2014-10-31 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / inline.adb
blob0b9427742f384451d70c0a6a585cd0fe0c366b4a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Fname; use Fname;
37 with Fname.UF; use Fname.UF;
38 with Lib; use Lib;
39 with Namet; use Namet;
40 with Nmake; use Nmake;
41 with Nlists; use Nlists;
42 with Output; use Output;
43 with Sem_Aux; use Sem_Aux;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Ch10; use Sem_Ch10;
46 with Sem_Ch12; use Sem_Ch12;
47 with Sem_Prag; use Sem_Prag;
48 with Sem_Util; use Sem_Util;
49 with Sinfo; use Sinfo;
50 with Sinput; use Sinput;
51 with Snames; use Snames;
52 with Stand; use Stand;
53 with Uname; use Uname;
54 with Tbuild; use Tbuild;
56 package body Inline is
58 Check_Inlining_Restrictions : constant Boolean := True;
59 -- In the following cases the frontend rejects inlining because they
60 -- are not handled well by the backend. This variable facilitates
61 -- disabling these restrictions to evaluate future versions of the
62 -- GCC backend in which some of the restrictions may be supported.
64 -- - subprograms that have:
65 -- - nested subprograms
66 -- - instantiations
67 -- - package declarations
68 -- - task or protected object declarations
69 -- - some of the following statements:
70 -- - abort
71 -- - asynchronous-select
72 -- - conditional-entry-call
73 -- - delay-relative
74 -- - delay-until
75 -- - selective-accept
76 -- - timed-entry-call
78 Inlined_Calls : Elist_Id;
79 -- List of frontend inlined calls
81 Backend_Calls : Elist_Id;
82 -- List of inline calls passed to the backend
84 Backend_Inlined_Subps : Elist_Id;
85 -- List of subprograms inlined by the backend
87 Backend_Not_Inlined_Subps : Elist_Id;
88 -- List of subprograms that cannot be inlined by the backend
90 --------------------
91 -- Inlined Bodies --
92 --------------------
94 -- Inlined functions are actually placed in line by the backend if the
95 -- corresponding bodies are available (i.e. compiled). Whenever we find
96 -- a call to an inlined subprogram, we add the name of the enclosing
97 -- compilation unit to a worklist. After all compilation, and after
98 -- expansion of generic bodies, we traverse the list of pending bodies
99 -- and compile them as well.
101 package Inlined_Bodies is new Table.Table (
102 Table_Component_Type => Entity_Id,
103 Table_Index_Type => Int,
104 Table_Low_Bound => 0,
105 Table_Initial => Alloc.Inlined_Bodies_Initial,
106 Table_Increment => Alloc.Inlined_Bodies_Increment,
107 Table_Name => "Inlined_Bodies");
109 -----------------------
110 -- Inline Processing --
111 -----------------------
113 -- For each call to an inlined subprogram, we make entries in a table
114 -- that stores caller and callee, and indicates the call direction from
115 -- one to the other. We also record the compilation unit that contains
116 -- the callee. After analyzing the bodies of all such compilation units,
117 -- we compute the transitive closure of inlined subprograms called from
118 -- the main compilation unit and make it available to the code generator
119 -- in no particular order, thus allowing cycles in the call graph.
121 Last_Inlined : Entity_Id := Empty;
123 -- For each entry in the table we keep a list of successors in topological
124 -- order, i.e. callers of the current subprogram.
126 type Subp_Index is new Nat;
127 No_Subp : constant Subp_Index := 0;
129 -- The subprogram entities are hashed into the Inlined table
131 Num_Hash_Headers : constant := 512;
133 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
134 of Subp_Index;
136 type Succ_Index is new Nat;
137 No_Succ : constant Succ_Index := 0;
139 type Succ_Info is record
140 Subp : Subp_Index;
141 Next : Succ_Index;
142 end record;
144 -- The following table stores list elements for the successor lists. These
145 -- lists cannot be chained directly through entries in the Inlined table,
146 -- because a given subprogram can appear in several such lists.
148 package Successors is new Table.Table (
149 Table_Component_Type => Succ_Info,
150 Table_Index_Type => Succ_Index,
151 Table_Low_Bound => 1,
152 Table_Initial => Alloc.Successors_Initial,
153 Table_Increment => Alloc.Successors_Increment,
154 Table_Name => "Successors");
156 type Subp_Info is record
157 Name : Entity_Id := Empty;
158 Next : Subp_Index := No_Subp;
159 First_Succ : Succ_Index := No_Succ;
160 Listed : Boolean := False;
161 Main_Call : Boolean := False;
162 Processed : Boolean := False;
163 end record;
165 package Inlined is new Table.Table (
166 Table_Component_Type => Subp_Info,
167 Table_Index_Type => Subp_Index,
168 Table_Low_Bound => 1,
169 Table_Initial => Alloc.Inlined_Initial,
170 Table_Increment => Alloc.Inlined_Increment,
171 Table_Name => "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram (Index : Subp_Index);
183 -- Add the subprogram to the list of inlined subprogram for the unit
185 function Add_Subp (E : Entity_Id) return Subp_Index;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
190 pragma Inline (Get_Code_Unit_Entity);
191 -- Return the entity node for the unit containing E. Always return the spec
192 -- for a package.
194 function Has_Initialized_Type (E : Entity_Id) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- non-trivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return (N : Node_Id) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested (E : Entity_Id) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Pragmas (Bod : Node_Id);
216 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
217 -- parameter has no meaning when the body is inlined and the formals
218 -- are rewritten. Remove it from body to inline. The analysis of the
219 -- non-inlined body will handle the pragma properly.
221 ------------------------------
222 -- Deferred Cleanup Actions --
223 ------------------------------
225 -- The cleanup actions for scopes that contain instantiations is delayed
226 -- until after expansion of those instantiations, because they may contain
227 -- finalizable objects or tasks that affect the cleanup code. A scope
228 -- that contains instantiations only needs to be finalized once, even
229 -- if it contains more than one instance. We keep a list of scopes
230 -- that must still be finalized, and call cleanup_actions after all
231 -- the instantiations have been completed.
233 To_Clean : Elist_Id;
235 procedure Add_Scope_To_Clean (Inst : Entity_Id);
236 -- Build set of scopes on which cleanup actions must be performed
238 procedure Cleanup_Scopes;
239 -- Complete cleanup actions on scopes that need it
241 --------------
242 -- Add_Call --
243 --------------
245 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
246 P1 : constant Subp_Index := Add_Subp (Called);
247 P2 : Subp_Index;
248 J : Succ_Index;
250 begin
251 if Present (Caller) then
252 P2 := Add_Subp (Caller);
254 -- Add P1 to the list of successors of P2, if not already there.
255 -- Note that P2 may contain more than one call to P1, and only
256 -- one needs to be recorded.
258 J := Inlined.Table (P2).First_Succ;
259 while J /= No_Succ loop
260 if Successors.Table (J).Subp = P1 then
261 return;
262 end if;
264 J := Successors.Table (J).Next;
265 end loop;
267 -- On exit, make a successor entry for P1
269 Successors.Increment_Last;
270 Successors.Table (Successors.Last).Subp := P1;
271 Successors.Table (Successors.Last).Next :=
272 Inlined.Table (P2).First_Succ;
273 Inlined.Table (P2).First_Succ := Successors.Last;
274 else
275 Inlined.Table (P1).Main_Call := True;
276 end if;
277 end Add_Call;
279 ----------------------
280 -- Add_Inlined_Body --
281 ----------------------
283 procedure Add_Inlined_Body (E : Entity_Id) is
285 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
286 -- Level of inlining for the call: Dont_Inline means no inlining,
287 -- Inline_Call means that only the call is considered for inlining,
288 -- Inline_Package means that the call is considered for inlining and
289 -- its package compiled and scanned for more inlining opportunities.
291 function Must_Inline return Inline_Level_Type;
292 -- Inlining is only done if the call statement N is in the main unit,
293 -- or within the body of another inlined subprogram.
295 -----------------
296 -- Must_Inline --
297 -----------------
299 function Must_Inline return Inline_Level_Type is
300 Scop : Entity_Id;
301 Comp : Node_Id;
303 begin
304 -- Check if call is in main unit
306 Scop := Current_Scope;
308 -- Do not try to inline if scope is standard. This could happen, for
309 -- example, for a call to Add_Global_Declaration, and it causes
310 -- trouble to try to inline at this level.
312 if Scop = Standard_Standard then
313 return Dont_Inline;
314 end if;
316 -- Otherwise lookup scope stack to outer scope
318 while Scope (Scop) /= Standard_Standard
319 and then not Is_Child_Unit (Scop)
320 loop
321 Scop := Scope (Scop);
322 end loop;
324 Comp := Parent (Scop);
325 while Nkind (Comp) /= N_Compilation_Unit loop
326 Comp := Parent (Comp);
327 end loop;
329 -- If the call is in the main unit, inline the call and compile the
330 -- package of the subprogram to find more calls to be inlined.
332 if Comp = Cunit (Main_Unit)
333 or else Comp = Library_Unit (Cunit (Main_Unit))
334 then
335 Add_Call (E);
336 return Inline_Package;
337 end if;
339 -- The call is not in the main unit. See if it is in some inlined
340 -- subprogram. If so, inline the call and, if the inlining level is
341 -- set to 1, stop there; otherwise also compile the package as above.
343 Scop := Current_Scope;
344 while Scope (Scop) /= Standard_Standard
345 and then not Is_Child_Unit (Scop)
346 loop
347 if Is_Overloadable (Scop) and then Is_Inlined (Scop) then
348 Add_Call (E, Scop);
350 if Inline_Level = 1 then
351 return Inline_Call;
352 else
353 return Inline_Package;
354 end if;
355 end if;
357 Scop := Scope (Scop);
358 end loop;
360 return Dont_Inline;
361 end Must_Inline;
363 Level : Inline_Level_Type;
365 -- Start of processing for Add_Inlined_Body
367 begin
368 -- Find unit containing E, and add to list of inlined bodies if needed.
369 -- If the body is already present, no need to load any other unit. This
370 -- is the case for an initialization procedure, which appears in the
371 -- package declaration that contains the type. It is also the case if
372 -- the body has already been analyzed. Finally, if the unit enclosing
373 -- E is an instance, the instance body will be analyzed in any case,
374 -- and there is no need to add the enclosing unit (whose body might not
375 -- be available).
377 -- Library-level functions must be handled specially, because there is
378 -- no enclosing package to retrieve. In this case, it is the body of
379 -- the function that will have to be loaded.
381 if Is_Abstract_Subprogram (E)
382 or else Is_Nested (E)
383 or else Convention (E) = Convention_Protected
384 then
385 return;
386 end if;
388 Level := Must_Inline;
389 if Level /= Dont_Inline then
390 declare
391 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
393 begin
394 if Pack = E then
396 -- Library-level inlined function. Add function itself to
397 -- list of needed units.
399 Set_Is_Called (E);
400 Inlined_Bodies.Increment_Last;
401 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
403 elsif Ekind (Pack) = E_Package then
404 Set_Is_Called (E);
406 if Is_Generic_Instance (Pack) then
407 null;
409 -- Do not inline the package if the subprogram is an init proc
410 -- or other internally generated subprogram, because in that
411 -- case the subprogram body appears in the same unit that
412 -- declares the type, and that body is visible to the back end.
413 -- Do not inline it either if it is in the main unit.
415 elsif Level = Inline_Package
416 and then not Is_Inlined (Pack)
417 and then not Is_Internal (E)
418 and then not In_Main_Unit_Or_Subunit (Pack)
419 then
420 Set_Is_Inlined (Pack);
421 Inlined_Bodies.Increment_Last;
422 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
424 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
425 -- calls if the back-end takes care of inlining the call.
427 elsif Level = Inline_Call
428 and then Has_Pragma_Inline_Always (E)
429 and then Back_End_Inlining
430 then
431 Set_Is_Inlined (Pack);
432 Inlined_Bodies.Increment_Last;
433 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
434 end if;
435 end if;
436 end;
437 end if;
438 end Add_Inlined_Body;
440 ----------------------------
441 -- Add_Inlined_Subprogram --
442 ----------------------------
444 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
445 E : constant Entity_Id := Inlined.Table (Index).Name;
446 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
448 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
449 -- Append Subp to the list of subprograms inlined by the backend
451 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
452 -- Append Subp to the list of subprograms that cannot be inlined by
453 -- the backend.
455 -----------------------------------------
456 -- Register_Backend_Inlined_Subprogram --
457 -----------------------------------------
459 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
460 begin
461 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
462 end Register_Backend_Inlined_Subprogram;
464 ---------------------------------------------
465 -- Register_Backend_Not_Inlined_Subprogram --
466 ---------------------------------------------
468 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
469 begin
470 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
471 end Register_Backend_Not_Inlined_Subprogram;
473 -- Start of processing for Add_Inlined_Subprogram
475 begin
476 -- If the subprogram is to be inlined, and if its unit is known to be
477 -- inlined or is an instance whose body will be analyzed anyway or the
478 -- subprogram has been generated by the compiler, and if it is declared
479 -- at the library level not in the main unit, and if it can be inlined
480 -- by the back-end, then insert it in the list of inlined subprograms.
482 if Is_Inlined (E)
483 and then (Is_Inlined (Pack)
484 or else Is_Generic_Instance (Pack)
485 or else Is_Internal (E))
486 and then not In_Main_Unit_Or_Subunit (E)
487 and then not Is_Nested (E)
488 and then not Has_Initialized_Type (E)
489 then
490 Register_Backend_Inlined_Subprogram (E);
492 if No (Last_Inlined) then
493 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
494 else
495 Set_Next_Inlined_Subprogram (Last_Inlined, E);
496 end if;
498 Last_Inlined := E;
499 else
500 Register_Backend_Not_Inlined_Subprogram (E);
501 end if;
503 Inlined.Table (Index).Listed := True;
504 end Add_Inlined_Subprogram;
506 ------------------------
507 -- Add_Scope_To_Clean --
508 ------------------------
510 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
511 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
512 Elmt : Elmt_Id;
514 begin
515 -- If the instance appears in a library-level package declaration,
516 -- all finalization is global, and nothing needs doing here.
518 if Scop = Standard_Standard then
519 return;
520 end if;
522 -- If the instance is within a generic unit, no finalization code
523 -- can be generated. Note that at this point all bodies have been
524 -- analyzed, and the scope stack itself is not present, and the flag
525 -- Inside_A_Generic is not set.
