
362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
363 Error_Msg_N ("ambiguous operands for equality", N);
365 else
366 Error_Msg_N ("ambiguous operands for comparison", N);
367 end if;
369 if All_Errors_Mode then
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
372 else
373 Error_Msg_N ("\use -gnatf switch for details", N);
374 end if;
375 end Ambiguous_Operands;
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
397 Sav_Errs : constant Nat := Serious_Errors_Detected;
398 E : Node_Id := Expression (N);
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
401 P : Node_Id;
402 C : Node_Id;
403 Onode : Node_Id;
405 begin
406 Check_SPARK_05_Restriction ("allocator is not allowed", N);
408 -- Deal with allocator restrictions
410 -- In accordance with H.4(7), the No_Allocators restriction only applies
411 -- to user-written allocators. The same consideration applies to the
412 -- No_Standard_Allocators_Before_Elaboration restriction.
414 if Comes_From_Source (N) then
415 Check_Restriction (No_Allocators, N);
417 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
418 -- look at enclosing context, checking task/main subprogram case.
420 C := N;
421 P := Parent (C);
422 while Present (P) loop
424 -- For the task case we need a handled sequence of statements,
425 -- where the occurrence of the allocator is within the statements
426 -- and the parent is a task body
428 if Nkind (P) = N_Handled_Sequence_Of_Statements
429 and then Is_List_Member (C)
430 and then List_Containing (C) = Statements (P)
431 then
432 Onode := Original_Node (Parent (P));
434 -- Check for allocator within task body, this is a definite
435 -- violation of No_Allocators_After_Elaboration we can detect
436 -- at compile time.
438 if Nkind (Onode) = N_Task_Body then
439 Check_Restriction
440 (No_Standard_Allocators_After_Elaboration, N);
441 exit;
442 end if;
443 end if;
445 -- The other case is appearance in a subprogram body. This is
446 -- a violation if this is a library level subprogram with no
447 -- parameters. Note that this is now a static error even if the
448 -- subprogram is not the main program (this is a change, in an
449 -- earlier version only the main program was affected, and the
450 -- check had to be done in the binder.
452 if Nkind (P) = N_Subprogram_Body
453 and then Nkind (Parent (P)) = N_Compilation_Unit
454 and then No (Parameter_Specifications (Specification (P)))
455 then
456 Check_Restriction
457 (No_Standard_Allocators_After_Elaboration, N);
458 end if;
460 C := P;
461 P := Parent (C);
462 end loop;
463 end if;
465 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
466 -- any. The expected type for the name is any type. A non-overloading
467 -- rule then requires it to be of a type descended from
468 -- System.Storage_Pools.Subpools.Subpool_Handle.
470 -- This isn't exactly what the AI says, but it seems to be the right
471 -- rule. The AI should be fixed.???
473 declare
474 Subpool : constant Node_Id := Subpool_Handle_Name (N);
476 begin
477 if Present (Subpool) then
478 Analyze (Subpool);
480 if Is_Overloaded (Subpool) then
481 Error_Msg_N ("ambiguous subpool handle", Subpool);
482 end if;
484 -- Check that Etype (Subpool) is descended from Subpool_Handle
486 Resolve (Subpool);
487 end if;
488 end;
490 -- Analyze the qualified expression or subtype indication
492 if Nkind (E) = N_Qualified_Expression then
493 Acc_Type := Create_Itype (E_Allocator_Type, N);
494 Set_Etype (Acc_Type, Acc_Type);
495 Find_Type (Subtype_Mark (E));
497 -- Analyze the qualified expression, and apply the name resolution
498 -- rule given in 4.7(3).
500 Analyze (E);
501 Type_Id := Etype (E);
502 Set_Directly_Designated_Type (Acc_Type, Type_Id);
504 -- Allocators generated by the build-in-place expansion mechanism
505 -- are explicitly marked as coming from source but do not need to be
506 -- checked for limited initialization. To exclude this case, ensure
507 -- that the parent of the allocator is a source node.
509 if Is_Limited_Type (Type_Id)
510 and then Comes_From_Source (N)
511 and then Comes_From_Source (Parent (N))
512 and then not In_Instance_Body
513 then
514 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
515 Error_Msg_N ("initialization not allowed for limited types", N);
516 Explain_Limited_Type (Type_Id, N);
517 end if;
518 end if;
520 -- A qualified expression requires an exact match of the type,
521 -- class-wide matching is not allowed.
523 -- if Is_Class_Wide_Type (Type_Id)
524 -- and then Base_Type
525 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
526 -- then
527 -- Wrong_Type (Expression (E), Type_Id);
528 -- end if;
530 -- We don't analyze the qualified expression itself because it's
531 -- part of the allocator. It is fully analyzed and resolved when
532 -- the allocator is resolved with the context type.
534 Set_Etype (E, Type_Id);
536 -- Case where allocator has a subtype indication
538 else
539 declare
540 Def_Id : Entity_Id;
541 Base_Typ : Entity_Id;
543 begin
544 -- If the allocator includes a N_Subtype_Indication then a
545 -- constraint is present, otherwise the node is a subtype mark.
546 -- Introduce an explicit subtype declaration into the tree
547 -- defining some anonymous subtype and rewrite the allocator to
548 -- use this subtype rather than the subtype indication.
550 -- It is important to introduce the explicit subtype declaration
551 -- so that the bounds of the subtype indication are attached to
552 -- the tree in case the allocator is inside a generic unit.
554 if Nkind (E) = N_Subtype_Indication then
556 -- A constraint is only allowed for a composite type in Ada
557 -- 95. In Ada 83, a constraint is also allowed for an
558 -- access-to-composite type, but the constraint is ignored.
560 Find_Type (Subtype_Mark (E));
561 Base_Typ := Entity (Subtype_Mark (E));
563 if Is_Elementary_Type (Base_Typ) then
564 if not (Ada_Version = Ada_83
565 and then Is_Access_Type (Base_Typ))
566 then
567 Error_Msg_N ("constraint not allowed here", E);
569 if Nkind (Constraint (E)) =
570 N_Index_Or_Discriminant_Constraint
571 then
572 Error_Msg_N -- CODEFIX
573 ("\if qualified expression was meant, " &
574 "use apostrophe", Constraint (E));
575 end if;
576 end if;
578 -- Get rid of the bogus constraint:
580 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
581 Analyze_Allocator (N);
582 return;
583 end if;
585 if Expander_Active then
586 Def_Id := Make_Temporary (Loc, 'S');
588 Insert_Action (E,
589 Make_Subtype_Declaration (Loc,
590 Defining_Identifier => Def_Id,
591 Subtype_Indication => Relocate_Node (E)));
593 if Sav_Errs /= Serious_Errors_Detected
594 and then Nkind (Constraint (E)) =
595 N_Index_Or_Discriminant_Constraint
596 then
597 Error_Msg_N -- CODEFIX
598 ("if qualified expression was meant, "
599 & "use apostrophe!", Constraint (E));
600 end if;
602 E := New_Occurrence_Of (Def_Id, Loc);
603 Rewrite (Expression (N), E);
604 end if;
605 end if;
607 Type_Id := Process_Subtype (E, N);
608 Acc_Type := Create_Itype (E_Allocator_Type, N);
609 Set_Etype (Acc_Type, Acc_Type);
610 Set_Directly_Designated_Type (Acc_Type, Type_Id);
611 Check_Fully_Declared (Type_Id, N);
613 -- Ada 2005 (AI-231): If the designated type is itself an access
614 -- type that excludes null, its default initialization will
615 -- be a null object, and we can insert an unconditional raise
616 -- before the allocator.
618 -- Ada 2012 (AI-104): A not null indication here is altogether
619 -- illegal.
621 if Can_Never_Be_Null (Type_Id) then
622 declare
623 Not_Null_Check : constant Node_Id :=
624 Make_Raise_Constraint_Error (Sloc (E),
625 Reason => CE_Null_Not_Allowed);
627 begin
628 if Expander_Active then
629 Insert_Action (N, Not_Null_Check);
630 Analyze (Not_Null_Check);
632 elsif Warn_On_Ada_2012_Compatibility then
633 Error_Msg_N
634 ("null value not allowed here in Ada 2012?y?", E);
635 end if;
636 end;
637 end if;
639 -- Check for missing initialization. Skip this check if we already
640 -- had errors on analyzing the allocator, since in that case these
641 -- are probably cascaded errors.
643 if Is_Indefinite_Subtype (Type_Id)
644 and then Serious_Errors_Detected = Sav_Errs
645 then
646 -- The build-in-place machinery may produce an allocator when
647 -- the designated type is indefinite but the underlying type is
648 -- not. In this case the unknown discriminants are meaningless
649 -- and should not trigger error messages. Check the parent node
650 -- because the allocator is marked as coming from source.
652 if Present (Underlying_Type (Type_Id))
653 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
654 and then not Comes_From_Source (Parent (N))
655 then
656 null;
658 elsif Is_Class_Wide_Type (Type_Id) then
659 Error_Msg_N
660 ("initialization required in class-wide allocation", N);
662 else
663 if Ada_Version < Ada_2005
664 and then Is_Limited_Type (Type_Id)
665 then
666 Error_Msg_N ("unconstrained allocation not allowed", N);
668 if Is_Array_Type (Type_Id) then
669 Error_Msg_N
670 ("\constraint with array bounds required", N);
672 elsif Has_Unknown_Discriminants (Type_Id) then
673 null;
675 else pragma Assert (Has_Discriminants (Type_Id));
676 Error_Msg_N
677 ("\constraint with discriminant values required", N);
678 end if;
680 -- Limited Ada 2005 and general non-limited case
682 else
683 Error_Msg_N
684 ("uninitialized unconstrained allocation not allowed",
687 if Is_Array_Type (Type_Id) then
688 Error_Msg_N
689 ("\qualified expression or constraint with " &
690 "array bounds required", N);
692 elsif Has_Unknown_Discriminants (Type_Id) then
693 Error_Msg_N ("\qualified expression required", N);
695 else pragma Assert (Has_Discriminants (Type_Id));
696 Error_Msg_N
697 ("\qualified expression or constraint with " &
698 "discriminant values required", N);
699 end if;
700 end if;
701 end if;
702 end if;
703 end;
704 end if;
706 if Is_Abstract_Type (Type_Id) then
707 Error_Msg_N ("cannot allocate abstract object", E);
708 end if;
710 if Has_Task (Designated_Type (Acc_Type)) then
711 Check_Restriction (No_Tasking, N);
712 Check_Restriction (Max_Tasks, N);
713 Check_Restriction (No_Task_Allocators, N);
714 end if;
716 -- Check restriction against dynamically allocated protected objects
718 if Has_Protected (Designated_Type (Acc_Type)) then
719 Check_Restriction (No_Protected_Type_Allocators, N);
720 end if;
722 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
723 -- type is nested, and the designated type needs finalization. The rule
724 -- is conservative in that class-wide types need finalization.
726 if Needs_Finalization (Designated_Type (Acc_Type))
727 and then not Is_Library_Level_Entity (Acc_Type)
728 then
729 Check_Restriction (No_Nested_Finalization, N);
730 end if;
732 -- Check that an allocator of a nested access type doesn't create a
733 -- protected object when restriction No_Local_Protected_Objects applies.
735 if Has_Protected (Designated_Type (Acc_Type))
736 and then not Is_Library_Level_Entity (Acc_Type)
737 then
738 Check_Restriction (No_Local_Protected_Objects, N);
739 end if;
741 -- If the No_Streams restriction is set, check that the type of the
742 -- object is not, and does not contain, any subtype derived from
743 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
744 -- Has_Stream just for efficiency reasons. There is no point in
745 -- spending time on a Has_Stream check if the restriction is not set.
747 if Restriction_Check_Required (No_Streams) then
748 if Has_Stream (Designated_Type (Acc_Type)) then
749 Check_Restriction (No_Streams, N);
750 end if;
751 end if;
753 Set_Etype (N, Acc_Type);
755 if not Is_Library_Level_Entity (Acc_Type) then
756 Check_Restriction (No_Local_Allocators, N);
757 end if;
759 if Serious_Errors_Detected > Sav_Errs then
760 Set_Error_Posted (N);
761 Set_Etype (N, Any_Type);
762 end if;
763 end Analyze_Allocator;
765 ---------------------------
766 -- Analyze_Arithmetic_Op --
767 ---------------------------
769 procedure Analyze_Arithmetic_Op (N : Node_Id) is
770 L : constant Node_Id := Left_Opnd (N);
771 R : constant Node_Id := Right_Opnd (N);
772 Op_Id : Entity_Id;
774 begin
775 Candidate_Type := Empty;
776 Analyze_Expression (L);
777 Analyze_Expression (R);
779 -- If the entity is already set, the node is the instantiation of a
780 -- generic node with a non-local reference, or was manufactured by a
781 -- call to Make_Op_xxx. In either case the entity is known to be valid,
782 -- and we do not need to collect interpretations, instead we just get
783 -- the single possible interpretation.
785 Op_Id := Entity (N);
787 if Present (Op_Id) then
788 if Ekind (Op_Id) = E_Operator then
790 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
791 and then Treat_Fixed_As_Integer (N)
792 then
793 null;
794 else
795 Set_Etype (N, Any_Type);
796 Find_Arithmetic_Types (L, R, Op_Id, N);
797 end if;
799 else
800 Set_Etype (N, Any_Type);
801 Add_One_Interp (N, Op_Id, Etype (Op_Id));
802 end if;
804 -- Entity is not already set, so we do need to collect interpretations
806 else
807 Op_Id := Get_Name_Entity_Id (Chars (N));
808 Set_Etype (N, Any_Type);
810 while Present (Op_Id) loop
811 if Ekind (Op_Id) = E_Operator
812 and then Present (Next_Entity (First_Entity (Op_Id)))
813 then
814 Find_Arithmetic_Types (L, R, Op_Id, N);
816 -- The following may seem superfluous, because an operator cannot
817 -- be generic, but this ignores the cleverness of the author of
818 -- ACVC bc1013a.
820 elsif Is_Overloadable (Op_Id) then
821 Analyze_User_Defined_Binary_Op (N, Op_Id);
822 end if;
824 Op_Id := Homonym (Op_Id);
825 end loop;
826 end if;
828 Operator_Check (N);
829 end Analyze_Arithmetic_Op;
831 ------------------
832 -- Analyze_Call --
833 ------------------
835 -- Function, procedure, and entry calls are checked here. The Name in
836 -- the call may be overloaded. The actuals have been analyzed and may
837 -- themselves be overloaded. On exit from this procedure, the node N
838 -- may have zero, one or more interpretations. In the first case an
839 -- error message is produced. In the last case, the node is flagged
840 -- as overloaded and the interpretations are collected in All_Interp.
842 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
843 -- the type-checking is similar to that of other calls.
845 procedure Analyze_Call (N : Node_Id) is
846 Actuals : constant List_Id := Parameter_Associations (N);
847 Nam : Node_Id;
848 X : Interp_Index;
849 It : Interp;
850 Nam_Ent : Entity_Id;
851 Success : Boolean := False;
853 Deref : Boolean := False;
854 -- Flag indicates whether an interpretation of the prefix is a
855 -- parameterless call that returns an access_to_subprogram.
857 procedure Check_Ghost_Subprogram_Call;
858 -- Verify the legality of a call to a ghost subprogram. Such calls can
859 -- appear only in assertion expressions except subtype predicates or
860 -- from within another ghost subprogram.
862 procedure Check_Mixed_Parameter_And_Named_Associations;
863 -- Check that parameter and named associations are not mixed. This is
864 -- a restriction in SPARK mode.
866 function Name_Denotes_Function return Boolean;
867 -- If the type of the name is an access to subprogram, this may be the
868 -- type of a name, or the return type of the function being called. If
869 -- the name is not an entity then it can denote a protected function.
870 -- Until we distinguish Etype from Return_Type, we must use this routine
871 -- to resolve the meaning of the name in the call.
873 procedure No_Interpretation;
874 -- Output error message when no valid interpretation exists
876 ---------------------------------
877 -- Check_Ghost_Subprogram_Call --
878 ---------------------------------
880 procedure Check_Ghost_Subprogram_Call is
881 S : Entity_Id;
883 begin
884 -- Do not perform the check while preanalyzing the enclosing context
885 -- because the call is not in its final place. Premature attempts to
886 -- verify the placement lead to bogus errors.
888 if In_Spec_Expression then
889 return;
891 -- The ghost subprogram appears inside an assertion expression which
892 -- is one of the allowed cases.
894 elsif In_Assertion_Expression_Pragma (N) then
895 return;
897 -- Otherwise see if it inside another ghost subprogram
899 else
900 -- Loop to climb scopes
902 S := Current_Scope;
903 while Present (S) and then S /= Standard_Standard loop
905 -- The call appears inside another ghost subprogram
907 if Is_Ghost_Subprogram (S) then
908 return;
909 end if;
911 S := Scope (S);
912 end loop;
914 -- If we fall through the loop it was not within another
915 -- ghost subprogram, so we have bad placement.
917 Error_Msg_N
918 ("call to ghost subprogram must appear in assertion expression "
919 & "or another ghost subprogram", N);
920 end if;
921 end Check_Ghost_Subprogram_Call;
923 --------------------------------------------------
924 -- Check_Mixed_Parameter_And_Named_Associations --
925 --------------------------------------------------
927 procedure Check_Mixed_Parameter_And_Named_Associations is
928 Actual : Node_Id;
929 Named_Seen : Boolean;
931 begin
932 Named_Seen := False;
934 Actual := First (Actuals);
935 while Present (Actual) loop
936 case Nkind (Actual) is
937 when N_Parameter_Association =>
938 if Named_Seen then
939 Check_SPARK_05_Restriction
940 ("named association cannot follow positional one",
941 Actual);
942 exit;
943 end if;
944 when others =>
945 Named_Seen := True;
946 end case;
948 Next (Actual);
949 end loop;
950 end Check_Mixed_Parameter_And_Named_Associations;
952 ---------------------------
953 -- Name_Denotes_Function --
954 ---------------------------
956 function Name_Denotes_Function return Boolean is
957 begin
958 if Is_Entity_Name (Nam) then
959 return Ekind (Entity (Nam)) = E_Function;
961 elsif Nkind (Nam) = N_Selected_Component then
962 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
964 else
965 return False;
966 end if;
967 end Name_Denotes_Function;
969 -----------------------
970 -- No_Interpretation --
971 -----------------------
973 procedure No_Interpretation is
974 L : constant Boolean := Is_List_Member (N);
975 K : constant Node_Kind := Nkind (Parent (N));
977 begin
978 -- If the node is in a list whose parent is not an expression then it
979 -- must be an attempted procedure call.
981 if L and then K not in N_Subexpr then
982 if Ekind (Entity (Nam)) = E_Generic_Procedure then
983 Error_Msg_NE
984 ("must instantiate generic procedure& before call",
985 Nam, Entity (Nam));
986 else
987 Error_Msg_N
988 ("procedure or entry name expected", Nam);
989 end if;
991 -- Check for tasking cases where only an entry call will do
993 elsif not L
994 and then Nkind_In (K, N_Entry_Call_Alternative,
995 N_Triggering_Alternative)
996 then
997 Error_Msg_N ("entry name expected", Nam);
999 -- Otherwise give general error message
1001 else
1002 Error_Msg_N ("invalid prefix in call", Nam);
1003 end if;
1004 end No_Interpretation;
1006 -- Start of processing for Analyze_Call
1008 begin
1009 if Restriction_Check_Required (SPARK_05) then
1010 Check_Mixed_Parameter_And_Named_Associations;
1011 end if;
1013 -- Initialize the type of the result of the call to the error type,
1014 -- which will be reset if the type is successfully resolved.
1016 Set_Etype (N, Any_Type);
1018 Nam := Name (N);
1020 if not Is_Overloaded (Nam) then
1022 -- Only one interpretation to check
1024 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1025 Nam_Ent := Etype (Nam);
1027 -- If the prefix is an access_to_subprogram, this may be an indirect
1028 -- call. This is the case if the name in the call is not an entity
1029 -- name, or if it is a function name in the context of a procedure
1030 -- call. In this latter case, we have a call to a parameterless
1031 -- function that returns a pointer_to_procedure which is the entity
1032 -- being called. Finally, F (X) may be a call to a parameterless
1033 -- function that returns a pointer to a function with parameters.
1034 -- Note that if F returns an access-to-subprogram whose designated
1035 -- type is an array, F (X) cannot be interpreted as an indirect call
1036 -- through the result of the call to F.
1038 elsif Is_Access_Type (Etype (Nam))
1039 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1040 and then
1041 (not Name_Denotes_Function
1042 or else Nkind (N) = N_Procedure_Call_Statement
1043 or else
1044 (Nkind (Parent (N)) /= N_Explicit_Dereference
1045 and then Is_Entity_Name (Nam)
1046 and then No (First_Formal (Entity (Nam)))
1047 and then not
1048 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1049 and then Present (Actuals)))
1050 then
1051 Nam_Ent := Designated_Type (Etype (Nam));
1052 Insert_Explicit_Dereference (Nam);
1054 -- Selected component case. Simple entry or protected operation,
1055 -- where the entry name is given by the selector name.
1057 elsif Nkind (Nam) = N_Selected_Component then
1058 Nam_Ent := Entity (Selector_Name (Nam));
1060 if not Ekind_In (Nam_Ent, E_Entry,
1061 E_Entry_Family,
1062 E_Function,
1063 E_Procedure)
1064 then
1065 Error_Msg_N ("name in call is not a callable entity", Nam);
1066 Set_Etype (N, Any_Type);
1067 return;
1068 end if;
1070 -- If the name is an Indexed component, it can be a call to a member
1071 -- of an entry family. The prefix must be a selected component whose
1072 -- selector is the entry. Analyze_Procedure_Call normalizes several
1073 -- kinds of call into this form.
1075 elsif Nkind (Nam) = N_Indexed_Component then
1076 if Nkind (Prefix (Nam)) = N_Selected_Component then
1077 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1078 else
1079 Error_Msg_N ("name in call is not a callable entity", Nam);
1080 Set_Etype (N, Any_Type);
1081 return;
1082 end if;
1084 elsif not Is_Entity_Name (Nam) then
1085 Error_Msg_N ("name in call is not a callable entity", Nam);
1086 Set_Etype (N, Any_Type);
1087 return;
1089 else
1090 Nam_Ent := Entity (Nam);
1092 -- If not overloadable, this may be a generalized indexing
1093 -- operation with named associations. Rewrite again as an
1094 -- indexed component and analyze as container indexing.
1096 if not Is_Overloadable (Nam_Ent) then
1097 if Present
1098 (Find_Value_Of_Aspect
1099 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1100 then
1101 Replace (N,
1102 Make_Indexed_Component (Sloc (N),
1103 Prefix => Nam,
1104 Expressions => Parameter_Associations (N)));
1106 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1107 return;
1108 else
1109 No_Interpretation;
1110 end if;
1112 else
1113 No_Interpretation;
1114 end if;
1116 return;
1117 end if;
1118 end if;
1120 -- Operations generated for RACW stub types are called only through
1121 -- dispatching, and can never be the static interpretation of a call.
1123 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1124 No_Interpretation;
1125 return;
1126 end if;
1128 Analyze_One_Call (N, Nam_Ent, True, Success);
1130 -- If this is an indirect call, the return type of the access_to
1131 -- subprogram may be an incomplete type. At the point of the call,
1132 -- use the full type if available, and at the same time update the
1133 -- return type of the access_to_subprogram.
1135 if Success
1136 and then Nkind (Nam) = N_Explicit_Dereference
1137 and then Ekind (Etype (N)) = E_Incomplete_Type
1138 and then Present (Full_View (Etype (N)))
1139 then
1140 Set_Etype (N, Full_View (Etype (N)));
1141 Set_Etype (Nam_Ent, Etype (N));
1142 end if;
1144 -- Overloaded call
1146 else
1147 -- An overloaded selected component must denote overloaded operations
1148 -- of a concurrent type. The interpretations are attached to the
1149 -- simple name of those operations.
1151 if Nkind (Nam) = N_Selected_Component then
1152 Nam := Selector_Name (Nam);
1153 end if;
1155 Get_First_Interp (Nam, X, It);
1157 while Present (It.Nam) loop
1158 Nam_Ent := It.Nam;
1159 Deref := False;
1161 -- Name may be call that returns an access to subprogram, or more
1162 -- generally an overloaded expression one of whose interpretations
1163 -- yields an access to subprogram. If the name is an entity, we do
1164 -- not dereference, because the node is a call that returns the
1165 -- access type: note difference between f(x), where the call may
1166 -- return an access subprogram type, and f(x)(y), where the type
1167 -- returned by the call to f is implicitly dereferenced to analyze
1168 -- the outer call.
1170 if Is_Access_Type (Nam_Ent) then
1171 Nam_Ent := Designated_Type (Nam_Ent);
1173 elsif Is_Access_Type (Etype (Nam_Ent))
1174 and then
1175 (not Is_Entity_Name (Nam)
1176 or else Nkind (N) = N_Procedure_Call_Statement)
1177 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1178 = E_Subprogram_Type
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1182 if Is_Entity_Name (Nam) then
1183 Deref := True;
1184 end if;
1185 end if;
1187 -- If the call has been rewritten from a prefixed call, the first
1188 -- parameter has been analyzed, but may need a subsequent
1189 -- dereference, so skip its analysis now.
1191 if N /= Original_Node (N)
1192 and then Nkind (Original_Node (N)) = Nkind (N)
1193 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1194 and then Present (Parameter_Associations (N))
1195 and then Present (Etype (First (Parameter_Associations (N))))
1196 then
1197 Analyze_One_Call
1198 (N, Nam_Ent, False, Success, Skip_First => True);
1199 else
1200 Analyze_One_Call (N, Nam_Ent, False, Success);
1201 end if;
1203 -- If the interpretation succeeds, mark the proper type of the
1204 -- prefix (any valid candidate will do). If not, remove the
1205 -- candidate interpretation. This only needs to be done for
1206 -- overloaded protected operations, for other entities disambi-
1207 -- guation is done directly in Resolve.
1209 if Success then
1210 if Deref
1211 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1212 then
1213 Set_Entity (Nam, It.Nam);
1214 Insert_Explicit_Dereference (Nam);
1215 Set_Etype (Nam, Nam_Ent);
1217 else
1218 Set_Etype (Nam, It.Typ);
1219 end if;
1221 elsif Nkind_In (Name (N), N_Selected_Component,
1222 N_Function_Call)
1223 then
1224 Remove_Interp (X);
1225 end if;
1227 Get_Next_Interp (X, It);
1228 end loop;
1230 -- If the name is the result of a function call, it can only be a
1231 -- call to a function returning an access to subprogram. Insert
1232 -- explicit dereference.
1234 if Nkind (Nam) = N_Function_Call then
1235 Insert_Explicit_Dereference (Nam);
1236 end if;
1238 if Etype (N) = Any_Type then
1240 -- None of the interpretations is compatible with the actuals
1242 Diagnose_Call (N, Nam);
1244 -- Special checks for uninstantiated put routines
1246 if Nkind (N) = N_Procedure_Call_Statement
1247 and then Is_Entity_Name (Nam)
1248 and then Chars (Nam) = Name_Put
1249 and then List_Length (Actuals) = 1
1250 then
1251 declare
1252 Arg : constant Node_Id := First (Actuals);
1253 Typ : Entity_Id;
1255 begin
1256 if Nkind (Arg) = N_Parameter_Association then
1257 Typ := Etype (Explicit_Actual_Parameter (Arg));
1258 else
1259 Typ := Etype (Arg);
1260 end if;
1262 if Is_Signed_Integer_Type (Typ) then
1263 Error_Msg_N
1264 ("possible missing instantiation of "
1265 & "'Text_'I'O.'Integer_'I'O!", Nam);
1267 elsif Is_Modular_Integer_Type (Typ) then
1268 Error_Msg_N
1269 ("possible missing instantiation of "
1270 & "'Text_'I'O.'Modular_'I'O!", Nam);
1272 elsif Is_Floating_Point_Type (Typ) then
1273 Error_Msg_N
1274 ("possible missing instantiation of "
1275 & "'Text_'I'O.'Float_'I'O!", Nam);
1277 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1278 Error_Msg_N
1279 ("possible missing instantiation of "
1280 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1282 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1283 Error_Msg_N
1284 ("possible missing instantiation of "
1285 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1287 elsif Is_Enumeration_Type (Typ) then
1288 Error_Msg_N
1289 ("possible missing instantiation of "
1290 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1291 end if;
1292 end;
1293 end if;
1295 elsif not Is_Overloaded (N)
1296 and then Is_Entity_Name (Nam)
1297 then
1298 -- Resolution yields a single interpretation. Verify that the
1299 -- reference has capitalization consistent with the declaration.
1301 Set_Entity_With_Checks (Nam, Entity (Nam));
1302 Generate_Reference (Entity (Nam), Nam);
1304 Set_Etype (Nam, Etype (Entity (Nam)));
1305 else
1306 Remove_Abstract_Operations (N);
1307 end if;
1309 End_Interp_List;
1310 end if;
1312 -- A call to a ghost subprogram is allowed only in assertion expressions
1313 -- excluding subtype predicates or from within another ghost subprogram.
1315 if Is_Ghost_Subprogram (Get_Subprogram_Entity (N)) then
1316 Check_Ghost_Subprogram_Call;
1317 end if;
1318 end Analyze_Call;
1320 -----------------------------
1321 -- Analyze_Case_Expression --
1322 -----------------------------
1324 procedure Analyze_Case_Expression (N : Node_Id) is
1325 procedure Non_Static_Choice_Error (Choice : Node_Id);
1326 -- Error routine invoked by the generic instantiation below when
1327 -- the case expression has a non static choice.
1329 package Case_Choices_Analysis is new
1330 Generic_Analyze_Choices
1331 (Process_Associated_Node => No_OP);
1332 use Case_Choices_Analysis;
1334 package Case_Choices_Checking is new
1335 Generic_Check_Choices
1336 (Process_Empty_Choice => No_OP,
1337 Process_Non_Static_Choice => Non_Static_Choice_Error,
1338 Process_Associated_Node => No_OP);
1339 use Case_Choices_Checking;
1341 -----------------------------
1342 -- Non_Static_Choice_Error --
1343 -----------------------------
1345 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1346 begin
1347 Flag_Non_Static_Expr
1348 ("choice given in case expression is not static!", Choice);
1349 end Non_Static_Choice_Error;
1351 -- Local variables
1353 Expr : constant Node_Id := Expression (N);
1354 Alt : Node_Id;
1355 Exp_Type : Entity_Id;
1356 Exp_Btype : Entity_Id;
1358 FirstX : Node_Id := Empty;
1359 -- First expression in the case for which there is some type information
1360 -- available, i.e. it is not Any_Type, which can happen because of some
1361 -- error, or from the use of e.g. raise Constraint_Error.
