Use gfc_add_*_component defines where appropriate
[official-gcc.git] / gcc / hsa-gen.c
blobcf7d434bce406f554ce45d35033362f47765f9f5
1 /* A pass for lowering gimple to HSAIL
2 Copyright (C) 2013-2016 Free Software Foundation, Inc.
3 Contributed by Martin Jambor <mjambor@suse.cz> and
4 Martin Liska <mliska@suse.cz>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "is-a.h"
27 #include "hash-table.h"
28 #include "vec.h"
29 #include "tree.h"
30 #include "tree-pass.h"
31 #include "cfg.h"
32 #include "function.h"
33 #include "basic-block.h"
34 #include "fold-const.h"
35 #include "gimple.h"
36 #include "gimple-iterator.h"
37 #include "bitmap.h"
38 #include "dumpfile.h"
39 #include "gimple-pretty-print.h"
40 #include "diagnostic-core.h"
41 #include "alloc-pool.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
46 #include "tree-dfa.h"
47 #include "ssa-iterators.h"
48 #include "cgraph.h"
49 #include "print-tree.h"
50 #include "symbol-summary.h"
51 #include "hsa.h"
52 #include "cfghooks.h"
53 #include "tree-cfg.h"
54 #include "cfgloop.h"
55 #include "cfganal.h"
56 #include "builtins.h"
57 #include "params.h"
58 #include "gomp-constants.h"
59 #include "internal-fn.h"
60 #include "builtins.h"
61 #include "stor-layout.h"
63 /* Print a warning message and set that we have seen an error. */
65 #define HSA_SORRY_ATV(location, message, ...) \
66 do \
67 { \
68 hsa_fail_cfun (); \
69 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
70 HSA_SORRY_MSG)) \
71 inform (location, message, __VA_ARGS__); \
72 } \
73 while (false);
75 /* Same as previous, but highlight a location. */
77 #define HSA_SORRY_AT(location, message) \
78 do \
79 { \
80 hsa_fail_cfun (); \
81 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
82 HSA_SORRY_MSG)) \
83 inform (location, message); \
84 } \
85 while (false);
87 /* Default number of threads used by kernel dispatch. */
89 #define HSA_DEFAULT_NUM_THREADS 64
91 /* Following structures are defined in the final version
92 of HSA specification. */
94 /* HSA queue packet is shadow structure, originally provided by AMD. */
96 struct hsa_queue_packet
98 uint16_t header;
99 uint16_t setup;
100 uint16_t workgroup_size_x;
101 uint16_t workgroup_size_y;
102 uint16_t workgroup_size_z;
103 uint16_t reserved0;
104 uint32_t grid_size_x;
105 uint32_t grid_size_y;
106 uint32_t grid_size_z;
107 uint32_t private_segment_size;
108 uint32_t group_segment_size;
109 uint64_t kernel_object;
110 void *kernarg_address;
111 uint64_t reserved2;
112 uint64_t completion_signal;
115 /* HSA queue is shadow structure, originally provided by AMD. */
117 struct hsa_queue
119 int type;
120 uint32_t features;
121 void *base_address;
122 uint64_t doorbell_signal;
123 uint32_t size;
124 uint32_t reserved1;
125 uint64_t id;
128 /* Alloc pools for allocating basic hsa structures such as operands,
129 instructions and other basic entities. */
130 static object_allocator<hsa_op_address> *hsa_allocp_operand_address;
131 static object_allocator<hsa_op_immed> *hsa_allocp_operand_immed;
132 static object_allocator<hsa_op_reg> *hsa_allocp_operand_reg;
133 static object_allocator<hsa_op_code_list> *hsa_allocp_operand_code_list;
134 static object_allocator<hsa_op_operand_list> *hsa_allocp_operand_operand_list;