527 declare
528 S : Entity_Id;
530 begin
531 S := Scope (Inst);
532 while Present (S) and then S /= Standard_Standard loop
533 if Is_Generic_Unit (S) then
534 return;
535 end if;
537 S := Scope (S);
538 end loop;
539 end;
541 Elmt := First_Elmt (To_Clean);
542 while Present (Elmt) loop
543 if Node (Elmt) = Scop then
544 return;
545 end if;
547 Elmt := Next_Elmt (Elmt);
548 end loop;
550 Append_Elmt (Scop, To_Clean);
551 end Add_Scope_To_Clean;
553 --------------
554 -- Add_Subp --
555 --------------
557 function Add_Subp (E : Entity_Id) return Subp_Index is
558 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
559 J : Subp_Index;
561 procedure New_Entry;
562 -- Initialize entry in Inlined table
564 procedure New_Entry is
565 begin
566 Inlined.Increment_Last;
567 Inlined.Table (Inlined.Last).Name := E;
568 Inlined.Table (Inlined.Last).Next := No_Subp;
569 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
570 Inlined.Table (Inlined.Last).Listed := False;
571 Inlined.Table (Inlined.Last).Main_Call := False;
572 Inlined.Table (Inlined.Last).Processed := False;
573 end New_Entry;
575 -- Start of processing for Add_Subp
577 begin
578 if Hash_Headers (Index) = No_Subp then
579 New_Entry;
580 Hash_Headers (Index) := Inlined.Last;
581 return Inlined.Last;
583 else
584 J := Hash_Headers (Index);
585 while J /= No_Subp loop
586 if Inlined.Table (J).Name = E then
587 return J;
588 else
589 Index := J;
590 J := Inlined.Table (J).Next;
591 end if;
592 end loop;
594 -- On exit, subprogram was not found. Enter in table. Index is
595 -- the current last entry on the hash chain.
597 New_Entry;
598 Inlined.Table (Index).Next := Inlined.Last;
599 return Inlined.Last;
600 end if;
601 end Add_Subp;
603 ----------------------------
604 -- Analyze_Inlined_Bodies --
605 ----------------------------
607 procedure Analyze_Inlined_Bodies is
608 Comp_Unit : Node_Id;
609 J : Int;
610 Pack : Entity_Id;
611 Subp : Subp_Index;
612 S : Succ_Index;
614 type Pending_Index is new Nat;
616 package Pending_Inlined is new Table.Table (
617 Table_Component_Type => Subp_Index,
618 Table_Index_Type => Pending_Index,
619 Table_Low_Bound => 1,
620 Table_Initial => Alloc.Inlined_Initial,
621 Table_Increment => Alloc.Inlined_Increment,
622 Table_Name => "Pending_Inlined");
623 -- The workpile used to compute the transitive closure
625 function Is_Ancestor_Of_Main
626 (U_Name : Entity_Id;
627 Nam : Node_Id) return Boolean;
628 -- Determine whether the unit whose body is loaded is an ancestor of
629 -- the main unit, and has a with_clause on it. The body is not
630 -- analyzed yet, so the check is purely lexical: the name of the with
631 -- clause is a selected component, and names of ancestors must match.
633 -------------------------
634 -- Is_Ancestor_Of_Main --
635 -------------------------
637 function Is_Ancestor_Of_Main
638 (U_Name : Entity_Id;
639 Nam : Node_Id) return Boolean
641 Pref : Node_Id;
643 begin
644 if Nkind (Nam) /= N_Selected_Component then
645 return False;
647 else
648 if Chars (Selector_Name (Nam)) /=
649 Chars (Cunit_Entity (Main_Unit))
650 then
651 return False;
652 end if;
654 Pref := Prefix (Nam);
655 if Nkind (Pref) = N_Identifier then
657 -- Par is an ancestor of Par.Child.
659 return Chars (Pref) = Chars (U_Name);
661 elsif Nkind (Pref) = N_Selected_Component
662 and then Chars (Selector_Name (Pref)) = Chars (U_Name)
663 then
664 -- Par.Child is an ancestor of Par.Child.Grand.
666 return True; -- should check that ancestor match
668 else
669 -- A is an ancestor of A.B.C if it is an ancestor of A.B
671 return Is_Ancestor_Of_Main (U_Name, Pref);
672 end if;
673 end if;
674 end Is_Ancestor_Of_Main;
676 -- Start of processing for Analyze_Inlined_Bodies
678 begin
679 if Serious_Errors_Detected = 0 then
680 Push_Scope (Standard_Standard);
682 J := 0;
683 while J <= Inlined_Bodies.Last
684 and then Serious_Errors_Detected = 0
685 loop
686 Pack := Inlined_Bodies.Table (J);
687 while Present (Pack)
688 and then Scope (Pack) /= Standard_Standard
689 and then not Is_Child_Unit (Pack)
690 loop
691 Pack := Scope (Pack);
692 end loop;
694 Comp_Unit := Parent (Pack);
695 while Present (Comp_Unit)
696 and then Nkind (Comp_Unit) /= N_Compilation_Unit
697 loop
698 Comp_Unit := Parent (Comp_Unit);
699 end loop;
701 -- Load the body, unless it is the main unit, or is an instance
702 -- whose body has already been analyzed.
704 if Present (Comp_Unit)
705 and then Comp_Unit /= Cunit (Main_Unit)
706 and then Body_Required (Comp_Unit)
707 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
708 or else No (Corresponding_Body (Unit (Comp_Unit))))
709 then
710 declare
711 Bname : constant Unit_Name_Type :=
712 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
714 OK : Boolean;
716 begin
717 if not Is_Loaded (Bname) then
718 Style_Check := False;
719 Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
721 if not OK then
723 -- Warn that a body was not available for inlining
724 -- by the back-end.
726 Error_Msg_Unit_1 := Bname;
727 Error_Msg_N
728 ("one or more inlined subprograms accessed in $!??",
729 Comp_Unit);
730 Error_Msg_File_1 :=
731 Get_File_Name (Bname, Subunit => False);
732 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
734 else
735 -- If the package to be inlined is an ancestor unit of
736 -- the main unit, and it has a semantic dependence on
737 -- it, the inlining cannot take place to prevent an
738 -- elaboration circularity. The desired body is not
739 -- analyzed yet, to prevent the completion of Taft
740 -- amendment types that would lead to elaboration
741 -- circularities in gigi.
743 declare
744 U_Id : constant Entity_Id :=
745 Defining_Entity (Unit (Comp_Unit));
746 Body_Unit : constant Node_Id :=
747 Library_Unit (Comp_Unit);
748 Item : Node_Id;
750 begin
751 Item := First (Context_Items (Body_Unit));
752 while Present (Item) loop
753 if Nkind (Item) = N_With_Clause
754 and then
755 Is_Ancestor_Of_Main (U_Id, Name (Item))
756 then
757 Set_Is_Inlined (U_Id, False);
758 exit;
759 end if;
761 Next (Item);
762 end loop;
764 -- If no suspicious with_clauses, analyze the body.
766 if Is_Inlined (U_Id) then
767 Semantics (Body_Unit);
768 end if;
769 end;
770 end if;
771 end if;
772 end;
773 end if;
775 J := J + 1;
776 end loop;
778 -- The analysis of required bodies may have produced additional
779 -- generic instantiations. To obtain further inlining, we perform
780 -- another round of generic body instantiations. Establishing a
781 -- fully recursive loop between inlining and generic instantiations
782 -- is unlikely to yield more than this one additional pass.
784 Instantiate_Bodies;
786 -- The list of inlined subprograms is an overestimate, because it
787 -- includes inlined functions called from functions that are compiled
788 -- as part of an inlined package, but are not themselves called. An
789 -- accurate computation of just those subprograms that are needed
790 -- requires that we perform a transitive closure over the call graph,
791 -- starting from calls in the main program.
793 for Index in Inlined.First .. Inlined.Last loop
794 if not Is_Called (Inlined.Table (Index).Name) then
796 -- This means that Add_Inlined_Body added the subprogram to the
797 -- table but wasn't able to handle its code unit. Do nothing.
799 Inlined.Table (Index).Processed := True;
801 elsif Inlined.Table (Index).Main_Call then
802 Pending_Inlined.Increment_Last;
803 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
804 Inlined.Table (Index).Processed := True;
806 else
807 Set_Is_Called (Inlined.Table (Index).Name, False);
808 end if;
809 end loop;
811 -- Iterate over the workpile until it is emptied, propagating the
812 -- Is_Called flag to the successors of the processed subprogram.
814 while Pending_Inlined.Last >= Pending_Inlined.First loop
815 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
816 Pending_Inlined.Decrement_Last;
818 S := Inlined.Table (Subp).First_Succ;
820 while S /= No_Succ loop
821 Subp := Successors.Table (S).Subp;
823 if not Inlined.Table (Subp).Processed then
824 Set_Is_Called (Inlined.Table (Subp).Name);
825 Pending_Inlined.Increment_Last;
826 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
827 Inlined.Table (Subp).Processed := True;
828 end if;
830 S := Successors.Table (S).Next;
831 end loop;
832 end loop;
834 -- Finally add the called subprograms to the list of inlined
835 -- subprograms for the unit.
837 for Index in Inlined.First .. Inlined.Last loop
838 if Is_Called (Inlined.Table (Index).Name)
839 and then not Inlined.Table (Index).Listed
840 then
841 Add_Inlined_Subprogram (Index);
842 end if;
843 end loop;
845 Pop_Scope;
846 end if;
847 end Analyze_Inlined_Bodies;
849 --------------------------
850 -- Build_Body_To_Inline --
851 --------------------------
853 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
854 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
855 Analysis_Status : constant Boolean := Full_Analysis;
856 Original_Body : Node_Id;
857 Body_To_Analyze : Node_Id;
858 Max_Size : constant := 10;
860 function Has_Pending_Instantiation return Boolean;
861 -- If some enclosing body contains instantiations that appear before
862 -- the corresponding generic body, the enclosing body has a freeze node
863 -- so that it can be elaborated after the generic itself. This might
864 -- conflict with subsequent inlinings, so that it is unsafe to try to
865 -- inline in such a case.
867 function Has_Single_Return_In_GNATprove_Mode return Boolean;
868 -- This function is called only in GNATprove mode, and it returns
869 -- True if the subprogram has no return statement or a single return
870 -- statement as last statement. It returns False for subprogram with
871 -- a single return as last statement inside one or more blocks, as
872 -- inlining would generate gotos in that case as well (although the
873 -- goto is useless in that case).
875 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
876 -- If the body of the subprogram includes a call that returns an
877 -- unconstrained type, the secondary stack is involved, and it
878 -- is not worth inlining.
880 -------------------------------
881 -- Has_Pending_Instantiation --
882 -------------------------------
884 function Has_Pending_Instantiation return Boolean is
885 S : Entity_Id;
887 begin
888 S := Current_Scope;
889 while Present (S) loop
890 if Is_Compilation_Unit (S)
891 or else Is_Child_Unit (S)
892 then
893 return False;
895 elsif Ekind (S) = E_Package
896 and then Has_Forward_Instantiation (S)
897 then
898 return True;
899 end if;
901 S := Scope (S);
902 end loop;
904 return False;
905 end Has_Pending_Instantiation;
907 -----------------------------------------
908 -- Has_Single_Return_In_GNATprove_Mode --
909 -----------------------------------------
911 function Has_Single_Return_In_GNATprove_Mode return Boolean is
912 Last_Statement : Node_Id := Empty;
914 function Check_Return (N : Node_Id) return Traverse_Result;
915 -- Returns OK on node N if this is not a return statement different
916 -- from the last statement in the subprogram.
918 ------------------
919 -- Check_Return --
920 ------------------
922 function Check_Return (N : Node_Id) return Traverse_Result is
923 begin
924 if Nkind_In (N, N_Simple_Return_Statement,
925 N_Extended_Return_Statement)
926 then
927 if N = Last_Statement then
928 return OK;
929 else
930 return Abandon;
931 end if;
933 else
934 return OK;
935 end if;
936 end Check_Return;
938 function Check_All_Returns is new Traverse_Func (Check_Return);
940 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
942 begin
943 -- Retrieve the last statement
945 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
947 -- Check that the last statement is the only possible return
948 -- statement in the subprogram.
950 return Check_All_Returns (N) = OK;
951 end Has_Single_Return_In_GNATprove_Mode;
953 --------------------------
954 -- Uses_Secondary_Stack --
955 --------------------------
957 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
958 function Check_Call (N : Node_Id) return Traverse_Result;
959 -- Look for function calls that return an unconstrained type
961 ----------------
962 -- Check_Call --
963 ----------------
965 function Check_Call (N : Node_Id) return Traverse_Result is
966 begin
967 if Nkind (N) = N_Function_Call
968 and then Is_Entity_Name (Name (N))
969 and then Is_Composite_Type (Etype (Entity (Name (N))))
970 and then not Is_Constrained (Etype (Entity (Name (N))))
971 then
972 Cannot_Inline
973 ("cannot inline & (call returns unconstrained type)?",
974 N, Spec_Id);
975 return Abandon;
976 else
977 return OK;
978 end if;
979 end Check_Call;
981 function Check_Calls is new Traverse_Func (Check_Call);
983 begin
984 return Check_Calls (Bod) = Abandon;
985 end Uses_Secondary_Stack;
987 -- Start of processing for Build_Body_To_Inline
989 begin
990 -- Return immediately if done already
992 if Nkind (Decl) = N_Subprogram_Declaration
993 and then Present (Body_To_Inline (Decl))
994 then
995 return;
997 -- Subprograms that have return statements in the middle of the body are
998 -- inlined with gotos. GNATprove does not currently support gotos, so
999 -- we prevent such inlining.
1001 elsif GNATprove_Mode
1002 and then not Has_Single_Return_In_GNATprove_Mode
1003 then
1004 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1005 return;
1007 -- Functions that return unconstrained composite types require
1008 -- secondary stack handling, and cannot currently be inlined, unless
1009 -- all return statements return a local variable that is the first
1010 -- local declaration in the body.
1012 elsif Ekind (Spec_Id) = E_Function
1013 and then not Is_Scalar_Type (Etype (Spec_Id))
1014 and then not Is_Access_Type (Etype (Spec_Id))
1015 and then not Is_Constrained (Etype (Spec_Id))
1016 then
1017 if not Has_Single_Return (N) then
1018 Cannot_Inline
1019 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1020 return;
1021 end if;
1023 -- Ditto for functions that return controlled types, where controlled
1024 -- actions interfere in complex ways with inlining.