1363 Others_Present : Boolean;
1364 -- Indicates if Others was present
1366 Wrong_Alt : Node_Id;
1367 -- For error reporting
1369 -- Start of processing for Analyze_Case_Expression
1371 begin
1372 if Comes_From_Source (N) then
1373 Check_Compiler_Unit ("case expression", N);
1374 end if;
1376 Analyze_And_Resolve (Expr, Any_Discrete);
1377 Check_Unset_Reference (Expr);
1378 Exp_Type := Etype (Expr);
1379 Exp_Btype := Base_Type (Exp_Type);
1381 Alt := First (Alternatives (N));
1382 while Present (Alt) loop
1383 Analyze (Expression (Alt));
1385 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1386 FirstX := Expression (Alt);
1387 end if;
1389 Next (Alt);
1390 end loop;
1392 -- Get our initial type from the first expression for which we got some
1393 -- useful type information from the expression.
1395 if not Is_Overloaded (FirstX) then
1396 Set_Etype (N, Etype (FirstX));
1398 else
1399 declare
1400 I : Interp_Index;
1401 It : Interp;
1403 begin
1404 Set_Etype (N, Any_Type);
1406 Get_First_Interp (FirstX, I, It);
1407 while Present (It.Nam) loop
1409 -- For each interpretation of the first expression, we only
1410 -- add the interpretation if every other expression in the
1411 -- case expression alternatives has a compatible type.
1413 Alt := Next (First (Alternatives (N)));
1414 while Present (Alt) loop
1415 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1416 Next (Alt);
1417 end loop;
1419 if No (Alt) then
1420 Add_One_Interp (N, It.Typ, It.Typ);
1422 else
1423 Wrong_Alt := Alt;
1424 end if;
1426 Get_Next_Interp (I, It);
1427 end loop;
1428 end;
1429 end if;
1431 Exp_Btype := Base_Type (Exp_Type);
1433 -- The expression must be of a discrete type which must be determinable
1434 -- independently of the context in which the expression occurs, but
1435 -- using the fact that the expression must be of a discrete type.
1436 -- Moreover, the type this expression must not be a character literal
1437 -- (which is always ambiguous).
1439 -- If error already reported by Resolve, nothing more to do
1441 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1442 return;
1444 -- Special casee message for character literal
1446 elsif Exp_Btype = Any_Character then
1447 Error_Msg_N
1448 ("character literal as case expression is ambiguous", Expr);
1449 return;
1450 end if;
1452 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1453 Error_Msg_N
1454 ("type incompatible with that of previous alternatives",
1455 Expression (Wrong_Alt));
1456 return;
1457 end if;
1459 -- If the case expression is a formal object of mode in out, then
1460 -- treat it as having a nonstatic subtype by forcing use of the base
1461 -- type (which has to get passed to Check_Case_Choices below). Also
1462 -- use base type when the case expression is parenthesized.
1464 if Paren_Count (Expr) > 0
1465 or else (Is_Entity_Name (Expr)
1466 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1467 then
1468 Exp_Type := Exp_Btype;
1469 end if;
1471 -- The case expression alternatives cover the range of a static subtype
1472 -- subject to aspect Static_Predicate. Do not check the choices when the
1473 -- case expression has not been fully analyzed yet because this may lead
1474 -- to bogus errors.
1476 if Is_OK_Static_Subtype (Exp_Type)
1477 and then Has_Static_Predicate_Aspect (Exp_Type)
1478 and then In_Spec_Expression
1479 then
1480 null;
1482 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1484 else
1485 Analyze_Choices (Alternatives (N), Exp_Type);
1486 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1487 end if;
1489 if Exp_Type = Universal_Integer and then not Others_Present then
1490 Error_Msg_N
1491 ("case on universal integer requires OTHERS choice", Expr);
1492 end if;
1493 end Analyze_Case_Expression;
1495 ---------------------------
1496 -- Analyze_Comparison_Op --
1497 ---------------------------
1499 procedure Analyze_Comparison_Op (N : Node_Id) is
1500 L : constant Node_Id := Left_Opnd (N);
1501 R : constant Node_Id := Right_Opnd (N);
1502 Op_Id : Entity_Id := Entity (N);
1504 begin
1505 Set_Etype (N, Any_Type);
1506 Candidate_Type := Empty;
1508 Analyze_Expression (L);
1509 Analyze_Expression (R);
1511 if Present (Op_Id) then
1512 if Ekind (Op_Id) = E_Operator then
1513 Find_Comparison_Types (L, R, Op_Id, N);
1514 else
1515 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1516 end if;
1518 if Is_Overloaded (L) then
1519 Set_Etype (L, Intersect_Types (L, R));
1520 end if;
1522 else
1523 Op_Id := Get_Name_Entity_Id (Chars (N));
1524 while Present (Op_Id) loop
1525 if Ekind (Op_Id) = E_Operator then
1526 Find_Comparison_Types (L, R, Op_Id, N);
1527 else
1528 Analyze_User_Defined_Binary_Op (N, Op_Id);
1529 end if;
1531 Op_Id := Homonym (Op_Id);
1532 end loop;
1533 end if;
1535 Operator_Check (N);
1536 end Analyze_Comparison_Op;
1538 ---------------------------
1539 -- Analyze_Concatenation --
1540 ---------------------------
1542 procedure Analyze_Concatenation (N : Node_Id) is
1544 -- We wish to avoid deep recursion, because concatenations are often
1545 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1546 -- operands nonrecursively until we find something that is not a
1547 -- concatenation (A in this case), or has already been analyzed. We
1548 -- analyze that, and then walk back up the tree following Parent
1549 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1550 -- work at each level. The Parent pointers allow us to avoid recursion,
1551 -- and thus avoid running out of memory.
1553 NN : Node_Id := N;
1554 L : Node_Id;
1556 begin
1557 Candidate_Type := Empty;
1559 -- The following code is equivalent to:
1561 -- Set_Etype (N, Any_Type);
1562 -- Analyze_Expression (Left_Opnd (N));
1563 -- Analyze_Concatenation_Rest (N);
1565 -- where the Analyze_Expression call recurses back here if the left
1566 -- operand is a concatenation.
1568 -- Walk down left operands
1570 loop
1571 Set_Etype (NN, Any_Type);
1572 L := Left_Opnd (NN);
1573 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1574 NN := L;
1575 end loop;
1577 -- Now (given the above example) NN is A&B and L is A
1579 -- First analyze L ...
1581 Analyze_Expression (L);
1583 -- ... then walk NN back up until we reach N (where we started), calling
1584 -- Analyze_Concatenation_Rest along the way.
1586 loop
1587 Analyze_Concatenation_Rest (NN);
1588 exit when NN = N;
1589 NN := Parent (NN);
1590 end loop;
1591 end Analyze_Concatenation;
1593 --------------------------------
1594 -- Analyze_Concatenation_Rest --
1595 --------------------------------
1597 -- If the only one-dimensional array type in scope is String,
1598 -- this is the resulting type of the operation. Otherwise there
1599 -- will be a concatenation operation defined for each user-defined
1600 -- one-dimensional array.
1602 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1603 L : constant Node_Id := Left_Opnd (N);
1604 R : constant Node_Id := Right_Opnd (N);
1605 Op_Id : Entity_Id := Entity (N);
1606 LT : Entity_Id;
1607 RT : Entity_Id;
1609 begin
1610 Analyze_Expression (R);
1612 -- If the entity is present, the node appears in an instance, and
1613 -- denotes a predefined concatenation operation. The resulting type is
1614 -- obtained from the arguments when possible. If the arguments are
1615 -- aggregates, the array type and the concatenation type must be
1616 -- visible.
1618 if Present (Op_Id) then
1619 if Ekind (Op_Id) = E_Operator then
1620 LT := Base_Type (Etype (L));
1621 RT := Base_Type (Etype (R));
1623 if Is_Array_Type (LT)
1624 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1625 then
1626 Add_One_Interp (N, Op_Id, LT);
1628 elsif Is_Array_Type (RT)
1629 and then LT = Base_Type (Component_Type (RT))
1630 then
1631 Add_One_Interp (N, Op_Id, RT);
1633 -- If one operand is a string type or a user-defined array type,
1634 -- and the other is a literal, result is of the specific type.
1636 elsif
1637 (Root_Type (LT) = Standard_String
1638 or else Scope (LT) /= Standard_Standard)
1639 and then Etype (R) = Any_String
1640 then
1641 Add_One_Interp (N, Op_Id, LT);
1643 elsif
1644 (Root_Type (RT) = Standard_String
1645 or else Scope (RT) /= Standard_Standard)
1646 and then Etype (L) = Any_String
1647 then
1648 Add_One_Interp (N, Op_Id, RT);
1650 elsif not Is_Generic_Type (Etype (Op_Id)) then
1651 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1653 else
1654 -- Type and its operations must be visible
1656 Set_Entity (N, Empty);
1657 Analyze_Concatenation (N);
1658 end if;
1660 else
1661 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1662 end if;
1664 else
1665 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1666 while Present (Op_Id) loop
1667 if Ekind (Op_Id) = E_Operator then
1669 -- Do not consider operators declared in dead code, they can
1670 -- not be part of the resolution.
1672 if Is_Eliminated (Op_Id) then
1673 null;
1674 else
1675 Find_Concatenation_Types (L, R, Op_Id, N);
1676 end if;
1678 else
1679 Analyze_User_Defined_Binary_Op (N, Op_Id);
1680 end if;
1682 Op_Id := Homonym (Op_Id);
1683 end loop;
1684 end if;
1686 Operator_Check (N);
1687 end Analyze_Concatenation_Rest;
1689 -------------------------
1690 -- Analyze_Equality_Op --
1691 -------------------------
1693 procedure Analyze_Equality_Op (N : Node_Id) is
1694 Loc : constant Source_Ptr := Sloc (N);
1695 L : constant Node_Id := Left_Opnd (N);
1696 R : constant Node_Id := Right_Opnd (N);
1697 Op_Id : Entity_Id;
1699 begin
1700 Set_Etype (N, Any_Type);
1701 Candidate_Type := Empty;
1703 Analyze_Expression (L);
1704 Analyze_Expression (R);
1706 -- If the entity is set, the node is a generic instance with a non-local
1707 -- reference to the predefined operator or to a user-defined function.
1708 -- It can also be an inequality that is expanded into the negation of a
1709 -- call to a user-defined equality operator.
1711 -- For the predefined case, the result is Boolean, regardless of the
1712 -- type of the operands. The operands may even be limited, if they are
1713 -- generic actuals. If they are overloaded, label the left argument with
1714 -- the common type that must be present, or with the type of the formal
1715 -- of the user-defined function.
1717 if Present (Entity (N)) then
1718 Op_Id := Entity (N);
1720 if Ekind (Op_Id) = E_Operator then
1721 Add_One_Interp (N, Op_Id, Standard_Boolean);
1722 else
1723 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1724 end if;
1726 if Is_Overloaded (L) then
1727 if Ekind (Op_Id) = E_Operator then
1728 Set_Etype (L, Intersect_Types (L, R));
1729 else
1730 Set_Etype (L, Etype (First_Formal (Op_Id)));
1731 end if;
1732 end if;
1734 else
1735 Op_Id := Get_Name_Entity_Id (Chars (N));
1736 while Present (Op_Id) loop
1737 if Ekind (Op_Id) = E_Operator then
1738 Find_Equality_Types (L, R, Op_Id, N);
1739 else
1740 Analyze_User_Defined_Binary_Op (N, Op_Id);
1741 end if;
1743 Op_Id := Homonym (Op_Id);
1744 end loop;
1745 end if;
1747 -- If there was no match, and the operator is inequality, this may
1748 -- be a case where inequality has not been made explicit, as for
1749 -- tagged types. Analyze the node as the negation of an equality
1750 -- operation. This cannot be done earlier, because before analysis
1751 -- we cannot rule out the presence of an explicit inequality.
1753 if Etype (N) = Any_Type
1754 and then Nkind (N) = N_Op_Ne
1755 then
1756 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1757 while Present (Op_Id) loop
1758 if Ekind (Op_Id) = E_Operator then
1759 Find_Equality_Types (L, R, Op_Id, N);
1760 else
1761 Analyze_User_Defined_Binary_Op (N, Op_Id);
1762 end if;
1764 Op_Id := Homonym (Op_Id);
1765 end loop;
1767 if Etype (N) /= Any_Type then
1768 Op_Id := Entity (N);
1770 Rewrite (N,
1771 Make_Op_Not (Loc,
1772 Right_Opnd =>
1773 Make_Op_Eq (Loc,
1774 Left_Opnd => Left_Opnd (N),
1775 Right_Opnd => Right_Opnd (N))));
1777 Set_Entity (Right_Opnd (N), Op_Id);
1778 Analyze (N);
1779 end if;
1780 end if;
1782 Operator_Check (N);
1783 end Analyze_Equality_Op;
1785 ----------------------------------
1786 -- Analyze_Explicit_Dereference --
1787 ----------------------------------
1789 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (N);
1791 P : constant Node_Id := Prefix (N);
1792 T : Entity_Id;
1793 I : Interp_Index;
1794 It : Interp;
1795 New_N : Node_Id;
1797 function Is_Function_Type return Boolean;
1798 -- Check whether node may be interpreted as an implicit function call
1800 ----------------------
1801 -- Is_Function_Type --
1802 ----------------------
1804 function Is_Function_Type return Boolean is
1805 I : Interp_Index;
1806 It : Interp;
1808 begin
1809 if not Is_Overloaded (N) then
1810 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1811 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1813 else
1814 Get_First_Interp (N, I, It);
1815 while Present (It.Nam) loop
1816 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1817 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1818 then
1819 return False;
1820 end if;
1822 Get_Next_Interp (I, It);
1823 end loop;
1825 return True;
1826 end if;
1827 end Is_Function_Type;
1829 -- Start of processing for Analyze_Explicit_Dereference
1831 begin
1832 -- If source node, check SPARK restriction. We guard this with the
1833 -- source node check, because ???
1835 if Comes_From_Source (N) then
1836 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1837 end if;
1839 -- In formal verification mode, keep track of all reads and writes
1840 -- through explicit dereferences.
1842 if GNATprove_Mode then
1843 SPARK_Specific.Generate_Dereference (N);
1844 end if;
1846 Analyze (P);
1847 Set_Etype (N, Any_Type);
1849 -- Test for remote access to subprogram type, and if so return
1850 -- after rewriting the original tree.
1852 if Remote_AST_E_Dereference (P) then
1853 return;
1854 end if;
1856 -- Normal processing for other than remote access to subprogram type
1858 if not Is_Overloaded (P) then
1859 if Is_Access_Type (Etype (P)) then
1861 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1862 -- avoid other problems caused by the Private_Subtype and it is
1863 -- safe to go to the Base_Type because this is the same as
1864 -- converting the access value to its Base_Type.
1866 declare
1867 DT : Entity_Id := Designated_Type (Etype (P));
1869 begin
1870 if Ekind (DT) = E_Private_Subtype
1871 and then Is_For_Access_Subtype (DT)
1872 then
1873 DT := Base_Type (DT);
1874 end if;
1876 -- An explicit dereference is a legal occurrence of an
1877 -- incomplete type imported through a limited_with clause,
1878 -- if the full view is visible.
1880 if From_Limited_With (DT)
1881 and then not From_Limited_With (Scope (DT))
1882 and then
1883 (Is_Immediately_Visible (Scope (DT))
1884 or else
1885 (Is_Child_Unit (Scope (DT))
1886 and then Is_Visible_Lib_Unit (Scope (DT))))
1887 then
1888 Set_Etype (N, Available_View (DT));
1890 else
1891 Set_Etype (N, DT);
1892 end if;
1893 end;
1895 elsif Etype (P) /= Any_Type then
1896 Error_Msg_N ("prefix of dereference must be an access type", N);
1897 return;
1898 end if;
1900 else
1901 Get_First_Interp (P, I, It);
1902 while Present (It.Nam) loop
1903 T := It.Typ;
1905 if Is_Access_Type (T) then
1906 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1907 end if;
1909 Get_Next_Interp (I, It);
1910 end loop;
1912 -- Error if no interpretation of the prefix has an access type
1914 if Etype (N) = Any_Type then
1915 Error_Msg_N
1916 ("access type required in prefix of explicit dereference", P);
1917 Set_Etype (N, Any_Type);
1918 return;
1919 end if;
1920 end if;
1922 if Is_Function_Type
1923 and then Nkind (Parent (N)) /= N_Indexed_Component
1925 and then (Nkind (Parent (N)) /= N_Function_Call
1926 or else N /= Name (Parent (N)))
1928 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1929 or else N /= Name (Parent (N)))
1931 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1932 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1933 or else
1934 (Attribute_Name (Parent (N)) /= Name_Address
1935 and then
1936 Attribute_Name (Parent (N)) /= Name_Access))
1937 then
1938 -- Name is a function call with no actuals, in a context that
1939 -- requires deproceduring (including as an actual in an enclosing
1940 -- function or procedure call). There are some pathological cases
1941 -- where the prefix might include functions that return access to
1942 -- subprograms and others that return a regular type. Disambiguation
1943 -- of those has to take place in Resolve.
1945 New_N :=
1946 Make_Function_Call (Loc,
1947 Name => Make_Explicit_Dereference (Loc, P),
1948 Parameter_Associations => New_List);
1950 -- If the prefix is overloaded, remove operations that have formals,
1951 -- we know that this is a parameterless call.
1953 if Is_Overloaded (P) then
1954 Get_First_Interp (P, I, It);
1955 while Present (It.Nam) loop
1956 T := It.Typ;
1958 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1959 Set_Etype (P, T);
1960 else
1961 Remove_Interp (I);
1962 end if;
1964 Get_Next_Interp (I, It);
1965 end loop;
1966 end if;
1968 Rewrite (N, New_N);
1969 Analyze (N);
1971 elsif not Is_Function_Type
1972 and then Is_Overloaded (N)
1973 then
1974 -- The prefix may include access to subprograms and other access
1975 -- types. If the context selects the interpretation that is a
1976 -- function call (not a procedure call) we cannot rewrite the node
1977 -- yet, but we include the result of the call interpretation.
1979 Get_First_Interp (N, I, It);
1980 while Present (It.Nam) loop
1981 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1982 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1983 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1984 then
1985 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1986 end if;
1988 Get_Next_Interp (I, It);
1989 end loop;
1990 end if;
1992 -- A value of remote access-to-class-wide must not be dereferenced
1993 -- (RM E.2.2(16)).
1995 Validate_Remote_Access_To_Class_Wide_Type (N);
1996 end Analyze_Explicit_Dereference;
1998 ------------------------
1999 -- Analyze_Expression --
2000 ------------------------
2002 procedure Analyze_Expression (N : Node_Id) is
2003 begin
2005 -- If the expression is an indexed component that will be rewritten
2006 -- as a container indexing, it has already been analyzed.
2008 if Nkind (N) = N_Indexed_Component
2009 and then Present (Generalized_Indexing (N))
2010 then
2011 null;
2013 else
2014 Analyze (N);
2015 Check_Parameterless_Call (N);
2016 end if;
2017 end Analyze_Expression;
2019 -------------------------------------
2020 -- Analyze_Expression_With_Actions --
2021 -------------------------------------
2023 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2024 A : Node_Id;
2026 begin
2027 A := First (Actions (N));
2028 while Present (A) loop
2029 Analyze (A);
2030 Next (A);
2031 end loop;
2033 Analyze_Expression (Expression (N));
2034 Set_Etype (N, Etype (Expression (N)));
2035 end Analyze_Expression_With_Actions;
2037 ---------------------------
2038 -- Analyze_If_Expression --
2039 ---------------------------
2041 procedure Analyze_If_Expression (N : Node_Id) is
2042 Condition : constant Node_Id := First (Expressions (N));
2043 Then_Expr : constant Node_Id := Next (Condition);
2044 Else_Expr : Node_Id;
2046 begin
2047 -- Defend against error of missing expressions from previous error
2049 if No (Then_Expr) then
2050 Check_Error_Detected;
2051 return;
2052 end if;
2054 if Comes_From_Source (N) then
2055 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2056 end if;
2058 Else_Expr := Next (Then_Expr);
2060 if Comes_From_Source (N) then
2061 Check_Compiler_Unit ("if expression", N);
2062 end if;
2064 -- Analyze and resolve the condition. We need to resolve this now so
2065 -- that it gets folded to True/False if possible, before we analyze
2066 -- the THEN/ELSE branches, because when analyzing these branches, we
2067 -- may call Is_Statically_Unevaluated, which expects the condition of
2068 -- an enclosing IF to have been analyze/resolved/evaluated.
2070 Analyze_Expression (Condition);
2071 Resolve (Condition, Any_Boolean);
2073 -- Analyze THEN expression and (if present) ELSE expression. For those
2074 -- we delay resolution in the normal manner, because of overloading etc.
2076 Analyze_Expression (Then_Expr);
2078 if Present (Else_Expr) then
2079 Analyze_Expression (Else_Expr);
2080 end if;
2082 -- If then expression not overloaded, then that decides the type
2084 if not Is_Overloaded (Then_Expr) then
2085 Set_Etype (N, Etype (Then_Expr));
2087 -- Case where then expression is overloaded
2089 else
2090 declare
2091 I : Interp_Index;
2092 It : Interp;
2094 begin
2095 Set_Etype (N, Any_Type);
2097 -- Shouldn't the following statement be down in the ELSE of the
2098 -- following loop? ???
2100 Get_First_Interp (Then_Expr, I, It);
2102 -- if no Else_Expression the conditional must be boolean
2104 if No (Else_Expr) then
2105 Set_Etype (N, Standard_Boolean);
2107 -- Else_Expression Present. For each possible intepretation of
2108 -- the Then_Expression, add it only if the Else_Expression has
2109 -- a compatible type.
2111 else
2112 while Present (It.Nam) loop
2113 if Has_Compatible_Type (Else_Expr, It.Typ) then
2114 Add_One_Interp (N, It.Typ, It.Typ);
2115 end if;
2117 Get_Next_Interp (I, It);
2118 end loop;
2119 end if;
2120 end;
2121 end if;
2122 end Analyze_If_Expression;
2124 ------------------------------------
2125 -- Analyze_Indexed_Component_Form --
2126 ------------------------------------
2128 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2129 P : constant Node_Id := Prefix (N);
2130 Exprs : constant List_Id := Expressions (N);
2131 Exp : Node_Id;
2132 P_T : Entity_Id;
2133 E : Node_Id;
2134 U_N : Entity_Id;
2136 procedure Process_Function_Call;
2137 -- Prefix in indexed component form is an overloadable entity,
2138 -- so the node is a function call. Reformat it as such.
2140 procedure Process_Indexed_Component;
2141 -- Prefix in indexed component form is actually an indexed component.
2142 -- This routine processes it, knowing that the prefix is already
2143 -- resolved.
2145 procedure Process_Indexed_Component_Or_Slice;
2146 -- An indexed component with a single index may designate a slice if
2147 -- the index is a subtype mark. This routine disambiguates these two
2148 -- cases by resolving the prefix to see if it is a subtype mark.
2150 procedure Process_Overloaded_Indexed_Component;
2151 -- If the prefix of an indexed component is overloaded, the proper
2152 -- interpretation is selected by the index types and the context.
2154 ---------------------------
2155 -- Process_Function_Call --
2156 ---------------------------
2158 procedure Process_Function_Call is
2159 Loc : constant Source_Ptr := Sloc (N);
2160 Actual : Node_Id;
2162 begin
2163 Change_Node (N, N_Function_Call);
2164 Set_Name (N, P);
2165 Set_Parameter_Associations (N, Exprs);
2167 -- Analyze actuals prior to analyzing the call itself
2169 Actual := First (Parameter_Associations (N));
2170 while Present (Actual) loop
2171 Analyze (Actual);
2172 Check_Parameterless_Call (Actual);
2174 -- Move to next actual. Note that we use Next, not Next_Actual
2175 -- here. The reason for this is a bit subtle. If a function call
2176 -- includes named associations, the parser recognizes the node as
2177 -- a call, and it is analyzed as such. If all associations are
2178 -- positional, the parser builds an indexed_component node, and
2179 -- it is only after analysis of the prefix that the construct
2180 -- is recognized as a call, in which case Process_Function_Call
2181 -- rewrites the node and analyzes the actuals. If the list of
2182 -- actuals is malformed, the parser may leave the node as an
2183 -- indexed component (despite the presence of named associations).
2184 -- The iterator Next_Actual is equivalent to Next if the list is
2185 -- positional, but follows the normalized chain of actuals when
2186 -- named associations are present. In this case normalization has
2187 -- not taken place, and actuals remain unanalyzed, which leads to
2188 -- subsequent crashes or loops if there is an attempt to continue
2189 -- analysis of the program.
2191 -- IF there is a single actual and it is a type name, the node
2192 -- can only be interpreted as a slice of a parameterless call.
2193 -- Rebuild the node as such and analyze.
2195 if No (Next (Actual))
2196 and then Is_Entity_Name (Actual)
2197 and then Is_Type (Entity (Actual))
2198 and then Is_Discrete_Type (Entity (Actual))
2199 then
2200 Replace (N,
2201 Make_Slice (Loc,
2202 Prefix => P,
2203 Discrete_Range =>
2204 New_Occurrence_Of (Entity (Actual), Loc)));
2205 Analyze (N);
2206 return;
2208 else
2209 Next (Actual);
2210 end if;
2211 end loop;
2213 Analyze_Call (N);
2214 end Process_Function_Call;
2216 -------------------------------
2217 -- Process_Indexed_Component --
2218 -------------------------------
2220 procedure Process_Indexed_Component is
2221 Exp : Node_Id;
2222 Array_Type : Entity_Id;
2223 Index : Node_Id;
2224 Pent : Entity_Id := Empty;
2226 begin
2227 Exp := First (Exprs);
2229 if Is_Overloaded (P) then
2230 Process_Overloaded_Indexed_Component;
2232 else
2233 Array_Type := Etype (P);
2235 if Is_Entity_Name (P) then
2236 Pent := Entity (P);
2237 elsif Nkind (P) = N_Selected_Component
2238 and then Is_Entity_Name (Selector_Name (P))
2239 then
2240 Pent := Entity (Selector_Name (P));
2241 end if;
2243 -- Prefix must be appropriate for an array type, taking into
2244 -- account a possible implicit dereference.
2246 if Is_Access_Type (Array_Type) then
2247 Error_Msg_NW
2248 (Warn_On_Dereference, "?d?implicit dereference", N);
2249 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2250 end if;
2252 if Is_Array_Type (Array_Type) then
2253 null;
2255 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2256 Analyze (Exp);
2257 Set_Etype (N, Any_Type);
2259 if not Has_Compatible_Type
2260 (Exp, Entry_Index_Type (Pent))
2261 then
2262 Error_Msg_N ("invalid index type in entry name", N);
2264 elsif Present (Next (Exp)) then
2265 Error_Msg_N ("too many subscripts in entry reference", N);
2267 else
2268 Set_Etype (N, Etype (P));
2269 end if;
2271 return;
2273 elsif Is_Record_Type (Array_Type)
2274 and then Remote_AST_I_Dereference (P)
2275 then
2276 return;
2278 elsif Try_Container_Indexing (N, P, Exprs) then
2279 return;
2281 elsif Array_Type = Any_Type then
2282 Set_Etype (N, Any_Type);
2284 -- In most cases the analysis of the prefix will have emitted
2285 -- an error already, but if the prefix may be interpreted as a
2286 -- call in prefixed notation, the report is left to the caller.
2287 -- To prevent cascaded errors, report only if no previous ones.
2289 if Serious_Errors_Detected = 0 then
2290 Error_Msg_N ("invalid prefix in indexed component", P);
2292 if Nkind (P) = N_Expanded_Name then
2293 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2294 end if;
2295 end if;
2297 return;
2299 -- Here we definitely have a bad indexing
2301 else
2302 if Nkind (Parent (N)) = N_Requeue_Statement
2303 and then Present (Pent) and then Ekind (Pent) = E_Entry
2304 then
2305 Error_Msg_N
2306 ("REQUEUE does not permit parameters", First (Exprs));
2308 elsif Is_Entity_Name (P)
2309 and then Etype (P) = Standard_Void_Type
2310 then
2311 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2313 else
2314 Error_Msg_N ("array type required in indexed component", P);
2315 end if;
2317 Set_Etype (N, Any_Type);
2318 return;
2319 end if;
2321 Index := First_Index (Array_Type);
2322 while Present (Index) and then Present (Exp) loop
2323 if not Has_Compatible_Type (Exp, Etype (Index)) then
2324 Wrong_Type (Exp, Etype (Index));
2325 Set_Etype (N, Any_Type);
2326 return;
2327 end if;
2329 Next_Index (Index);
2330 Next (Exp);
2331 end loop;
2333 Set_Etype (N, Component_Type (Array_Type));
2334 Check_Implicit_Dereference (N, Etype (N));
2336 if Present (Index) then
2337 Error_Msg_N
2338 ("too few subscripts in array reference", First (Exprs));
2340 elsif Present (Exp) then
2341 Error_Msg_N ("too many subscripts in array reference", Exp);
2342 end if;
2343 end if;
2344 end Process_Indexed_Component;
2346 ----------------------------------------
2347 -- Process_Indexed_Component_Or_Slice --
2348 ----------------------------------------
2350 procedure Process_Indexed_Component_Or_Slice is
2351 begin
2352 Exp := First (Exprs);
2353 while Present (Exp) loop
2354 Analyze_Expression (Exp);
2355 Next (Exp);
2356 end loop;
2358 Exp := First (Exprs);
2360 -- If one index is present, and it is a subtype name, then the
2361 -- node denotes a slice (note that the case of an explicit range
2362 -- for a slice was already built as an N_Slice node in the first
2363 -- place, so that case is not handled here).
2365 -- We use a replace rather than a rewrite here because this is one
2366 -- of the cases in which the tree built by the parser is plain wrong.
2368 if No (Next (Exp))
2369 and then Is_Entity_Name (Exp)
2370 and then Is_Type (Entity (Exp))
2371 then
2372 Replace (N,
2373 Make_Slice (Sloc (N),
2374 Prefix => P,
2375 Discrete_Range => New_Copy (Exp)));
2376 Analyze (N);
2378 -- Otherwise (more than one index present, or single index is not
2379 -- a subtype name), then we have the indexed component case.