135 static object_allocator<hsa_insn_basic> *hsa_allocp_inst_basic;
136 static object_allocator<hsa_insn_phi> *hsa_allocp_inst_phi;
137 static object_allocator<hsa_insn_mem> *hsa_allocp_inst_mem;
138 static object_allocator<hsa_insn_atomic> *hsa_allocp_inst_atomic;
139 static object_allocator<hsa_insn_signal> *hsa_allocp_inst_signal;
140 static object_allocator<hsa_insn_seg> *hsa_allocp_inst_seg;
141 static object_allocator<hsa_insn_cmp> *hsa_allocp_inst_cmp;
142 static object_allocator<hsa_insn_br> *hsa_allocp_inst_br;
143 static object_allocator<hsa_insn_sbr> *hsa_allocp_inst_sbr;
144 static object_allocator<hsa_insn_call> *hsa_allocp_inst_call;
145 static object_allocator<hsa_insn_arg_block> *hsa_allocp_inst_arg_block;
146 static object_allocator<hsa_insn_comment> *hsa_allocp_inst_comment;
147 static object_allocator<hsa_insn_queue> *hsa_allocp_inst_queue;
148 static object_allocator<hsa_insn_srctype> *hsa_allocp_inst_srctype;
149 static object_allocator<hsa_insn_packed> *hsa_allocp_inst_packed;
150 static object_allocator<hsa_insn_cvt> *hsa_allocp_inst_cvt;
151 static object_allocator<hsa_insn_alloca> *hsa_allocp_inst_alloca;
152 static object_allocator<hsa_bb> *hsa_allocp_bb;
154 /* List of pointers to all instructions that come from an object allocator. */
155 static vec <hsa_insn_basic *> hsa_instructions;
157 /* List of pointers to all operands that come from an object allocator. */
158 static vec <hsa_op_base *> hsa_operands;
160 hsa_symbol::hsa_symbol ()
161 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
162 m_directive_offset (0), m_type (BRIG_TYPE_NONE),
163 m_segment (BRIG_SEGMENT_NONE), m_linkage (BRIG_LINKAGE_NONE), m_dim (0),
164 m_cst_value (NULL), m_global_scope_p (false), m_seen_error (false),
165 m_allocation (BRIG_ALLOCATION_AUTOMATIC), m_emitted_to_brig (false)
170 hsa_symbol::hsa_symbol (BrigType16_t type, BrigSegment8_t segment,
171 BrigLinkage8_t linkage, bool global_scope_p,
172 BrigAllocation allocation, BrigAlignment8_t align)
173 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
174 m_directive_offset (0), m_type (type), m_segment (segment),
175 m_linkage (linkage), m_dim (0), m_cst_value (NULL),
176 m_global_scope_p (global_scope_p), m_seen_error (false),
177 m_allocation (allocation), m_emitted_to_brig (false), m_align (align)
181 unsigned HOST_WIDE_INT
182 hsa_symbol::total_byte_size ()
184 unsigned HOST_WIDE_INT s
185 = hsa_type_bit_size (~BRIG_TYPE_ARRAY_MASK & m_type);
186 gcc_assert (s % BITS_PER_UNIT == 0);
187 s /= BITS_PER_UNIT;
189 if (m_dim)
190 s *= m_dim;
192 return s;
195 /* Forward declaration. */
197 static BrigType16_t
198 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p,
199 bool min32int);
201 void
202 hsa_symbol::fillup_for_decl (tree decl)
204 m_decl = decl;
205 m_type = hsa_type_for_tree_type (TREE_TYPE (decl), &m_dim, false);
206 if (hsa_seen_error ())
208 m_seen_error = true;
209 return;
212 m_align = MAX (m_align, hsa_natural_alignment (m_type));
215 /* Constructor of class representing global HSA function/kernel information and
216 state. FNDECL is function declaration, KERNEL_P is true if the function
217 is going to become a HSA kernel. If the function has body, SSA_NAMES_COUNT
218 should be set to number of SSA names used in the function.