1026 elsif Ekind (Spec_Id) = E_Function
1027 and then Needs_Finalization (Etype (Spec_Id))
1028 then
1029 Cannot_Inline
1030 ("cannot inline & (controlled return type)?", N, Spec_Id);
1031 return;
1032 end if;
1034 if Present (Declarations (N))
1035 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1036 then
1037 return;
1038 end if;
1040 if Present (Handled_Statement_Sequence (N)) then
1041 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1042 Cannot_Inline
1043 ("cannot inline& (exception handler)?",
1044 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1045 Spec_Id);
1046 return;
1048 elsif Has_Excluded_Statement
1049 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1050 then
1051 return;
1052 end if;
1053 end if;
1055 -- We do not inline a subprogram that is too large, unless it is marked
1056 -- Inline_Always or we are in GNATprove mode. This pragma does not
1057 -- suppress the other checks on inlining (forbidden declarations,
1058 -- handlers, etc).
1060 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1061 and then List_Length
1062 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1063 then
1064 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1065 return;
1066 end if;
1068 if Has_Pending_Instantiation then
1069 Cannot_Inline
1070 ("cannot inline& (forward instance within enclosing body)?",
1071 N, Spec_Id);
1072 return;
1073 end if;
1075 -- Within an instance, the body to inline must be treated as a nested
1076 -- generic, so that the proper global references are preserved.
1078 -- Note that we do not do this at the library level, because it is not
1079 -- needed, and furthermore this causes trouble if front end inlining
1080 -- is activated (-gnatN).
1082 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1083 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1084 Original_Body := Copy_Generic_Node (N, Empty, True);
1085 else
1086 Original_Body := Copy_Separate_Tree (N);
1087 end if;
1089 -- We need to capture references to the formals in order to substitute
1090 -- the actuals at the point of inlining, i.e. instantiation. To treat
1091 -- the formals as globals to the body to inline, we nest it within a
1092 -- dummy parameterless subprogram, declared within the real one. To
1093 -- avoid generating an internal name (which is never public, and which
1094 -- affects serial numbers of other generated names), we use an internal
1095 -- symbol that cannot conflict with user declarations.
1097 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1098 Set_Defining_Unit_Name
1099 (Specification (Original_Body),
1100 Make_Defining_Identifier (Sloc (N), Name_uParent));
1101 Set_Corresponding_Spec (Original_Body, Empty);
1103 -- Remove those pragmas that have no meaining in an inlined body.
1105 Remove_Pragmas (Original_Body);
1107 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1109 -- Set return type of function, which is also global and does not need
1110 -- to be resolved.
1112 if Ekind (Spec_Id) = E_Function then
1113 Set_Result_Definition (Specification (Body_To_Analyze),
1114 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1115 end if;
1117 if No (Declarations (N)) then
1118 Set_Declarations (N, New_List (Body_To_Analyze));
1119 else
1120 Append (Body_To_Analyze, Declarations (N));
1121 end if;
1123 -- The body to inline is pre-analyzed. In GNATprove mode we must
1124 -- disable full analysis as well so that light expansion does not
1125 -- take place either, and name resolution is unaffected.
1127 Expander_Mode_Save_And_Set (False);
1128 Full_Analysis := False;
1130 Analyze (Body_To_Analyze);
1131 Push_Scope (Defining_Entity (Body_To_Analyze));
1132 Save_Global_References (Original_Body);
1133 End_Scope;
1134 Remove (Body_To_Analyze);
1136 Expander_Mode_Restore;
1137 Full_Analysis := Analysis_Status;
1139 -- Restore environment if previously saved
1141 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1142 Restore_Env;
1143 end if;
1145 -- If secondary stack is used, there is no point in inlining. We have
1146 -- already issued the warning in this case, so nothing to do.
1148 if Uses_Secondary_Stack (Body_To_Analyze) then
1149 return;
1150 end if;
1152 Set_Body_To_Inline (Decl, Original_Body);
1153 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1154 Set_Is_Inlined (Spec_Id);
1155 end Build_Body_To_Inline;
1157 -------------------
1158 -- Cannot_Inline --
1159 -------------------
1161 procedure Cannot_Inline
1162 (Msg : String;
1163 N : Node_Id;
1164 Subp : Entity_Id;
1165 Is_Serious : Boolean := False)
1167 begin
1168 -- In GNATprove mode, inlining is the technical means by which the
1169 -- higher-level goal of contextual analysis is reached, so issue
1170 -- messages about failure to apply contextual analysis to a
1171 -- subprogram, rather than failure to inline it.
1173 if GNATprove_Mode
1174 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1175 then
1176 declare
1177 Len1 : constant Positive :=
1178 String (String'("cannot inline"))'Length;
1179 Len2 : constant Positive :=
1180 String (String'("info: no contextual analysis of"))'Length;
1182 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1184 begin
1185 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1186 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1187 Msg (Msg'First + Len1 .. Msg'Last);
1188 Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1189 return;
1190 end;
1191 end if;
1193 pragma Assert (Msg (Msg'Last) = '?');
1195 -- Legacy front end inlining model
1197 if not Back_End_Inlining then
1199 -- Do not emit warning if this is a predefined unit which is not
1200 -- the main unit. With validity checks enabled, some predefined
1201 -- subprograms may contain nested subprograms and become ineligible
1202 -- for inlining.
1204 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1205 and then not In_Extended_Main_Source_Unit (Subp)
1206 then
1207 null;
1209 -- In GNATprove mode, issue a warning, and indicate that the
1210 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1211 -- to False.
1213 elsif GNATprove_Mode then
1214 Set_Is_Inlined_Always (Subp, False);
1215 Error_Msg_NE (Msg & "p?", N, Subp);
1217 elsif Has_Pragma_Inline_Always (Subp) then
1219 -- Remove last character (question mark) to make this into an
1220 -- error, because the Inline_Always pragma cannot be obeyed.
1222 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1224 elsif Ineffective_Inline_Warnings then
1225 Error_Msg_NE (Msg & "p?", N, Subp);
1226 end if;
1228 return;
1230 -- New semantics
1232 elsif Is_Serious then
1234 -- Remove last character (question mark) to make this into an error.
1236 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1238 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1239 -- is not always inlined by setting flag Is_Inlined_Always to False.
1241 elsif GNATprove_Mode then
1242 Set_Is_Inlined_Always (Subp, False);
1243 Error_Msg_NE (Msg & "p?", N, Subp);
1245 -- Do not issue errors/warnings when compiling with optimizations
1247 elsif Optimization_Level = 0 then
1249 -- Do not emit warning if this is a predefined unit which is not
1250 -- the main unit. This behavior is currently provided for backward
1251 -- compatibility but it will be removed when we enforce the
1252 -- strictness of the new rules.
1254 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1255 and then not In_Extended_Main_Source_Unit (Subp)
1256 then
1257 null;
1259 elsif Has_Pragma_Inline_Always (Subp) then
1261 -- Emit a warning if this is a call to a runtime subprogram
1262 -- which is located inside a generic. Previously this call
1263 -- was silently skipped.
1265 if Is_Generic_Instance (Subp) then
1266 declare
1267 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1268 begin
1269 if Is_Predefined_File_Name
1270 (Unit_File_Name (Get_Source_Unit (Gen_P)))
1271 then
1272 Set_Is_Inlined (Subp, False);
1273 Error_Msg_NE (Msg & "p?", N, Subp);
1274 return;
1275 end if;
1276 end;
1277 end if;
1279 -- Remove last character (question mark) to make this into an
1280 -- error, because the Inline_Always pragma cannot be obeyed.
1282 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1284 else pragma Assert (Front_End_Inlining);
1285 Set_Is_Inlined (Subp, False);
1287 -- When inlining cannot take place we must issue an error.
1288 -- For backward compatibility we still report a warning.
1290 if Ineffective_Inline_Warnings then
1291 Error_Msg_NE (Msg & "p?", N, Subp);
1292 end if;
1293 end if;
1295 -- Compiling with optimizations enabled it is too early to report
1296 -- problems since the backend may still perform inlining. In order
1297 -- to report unhandled inlinings the program must be compiled with
1298 -- -Winline and the error is reported by the backend.
1300 else
1301 null;
1302 end if;
1303 end Cannot_Inline;
1305 --------------------------------------
1306 -- Can_Be_Inlined_In_GNATprove_Mode --
1307 --------------------------------------
1309 function Can_Be_Inlined_In_GNATprove_Mode
1310 (Spec_Id : Entity_Id;
1311 Body_Id : Entity_Id) return Boolean
1313 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1314 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1315 -- Depends, etc.)
1317 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1318 -- Returns True if subprogram Id defines a compilation unit
1319 -- Shouldn't this be in Sem_Aux???
1321 function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
1322 -- Returns True if subprogram Id is defined in the visible part of a
1323 -- package specification.
1325 function Is_Expression_Function (Id : Entity_Id) return Boolean;
1326 -- Returns True if subprogram Id was defined originally as an expression
1327 -- function.
1329 -----------------------
1330 -- Has_Some_Contract --
1331 -----------------------
1333 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1334 Items : constant Node_Id := Contract (Id);
1335 begin
1336 return Present (Items)
1337 and then (Present (Pre_Post_Conditions (Items)) or else
1338 Present (Contract_Test_Cases (Items)) or else
1339 Present (Classifications (Items)));
1340 end Has_Some_Contract;
1342 -----------------------------
1343 -- In_Package_Visible_Spec --
1344 -----------------------------
1346 function In_Package_Visible_Spec (Id : Node_Id) return Boolean is
1347 Decl : Node_Id := Parent (Parent (Id));
1348 P : Node_Id;
1350 begin
1351 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1352 Decl := Parent (Decl);
1353 end if;
1355 P := Parent (Decl);
1357 return Nkind (P) = N_Package_Specification
1358 and then List_Containing (Decl) = Visible_Declarations (P);
1359 end In_Package_Visible_Spec;
1361 ----------------------------
1362 -- Is_Expression_Function --
1363 ----------------------------
1365 function Is_Expression_Function (Id : Entity_Id) return Boolean is
1366 Decl : Node_Id := Parent (Parent (Id));
1367 begin
1368 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1369 Decl := Parent (Decl);
1370 end if;
1372 return Nkind (Original_Node (Decl)) = N_Expression_Function;
1373 end Is_Expression_Function;
1375 ------------------------
1376 -- Is_Unit_Subprogram --
1377 ------------------------
1379 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1380 Decl : Node_Id := Parent (Parent (Id));
1381 begin
1382 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1383 Decl := Parent (Decl);
1384 end if;
1386 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1387 end Is_Unit_Subprogram;
1389 -- Local declarations
1391 Id : Entity_Id; -- Procedure or function entity for the subprogram
1393 -- Start of Can_Be_Inlined_In_GNATprove_Mode
1395 begin
1396 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1398 if Present (Spec_Id) then
1399 Id := Spec_Id;
1400 else
1401 Id := Body_Id;
1402 end if;
1404 -- Only local subprograms without contracts are inlined in GNATprove
1405 -- mode, as these are the subprograms which a user is not interested in
1406 -- analyzing in isolation, but rather in the context of their call. This
1407 -- is a convenient convention, that could be changed for an explicit
1408 -- pragma/aspect one day.
1410 -- In a number of special cases, inlining is not desirable or not
1411 -- possible, see below.
1413 -- Do not inline unit-level subprograms
1415 if Is_Unit_Subprogram (Id) then
1416 return False;
1418 -- Do not inline subprograms declared in the visible part of a package
1420 elsif In_Package_Visible_Spec (Id) then
1421 return False;
1423 -- Do not inline subprograms that have a contract on the spec or the
1424 -- body. Use the contract(s) instead in GNATprove.
1426 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1427 or else
1428 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1429 then
1430 return False;
1432 -- Do not inline expression functions, which are directly inlined at the
1433 -- prover level.
1435 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1436 or else
1437 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1438 then
1439 return False;
1441 -- Do not inline generic subprogram instances. The visibility rules of
1442 -- generic instances plays badly with inlining.
1444 elsif Is_Generic_Instance (Spec_Id) then
1445 return False;
1447 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1448 -- the subprogram body, a similar check is performed after the body
1449 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1451 elsif Present (Spec_Id)
1452 and then
1453 (No (SPARK_Pragma (Spec_Id))
1454 or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
1455 then
1456 return False;
1458 -- Subprograms in generic instances are currently not inlined, to avoid
1459 -- problems with inlining of standard library subprograms.
1461 elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1462 return False;
1464 -- Don't inline predicate functions (treated specially by GNATprove)
1466 elsif Is_Predicate_Function (Id) then
1467 return False;
1469 -- Otherwise, this is a subprogram declared inside the private part of a
1470 -- package, or inside a package body, or locally in a subprogram, and it
1471 -- does not have any contract. Inline it.
1473 else
1474 return True;
1475 end if;
1476 end Can_Be_Inlined_In_GNATprove_Mode;
1478 --------------------------------------------
1479 -- Check_And_Split_Unconstrained_Function --
1480 --------------------------------------------
1482 procedure Check_And_Split_Unconstrained_Function
1483 (N : Node_Id;
1484 Spec_Id : Entity_Id;
1485 Body_Id : Entity_Id)
1487 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1488 -- Use generic machinery to build an unexpanded body for the subprogram.
1489 -- This body is subsequently used for inline expansions at call sites.
1491 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1492 -- Return true if we generate code for the function body N, the function
1493 -- body N has no local declarations and its unique statement is a single
1494 -- extended return statement with a handled statements sequence.
1496 procedure Generate_Subprogram_Body
1497 (N : Node_Id;
1498 Body_To_Inline : out Node_Id);
1499 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1500 -- of pragmas referencing the formals are removed since they have no
1501 -- meaning when the body is inlined and the formals are rewritten (the
1502 -- analysis of the non-inlined body will handle these pragmas properly).
1503 -- A new internal name is associated with Body_To_Inline.
1505 procedure Split_Unconstrained_Function
1506 (N : Node_Id;
1507 Spec_Id : Entity_Id);
1508 -- N is an inlined function body that returns an unconstrained type and
1509 -- has a single extended return statement. Split N in two subprograms:
1510 -- a procedure P' and a function F'. The formals of P' duplicate the
1511 -- formals of N plus an extra formal which is used return a value;
1512 -- its body is composed by the declarations and list of statements
1513 -- of the extended return statement of N.
1515 --------------------------
1516 -- Build_Body_To_Inline --
1517 --------------------------
1519 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1520 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1521 Original_Body : Node_Id;
1522 Body_To_Analyze : Node_Id;
1524 begin
1525 pragma Assert (Current_Scope = Spec_Id);
1527 -- Within an instance, the body to inline must be treated as a nested
1528 -- generic, so that the proper global references are preserved. We
1529 -- do not do this at the library level, because it is not needed, and
1530 -- furthermore this causes trouble if front end inlining is activated
1531 -- (-gnatN).
1533 if In_Instance
1534 and then Scope (Current_Scope) /= Standard_Standard
1535 then
1536 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1537 end if;
1539 -- We need to capture references to the formals in order
1540 -- to substitute the actuals at the point of inlining, i.e.