2381 else
2382 Process_Indexed_Component;
2383 end if;
2384 end Process_Indexed_Component_Or_Slice;
2386 ------------------------------------------
2387 -- Process_Overloaded_Indexed_Component --
2388 ------------------------------------------
2390 procedure Process_Overloaded_Indexed_Component is
2391 Exp : Node_Id;
2392 I : Interp_Index;
2393 It : Interp;
2394 Typ : Entity_Id;
2395 Index : Node_Id;
2396 Found : Boolean;
2398 begin
2399 Set_Etype (N, Any_Type);
2401 Get_First_Interp (P, I, It);
2402 while Present (It.Nam) loop
2403 Typ := It.Typ;
2405 if Is_Access_Type (Typ) then
2406 Typ := Designated_Type (Typ);
2407 Error_Msg_NW
2408 (Warn_On_Dereference, "?d?implicit dereference", N);
2409 end if;
2411 if Is_Array_Type (Typ) then
2413 -- Got a candidate: verify that index types are compatible
2415 Index := First_Index (Typ);
2416 Found := True;
2417 Exp := First (Exprs);
2418 while Present (Index) and then Present (Exp) loop
2419 if Has_Compatible_Type (Exp, Etype (Index)) then
2420 null;
2421 else
2422 Found := False;
2423 Remove_Interp (I);
2424 exit;
2425 end if;
2427 Next_Index (Index);
2428 Next (Exp);
2429 end loop;
2431 if Found and then No (Index) and then No (Exp) then
2432 declare
2433 CT : constant Entity_Id :=
2434 Base_Type (Component_Type (Typ));
2435 begin
2436 Add_One_Interp (N, CT, CT);
2437 Check_Implicit_Dereference (N, CT);
2438 end;
2439 end if;
2441 elsif Try_Container_Indexing (N, P, Exprs) then
2442 return;
2444 end if;
2446 Get_Next_Interp (I, It);
2447 end loop;
2449 if Etype (N) = Any_Type then
2450 Error_Msg_N ("no legal interpretation for indexed component", N);
2451 Set_Is_Overloaded (N, False);
2452 end if;
2454 End_Interp_List;
2455 end Process_Overloaded_Indexed_Component;
2457 -- Start of processing for Analyze_Indexed_Component_Form
2459 begin
2460 -- Get name of array, function or type
2462 Analyze (P);
2464 -- If P is an explicit dereference whose prefix is of a remote access-
2465 -- to-subprogram type, then N has already been rewritten as a subprogram
2466 -- call and analyzed.
2468 if Nkind (N) in N_Subprogram_Call then
2469 return;
2471 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2472 -- the indexed component denotes a loop name, the indexed form is turned
2473 -- into an attribute reference.
2475 elsif Nkind (N) = N_Attribute_Reference
2476 and then Attribute_Name (N) = Name_Loop_Entry
2477 then
2478 return;
2479 end if;
2481 pragma Assert (Nkind (N) = N_Indexed_Component);
2483 P_T := Base_Type (Etype (P));
2485 if Is_Entity_Name (P) and then Present (Entity (P)) then
2486 U_N := Entity (P);
2488 if Is_Type (U_N) then
2490 -- Reformat node as a type conversion
2492 E := Remove_Head (Exprs);
2494 if Present (First (Exprs)) then
2495 Error_Msg_N
2496 ("argument of type conversion must be single expression", N);
2497 end if;
2499 Change_Node (N, N_Type_Conversion);
2500 Set_Subtype_Mark (N, P);
2501 Set_Etype (N, U_N);
2502 Set_Expression (N, E);
2504 -- After changing the node, call for the specific Analysis
2505 -- routine directly, to avoid a double call to the expander.
2507 Analyze_Type_Conversion (N);
2508 return;
2509 end if;
2511 if Is_Overloadable (U_N) then
2512 Process_Function_Call;
2514 elsif Ekind (Etype (P)) = E_Subprogram_Type
2515 or else (Is_Access_Type (Etype (P))
2516 and then
2517 Ekind (Designated_Type (Etype (P))) =
2518 E_Subprogram_Type)
2519 then
2520 -- Call to access_to-subprogram with possible implicit dereference
2522 Process_Function_Call;
2524 elsif Is_Generic_Subprogram (U_N) then
2526 -- A common beginner's (or C++ templates fan) error
2528 Error_Msg_N ("generic subprogram cannot be called", N);
2529 Set_Etype (N, Any_Type);
2530 return;
2532 else
2533 Process_Indexed_Component_Or_Slice;
2534 end if;
2536 -- If not an entity name, prefix is an expression that may denote
2537 -- an array or an access-to-subprogram.
2539 else
2540 if Ekind (P_T) = E_Subprogram_Type
2541 or else (Is_Access_Type (P_T)
2542 and then
2543 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2544 then
2545 Process_Function_Call;
2547 elsif Nkind (P) = N_Selected_Component
2548 and then Present (Entity (Selector_Name (P)))
2549 and then Is_Overloadable (Entity (Selector_Name (P)))
2550 then
2551 Process_Function_Call;
2553 -- In ASIS mode within a generic, a prefixed call is analyzed and
2554 -- partially rewritten but the original indexed component has not
2555 -- yet been rewritten as a call. Perform the replacement now.
2557 elsif Nkind (P) = N_Selected_Component
2558 and then Nkind (Parent (P)) = N_Function_Call
2559 and then ASIS_Mode
2560 then
2561 Rewrite (N, Parent (P));
2562 Analyze (N);
2564 else
2565 -- Indexed component, slice, or a call to a member of a family
2566 -- entry, which will be converted to an entry call later.
2568 Process_Indexed_Component_Or_Slice;
2569 end if;
2570 end if;
2572 Analyze_Dimension (N);
2573 end Analyze_Indexed_Component_Form;
2575 ------------------------
2576 -- Analyze_Logical_Op --
2577 ------------------------
2579 procedure Analyze_Logical_Op (N : Node_Id) is
2580 L : constant Node_Id := Left_Opnd (N);
2581 R : constant Node_Id := Right_Opnd (N);
2582 Op_Id : Entity_Id := Entity (N);
2584 begin
2585 Set_Etype (N, Any_Type);
2586 Candidate_Type := Empty;
2588 Analyze_Expression (L);
2589 Analyze_Expression (R);
2591 if Present (Op_Id) then
2593 if Ekind (Op_Id) = E_Operator then
2594 Find_Boolean_Types (L, R, Op_Id, N);
2595 else
2596 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2597 end if;
2599 else
2600 Op_Id := Get_Name_Entity_Id (Chars (N));
2601 while Present (Op_Id) loop
2602 if Ekind (Op_Id) = E_Operator then
2603 Find_Boolean_Types (L, R, Op_Id, N);
2604 else
2605 Analyze_User_Defined_Binary_Op (N, Op_Id);
2606 end if;
2608 Op_Id := Homonym (Op_Id);
2609 end loop;
2610 end if;
2612 Operator_Check (N);
2613 end Analyze_Logical_Op;
2615 ---------------------------
2616 -- Analyze_Membership_Op --
2617 ---------------------------
2619 procedure Analyze_Membership_Op (N : Node_Id) is
2620 Loc : constant Source_Ptr := Sloc (N);
2621 L : constant Node_Id := Left_Opnd (N);
2622 R : constant Node_Id := Right_Opnd (N);
2624 Index : Interp_Index;
2625 It : Interp;
2626 Found : Boolean := False;
2627 I_F : Interp_Index;
2628 T_F : Entity_Id;
2630 procedure Try_One_Interp (T1 : Entity_Id);
2631 -- Routine to try one proposed interpretation. Note that the context
2632 -- of the operation plays no role in resolving the arguments, so that
2633 -- if there is more than one interpretation of the operands that is
2634 -- compatible with a membership test, the operation is ambiguous.
2636 --------------------
2637 -- Try_One_Interp --
2638 --------------------
2640 procedure Try_One_Interp (T1 : Entity_Id) is
2641 begin
2642 if Has_Compatible_Type (R, T1) then
2643 if Found
2644 and then Base_Type (T1) /= Base_Type (T_F)
2645 then
2646 It := Disambiguate (L, I_F, Index, Any_Type);
2648 if It = No_Interp then
2649 Ambiguous_Operands (N);
2650 Set_Etype (L, Any_Type);
2651 return;
2653 else
2654 T_F := It.Typ;
2655 end if;
2657 else
2658 Found := True;
2659 T_F := T1;
2660 I_F := Index;
2661 end if;
2663 Set_Etype (L, T_F);
2664 end if;
2665 end Try_One_Interp;
2667 procedure Analyze_Set_Membership;
2668 -- If a set of alternatives is present, analyze each and find the
2669 -- common type to which they must all resolve.
2671 ----------------------------
2672 -- Analyze_Set_Membership --
2673 ----------------------------
2675 procedure Analyze_Set_Membership is
2676 Alt : Node_Id;
2677 Index : Interp_Index;
2678 It : Interp;
2679 Candidate_Interps : Node_Id;
2680 Common_Type : Entity_Id := Empty;
2682 begin
2683 if Comes_From_Source (N) then
2684 Check_Compiler_Unit ("set membership", N);
2685 end if;
2687 Analyze (L);
2688 Candidate_Interps := L;
2690 if not Is_Overloaded (L) then
2691 Common_Type := Etype (L);
2693 Alt := First (Alternatives (N));
2694 while Present (Alt) loop
2695 Analyze (Alt);
2697 if not Has_Compatible_Type (Alt, Common_Type) then
2698 Wrong_Type (Alt, Common_Type);
2699 end if;
2701 Next (Alt);
2702 end loop;
2704 else
2705 Alt := First (Alternatives (N));
2706 while Present (Alt) loop
2707 Analyze (Alt);
2708 if not Is_Overloaded (Alt) then
2709 Common_Type := Etype (Alt);
2711 else
2712 Get_First_Interp (Alt, Index, It);
2713 while Present (It.Typ) loop
2714 if not
2715 Has_Compatible_Type (Candidate_Interps, It.Typ)
2716 then
2717 Remove_Interp (Index);
2718 end if;
2720 Get_Next_Interp (Index, It);
2721 end loop;
2723 Get_First_Interp (Alt, Index, It);
2725 if No (It.Typ) then
2726 Error_Msg_N ("alternative has no legal type", Alt);
2727 return;
2728 end if;
2730 -- If alternative is not overloaded, we have a unique type
2731 -- for all of them.
2733 Set_Etype (Alt, It.Typ);
2734 Get_Next_Interp (Index, It);
2736 if No (It.Typ) then
2737 Set_Is_Overloaded (Alt, False);
2738 Common_Type := Etype (Alt);
2739 end if;
2741 Candidate_Interps := Alt;
2742 end if;
2744 Next (Alt);
2745 end loop;
2746 end if;
2748 Set_Etype (N, Standard_Boolean);
2750 if Present (Common_Type) then
2751 Set_Etype (L, Common_Type);
2752 Set_Is_Overloaded (L, False);
2754 else
2755 Error_Msg_N ("cannot resolve membership operation", N);
2756 end if;
2757 end Analyze_Set_Membership;
2759 -- Start of processing for Analyze_Membership_Op
2761 begin
2762 Analyze_Expression (L);
2764 if No (R) and then Ada_Version >= Ada_2012 then
2765 Analyze_Set_Membership;
2766 return;
2767 end if;
2769 if Nkind (R) = N_Range
2770 or else (Nkind (R) = N_Attribute_Reference
2771 and then Attribute_Name (R) = Name_Range)
2772 then
2773 Analyze (R);
2775 if not Is_Overloaded (L) then
2776 Try_One_Interp (Etype (L));
2778 else
2779 Get_First_Interp (L, Index, It);
2780 while Present (It.Typ) loop
2781 Try_One_Interp (It.Typ);
2782 Get_Next_Interp (Index, It);
2783 end loop;
2784 end if;
2786 -- If not a range, it can be a subtype mark, or else it is a degenerate
2787 -- membership test with a singleton value, i.e. a test for equality,
2788 -- if the types are compatible.
2790 else
2791 Analyze (R);
2793 if Is_Entity_Name (R)
2794 and then Is_Type (Entity (R))
2795 then
2796 Find_Type (R);
2797 Check_Fully_Declared (Entity (R), R);
2799 elsif Ada_Version >= Ada_2012
2800 and then Has_Compatible_Type (R, Etype (L))
2801 then
2802 if Nkind (N) = N_In then
2803 Rewrite (N,
2804 Make_Op_Eq (Loc,
2805 Left_Opnd => L,
2806 Right_Opnd => R));
2807 else
2808 Rewrite (N,
2809 Make_Op_Ne (Loc,
2810 Left_Opnd => L,
2811 Right_Opnd => R));
2812 end if;
2814 Analyze (N);
2815 return;
2817 else
2818 -- In all versions of the language, if we reach this point there
2819 -- is a previous error that will be diagnosed below.
2821 Find_Type (R);
2822 end if;
2823 end if;
2825 -- Compatibility between expression and subtype mark or range is
2826 -- checked during resolution. The result of the operation is Boolean
2827 -- in any case.
2829 Set_Etype (N, Standard_Boolean);
2831 if Comes_From_Source (N)
2832 and then Present (Right_Opnd (N))
2833 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2834 then
2835 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2836 end if;
2837 end Analyze_Membership_Op;
2839 -----------------
2840 -- Analyze_Mod --
2841 -----------------
2843 procedure Analyze_Mod (N : Node_Id) is
2844 begin
2845 -- A special warning check, if we have an expression of the form:
2846 -- expr mod 2 * literal
2847 -- where literal is 64 or less, then probably what was meant was
2848 -- expr mod 2 ** literal
2849 -- so issue an appropriate warning.
2851 if Warn_On_Suspicious_Modulus_Value
2852 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2853 and then Intval (Right_Opnd (N)) = Uint_2
2854 and then Nkind (Parent (N)) = N_Op_Multiply
2855 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2856 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2857 then
2858 Error_Msg_N
2859 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2860 end if;
2862 -- Remaining processing is same as for other arithmetic operators
2864 Analyze_Arithmetic_Op (N);
2865 end Analyze_Mod;
2867 ----------------------
2868 -- Analyze_Negation --
2869 ----------------------
2871 procedure Analyze_Negation (N : Node_Id) is
2872 R : constant Node_Id := Right_Opnd (N);
2873 Op_Id : Entity_Id := Entity (N);
2875 begin
2876 Set_Etype (N, Any_Type);
2877 Candidate_Type := Empty;
2879 Analyze_Expression (R);
2881 if Present (Op_Id) then
2882 if Ekind (Op_Id) = E_Operator then
2883 Find_Negation_Types (R, Op_Id, N);
2884 else
2885 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2886 end if;
2888 else
2889 Op_Id := Get_Name_Entity_Id (Chars (N));
2890 while Present (Op_Id) loop
2891 if Ekind (Op_Id) = E_Operator then
2892 Find_Negation_Types (R, Op_Id, N);
2893 else
2894 Analyze_User_Defined_Unary_Op (N, Op_Id);
2895 end if;
2897 Op_Id := Homonym (Op_Id);
2898 end loop;
2899 end if;
2901 Operator_Check (N);
2902 end Analyze_Negation;
2904 ------------------
2905 -- Analyze_Null --
2906 ------------------
2908 procedure Analyze_Null (N : Node_Id) is
2909 begin
2910 Check_SPARK_05_Restriction ("null is not allowed", N);
2912 Set_Etype (N, Any_Access);
2913 end Analyze_Null;
2915 ----------------------
2916 -- Analyze_One_Call --
2917 ----------------------
2919 procedure Analyze_One_Call
2920 (N : Node_Id;
2921 Nam : Entity_Id;
2922 Report : Boolean;
2923 Success : out Boolean;
2924 Skip_First : Boolean := False)
2926 Actuals : constant List_Id := Parameter_Associations (N);
2927 Prev_T : constant Entity_Id := Etype (N);
2929 Must_Skip : constant Boolean := Skip_First
2930 or else Nkind (Original_Node (N)) = N_Selected_Component
2931 or else
2932 (Nkind (Original_Node (N)) = N_Indexed_Component
2933 and then Nkind (Prefix (Original_Node (N)))
2934 = N_Selected_Component);
2935 -- The first formal must be omitted from the match when trying to find
2936 -- a primitive operation that is a possible interpretation, and also
2937 -- after the call has been rewritten, because the corresponding actual
2938 -- is already known to be compatible, and because this may be an
2939 -- indexing of a call with default parameters.
2941 Formal : Entity_Id;
2942 Actual : Node_Id;
2943 Is_Indexed : Boolean := False;
2944 Is_Indirect : Boolean := False;
2945 Subp_Type : constant Entity_Id := Etype (Nam);
2946 Norm_OK : Boolean;
2948 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2949 -- There may be a user-defined operator that hides the current
2950 -- interpretation. We must check for this independently of the
2951 -- analysis of the call with the user-defined operation, because
2952 -- the parameter names may be wrong and yet the hiding takes place.
2953 -- This fixes a problem with ACATS test B34014O.
2955 -- When the type Address is a visible integer type, and the DEC
2956 -- system extension is visible, the predefined operator may be
2957 -- hidden as well, by one of the address operations in auxdec.
2958 -- Finally, The abstract operations on address do not hide the
2959 -- predefined operator (this is the purpose of making them abstract).
2961 procedure Indicate_Name_And_Type;
2962 -- If candidate interpretation matches, indicate name and type of
2963 -- result on call node.
2965 ----------------------------
2966 -- Indicate_Name_And_Type --
2967 ----------------------------
2969 procedure Indicate_Name_And_Type is
2970 begin
2971 Add_One_Interp (N, Nam, Etype (Nam));
2972 Check_Implicit_Dereference (N, Etype (Nam));
2973 Success := True;
2975 -- If the prefix of the call is a name, indicate the entity
2976 -- being called. If it is not a name, it is an expression that
2977 -- denotes an access to subprogram or else an entry or family. In
2978 -- the latter case, the name is a selected component, and the entity
2979 -- being called is noted on the selector.
2981 if not Is_Type (Nam) then
2982 if Is_Entity_Name (Name (N)) then
2983 Set_Entity (Name (N), Nam);
2985 elsif Nkind (Name (N)) = N_Selected_Component then
2986 Set_Entity (Selector_Name (Name (N)), Nam);
2987 end if;
2988 end if;
2990 if Debug_Flag_E and not Report then
2991 Write_Str (" Overloaded call ");
2992 Write_Int (Int (N));
2993 Write_Str (" compatible with ");
2994 Write_Int (Int (Nam));
2995 Write_Eol;
2996 end if;
2997 end Indicate_Name_And_Type;
2999 ------------------------
3000 -- Operator_Hidden_By --
3001 ------------------------
3003 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3004 Act1 : constant Node_Id := First_Actual (N);
3005 Act2 : constant Node_Id := Next_Actual (Act1);
3006 Form1 : constant Entity_Id := First_Formal (Fun);
3007 Form2 : constant Entity_Id := Next_Formal (Form1);
3009 begin
3010 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3011 return False;
3013 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3014 return False;
3016 elsif Present (Form2) then
3017 if No (Act2)
3018 or else not Has_Compatible_Type (Act2, Etype (Form2))
3019 then
3020 return False;
3021 end if;
3023 elsif Present (Act2) then
3024 return False;
3025 end if;
3027 -- Now we know that the arity of the operator matches the function,
3028 -- and the function call is a valid interpretation. The function
3029 -- hides the operator if it has the right signature, or if one of
3030 -- its operands is a non-abstract operation on Address when this is
3031 -- a visible integer type.
3033 return Hides_Op (Fun, Nam)
3034 or else Is_Descendent_Of_Address (Etype (Form1))
3035 or else
3036 (Present (Form2)
3037 and then Is_Descendent_Of_Address (Etype (Form2)));
3038 end Operator_Hidden_By;
3040 -- Start of processing for Analyze_One_Call
3042 begin
3043 Success := False;
3045 -- If the subprogram has no formals or if all the formals have defaults,
3046 -- and the return type is an array type, the node may denote an indexing
3047 -- of the result of a parameterless call. In Ada 2005, the subprogram
3048 -- may have one non-defaulted formal, and the call may have been written
3049 -- in prefix notation, so that the rebuilt parameter list has more than
3050 -- one actual.
3052 if not Is_Overloadable (Nam)
3053 and then Ekind (Nam) /= E_Subprogram_Type
3054 and then Ekind (Nam) /= E_Entry_Family
3055 then
3056 return;
3057 end if;
3059 -- An indexing requires at least one actual. The name of the call cannot
3060 -- be an implicit indirect call, so it cannot be a generated explicit
3061 -- dereference.
3063 if not Is_Empty_List (Actuals)
3064 and then
3065 (Needs_No_Actuals (Nam)
3066 or else
3067 (Needs_One_Actual (Nam)
3068 and then Present (Next_Actual (First (Actuals)))))
3069 then
3070 if Is_Array_Type (Subp_Type)
3071 and then
3072 (Nkind (Name (N)) /= N_Explicit_Dereference
3073 or else Comes_From_Source (Name (N)))
3074 then
3075 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3077 elsif Is_Access_Type (Subp_Type)
3078 and then Is_Array_Type (Designated_Type (Subp_Type))
3079 then
3080 Is_Indexed :=
3081 Try_Indexed_Call
3082 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3084 -- The prefix can also be a parameterless function that returns an
3085 -- access to subprogram, in which case this is an indirect call.
3086 -- If this succeeds, an explicit dereference is added later on,
3087 -- in Analyze_Call or Resolve_Call.
3089 elsif Is_Access_Type (Subp_Type)
3090 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3091 then
3092 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3093 end if;
3095 end if;
3097 -- If the call has been transformed into a slice, it is of the form
3098 -- F (Subtype) where F is parameterless. The node has been rewritten in
3099 -- Try_Indexed_Call and there is nothing else to do.
3101 if Is_Indexed
3102 and then Nkind (N) = N_Slice
3103 then
3104 return;
3105 end if;
3107 Normalize_Actuals
3108 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3110 if not Norm_OK then
3112 -- If an indirect call is a possible interpretation, indicate
3113 -- success to the caller. This may be an indexing of an explicit
3114 -- dereference of a call that returns an access type (see above).
3116 if Is_Indirect
3117 or else (Is_Indexed
3118 and then Nkind (Name (N)) = N_Explicit_Dereference
3119 and then Comes_From_Source (Name (N)))
3120 then
3121 Success := True;
3122 return;
3124 -- Mismatch in number or names of parameters
3126 elsif Debug_Flag_E then
3127 Write_Str (" normalization fails in call ");
3128 Write_Int (Int (N));
3129 Write_Str (" with subprogram ");
3130 Write_Int (Int (Nam));
3131 Write_Eol;
3132 end if;
3134 -- If the context expects a function call, discard any interpretation
3135 -- that is a procedure. If the node is not overloaded, leave as is for
3136 -- better error reporting when type mismatch is found.
3138 elsif Nkind (N) = N_Function_Call
3139 and then Is_Overloaded (Name (N))
3140 and then Ekind (Nam) = E_Procedure
3141 then
3142 return;
3144 -- Ditto for function calls in a procedure context
3146 elsif Nkind (N) = N_Procedure_Call_Statement
3147 and then Is_Overloaded (Name (N))
3148 and then Etype (Nam) /= Standard_Void_Type
3149 then
3150 return;
3152 elsif No (Actuals) then
3154 -- If Normalize succeeds, then there are default parameters for
3155 -- all formals.
3157 Indicate_Name_And_Type;
3159 elsif Ekind (Nam) = E_Operator then
3160 if Nkind (N) = N_Procedure_Call_Statement then
3161 return;
3162 end if;
3164 -- This can occur when the prefix of the call is an operator
3165 -- name or an expanded name whose selector is an operator name.
3167 Analyze_Operator_Call (N, Nam);
3169 if Etype (N) /= Prev_T then
3171 -- Check that operator is not hidden by a function interpretation
3173 if Is_Overloaded (Name (N)) then
3174 declare
3175 I : Interp_Index;
3176 It : Interp;
3178 begin
3179 Get_First_Interp (Name (N), I, It);
3180 while Present (It.Nam) loop
3181 if Operator_Hidden_By (It.Nam) then
3182 Set_Etype (N, Prev_T);
3183 return;
3184 end if;
3186 Get_Next_Interp (I, It);
3187 end loop;
3188 end;
3189 end if;
3191 -- If operator matches formals, record its name on the call.
3192 -- If the operator is overloaded, Resolve will select the
3193 -- correct one from the list of interpretations. The call
3194 -- node itself carries the first candidate.
3196 Set_Entity (Name (N), Nam);
3197 Success := True;
3199 elsif Report and then Etype (N) = Any_Type then
3200 Error_Msg_N ("incompatible arguments for operator", N);
3201 end if;
3203 else
3204 -- Normalize_Actuals has chained the named associations in the
3205 -- correct order of the formals.
3207 Actual := First_Actual (N);
3208 Formal := First_Formal (Nam);
3210 -- If we are analyzing a call rewritten from object notation, skip
3211 -- first actual, which may be rewritten later as an explicit
3212 -- dereference.
3214 if Must_Skip then
3215 Next_Actual (Actual);
3216 Next_Formal (Formal);
3217 end if;
3219 while Present (Actual) and then Present (Formal) loop
3220 if Nkind (Parent (Actual)) /= N_Parameter_Association
3221 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3222 then
3223 -- The actual can be compatible with the formal, but we must
3224 -- also check that the context is not an address type that is
3225 -- visibly an integer type. In this case the use of literals is
3226 -- illegal, except in the body of descendents of system, where
3227 -- arithmetic operations on address are of course used.
3229 if Has_Compatible_Type (Actual, Etype (Formal))
3230 and then
3231 (Etype (Actual) /= Universal_Integer
3232 or else not Is_Descendent_Of_Address (Etype (Formal))
3233 or else
3234 Is_Predefined_File_Name
3235 (Unit_File_Name (Get_Source_Unit (N))))
3236 then
3237 Next_Actual (Actual);
3238 Next_Formal (Formal);
3240 -- In Allow_Integer_Address mode, we allow an actual integer to
3241 -- match a formal address type and vice versa. We only do this
3242 -- if we are certain that an error will otherwise be issued
3244 elsif Address_Integer_Convert_OK
3245 (Etype (Actual), Etype (Formal))
3246 and then (Report and not Is_Indexed and not Is_Indirect)
3247 then
3248 -- Handle this case by introducing an unchecked conversion
3250 Rewrite (Actual,
3251 Unchecked_Convert_To (Etype (Formal),
3252 Relocate_Node (Actual)));
3253 Analyze_And_Resolve (Actual, Etype (Formal));
3254 Next_Actual (Actual);
3255 Next_Formal (Formal);
3257 else
3258 if Debug_Flag_E then
3259 Write_Str (" type checking fails in call ");
3260 Write_Int (Int (N));
3261 Write_Str (" with formal ");
3262 Write_Int (Int (Formal));
3263 Write_Str (" in subprogram ");
3264 Write_Int (Int (Nam));
3265 Write_Eol;
3266 end if;
3268 -- Comment needed on the following test???
3270 if Report and not Is_Indexed and not Is_Indirect then
3272 -- Ada 2005 (AI-251): Complete the error notification
3273 -- to help new Ada 2005 users.
3275 if Is_Class_Wide_Type (Etype (Formal))
3276 and then Is_Interface (Etype (Etype (Formal)))
3277 and then not Interface_Present_In_Ancestor
3278 (Typ => Etype (Actual),
3279 Iface => Etype (Etype (Formal)))
3280 then
3281 Error_Msg_NE
3282 ("(Ada 2005) does not implement interface }",
3283 Actual, Etype (Etype (Formal)));
3284 end if;
3286 Wrong_Type (Actual, Etype (Formal));
3288 if Nkind (Actual) = N_Op_Eq
3289 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3290 then
3291 Formal := First_Formal (Nam);
3292 while Present (Formal) loop
3293 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3294 Error_Msg_N -- CODEFIX
3295 ("possible misspelling of `='>`!", Actual);
3296 exit;
3297 end if;
3299 Next_Formal (Formal);
3300 end loop;
3301 end if;
3303 if All_Errors_Mode then
3304 Error_Msg_Sloc := Sloc (Nam);
3306 if Etype (Formal) = Any_Type then
3307 Error_Msg_N
3308 ("there is no legal actual parameter", Actual);
3309 end if;
3311 if Is_Overloadable (Nam)
3312 and then Present (Alias (Nam))
3313 and then not Comes_From_Source (Nam)
3314 then
3315 Error_Msg_NE
3316 ("\\ =='> in call to inherited operation & #!",
3317 Actual, Nam);
3319 elsif Ekind (Nam) = E_Subprogram_Type then
3320 declare
3321 Access_To_Subprogram_Typ :
3322 constant Entity_Id :=
3323 Defining_Identifier
3324 (Associated_Node_For_Itype (Nam));
3325 begin
3326 Error_Msg_NE
3327 ("\\ =='> in call to dereference of &#!",
3328 Actual, Access_To_Subprogram_Typ);
3329 end;
3331 else
3332 Error_Msg_NE
3333 ("\\ =='> in call to &#!", Actual, Nam);
3335 end if;
3336 end if;
3337 end if;
3339 return;
3340 end if;
3342 else
3343 -- Normalize_Actuals has verified that a default value exists
3344 -- for this formal. Current actual names a subsequent formal.
3346 Next_Formal (Formal);
3347 end if;
3348 end loop;
3350 -- On exit, all actuals match
3352 Indicate_Name_And_Type;
3353 end if;
3354 end Analyze_One_Call;
3356 ---------------------------
3357 -- Analyze_Operator_Call --
3358 ---------------------------
3360 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3361 Op_Name : constant Name_Id := Chars (Op_Id);
3362 Act1 : constant Node_Id := First_Actual (N);
3363 Act2 : constant Node_Id := Next_Actual (Act1);
3365 begin
3366 -- Binary operator case
3368 if Present (Act2) then
3370 -- If more than two operands, then not binary operator after all
3372 if Present (Next_Actual (Act2)) then
3373 return;
3374 end if;
3376 -- Otherwise action depends on operator
3378 case Op_Name is
3379 when Name_Op_Add |
3380 Name_Op_Subtract |
3381 Name_Op_Multiply |
3382 Name_Op_Divide |
3383 Name_Op_Mod |
3384 Name_Op_Rem |
3385 Name_Op_Expon =>
3386 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3388 when Name_Op_And |
3389 Name_Op_Or |
3390 Name_Op_Xor =>
3391 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3393 when Name_Op_Lt |
3394 Name_Op_Le |
3395 Name_Op_Gt |
3396 Name_Op_Ge =>
3397 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3399 when Name_Op_Eq |
3400 Name_Op_Ne =>
3401 Find_Equality_Types (Act1, Act2, Op_Id, N);
3403 when Name_Op_Concat =>
3404 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3406 -- Is this when others, or should it be an abort???
3408 when others =>
3409 null;
3410 end case;
3412 -- Unary operator case
3414 else
3415 case Op_Name is
3416 when Name_Op_Subtract |
3417 Name_Op_Add |
3418 Name_Op_Abs =>
3419 Find_Unary_Types (Act1, Op_Id, N);
3421 when Name_Op_Not =>
3422 Find_Negation_Types (Act1, Op_Id, N);
3424 -- Is this when others correct, or should it be an abort???
3426 when others =>
3427 null;
3428 end case;
3429 end if;
3430 end Analyze_Operator_Call;
3432 -------------------------------------------
3433 -- Analyze_Overloaded_Selected_Component --
3434 -------------------------------------------
3436 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3437 Nam : constant Node_Id := Prefix (N);
3438 Sel : constant Node_Id := Selector_Name (N);
3439 Comp : Entity_Id;
3440 I : Interp_Index;
3441 It : Interp;
3442 T : Entity_Id;
3444 begin
3445 Set_Etype (Sel, Any_Type);
3447 Get_First_Interp (Nam, I, It);
3448 while Present (It.Typ) loop
3449 if Is_Access_Type (It.Typ) then
3450 T := Designated_Type (It.Typ);
3451 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3452 else
3453 T := It.Typ;
3454 end if;
3456 -- Locate the component. For a private prefix the selector can denote
3457 -- a discriminant.