219 MODIFIED_CFG is set to true in case we modified control-flow graph
220 of the function. */
222 hsa_function_representation::hsa_function_representation
223 (tree fdecl, bool kernel_p, unsigned ssa_names_count, bool modified_cfg)
224 : m_name (NULL),
225 m_reg_count (0), m_input_args (vNULL),
226 m_output_arg (NULL), m_spill_symbols (vNULL), m_global_symbols (vNULL),
227 m_private_variables (vNULL), m_called_functions (vNULL),
228 m_called_internal_fns (vNULL), m_hbb_count (0),
229 m_in_ssa (true), m_kern_p (kernel_p), m_declaration_p (false),
230 m_decl (fdecl), m_internal_fn (NULL), m_shadow_reg (NULL),
231 m_kernel_dispatch_count (0), m_maximum_omp_data_size (0),
232 m_seen_error (false), m_temp_symbol_count (0), m_ssa_map (),
233 m_modified_cfg (modified_cfg)
235 int sym_init_len = (vec_safe_length (cfun->local_decls) / 2) + 1;;
236 m_local_symbols = new hash_table <hsa_noop_symbol_hasher> (sym_init_len);
237 m_ssa_map.safe_grow_cleared (ssa_names_count);
240 /* Constructor of class representing HSA function information that
241 is derived for an internal function. */
242 hsa_function_representation::hsa_function_representation (hsa_internal_fn *fn)
243 : m_reg_count (0), m_input_args (vNULL),
244 m_output_arg (NULL), m_local_symbols (NULL),
245 m_spill_symbols (vNULL), m_global_symbols (vNULL),
246 m_private_variables (vNULL), m_called_functions (vNULL),
247 m_called_internal_fns (vNULL), m_hbb_count (0),
248 m_in_ssa (true), m_kern_p (false), m_declaration_p (true), m_decl (NULL),
249 m_internal_fn (fn), m_shadow_reg (NULL), m_kernel_dispatch_count (0),
250 m_maximum_omp_data_size (0), m_seen_error (false), m_temp_symbol_count (0),
251 m_ssa_map () {}
253 /* Destructor of class holding function/kernel-wide information and state. */
255 hsa_function_representation::~hsa_function_representation ()
257 /* Kernel names are deallocated at the end of BRIG output when deallocating
258 hsa_decl_kernel_mapping. */
259 if (!m_kern_p || m_seen_error)
260 free (m_name);
262 for (unsigned i = 0; i < m_input_args.length (); i++)
263 delete m_input_args[i];
264 m_input_args.release ();
266 delete m_output_arg;
267 delete m_local_symbols;
269 for (unsigned i = 0; i < m_spill_symbols.length (); i++)
270 delete m_spill_symbols[i];
271 m_spill_symbols.release ();
273 hsa_symbol *sym;
274 for (unsigned i = 0; i < m_global_symbols.iterate (i, &sym); i++)
275 if (sym->m_linkage != BRIG_ALLOCATION_PROGRAM)
276 delete sym;
277 m_global_symbols.release ();
279 for (unsigned i = 0; i < m_private_variables.length (); i++)
280 delete m_private_variables[i];
281 m_private_variables.release ();
282 m_called_functions.release ();
283 m_ssa_map.release ();
285 for (unsigned i = 0; i < m_called_internal_fns.length (); i++)
286 delete m_called_internal_fns[i];
289 hsa_op_reg *
290 hsa_function_representation::get_shadow_reg ()
292 /* If we compile a function with kernel dispatch and does not set
293 an optimization level, the function won't be inlined and
294 we return NULL. */
295 if (!m_kern_p)
296 return NULL;
298 if (m_shadow_reg)
299 return m_shadow_reg;
301 /* Append the shadow argument. */
302 hsa_symbol *shadow = new hsa_symbol (BRIG_TYPE_U64, BRIG_SEGMENT_KERNARG,
303 BRIG_LINKAGE_FUNCTION);
304 m_input_args.safe_push (shadow);
305 shadow->m_name = "hsa_runtime_shadow";
307 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_U64);