1541 -- instantiation. To treat the formals as globals to the body to
1542 -- inline, we nest it within a dummy parameterless subprogram,
1543 -- declared within the real one.
1545 Generate_Subprogram_Body (N, Original_Body);
1546 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1548 -- Set return type of function, which is also global and does not
1549 -- need to be resolved.
1551 if Ekind (Spec_Id) = E_Function then
1552 Set_Result_Definition (Specification (Body_To_Analyze),
1553 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1554 end if;
1556 if No (Declarations (N)) then
1557 Set_Declarations (N, New_List (Body_To_Analyze));
1558 else
1559 Append_To (Declarations (N), Body_To_Analyze);
1560 end if;
1562 Preanalyze (Body_To_Analyze);
1564 Push_Scope (Defining_Entity (Body_To_Analyze));
1565 Save_Global_References (Original_Body);
1566 End_Scope;
1567 Remove (Body_To_Analyze);
1569 -- Restore environment if previously saved
1571 if In_Instance
1572 and then Scope (Current_Scope) /= Standard_Standard
1573 then
1574 Restore_Env;
1575 end if;
1577 pragma Assert (No (Body_To_Inline (Decl)));
1578 Set_Body_To_Inline (Decl, Original_Body);
1579 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1580 end Build_Body_To_Inline;
1582 --------------------------------------
1583 -- Can_Split_Unconstrained_Function --
1584 --------------------------------------
1586 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
1588 Ret_Node : constant Node_Id :=
1589 First (Statements (Handled_Statement_Sequence (N)));
1590 D : Node_Id;
1592 begin
1593 -- No user defined declarations allowed in the function except inside
1594 -- the unique return statement; implicit labels are the only allowed
1595 -- declarations.
1597 if not Is_Empty_List (Declarations (N)) then
1598 D := First (Declarations (N));
1599 while Present (D) loop
1600 if Nkind (D) /= N_Implicit_Label_Declaration then
1601 return False;
1602 end if;
1604 Next (D);
1605 end loop;
1606 end if;
1608 -- We only split the inlined function when we are generating the code
1609 -- of its body; otherwise we leave duplicated split subprograms in
1610 -- the tree which (if referenced) generate wrong references at link
1611 -- time.
1613 return In_Extended_Main_Code_Unit (N)
1614 and then Present (Ret_Node)
1615 and then Nkind (Ret_Node) = N_Extended_Return_Statement
1616 and then No (Next (Ret_Node))
1617 and then Present (Handled_Statement_Sequence (Ret_Node));
1618 end Can_Split_Unconstrained_Function;
1620 -----------------------------
1621 -- Generate_Body_To_Inline --
1622 -----------------------------
1624 procedure Generate_Subprogram_Body
1625 (N : Node_Id;
1626 Body_To_Inline : out Node_Id)
1628 begin
1629 -- Within an instance, the body to inline must be treated as a nested
1630 -- generic, so that the proper global references are preserved.
1632 -- Note that we do not do this at the library level, because it
1633 -- is not needed, and furthermore this causes trouble if front
1634 -- end inlining is activated (-gnatN).
1636 if In_Instance
1637 and then Scope (Current_Scope) /= Standard_Standard
1638 then
1639 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
1640 else
1641 Body_To_Inline := Copy_Separate_Tree (N);
1642 end if;
1644 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
1645 -- parameter has no meaning when the body is inlined and the formals
1646 -- are rewritten. Remove it from body to inline. The analysis of the
1647 -- non-inlined body will handle the pragma properly.
1649 Remove_Pragmas (Body_To_Inline);
1651 -- We need to capture references to the formals in order
1652 -- to substitute the actuals at the point of inlining, i.e.
1653 -- instantiation. To treat the formals as globals to the body to
1654 -- inline, we nest it within a dummy parameterless subprogram,
1655 -- declared within the real one.
1657 Set_Parameter_Specifications
1658 (Specification (Body_To_Inline), No_List);
1660 -- A new internal name is associated with Body_To_Inline to avoid
1661 -- conflicts when the non-inlined body N is analyzed.
1663 Set_Defining_Unit_Name (Specification (Body_To_Inline),
1664 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1665 Set_Corresponding_Spec (Body_To_Inline, Empty);
1666 end Generate_Subprogram_Body;
1668 ----------------------------------
1669 -- Split_Unconstrained_Function --
1670 ----------------------------------
1672 procedure Split_Unconstrained_Function
1673 (N : Node_Id;
1674 Spec_Id : Entity_Id)
1676 Loc : constant Source_Ptr := Sloc (N);
1677 Ret_Node : constant Node_Id :=
1678 First (Statements (Handled_Statement_Sequence (N)));
1679 Ret_Obj : constant Node_Id :=
1680 First (Return_Object_Declarations (Ret_Node));
1682 procedure Build_Procedure
1683 (Proc_Id : out Entity_Id;
1684 Decl_List : out List_Id);
1685 -- Build a procedure containing the statements found in the extended
1686 -- return statement of the unconstrained function body N.
1688 ---------------------
1689 -- Build_Procedure --
1690 ---------------------
1692 procedure Build_Procedure
1693 (Proc_Id : out Entity_Id;
1694 Decl_List : out List_Id)
1696 Formal : Entity_Id;
1697 Formal_List : constant List_Id := New_List;
1698 Proc_Spec : Node_Id;
1699 Proc_Body : Node_Id;
1700 Subp_Name : constant Name_Id := New_Internal_Name ('F');
1701 Body_Decl_List : List_Id := No_List;
1702 Param_Type : Node_Id;
1704 begin
1705 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1706 Param_Type :=
1707 New_Copy (Object_Definition (Ret_Obj));
1708 else
1709 Param_Type :=
1710 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1711 end if;
1713 Append_To (Formal_List,
1714 Make_Parameter_Specification (Loc,
1715 Defining_Identifier =>
1716 Make_Defining_Identifier (Loc,
1717 Chars => Chars (Defining_Identifier (Ret_Obj))),
1718 In_Present => False,
1719 Out_Present => True,
1720 Null_Exclusion_Present => False,
1721 Parameter_Type => Param_Type));
1723 Formal := First_Formal (Spec_Id);
1724 while Present (Formal) loop
1725 Append_To (Formal_List,
1726 Make_Parameter_Specification (Loc,
1727 Defining_Identifier =>
1728 Make_Defining_Identifier (Sloc (Formal),
1729 Chars => Chars (Formal)),
1730 In_Present => In_Present (Parent (Formal)),
1731 Out_Present => Out_Present (Parent (Formal)),
1732 Null_Exclusion_Present =>
1733 Null_Exclusion_Present (Parent (Formal)),
1734 Parameter_Type =>
1735 New_Occurrence_Of (Etype (Formal), Loc),
1736 Expression =>
1737 Copy_Separate_Tree (Expression (Parent (Formal)))));
1739 Next_Formal (Formal);
1740 end loop;
1742 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1744 Proc_Spec :=
1745 Make_Procedure_Specification (Loc,
1746 Defining_Unit_Name => Proc_Id,
1747 Parameter_Specifications => Formal_List);
1749 Decl_List := New_List;
1751 Append_To (Decl_List,
1752 Make_Subprogram_Declaration (Loc, Proc_Spec));
1754 -- Can_Convert_Unconstrained_Function checked that the function
1755 -- has no local declarations except implicit label declarations.
1756 -- Copy these declarations to the built procedure.
1758 if Present (Declarations (N)) then
1759 Body_Decl_List := New_List;
1761 declare
1762 D : Node_Id;
1763 New_D : Node_Id;
1765 begin
1766 D := First (Declarations (N));
1767 while Present (D) loop
1768 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1770 New_D :=
1771 Make_Implicit_Label_Declaration (Loc,
1772 Make_Defining_Identifier (Loc,
1773 Chars => Chars (Defining_Identifier (D))),
1774 Label_Construct => Empty);
1775 Append_To (Body_Decl_List, New_D);
1777 Next (D);
1778 end loop;
1779 end;
1780 end if;
1782 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1784 Proc_Body :=
1785 Make_Subprogram_Body (Loc,
1786 Specification => Copy_Separate_Tree (Proc_Spec),
1787 Declarations => Body_Decl_List,
1788 Handled_Statement_Sequence =>
1789 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1791 Set_Defining_Unit_Name (Specification (Proc_Body),
1792 Make_Defining_Identifier (Loc, Subp_Name));
1794 Append_To (Decl_List, Proc_Body);
1795 end Build_Procedure;
1797 -- Local variables
1799 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1800 Blk_Stmt : Node_Id;
1801 Proc_Id : Entity_Id;
1802 Proc_Call : Node_Id;
1804 -- Start of processing for Split_Unconstrained_Function
1806 begin
1807 -- Build the associated procedure, analyze it and insert it before
1808 -- the function body N.
1810 declare
1811 Scope : constant Entity_Id := Current_Scope;
1812 Decl_List : List_Id;
1813 begin
1814 Pop_Scope;
1815 Build_Procedure (Proc_Id, Decl_List);
1816 Insert_Actions (N, Decl_List);
1817 Push_Scope (Scope);
1818 end;
1820 -- Build the call to the generated procedure
1822 declare
1823 Actual_List : constant List_Id := New_List;
1824 Formal : Entity_Id;
1826 begin
1827 Append_To (Actual_List,
1828 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1830 Formal := First_Formal (Spec_Id);
1831 while Present (Formal) loop
1832 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1834 -- Avoid spurious warning on unreferenced formals
1836 Set_Referenced (Formal);
1837 Next_Formal (Formal);
1838 end loop;
1840 Proc_Call :=
1841 Make_Procedure_Call_Statement (Loc,
1842 Name => New_Occurrence_Of (Proc_Id, Loc),
1843 Parameter_Associations => Actual_List);
1844 end;
1846 -- Generate
1848 -- declare
1849 -- New_Obj : ...
1850 -- begin
1851 -- main_1__F1b (New_Obj, ...);
1852 -- return Obj;
1853 -- end B10b;
1855 Blk_Stmt :=
1856 Make_Block_Statement (Loc,
1857 Declarations => New_List (New_Obj),
1858 Handled_Statement_Sequence =>
1859 Make_Handled_Sequence_Of_Statements (Loc,
1860 Statements => New_List (
1862 Proc_Call,
1864 Make_Simple_Return_Statement (Loc,
1865 Expression =>
1866 New_Occurrence_Of
1867 (Defining_Identifier (New_Obj), Loc)))));
1869 Rewrite (Ret_Node, Blk_Stmt);
1870 end Split_Unconstrained_Function;
1872 -- Local variables
1874 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1876 -- Start of processing for Check_And_Split_Unconstrained_Function
1878 begin
1879 pragma Assert (Back_End_Inlining
1880 and then Ekind (Spec_Id) = E_Function
1881 and then Returns_Unconstrained_Type (Spec_Id)
1882 and then Comes_From_Source (Body_Id)
1883 and then (Has_Pragma_Inline_Always (Spec_Id)
1884 or else Optimization_Level > 0));
1886 -- This routine must not be used in GNATprove mode since GNATprove
1887 -- relies on frontend inlining
1889 pragma Assert (not GNATprove_Mode);
1891 -- No need to split the function if we cannot generate the code
1893 if Serious_Errors_Detected /= 0 then
1894 return;
1895 end if;
1897 -- Do not inline any subprogram that contains nested subprograms,
1898 -- since the backend inlining circuit seems to generate uninitialized
1899 -- references in this case. We know this happens in the case of front
1900 -- end ZCX support, but it also appears it can happen in other cases
1901 -- as well. The backend often rejects attempts to inline in the case
1902 -- of nested procedures anyway, so little if anything is lost by this.
1903 -- Note that this is test is for the benefit of the back-end. There
1904 -- is a separate test for front-end inlining that also rejects nested
1905 -- subprograms.
1907 -- Do not do this test if errors have been detected, because in some
1908 -- error cases, this code blows up, and we don't need it anyway if
1909 -- there have been errors, since we won't get to the linker anyway.
1911 declare
1912 P_Ent : Node_Id;
1914 begin
1915 P_Ent := Body_Id;
1916 loop
1917 P_Ent := Scope (P_Ent);
1918 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1920 if Is_Subprogram (P_Ent) then
1921 Set_Is_Inlined (P_Ent, False);
1923 if Comes_From_Source (P_Ent)
1924 and then (Has_Pragma_Inline (P_Ent))
1925 then
1926 Cannot_Inline
1927 ("cannot inline& (nested subprogram)?", N, P_Ent,
1928 Is_Serious => True);
1929 return;
1930 end if;
1931 end if;
1932 end loop;
1933 end;
1935 -- No action needed in stubs since the attribute Body_To_Inline
1936 -- is not available
1938 if Nkind (Decl) = N_Subprogram_Body_Stub then
1939 return;
1941 -- Cannot build the body to inline if the attribute is already set.
1942 -- This attribute may have been set if this is a subprogram renaming
1943 -- declarations (see Freeze.Build_Renamed_Body).
1945 elsif Present (Body_To_Inline (Decl)) then
1946 return;
1948 -- Check excluded declarations
1950 elsif Present (Declarations (N))
1951 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1952 then
1953 return;
1955 -- Check excluded statements. There is no need to protect us against
1956 -- exception handlers since they are supported by the GCC backend.
1958 elsif Present (Handled_Statement_Sequence (N))
1959 and then Has_Excluded_Statement
1960 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1961 then
1962 return;
1963 end if;
1965 -- Build the body to inline only if really needed
1967 if Can_Split_Unconstrained_Function (N) then
1968 Split_Unconstrained_Function (N, Spec_Id);
1969 Build_Body_To_Inline (N, Spec_Id);
1970 Set_Is_Inlined (Spec_Id);
1971 end if;
1972 end Check_And_Split_Unconstrained_Function;
1974 -------------------------------------
1975 -- Check_Package_Body_For_Inlining --
1976 -------------------------------------
1978 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
1979 Bname : Unit_Name_Type;
1980 E : Entity_Id;
1981 OK : Boolean;
1983 begin
1984 if Front_End_Inlining
1985 and then Is_Compilation_Unit (P)
1986 and then not Is_Generic_Instance (P)
1987 then
1988 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
1990 E := First_Entity (P);
1991 while Present (E) loop
1992 if Has_Pragma_Inline (E) then
1993 if not Is_Loaded (Bname) then
1994 Load_Needed_Body (N, OK);
1996 if OK then
1998 -- Check we are not trying to inline a parent whose body
1999 -- depends on a child, when we are compiling the body of
2000 -- the child. Otherwise we have a potential elaboration
2001 -- circularity with inlined subprograms and with
2002 -- Taft-Amendment types.