3459 if Is_Record_Type (T) or else Is_Private_Type (T) then
3461 -- If the prefix is a class-wide type, the visible components are
3462 -- those of the base type.
3464 if Is_Class_Wide_Type (T) then
3465 T := Etype (T);
3466 end if;
3468 Comp := First_Entity (T);
3469 while Present (Comp) loop
3470 if Chars (Comp) = Chars (Sel)
3471 and then Is_Visible_Component (Comp)
3472 then
3474 -- AI05-105: if the context is an object renaming with
3475 -- an anonymous access type, the expected type of the
3476 -- object must be anonymous. This is a name resolution rule.
3478 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3479 or else No (Access_Definition (Parent (N)))
3480 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3481 or else
3482 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3483 then
3484 Set_Entity (Sel, Comp);
3485 Set_Etype (Sel, Etype (Comp));
3486 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3487 Check_Implicit_Dereference (N, Etype (Comp));
3489 -- This also specifies a candidate to resolve the name.
3490 -- Further overloading will be resolved from context.
3491 -- The selector name itself does not carry overloading
3492 -- information.
3494 Set_Etype (Nam, It.Typ);
3496 else
3497 -- Named access type in the context of a renaming
3498 -- declaration with an access definition. Remove
3499 -- inapplicable candidate.
3501 Remove_Interp (I);
3502 end if;
3503 end if;
3505 Next_Entity (Comp);
3506 end loop;
3508 elsif Is_Concurrent_Type (T) then
3509 Comp := First_Entity (T);
3510 while Present (Comp)
3511 and then Comp /= First_Private_Entity (T)
3512 loop
3513 if Chars (Comp) = Chars (Sel) then
3514 if Is_Overloadable (Comp) then
3515 Add_One_Interp (Sel, Comp, Etype (Comp));
3516 else
3517 Set_Entity_With_Checks (Sel, Comp);
3518 Generate_Reference (Comp, Sel);
3519 end if;
3521 Set_Etype (Sel, Etype (Comp));
3522 Set_Etype (N, Etype (Comp));
3523 Set_Etype (Nam, It.Typ);
3525 -- For access type case, introduce explicit dereference for
3526 -- more uniform treatment of entry calls. Do this only once
3527 -- if several interpretations yield an access type.
3529 if Is_Access_Type (Etype (Nam))
3530 and then Nkind (Nam) /= N_Explicit_Dereference
3531 then
3532 Insert_Explicit_Dereference (Nam);
3533 Error_Msg_NW
3534 (Warn_On_Dereference, "?d?implicit dereference", N);
3535 end if;
3536 end if;
3538 Next_Entity (Comp);
3539 end loop;
3541 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3542 end if;
3544 Get_Next_Interp (I, It);
3545 end loop;
3547 if Etype (N) = Any_Type
3548 and then not Try_Object_Operation (N)
3549 then
3550 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3551 Set_Entity (Sel, Any_Id);
3552 Set_Etype (Sel, Any_Type);
3553 end if;
3554 end Analyze_Overloaded_Selected_Component;
3556 ----------------------------------
3557 -- Analyze_Qualified_Expression --
3558 ----------------------------------
3560 procedure Analyze_Qualified_Expression (N : Node_Id) is
3561 Mark : constant Entity_Id := Subtype_Mark (N);
3562 Expr : constant Node_Id := Expression (N);
3563 I : Interp_Index;
3564 It : Interp;
3565 T : Entity_Id;
3567 begin
3568 Analyze_Expression (Expr);
3570 Set_Etype (N, Any_Type);
3571 Find_Type (Mark);
3572 T := Entity (Mark);
3573 Set_Etype (N, T);
3575 if T = Any_Type then
3576 return;
3577 end if;
3579 Check_Fully_Declared (T, N);
3581 -- If expected type is class-wide, check for exact match before
3582 -- expansion, because if the expression is a dispatching call it
3583 -- may be rewritten as explicit dereference with class-wide result.
3584 -- If expression is overloaded, retain only interpretations that
3585 -- will yield exact matches.
3587 if Is_Class_Wide_Type (T) then
3588 if not Is_Overloaded (Expr) then
3589 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3590 if Nkind (Expr) = N_Aggregate then
3591 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3592 else
3593 Wrong_Type (Expr, T);
3594 end if;
3595 end if;
3597 else
3598 Get_First_Interp (Expr, I, It);
3600 while Present (It.Nam) loop
3601 if Base_Type (It.Typ) /= Base_Type (T) then
3602 Remove_Interp (I);
3603 end if;
3605 Get_Next_Interp (I, It);
3606 end loop;
3607 end if;
3608 end if;
3610 Set_Etype (N, T);
3611 end Analyze_Qualified_Expression;
3613 -----------------------------------
3614 -- Analyze_Quantified_Expression --
3615 -----------------------------------
3617 procedure Analyze_Quantified_Expression (N : Node_Id) is
3618 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3619 -- If the iterator is part of a quantified expression, and the range is
3620 -- known to be statically empty, emit a warning and replace expression
3621 -- with its static value. Returns True if the replacement occurs.
3623 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3624 -- Determine whether if expression If_Expr lacks an else part or if it
3625 -- has one, it evaluates to True.
3627 --------------------
3628 -- Is_Empty_Range --
3629 --------------------
3631 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3632 Loc : constant Source_Ptr := Sloc (N);
3634 begin
3635 if Is_Array_Type (Typ)
3636 and then Compile_Time_Known_Bounds (Typ)
3637 and then
3638 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3639 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3640 then
3641 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3643 if All_Present (N) then
3644 Error_Msg_N
3645 ("??quantified expression with ALL "
3646 & "over a null range has value True", N);
3647 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3649 else
3650 Error_Msg_N
3651 ("??quantified expression with SOME "
3652 & "over a null range has value False", N);
3653 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3654 end if;
3656 Analyze (N);
3657 return True;
3659 else
3660 return False;
3661 end if;
3662 end Is_Empty_Range;
3664 -----------------------------
3665 -- No_Else_Or_Trivial_True --
3666 -----------------------------
3668 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3669 Else_Expr : constant Node_Id :=
3670 Next (Next (First (Expressions (If_Expr))));
3671 begin
3672 return
3673 No (Else_Expr)
3674 or else (Compile_Time_Known_Value (Else_Expr)
3675 and then Is_True (Expr_Value (Else_Expr)));
3676 end No_Else_Or_Trivial_True;
3678 -- Local variables
3680 Cond : constant Node_Id := Condition (N);
3681 Loop_Id : Entity_Id;
3682 QE_Scop : Entity_Id;
3684 -- Start of processing for Analyze_Quantified_Expression
3686 begin
3687 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3689 -- Create a scope to emulate the loop-like behavior of the quantified
3690 -- expression. The scope is needed to provide proper visibility of the
3691 -- loop variable.
3693 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3694 Set_Etype (QE_Scop, Standard_Void_Type);
3695 Set_Scope (QE_Scop, Current_Scope);
3696 Set_Parent (QE_Scop, N);
3698 Push_Scope (QE_Scop);
3700 -- All constituents are preanalyzed and resolved to avoid untimely
3701 -- generation of various temporaries and types. Full analysis and
3702 -- expansion is carried out when the quantified expression is
3703 -- transformed into an expression with actions.
3705 if Present (Iterator_Specification (N)) then
3706 Preanalyze (Iterator_Specification (N));
3708 -- Do not proceed with the analysis when the range of iteration is
3709 -- empty. The appropriate error is issued by Is_Empty_Range.
3711 if Is_Entity_Name (Name (Iterator_Specification (N)))
3712 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3713 then
3714 return;
3715 end if;
3717 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3718 declare
3719 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3721 begin
3722 Preanalyze (Loop_Par);
3724 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3725 and then Parent (Loop_Par) /= N
3726 then
3727 -- The parser cannot distinguish between a loop specification
3728 -- and an iterator specification. If after pre-analysis the
3729 -- proper form has been recognized, rewrite the expression to
3730 -- reflect the right kind. This is needed for proper ASIS
3731 -- navigation. If expansion is enabled, the transformation is
3732 -- performed when the expression is rewritten as a loop.
3734 Set_Iterator_Specification (N,
3735 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3737 Set_Defining_Identifier (Iterator_Specification (N),
3738 Relocate_Node (Defining_Identifier (Loop_Par)));
3739 Set_Name (Iterator_Specification (N),
3740 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3741 Set_Comes_From_Source (Iterator_Specification (N),
3742 Comes_From_Source (Loop_Parameter_Specification (N)));
3743 Set_Loop_Parameter_Specification (N, Empty);
3744 end if;
3745 end;
3746 end if;
3748 Preanalyze_And_Resolve (Cond, Standard_Boolean);
3750 End_Scope;
3751 Set_Etype (N, Standard_Boolean);
3753 -- Verify that the loop variable is used within the condition of the
3754 -- quantified expression.
3756 if Present (Iterator_Specification (N)) then
3757 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3758 else
3759 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3760 end if;
3762 if Warn_On_Suspicious_Contract
3763 and then not Referenced (Loop_Id, Cond)
3764 then
3765 Error_Msg_N ("?T?unused variable &", Loop_Id);
3766 end if;
3768 -- Diagnose a possible misuse of the SOME existential quantifier. When
3769 -- we have a quantified expression of the form:
3771 -- for some X => (if P then Q [else True])
3773 -- any value for X that makes P False results in the if expression being
3774 -- trivially True, and so also results in the the quantified expression
3775 -- being trivially True.
3777 if Warn_On_Suspicious_Contract
3778 and then not All_Present (N)
3779 and then Nkind (Cond) = N_If_Expression
3780 and then No_Else_Or_Trivial_True (Cond)
3781 then
3782 Error_Msg_N ("?T?suspicious expression", N);
3783 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3784 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3785 end if;
3786 end Analyze_Quantified_Expression;
3788 -------------------
3789 -- Analyze_Range --
3790 -------------------
3792 procedure Analyze_Range (N : Node_Id) is
3793 L : constant Node_Id := Low_Bound (N);
3794 H : constant Node_Id := High_Bound (N);
3795 I1, I2 : Interp_Index;
3796 It1, It2 : Interp;
3798 procedure Check_Common_Type (T1, T2 : Entity_Id);
3799 -- Verify the compatibility of two types, and choose the
3800 -- non universal one if the other is universal.
3802 procedure Check_High_Bound (T : Entity_Id);
3803 -- Test one interpretation of the low bound against all those
3804 -- of the high bound.
3806 procedure Check_Universal_Expression (N : Node_Id);
3807 -- In Ada 83, reject bounds of a universal range that are not literals
3808 -- or entity names.
3810 -----------------------
3811 -- Check_Common_Type --
3812 -----------------------
3814 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3815 begin
3816 if Covers (T1 => T1, T2 => T2)
3817 or else
3818 Covers (T1 => T2, T2 => T1)
3819 then
3820 if T1 = Universal_Integer
3821 or else T1 = Universal_Real
3822 or else T1 = Any_Character
3823 then
3824 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3826 elsif T1 = T2 then
3827 Add_One_Interp (N, T1, T1);
3829 else
3830 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3831 end if;
3832 end if;
3833 end Check_Common_Type;
3835 ----------------------
3836 -- Check_High_Bound --
3837 ----------------------
3839 procedure Check_High_Bound (T : Entity_Id) is
3840 begin
3841 if not Is_Overloaded (H) then
3842 Check_Common_Type (T, Etype (H));
3843 else
3844 Get_First_Interp (H, I2, It2);
3845 while Present (It2.Typ) loop
3846 Check_Common_Type (T, It2.Typ);
3847 Get_Next_Interp (I2, It2);
3848 end loop;
3849 end if;
3850 end Check_High_Bound;
3852 -----------------------------
3853 -- Is_Universal_Expression --
3854 -----------------------------
3856 procedure Check_Universal_Expression (N : Node_Id) is
3857 begin
3858 if Etype (N) = Universal_Integer
3859 and then Nkind (N) /= N_Integer_Literal
3860 and then not Is_Entity_Name (N)
3861 and then Nkind (N) /= N_Attribute_Reference
3862 then
3863 Error_Msg_N ("illegal bound in discrete range", N);
3864 end if;
3865 end Check_Universal_Expression;
3867 -- Start of processing for Analyze_Range
3869 begin
3870 Set_Etype (N, Any_Type);
3871 Analyze_Expression (L);
3872 Analyze_Expression (H);
3874 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3875 return;
3877 else
3878 if not Is_Overloaded (L) then
3879 Check_High_Bound (Etype (L));
3880 else
3881 Get_First_Interp (L, I1, It1);
3882 while Present (It1.Typ) loop
3883 Check_High_Bound (It1.Typ);
3884 Get_Next_Interp (I1, It1);
3885 end loop;
3886 end if;
3888 -- If result is Any_Type, then we did not find a compatible pair
3890 if Etype (N) = Any_Type then
3891 Error_Msg_N ("incompatible types in range ", N);
3892 end if;
3893 end if;
3895 if Ada_Version = Ada_83
3896 and then
3897 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3898 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3899 then
3900 Check_Universal_Expression (L);
3901 Check_Universal_Expression (H);
3902 end if;
3904 Check_Function_Writable_Actuals (N);
3905 end Analyze_Range;
3907 -----------------------
3908 -- Analyze_Reference --
3909 -----------------------
3911 procedure Analyze_Reference (N : Node_Id) is
3912 P : constant Node_Id := Prefix (N);
3913 E : Entity_Id;
3914 T : Entity_Id;
3915 Acc_Type : Entity_Id;
3917 begin
3918 Analyze (P);
3920 -- An interesting error check, if we take the 'Reference of an object
3921 -- for which a pragma Atomic or Volatile has been given, and the type
3922 -- of the object is not Atomic or Volatile, then we are in trouble. The
3923 -- problem is that no trace of the atomic/volatile status will remain
3924 -- for the backend to respect when it deals with the resulting pointer,
3925 -- since the pointer type will not be marked atomic (it is a pointer to
3926 -- the base type of the object).
3928 -- It is not clear if that can ever occur, but in case it does, we will
3929 -- generate an error message. Not clear if this message can ever be
3930 -- generated, and pretty clear that it represents a bug if it is, still
3931 -- seems worth checking, except in CodePeer mode where we do not really
3932 -- care and don't want to bother the user.
3934 T := Etype (P);
3936 if Is_Entity_Name (P)
3937 and then Is_Object_Reference (P)
3938 and then not CodePeer_Mode
3939 then
3940 E := Entity (P);
3941 T := Etype (P);
3943 if (Has_Atomic_Components (E)
3944 and then not Has_Atomic_Components (T))
3945 or else
3946 (Has_Volatile_Components (E)
3947 and then not Has_Volatile_Components (T))
3948 or else (Is_Atomic (E) and then not Is_Atomic (T))
3949 or else (Is_Volatile (E) and then not Is_Volatile (T))
3950 then
3951 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3952 end if;
3953 end if;
3955 -- Carry on with normal processing
3957 Acc_Type := Create_Itype (E_Allocator_Type, N);
3958 Set_Etype (Acc_Type, Acc_Type);
3959 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3960 Set_Etype (N, Acc_Type);
3961 end Analyze_Reference;
3963 --------------------------------
3964 -- Analyze_Selected_Component --
3965 --------------------------------
3967 -- Prefix is a record type or a task or protected type. In the latter case,
3968 -- the selector must denote a visible entry.
3970 procedure Analyze_Selected_Component (N : Node_Id) is
3971 Name : constant Node_Id := Prefix (N);
3972 Sel : constant Node_Id := Selector_Name (N);
3973 Act_Decl : Node_Id;
3974 Comp : Entity_Id;
3975 Has_Candidate : Boolean := False;
3976 In_Scope : Boolean;
3977 Parent_N : Node_Id;
3978 Pent : Entity_Id := Empty;
3979 Prefix_Type : Entity_Id;
3981 Type_To_Use : Entity_Id;
3982 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3983 -- a class-wide type, we use its root type, whose components are
3984 -- present in the class-wide type.
3986 Is_Single_Concurrent_Object : Boolean;
3987 -- Set True if the prefix is a single task or a single protected object
3989 procedure Find_Component_In_Instance (Rec : Entity_Id);
3990 -- In an instance, a component of a private extension may not be visible
3991 -- while it was visible in the generic. Search candidate scope for a
3992 -- component with the proper identifier. This is only done if all other
3993 -- searches have failed. If a match is found, the Etype of both N and
3994 -- Sel are set from this component, and the entity of Sel is set to
3995 -- reference this component. If no match is found, Entity (Sel) remains
3996 -- unset.
3998 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3999 -- It is known that the parent of N denotes a subprogram call. Comp
4000 -- is an overloadable component of the concurrent type of the prefix.
4001 -- Determine whether all formals of the parent of N and Comp are mode
4002 -- conformant. If the parent node is not analyzed yet it may be an
4003 -- indexed component rather than a function call.
4005 --------------------------------
4006 -- Find_Component_In_Instance --
4007 --------------------------------
4009 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4010 Comp : Entity_Id;
4012 begin
4013 Comp := First_Component (Rec);
4014 while Present (Comp) loop
4015 if Chars (Comp) = Chars (Sel) then
4016 Set_Entity_With_Checks (Sel, Comp);
4017 Set_Etype (Sel, Etype (Comp));
4018 Set_Etype (N, Etype (Comp));
4019 return;
4020 end if;
4022 Next_Component (Comp);
4023 end loop;
4025 -- If we fall through, no match, so no changes made
4027 return;
4028 end Find_Component_In_Instance;
4030 ------------------------------
4031 -- Has_Mode_Conformant_Spec --
4032 ------------------------------
4034 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4035 Comp_Param : Entity_Id;
4036 Param : Node_Id;
4037 Param_Typ : Entity_Id;
4039 begin
4040 Comp_Param := First_Formal (Comp);
4042 if Nkind (Parent (N)) = N_Indexed_Component then
4043 Param := First (Expressions (Parent (N)));
4044 else
4045 Param := First (Parameter_Associations (Parent (N)));
4046 end if;
4048 while Present (Comp_Param)
4049 and then Present (Param)
4050 loop
4051 Param_Typ := Find_Parameter_Type (Param);
4053 if Present (Param_Typ)
4054 and then
4055 not Conforming_Types
4056 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4057 then
4058 return False;
4059 end if;
4061 Next_Formal (Comp_Param);
4062 Next (Param);
4063 end loop;
4065 -- One of the specs has additional formals; there is no match, unless
4066 -- this may be an indexing of a parameterless call.
4068 -- Note that when expansion is disabled, the corresponding record
4069 -- type of synchronized types is not constructed, so that there is
4070 -- no point is attempting an interpretation as a prefixed call, as
4071 -- this is bound to fail because the primitive operations will not
4072 -- be properly located.
4074 if Present (Comp_Param) or else Present (Param) then
4075 if Needs_No_Actuals (Comp)
4076 and then Is_Array_Type (Etype (Comp))
4077 and then not Expander_Active
4078 then
4079 return True;
4080 else
4081 return False;
4082 end if;
4083 end if;
4085 return True;
4086 end Has_Mode_Conformant_Spec;
4088 -- Start of processing for Analyze_Selected_Component
4090 begin
4091 Set_Etype (N, Any_Type);
4093 if Is_Overloaded (Name) then
4094 Analyze_Overloaded_Selected_Component (N);
4095 return;
4097 elsif Etype (Name) = Any_Type then
4098 Set_Entity (Sel, Any_Id);
4099 Set_Etype (Sel, Any_Type);
4100 return;
4102 else
4103 Prefix_Type := Etype (Name);
4104 end if;
4106 if Is_Access_Type (Prefix_Type) then
4108 -- A RACW object can never be used as prefix of a selected component
4109 -- since that means it is dereferenced without being a controlling
4110 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4111 -- reporting an error, we must check whether this is actually a
4112 -- dispatching call in prefix form.
4114 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4115 and then Comes_From_Source (N)
4116 then
4117 if Try_Object_Operation (N) then
4118 return;
4119 else
4120 Error_Msg_N
4121 ("invalid dereference of a remote access-to-class-wide value",
4123 end if;
4125 -- Normal case of selected component applied to access type
4127 else
4128 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4130 if Is_Entity_Name (Name) then
4131 Pent := Entity (Name);
4132 elsif Nkind (Name) = N_Selected_Component
4133 and then Is_Entity_Name (Selector_Name (Name))
4134 then
4135 Pent := Entity (Selector_Name (Name));
4136 end if;
4138 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4139 end if;
4141 -- If we have an explicit dereference of a remote access-to-class-wide
4142 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4143 -- have to check for the case of a prefix that is a controlling operand
4144 -- of a prefixed dispatching call, as the dereference is legal in that
4145 -- case. Normally this condition is checked in Validate_Remote_Access_
4146 -- To_Class_Wide_Type, but we have to defer the checking for selected
4147 -- component prefixes because of the prefixed dispatching call case.
4148 -- Note that implicit dereferences are checked for this just above.
4150 elsif Nkind (Name) = N_Explicit_Dereference
4151 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4152 and then Comes_From_Source (N)
4153 then
4154 if Try_Object_Operation (N) then
4155 return;
4156 else
4157 Error_Msg_N
4158 ("invalid dereference of a remote access-to-class-wide value",
4160 end if;
4161 end if;
4163 -- (Ada 2005): if the prefix is the limited view of a type, and
4164 -- the context already includes the full view, use the full view
4165 -- in what follows, either to retrieve a component of to find
4166 -- a primitive operation. If the prefix is an explicit dereference,
4167 -- set the type of the prefix to reflect this transformation.
4168 -- If the non-limited view is itself an incomplete type, get the
4169 -- full view if available.
4171 if Is_Incomplete_Type (Prefix_Type)
4172 and then From_Limited_With (Prefix_Type)
4173 and then Present (Non_Limited_View (Prefix_Type))
4174 then
4175 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4177 if Nkind (N) = N_Explicit_Dereference then
4178 Set_Etype (Prefix (N), Prefix_Type);
4179 end if;
4181 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
4182 and then From_Limited_With (Prefix_Type)
4183 and then Present (Non_Limited_View (Etype (Prefix_Type)))
4184 then
4185 Prefix_Type :=
4186 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
4188 if Nkind (N) = N_Explicit_Dereference then
4189 Set_Etype (Prefix (N), Prefix_Type);
4190 end if;
4191 end if;
4193 if Ekind (Prefix_Type) = E_Private_Subtype then
4194 Prefix_Type := Base_Type (Prefix_Type);
4195 end if;
4197 Type_To_Use := Prefix_Type;
4199 -- For class-wide types, use the entity list of the root type. This
4200 -- indirection is specially important for private extensions because
4201 -- only the root type get switched (not the class-wide type).
4203 if Is_Class_Wide_Type (Prefix_Type) then
4204 Type_To_Use := Root_Type (Prefix_Type);
4205 end if;
4207 -- If the prefix is a single concurrent object, use its name in error
4208 -- messages, rather than that of its anonymous type.
4210 Is_Single_Concurrent_Object :=
4211 Is_Concurrent_Type (Prefix_Type)
4212 and then Is_Internal_Name (Chars (Prefix_Type))
4213 and then not Is_Derived_Type (Prefix_Type)
4214 and then Is_Entity_Name (Name);
4216 Comp := First_Entity (Type_To_Use);
4218 -- If the selector has an original discriminant, the node appears in
4219 -- an instance. Replace the discriminant with the corresponding one
4220 -- in the current discriminated type. For nested generics, this must
4221 -- be done transitively, so note the new original discriminant.
4223 if Nkind (Sel) = N_Identifier
4224 and then In_Instance
4225 and then Present (Original_Discriminant (Sel))
4226 then
4227 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4229 -- Mark entity before rewriting, for completeness and because
4230 -- subsequent semantic checks might examine the original node.
4232 Set_Entity (Sel, Comp);
4233 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4234 Set_Original_Discriminant (Selector_Name (N), Comp);
4235 Set_Etype (N, Etype (Comp));
4236 Check_Implicit_Dereference (N, Etype (Comp));
4238 if Is_Access_Type (Etype (Name)) then
4239 Insert_Explicit_Dereference (Name);
4240 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4241 end if;
4243 elsif Is_Record_Type (Prefix_Type) then
4245 -- Find component with given name. In an instance, if the node is
4246 -- known as a prefixed call, do not examine components whose
4247 -- visibility may be accidental.
4249 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4250 if Chars (Comp) = Chars (Sel)
4251 and then Is_Visible_Component (Comp, N)
4252 then
4253 Set_Entity_With_Checks (Sel, Comp);
4254 Set_Etype (Sel, Etype (Comp));
4256 if Ekind (Comp) = E_Discriminant then
4257 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4258 Error_Msg_N
4259 ("cannot reference discriminant of unchecked union",
4260 Sel);
4261 end if;
4263 if Is_Generic_Type (Prefix_Type)
4264 or else
4265 Is_Generic_Type (Root_Type (Prefix_Type))
4266 then
4267 Set_Original_Discriminant (Sel, Comp);
4268 end if;
4269 end if;
4271 -- Resolve the prefix early otherwise it is not possible to
4272 -- build the actual subtype of the component: it may need
4273 -- to duplicate this prefix and duplication is only allowed
4274 -- on fully resolved expressions.
4276 Resolve (Name);
4278 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4279 -- subtypes in a package specification.
4280 -- Example:
4282 -- limited with Pkg;
4283 -- package Pkg is
4284 -- type Acc_Inc is access Pkg.T;
4285 -- X : Acc_Inc;
4286 -- N : Natural := X.all.Comp; -- ERROR, limited view
4287 -- end Pkg; -- Comp is not visible
4289 if Nkind (Name) = N_Explicit_Dereference
4290 and then From_Limited_With (Etype (Prefix (Name)))
4291 and then not Is_Potentially_Use_Visible (Etype (Name))
4292 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4293 N_Package_Specification
4294 then
4295 Error_Msg_NE
4296 ("premature usage of incomplete}", Prefix (Name),
4297 Etype (Prefix (Name)));
4298 end if;
4300 -- We never need an actual subtype for the case of a selection
4301 -- for a indexed component of a non-packed array, since in
4302 -- this case gigi generates all the checks and can find the
4303 -- necessary bounds information.
4305 -- We also do not need an actual subtype for the case of a
4306 -- first, last, length, or range attribute applied to a
4307 -- non-packed array, since gigi can again get the bounds in
4308 -- these cases (gigi cannot handle the packed case, since it
4309 -- has the bounds of the packed array type, not the original
4310 -- bounds of the type). However, if the prefix is itself a
4311 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4312 -- as a dynamic-sized temporary, so we do generate an actual
4313 -- subtype for this case.
4315 Parent_N := Parent (N);
4317 if not Is_Packed (Etype (Comp))
4318 and then
4319 ((Nkind (Parent_N) = N_Indexed_Component
4320 and then Nkind (Name) /= N_Selected_Component)
4321 or else
4322 (Nkind (Parent_N) = N_Attribute_Reference
4323 and then
4324 Nam_In (Attribute_Name (Parent_N), Name_First,
4325 Name_Last,
4326 Name_Length,
4327 Name_Range)))
4328 then
4329 Set_Etype (N, Etype (Comp));
4331 -- If full analysis is not enabled, we do not generate an
4332 -- actual subtype, because in the absence of expansion
4333 -- reference to a formal of a protected type, for example,
4334 -- will not be properly transformed, and will lead to
4335 -- out-of-scope references in gigi.
4337 -- In all other cases, we currently build an actual subtype.
4338 -- It seems likely that many of these cases can be avoided,
4339 -- but right now, the front end makes direct references to the
4340 -- bounds (e.g. in generating a length check), and if we do
4341 -- not make an actual subtype, we end up getting a direct
4342 -- reference to a discriminant, which will not do.
4344 elsif Full_Analysis then
4345 Act_Decl :=
4346 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4347 Insert_Action (N, Act_Decl);
4349 if No (Act_Decl) then
4350 Set_Etype (N, Etype (Comp));
4352 else
4353 -- Component type depends on discriminants. Enter the
4354 -- main attributes of the subtype.
4356 declare
4357 Subt : constant Entity_Id :=
4358 Defining_Identifier (Act_Decl);
4360 begin
4361 Set_Etype (Subt, Base_Type (Etype (Comp)));
4362 Set_Ekind (Subt, Ekind (Etype (Comp)));
4363 Set_Etype (N, Subt);
4364 end;
4365 end if;
4367 -- If Full_Analysis not enabled, just set the Etype
4369 else
4370 Set_Etype (N, Etype (Comp));
4371 end if;
4373 Check_Implicit_Dereference (N, Etype (N));
4374 return;
4375 end if;
4377 -- If the prefix is a private extension, check only the visible
4378 -- components of the partial view. This must include the tag,
4379 -- which can appear in expanded code in a tag check.
4381 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4382 and then Chars (Selector_Name (N)) /= Name_uTag
4383 then
4384 exit when Comp = Last_Entity (Type_To_Use);
4385 end if;
4387 Next_Entity (Comp);
4388 end loop;
4390 -- Ada 2005 (AI-252): The selected component can be interpreted as
4391 -- a prefixed view of a subprogram. Depending on the context, this is
4392 -- either a name that can appear in a renaming declaration, or part
4393 -- of an enclosing call given in prefix form.
4395 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4396 -- selected component should resolve to a name.
4398 if Ada_Version >= Ada_2005
4399 and then Is_Tagged_Type (Prefix_Type)
4400 and then not Is_Concurrent_Type (Prefix_Type)
4401 then
4402 if Nkind (Parent (N)) = N_Generic_Association
4403 or else Nkind (Parent (N)) = N_Requeue_Statement
4404 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4405 then
4406 if Find_Primitive_Operation (N) then
4407 return;
4408 end if;
4410 elsif Try_Object_Operation (N) then
4411 return;
4412 end if;
4414 -- If the transformation fails, it will be necessary to redo the
4415 -- analysis with all errors enabled, to indicate candidate
4416 -- interpretations and reasons for each failure ???
4418 end if;
4420 elsif Is_Private_Type (Prefix_Type) then
4422 -- Allow access only to discriminants of the type. If the type has
4423 -- no full view, gigi uses the parent type for the components, so we
4424 -- do the same here.
4426 if No (Full_View (Prefix_Type)) then
4427 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4428 Comp := First_Entity (Type_To_Use);
4429 end if;
4431 while Present (Comp) loop
4432 if Chars (Comp) = Chars (Sel) then
4433 if Ekind (Comp) = E_Discriminant then
4434 Set_Entity_With_Checks (Sel, Comp);
4435 Generate_Reference (Comp, Sel);
4437 Set_Etype (Sel, Etype (Comp));
4438 Set_Etype (N, Etype (Comp));
4439 Check_Implicit_Dereference (N, Etype (N));
4441 if Is_Generic_Type (Prefix_Type)
4442 or else Is_Generic_Type (Root_Type (Prefix_Type))
4443 then
4444 Set_Original_Discriminant (Sel, Comp);
4445 end if;
4447 -- Before declaring an error, check whether this is tagged
4448 -- private type and a call to a primitive operation.