308 hsa_op_address *addr = new hsa_op_address (shadow);
310 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64, r, addr);
311 hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun))->append_insn (mem);
312 m_shadow_reg = r;
314 return r;
317 bool hsa_function_representation::has_shadow_reg_p ()
319 return m_shadow_reg != NULL;
322 void
323 hsa_function_representation::init_extra_bbs ()
325 hsa_init_new_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
326 hsa_init_new_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
329 void
330 hsa_function_representation::update_dominance ()
332 if (m_modified_cfg)
334 free_dominance_info (CDI_DOMINATORS);
335 calculate_dominance_info (CDI_DOMINATORS);
339 hsa_symbol *
340 hsa_function_representation::create_hsa_temporary (BrigType16_t type)
342 hsa_symbol *s = new hsa_symbol (type, BRIG_SEGMENT_PRIVATE,
343 BRIG_LINKAGE_FUNCTION);
344 s->m_name_number = m_temp_symbol_count++;
346 hsa_cfun->m_private_variables.safe_push (s);
347 return s;
350 BrigLinkage8_t
351 hsa_function_representation::get_linkage ()
353 if (m_internal_fn)
354 return BRIG_LINKAGE_PROGRAM;
356 return m_kern_p || TREE_PUBLIC (m_decl) ?
357 BRIG_LINKAGE_PROGRAM : BRIG_LINKAGE_MODULE;
360 /* Hash map of simple OMP builtins. */
361 static hash_map <nofree_string_hash, omp_simple_builtin> *omp_simple_builtins
362 = NULL;
364 /* Warning messages for OMP builtins. */
366 #define HSA_WARN_LOCK_ROUTINE "support for HSA does not implement OpenMP " \
367 "lock routines"
368 #define HSA_WARN_TIMING_ROUTINE "support for HSA does not implement OpenMP " \
369 "timing routines"
370 #define HSA_WARN_MEMORY_ROUTINE "OpenMP device memory library routines have " \
371 "undefined semantics within target regions, support for HSA ignores them"
372 #define HSA_WARN_AFFINITY "Support for HSA does not implement OpenMP " \
373 "affinity feateres"
375 /* Initialize hash map with simple OMP builtins. */
377 static void
378 hsa_init_simple_builtins ()
380 if (omp_simple_builtins != NULL)
381 return;
383 omp_simple_builtins
384 = new hash_map <nofree_string_hash, omp_simple_builtin> ();
386 omp_simple_builtin omp_builtins[] =
388 omp_simple_builtin ("omp_get_initial_device", NULL, false,
389 new hsa_op_immed (GOMP_DEVICE_HOST,
390 (BrigType16_t) BRIG_TYPE_S32)),
391 omp_simple_builtin ("omp_is_initial_device", NULL, false,
392 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
393 omp_simple_builtin ("omp_get_dynamic", NULL, false,
394 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
395 omp_simple_builtin ("omp_set_dynamic", NULL, false, NULL),
396 omp_simple_builtin ("omp_init_lock", HSA_WARN_LOCK_ROUTINE, true),
397 omp_simple_builtin ("omp_init_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
398 true),
399 omp_simple_builtin ("omp_init_nest_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
400 true),
401 omp_simple_builtin ("omp_destroy_lock", HSA_WARN_LOCK_ROUTINE, true),
402 omp_simple_builtin ("omp_set_lock", HSA_WARN_LOCK_ROUTINE, true),
403 omp_simple_builtin ("omp_unset_lock", HSA_WARN_LOCK_ROUTINE, true),
404 omp_simple_builtin ("omp_test_lock", HSA_WARN_LOCK_ROUTINE, true),
405 omp_simple_builtin ("omp_get_wtime", HSA_WARN_TIMING_ROUTINE, true),
406 omp_simple_builtin ("omp_get_wtick", HSA_WARN_TIMING_ROUTINE, true),
407 omp_simple_builtin ("omp_target_alloc", HSA_WARN_MEMORY_ROUTINE, false,