2004 declare
2005 Comp : Node_Id; -- Body just compiled
2006 Child_Spec : Entity_Id; -- Spec of main unit
2007 Ent : Entity_Id; -- For iteration
2008 With_Clause : Node_Id; -- Context of body.
2010 begin
2011 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2012 and then Present (Body_Entity (P))
2013 then
2014 Child_Spec :=
2015 Defining_Entity
2016 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2018 Comp :=
2019 Parent (Unit_Declaration_Node (Body_Entity (P)));
2021 -- Check whether the context of the body just
2022 -- compiled includes a child of itself, and that
2023 -- child is the spec of the main compilation.
2025 With_Clause := First (Context_Items (Comp));
2026 while Present (With_Clause) loop
2027 if Nkind (With_Clause) = N_With_Clause
2028 and then
2029 Scope (Entity (Name (With_Clause))) = P
2030 and then
2031 Entity (Name (With_Clause)) = Child_Spec
2032 then
2033 Error_Msg_Node_2 := Child_Spec;
2034 Error_Msg_NE
2035 ("body of & depends on child unit&??",
2036 With_Clause, P);
2037 Error_Msg_N
2038 ("\subprograms in body cannot be inlined??",
2039 With_Clause);
2041 -- Disable further inlining from this unit,
2042 -- and keep Taft-amendment types incomplete.
2044 Ent := First_Entity (P);
2045 while Present (Ent) loop
2046 if Is_Type (Ent)
2047 and then Has_Completion_In_Body (Ent)
2048 then
2049 Set_Full_View (Ent, Empty);
2051 elsif Is_Subprogram (Ent) then
2052 Set_Is_Inlined (Ent, False);
2053 end if;
2055 Next_Entity (Ent);
2056 end loop;
2058 return;
2059 end if;
2061 Next (With_Clause);
2062 end loop;
2063 end if;
2064 end;
2066 elsif Ineffective_Inline_Warnings then
2067 Error_Msg_Unit_1 := Bname;
2068 Error_Msg_N
2069 ("unable to inline subprograms defined in $??", P);
2070 Error_Msg_N ("\body not found??", P);
2071 return;
2072 end if;
2073 end if;
2075 return;
2076 end if;
2078 Next_Entity (E);
2079 end loop;
2080 end if;
2081 end Check_Package_Body_For_Inlining;
2083 --------------------
2084 -- Cleanup_Scopes --
2085 --------------------
2087 procedure Cleanup_Scopes is
2088 Elmt : Elmt_Id;
2089 Decl : Node_Id;
2090 Scop : Entity_Id;
2092 begin
2093 Elmt := First_Elmt (To_Clean);
2094 while Present (Elmt) loop
2095 Scop := Node (Elmt);
2097 if Ekind (Scop) = E_Entry then
2098 Scop := Protected_Body_Subprogram (Scop);
2100 elsif Is_Subprogram (Scop)
2101 and then Is_Protected_Type (Scope (Scop))
2102 and then Present (Protected_Body_Subprogram (Scop))
2103 then
2104 -- If a protected operation contains an instance, its cleanup
2105 -- operations have been delayed, and the subprogram has been
2106 -- rewritten in the expansion of the enclosing protected body. It
2107 -- is the corresponding subprogram that may require the cleanup
2108 -- operations, so propagate the information that triggers cleanup
2109 -- activity.
2111 Set_Uses_Sec_Stack
2112 (Protected_Body_Subprogram (Scop),
2113 Uses_Sec_Stack (Scop));
2115 Scop := Protected_Body_Subprogram (Scop);
2116 end if;
2118 if Ekind (Scop) = E_Block then
2119 Decl := Parent (Block_Node (Scop));
2121 else
2122 Decl := Unit_Declaration_Node (Scop);
2124 if Nkind_In (Decl, N_Subprogram_Declaration,
2125 N_Task_Type_Declaration,
2126 N_Subprogram_Body_Stub)
2127 then
2128 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2129 end if;
2130 end if;
2132 Push_Scope (Scop);
2133 Expand_Cleanup_Actions (Decl);
2134 End_Scope;
2136 Elmt := Next_Elmt (Elmt);
2137 end loop;
2138 end Cleanup_Scopes;
2140 -------------------------
2141 -- Expand_Inlined_Call --
2142 -------------------------
2144 procedure Expand_Inlined_Call
2145 (N : Node_Id;
2146 Subp : Entity_Id;
2147 Orig_Subp : Entity_Id)
2149 Loc : constant Source_Ptr := Sloc (N);
2150 Is_Predef : constant Boolean :=
2151 Is_Predefined_File_Name
2152 (Unit_File_Name (Get_Source_Unit (Subp)));
2153 Orig_Bod : constant Node_Id :=
2154 Body_To_Inline (Unit_Declaration_Node (Subp));
2156 Blk : Node_Id;
2157 Decl : Node_Id;
2158 Decls : constant List_Id := New_List;
2159 Exit_Lab : Entity_Id := Empty;
2160 F : Entity_Id;
2161 A : Node_Id;
2162 Lab_Decl : Node_Id;
2163 Lab_Id : Node_Id;
2164 New_A : Node_Id;
2165 Num_Ret : Int := 0;
2166 Ret_Type : Entity_Id;
2168 Targ : Node_Id;
2169 -- The target of the call. If context is an assignment statement then
2170 -- this is the left-hand side of the assignment, else it is a temporary
2171 -- to which the return value is assigned prior to rewriting the call.
2173 Targ1 : Node_Id;
2174 -- A separate target used when the return type is unconstrained
2176 Temp : Entity_Id;
2177 Temp_Typ : Entity_Id;
2179 Return_Object : Entity_Id := Empty;
2180 -- Entity in declaration in an extended_return_statement
2182 Is_Unc : Boolean;
2183 Is_Unc_Decl : Boolean;
2184 -- If the type returned by the function is unconstrained and the call
2185 -- can be inlined, special processing is required.
2187 procedure Make_Exit_Label;
2188 -- Build declaration for exit label to be used in Return statements,
2189 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2190 -- declaration). Does nothing if Exit_Lab already set.
2192 function Process_Formals (N : Node_Id) return Traverse_Result;
2193 -- Replace occurrence of a formal with the corresponding actual, or the
2194 -- thunk generated for it. Replace a return statement with an assignment
2195 -- to the target of the call, with appropriate conversions if needed.
2197 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2198 -- If the call being expanded is that of an internal subprogram, set the
2199 -- sloc of the generated block to that of the call itself, so that the
2200 -- expansion is skipped by the "next" command in gdb. Same processing
2201 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2202 -- Debug_Generated_Code is true, suppress this change to simplify our
2203 -- own development. Same in GNATprove mode, to ensure that warnings and
2204 -- diagnostics point to the proper location.
2206 procedure Reset_Dispatching_Calls (N : Node_Id);
2207 -- In subtree N search for occurrences of dispatching calls that use the
2208 -- Ada 2005 Object.Operation notation and the object is a formal of the
2209 -- inlined subprogram. Reset the entity associated with Operation in all
2210 -- the found occurrences.
2212 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2213 -- If the function body is a single expression, replace call with
2214 -- expression, else insert block appropriately.
2216 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2217 -- If procedure body has no local variables, inline body without
2218 -- creating block, otherwise rewrite call with block.
2220 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2221 -- Determine whether a formal parameter is used only once in Orig_Bod
2223 ---------------------
2224 -- Make_Exit_Label --
2225 ---------------------
2227 procedure Make_Exit_Label is
2228 Lab_Ent : Entity_Id;
2229 begin
2230 if No (Exit_Lab) then
2231 Lab_Ent := Make_Temporary (Loc, 'L');
2232 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
2233 Exit_Lab := Make_Label (Loc, Lab_Id);
2234 Lab_Decl :=
2235 Make_Implicit_Label_Declaration (Loc,
2236 Defining_Identifier => Lab_Ent,
2237 Label_Construct => Exit_Lab);
2238 end if;
2239 end Make_Exit_Label;
2241 ---------------------
2242 -- Process_Formals --
2243 ---------------------
2245 function Process_Formals (N : Node_Id) return Traverse_Result is
2246 A : Entity_Id;
2247 E : Entity_Id;
2248 Ret : Node_Id;
2250 begin
2251 if Is_Entity_Name (N) and then Present (Entity (N)) then
2252 E := Entity (N);
2254 if Is_Formal (E) and then Scope (E) = Subp then
2255 A := Renamed_Object (E);
2257 -- Rewrite the occurrence of the formal into an occurrence of
2258 -- the actual. Also establish visibility on the proper view of
2259 -- the actual's subtype for the body's context (if the actual's
2260 -- subtype is private at the call point but its full view is
2261 -- visible to the body, then the inlined tree here must be
2262 -- analyzed with the full view).
2264 if Is_Entity_Name (A) then
2265 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
2266 Check_Private_View (N);
2268 elsif Nkind (A) = N_Defining_Identifier then
2269 Rewrite (N, New_Occurrence_Of (A, Loc));
2270 Check_Private_View (N);
2272 -- Numeric literal
2274 else
2275 Rewrite (N, New_Copy (A));
2276 end if;
2277 end if;
2279 return Skip;
2281 elsif Is_Entity_Name (N)
2282 and then Present (Return_Object)
2283 and then Chars (N) = Chars (Return_Object)
2284 then
2285 -- Occurrence within an extended return statement. The return
2286 -- object is local to the body been inlined, and thus the generic
2287 -- copy is not analyzed yet, so we match by name, and replace it
2288 -- with target of call.
2290 if Nkind (Targ) = N_Defining_Identifier then
2291 Rewrite (N, New_Occurrence_Of (Targ, Loc));
2292 else
2293 Rewrite (N, New_Copy_Tree (Targ));
2294 end if;
2296 return Skip;
2298 elsif Nkind (N) = N_Simple_Return_Statement then
2299 if No (Expression (N)) then
2300 Make_Exit_Label;
2301 Rewrite (N,
2302 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2304 else
2305 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2306 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2307 then
2308 -- Function body is a single expression. No need for
2309 -- exit label.
2311 null;
2313 else
2314 Num_Ret := Num_Ret + 1;
2315 Make_Exit_Label;
2316 end if;
2318 -- Because of the presence of private types, the views of the
2319 -- expression and the context may be different, so place an
2320 -- unchecked conversion to the context type to avoid spurious
2321 -- errors, e.g. when the expression is a numeric literal and
2322 -- the context is private. If the expression is an aggregate,
2323 -- use a qualified expression, because an aggregate is not a
2324 -- legal argument of a conversion. Ditto for numeric literals,
2325 -- which must be resolved to a specific type.
2327 if Nkind_In (Expression (N), N_Aggregate,
2328 N_Null,
2329 N_Real_Literal,
2330 N_Integer_Literal)
2331 then
2332 Ret :=
2333 Make_Qualified_Expression (Sloc (N),
2334 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2335 Expression => Relocate_Node (Expression (N)));
2336 else
2337 Ret :=
2338 Unchecked_Convert_To
2339 (Ret_Type, Relocate_Node (Expression (N)));
2340 end if;
2342 if Nkind (Targ) = N_Defining_Identifier then
2343 Rewrite (N,
2344 Make_Assignment_Statement (Loc,
2345 Name => New_Occurrence_Of (Targ, Loc),
2346 Expression => Ret));
2347 else
2348 Rewrite (N,
2349 Make_Assignment_Statement (Loc,
2350 Name => New_Copy (Targ),
2351 Expression => Ret));
2352 end if;
2354 Set_Assignment_OK (Name (N));
2356 if Present (Exit_Lab) then
2357 Insert_After (N,
2358 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2359 end if;
2360 end if;
2362 return OK;
2364 -- An extended return becomes a block whose first statement is the
2365 -- assignment of the initial expression of the return object to the
2366 -- target of the call itself.
2368 elsif Nkind (N) = N_Extended_Return_Statement then
2369 declare
2370 Return_Decl : constant Entity_Id :=
2371 First (Return_Object_Declarations (N));
2372 Assign : Node_Id;
2374 begin
2375 Return_Object := Defining_Identifier (Return_Decl);
2377 if Present (Expression (Return_Decl)) then
2378 if Nkind (Targ) = N_Defining_Identifier then
2379 Assign :=
2380 Make_Assignment_Statement (Loc,
2381 Name => New_Occurrence_Of (Targ, Loc),
2382 Expression => Expression (Return_Decl));
2383 else
2384 Assign :=
2385 Make_Assignment_Statement (Loc,
2386 Name => New_Copy (Targ),
2387 Expression => Expression (Return_Decl));
2388 end if;
2390 Set_Assignment_OK (Name (Assign));
2392 if No (Handled_Statement_Sequence (N)) then
2393 Set_Handled_Statement_Sequence (N,
2394 Make_Handled_Sequence_Of_Statements (Loc,
2395 Statements => New_List));
2396 end if;
2398 Prepend (Assign,
2399 Statements (Handled_Statement_Sequence (N)));
2400 end if;
2402 Rewrite (N,
2403 Make_Block_Statement (Loc,
2404 Handled_Statement_Sequence =>
2405 Handled_Statement_Sequence (N)));
2407 return OK;
2408 end;
2410 -- Remove pragma Unreferenced since it may refer to formals that
2411 -- are not visible in the inlined body, and in any case we will
2412 -- not be posting warnings on the inlined body so it is unneeded.
2414 elsif Nkind (N) = N_Pragma
2415 and then Pragma_Name (N) = Name_Unreferenced
2416 then
2417 Rewrite (N, Make_Null_Statement (Sloc (N)));
2418 return OK;
2420 else
2421 return OK;
2422 end if;
2423 end Process_Formals;
2425 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2427 ------------------
2428 -- Process_Sloc --
2429 ------------------
2431 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2432 begin
2433 if not Debug_Generated_Code then
2434 Set_Sloc (Nod, Sloc (N));
2435 Set_Comes_From_Source (Nod, False);
2436 end if;
2438 return OK;
2439 end Process_Sloc;
2441 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2443 ------------------------------
2444 -- Reset_Dispatching_Calls --
2445 ------------------------------
2447 procedure Reset_Dispatching_Calls (N : Node_Id) is
2449 function Do_Reset (N : Node_Id) return Traverse_Result;
2450 -- Comment required ???