4450 elsif Ada_Version >= Ada_2005
4451 and then Is_Tagged_Type (Prefix_Type)
4452 and then Try_Object_Operation (N)
4453 then
4454 return;
4456 else
4457 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4458 Error_Msg_NE ("invisible selector& for }", N, Sel);
4459 Set_Entity (Sel, Any_Id);
4460 Set_Etype (N, Any_Type);
4461 end if;
4463 return;
4464 end if;
4466 Next_Entity (Comp);
4467 end loop;
4469 elsif Is_Concurrent_Type (Prefix_Type) then
4471 -- Find visible operation with given name. For a protected type,
4472 -- the possible candidates are discriminants, entries or protected
4473 -- procedures. For a task type, the set can only include entries or
4474 -- discriminants if the task type is not an enclosing scope. If it
4475 -- is an enclosing scope (e.g. in an inner task) then all entities
4476 -- are visible, but the prefix must denote the enclosing scope, i.e.
4477 -- can only be a direct name or an expanded name.
4479 Set_Etype (Sel, Any_Type);
4480 In_Scope := In_Open_Scopes (Prefix_Type);
4482 while Present (Comp) loop
4483 if Chars (Comp) = Chars (Sel) then
4484 if Is_Overloadable (Comp) then
4485 Add_One_Interp (Sel, Comp, Etype (Comp));
4487 -- If the prefix is tagged, the correct interpretation may
4488 -- lie in the primitive or class-wide operations of the
4489 -- type. Perform a simple conformance check to determine
4490 -- whether Try_Object_Operation should be invoked even if
4491 -- a visible entity is found.
4493 if Is_Tagged_Type (Prefix_Type)
4494 and then
4495 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4496 N_Function_Call,
4497 N_Indexed_Component)
4498 and then Has_Mode_Conformant_Spec (Comp)
4499 then
4500 Has_Candidate := True;
4501 end if;
4503 -- Note: a selected component may not denote a component of a
4504 -- protected type (4.1.3(7)).
4506 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4507 or else (In_Scope
4508 and then not Is_Protected_Type (Prefix_Type)
4509 and then Is_Entity_Name (Name))
4510 then
4511 Set_Entity_With_Checks (Sel, Comp);
4512 Generate_Reference (Comp, Sel);
4514 -- The selector is not overloadable, so we have a candidate
4515 -- interpretation.
4517 Has_Candidate := True;
4519 else
4520 goto Next_Comp;
4521 end if;
4523 Set_Etype (Sel, Etype (Comp));
4524 Set_Etype (N, Etype (Comp));
4526 if Ekind (Comp) = E_Discriminant then
4527 Set_Original_Discriminant (Sel, Comp);
4528 end if;
4530 -- For access type case, introduce explicit dereference for
4531 -- more uniform treatment of entry calls.
4533 if Is_Access_Type (Etype (Name)) then
4534 Insert_Explicit_Dereference (Name);
4535 Error_Msg_NW
4536 (Warn_On_Dereference, "?d?implicit dereference", N);
4537 end if;
4538 end if;
4540 <<Next_Comp>>
4541 Next_Entity (Comp);
4542 exit when not In_Scope
4543 and then
4544 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4545 end loop;
4547 -- If there is no visible entity with the given name or none of the
4548 -- visible entities are plausible interpretations, check whether
4549 -- there is some other primitive operation with that name.
4551 if Ada_Version >= Ada_2005
4552 and then Is_Tagged_Type (Prefix_Type)
4553 then
4554 if (Etype (N) = Any_Type
4555 or else not Has_Candidate)
4556 and then Try_Object_Operation (N)
4557 then
4558 return;
4560 -- If the context is not syntactically a procedure call, it
4561 -- may be a call to a primitive function declared outside of
4562 -- the synchronized type.
4564 -- If the context is a procedure call, there might still be
4565 -- an overloading between an entry and a primitive procedure
4566 -- declared outside of the synchronized type, called in prefix
4567 -- notation. This is harder to disambiguate because in one case
4568 -- the controlling formal is implicit ???
4570 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4571 and then Nkind (Parent (N)) /= N_Indexed_Component
4572 and then Try_Object_Operation (N)
4573 then
4574 return;
4575 end if;
4577 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4578 -- entry or procedure of a tagged concurrent type we must check
4579 -- if there are class-wide subprograms covering the primitive. If
4580 -- true then Try_Object_Operation reports the error.
4582 if Has_Candidate
4583 and then Is_Concurrent_Type (Prefix_Type)
4584 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4586 -- Duplicate the call. This is required to avoid problems with
4587 -- the tree transformations performed by Try_Object_Operation.
4588 -- Set properly the parent of the copied call, because it is
4589 -- about to be reanalyzed.
4591 then
4592 declare
4593 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4595 begin
4596 Set_Parent (Par, Parent (Parent (N)));
4598 if Try_Object_Operation
4599 (Sinfo.Name (Par), CW_Test_Only => True)
4600 then
4601 return;
4602 end if;
4603 end;
4604 end if;
4605 end if;
4607 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4609 -- Case of a prefix of a protected type: selector might denote
4610 -- an invisible private component.
4612 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4613 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4614 Next_Entity (Comp);
4615 end loop;
4617 if Present (Comp) then
4618 if Is_Single_Concurrent_Object then
4619 Error_Msg_Node_2 := Entity (Name);
4620 Error_Msg_NE ("invisible selector& for &", N, Sel);
4622 else
4623 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4624 Error_Msg_NE ("invisible selector& for }", N, Sel);
4625 end if;
4626 return;
4627 end if;
4628 end if;
4630 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4632 else
4633 -- Invalid prefix
4635 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4636 end if;
4638 -- If N still has no type, the component is not defined in the prefix
4640 if Etype (N) = Any_Type then
4642 if Is_Single_Concurrent_Object then
4643 Error_Msg_Node_2 := Entity (Name);
4644 Error_Msg_NE ("no selector& for&", N, Sel);
4646 Check_Misspelled_Selector (Type_To_Use, Sel);
4648 -- If this is a derived formal type, the parent may have different
4649 -- visibility at this point. Try for an inherited component before
4650 -- reporting an error.
4652 elsif Is_Generic_Type (Prefix_Type)
4653 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4654 and then Prefix_Type /= Etype (Prefix_Type)
4655 and then Is_Record_Type (Etype (Prefix_Type))
4656 then
4657 Set_Etype (Prefix (N), Etype (Prefix_Type));
4658 Analyze_Selected_Component (N);
4659 return;
4661 -- Similarly, if this is the actual for a formal derived type, or
4662 -- a derived type thereof, the component inherited from the generic
4663 -- parent may not be visible in the actual, but the selected
4664 -- component is legal. Climb up the derivation chain of the generic
4665 -- parent type until we find the proper ancestor type.
4667 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4668 declare
4669 Par : Entity_Id := Prefix_Type;
4670 begin
4671 -- Climb up derivation chain to generic actual subtype
4673 while not Is_Generic_Actual_Type (Par) loop
4674 if Ekind (Par) = E_Record_Type then
4675 Par := Parent_Subtype (Par);
4676 exit when No (Par);
4677 else
4678 exit when Par = Etype (Par);
4679 Par := Etype (Par);
4680 end if;
4681 end loop;
4683 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4685 -- Now look for component in ancestor types
4687 Par := Generic_Parent_Type (Declaration_Node (Par));
4688 loop
4689 Find_Component_In_Instance (Par);
4690 exit when Present (Entity (Sel))
4691 or else Par = Etype (Par);
4692 Par := Etype (Par);
4693 end loop;
4695 -- In ASIS mode the generic parent type may be absent. Examine
4696 -- the parent type directly for a component that may have been
4697 -- visible in a parent generic unit.
4699 elsif Is_Derived_Type (Prefix_Type) then
4700 Par := Etype (Prefix_Type);
4701 Find_Component_In_Instance (Par);
4702 end if;
4703 end;
4705 -- The search above must have eventually succeeded, since the
4706 -- selected component was legal in the generic.
4708 if No (Entity (Sel)) then
4709 raise Program_Error;
4710 end if;
4712 return;
4714 -- Component not found, specialize error message when appropriate
4716 else
4717 if Ekind (Prefix_Type) = E_Record_Subtype then
4719 -- Check whether this is a component of the base type which
4720 -- is absent from a statically constrained subtype. This will
4721 -- raise constraint error at run time, but is not a compile-
4722 -- time error. When the selector is illegal for base type as
4723 -- well fall through and generate a compilation error anyway.
4725 Comp := First_Component (Base_Type (Prefix_Type));
4726 while Present (Comp) loop
4727 if Chars (Comp) = Chars (Sel)
4728 and then Is_Visible_Component (Comp)
4729 then
4730 Set_Entity_With_Checks (Sel, Comp);
4731 Generate_Reference (Comp, Sel);
4732 Set_Etype (Sel, Etype (Comp));
4733 Set_Etype (N, Etype (Comp));
4735 -- Emit appropriate message. The node will be replaced
4736 -- by an appropriate raise statement.
4738 -- Note that in SPARK mode, as with all calls to apply a
4739 -- compile time constraint error, this will be made into
4740 -- an error to simplify the processing of the formal
4741 -- verification backend.
4743 Apply_Compile_Time_Constraint_Error
4744 (N, "component not present in }??",
4745 CE_Discriminant_Check_Failed,
4746 Ent => Prefix_Type, Rep => False);
4748 Set_Raises_Constraint_Error (N);
4749 return;
4750 end if;
4752 Next_Component (Comp);
4753 end loop;
4755 end if;
4757 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4758 Error_Msg_NE ("no selector& for}", N, Sel);
4760 -- Add information in the case of an incomplete prefix
4762 if Is_Incomplete_Type (Type_To_Use) then
4763 declare
4764 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4766 begin
4767 if From_Limited_With (Scope (Type_To_Use)) then
4768 Error_Msg_NE
4769 ("\limited view of& has no components", N, Inc);
4771 else
4772 Error_Msg_NE
4773 ("\premature usage of incomplete type&", N, Inc);
4775 if Nkind (Parent (Inc)) =
4776 N_Incomplete_Type_Declaration
4777 then
4778 -- Record location of premature use in entity so that
4779 -- a continuation message is generated when the
4780 -- completion is seen.
4782 Set_Premature_Use (Parent (Inc), N);
4783 end if;
4784 end if;
4785 end;
4786 end if;
4788 Check_Misspelled_Selector (Type_To_Use, Sel);
4789 end if;
4791 Set_Entity (Sel, Any_Id);
4792 Set_Etype (Sel, Any_Type);
4793 end if;
4794 end Analyze_Selected_Component;
4796 ---------------------------
4797 -- Analyze_Short_Circuit --
4798 ---------------------------
4800 procedure Analyze_Short_Circuit (N : Node_Id) is
4801 L : constant Node_Id := Left_Opnd (N);
4802 R : constant Node_Id := Right_Opnd (N);
4803 Ind : Interp_Index;
4804 It : Interp;
4806 begin
4807 Analyze_Expression (L);
4808 Analyze_Expression (R);
4809 Set_Etype (N, Any_Type);
4811 if not Is_Overloaded (L) then
4812 if Root_Type (Etype (L)) = Standard_Boolean
4813 and then Has_Compatible_Type (R, Etype (L))
4814 then
4815 Add_One_Interp (N, Etype (L), Etype (L));
4816 end if;
4818 else
4819 Get_First_Interp (L, Ind, It);
4820 while Present (It.Typ) loop
4821 if Root_Type (It.Typ) = Standard_Boolean
4822 and then Has_Compatible_Type (R, It.Typ)
4823 then
4824 Add_One_Interp (N, It.Typ, It.Typ);
4825 end if;
4827 Get_Next_Interp (Ind, It);
4828 end loop;
4829 end if;
4831 -- Here we have failed to find an interpretation. Clearly we know that
4832 -- it is not the case that both operands can have an interpretation of
4833 -- Boolean, but this is by far the most likely intended interpretation.
4834 -- So we simply resolve both operands as Booleans, and at least one of
4835 -- these resolutions will generate an error message, and we do not need
4836 -- to give another error message on the short circuit operation itself.
4838 if Etype (N) = Any_Type then
4839 Resolve (L, Standard_Boolean);
4840 Resolve (R, Standard_Boolean);
4841 Set_Etype (N, Standard_Boolean);
4842 end if;
4843 end Analyze_Short_Circuit;
4845 -------------------
4846 -- Analyze_Slice --
4847 -------------------
4849 procedure Analyze_Slice (N : Node_Id) is
4850 D : constant Node_Id := Discrete_Range (N);
4851 P : constant Node_Id := Prefix (N);
4852 Array_Type : Entity_Id;
4853 Index_Type : Entity_Id;
4855 procedure Analyze_Overloaded_Slice;
4856 -- If the prefix is overloaded, select those interpretations that
4857 -- yield a one-dimensional array type.
4859 ------------------------------
4860 -- Analyze_Overloaded_Slice --
4861 ------------------------------
4863 procedure Analyze_Overloaded_Slice is
4864 I : Interp_Index;
4865 It : Interp;
4866 Typ : Entity_Id;
4868 begin
4869 Set_Etype (N, Any_Type);
4871 Get_First_Interp (P, I, It);
4872 while Present (It.Nam) loop
4873 Typ := It.Typ;
4875 if Is_Access_Type (Typ) then
4876 Typ := Designated_Type (Typ);
4877 Error_Msg_NW
4878 (Warn_On_Dereference, "?d?implicit dereference", N);
4879 end if;
4881 if Is_Array_Type (Typ)
4882 and then Number_Dimensions (Typ) = 1
4883 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4884 then
4885 Add_One_Interp (N, Typ, Typ);
4886 end if;
4888 Get_Next_Interp (I, It);
4889 end loop;
4891 if Etype (N) = Any_Type then
4892 Error_Msg_N ("expect array type in prefix of slice", N);
4893 end if;
4894 end Analyze_Overloaded_Slice;
4896 -- Start of processing for Analyze_Slice
4898 begin
4899 if Comes_From_Source (N) then
4900 Check_SPARK_05_Restriction ("slice is not allowed", N);
4901 end if;
4903 Analyze (P);
4904 Analyze (D);
4906 if Is_Overloaded (P) then
4907 Analyze_Overloaded_Slice;
4909 else
4910 Array_Type := Etype (P);
4911 Set_Etype (N, Any_Type);
4913 if Is_Access_Type (Array_Type) then
4914 Array_Type := Designated_Type (Array_Type);
4915 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4916 end if;
4918 if not Is_Array_Type (Array_Type) then
4919 Wrong_Type (P, Any_Array);
4921 elsif Number_Dimensions (Array_Type) > 1 then
4922 Error_Msg_N
4923 ("type is not one-dimensional array in slice prefix", N);
4925 else
4926 if Ekind (Array_Type) = E_String_Literal_Subtype then
4927 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4928 else
4929 Index_Type := Etype (First_Index (Array_Type));
4930 end if;
4932 if not Has_Compatible_Type (D, Index_Type) then
4933 Wrong_Type (D, Index_Type);
4934 else
4935 Set_Etype (N, Array_Type);
4936 end if;
4937 end if;
4938 end if;
4939 end Analyze_Slice;
4941 -----------------------------
4942 -- Analyze_Type_Conversion --
4943 -----------------------------
4945 procedure Analyze_Type_Conversion (N : Node_Id) is
4946 Expr : constant Node_Id := Expression (N);
4947 Typ : Entity_Id;
4949 begin
4950 -- If Conversion_OK is set, then the Etype is already set, and the only
4951 -- processing required is to analyze the expression. This is used to
4952 -- construct certain "illegal" conversions which are not allowed by Ada
4953 -- semantics, but can be handled by Gigi, see Sinfo for further details.
4955 if Conversion_OK (N) then
4956 Analyze (Expr);
4957 return;
4958 end if;
4960 -- Otherwise full type analysis is required, as well as some semantic
4961 -- checks to make sure the argument of the conversion is appropriate.
4963 Find_Type (Subtype_Mark (N));
4964 Typ := Entity (Subtype_Mark (N));
4965 Set_Etype (N, Typ);
4966 Check_Fully_Declared (Typ, N);
4967 Analyze_Expression (Expr);
4968 Validate_Remote_Type_Type_Conversion (N);
4970 -- Only remaining step is validity checks on the argument. These
4971 -- are skipped if the conversion does not come from the source.
4973 if not Comes_From_Source (N) then
4974 return;
4976 -- If there was an error in a generic unit, no need to replicate the
4977 -- error message. Conversely, constant-folding in the generic may
4978 -- transform the argument of a conversion into a string literal, which
4979 -- is legal. Therefore the following tests are not performed in an
4980 -- instance. The same applies to an inlined body.
4982 elsif In_Instance or In_Inlined_Body then
4983 return;
4985 elsif Nkind (Expr) = N_Null then
4986 Error_Msg_N ("argument of conversion cannot be null", N);
4987 Error_Msg_N ("\use qualified expression instead", N);
4988 Set_Etype (N, Any_Type);
4990 elsif Nkind (Expr) = N_Aggregate then
4991 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4992 Error_Msg_N ("\use qualified expression instead", N);
4994 elsif Nkind (Expr) = N_Allocator then
4995 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4996 Error_Msg_N ("\use qualified expression instead", N);
4998 elsif Nkind (Expr) = N_String_Literal then
4999 Error_Msg_N ("argument of conversion cannot be string literal", N);
5000 Error_Msg_N ("\use qualified expression instead", N);
5002 elsif Nkind (Expr) = N_Character_Literal then
5003 if Ada_Version = Ada_83 then
5004 Resolve (Expr, Typ);
5005 else
5006 Error_Msg_N ("argument of conversion cannot be character literal",
5008 Error_Msg_N ("\use qualified expression instead", N);
5009 end if;
5011 elsif Nkind (Expr) = N_Attribute_Reference
5012 and then Nam_In (Attribute_Name (Expr), Name_Access,
5013 Name_Unchecked_Access,
5014 Name_Unrestricted_Access)
5015 then
5016 Error_Msg_N ("argument of conversion cannot be access", N);
5017 Error_Msg_N ("\use qualified expression instead", N);
5018 end if;
5020 -- A formal parameter of a specific tagged type whose related subprogram
5021 -- is subject to pragma Extensions_Visible with value "False" cannot
5022 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
5024 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
5025 Error_Msg_N
5026 ("formal parameter with Extensions_Visible False cannot be "
5027 & "converted to class-wide type", Expr);
5028 end if;
5029 end Analyze_Type_Conversion;
5031 ----------------------
5032 -- Analyze_Unary_Op --
5033 ----------------------
5035 procedure Analyze_Unary_Op (N : Node_Id) is
5036 R : constant Node_Id := Right_Opnd (N);
5037 Op_Id : Entity_Id := Entity (N);
5039 begin
5040 Set_Etype (N, Any_Type);
5041 Candidate_Type := Empty;
5043 Analyze_Expression (R);
5045 if Present (Op_Id) then
5046 if Ekind (Op_Id) = E_Operator then
5047 Find_Unary_Types (R, Op_Id, N);
5048 else
5049 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5050 end if;
5052 else
5053 Op_Id := Get_Name_Entity_Id (Chars (N));
5054 while Present (Op_Id) loop
5055 if Ekind (Op_Id) = E_Operator then
5056 if No (Next_Entity (First_Entity (Op_Id))) then
5057 Find_Unary_Types (R, Op_Id, N);
5058 end if;
5060 elsif Is_Overloadable (Op_Id) then
5061 Analyze_User_Defined_Unary_Op (N, Op_Id);
5062 end if;
5064 Op_Id := Homonym (Op_Id);
5065 end loop;
5066 end if;
5068 Operator_Check (N);
5069 end Analyze_Unary_Op;
5071 ----------------------------------
5072 -- Analyze_Unchecked_Expression --
5073 ----------------------------------
5075 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5076 begin
5077 Analyze (Expression (N), Suppress => All_Checks);
5078 Set_Etype (N, Etype (Expression (N)));
5079 Save_Interps (Expression (N), N);
5080 end Analyze_Unchecked_Expression;
5082 ---------------------------------------
5083 -- Analyze_Unchecked_Type_Conversion --
5084 ---------------------------------------
5086 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5087 begin
5088 Find_Type (Subtype_Mark (N));
5089 Analyze_Expression (Expression (N));
5090 Set_Etype (N, Entity (Subtype_Mark (N)));
5091 end Analyze_Unchecked_Type_Conversion;
5093 ------------------------------------
5094 -- Analyze_User_Defined_Binary_Op --
5095 ------------------------------------
5097 procedure Analyze_User_Defined_Binary_Op
5098 (N : Node_Id;
5099 Op_Id : Entity_Id)
5101 begin
5102 -- Only do analysis if the operator Comes_From_Source, since otherwise
5103 -- the operator was generated by the expander, and all such operators
5104 -- always refer to the operators in package Standard.
5106 if Comes_From_Source (N) then
5107 declare
5108 F1 : constant Entity_Id := First_Formal (Op_Id);
5109 F2 : constant Entity_Id := Next_Formal (F1);
5111 begin
5112 -- Verify that Op_Id is a visible binary function. Note that since
5113 -- we know Op_Id is overloaded, potentially use visible means use
5114 -- visible for sure (RM 9.4(11)).
5116 if Ekind (Op_Id) = E_Function
5117 and then Present (F2)
5118 and then (Is_Immediately_Visible (Op_Id)
5119 or else Is_Potentially_Use_Visible (Op_Id))
5120 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5121 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5122 then
5123 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5125 -- If the left operand is overloaded, indicate that the current
5126 -- type is a viable candidate. This is redundant in most cases,
5127 -- but for equality and comparison operators where the context
5128 -- does not impose a type on the operands, setting the proper
5129 -- type is necessary to avoid subsequent ambiguities during
5130 -- resolution, when both user-defined and predefined operators
5131 -- may be candidates.
5133 if Is_Overloaded (Left_Opnd (N)) then
5134 Set_Etype (Left_Opnd (N), Etype (F1));
5135 end if;
5137 if Debug_Flag_E then
5138 Write_Str ("user defined operator ");
5139 Write_Name (Chars (Op_Id));
5140 Write_Str (" on node ");
5141 Write_Int (Int (N));
5142 Write_Eol;
5143 end if;
5144 end if;
5145 end;
5146 end if;
5147 end Analyze_User_Defined_Binary_Op;
5149 -----------------------------------
5150 -- Analyze_User_Defined_Unary_Op --
5151 -----------------------------------
5153 procedure Analyze_User_Defined_Unary_Op
5154 (N : Node_Id;
5155 Op_Id : Entity_Id)
5157 begin
5158 -- Only do analysis if the operator Comes_From_Source, since otherwise
5159 -- the operator was generated by the expander, and all such operators
5160 -- always refer to the operators in package Standard.
5162 if Comes_From_Source (N) then
5163 declare
5164 F : constant Entity_Id := First_Formal (Op_Id);
5166 begin
5167 -- Verify that Op_Id is a visible unary function. Note that since
5168 -- we know Op_Id is overloaded, potentially use visible means use
5169 -- visible for sure (RM 9.4(11)).
5171 if Ekind (Op_Id) = E_Function
5172 and then No (Next_Formal (F))
5173 and then (Is_Immediately_Visible (Op_Id)
5174 or else Is_Potentially_Use_Visible (Op_Id))
5175 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5176 then
5177 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5178 end if;
5179 end;
5180 end if;
5181 end Analyze_User_Defined_Unary_Op;
5183 ---------------------------
5184 -- Check_Arithmetic_Pair --
5185 ---------------------------
5187 procedure Check_Arithmetic_Pair
5188 (T1, T2 : Entity_Id;
5189 Op_Id : Entity_Id;
5190 N : Node_Id)
5192 Op_Name : constant Name_Id := Chars (Op_Id);
5194 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5195 -- Check whether the fixed-point type Typ has a user-defined operator
5196 -- (multiplication or division) that should hide the corresponding
5197 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5198 -- such operators more visible and therefore useful.
5200 -- If the name of the operation is an expanded name with prefix
5201 -- Standard, the predefined universal fixed operator is available,
5202 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5204 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5205 -- Get specific type (i.e. non-universal type if there is one)
5207 ------------------
5208 -- Has_Fixed_Op --
5209 ------------------
5211 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5212 Bas : constant Entity_Id := Base_Type (Typ);
5213 Ent : Entity_Id;
5214 F1 : Entity_Id;
5215 F2 : Entity_Id;
5217 begin
5218 -- If the universal_fixed operation is given explicitly the rule
5219 -- concerning primitive operations of the type do not apply.
5221 if Nkind (N) = N_Function_Call
5222 and then Nkind (Name (N)) = N_Expanded_Name
5223 and then Entity (Prefix (Name (N))) = Standard_Standard
5224 then
5225 return False;
5226 end if;
5228 -- The operation is treated as primitive if it is declared in the
5229 -- same scope as the type, and therefore on the same entity chain.
5231 Ent := Next_Entity (Typ);
5232 while Present (Ent) loop
5233 if Chars (Ent) = Chars (Op) then
5234 F1 := First_Formal (Ent);
5235 F2 := Next_Formal (F1);
5237 -- The operation counts as primitive if either operand or
5238 -- result are of the given base type, and both operands are
5239 -- fixed point types.
5241 if (Base_Type (Etype (F1)) = Bas
5242 and then Is_Fixed_Point_Type (Etype (F2)))
5244 or else
5245 (Base_Type (Etype (F2)) = Bas
5246 and then Is_Fixed_Point_Type (Etype (F1)))
5248 or else
5249 (Base_Type (Etype (Ent)) = Bas
5250 and then Is_Fixed_Point_Type (Etype (F1))
5251 and then Is_Fixed_Point_Type (Etype (F2)))
5252 then
5253 return True;
5254 end if;
5255 end if;
5257 Next_Entity (Ent);
5258 end loop;
5260 return False;
5261 end Has_Fixed_Op;
5263 -------------------
5264 -- Specific_Type --
5265 -------------------
5267 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5268 begin
5269 if T1 = Universal_Integer or else T1 = Universal_Real then
5270 return Base_Type (T2);
5271 else
5272 return Base_Type (T1);
5273 end if;
5274 end Specific_Type;
5276 -- Start of processing for Check_Arithmetic_Pair
5278 begin
5279 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5280 if Is_Numeric_Type (T1)
5281 and then Is_Numeric_Type (T2)
5282 and then (Covers (T1 => T1, T2 => T2)
5283 or else
5284 Covers (T1 => T2, T2 => T1))
5285 then
5286 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5287 end if;
5289 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5290 if Is_Fixed_Point_Type (T1)
5291 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5292 then
5293 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5294 -- and no further processing is required (this is the case of an
5295 -- operator constructed by Exp_Fixd for a fixed point operation)
5296 -- Otherwise add one interpretation with universal fixed result
5297 -- If the operator is given in functional notation, it comes
5298 -- from source and Fixed_As_Integer cannot apply.
5300 if (Nkind (N) not in N_Op
5301 or else not Treat_Fixed_As_Integer (N))
5302 and then
5303 (not Has_Fixed_Op (T1, Op_Id)
5304 or else Nkind (Parent (N)) = N_Type_Conversion)
5305 then
5306 Add_One_Interp (N, Op_Id, Universal_Fixed);
5307 end if;
5309 elsif Is_Fixed_Point_Type (T2)
5310 and then (Nkind (N) not in N_Op
5311 or else not Treat_Fixed_As_Integer (N))
5312 and then T1 = Universal_Real
5313 and then
5314 (not Has_Fixed_Op (T1, Op_Id)
5315 or else Nkind (Parent (N)) = N_Type_Conversion)
5316 then
5317 Add_One_Interp (N, Op_Id, Universal_Fixed);
5319 elsif Is_Numeric_Type (T1)
5320 and then Is_Numeric_Type (T2)
5321 and then (Covers (T1 => T1, T2 => T2)
5322 or else
5323 Covers (T1 => T2, T2 => T1))
5324 then
5325 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5327 elsif Is_Fixed_Point_Type (T1)
5328 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5329 or else T2 = Universal_Integer)
5330 then
5331 Add_One_Interp (N, Op_Id, T1);
5333 elsif T2 = Universal_Real
5334 and then Base_Type (T1) = Base_Type (Standard_Integer)
5335 and then Op_Name = Name_Op_Multiply
5336 then
5337 Add_One_Interp (N, Op_Id, Any_Fixed);
5339 elsif T1 = Universal_Real
5340 and then Base_Type (T2) = Base_Type (Standard_Integer)
5341 then
5342 Add_One_Interp (N, Op_Id, Any_Fixed);
5344 elsif Is_Fixed_Point_Type (T2)
5345 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5346 or else T1 = Universal_Integer)
5347 and then Op_Name = Name_Op_Multiply
5348 then
5349 Add_One_Interp (N, Op_Id, T2);
5351 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5352 Add_One_Interp (N, Op_Id, T1);
5354 elsif T2 = Universal_Real
5355 and then T1 = Universal_Integer
5356 and then Op_Name = Name_Op_Multiply
5357 then
5358 Add_One_Interp (N, Op_Id, T2);
5359 end if;
5361 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5363 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5364 -- set does not require any special processing, since the Etype is
5365 -- already set (case of operation constructed by Exp_Fixed).
5367 if Is_Integer_Type (T1)
5368 and then (Covers (T1 => T1, T2 => T2)
5369 or else
5370 Covers (T1 => T2, T2 => T1))
5371 then
5372 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5373 end if;
5375 elsif Op_Name = Name_Op_Expon then
5376 if Is_Numeric_Type (T1)
5377 and then not Is_Fixed_Point_Type (T1)
5378 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5379 or else T2 = Universal_Integer)
5380 then
5381 Add_One_Interp (N, Op_Id, Base_Type (T1));
5382 end if;
5384 else pragma Assert (Nkind (N) in N_Op_Shift);
5386 -- If not one of the predefined operators, the node may be one
5387 -- of the intrinsic functions. Its kind is always specific, and
5388 -- we can use it directly, rather than the name of the operation.
5390 if Is_Integer_Type (T1)
5391 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5392 or else T2 = Universal_Integer)
5393 then
5394 Add_One_Interp (N, Op_Id, Base_Type (T1));
5395 end if;
5396 end if;
5397 end Check_Arithmetic_Pair;
5399 -------------------------------
5400 -- Check_Misspelled_Selector --
5401 -------------------------------
5403 procedure Check_Misspelled_Selector
5404 (Prefix : Entity_Id;
5405 Sel : Node_Id)
5407 Max_Suggestions : constant := 2;
5408 Nr_Of_Suggestions : Natural := 0;
5410 Suggestion_1 : Entity_Id := Empty;
5411 Suggestion_2 : Entity_Id := Empty;
5413 Comp : Entity_Id;
5415 begin
5416 -- All the components of the prefix of selector Sel are matched against
5417 -- Sel and a count is maintained of possible misspellings. When at
5418 -- the end of the analysis there are one or two (not more) possible
5419 -- misspellings, these misspellings will be suggested as possible
5420 -- correction.
5422 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5424 -- Concurrent types should be handled as well ???