408 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_U64)),
409 omp_simple_builtin ("omp_target_free", HSA_WARN_MEMORY_ROUTINE, false),
410 omp_simple_builtin ("omp_target_is_present", HSA_WARN_MEMORY_ROUTINE,
411 false,
412 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
413 omp_simple_builtin ("omp_target_memcpy", HSA_WARN_MEMORY_ROUTINE, false,
414 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
415 omp_simple_builtin ("omp_target_memcpy_rect", HSA_WARN_MEMORY_ROUTINE,
416 false,
417 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
418 omp_simple_builtin ("omp_target_associate_ptr", HSA_WARN_MEMORY_ROUTINE,
419 false,
420 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
421 omp_simple_builtin ("omp_target_disassociate_ptr",
422 HSA_WARN_MEMORY_ROUTINE,
423 false,
424 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
425 omp_simple_builtin ("omp_set_max_active_levels",
426 "Support for HSA only allows only one active level, "
427 "call to omp_set_max_active_levels will be ignored "
428 "in the generated HSAIL",
429 false, NULL),
430 omp_simple_builtin ("omp_get_max_active_levels", NULL, false,
431 new hsa_op_immed (1, (BrigType16_t) BRIG_TYPE_S32)),
432 omp_simple_builtin ("omp_in_final", NULL, false,
433 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
434 omp_simple_builtin ("omp_get_proc_bind", HSA_WARN_AFFINITY, false,
435 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
436 omp_simple_builtin ("omp_get_num_places", HSA_WARN_AFFINITY, false,
437 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
438 omp_simple_builtin ("omp_get_place_num_procs", HSA_WARN_AFFINITY, false,
439 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
440 omp_simple_builtin ("omp_get_place_proc_ids", HSA_WARN_AFFINITY, false,
441 NULL),
442 omp_simple_builtin ("omp_get_place_num", HSA_WARN_AFFINITY, false,
443 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
444 omp_simple_builtin ("omp_get_partition_num_places", HSA_WARN_AFFINITY,
445 false,
446 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
447 omp_simple_builtin ("omp_get_partition_place_nums", HSA_WARN_AFFINITY,
448 false, NULL),
449 omp_simple_builtin ("omp_set_default_device",
450 "omp_set_default_device has undefined semantics "
451 "within target regions, support for HSA ignores it",
452 false, NULL),
453 omp_simple_builtin ("omp_get_default_device",
454 "omp_get_default_device has undefined semantics "
455 "within target regions, support for HSA ignores it",
456 false,
457 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
458 omp_simple_builtin ("omp_get_num_devices",
459 "omp_get_num_devices has undefined semantics "
460 "within target regions, support for HSA ignores it",
461 false,
462 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
463 omp_simple_builtin ("omp_get_num_procs", NULL, true, NULL),
464 omp_simple_builtin ("omp_get_cancellation", NULL, true, NULL),
465 omp_simple_builtin ("omp_set_nested", NULL, true, NULL),
466 omp_simple_builtin ("omp_get_nested", NULL, true, NULL),
467 omp_simple_builtin ("omp_set_schedule", NULL, true, NULL),
468 omp_simple_builtin ("omp_get_schedule", NULL, true, NULL),
469 omp_simple_builtin ("omp_get_thread_limit", NULL, true, NULL),
470 omp_simple_builtin ("omp_get_team_size", NULL, true, NULL),