2452 --------------
2453 -- Do_Reset --
2454 --------------
2456 function Do_Reset (N : Node_Id) return Traverse_Result is
2457 begin
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Nkind (Name (N)) = N_Selected_Component
2460 and then Nkind (Prefix (Name (N))) = N_Identifier
2461 and then Is_Formal (Entity (Prefix (Name (N))))
2462 and then Is_Dispatching_Operation
2463 (Entity (Selector_Name (Name (N))))
2464 then
2465 Set_Entity (Selector_Name (Name (N)), Empty);
2466 end if;
2468 return OK;
2469 end Do_Reset;
2471 function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2473 -- Local variables
2475 Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2476 pragma Unreferenced (Dummy);
2478 -- Start of processing for Reset_Dispatching_Calls
2480 begin
2481 null;
2482 end Reset_Dispatching_Calls;
2484 ---------------------------
2485 -- Rewrite_Function_Call --
2486 ---------------------------
2488 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2489 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2490 Fst : constant Node_Id := First (Statements (HSS));
2492 begin
2493 -- Optimize simple case: function body is a single return statement,
2494 -- which has been expanded into an assignment.
2496 if Is_Empty_List (Declarations (Blk))
2497 and then Nkind (Fst) = N_Assignment_Statement
2498 and then No (Next (Fst))
2499 then
2500 -- The function call may have been rewritten as the temporary
2501 -- that holds the result of the call, in which case remove the
2502 -- now useless declaration.
2504 if Nkind (N) = N_Identifier
2505 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2506 then
2507 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2508 end if;
2510 Rewrite (N, Expression (Fst));
2512 elsif Nkind (N) = N_Identifier
2513 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2514 then
2515 -- The block assigns the result of the call to the temporary
2517 Insert_After (Parent (Entity (N)), Blk);
2519 -- If the context is an assignment, and the left-hand side is free of
2520 -- side-effects, the replacement is also safe.
2521 -- Can this be generalized further???
2523 elsif Nkind (Parent (N)) = N_Assignment_Statement
2524 and then
2525 (Is_Entity_Name (Name (Parent (N)))
2526 or else
2527 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2528 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2530 or else
2531 (Nkind (Name (Parent (N))) = N_Selected_Component
2532 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2533 then
2534 -- Replace assignment with the block
2536 declare
2537 Original_Assignment : constant Node_Id := Parent (N);
2539 begin
2540 -- Preserve the original assignment node to keep the complete
2541 -- assignment subtree consistent enough for Analyze_Assignment
2542 -- to proceed (specifically, the original Lhs node must still
2543 -- have an assignment statement as its parent).
2545 -- We cannot rely on Original_Node to go back from the block
2546 -- node to the assignment node, because the assignment might
2547 -- already be a rewrite substitution.
2549 Discard_Node (Relocate_Node (Original_Assignment));
2550 Rewrite (Original_Assignment, Blk);
2551 end;
2553 elsif Nkind (Parent (N)) = N_Object_Declaration then
2555 -- A call to a function which returns an unconstrained type
2556 -- found in the expression initializing an object-declaration is
2557 -- expanded into a procedure call which must be added after the
2558 -- object declaration.
2560 if Is_Unc_Decl and Back_End_Inlining then
2561 Insert_Action_After (Parent (N), Blk);
2562 else
2563 Set_Expression (Parent (N), Empty);
2564 Insert_After (Parent (N), Blk);
2565 end if;
2567 elsif Is_Unc and then not Back_End_Inlining then
2568 Insert_Before (Parent (N), Blk);
2569 end if;
2570 end Rewrite_Function_Call;
2572 ----------------------------
2573 -- Rewrite_Procedure_Call --
2574 ----------------------------
2576 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2577 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2579 begin
2580 -- If there is a transient scope for N, this will be the scope of the
2581 -- actions for N, and the statements in Blk need to be within this
2582 -- scope. For example, they need to have visibility on the constant
2583 -- declarations created for the formals.
2585 -- If N needs no transient scope, and if there are no declarations in
2586 -- the inlined body, we can do a little optimization and insert the
2587 -- statements for the body directly after N, and rewrite N to a
2588 -- null statement, instead of rewriting N into a full-blown block
2589 -- statement.
2591 if not Scope_Is_Transient
2592 and then Is_Empty_List (Declarations (Blk))
2593 then
2594 Insert_List_After (N, Statements (HSS));
2595 Rewrite (N, Make_Null_Statement (Loc));
2596 else
2597 Rewrite (N, Blk);
2598 end if;
2599 end Rewrite_Procedure_Call;
2601 -------------------------
2602 -- Formal_Is_Used_Once --
2603 -------------------------
2605 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2606 Use_Counter : Int := 0;
2608 function Count_Uses (N : Node_Id) return Traverse_Result;
2609 -- Traverse the tree and count the uses of the formal parameter.
2610 -- In this case, for optimization purposes, we do not need to
2611 -- continue the traversal once more than one use is encountered.
2613 ----------------
2614 -- Count_Uses --
2615 ----------------
2617 function Count_Uses (N : Node_Id) return Traverse_Result is
2618 begin
2619 -- The original node is an identifier
2621 if Nkind (N) = N_Identifier
2622 and then Present (Entity (N))
2624 -- Original node's entity points to the one in the copied body
2626 and then Nkind (Entity (N)) = N_Identifier
2627 and then Present (Entity (Entity (N)))
2629 -- The entity of the copied node is the formal parameter
2631 and then Entity (Entity (N)) = Formal
2632 then
2633 Use_Counter := Use_Counter + 1;
2635 if Use_Counter > 1 then
2637 -- Denote more than one use and abandon the traversal
2639 Use_Counter := 2;
2640 return Abandon;
2642 end if;
2643 end if;
2645 return OK;
2646 end Count_Uses;
2648 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2650 -- Start of processing for Formal_Is_Used_Once
2652 begin
2653 Count_Formal_Uses (Orig_Bod);
2654 return Use_Counter = 1;
2655 end Formal_Is_Used_Once;
2657 -- Start of processing for Expand_Inlined_Call
2659 begin
2660 -- Initializations for old/new semantics
2662 if not Back_End_Inlining then
2663 Is_Unc := Is_Array_Type (Etype (Subp))
2664 and then not Is_Constrained (Etype (Subp));
2665 Is_Unc_Decl := False;
2666 else
2667 Is_Unc := Returns_Unconstrained_Type (Subp)
2668 and then Optimization_Level > 0;
2669 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2670 and then Is_Unc;
2671 end if;
2673 -- Check for an illegal attempt to inline a recursive procedure. If the
2674 -- subprogram has parameters this is detected when trying to supply a
2675 -- binding for parameters that already have one. For parameterless
2676 -- subprograms this must be done explicitly.
2678 if In_Open_Scopes (Subp) then
2679 Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
2680 Set_Is_Inlined (Subp, False);
2682 -- In GNATprove mode, issue a warning, and indicate that the
2683 -- subprogram is not always inlined by setting flag Is_Inlined_Always
2684 -- to False.
2686 if GNATprove_Mode then
2687 Set_Is_Inlined_Always (Subp, False);
2688 end if;
2690 return;
2692 -- Skip inlining if this is not a true inlining since the attribute
2693 -- Body_To_Inline is also set for renamings (see sinfo.ads)
2695 elsif Nkind (Orig_Bod) in N_Entity then
2696 return;
2698 -- Skip inlining if the function returns an unconstrained type using
2699 -- an extended return statement since this part of the new inlining
2700 -- model which is not yet supported by the current implementation. ???
2702 elsif Is_Unc
2703 and then
2704 Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
2705 = N_Extended_Return_Statement
2706 and then not Back_End_Inlining
2707 then
2708 return;
2709 end if;
2711 if Nkind (Orig_Bod) = N_Defining_Identifier
2712 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2713 then
2714 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2715 -- can be replaced with calls to the renamed entity directly, because
2716 -- the subprograms are subtype conformant. If the renamed subprogram
2717 -- is an inherited operation, we must redo the expansion because
2718 -- implicit conversions may be needed. Similarly, if the renamed
2719 -- entity is inlined, expand the call for further optimizations.
2721 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2723 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2724 Expand_Call (N);
2725 end if;
2727 return;
2728 end if;
2730 -- Register the call in the list of inlined calls
2732 Append_New_Elmt (N, To => Inlined_Calls);
2734 -- Use generic machinery to copy body of inlined subprogram, as if it
2735 -- were an instantiation, resetting source locations appropriately, so
2736 -- that nested inlined calls appear in the main unit.
2738 Save_Env (Subp, Empty);
2739 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2741 -- Old semantics
2743 if not Back_End_Inlining then
2744 declare
2745 Bod : Node_Id;
2747 begin
2748 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2749 Blk :=
2750 Make_Block_Statement (Loc,
2751 Declarations => Declarations (Bod),
2752 Handled_Statement_Sequence =>
2753 Handled_Statement_Sequence (Bod));
2755 if No (Declarations (Bod)) then
2756 Set_Declarations (Blk, New_List);
2757 end if;
2759 -- For the unconstrained case, capture the name of the local
2760 -- variable that holds the result. This must be the first
2761 -- declaration in the block, because its bounds cannot depend
2762 -- on local variables. Otherwise there is no way to declare the
2763 -- result outside of the block. Needless to say, in general the
2764 -- bounds will depend on the actuals in the call.
2766 -- If the context is an assignment statement, as is the case
2767 -- for the expansion of an extended return, the left-hand side
2768 -- provides bounds even if the return type is unconstrained.
2770 if Is_Unc then
2771 declare
2772 First_Decl : Node_Id;
2774 begin
2775 First_Decl := First (Declarations (Blk));
2777 if Nkind (First_Decl) /= N_Object_Declaration then
2778 return;
2779 end if;
2781 if Nkind (Parent (N)) /= N_Assignment_Statement then
2782 Targ1 := Defining_Identifier (First_Decl);
2783 else
2784 Targ1 := Name (Parent (N));
2785 end if;
2786 end;
2787 end if;
2788 end;
2790 -- New semantics
2792 else
2793 declare
2794 Bod : Node_Id;
2796 begin
2797 -- General case
2799 if not Is_Unc then
2800 Bod :=
2801 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2802 Blk :=
2803 Make_Block_Statement (Loc,
2804 Declarations => Declarations (Bod),
2805 Handled_Statement_Sequence =>
2806 Handled_Statement_Sequence (Bod));
2808 -- Inline a call to a function that returns an unconstrained type.
2809 -- The semantic analyzer checked that frontend-inlined functions
2810 -- returning unconstrained types have no declarations and have
2811 -- a single extended return statement. As part of its processing
2812 -- the function was split in two subprograms: a procedure P and
2813 -- a function F that has a block with a call to procedure P (see
2814 -- Split_Unconstrained_Function).
2816 else
2817 pragma Assert
2818 (Nkind
2819 (First
2820 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2821 N_Block_Statement);
2823 declare
2824 Blk_Stmt : constant Node_Id :=
2825 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2826 First_Stmt : constant Node_Id :=
2827 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2828 Second_Stmt : constant Node_Id := Next (First_Stmt);
2830 begin
2831 pragma Assert
2832 (Nkind (First_Stmt) = N_Procedure_Call_Statement
2833 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
2834 and then No (Next (Second_Stmt)));
2836 Bod :=
2837 Copy_Generic_Node
2838 (First
2839 (Statements (Handled_Statement_Sequence (Orig_Bod))),
2840 Empty, Instantiating => True);
2841 Blk := Bod;
2843 -- Capture the name of the local variable that holds the
2844 -- result. This must be the first declaration in the block,
2845 -- because its bounds cannot depend on local variables.
2846 -- Otherwise there is no way to declare the result outside
2847 -- of the block. Needless to say, in general the bounds will
2848 -- depend on the actuals in the call.
2850 if Nkind (Parent (N)) /= N_Assignment_Statement then
2851 Targ1 := Defining_Identifier (First (Declarations (Blk)));
2853 -- If the context is an assignment statement, as is the case
2854 -- for the expansion of an extended return, the left-hand
2855 -- side provides bounds even if the return type is
2856 -- unconstrained.
2858 else
2859 Targ1 := Name (Parent (N));
2860 end if;
2861 end;
2862 end if;
2864 if No (Declarations (Bod)) then
2865 Set_Declarations (Blk, New_List);
2866 end if;
2867 end;
2868 end if;
2870 -- If this is a derived function, establish the proper return type
2872 if Present (Orig_Subp) and then Orig_Subp /= Subp then
2873 Ret_Type := Etype (Orig_Subp);
2874 else
2875 Ret_Type := Etype (Subp);
2876 end if;
2878 -- Create temporaries for the actuals that are expressions, or that are
2879 -- scalars and require copying to preserve semantics.
2881 F := First_Formal (Subp);
2882 A := First_Actual (N);
2883 while Present (F) loop
2884 if Present (Renamed_Object (F)) then
2886 -- If expander is active, it is an error to try to inline a
2887 -- recursive program. In GNATprove mode, just indicate that the
2888 -- inlining will not happen, and mark the subprogram as not always
2889 -- inlined.
2891 if GNATprove_Mode then
2892 Cannot_Inline
2893 ("cannot inline call to recursive subprogram?", N, Subp);
2894 Set_Is_Inlined_Always (Subp, False);
2895 else
2896 Error_Msg_N
2897 ("cannot inline call to recursive subprogram", N);
2898 end if;
2900 return;
2901 end if;
2903 -- Reset Last_Assignment for any parameters of mode out or in out, to
2904 -- prevent spurious warnings about overwriting for assignments to the
2905 -- formal in the inlined code.
2907 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2908 Set_Last_Assignment (Entity (A), Empty);
2909 end if;
2911 -- If the argument may be a controlling argument in a call within
2912 -- the inlined body, we must preserve its classwide nature to insure
2913 -- that dynamic dispatching take place subsequently. If the formal
2914 -- has a constraint it must be preserved to retain the semantics of
2915 -- the body.
2917 if Is_Class_Wide_Type (Etype (F))
2918 or else (Is_Access_Type (Etype (F))
2919 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
2920 then
2921 Temp_Typ := Etype (F);
2923 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
2924 and then Etype (F) /= Base_Type (Etype (F))
2925 then
2926 Temp_Typ := Etype (F);
2927 else
2928 Temp_Typ := Etype (A);
2929 end if;
2931 -- If the actual is a simple name or a literal, no need to
2932 -- create a temporary, object can be used directly.
2934 -- If the actual is a literal and the formal has its address taken,
2935 -- we cannot pass the literal itself as an argument, so its value
2936 -- must be captured in a temporary.
2938 if (Is_Entity_Name (A)
2939 and then
2940 (not Is_Scalar_Type (Etype (A))
2941 or else Ekind (Entity (A)) = E_Enumeration_Literal))
2943 -- When the actual is an identifier and the corresponding formal is
2944 -- used only once in the original body, the formal can be substituted
2945 -- directly with the actual parameter.