5426 return;
5427 end if;
5429 Comp := First_Entity (Prefix);
5430 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5431 if Is_Visible_Component (Comp) then
5432 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5433 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5435 case Nr_Of_Suggestions is
5436 when 1 => Suggestion_1 := Comp;
5437 when 2 => Suggestion_2 := Comp;
5438 when others => exit;
5439 end case;
5440 end if;
5441 end if;
5443 Comp := Next_Entity (Comp);
5444 end loop;
5446 -- Report at most two suggestions
5448 if Nr_Of_Suggestions = 1 then
5449 Error_Msg_NE -- CODEFIX
5450 ("\possible misspelling of&", Sel, Suggestion_1);
5452 elsif Nr_Of_Suggestions = 2 then
5453 Error_Msg_Node_2 := Suggestion_2;
5454 Error_Msg_NE -- CODEFIX
5455 ("\possible misspelling of& or&", Sel, Suggestion_1);
5456 end if;
5457 end Check_Misspelled_Selector;
5459 ----------------------
5460 -- Defined_In_Scope --
5461 ----------------------
5463 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5465 S1 : constant Entity_Id := Scope (Base_Type (T));
5466 begin
5467 return S1 = S
5468 or else (S1 = System_Aux_Id and then S = Scope (S1));
5469 end Defined_In_Scope;
5471 -------------------
5472 -- Diagnose_Call --
5473 -------------------
5475 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5476 Actual : Node_Id;
5477 X : Interp_Index;
5478 It : Interp;
5479 Err_Mode : Boolean;
5480 New_Nam : Node_Id;
5481 Void_Interp_Seen : Boolean := False;
5483 Success : Boolean;
5484 pragma Warnings (Off, Boolean);
5486 begin
5487 if Ada_Version >= Ada_2005 then
5488 Actual := First_Actual (N);
5489 while Present (Actual) loop
5491 -- Ada 2005 (AI-50217): Post an error in case of premature
5492 -- usage of an entity from the limited view.
5494 if not Analyzed (Etype (Actual))
5495 and then From_Limited_With (Etype (Actual))
5496 then
5497 Error_Msg_Qual_Level := 1;
5498 Error_Msg_NE
5499 ("missing with_clause for scope of imported type&",
5500 Actual, Etype (Actual));
5501 Error_Msg_Qual_Level := 0;
5502 end if;
5504 Next_Actual (Actual);
5505 end loop;
5506 end if;
5508 -- Analyze each candidate call again, with full error reporting
5509 -- for each.
5511 Error_Msg_N
5512 ("no candidate interpretations match the actuals:!", Nam);
5513 Err_Mode := All_Errors_Mode;
5514 All_Errors_Mode := True;
5516 -- If this is a call to an operation of a concurrent type,
5517 -- the failed interpretations have been removed from the
5518 -- name. Recover them to provide full diagnostics.
5520 if Nkind (Parent (Nam)) = N_Selected_Component then
5521 Set_Entity (Nam, Empty);
5522 New_Nam := New_Copy_Tree (Parent (Nam));
5523 Set_Is_Overloaded (New_Nam, False);
5524 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5525 Set_Parent (New_Nam, Parent (Parent (Nam)));
5526 Analyze_Selected_Component (New_Nam);
5527 Get_First_Interp (Selector_Name (New_Nam), X, It);
5528 else
5529 Get_First_Interp (Nam, X, It);
5530 end if;
5532 while Present (It.Nam) loop
5533 if Etype (It.Nam) = Standard_Void_Type then
5534 Void_Interp_Seen := True;
5535 end if;
5537 Analyze_One_Call (N, It.Nam, True, Success);
5538 Get_Next_Interp (X, It);
5539 end loop;
5541 if Nkind (N) = N_Function_Call then
5542 Get_First_Interp (Nam, X, It);
5543 while Present (It.Nam) loop
5544 if Ekind_In (It.Nam, E_Function, E_Operator) then
5545 return;
5546 else
5547 Get_Next_Interp (X, It);
5548 end if;
5549 end loop;
5551 -- If all interpretations are procedures, this deserves a
5552 -- more precise message. Ditto if this appears as the prefix
5553 -- of a selected component, which may be a lexical error.
5555 Error_Msg_N
5556 ("\context requires function call, found procedure name", Nam);
5558 if Nkind (Parent (N)) = N_Selected_Component
5559 and then N = Prefix (Parent (N))
5560 then
5561 Error_Msg_N -- CODEFIX
5562 ("\period should probably be semicolon", Parent (N));
5563 end if;
5565 elsif Nkind (N) = N_Procedure_Call_Statement
5566 and then not Void_Interp_Seen
5567 then
5568 Error_Msg_N (
5569 "\function name found in procedure call", Nam);
5570 end if;
5572 All_Errors_Mode := Err_Mode;
5573 end Diagnose_Call;
5575 ---------------------------
5576 -- Find_Arithmetic_Types --
5577 ---------------------------
5579 procedure Find_Arithmetic_Types
5580 (L, R : Node_Id;
5581 Op_Id : Entity_Id;
5582 N : Node_Id)
5584 Index1 : Interp_Index;
5585 Index2 : Interp_Index;
5586 It1 : Interp;
5587 It2 : Interp;
5589 procedure Check_Right_Argument (T : Entity_Id);
5590 -- Check right operand of operator
5592 --------------------------
5593 -- Check_Right_Argument --
5594 --------------------------
5596 procedure Check_Right_Argument (T : Entity_Id) is
5597 begin
5598 if not Is_Overloaded (R) then
5599 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5600 else
5601 Get_First_Interp (R, Index2, It2);
5602 while Present (It2.Typ) loop
5603 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5604 Get_Next_Interp (Index2, It2);
5605 end loop;
5606 end if;
5607 end Check_Right_Argument;
5609 -- Start of processing for Find_Arithmetic_Types
5611 begin
5612 if not Is_Overloaded (L) then
5613 Check_Right_Argument (Etype (L));
5615 else
5616 Get_First_Interp (L, Index1, It1);
5617 while Present (It1.Typ) loop
5618 Check_Right_Argument (It1.Typ);
5619 Get_Next_Interp (Index1, It1);
5620 end loop;
5621 end if;
5623 end Find_Arithmetic_Types;
5625 ------------------------
5626 -- Find_Boolean_Types --
5627 ------------------------
5629 procedure Find_Boolean_Types
5630 (L, R : Node_Id;
5631 Op_Id : Entity_Id;
5632 N : Node_Id)
5634 Index : Interp_Index;
5635 It : Interp;
5637 procedure Check_Numeric_Argument (T : Entity_Id);
5638 -- Special case for logical operations one of whose operands is an
5639 -- integer literal. If both are literal the result is any modular type.
5641 ----------------------------
5642 -- Check_Numeric_Argument --
5643 ----------------------------
5645 procedure Check_Numeric_Argument (T : Entity_Id) is
5646 begin
5647 if T = Universal_Integer then
5648 Add_One_Interp (N, Op_Id, Any_Modular);
5650 elsif Is_Modular_Integer_Type (T) then
5651 Add_One_Interp (N, Op_Id, T);
5652 end if;
5653 end Check_Numeric_Argument;
5655 -- Start of processing for Find_Boolean_Types
5657 begin
5658 if not Is_Overloaded (L) then
5659 if Etype (L) = Universal_Integer
5660 or else Etype (L) = Any_Modular
5661 then
5662 if not Is_Overloaded (R) then
5663 Check_Numeric_Argument (Etype (R));
5665 else
5666 Get_First_Interp (R, Index, It);
5667 while Present (It.Typ) loop
5668 Check_Numeric_Argument (It.Typ);
5669 Get_Next_Interp (Index, It);
5670 end loop;
5671 end if;
5673 -- If operands are aggregates, we must assume that they may be
5674 -- boolean arrays, and leave disambiguation for the second pass.
5675 -- If only one is an aggregate, verify that the other one has an
5676 -- interpretation as a boolean array
5678 elsif Nkind (L) = N_Aggregate then
5679 if Nkind (R) = N_Aggregate then
5680 Add_One_Interp (N, Op_Id, Etype (L));
5682 elsif not Is_Overloaded (R) then
5683 if Valid_Boolean_Arg (Etype (R)) then
5684 Add_One_Interp (N, Op_Id, Etype (R));
5685 end if;
5687 else
5688 Get_First_Interp (R, Index, It);
5689 while Present (It.Typ) loop
5690 if Valid_Boolean_Arg (It.Typ) then
5691 Add_One_Interp (N, Op_Id, It.Typ);
5692 end if;
5694 Get_Next_Interp (Index, It);
5695 end loop;
5696 end if;
5698 elsif Valid_Boolean_Arg (Etype (L))
5699 and then Has_Compatible_Type (R, Etype (L))
5700 then
5701 Add_One_Interp (N, Op_Id, Etype (L));
5702 end if;
5704 else
5705 Get_First_Interp (L, Index, It);
5706 while Present (It.Typ) loop
5707 if Valid_Boolean_Arg (It.Typ)
5708 and then Has_Compatible_Type (R, It.Typ)
5709 then
5710 Add_One_Interp (N, Op_Id, It.Typ);
5711 end if;
5713 Get_Next_Interp (Index, It);
5714 end loop;
5715 end if;
5716 end Find_Boolean_Types;
5718 ---------------------------
5719 -- Find_Comparison_Types --
5720 ---------------------------
5722 procedure Find_Comparison_Types
5723 (L, R : Node_Id;
5724 Op_Id : Entity_Id;
5725 N : Node_Id)
5727 Index : Interp_Index;
5728 It : Interp;
5729 Found : Boolean := False;
5730 I_F : Interp_Index;
5731 T_F : Entity_Id;
5732 Scop : Entity_Id := Empty;
5734 procedure Try_One_Interp (T1 : Entity_Id);
5735 -- Routine to try one proposed interpretation. Note that the context
5736 -- of the operator plays no role in resolving the arguments, so that
5737 -- if there is more than one interpretation of the operands that is
5738 -- compatible with comparison, the operation is ambiguous.
5740 --------------------
5741 -- Try_One_Interp --
5742 --------------------
5744 procedure Try_One_Interp (T1 : Entity_Id) is
5745 begin
5747 -- If the operator is an expanded name, then the type of the operand
5748 -- must be defined in the corresponding scope. If the type is
5749 -- universal, the context will impose the correct type.
5751 if Present (Scop)
5752 and then not Defined_In_Scope (T1, Scop)
5753 and then T1 /= Universal_Integer
5754 and then T1 /= Universal_Real
5755 and then T1 /= Any_String
5756 and then T1 /= Any_Composite
5757 then
5758 return;
5759 end if;
5761 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5762 if Found and then Base_Type (T1) /= Base_Type (T_F) then
5763 It := Disambiguate (L, I_F, Index, Any_Type);
5765 if It = No_Interp then
5766 Ambiguous_Operands (N);
5767 Set_Etype (L, Any_Type);
5768 return;
5770 else
5771 T_F := It.Typ;
5772 end if;
5774 else
5775 Found := True;
5776 T_F := T1;
5777 I_F := Index;
5778 end if;
5780 Set_Etype (L, T_F);
5781 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5783 end if;
5784 end Try_One_Interp;
5786 -- Start of processing for Find_Comparison_Types
5788 begin
5789 -- If left operand is aggregate, the right operand has to
5790 -- provide a usable type for it.
5792 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
5793 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5794 return;
5795 end if;
5797 if Nkind (N) = N_Function_Call
5798 and then Nkind (Name (N)) = N_Expanded_Name
5799 then
5800 Scop := Entity (Prefix (Name (N)));
5802 -- The prefix may be a package renaming, and the subsequent test
5803 -- requires the original package.
5805 if Ekind (Scop) = E_Package
5806 and then Present (Renamed_Entity (Scop))
5807 then
5808 Scop := Renamed_Entity (Scop);
5809 Set_Entity (Prefix (Name (N)), Scop);
5810 end if;
5811 end if;
5813 if not Is_Overloaded (L) then
5814 Try_One_Interp (Etype (L));
5816 else
5817 Get_First_Interp (L, Index, It);
5818 while Present (It.Typ) loop
5819 Try_One_Interp (It.Typ);
5820 Get_Next_Interp (Index, It);
5821 end loop;
5822 end if;
5823 end Find_Comparison_Types;
5825 ----------------------------------------
5826 -- Find_Non_Universal_Interpretations --
5827 ----------------------------------------
5829 procedure Find_Non_Universal_Interpretations
5830 (N : Node_Id;
5831 R : Node_Id;
5832 Op_Id : Entity_Id;
5833 T1 : Entity_Id)
5835 Index : Interp_Index;
5836 It : Interp;
5838 begin
5839 if T1 = Universal_Integer or else T1 = Universal_Real
5841 -- If the left operand of an equality operator is null, the visibility
5842 -- of the operator must be determined from the interpretation of the
5843 -- right operand. This processing must be done for Any_Access, which
5844 -- is the internal representation of the type of the literal null.
5846 or else T1 = Any_Access
5847 then
5848 if not Is_Overloaded (R) then
5849 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5850 else
5851 Get_First_Interp (R, Index, It);
5852 while Present (It.Typ) loop
5853 if Covers (It.Typ, T1) then
5854 Add_One_Interp
5855 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5856 end if;
5858 Get_Next_Interp (Index, It);
5859 end loop;
5860 end if;
5861 else
5862 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5863 end if;
5864 end Find_Non_Universal_Interpretations;
5866 ------------------------------
5867 -- Find_Concatenation_Types --
5868 ------------------------------
5870 procedure Find_Concatenation_Types
5871 (L, R : Node_Id;
5872 Op_Id : Entity_Id;
5873 N : Node_Id)
5875 Op_Type : constant Entity_Id := Etype (Op_Id);
5877 begin
5878 if Is_Array_Type (Op_Type)
5879 and then not Is_Limited_Type (Op_Type)
5881 and then (Has_Compatible_Type (L, Op_Type)
5882 or else
5883 Has_Compatible_Type (L, Component_Type (Op_Type)))
5885 and then (Has_Compatible_Type (R, Op_Type)
5886 or else
5887 Has_Compatible_Type (R, Component_Type (Op_Type)))
5888 then
5889 Add_One_Interp (N, Op_Id, Op_Type);
5890 end if;
5891 end Find_Concatenation_Types;
5893 -------------------------
5894 -- Find_Equality_Types --
5895 -------------------------
5897 procedure Find_Equality_Types
5898 (L, R : Node_Id;
5899 Op_Id : Entity_Id;
5900 N : Node_Id)
5902 Index : Interp_Index;
5903 It : Interp;
5904 Found : Boolean := False;
5905 I_F : Interp_Index;
5906 T_F : Entity_Id;
5907 Scop : Entity_Id := Empty;
5909 procedure Try_One_Interp (T1 : Entity_Id);
5910 -- The context of the equality operator plays no role in resolving the
5911 -- arguments, so that if there is more than one interpretation of the
5912 -- operands that is compatible with equality, the construct is ambiguous
5913 -- and an error can be emitted now, after trying to disambiguate, i.e.
5914 -- applying preference rules.
5916 --------------------
5917 -- Try_One_Interp --
5918 --------------------
5920 procedure Try_One_Interp (T1 : Entity_Id) is
5921 Bas : constant Entity_Id := Base_Type (T1);
5923 begin
5924 -- If the operator is an expanded name, then the type of the operand
5925 -- must be defined in the corresponding scope. If the type is
5926 -- universal, the context will impose the correct type. An anonymous
5927 -- type for a 'Access reference is also universal in this sense, as
5928 -- the actual type is obtained from context.
5930 -- In Ada 2005, the equality operator for anonymous access types
5931 -- is declared in Standard, and preference rules apply to it.
5933 if Present (Scop) then
5934 if Defined_In_Scope (T1, Scop)
5935 or else T1 = Universal_Integer
5936 or else T1 = Universal_Real
5937 or else T1 = Any_Access
5938 or else T1 = Any_String
5939 or else T1 = Any_Composite
5940 or else (Ekind (T1) = E_Access_Subprogram_Type
5941 and then not Comes_From_Source (T1))
5942 then
5943 null;
5945 elsif Ekind (T1) = E_Anonymous_Access_Type
5946 and then Scop = Standard_Standard
5947 then
5948 null;
5950 else
5951 -- The scope does not contain an operator for the type
5953 return;
5954 end if;
5956 -- If we have infix notation, the operator must be usable. Within
5957 -- an instance, if the type is already established we know it is
5958 -- correct. If an operand is universal it is compatible with any
5959 -- numeric type.
5961 elsif In_Open_Scopes (Scope (Bas))
5962 or else Is_Potentially_Use_Visible (Bas)
5963 or else In_Use (Bas)
5964 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
5966 -- In an instance, the type may have been immediately visible.
5967 -- Either the types are compatible, or one operand is universal
5968 -- (numeric or null).
5970 or else (In_Instance
5971 and then
5972 (First_Subtype (T1) = First_Subtype (Etype (R))
5973 or else Nkind (R) = N_Null
5974 or else
5975 (Is_Numeric_Type (T1)
5976 and then Is_Universal_Numeric_Type (Etype (R)))))
5978 -- In Ada 2005, the equality on anonymous access types is declared
5979 -- in Standard, and is always visible.
5981 or else Ekind (T1) = E_Anonymous_Access_Type
5982 then
5983 null;
5985 else
5986 -- Save candidate type for subsequent error message, if any
5988 if not Is_Limited_Type (T1) then
5989 Candidate_Type := T1;
5990 end if;
5992 return;
5993 end if;
5995 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5996 -- Do not allow anonymous access types in equality operators.
5998 if Ada_Version < Ada_2005
5999 and then Ekind (T1) = E_Anonymous_Access_Type
6000 then
6001 return;
6002 end if;
6004 -- If the right operand has a type compatible with T1, check for an
6005 -- acceptable interpretation, unless T1 is limited (no predefined
6006 -- equality available), or this is use of a "/=" for a tagged type.
6007 -- In the latter case, possible interpretations of equality need
6008 -- to be considered, we don't want the default inequality declared
6009 -- in Standard to be chosen, and the "/=" will be rewritten as a
6010 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6011 -- that that rewriting happens during analysis rather than being
6012 -- delayed until expansion (this is needed for ASIS, which only sees
6013 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6014 -- is Name_Op_Eq then we still proceed with the interpretation,
6015 -- because that indicates the potential rewriting case where the
6016 -- interpretation to consider is actually "=" and the node may be
6017 -- about to be rewritten by Analyze_Equality_Op.
6019 if T1 /= Standard_Void_Type
6020 and then Has_Compatible_Type (R, T1)
6022 and then
6023 ((not Is_Limited_Type (T1)
6024 and then not Is_Limited_Composite (T1))
6026 or else
6027 (Is_Array_Type (T1)
6028 and then not Is_Limited_Type (Component_Type (T1))
6029 and then Available_Full_View_Of_Component (T1)))
6031 and then
6032 (Nkind (N) /= N_Op_Ne
6033 or else not Is_Tagged_Type (T1)
6034 or else Chars (Op_Id) = Name_Op_Eq)
6035 then
6036 if Found
6037 and then Base_Type (T1) /= Base_Type (T_F)
6038 then
6039 It := Disambiguate (L, I_F, Index, Any_Type);
6041 if It = No_Interp then
6042 Ambiguous_Operands (N);
6043 Set_Etype (L, Any_Type);
6044 return;
6046 else
6047 T_F := It.Typ;
6048 end if;
6050 else
6051 Found := True;
6052 T_F := T1;
6053 I_F := Index;
6054 end if;
6056 if not Analyzed (L) then
6057 Set_Etype (L, T_F);
6058 end if;
6060 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6062 -- Case of operator was not visible, Etype still set to Any_Type
6064 if Etype (N) = Any_Type then
6065 Found := False;
6066 end if;
6068 elsif Scop = Standard_Standard
6069 and then Ekind (T1) = E_Anonymous_Access_Type
6070 then
6071 Found := True;
6072 end if;
6073 end Try_One_Interp;
6075 -- Start of processing for Find_Equality_Types
6077 begin
6078 -- If left operand is aggregate, the right operand has to
6079 -- provide a usable type for it.
6081 if Nkind (L) = N_Aggregate
6082 and then Nkind (R) /= N_Aggregate
6083 then
6084 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6085 return;
6086 end if;
6088 if Nkind (N) = N_Function_Call
6089 and then Nkind (Name (N)) = N_Expanded_Name
6090 then
6091 Scop := Entity (Prefix (Name (N)));
6093 -- The prefix may be a package renaming, and the subsequent test
6094 -- requires the original package.
6096 if Ekind (Scop) = E_Package
6097 and then Present (Renamed_Entity (Scop))
6098 then
6099 Scop := Renamed_Entity (Scop);
6100 Set_Entity (Prefix (Name (N)), Scop);
6101 end if;
6102 end if;
6104 if not Is_Overloaded (L) then
6105 Try_One_Interp (Etype (L));
6107 else
6108 Get_First_Interp (L, Index, It);
6109 while Present (It.Typ) loop
6110 Try_One_Interp (It.Typ);
6111 Get_Next_Interp (Index, It);
6112 end loop;
6113 end if;
6114 end Find_Equality_Types;
6116 -------------------------
6117 -- Find_Negation_Types --
6118 -------------------------
6120 procedure Find_Negation_Types
6121 (R : Node_Id;
6122 Op_Id : Entity_Id;
6123 N : Node_Id)
6125 Index : Interp_Index;
6126 It : Interp;
6128 begin
6129 if not Is_Overloaded (R) then
6130 if Etype (R) = Universal_Integer then
6131 Add_One_Interp (N, Op_Id, Any_Modular);
6132 elsif Valid_Boolean_Arg (Etype (R)) then
6133 Add_One_Interp (N, Op_Id, Etype (R));
6134 end if;
6136 else
6137 Get_First_Interp (R, Index, It);
6138 while Present (It.Typ) loop
6139 if Valid_Boolean_Arg (It.Typ) then
6140 Add_One_Interp (N, Op_Id, It.Typ);
6141 end if;
6143 Get_Next_Interp (Index, It);
6144 end loop;
6145 end if;
6146 end Find_Negation_Types;
6148 ------------------------------
6149 -- Find_Primitive_Operation --
6150 ------------------------------
6152 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6153 Obj : constant Node_Id := Prefix (N);
6154 Op : constant Node_Id := Selector_Name (N);
6156 Prim : Elmt_Id;
6157 Prims : Elist_Id;
6158 Typ : Entity_Id;
6160 begin
6161 Set_Etype (Op, Any_Type);
6163 if Is_Access_Type (Etype (Obj)) then
6164 Typ := Designated_Type (Etype (Obj));
6165 else
6166 Typ := Etype (Obj);
6167 end if;
6169 if Is_Class_Wide_Type (Typ) then
6170 Typ := Root_Type (Typ);
6171 end if;
6173 Prims := Primitive_Operations (Typ);
6175 Prim := First_Elmt (Prims);
6176 while Present (Prim) loop
6177 if Chars (Node (Prim)) = Chars (Op) then
6178 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6179 Set_Etype (N, Etype (Node (Prim)));
6180 end if;
6182 Next_Elmt (Prim);
6183 end loop;
6185 -- Now look for class-wide operations of the type or any of its
6186 -- ancestors by iterating over the homonyms of the selector.
6188 declare
6189 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6190 Hom : Entity_Id;
6192 begin
6193 Hom := Current_Entity (Op);
6194 while Present (Hom) loop
6195 if (Ekind (Hom) = E_Procedure
6196 or else
6197 Ekind (Hom) = E_Function)
6198 and then Scope (Hom) = Scope (Typ)
6199 and then Present (First_Formal (Hom))
6200 and then
6201 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6202 or else
6203 (Is_Access_Type (Etype (First_Formal (Hom)))
6204 and then
6205 Ekind (Etype (First_Formal (Hom))) =
6206 E_Anonymous_Access_Type
6207 and then
6208 Base_Type
6209 (Designated_Type (Etype (First_Formal (Hom)))) =
6210 Cls_Type))
6211 then
6212 Add_One_Interp (Op, Hom, Etype (Hom));
6213 Set_Etype (N, Etype (Hom));
6214 end if;
6216 Hom := Homonym (Hom);
6217 end loop;
6218 end;
6220 return Etype (Op) /= Any_Type;
6221 end Find_Primitive_Operation;
6223 ----------------------
6224 -- Find_Unary_Types --
6225 ----------------------
6227 procedure Find_Unary_Types
6228 (R : Node_Id;
6229 Op_Id : Entity_Id;
6230 N : Node_Id)
6232 Index : Interp_Index;
6233 It : Interp;
6235 begin
6236 if not Is_Overloaded (R) then
6237 if Is_Numeric_Type (Etype (R)) then
6239 -- In an instance a generic actual may be a numeric type even if
6240 -- the formal in the generic unit was not. In that case, the
6241 -- predefined operator was not a possible interpretation in the
6242 -- generic, and cannot be one in the instance, unless the operator
6243 -- is an actual of an instance.
6245 if In_Instance
6246 and then
6247 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6248 then
6249 null;
6250 else
6251 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6252 end if;
6253 end if;
6255 else
6256 Get_First_Interp (R, Index, It);
6257 while Present (It.Typ) loop
6258 if Is_Numeric_Type (It.Typ) then
6259 if In_Instance
6260 and then
6261 not Is_Numeric_Type
6262 (Corresponding_Generic_Type (Etype (It.Typ)))
6263 then
6264 null;
6266 else
6267 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6268 end if;
6269 end if;
6271 Get_Next_Interp (Index, It);
6272 end loop;
6273 end if;
6274 end Find_Unary_Types;
6276 ------------------
6277 -- Junk_Operand --
6278 ------------------
6280 function Junk_Operand (N : Node_Id) return Boolean is
6281 Enode : Node_Id;
6283 begin
6284 if Error_Posted (N) then
6285 return False;
6286 end if;
6288 -- Get entity to be tested
6290 if Is_Entity_Name (N)
6291 and then Present (Entity (N))
6292 then
6293 Enode := N;
6295 -- An odd case, a procedure name gets converted to a very peculiar
6296 -- function call, and here is where we detect this happening.
6298 elsif Nkind (N) = N_Function_Call
6299 and then Is_Entity_Name (Name (N))
6300 and then Present (Entity (Name (N)))
6301 then
6302 Enode := Name (N);
6304 -- Another odd case, there are at least some cases of selected
6305 -- components where the selected component is not marked as having
6306 -- an entity, even though the selector does have an entity
6308 elsif Nkind (N) = N_Selected_Component
6309 and then Present (Entity (Selector_Name (N)))
6310 then
6311 Enode := Selector_Name (N);
6313 else
6314 return False;
6315 end if;
6317 -- Now test the entity we got to see if it is a bad case
6319 case Ekind (Entity (Enode)) is
6321 when E_Package =>
6322 Error_Msg_N
6323 ("package name cannot be used as operand", Enode);
6325 when Generic_Unit_Kind =>
6326 Error_Msg_N
6327 ("generic unit name cannot be used as operand", Enode);
6329 when Type_Kind =>
6330 Error_Msg_N
6331 ("subtype name cannot be used as operand", Enode);
6333 when Entry_Kind =>
6334 Error_Msg_N
6335 ("entry name cannot be used as operand", Enode);
6337 when E_Procedure =>
6338 Error_Msg_N
6339 ("procedure name cannot be used as operand", Enode);
6341 when E_Exception =>
6342 Error_Msg_N
6343 ("exception name cannot be used as operand", Enode);
6345 when E_Block | E_Label | E_Loop =>
6346 Error_Msg_N
6347 ("label name cannot be used as operand", Enode);
6349 when others =>
6350 return False;
6352 end case;
6354 return True;
6355 end Junk_Operand;
6357 --------------------
6358 -- Operator_Check --
6359 --------------------
6361 procedure Operator_Check (N : Node_Id) is
6362 begin
6363 Remove_Abstract_Operations (N);
6365 -- Test for case of no interpretation found for operator
6367 if Etype (N) = Any_Type then
6368 declare
6369 L : Node_Id;
6370 R : Node_Id;
6371 Op_Id : Entity_Id := Empty;
6373 begin
6374 R := Right_Opnd (N);
6376 if Nkind (N) in N_Binary_Op then
6377 L := Left_Opnd (N);
6378 else
6379 L := Empty;
6380 end if;
6382 -- If either operand has no type, then don't complain further,
6383 -- since this simply means that we have a propagated error.
6385 if R = Error
6386 or else Etype (R) = Any_Type
6387 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6388 then
6389 -- For the rather unusual case where one of the operands is
6390 -- a Raise_Expression, whose initial type is Any_Type, use
6391 -- the type of the other operand.
6393 if Nkind (L) = N_Raise_Expression then
6394 Set_Etype (L, Etype (R));
6395 Set_Etype (N, Etype (R));
6397 elsif Nkind (R) = N_Raise_Expression then
6398 Set_Etype (R, Etype (L));
6399 Set_Etype (N, Etype (L));
6400 end if;
6402 return;
6404 -- We explicitly check for the case of concatenation of component
6405 -- with component to avoid reporting spurious matching array types
6406 -- that might happen to be lurking in distant packages (such as
6407 -- run-time packages). This also prevents inconsistencies in the
6408 -- messages for certain ACVC B tests, which can vary depending on
6409 -- types declared in run-time interfaces. Another improvement when
6410 -- aggregates are present is to look for a well-typed operand.
6412 elsif Present (Candidate_Type)
6413 and then (Nkind (N) /= N_Op_Concat
6414 or else Is_Array_Type (Etype (L))
6415 or else Is_Array_Type (Etype (R)))
6416 then
6417 if Nkind (N) = N_Op_Concat then
6418 if Etype (L) /= Any_Composite
6419 and then Is_Array_Type (Etype (L))
6420 then
6421 Candidate_Type := Etype (L);
6423 elsif Etype (R) /= Any_Composite
6424 and then Is_Array_Type (Etype (R))
6425 then
6426 Candidate_Type := Etype (R);
6427 end if;
6428 end if;
6430 Error_Msg_NE -- CODEFIX
6431 ("operator for} is not directly visible!",
6432 N, First_Subtype (Candidate_Type));
6434 declare
6435 U : constant Node_Id :=
6436 Cunit (Get_Source_Unit (Candidate_Type));
6437 begin
6438 if Unit_Is_Visible (U) then
6439 Error_Msg_N -- CODEFIX
6440 ("use clause would make operation legal!", N);
6441 else
6442 Error_Msg_NE -- CODEFIX
6443 ("add with_clause and use_clause for&!",
6444 N, Defining_Entity (Unit (U)));
6445 end if;
6446 end;
6447 return;
6449 -- If either operand is a junk operand (e.g. package name), then
6450 -- post appropriate error messages, but do not complain further.
6452 -- Note that the use of OR in this test instead of OR ELSE is
6453 -- quite deliberate, we may as well check both operands in the
6454 -- binary operator case.
6456 elsif Junk_Operand (R)
6457 or -- really mean OR here and not OR ELSE, see above
6458 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6459 then
6460 return;
6462 -- If we have a logical operator, one of whose operands is
6463 -- Boolean, then we know that the other operand cannot resolve to
6464 -- Boolean (since we got no interpretations), but in that case we
6465 -- pretty much know that the other operand should be Boolean, so
6466 -- resolve it that way (generating an error)
6468 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6469 if Etype (L) = Standard_Boolean then
6470 Resolve (R, Standard_Boolean);
6471 return;
6472 elsif Etype (R) = Standard_Boolean then
6473 Resolve (L, Standard_Boolean);
6474 return;
6475 end if;
6477 -- For an arithmetic operator or comparison operator, if one
6478 -- of the operands is numeric, then we know the other operand
6479 -- is not the same numeric type. If it is a non-numeric type,
6480 -- then probably it is intended to match the other operand.
6482 elsif Nkind_In (N, N_Op_Add,
6483 N_Op_Divide,
6484 N_Op_Ge,
6485 N_Op_Gt,
6486 N_Op_Le)
6487 or else
6488 Nkind_In (N, N_Op_Lt,
6489 N_Op_Mod,
6490 N_Op_Multiply,
6491 N_Op_Rem,
6492 N_Op_Subtract)
6493 then
6494 -- If Allow_Integer_Address is active, check whether the
6495 -- operation becomes legal after converting an operand.
6497 if Is_Numeric_Type (Etype (L))
6498 and then not Is_Numeric_Type (Etype (R))
6499 then
6500 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6501 Rewrite (R,
6502 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6504 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6505 Analyze_Comparison_Op (N);
6506 else
6507 Analyze_Arithmetic_Op (N);
6508 end if;
6509 else
6510 Resolve (R, Etype (L));
6511 end if;
6513 return;
6515 elsif Is_Numeric_Type (Etype (R))
6516 and then not Is_Numeric_Type (Etype (L))
6517 then
6518 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6519 Rewrite (L,
6520 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6522 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6523 Analyze_Comparison_Op (N);
6524 else
6525 Analyze_Arithmetic_Op (N);
6526 end if;
6528 return;
6530 else
6531 Resolve (L, Etype (R));
6532 end if;
6534 return;
6536 elsif Allow_Integer_Address
6537 and then Is_Descendent_Of_Address (Etype (L))
6538 and then Is_Descendent_Of_Address (Etype (R))
6539 and then not Error_Posted (N)
6540 then
6541 declare
6542 Addr_Type : constant Entity_Id := Etype (L);
6544 begin
6545 Rewrite (L,
6546 Unchecked_Convert_To (
6547 Standard_Integer, Relocate_Node (L)));
6548 Rewrite (R,
6549 Unchecked_Convert_To (
6550 Standard_Integer, Relocate_Node (R)));
6552 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6553 Analyze_Comparison_Op (N);
6554 else
6555 Analyze_Arithmetic_Op (N);
6556 end if;
6558 -- If this is an operand in an enclosing arithmetic
6559 -- operation, Convert the result as an address so that
6560 -- arithmetic folding of address can continue.
6562 if Nkind (Parent (N)) in N_Op then
6563 Rewrite (N,
6564 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6565 end if;
6567 return;
6568 end;
6569 end if;
6571 -- Comparisons on A'Access are common enough to deserve a
6572 -- special message.
6574 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6575 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6576 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6577 then
6578 Error_Msg_N
6579 ("two access attributes cannot be compared directly", N);
6580 Error_Msg_N
6581 ("\use qualified expression for one of the operands",
6583 return;
6585 -- Another one for C programmers
6587 elsif Nkind (N) = N_Op_Concat
6588 and then Valid_Boolean_Arg (Etype (L))
6589 and then Valid_Boolean_Arg (Etype (R))
6590 then
6591 Error_Msg_N ("invalid operands for concatenation", N);
6592 Error_Msg_N -- CODEFIX
6593 ("\maybe AND was meant", N);
6594 return;
6596 -- A special case for comparison of access parameter with null
6598 elsif Nkind (N) = N_Op_Eq
6599 and then Is_Entity_Name (L)
6600 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6601 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6602 N_Access_Definition
6603 and then Nkind (R) = N_Null
6604 then
6605 Error_Msg_N ("access parameter is not allowed to be null", L);
6606 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6607 return;
6609 -- Another special case for exponentiation, where the right
6610 -- operand must be Natural, independently of the base.
6612 elsif Nkind (N) = N_Op_Expon
6613 and then Is_Numeric_Type (Etype (L))
6614 and then not Is_Overloaded (R)
6615 and then
6616 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6617 and then Base_Type (Etype (R)) /= Universal_Integer
6618 then
6619 if Ada_Version >= Ada_2012
6620 and then Has_Dimension_System (Etype (L))
6621 then
6622 Error_Msg_NE
6623 ("exponent for dimensioned type must be a rational" &
6624 ", found}", R, Etype (R));
6625 else
6626 Error_Msg_NE
6627 ("exponent must be of type Natural, found}", R, Etype (R));
6628 end if;
6630 return;
6632 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6633 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6634 Rewrite (R,
6635 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6636 Analyze_Equality_Op (N);
6637 return;
6638 end if;
6639 end if;
6641 -- If we fall through then just give general message. Note that in
6642 -- the following messages, if the operand is overloaded we choose
6643 -- an arbitrary type to complain about, but that is probably more
6644 -- useful than not giving a type at all.
6646 if Nkind (N) in N_Unary_Op then
6647 Error_Msg_Node_2 := Etype (R);
6648 Error_Msg_N ("operator& not defined for}", N);
6649 return;
6651 else
6652 if Nkind (N) in N_Binary_Op then
6653 if not Is_Overloaded (L)
6654 and then not Is_Overloaded (R)
6655 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6656 then
6657 Error_Msg_Node_2 := First_Subtype (Etype (R));
6658 Error_Msg_N ("there is no applicable operator& for}", N);
6660 else
6661 -- Another attempt to find a fix: one of the candidate
6662 -- interpretations may not be use-visible. This has
6663 -- already been checked for predefined operators, so
6664 -- we examine only user-defined functions.
6666 Op_Id := Get_Name_Entity_Id (Chars (N));
6668 while Present (Op_Id) loop
6669 if Ekind (Op_Id) /= E_Operator
6670 and then Is_Overloadable (Op_Id)
6671 then
6672 if not Is_Immediately_Visible (Op_Id)
6673 and then not In_Use (Scope (Op_Id))
6674 and then not Is_Abstract_Subprogram (Op_Id)
6675 and then not Is_Hidden (Op_Id)
6676 and then Ekind (Scope (Op_Id)) = E_Package
6677 and then
6678 Has_Compatible_Type
6679 (L, Etype (First_Formal (Op_Id)))
6680 and then Present
6681 (Next_Formal (First_Formal (Op_Id)))
6682 and then
6683 Has_Compatible_Type
6685 Etype (Next_Formal (First_Formal (Op_Id))))
6686 then
6687 Error_Msg_N
6688 ("No legal interpretation for operator&", N);
6689 Error_Msg_NE
6690 ("\use clause on& would make operation legal",
6691 N, Scope (Op_Id));
6692 exit;
6693 end if;
6694 end if;
6696 Op_Id := Homonym (Op_Id);
6697 end loop;
6699 if No (Op_Id) then
6700 Error_Msg_N ("invalid operand types for operator&", N);
6702 if Nkind (N) /= N_Op_Concat then
6703 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6704 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6706 -- For concatenation operators it is more difficult to
6707 -- determine which is the wrong operand. It is worth
6708 -- flagging explicitly an access type, for those who
6709 -- might think that a dereference happens here.
6711 elsif Is_Access_Type (Etype (L)) then
6712 Error_Msg_N ("\left operand is access type", N);
6714 elsif Is_Access_Type (Etype (R)) then
6715 Error_Msg_N ("\right operand is access type", N);
6716 end if;
6717 end if;
6718 end if;
6719 end if;
6720 end if;
6721 end;
6722 end if;
6723 end Operator_Check;
6725 -----------------------------------------
6726 -- Process_Implicit_Dereference_Prefix --
6727 -----------------------------------------
6729 function Process_Implicit_Dereference_Prefix
6730 (E : Entity_Id;
6731 P : Entity_Id) return Entity_Id
6733 Ref : Node_Id;
6734 Typ : constant Entity_Id := Designated_Type (Etype (P));
6736 begin
6737 if Present (E)
6738 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6739 then
6740 -- We create a dummy reference to E to ensure that the reference is
6741 -- not considered as part of an assignment (an implicit dereference
6742 -- can never assign to its prefix). The Comes_From_Source attribute
6743 -- needs to be propagated for accurate warnings.
6745 Ref := New_Occurrence_Of (E, Sloc (P));
6746 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6747 Generate_Reference (E, Ref);
6748 end if;
6750 -- An implicit dereference is a legal occurrence of an incomplete type
6751 -- imported through a limited_with clause, if the full view is visible.
6753 if From_Limited_With (Typ)
6754 and then not From_Limited_With (Scope (Typ))
6755 and then
6756 (Is_Immediately_Visible (Scope (Typ))
6757 or else
6758 (Is_Child_Unit (Scope (Typ))
6759 and then Is_Visible_Lib_Unit (Scope (Typ))))
6760 then
6761 return Available_View (Typ);
6762 else
6763 return Typ;
6764 end if;
6765 end Process_Implicit_Dereference_Prefix;
6767 --------------------------------
6768 -- Remove_Abstract_Operations --
6769 --------------------------------
6771 procedure Remove_Abstract_Operations (N : Node_Id) is
6772 Abstract_Op : Entity_Id := Empty;
6773 Address_Descendent : Boolean := False;
6774 I : Interp_Index;
6775 It : Interp;
6777 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6778 -- activate this if either extensions are enabled, or if the abstract
6779 -- operation in question comes from a predefined file. This latter test
6780 -- allows us to use abstract to make operations invisible to users. In
6781 -- particular, if type Address is non-private and abstract subprograms
6782 -- are used to hide its operators, they will be truly hidden.
6784 type Operand_Position is (First_Op, Second_Op);
6785 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6787 procedure Remove_Address_Interpretations (Op : Operand_Position);
6788 -- Ambiguities may arise when the operands are literal and the address
6789 -- operations in s-auxdec are visible. In that case, remove the
6790 -- interpretation of a literal as Address, to retain the semantics
6791 -- of Address as a private type.
6793 ------------------------------------
6794 -- Remove_Address_Interpretations --
6795 ------------------------------------
6797 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6798 Formal : Entity_Id;
6800 begin
6801 if Is_Overloaded (N) then
6802 Get_First_Interp (N, I, It);
6803 while Present (It.Nam) loop
6804 Formal := First_Entity (It.Nam);
6806 if Op = Second_Op then
6807 Formal := Next_Entity (Formal);
6808 end if;
6810 if Is_Descendent_Of_Address (Etype (Formal)) then
6811 Address_Descendent := True;
6812 Remove_Interp (I);
6813 end if;
6815 Get_Next_Interp (I, It);
6816 end loop;
6817 end if;
6818 end Remove_Address_Interpretations;
6820 -- Start of processing for Remove_Abstract_Operations
6822 begin
6823 if Is_Overloaded (N) then
6824 if Debug_Flag_V then
6825 Write_Str ("Remove_Abstract_Operations: ");
6826 Write_Overloads (N);
6827 end if;
6829 Get_First_Interp (N, I, It);
6831 while Present (It.Nam) loop
6832 if Is_Overloadable (It.Nam)
6833 and then Is_Abstract_Subprogram (It.Nam)
6834 and then not Is_Dispatching_Operation (It.Nam)
6835 then
6836 Abstract_Op := It.Nam;
6838 if Is_Descendent_Of_Address (It.Typ) then
6839 Address_Descendent := True;
6840 Remove_Interp (I);
6841 exit;
6843 -- In Ada 2005, this operation does not participate in overload
6844 -- resolution. If the operation is defined in a predefined
6845 -- unit, it is one of the operations declared abstract in some
6846 -- variants of System, and it must be removed as well.
6848 elsif Ada_Version >= Ada_2005
6849 or else Is_Predefined_File_Name
6850 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6851 then
6852 Remove_Interp (I);
6853 exit;
6854 end if;
6855 end if;
6857 Get_Next_Interp (I, It);
6858 end loop;
6860 if No (Abstract_Op) then
6862 -- If some interpretation yields an integer type, it is still
6863 -- possible that there are address interpretations. Remove them
6864 -- if one operand is a literal, to avoid spurious ambiguities
6865 -- on systems where Address is a visible integer type.
6867 if Is_Overloaded (N)
6868 and then Nkind (N) in N_Op
6869 and then Is_Integer_Type (Etype (N))
6870 then
6871 if Nkind (N) in N_Binary_Op then
6872 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6873 Remove_Address_Interpretations (Second_Op);
6875 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6876 Remove_Address_Interpretations (First_Op);
6877 end if;
6878 end if;
6879 end if;
6881 elsif Nkind (N) in N_Op then
6883 -- Remove interpretations that treat literals as addresses. This
6884 -- is never appropriate, even when Address is defined as a visible
6885 -- Integer type. The reason is that we would really prefer Address
6886 -- to behave as a private type, even in this case. If Address is a
6887 -- visible integer type, we get lots of overload ambiguities.
6889 if Nkind (N) in N_Binary_Op then
6890 declare
6891 U1 : constant Boolean :=
6892 Present (Universal_Interpretation (Right_Opnd (N)));
6893 U2 : constant Boolean :=
6894 Present (Universal_Interpretation (Left_Opnd (N)));
6896 begin
6897 if U1 then
6898 Remove_Address_Interpretations (Second_Op);
6899 end if;
6901 if U2 then
6902 Remove_Address_Interpretations (First_Op);
6903 end if;
6905 if not (U1 and U2) then
6907 -- Remove corresponding predefined operator, which is
6908 -- always added to the overload set.
6910 Get_First_Interp (N, I, It);
6911 while Present (It.Nam) loop
6912 if Scope (It.Nam) = Standard_Standard
6913 and then Base_Type (It.Typ) =
6914 Base_Type (Etype (Abstract_Op))
6915 then
6916 Remove_Interp (I);
6917 end if;
6919 Get_Next_Interp (I, It);
6920 end loop;
6922 elsif Is_Overloaded (N)
6923 and then Present (Univ_Type)
6924 then
6925 -- If both operands have a universal interpretation,
6926 -- it is still necessary to remove interpretations that
6927 -- yield Address. Any remaining ambiguities will be
6928 -- removed in Disambiguate.
6930 Get_First_Interp (N, I, It);
6931 while Present (It.Nam) loop
6932 if Is_Descendent_Of_Address (It.Typ) then
6933 Remove_Interp (I);
6935 elsif not Is_Type (It.Nam) then
6936 Set_Entity (N, It.Nam);
6937 end if;
6939 Get_Next_Interp (I, It);
6940 end loop;
6941 end if;
6942 end;
6943 end if;
6945 elsif Nkind (N) = N_Function_Call
6946 and then
6947 (Nkind (Name (N)) = N_Operator_Symbol
6948 or else
6949 (Nkind (Name (N)) = N_Expanded_Name
6950 and then
6951 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6952 then
6954 declare
6955 Arg1 : constant Node_Id := First (Parameter_Associations (N));
6956 U1 : constant Boolean :=
6957 Present (Universal_Interpretation (Arg1));
6958 U2 : constant Boolean :=
6959 Present (Next (Arg1)) and then
6960 Present (Universal_Interpretation (Next (Arg1)));
6962 begin
6963 if U1 then
6964 Remove_Address_Interpretations (First_Op);
6965 end if;
6967 if U2 then
6968 Remove_Address_Interpretations (Second_Op);
6969 end if;
6971 if not (U1 and U2) then
6972 Get_First_Interp (N, I, It);
6973 while Present (It.Nam) loop
6974 if Scope (It.Nam) = Standard_Standard
6975 and then It.Typ = Base_Type (Etype (Abstract_Op))
6976 then
6977 Remove_Interp (I);
6978 end if;
6980 Get_Next_Interp (I, It);
6981 end loop;
6982 end if;
6983 end;
6984 end if;
6986 -- If the removal has left no valid interpretations, emit an error
6987 -- message now and label node as illegal.
6989 if Present (Abstract_Op) then
6990 Get_First_Interp (N, I, It);
6992 if No (It.Nam) then
6994 -- Removal of abstract operation left no viable candidate
6996 Set_Etype (N, Any_Type);
6997 Error_Msg_Sloc := Sloc (Abstract_Op);
6998 Error_Msg_NE
6999 ("cannot call abstract operation& declared#", N, Abstract_Op);
7001 -- In Ada 2005, an abstract operation may disable predefined
7002 -- operators. Since the context is not yet known, we mark the
7003 -- predefined operators as potentially hidden. Do not include
7004 -- predefined operators when addresses are involved since this
7005 -- case is handled separately.
7007 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
7008 while Present (It.Nam) loop
7009 if Is_Numeric_Type (It.Typ)
7010 and then Scope (It.Typ) = Standard_Standard
7011 then
7012 Set_Abstract_Op (I, Abstract_Op);
7013 end if;
7015 Get_Next_Interp (I, It);
7016 end loop;
7017 end if;
7018 end if;
7020 if Debug_Flag_V then
7021 Write_Str ("Remove_Abstract_Operations done: ");
7022 Write_Overloads (N);
7023 end if;
7024 end if;
7025 end Remove_Abstract_Operations;
7027 ----------------------------
7028 -- Try_Container_Indexing --
7029 ----------------------------
7031 function Try_Container_Indexing
7032 (N : Node_Id;
7033 Prefix : Node_Id;
7034 Exprs : List_Id) return Boolean
7036 Loc : constant Source_Ptr := Sloc (N);
7037 C_Type : Entity_Id;
7038 Assoc : List_Id;
7039 Func : Entity_Id;
7040 Func_Name : Node_Id;
7041 Indexing : Node_Id;
7043 begin
7044 C_Type := Etype (Prefix);
7046 -- If indexing a class-wide container, obtain indexing primitive
7047 -- from specific type.
7049 if Is_Class_Wide_Type (C_Type) then
7050 C_Type := Etype (Base_Type (C_Type));
7051 end if;
7053 -- Check whether type has a specified indexing aspect
7055 Func_Name := Empty;
7057 if Is_Variable (Prefix) then
7058 Func_Name :=
7059 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
7060 end if;
7062 if No (Func_Name) then
7063 Func_Name :=
7064 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
7065 end if;
7067 -- If aspect does not exist the expression is illegal. Error is
7068 -- diagnosed in caller.
7070 if No (Func_Name) then
7072 -- The prefix itself may be an indexing of a container: rewrite
7073 -- as such and re-analyze.
7075 if Has_Implicit_Dereference (Etype (Prefix)) then
7076 Build_Explicit_Dereference
7077 (Prefix, First_Discriminant (Etype (Prefix)));
7078 return Try_Container_Indexing (N, Prefix, Exprs);
7080 else
7081 return False;
7082 end if;
7084 -- If the container type is derived from another container type, the
7085 -- value of the inherited aspect is the Reference operation declared
7086 -- for the parent type.
7088 -- However, Reference is also a primitive operation of the type, and
7089 -- the inherited operation has a different signature. We retrieve the
7090 -- right one from the list of primitive operations of the derived type.
7092 -- Note that predefined containers are typically all derived from one
7093 -- of the Controlled types. The code below is motivated by containers
7094 -- that are derived from other types with a Reference aspect.
7096 -- Additional machinery may be needed for types that have several user-
7097 -- defined Reference operations with different signatures ???
7099 elsif Is_Derived_Type (C_Type)
7100 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7101 then
7102 Func := Find_Prim_Op (C_Type, Chars (Func_Name));
7103 Func_Name := New_Occurrence_Of (Func, Loc);
7104 end if;
7106 Assoc := New_List (Relocate_Node (Prefix));
7108 -- A generalized indexing may have nore than one index expression, so
7109 -- transfer all of them to the argument list to be used in the call.
7110 -- Note that there may be named associations, in which case the node
7111 -- was rewritten earlier as a call, and has been transformed back into
7112 -- an indexed expression to share the following processing.
7114 -- The generalized indexing node is the one on which analysis and
7115 -- resolution take place. Before expansion the original node is replaced
7116 -- with the generalized indexing node, which is a call, possibly with
7117 -- a dereference operation.
7119 if Comes_From_Source (N) then
7120 Check_Compiler_Unit ("generalized indexing", N);
7121 end if;
7123 declare
7124 Arg : Node_Id;
7125 begin
7126 Arg := First (Exprs);
7127 while Present (Arg) loop
7128 Append (Relocate_Node (Arg), Assoc);
7129 Next (Arg);
7130 end loop;
7131 end;
7133 if not Is_Overloaded (Func_Name) then
7134 Func := Entity (Func_Name);
7135 Indexing :=
7136 Make_Function_Call (Loc,
7137 Name => New_Occurrence_Of (Func, Loc),
7138 Parameter_Associations => Assoc);
7139 Set_Parent (Indexing, Parent (N));
7140 Set_Generalized_Indexing (N, Indexing);
7141 Analyze (Indexing);
7142 Set_Etype (N, Etype (Indexing));
7144 -- If the return type of the indexing function is a reference type,
7145 -- add the dereference as a possible interpretation. Note that the
7146 -- indexing aspect may be a function that returns the element type
7147 -- with no intervening implicit dereference, and that the reference
7148 -- discriminant is not the first discriminant.
7150 if Has_Discriminants (Etype (Func)) then
7151 Check_Implicit_Dereference (N, Etype (Func));
7152 end if;
7154 else
7155 Indexing :=
7156 Make_Function_Call (Loc,
7157 Name => Make_Identifier (Loc, Chars (Func_Name)),
7158 Parameter_Associations => Assoc);
7160 Set_Parent (Indexing, Parent (N));
7161 Set_Generalized_Indexing (N, Indexing);
7163 declare
7164 I : Interp_Index;
7165 It : Interp;
7166 Success : Boolean;
7168 begin
7169 Get_First_Interp (Func_Name, I, It);
7170 Set_Etype (Indexing, Any_Type);
7171 while Present (It.Nam) loop
7172 Analyze_One_Call (Indexing, It.Nam, False, Success);
7174 if Success then
7175 Set_Etype (Name (Indexing), It.Typ);
7176 Set_Entity (Name (Indexing), It.Nam);
7177 Set_Etype (N, Etype (Indexing));
7179 -- Add implicit dereference interpretation
7181 if Has_Discriminants (Etype (It.Nam)) then
7182 Check_Implicit_Dereference (N, Etype (It.Nam));
7183 end if;
7185 exit;
7186 end if;
7188 Get_Next_Interp (I, It);
7189 end loop;
7190 end;
7191 end if;
7193 if Etype (Indexing) = Any_Type then
7194 Error_Msg_NE
7195 ("container cannot be indexed with&", N, Etype (First (Exprs)));
7196 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7197 end if;
7199 return True;
7200 end Try_Container_Indexing;
7202 -----------------------
7203 -- Try_Indirect_Call --
7204 -----------------------
7206 function Try_Indirect_Call
7207 (N : Node_Id;
7208 Nam : Entity_Id;
7209 Typ : Entity_Id) return Boolean
7211 Actual : Node_Id;
7212 Formal : Entity_Id;
7214 Call_OK : Boolean;
7215 pragma Warnings (Off, Call_OK);
7217 begin
7218 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7220 Actual := First_Actual (N);
7221 Formal := First_Formal (Designated_Type (Typ));
7222 while Present (Actual) and then Present (Formal) loop
7223 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7224 return False;
7225 end if;
7227 Next (Actual);
7228 Next_Formal (Formal);
7229 end loop;
7231 if No (Actual) and then No (Formal) then
7232 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7234 -- Nam is a candidate interpretation for the name in the call,
7235 -- if it is not an indirect call.
7237 if not Is_Type (Nam)
7238 and then Is_Entity_Name (Name (N))
7239 then
7240 Set_Entity (Name (N), Nam);
7241 end if;
7243 return True;
7245 else
7246 return False;
7247 end if;
7248 end Try_Indirect_Call;
7250 ----------------------
7251 -- Try_Indexed_Call --
7252 ----------------------
7254 function Try_Indexed_Call
7255 (N : Node_Id;
7256 Nam : Entity_Id;
7257 Typ : Entity_Id;
7258 Skip_First : Boolean) return Boolean
7260 Loc : constant Source_Ptr := Sloc (N);
7261 Actuals : constant List_Id := Parameter_Associations (N);
7262 Actual : Node_Id;
7263 Index : Entity_Id;
7265 begin
7266 Actual := First (Actuals);
7268 -- If the call was originally written in prefix form, skip the first
7269 -- actual, which is obviously not defaulted.
7271 if Skip_First then
7272 Next (Actual);
7273 end if;
7275 Index := First_Index (Typ);
7276 while Present (Actual) and then Present (Index) loop
7278 -- If the parameter list has a named association, the expression
7279 -- is definitely a call and not an indexed component.
7281 if Nkind (Actual) = N_Parameter_Association then
7282 return False;
7283 end if;
7285 if Is_Entity_Name (Actual)
7286 and then Is_Type (Entity (Actual))
7287 and then No (Next (Actual))
7288 then
7289 -- A single actual that is a type name indicates a slice if the
7290 -- type is discrete, and an error otherwise.
7292 if Is_Discrete_Type (Entity (Actual)) then
7293 Rewrite (N,
7294 Make_Slice (Loc,
7295 Prefix =>
7296 Make_Function_Call (Loc,
7297 Name => Relocate_Node (Name (N))),
7298 Discrete_Range =>
7299 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7301 Analyze (N);
7303 else
7304 Error_Msg_N ("invalid use of type in expression", Actual);
7305 Set_Etype (N, Any_Type);
7306 end if;
7308 return True;
7310 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7311 return False;
7312 end if;
7314 Next (Actual);
7315 Next_Index (Index);
7316 end loop;
7318 if No (Actual) and then No (Index) then
7319 Add_One_Interp (N, Nam, Component_Type (Typ));
7321 -- Nam is a candidate interpretation for the name in the call,
7322 -- if it is not an indirect call.
7324 if not Is_Type (Nam)
7325 and then Is_Entity_Name (Name (N))
7326 then
7327 Set_Entity (Name (N), Nam);
7328 end if;
7330 return True;
7331 else
7332 return False;
7333 end if;
7334 end Try_Indexed_Call;
7336 --------------------------
7337 -- Try_Object_Operation --
7338 --------------------------
7340 function Try_Object_Operation
7341 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7343 K : constant Node_Kind := Nkind (Parent (N));
7344 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
7345 Loc : constant Source_Ptr := Sloc (N);
7346 Obj : constant Node_Id := Prefix (N);
7348 Subprog : constant Node_Id :=
7349 Make_Identifier (Sloc (Selector_Name (N)),
7350 Chars => Chars (Selector_Name (N)));
7351 -- Identifier on which possible interpretations will be collected
7353 Report_Error : Boolean := False;
7354 -- If no candidate interpretation matches the context, redo analysis
7355 -- with Report_Error True to provide additional information.
7357 Actual : Node_Id;
7358 Candidate : Entity_Id := Empty;
7359 New_Call_Node : Node_Id := Empty;
7360 Node_To_Replace : Node_Id;
7361 Obj_Type : Entity_Id := Etype (Obj);
7362 Success : Boolean := False;
7364 function Valid_Candidate
7365 (Success : Boolean;
7366 Call : Node_Id;
7367 Subp : Entity_Id) return Entity_Id;
7368 -- If the subprogram is a valid interpretation, record it, and add
7369 -- to the list of interpretations of Subprog. Otherwise return Empty.
7371 procedure Complete_Object_Operation
7372 (Call_Node : Node_Id;
7373 Node_To_Replace : Node_Id);
7374 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7375 -- Call_Node, insert the object (or its dereference) as the first actual
7376 -- in the call, and complete the analysis of the call.
7378 procedure Report_Ambiguity (Op : Entity_Id);
7379 -- If a prefixed procedure call is ambiguous, indicate whether the
7380 -- call includes an implicit dereference or an implicit 'Access.
7382 procedure Transform_Object_Operation
7383 (Call_Node : out Node_Id;
7384 Node_To_Replace : out Node_Id);
7385 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
7386 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7387 -- either N or the parent of N, and Subprog is a reference to the
7388 -- subprogram we are trying to match.
7390 function Try_Class_Wide_Operation
7391 (Call_Node : Node_Id;
7392 Node_To_Replace : Node_Id) return Boolean;
7393 -- Traverse all ancestor types looking for a class-wide subprogram
7394 -- for which the current operation is a valid non-dispatching call.
7396 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7397 -- If prefix is overloaded, its interpretation may include different
7398 -- tagged types, and we must examine the primitive operations and
7399 -- the class-wide operations of each in order to find candidate
7400 -- interpretations for the call as a whole.
7402 function Try_Primitive_Operation
7403 (Call_Node : Node_Id;
7404 Node_To_Replace : Node_Id) return Boolean;
7405 -- Traverse the list of primitive subprograms looking for a dispatching
7406 -- operation for which the current node is a valid call .
7408 ---------------------
7409 -- Valid_Candidate --
7410 ---------------------
7412 function Valid_Candidate
7413 (Success : Boolean;
7414 Call : Node_Id;
7415 Subp : Entity_Id) return Entity_Id
7417 Arr_Type : Entity_Id;
7418 Comp_Type : Entity_Id;
7420 begin
7421 -- If the subprogram is a valid interpretation, record it in global
7422 -- variable Subprog, to collect all possible overloadings.
7424 if Success then
7425 if Subp /= Entity (Subprog) then
7426 Add_One_Interp (Subprog, Subp, Etype (Subp));
7427 end if;
7428 end if;
7430 -- If the call may be an indexed call, retrieve component type of
7431 -- resulting expression, and add possible interpretation.
7433 Arr_Type := Empty;
7434 Comp_Type := Empty;
7436 if Nkind (Call) = N_Function_Call
7437 and then Nkind (Parent (N)) = N_Indexed_Component
7438 and then Needs_One_Actual (Subp)
7439 then
7440 if Is_Array_Type (Etype (Subp)) then
7441 Arr_Type := Etype (Subp);
7443 elsif Is_Access_Type (Etype (Subp))
7444 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7445 then
7446 Arr_Type := Designated_Type (Etype (Subp));
7447 end if;
7448 end if;
7450 if Present (Arr_Type) then
7452 -- Verify that the actuals (excluding the object) match the types
7453 -- of the indexes.
7455 declare
7456 Actual : Node_Id;
7457 Index : Node_Id;
7459 begin
7460 Actual := Next (First_Actual (Call));
7461 Index := First_Index (Arr_Type);
7462 while Present (Actual) and then Present (Index) loop
7463 if not Has_Compatible_Type (Actual, Etype (Index)) then
7464 Arr_Type := Empty;
7465 exit;
7466 end if;
7468 Next_Actual (Actual);
7469 Next_Index (Index);
7470 end loop;
7472 if No (Actual)
7473 and then No (Index)
7474 and then Present (Arr_Type)
7475 then
7476 Comp_Type := Component_Type (Arr_Type);
7477 end if;
7478 end;
7480 if Present (Comp_Type)
7481 and then Etype (Subprog) /= Comp_Type
7482 then
7483 Add_One_Interp (Subprog, Subp, Comp_Type);
7484 end if;
7485 end if;
7487 if Etype (Call) /= Any_Type then
7488 return Subp;
7489 else
7490 return Empty;
7491 end if;
7492 end Valid_Candidate;
7494 -------------------------------
7495 -- Complete_Object_Operation --
7496 -------------------------------
7498 procedure Complete_Object_Operation
7499 (Call_Node : Node_Id;
7500 Node_To_Replace : Node_Id)
7502 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7503 Formal_Type : constant Entity_Id := Etype (Control);
7504 First_Actual : Node_Id;
7506 begin
7507 -- Place the name of the operation, with its interpretations,
7508 -- on the rewritten call.