2947 or else (Nkind (A) = N_Identifier
2948 and then Formal_Is_Used_Once (F))
2950 or else
2951 (Nkind_In (A, N_Real_Literal,
2952 N_Integer_Literal,
2953 N_Character_Literal)
2954 and then not Address_Taken (F))
2955 then
2956 if Etype (F) /= Etype (A) then
2957 Set_Renamed_Object
2958 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
2959 else
2960 Set_Renamed_Object (F, A);
2961 end if;
2963 else
2964 Temp := Make_Temporary (Loc, 'C');
2966 -- If the actual for an in/in-out parameter is a view conversion,
2967 -- make it into an unchecked conversion, given that an untagged
2968 -- type conversion is not a proper object for a renaming.
2970 -- In-out conversions that involve real conversions have already
2971 -- been transformed in Expand_Actuals.
2973 if Nkind (A) = N_Type_Conversion
2974 and then Ekind (F) /= E_In_Parameter
2975 then
2976 New_A :=
2977 Make_Unchecked_Type_Conversion (Loc,
2978 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
2979 Expression => Relocate_Node (Expression (A)));
2981 elsif Etype (F) /= Etype (A) then
2982 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
2983 Temp_Typ := Etype (F);
2985 else
2986 New_A := Relocate_Node (A);
2987 end if;
2989 Set_Sloc (New_A, Sloc (N));
2991 -- If the actual has a by-reference type, it cannot be copied,
2992 -- so its value is captured in a renaming declaration. Otherwise
2993 -- declare a local constant initialized with the actual.
2995 -- We also use a renaming declaration for expressions of an array
2996 -- type that is not bit-packed, both for efficiency reasons and to
2997 -- respect the semantics of the call: in most cases the original
2998 -- call will pass the parameter by reference, and thus the inlined
2999 -- code will have the same semantics.
3001 -- Finally, we need a renaming declaration in the case of limited
3002 -- types for which initialization cannot be by copy either.
3004 if Ekind (F) = E_In_Parameter
3005 and then not Is_By_Reference_Type (Etype (A))
3006 and then not Is_Limited_Type (Etype (A))
3007 and then
3008 (not Is_Array_Type (Etype (A))
3009 or else not Is_Object_Reference (A)
3010 or else Is_Bit_Packed_Array (Etype (A)))
3011 then
3012 Decl :=
3013 Make_Object_Declaration (Loc,
3014 Defining_Identifier => Temp,
3015 Constant_Present => True,
3016 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3017 Expression => New_A);
3018 else
3019 Decl :=
3020 Make_Object_Renaming_Declaration (Loc,
3021 Defining_Identifier => Temp,
3022 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3023 Name => New_A);
3024 end if;
3026 Append (Decl, Decls);
3027 Set_Renamed_Object (F, Temp);
3028 end if;
3030 Next_Formal (F);
3031 Next_Actual (A);
3032 end loop;
3034 -- Establish target of function call. If context is not assignment or
3035 -- declaration, create a temporary as a target. The declaration for the
3036 -- temporary may be subsequently optimized away if the body is a single
3037 -- expression, or if the left-hand side of the assignment is simple
3038 -- enough, i.e. an entity or an explicit dereference of one.
3040 if Ekind (Subp) = E_Function then
3041 if Nkind (Parent (N)) = N_Assignment_Statement
3042 and then Is_Entity_Name (Name (Parent (N)))
3043 then
3044 Targ := Name (Parent (N));
3046 elsif Nkind (Parent (N)) = N_Assignment_Statement
3047 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3048 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3049 then
3050 Targ := Name (Parent (N));
3052 elsif Nkind (Parent (N)) = N_Assignment_Statement
3053 and then Nkind (Name (Parent (N))) = N_Selected_Component
3054 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3055 then
3056 Targ := New_Copy_Tree (Name (Parent (N)));
3058 elsif Nkind (Parent (N)) = N_Object_Declaration
3059 and then Is_Limited_Type (Etype (Subp))
3060 then
3061 Targ := Defining_Identifier (Parent (N));
3063 -- New semantics: In an object declaration avoid an extra copy
3064 -- of the result of a call to an inlined function that returns
3065 -- an unconstrained type
3067 elsif Back_End_Inlining
3068 and then Nkind (Parent (N)) = N_Object_Declaration
3069 and then Is_Unc
3070 then
3071 Targ := Defining_Identifier (Parent (N));
3073 else
3074 -- Replace call with temporary and create its declaration
3076 Temp := Make_Temporary (Loc, 'C');
3077 Set_Is_Internal (Temp);
3079 -- For the unconstrained case, the generated temporary has the
3080 -- same constrained declaration as the result variable. It may
3081 -- eventually be possible to remove that temporary and use the
3082 -- result variable directly.
3084 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3085 then
3086 Decl :=
3087 Make_Object_Declaration (Loc,
3088 Defining_Identifier => Temp,
3089 Object_Definition =>
3090 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3092 Replace_Formals (Decl);
3094 else
3095 Decl :=
3096 Make_Object_Declaration (Loc,
3097 Defining_Identifier => Temp,
3098 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
3100 Set_Etype (Temp, Ret_Type);
3101 end if;
3103 Set_No_Initialization (Decl);
3104 Append (Decl, Decls);
3105 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3106 Targ := Temp;
3107 end if;
3108 end if;
3110 Insert_Actions (N, Decls);
3112 if Is_Unc_Decl then
3114 -- Special management for inlining a call to a function that returns
3115 -- an unconstrained type and initializes an object declaration: we
3116 -- avoid generating undesired extra calls and goto statements.
3118 -- Given:
3119 -- function Func (...) return ...
3120 -- begin
3121 -- declare
3122 -- Result : String (1 .. 4);
3123 -- begin
3124 -- Proc (Result, ...);
3125 -- return Result;
3126 -- end;
3127 -- end F;
3129 -- Result : String := Func (...);
3131 -- Replace this object declaration by:
3133 -- Result : String (1 .. 4);
3134 -- Proc (Result, ...);
3136 Remove_Homonym (Targ);
3138 Decl :=
3139 Make_Object_Declaration
3140 (Loc,
3141 Defining_Identifier => Targ,
3142 Object_Definition =>
3143 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3144 Replace_Formals (Decl);
3145 Rewrite (Parent (N), Decl);
3146 Analyze (Parent (N));
3148 -- Avoid spurious warnings since we know that this declaration is
3149 -- referenced by the procedure call.
3151 Set_Never_Set_In_Source (Targ, False);
3153 -- Remove the local declaration of the extended return stmt from the
3154 -- inlined code
3156 Remove (Parent (Targ1));
3158 -- Update the reference to the result (since we have rewriten the
3159 -- object declaration)
3161 declare
3162 Blk_Call_Stmt : Node_Id;
3164 begin
3165 -- Capture the call to the procedure
3167 Blk_Call_Stmt :=
3168 First (Statements (Handled_Statement_Sequence (Blk)));
3169 pragma Assert
3170 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3172 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3173 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3174 New_Occurrence_Of (Targ, Loc));
3175 end;
3177 -- Remove the return statement
3179 pragma Assert
3180 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3181 N_Simple_Return_Statement);
3183 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3184 end if;
3186 -- Traverse the tree and replace formals with actuals or their thunks.
3187 -- Attach block to tree before analysis and rewriting.
3189 Replace_Formals (Blk);
3190 Set_Parent (Blk, N);
3192 if GNATprove_Mode then
3193 null;
3195 elsif not Comes_From_Source (Subp) or else Is_Predef then
3196 Reset_Slocs (Blk);
3197 end if;
3199 if Is_Unc_Decl then
3201 -- No action needed since return statement has been already removed
3203 null;
3205 elsif Present (Exit_Lab) then
3207 -- If the body was a single expression, the single return statement
3208 -- and the corresponding label are useless.
3210 if Num_Ret = 1
3211 and then
3212 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3213 N_Goto_Statement
3214 then
3215 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3216 else
3217 Append (Lab_Decl, (Declarations (Blk)));
3218 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3219 end if;
3220 end if;
3222 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3223 -- on conflicting private views that Gigi would ignore. If this is a
3224 -- predefined unit, analyze with checks off, as is done in the non-
3225 -- inlined run-time units.
3227 declare
3228 I_Flag : constant Boolean := In_Inlined_Body;
3230 begin
3231 In_Inlined_Body := True;
3233 if Is_Predef then
3234 declare
3235 Style : constant Boolean := Style_Check;
3237 begin
3238 Style_Check := False;
3240 -- Search for dispatching calls that use the Object.Operation
3241 -- notation using an Object that is a parameter of the inlined
3242 -- function. We reset the decoration of Operation to force
3243 -- the reanalysis of the inlined dispatching call because
3244 -- the actual object has been inlined.
3246 Reset_Dispatching_Calls (Blk);
3248 Analyze (Blk, Suppress => All_Checks);
3249 Style_Check := Style;
3250 end;
3252 else
3253 Analyze (Blk);
3254 end if;
3256 In_Inlined_Body := I_Flag;
3257 end;
3259 if Ekind (Subp) = E_Procedure then
3260 Rewrite_Procedure_Call (N, Blk);
3262 else
3263 Rewrite_Function_Call (N, Blk);
3265 if Is_Unc_Decl then
3266 null;
3268 -- For the unconstrained case, the replacement of the call has been
3269 -- made prior to the complete analysis of the generated declarations.
3270 -- Propagate the proper type now.
3272 elsif Is_Unc then
3273 if Nkind (N) = N_Identifier then
3274 Set_Etype (N, Etype (Entity (N)));
3275 else
3276 Set_Etype (N, Etype (Targ1));
3277 end if;
3278 end if;
3279 end if;
3281 Restore_Env;
3283 -- Cleanup mapping between formals and actuals for other expansions
3285 F := First_Formal (Subp);
3286 while Present (F) loop
3287 Set_Renamed_Object (F, Empty);
3288 Next_Formal (F);
3289 end loop;
3290 end Expand_Inlined_Call;
3292 --------------------------
3293 -- Get_Code_Unit_Entity --
3294 --------------------------
3296 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3297 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3299 begin
3300 if Ekind (Unit) = E_Package_Body then
3301 Unit := Spec_Entity (Unit);
3302 end if;
3304 return Unit;
3305 end Get_Code_Unit_Entity;
3307 ------------------------------
3308 -- Has_Excluded_Declaration --
3309 ------------------------------
3311 function Has_Excluded_Declaration
3312 (Subp : Entity_Id;
3313 Decls : List_Id) return Boolean
3315 D : Node_Id;
3317 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3318 -- Nested subprograms make a given body ineligible for inlining, but
3319 -- we make an exception for instantiations of unchecked conversion.
3320 -- The body has not been analyzed yet, so check the name, and verify
3321 -- that the visible entity with that name is the predefined unit.
3323 -----------------------------
3324 -- Is_Unchecked_Conversion --
3325 -----------------------------
3327 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3328 Id : constant Node_Id := Name (D);
3329 Conv : Entity_Id;
3331 begin
3332 if Nkind (Id) = N_Identifier
3333 and then Chars (Id) = Name_Unchecked_Conversion
3334 then
3335 Conv := Current_Entity (Id);
3337 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3338 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3339 then
3340 Conv := Current_Entity (Selector_Name (Id));
3341 else
3342 return False;
3343 end if;
3345 return Present (Conv)
3346 and then Is_Predefined_File_Name
3347 (Unit_File_Name (Get_Source_Unit (Conv)))
3348 and then Is_Intrinsic_Subprogram (Conv);
3349 end Is_Unchecked_Conversion;
3351 -- Start of processing for Has_Excluded_Declaration
3353 begin
3354 -- No action needed if the check is not needed
3356 if not Check_Inlining_Restrictions then
3357 return False;
3358 end if;
3360 D := First (Decls);
3361 while Present (D) loop
3362 if Nkind (D) = N_Subprogram_Body then
3363 Cannot_Inline
3364 ("cannot inline & (nested subprogram)?",
3365 D, Subp);
3366 return True;
3368 elsif Nkind (D) = N_Task_Type_Declaration
3369 or else Nkind (D) = N_Single_Task_Declaration
3370 then
3371 Cannot_Inline
3372 ("cannot inline & (nested task type declaration)?",
3373 D, Subp);
3374 return True;
3376 elsif Nkind (D) = N_Protected_Type_Declaration
3377 or else Nkind (D) = N_Single_Protected_Declaration
3378 then
3379 Cannot_Inline
3380 ("cannot inline & (nested protected type declaration)?",
3381 D, Subp);
3382 return True;
3384 elsif Nkind (D) = N_Package_Declaration then
3385 Cannot_Inline
3386 ("cannot inline & (nested package declaration)?",
3387 D, Subp);
3388 return True;
3390 elsif Nkind (D) = N_Function_Instantiation
3391 and then not Is_Unchecked_Conversion (D)
3392 then
3393 Cannot_Inline
3394 ("cannot inline & (nested function instantiation)?",
3395 D, Subp);
3396 return True;
3398 elsif Nkind (D) = N_Procedure_Instantiation then
3399 Cannot_Inline
3400 ("cannot inline & (nested procedure instantiation)?",
3401 D, Subp);
3402 return True;
3404 elsif Nkind (D) = N_Package_Instantiation then
3405 Cannot_Inline
3406 ("cannot inline & (nested package instantiation)?",
3407 D, Subp);
3408 return True;
3409 end if;
3411 Next (D);
3412 end loop;
3414 return False;
3415 end Has_Excluded_Declaration;
3417 ----------------------------
3418 -- Has_Excluded_Statement --
3419 ----------------------------
3421 function Has_Excluded_Statement
3422 (Subp : Entity_Id;
3423 Stats : List_Id) return Boolean
3425 S : Node_Id;
3426 E : Node_Id;
3428 begin
3429 -- No action needed if the check is not needed
3431 if not Check_Inlining_Restrictions then
3432 return False;
3433 end if;
3435 S := First (Stats);
3436 while Present (S) loop
3437 if Nkind_In (S, N_Abort_Statement,
3438 N_Asynchronous_Select,
3439 N_Conditional_Entry_Call,
3440 N_Delay_Relative_Statement,
3441 N_Delay_Until_Statement,
3442 N_Selective_Accept,
3443 N_Timed_Entry_Call)
3444 then
3445 Cannot_Inline
3446 ("cannot inline & (non-allowed statement)?", S, Subp);
3447 return True;
3449 elsif Nkind (S) = N_Block_Statement then
3450 if Present (Declarations (S))
3451 and then Has_Excluded_Declaration (Subp, Declarations (S))
3452 then
3453 return True;
3455 elsif Present (Handled_Statement_Sequence (S)) then
3456 if not Back_End_Inlining
3457 and then
3458 Present
3459 (Exception_Handlers (Handled_Statement_Sequence (S)))
3460 then
3461 Cannot_Inline
3462 ("cannot inline& (exception handler)?",
3463 First (Exception_Handlers
3464 (Handled_Statement_Sequence (S))),
3465 Subp);
3466 return True;
3468 elsif Has_Excluded_Statement
3469 (Subp, Statements (Handled_Statement_Sequence (S)))
3470 then
3471 return True;
3472 end if;
3473 end if;
3475 elsif Nkind (S) = N_Case_Statement then
3476 E := First (Alternatives (S));
3477 while Present (E) loop
3478 if Has_Excluded_Statement (Subp, Statements (E)) then
3479 return True;
3480 end if;
3482 Next (E);
3483 end loop;
3485 elsif Nkind (S) = N_If_Statement then
3486 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3487 return True;
3488 end if;
3490 if Present (Elsif_Parts (S)) then
3491 E := First (Elsif_Parts (S));
3492 while Present (E) loop
3493 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3494 return True;
3495 end if;
3497 Next (E);
3498 end loop;
3499 end if;
3501 if Present (Else_Statements (S))
3502 and then Has_Excluded_Statement (Subp, Else_Statements (S))
3503 then
3504 return True;
3505 end if;
3507 elsif Nkind (S) = N_Loop_Statement
3508 and then Has_Excluded_Statement (Subp, Statements (S))
3509 then
3510 return True;
3512 elsif Nkind (S) = N_Extended_Return_Statement then
3513 if Present (Handled_Statement_Sequence (S))
3514 and then
3515 Has_Excluded_Statement
3516 (Subp, Statements (Handled_Statement_Sequence (S)))
3517 then
3518 return True;
3520 elsif not Back_End_Inlining
3521 and then Present (Handled_Statement_Sequence (S))
3522 and then
3523 Present (Exception_Handlers
3524 (Handled_Statement_Sequence (S)))
3525 then
3526 Cannot_Inline
3527 ("cannot inline& (exception handler)?",
3528 First (Exception_Handlers (Handled_Statement_Sequence (S))),
3529 Subp);
3530 return True;
3531 end if;
3532 end if;
3534 Next (S);
3535 end loop;
3537 return False;
3538 end Has_Excluded_Statement;
3540 --------------------------
3541 -- Has_Initialized_Type --
3542 --------------------------
3544 function Has_Initialized_Type (E : Entity_Id) return Boolean is
3545 E_Body : constant Node_Id := Get_Subprogram_Body (E);
3546 Decl : Node_Id;
3548 begin
3549 if No (E_Body) then -- imported subprogram
3550 return False;
3552 else
3553 Decl := First (Declarations (E_Body));
3554 while Present (Decl) loop
3555 if Nkind (Decl) = N_Full_Type_Declaration
3556 and then Present (Init_Proc (Defining_Identifier (Decl)))
3557 then
3558 return True;
3559 end if;
3561 Next (Decl);
3562 end loop;
3563 end if;
3565 return False;
3566 end Has_Initialized_Type;
3568 -----------------------
3569 -- Has_Single_Return --
3570 -----------------------
3572 function Has_Single_Return (N : Node_Id) return Boolean is
3573 Return_Statement : Node_Id := Empty;
3575 function Check_Return (N : Node_Id) return Traverse_Result;
3577 ------------------
3578 -- Check_Return --
3579 ------------------
3581 function Check_Return (N : Node_Id) return Traverse_Result is
3582 begin
3583 if Nkind (N) = N_Simple_Return_Statement then
3584 if Present (Expression (N))
3585 and then Is_Entity_Name (Expression (N))
3586 then
3587 if No (Return_Statement) then
3588 Return_Statement := N;
3589 return OK;
3591 elsif Chars (Expression (N)) =
3592 Chars (Expression (Return_Statement))
3593 then
3594 return OK;
3596 else
3597 return Abandon;
3598 end if;
3600 -- A return statement within an extended return is a noop
3601 -- after inlining.
3603 elsif No (Expression (N))
3604 and then
3605 Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3606 then
3607 return OK;
3609 else
3610 -- Expression has wrong form
3612 return Abandon;
3613 end if;
3615 -- We can only inline a build-in-place function if it has a single
3616 -- extended return.
3618 elsif Nkind (N) = N_Extended_Return_Statement then
3619 if No (Return_Statement) then
3620 Return_Statement := N;
3621 return OK;
3623 else
3624 return Abandon;
3625 end if;
3627 else
3628 return OK;
3629 end if;
3630 end Check_Return;
3632 function Check_All_Returns is new Traverse_Func (Check_Return);
3634 -- Start of processing for Has_Single_Return
3636 begin
3637 if Check_All_Returns (N) /= OK then
3638 return False;
3640 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3641 return True;
3643 else
3644 return Present (Declarations (N))
3645 and then Present (First (Declarations (N)))
3646 and then Chars (Expression (Return_Statement)) =
3647 Chars (Defining_Identifier (First (Declarations (N))));
3648 end if;
3649 end Has_Single_Return;
3651 -----------------------------
3652 -- In_Main_Unit_Or_Subunit --
3653 -----------------------------
3655 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3656 Comp : Node_Id := Cunit (Get_Code_Unit (E));
3658 begin
3659 -- Check whether the subprogram or package to inline is within the main
3660 -- unit or its spec or within a subunit. In either case there are no
3661 -- additional bodies to process. If the subprogram appears in a parent
3662 -- of the current unit, the check on whether inlining is possible is
3663 -- done in Analyze_Inlined_Bodies.
3665 while Nkind (Unit (Comp)) = N_Subunit loop
3666 Comp := Library_Unit (Comp);
3667 end loop;
3669 return Comp = Cunit (Main_Unit)
3670 or else Comp = Library_Unit (Cunit (Main_Unit));
3671 end In_Main_Unit_Or_Subunit;
3673 ----------------
3674 -- Initialize --
3675 ----------------
3677 procedure Initialize is
3678 begin
3679 Pending_Descriptor.Init;
3680 Pending_Instantiations.Init;
3681 Inlined_Bodies.Init;
3682 Successors.Init;
3683 Inlined.Init;
3685 for J in Hash_Headers'Range loop
3686 Hash_Headers (J) := No_Subp;
3687 end loop;
3689 Inlined_Calls := No_Elist;
3690 Backend_Calls := No_Elist;
3691 Backend_Inlined_Subps := No_Elist;
3692 Backend_Not_Inlined_Subps := No_Elist;
3693 end Initialize;
3695 ------------------------
3696 -- Instantiate_Bodies --
3697 ------------------------
3699 -- Generic bodies contain all the non-local references, so an
3700 -- instantiation does not need any more context than Standard
3701 -- itself, even if the instantiation appears in an inner scope.
3702 -- Generic associations have verified that the contract model is
3703 -- satisfied, so that any error that may occur in the analysis of
3704 -- the body is an internal error.
3706 procedure Instantiate_Bodies is
3707 J : Int;
3708 Info : Pending_Body_Info;
3710 begin
3711 if Serious_Errors_Detected = 0 then
3712 Expander_Active := (Operating_Mode = Opt.Generate_Code);
3713 Push_Scope (Standard_Standard);
3714 To_Clean := New_Elmt_List;
3716 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3717 Start_Generic;
3718 end if;
3720 -- A body instantiation may generate additional instantiations, so
3721 -- the following loop must scan to the end of a possibly expanding
3722 -- set (that's why we can't simply use a FOR loop here).
3724 J := 0;
3725 while J <= Pending_Instantiations.Last
3726 and then Serious_Errors_Detected = 0
3727 loop
3728 Info := Pending_Instantiations.Table (J);
3730 -- If the instantiation node is absent, it has been removed
3731 -- as part of unreachable code.
3733 if No (Info.Inst_Node) then
3734 null;
3736 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3737 Instantiate_Package_Body (Info);
3738 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3740 else
3741 Instantiate_Subprogram_Body (Info);
3742 end if;
3744 J := J + 1;
3745 end loop;
3747 -- Reset the table of instantiations. Additional instantiations
3748 -- may be added through inlining, when additional bodies are
3749 -- analyzed.
3751 Pending_Instantiations.Init;
3753 -- We can now complete the cleanup actions of scopes that contain
3754 -- pending instantiations (skipped for generic units, since we
3755 -- never need any cleanups in generic units).
3756 -- pending instantiations.
3758 if Expander_Active
3759 and then not Is_Generic_Unit (Main_Unit_Entity)
3760 then
3761 Cleanup_Scopes;
3762 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3763 End_Generic;
3764 end if;
3766 Pop_Scope;
3767 end if;
3768 end Instantiate_Bodies;
3770 ---------------
3771 -- Is_Nested --
3772 ---------------
3774 function Is_Nested (E : Entity_Id) return Boolean is
3775 Scop : Entity_Id;
3777 begin
3778 Scop := Scope (E);
3779 while Scop /= Standard_Standard loop
3780 if Ekind (Scop) in Subprogram_Kind then
3781 return True;
3783 elsif Ekind (Scop) = E_Task_Type
3784 or else Ekind (Scop) = E_Entry
3785 or else Ekind (Scop) = E_Entry_Family
3786 then
3787 return True;
3788 end if;
3790 Scop := Scope (Scop);
3791 end loop;
3793 return False;
3794 end Is_Nested;
3796 ------------------------
3797 -- List_Inlining_Info --
3798 ------------------------
3800 procedure List_Inlining_Info is
3801 Elmt : Elmt_Id;
3802 Nod : Node_Id;
3803 Count : Nat;
3805 begin
3806 if not Debug_Flag_Dot_J then
3807 return;
3808 end if;
3810 -- Generate listing of calls inlined by the frontend
3812 if Present (Inlined_Calls) then
3813 Count := 0;
3814 Elmt := First_Elmt (Inlined_Calls);
3815 while Present (Elmt) loop
3816 Nod := Node (Elmt);
3818 if In_Extended_Main_Code_Unit (Nod) then
3819 Count := Count + 1;
3821 if Count = 1 then
3822 Write_Str ("List of calls inlined by the frontend");
3823 Write_Eol;
3824 end if;
3826 Write_Str (" ");
3827 Write_Int (Count);
3828 Write_Str (":");
3829 Write_Location (Sloc (Nod));
3830 Write_Str (":");
3831 Output.Write_Eol;
3832 end if;
3834 Next_Elmt (Elmt);
3835 end loop;
3836 end if;
3838 -- Generate listing of calls passed to the backend
3840 if Present (Backend_Calls) then
3841 Count := 0;
3843 Elmt := First_Elmt (Backend_Calls);
3844 while Present (Elmt) loop
3845 Nod := Node (Elmt);
3847 if In_Extended_Main_Code_Unit (Nod) then
3848 Count := Count + 1;
3850 if Count = 1 then
3851 Write_Str ("List of inlined calls passed to the backend");
3852 Write_Eol;
3853 end if;
3855 Write_Str (" ");
3856 Write_Int (Count);
3857 Write_Str (":");
3858 Write_Location (Sloc (Nod));
3859 Output.Write_Eol;
3860 end if;
3862 Next_Elmt (Elmt);
3863 end loop;
3864 end if;
3866 -- Generate listing of subprograms passed to the backend
3868 if Present (Backend_Inlined_Subps)
3869 and then Back_End_Inlining
3870 then
3871 Count := 0;
3873 Elmt := First_Elmt (Backend_Inlined_Subps);
3874 while Present (Elmt) loop
3875 Nod := Node (Elmt);
3877 Count := Count + 1;
3879 if Count = 1 then
3880 Write_Str
3881 ("List of inlined subprograms passed to the backend");
3882 Write_Eol;
3883 end if;
3885 Write_Str (" ");
3886 Write_Int (Count);
3887 Write_Str (":");
3888 Write_Name (Chars (Nod));
3889 Write_Str (" (");
3890 Write_Location (Sloc (Nod));
3891 Write_Str (")");
3892 Output.Write_Eol;
3894 Next_Elmt (Elmt);
3895 end loop;
3896 end if;
3898 -- Generate listing of subprograms that cannot be inlined by the backend
3900 if Present (Backend_Not_Inlined_Subps)
3901 and then Back_End_Inlining
3902 then
3903 Count := 0;
3905 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
3906 while Present (Elmt) loop
3907 Nod := Node (Elmt);
3909 Count := Count + 1;
3911 if Count = 1 then
3912 Write_Str
3913 ("List of subprograms that cannot be inlined by the backend");
3914 Write_Eol;
3915 end if;
3917 Write_Str (" ");
3918 Write_Int (Count);
3919 Write_Str (":");
3920 Write_Name (Chars (Nod));
3921 Write_Str (" (");
3922 Write_Location (Sloc (Nod));
3923 Write_Str (")");
3924 Output.Write_Eol;
3926 Next_Elmt (Elmt);
3927 end loop;
3928 end if;
3929 end List_Inlining_Info;
3931 ----------
3932 -- Lock --
3933 ----------
3935 procedure Lock is
3936 begin
3937 Pending_Instantiations.Locked := True;
3938 Inlined_Bodies.Locked := True;
3939 Successors.Locked := True;
3940 Inlined.Locked := True;
3941 Pending_Instantiations.Release;
3942 Inlined_Bodies.Release;
3943 Successors.Release;
3944 Inlined.Release;
3945 end Lock;
3947 ---------------------------
3948 -- Register_Backend_Call --
3949 ---------------------------
3951 procedure Register_Backend_Call (N : Node_Id) is
3952 begin
3953 Append_New_Elmt (N, To => Backend_Calls);
3954 end Register_Backend_Call;
3956 --------------------------
3957 -- Remove_Dead_Instance --
3958 --------------------------
3960 procedure Remove_Dead_Instance (N : Node_Id) is
3961 J : Int;
3963 begin
3964 J := 0;
3965 while J <= Pending_Instantiations.Last loop
3966 if Pending_Instantiations.Table (J).Inst_Node = N then
3967 Pending_Instantiations.Table (J).Inst_Node := Empty;
3968 return;
3969 end if;
3971 J := J + 1;
3972 end loop;
3973 end Remove_Dead_Instance;
3975 --------------------
3976 -- Remove_Pragmas --
3977 --------------------
3979 procedure Remove_Pragmas (Bod : Node_Id) is
3980 Decl : Node_Id;
3981 Nxt : Node_Id;
3983 begin
3984 Decl := First (Declarations (Bod));
3985 while Present (Decl) loop
3986 Nxt := Next (Decl);
3988 if Nkind (Decl) = N_Pragma
3989 and then Nam_In (Pragma_Name (Decl), Name_Contract_Cases,
3990 Name_Precondition,
3991 Name_Postcondition,
3992 Name_Unreferenced,
3993 Name_Unmodified)
3994 then
3995 Remove (Decl);
3996 end if;
3998 Decl := Nxt;
3999 end loop;
4000 end Remove_Pragmas;
4002 end Inline;