7510 Set_Name (Call_Node, Subprog);
7512 First_Actual := First (Parameter_Associations (Call_Node));
7514 -- For cross-reference purposes, treat the new node as being in the
7515 -- source if the original one is. Set entity and type, even though
7516 -- they may be overwritten during resolution if overloaded.
7518 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7519 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7521 if Nkind (N) = N_Selected_Component
7522 and then not Inside_A_Generic
7523 then
7524 Set_Entity (Selector_Name (N), Entity (Subprog));
7525 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7526 end if;
7528 -- If need be, rewrite first actual as an explicit dereference. If
7529 -- the call is overloaded, the rewriting can only be done once the
7530 -- primitive operation is identified.
7532 if Is_Overloaded (Subprog) then
7534 -- The prefix itself may be overloaded, and its interpretations
7535 -- must be propagated to the new actual in the call.
7537 if Is_Overloaded (Obj) then
7538 Save_Interps (Obj, First_Actual);
7539 end if;
7541 Rewrite (First_Actual, Obj);
7543 elsif not Is_Access_Type (Formal_Type)
7544 and then Is_Access_Type (Etype (Obj))
7545 then
7546 Rewrite (First_Actual,
7547 Make_Explicit_Dereference (Sloc (Obj), Obj));
7548 Analyze (First_Actual);
7550 -- If we need to introduce an explicit dereference, verify that
7551 -- the resulting actual is compatible with the mode of the formal.
7553 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7554 and then Is_Access_Constant (Etype (Obj))
7555 then
7556 Error_Msg_NE
7557 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7558 end if;
7560 -- Conversely, if the formal is an access parameter and the object
7561 -- is not, replace the actual with a 'Access reference. Its analysis
7562 -- will check that the object is aliased.
7564 elsif Is_Access_Type (Formal_Type)
7565 and then not Is_Access_Type (Etype (Obj))
7566 then
7567 -- A special case: A.all'access is illegal if A is an access to a
7568 -- constant and the context requires an access to a variable.
7570 if not Is_Access_Constant (Formal_Type) then
7571 if (Nkind (Obj) = N_Explicit_Dereference
7572 and then Is_Access_Constant (Etype (Prefix (Obj))))
7573 or else not Is_Variable (Obj)
7574 then
7575 Error_Msg_NE
7576 ("actual for & must be a variable", Obj, Control);
7577 end if;
7578 end if;
7580 Rewrite (First_Actual,
7581 Make_Attribute_Reference (Loc,
7582 Attribute_Name => Name_Access,
7583 Prefix => Relocate_Node (Obj)));
7585 if not Is_Aliased_View (Obj) then
7586 Error_Msg_NE
7587 ("object in prefixed call to & must be aliased "
7588 & "(RM-2005 4.3.1 (13))", Prefix (First_Actual), Subprog);
7589 end if;
7591 Analyze (First_Actual);
7593 else
7594 if Is_Overloaded (Obj) then
7595 Save_Interps (Obj, First_Actual);
7596 end if;
7598 Rewrite (First_Actual, Obj);
7599 end if;
7601 -- The operation is obtained from the dispatch table and not by
7602 -- visibility, and may be declared in a unit that is not explicitly
7603 -- referenced in the source, but is nevertheless required in the
7604 -- context of the current unit. Indicate that operation and its scope
7605 -- are referenced, to prevent spurious and misleading warnings. If
7606 -- the operation is overloaded, all primitives are in the same scope
7607 -- and we can use any of them.
7609 Set_Referenced (Entity (Subprog), True);
7610 Set_Referenced (Scope (Entity (Subprog)), True);
7612 Rewrite (Node_To_Replace, Call_Node);
7614 -- Propagate the interpretations collected in subprog to the new
7615 -- function call node, to be resolved from context.
7617 if Is_Overloaded (Subprog) then
7618 Save_Interps (Subprog, Node_To_Replace);
7620 else
7621 -- The type of the subprogram may be a limited view obtained
7622 -- transitively from another unit. If full view is available,
7623 -- use it to analyze call.
7625 declare
7626 T : constant Entity_Id := Etype (Subprog);
7627 begin
7628 if From_Limited_With (T) then
7629 Set_Etype (Entity (Subprog), Available_View (T));
7630 end if;
7631 end;
7633 Analyze (Node_To_Replace);
7635 -- If the operation has been rewritten into a call, which may get
7636 -- subsequently an explicit dereference, preserve the type on the
7637 -- original node (selected component or indexed component) for
7638 -- subsequent legality tests, e.g. Is_Variable. which examines
7639 -- the original node.
7641 if Nkind (Node_To_Replace) = N_Function_Call then
7642 Set_Etype
7643 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7644 end if;
7645 end if;
7646 end Complete_Object_Operation;
7648 ----------------------
7649 -- Report_Ambiguity --
7650 ----------------------
7652 procedure Report_Ambiguity (Op : Entity_Id) is
7653 Access_Actual : constant Boolean :=
7654 Is_Access_Type (Etype (Prefix (N)));
7655 Access_Formal : Boolean := False;
7657 begin
7658 Error_Msg_Sloc := Sloc (Op);
7660 if Present (First_Formal (Op)) then
7661 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7662 end if;
7664 if Access_Formal and then not Access_Actual then
7665 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7666 Error_Msg_N
7667 ("\possible interpretation "
7668 & "(inherited, with implicit 'Access) #", N);
7669 else
7670 Error_Msg_N
7671 ("\possible interpretation (with implicit 'Access) #", N);
7672 end if;
7674 elsif not Access_Formal and then Access_Actual then
7675 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7676 Error_Msg_N
7677 ("\possible interpretation "
7678 & "(inherited, with implicit dereference) #", N);
7679 else
7680 Error_Msg_N
7681 ("\possible interpretation (with implicit dereference) #", N);
7682 end if;
7684 else
7685 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7686 Error_Msg_N ("\possible interpretation (inherited)#", N);
7687 else
7688 Error_Msg_N -- CODEFIX
7689 ("\possible interpretation#", N);
7690 end if;
7691 end if;
7692 end Report_Ambiguity;
7694 --------------------------------
7695 -- Transform_Object_Operation --
7696 --------------------------------
7698 procedure Transform_Object_Operation
7699 (Call_Node : out Node_Id;
7700 Node_To_Replace : out Node_Id)
7702 Dummy : constant Node_Id := New_Copy (Obj);
7703 -- Placeholder used as a first parameter in the call, replaced
7704 -- eventually by the proper object.
7706 Parent_Node : constant Node_Id := Parent (N);
7708 Actual : Node_Id;
7709 Actuals : List_Id;
7711 begin
7712 -- Common case covering 1) Call to a procedure and 2) Call to a
7713 -- function that has some additional actuals.
7715 if Nkind (Parent_Node) in N_Subprogram_Call
7717 -- N is a selected component node containing the name of the
7718 -- subprogram. If N is not the name of the parent node we must
7719 -- not replace the parent node by the new construct. This case
7720 -- occurs when N is a parameterless call to a subprogram that
7721 -- is an actual parameter of a call to another subprogram. For
7722 -- example:
7723 -- Some_Subprogram (..., Obj.Operation, ...)
7725 and then Name (Parent_Node) = N
7726 then
7727 Node_To_Replace := Parent_Node;
7729 Actuals := Parameter_Associations (Parent_Node);
7731 if Present (Actuals) then
7732 Prepend (Dummy, Actuals);
7733 else
7734 Actuals := New_List (Dummy);
7735 end if;
7737 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7738 Call_Node :=
7739 Make_Procedure_Call_Statement (Loc,
7740 Name => New_Copy (Subprog),
7741 Parameter_Associations => Actuals);
7743 else
7744 Call_Node :=
7745 Make_Function_Call (Loc,
7746 Name => New_Copy (Subprog),
7747 Parameter_Associations => Actuals);
7748 end if;
7750 -- Before analysis, a function call appears as an indexed component
7751 -- if there are no named associations.
7753 elsif Nkind (Parent_Node) = N_Indexed_Component
7754 and then N = Prefix (Parent_Node)
7755 then
7756 Node_To_Replace := Parent_Node;
7757 Actuals := Expressions (Parent_Node);
7759 Actual := First (Actuals);
7760 while Present (Actual) loop
7761 Analyze (Actual);
7762 Next (Actual);
7763 end loop;
7765 Prepend (Dummy, Actuals);
7767 Call_Node :=
7768 Make_Function_Call (Loc,
7769 Name => New_Copy (Subprog),
7770 Parameter_Associations => Actuals);
7772 -- Parameterless call: Obj.F is rewritten as F (Obj)
7774 else
7775 Node_To_Replace := N;
7777 Call_Node :=
7778 Make_Function_Call (Loc,
7779 Name => New_Copy (Subprog),
7780 Parameter_Associations => New_List (Dummy));
7781 end if;
7782 end Transform_Object_Operation;
7784 ------------------------------
7785 -- Try_Class_Wide_Operation --
7786 ------------------------------
7788 function Try_Class_Wide_Operation
7789 (Call_Node : Node_Id;
7790 Node_To_Replace : Node_Id) return Boolean
7792 Anc_Type : Entity_Id;
7793 Matching_Op : Entity_Id := Empty;
7794 Error : Boolean;
7796 procedure Traverse_Homonyms
7797 (Anc_Type : Entity_Id;
7798 Error : out Boolean);
7799 -- Traverse the homonym chain of the subprogram searching for those
7800 -- homonyms whose first formal has the Anc_Type's class-wide type,
7801 -- or an anonymous access type designating the class-wide type. If
7802 -- an ambiguity is detected, then Error is set to True.
7804 procedure Traverse_Interfaces
7805 (Anc_Type : Entity_Id;
7806 Error : out Boolean);
7807 -- Traverse the list of interfaces, if any, associated with Anc_Type
7808 -- and search for acceptable class-wide homonyms associated with each
7809 -- interface. If an ambiguity is detected, then Error is set to True.
7811 -----------------------
7812 -- Traverse_Homonyms --
7813 -----------------------
7815 procedure Traverse_Homonyms
7816 (Anc_Type : Entity_Id;
7817 Error : out Boolean)
7819 Cls_Type : Entity_Id;
7820 Hom : Entity_Id;
7821 Hom_Ref : Node_Id;
7822 Success : Boolean;
7824 begin
7825 Error := False;
7827 Cls_Type := Class_Wide_Type (Anc_Type);
7829 Hom := Current_Entity (Subprog);
7831 -- Find a non-hidden operation whose first parameter is of the
7832 -- class-wide type, a subtype thereof, or an anonymous access
7833 -- to same. If in an instance, the operation can be considered
7834 -- even if hidden (it may be hidden because the instantiation
7835 -- is expanded after the containing package has been analyzed).
7837 while Present (Hom) loop
7838 if Ekind_In (Hom, E_Procedure, E_Function)
7839 and then (not Is_Hidden (Hom) or else In_Instance)
7840 and then Scope (Hom) = Scope (Anc_Type)
7841 and then Present (First_Formal (Hom))
7842 and then
7843 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7844 or else
7845 (Is_Access_Type (Etype (First_Formal (Hom)))
7846 and then
7847 Ekind (Etype (First_Formal (Hom))) =
7848 E_Anonymous_Access_Type
7849 and then
7850 Base_Type
7851 (Designated_Type (Etype (First_Formal (Hom)))) =
7852 Cls_Type))
7853 then
7854 -- If the context is a procedure call, ignore functions
7855 -- in the name of the call.
7857 if Ekind (Hom) = E_Function
7858 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7859 and then N = Name (Parent (N))
7860 then
7861 goto Next_Hom;
7863 -- If the context is a function call, ignore procedures
7864 -- in the name of the call.
7866 elsif Ekind (Hom) = E_Procedure
7867 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7868 then
7869 goto Next_Hom;
7870 end if;
7872 Set_Etype (Call_Node, Any_Type);
7873 Set_Is_Overloaded (Call_Node, False);
7874 Success := False;
7876 if No (Matching_Op) then
7877 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
7878 Set_Etype (Call_Node, Any_Type);
7879 Set_Parent (Call_Node, Parent (Node_To_Replace));
7881 Set_Name (Call_Node, Hom_Ref);
7883 Analyze_One_Call
7884 (N => Call_Node,
7885 Nam => Hom,
7886 Report => Report_Error,
7887 Success => Success,
7888 Skip_First => True);
7890 Matching_Op :=
7891 Valid_Candidate (Success, Call_Node, Hom);
7893 else
7894 Analyze_One_Call
7895 (N => Call_Node,
7896 Nam => Hom,
7897 Report => Report_Error,
7898 Success => Success,
7899 Skip_First => True);
7901 if Present (Valid_Candidate (Success, Call_Node, Hom))
7902 and then Nkind (Call_Node) /= N_Function_Call
7903 then
7904 Error_Msg_NE ("ambiguous call to&", N, Hom);
7905 Report_Ambiguity (Matching_Op);
7906 Report_Ambiguity (Hom);
7907 Error := True;
7908 return;
7909 end if;
7910 end if;
7911 end if;
7913 <<Next_Hom>>
7914 Hom := Homonym (Hom);
7915 end loop;
7916 end Traverse_Homonyms;
7918 -------------------------
7919 -- Traverse_Interfaces --
7920 -------------------------
7922 procedure Traverse_Interfaces
7923 (Anc_Type : Entity_Id;
7924 Error : out Boolean)
7926 Intface_List : constant List_Id :=
7927 Abstract_Interface_List (Anc_Type);
7928 Intface : Node_Id;
7930 begin
7931 Error := False;
7933 if Is_Non_Empty_List (Intface_List) then
7934 Intface := First (Intface_List);
7935 while Present (Intface) loop
7937 -- Look for acceptable class-wide homonyms associated with
7938 -- the interface.
7940 Traverse_Homonyms (Etype (Intface), Error);
7942 if Error then
7943 return;
7944 end if;
7946 -- Continue the search by looking at each of the interface's
7947 -- associated interface ancestors.
7949 Traverse_Interfaces (Etype (Intface), Error);
7951 if Error then
7952 return;
7953 end if;
7955 Next (Intface);
7956 end loop;
7957 end if;
7958 end Traverse_Interfaces;
7960 -- Start of processing for Try_Class_Wide_Operation
7962 begin
7963 -- If we are searching only for conflicting class-wide subprograms
7964 -- then initialize directly Matching_Op with the target entity.
7966 if CW_Test_Only then
7967 Matching_Op := Entity (Selector_Name (N));
7968 end if;
7970 -- Loop through ancestor types (including interfaces), traversing
7971 -- the homonym chain of the subprogram, trying out those homonyms
7972 -- whose first formal has the class-wide type of the ancestor, or
7973 -- an anonymous access type designating the class-wide type.
7975 Anc_Type := Obj_Type;
7976 loop
7977 -- Look for a match among homonyms associated with the ancestor
7979 Traverse_Homonyms (Anc_Type, Error);
7981 if Error then
7982 return True;
7983 end if;
7985 -- Continue the search for matches among homonyms associated with
7986 -- any interfaces implemented by the ancestor.
7988 Traverse_Interfaces (Anc_Type, Error);
7990 if Error then
7991 return True;
7992 end if;
7994 exit when Etype (Anc_Type) = Anc_Type;
7995 Anc_Type := Etype (Anc_Type);
7996 end loop;
7998 if Present (Matching_Op) then
7999 Set_Etype (Call_Node, Etype (Matching_Op));
8000 end if;
8002 return Present (Matching_Op);
8003 end Try_Class_Wide_Operation;
8005 -----------------------------------
8006 -- Try_One_Prefix_Interpretation --
8007 -----------------------------------
8009 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8010 begin
8011 Obj_Type := T;
8013 if Is_Access_Type (Obj_Type) then
8014 Obj_Type := Designated_Type (Obj_Type);
8015 end if;
8017 if Ekind (Obj_Type) = E_Private_Subtype then
8018 Obj_Type := Base_Type (Obj_Type);
8019 end if;
8021 if Is_Class_Wide_Type (Obj_Type) then
8022 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8023 end if;
8025 -- The type may have be obtained through a limited_with clause,
8026 -- in which case the primitive operations are available on its
8027 -- non-limited view. If still incomplete, retrieve full view.
8029 if Ekind (Obj_Type) = E_Incomplete_Type
8030 and then From_Limited_With (Obj_Type)
8031 then
8032 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8033 end if;
8035 -- If the object is not tagged, or the type is still an incomplete
8036 -- type, this is not a prefixed call.
8038 if not Is_Tagged_Type (Obj_Type)
8039 or else Is_Incomplete_Type (Obj_Type)
8040 then
8041 return;
8042 end if;
8044 declare
8045 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8046 CW_Result : Boolean;
8047 Prim_Result : Boolean;
8048 pragma Unreferenced (CW_Result);
8050 begin
8051 if not CW_Test_Only then
8052 Prim_Result :=
8053 Try_Primitive_Operation
8054 (Call_Node => New_Call_Node,
8055 Node_To_Replace => Node_To_Replace);
8056 end if;
8058 -- Check if there is a class-wide subprogram covering the
8059 -- primitive. This check must be done even if a candidate
8060 -- was found in order to report ambiguous calls.
8062 if not (Prim_Result) then
8063 CW_Result :=
8064 Try_Class_Wide_Operation
8065 (Call_Node => New_Call_Node,
8066 Node_To_Replace => Node_To_Replace);
8068 -- If we found a primitive we search for class-wide subprograms
8069 -- using a duplicate of the call node (done to avoid missing its
8070 -- decoration if there is no ambiguity).
8072 else
8073 CW_Result :=
8074 Try_Class_Wide_Operation
8075 (Call_Node => Dup_Call_Node,
8076 Node_To_Replace => Node_To_Replace);
8077 end if;
8078 end;
8079 end Try_One_Prefix_Interpretation;
8081 -----------------------------
8082 -- Try_Primitive_Operation --
8083 -----------------------------
8085 function Try_Primitive_Operation
8086 (Call_Node : Node_Id;
8087 Node_To_Replace : Node_Id) return Boolean
8089 Elmt : Elmt_Id;
8090 Prim_Op : Entity_Id;
8091 Matching_Op : Entity_Id := Empty;
8092 Prim_Op_Ref : Node_Id := Empty;
8094 Corr_Type : Entity_Id := Empty;
8095 -- If the prefix is a synchronized type, the controlling type of
8096 -- the primitive operation is the corresponding record type, else
8097 -- this is the object type itself.
8099 Success : Boolean := False;
8101 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8102 -- For tagged types the candidate interpretations are found in
8103 -- the list of primitive operations of the type and its ancestors.
8104 -- For formal tagged types we have to find the operations declared
8105 -- in the same scope as the type (including in the generic formal
8106 -- part) because the type itself carries no primitive operations,
8107 -- except for formal derived types that inherit the operations of
8108 -- the parent and progenitors.
8110 -- If the context is a generic subprogram body, the generic formals
8111 -- are visible by name, but are not in the entity list of the
8112 -- subprogram because that list starts with the subprogram formals.
8113 -- We retrieve the candidate operations from the generic declaration.
8115 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8116 -- An operation that overrides an inherited operation in the private
8117 -- part of its package may be hidden, but if the inherited operation
8118 -- is visible a direct call to it will dispatch to the private one,
8119 -- which is therefore a valid candidate.
8121 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8122 -- Verify that the prefix, dereferenced if need be, is a valid
8123 -- controlling argument in a call to Op. The remaining actuals
8124 -- are checked in the subsequent call to Analyze_One_Call.
8126 ------------------------------
8127 -- Collect_Generic_Type_Ops --
8128 ------------------------------
8130 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8131 Bas : constant Entity_Id := Base_Type (T);
8132 Candidates : constant Elist_Id := New_Elmt_List;
8133 Subp : Entity_Id;
8134 Formal : Entity_Id;
8136 procedure Check_Candidate;
8137 -- The operation is a candidate if its first parameter is a
8138 -- controlling operand of the desired type.
8140 -----------------------
8141 -- Check_Candidate; --
8142 -----------------------
8144 procedure Check_Candidate is
8145 begin
8146 Formal := First_Formal (Subp);
8148 if Present (Formal)
8149 and then Is_Controlling_Formal (Formal)
8150 and then
8151 (Base_Type (Etype (Formal)) = Bas
8152 or else
8153 (Is_Access_Type (Etype (Formal))
8154 and then Designated_Type (Etype (Formal)) = Bas))
8155 then
8156 Append_Elmt (Subp, Candidates);
8157 end if;
8158 end Check_Candidate;
8160 -- Start of processing for Collect_Generic_Type_Ops
8162 begin
8163 if Is_Derived_Type (T) then
8164 return Primitive_Operations (T);
8166 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8168 -- Scan the list of generic formals to find subprograms
8169 -- that may have a first controlling formal of the type.
8171 if Nkind (Unit_Declaration_Node (Scope (T))) =
8172 N_Generic_Subprogram_Declaration
8173 then
8174 declare
8175 Decl : Node_Id;
8177 begin
8178 Decl :=
8179 First (Generic_Formal_Declarations
8180 (Unit_Declaration_Node (Scope (T))));
8181 while Present (Decl) loop
8182 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8183 Subp := Defining_Entity (Decl);
8184 Check_Candidate;
8185 end if;
8187 Next (Decl);
8188 end loop;
8189 end;
8190 end if;
8191 return Candidates;
8193 else
8194 -- Scan the list of entities declared in the same scope as
8195 -- the type. In general this will be an open scope, given that
8196 -- the call we are analyzing can only appear within a generic
8197 -- declaration or body (either the one that declares T, or a
8198 -- child unit).
8200 -- For a subtype representing a generic actual type, go to the
8201 -- base type.
8203 if Is_Generic_Actual_Type (T) then
8204 Subp := First_Entity (Scope (Base_Type (T)));
8205 else
8206 Subp := First_Entity (Scope (T));
8207 end if;
8209 while Present (Subp) loop
8210 if Is_Overloadable (Subp) then
8211 Check_Candidate;
8212 end if;
8214 Next_Entity (Subp);
8215 end loop;
8217 return Candidates;
8218 end if;
8219 end Collect_Generic_Type_Ops;
8221 ---------------------------
8222 -- Is_Private_Overriding --
8223 ---------------------------
8225 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8226 Visible_Op : constant Entity_Id := Homonym (Op);
8228 begin
8229 return Present (Visible_Op)
8230 and then Scope (Op) = Scope (Visible_Op)
8231 and then not Comes_From_Source (Visible_Op)
8232 and then Alias (Visible_Op) = Op
8233 and then not Is_Hidden (Visible_Op);
8234 end Is_Private_Overriding;
8236 -----------------------------
8237 -- Valid_First_Argument_Of --
8238 -----------------------------
8240 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
8241 Typ : Entity_Id := Etype (First_Formal (Op));
8243 begin
8244 if Is_Concurrent_Type (Typ)
8245 and then Present (Corresponding_Record_Type (Typ))
8246 then
8247 Typ := Corresponding_Record_Type (Typ);
8248 end if;
8250 -- Simple case. Object may be a subtype of the tagged type or
8251 -- may be the corresponding record of a synchronized type.
8253 return Obj_Type = Typ
8254 or else Base_Type (Obj_Type) = Typ
8255 or else Corr_Type = Typ
8257 -- Prefix can be dereferenced
8259 or else
8260 (Is_Access_Type (Corr_Type)
8261 and then Designated_Type (Corr_Type) = Typ)
8263 -- Formal is an access parameter, for which the object
8264 -- can provide an access.
8266 or else
8267 (Ekind (Typ) = E_Anonymous_Access_Type
8268 and then
8269 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
8270 end Valid_First_Argument_Of;
8272 -- Start of processing for Try_Primitive_Operation
8274 begin
8275 -- Look for subprograms in the list of primitive operations. The name
8276 -- must be identical, and the kind of call indicates the expected
8277 -- kind of operation (function or procedure). If the type is a
8278 -- (tagged) synchronized type, the primitive ops are attached to the
8279 -- corresponding record (base) type.
8281 if Is_Concurrent_Type (Obj_Type) then
8282 if Present (Corresponding_Record_Type (Obj_Type)) then
8283 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8284 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8285 else
8286 Corr_Type := Obj_Type;
8287 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8288 end if;
8290 elsif not Is_Generic_Type (Obj_Type) then
8291 Corr_Type := Obj_Type;
8292 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
8294 else
8295 Corr_Type := Obj_Type;
8296 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
8297 end if;
8299 while Present (Elmt) loop
8300 Prim_Op := Node (Elmt);
8302 if Chars (Prim_Op) = Chars (Subprog)
8303 and then Present (First_Formal (Prim_Op))
8304 and then Valid_First_Argument_Of (Prim_Op)
8305 and then
8306 (Nkind (Call_Node) = N_Function_Call)
8308 (Ekind (Prim_Op) = E_Function)
8309 then
8310 -- Ada 2005 (AI-251): If this primitive operation corresponds
8311 -- to an immediate ancestor interface there is no need to add
8312 -- it to the list of interpretations; the corresponding aliased
8313 -- primitive is also in this list of primitive operations and
8314 -- will be used instead.
8316 if (Present (Interface_Alias (Prim_Op))
8317 and then Is_Ancestor (Find_Dispatching_Type
8318 (Alias (Prim_Op)), Corr_Type))
8320 -- Do not consider hidden primitives unless the type is in an
8321 -- open scope or we are within an instance, where visibility
8322 -- is known to be correct, or else if this is an overriding
8323 -- operation in the private part for an inherited operation.
8325 or else (Is_Hidden (Prim_Op)
8326 and then not Is_Immediately_Visible (Obj_Type)
8327 and then not In_Instance
8328 and then not Is_Private_Overriding (Prim_Op))
8329 then
8330 goto Continue;
8331 end if;
8333 Set_Etype (Call_Node, Any_Type);
8334 Set_Is_Overloaded (Call_Node, False);
8336 if No (Matching_Op) then
8337 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
8338 Candidate := Prim_Op;
8340 Set_Parent (Call_Node, Parent (Node_To_Replace));
8342 Set_Name (Call_Node, Prim_Op_Ref);
8343 Success := False;
8345 Analyze_One_Call
8346 (N => Call_Node,
8347 Nam => Prim_Op,
8348 Report => Report_Error,
8349 Success => Success,
8350 Skip_First => True);
8352 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
8354 -- More than one interpretation, collect for subsequent
8355 -- disambiguation. If this is a procedure call and there
8356 -- is another match, report ambiguity now.
8358 else
8359 Analyze_One_Call
8360 (N => Call_Node,
8361 Nam => Prim_Op,
8362 Report => Report_Error,
8363 Success => Success,
8364 Skip_First => True);
8366 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8367 and then Nkind (Call_Node) /= N_Function_Call
8368 then
8369 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
8370 Report_Ambiguity (Matching_Op);
8371 Report_Ambiguity (Prim_Op);
8372 return True;
8373 end if;
8374 end if;
8375 end if;
8377 <<Continue>>
8378 Next_Elmt (Elmt);
8379 end loop;
8381 if Present (Matching_Op) then
8382 Set_Etype (Call_Node, Etype (Matching_Op));
8383 end if;
8385 return Present (Matching_Op);
8386 end Try_Primitive_Operation;
8388 -- Start of processing for Try_Object_Operation
8390 begin
8391 Analyze_Expression (Obj);
8393 -- Analyze the actuals if node is known to be a subprogram call
8395 if Is_Subprg_Call and then N = Name (Parent (N)) then
8396 Actual := First (Parameter_Associations (Parent (N)));
8397 while Present (Actual) loop
8398 Analyze_Expression (Actual);
8399 Next (Actual);
8400 end loop;
8401 end if;
8403 -- Build a subprogram call node, using a copy of Obj as its first
8404 -- actual. This is a placeholder, to be replaced by an explicit
8405 -- dereference when needed.
8407 Transform_Object_Operation
8408 (Call_Node => New_Call_Node,
8409 Node_To_Replace => Node_To_Replace);
8411 Set_Etype (New_Call_Node, Any_Type);
8412 Set_Etype (Subprog, Any_Type);
8413 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
8415 if not Is_Overloaded (Obj) then
8416 Try_One_Prefix_Interpretation (Obj_Type);
8418 else
8419 declare
8420 I : Interp_Index;
8421 It : Interp;
8422 begin
8423 Get_First_Interp (Obj, I, It);
8424 while Present (It.Nam) loop
8425 Try_One_Prefix_Interpretation (It.Typ);
8426 Get_Next_Interp (I, It);
8427 end loop;
8428 end;
8429 end if;
8431 if Etype (New_Call_Node) /= Any_Type then
8433 -- No need to complete the tree transformations if we are only
8434 -- searching for conflicting class-wide subprograms
8436 if CW_Test_Only then
8437 return False;
8438 else
8439 Complete_Object_Operation
8440 (Call_Node => New_Call_Node,
8441 Node_To_Replace => Node_To_Replace);
8442 return True;
8443 end if;
8445 elsif Present (Candidate) then
8447 -- The argument list is not type correct. Re-analyze with error
8448 -- reporting enabled, and use one of the possible candidates.
8449 -- In All_Errors_Mode, re-analyze all failed interpretations.
8451 if All_Errors_Mode then
8452 Report_Error := True;
8453 if Try_Primitive_Operation
8454 (Call_Node => New_Call_Node,
8455 Node_To_Replace => Node_To_Replace)
8457 or else
8458 Try_Class_Wide_Operation
8459 (Call_Node => New_Call_Node,
8460 Node_To_Replace => Node_To_Replace)
8461 then
8462 null;
8463 end if;
8465 else
8466 Analyze_One_Call
8467 (N => New_Call_Node,
8468 Nam => Candidate,
8469 Report => True,
8470 Success => Success,
8471 Skip_First => True);
8472 end if;
8474 -- No need for further errors
8476 return True;
8478 else
8479 -- There was no candidate operation, so report it as an error
8480 -- in the caller: Analyze_Selected_Component.
8482 return False;
8483 end if;
8484 end Try_Object_Operation;
8486 ---------
8487 -- wpo --
8488 ---------
8490 procedure wpo (T : Entity_Id) is
8491 Op : Entity_Id;
8492 E : Elmt_Id;
8494 begin
8495 if not Is_Tagged_Type (T) then
8496 return;
8497 end if;
8499 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8500 while Present (E) loop
8501 Op := Node (E);
8502 Write_Int (Int (Op));
8503 Write_Str (" === ");
8504 Write_Name (Chars (Op));
8505 Write_Str (" in ");
8506 Write_Name (Chars (Scope (Op)));
8507 Next_Elmt (E);
8508 Write_Eol;
8509 end loop;
8510 end wpo;
8512 end Sem_Ch4;