471 omp_simple_builtin ("omp_get_ancestor_thread_num", NULL, true, NULL),
472 omp_simple_builtin ("omp_get_max_task_priority", NULL, true, NULL)
475 unsigned count = sizeof (omp_builtins) / sizeof (omp_simple_builtin);
477 for (unsigned i = 0; i < count; i++)
478 omp_simple_builtins->put (omp_builtins[i].m_name, omp_builtins[i]);
481 /* Allocate HSA structures that we need only while generating with this. */
483 static void
484 hsa_init_data_for_cfun ()
486 hsa_init_compilation_unit_data ();
487 hsa_allocp_operand_address
488 = new object_allocator<hsa_op_address> ("HSA address operands");
489 hsa_allocp_operand_immed
490 = new object_allocator<hsa_op_immed> ("HSA immediate operands");
491 hsa_allocp_operand_reg
492 = new object_allocator<hsa_op_reg> ("HSA register operands");
493 hsa_allocp_operand_code_list
494 = new object_allocator<hsa_op_code_list> ("HSA code list operands");
495 hsa_allocp_operand_operand_list
496 = new object_allocator<hsa_op_operand_list> ("HSA operand list operands");
497 hsa_allocp_inst_basic
498 = new object_allocator<hsa_insn_basic> ("HSA basic instructions");
499 hsa_allocp_inst_phi
500 = new object_allocator<hsa_insn_phi> ("HSA phi operands");
501 hsa_allocp_inst_mem
502 = new object_allocator<hsa_insn_mem> ("HSA memory instructions");
503 hsa_allocp_inst_atomic
504 = new object_allocator<hsa_insn_atomic> ("HSA atomic instructions");
505 hsa_allocp_inst_signal
506 = new object_allocator<hsa_insn_signal> ("HSA signal instructions");
507 hsa_allocp_inst_seg
508 = new object_allocator<hsa_insn_seg> ("HSA segment conversion "
509 "instructions");
510 hsa_allocp_inst_cmp
511 = new object_allocator<hsa_insn_cmp> ("HSA comparison instructions");
512 hsa_allocp_inst_br
513 = new object_allocator<hsa_insn_br> ("HSA branching instructions");
514 hsa_allocp_inst_sbr
515 = new object_allocator<hsa_insn_sbr> ("HSA switch branching instructions");
516 hsa_allocp_inst_call
517 = new object_allocator<hsa_insn_call> ("HSA call instructions");
518 hsa_allocp_inst_arg_block
519 = new object_allocator<hsa_insn_arg_block> ("HSA arg block instructions");
520 hsa_allocp_inst_comment
521 = new object_allocator<hsa_insn_comment> ("HSA comment instructions");
522 hsa_allocp_inst_queue
523 = new object_allocator<hsa_insn_queue> ("HSA queue instructions");
524 hsa_allocp_inst_srctype
525 = new object_allocator<hsa_insn_srctype> ("HSA source type instructions");
526 hsa_allocp_inst_packed
527 = new object_allocator<hsa_insn_packed> ("HSA packed instructions");
528 hsa_allocp_inst_cvt
529 = new object_allocator<hsa_insn_cvt> ("HSA convert instructions");
530 hsa_allocp_inst_alloca
531 = new object_allocator<hsa_insn_alloca> ("HSA alloca instructions");
532 hsa_allocp_bb = new object_allocator<hsa_bb> ("HSA basic blocks");
535 /* Deinitialize HSA subsystem and free all allocated memory. */
537 static void
538 hsa_deinit_data_for_cfun (void)
540 basic_block bb;
542 FOR_ALL_BB_FN (bb, cfun)
543 if (bb->aux)
545 hsa_bb *hbb = hsa_bb_for_bb (bb);
546 hbb->~hsa_bb ();
547 bb->aux = NULL;
550 for (unsigned int i = 0; i < hsa_operands.length (); i++)
551 hsa_destroy_operand (hsa_operands[i]);
553 hsa_operands.release ();
555 for (unsigned i = 0; i < hsa_instructions.length (); i++)
556 hsa_destroy_insn (hsa_instructions[i]);
558 hsa_instructions.release ();
560 if (omp_simple_builtins != NULL)
562 delete omp_simple_builtins;
563 omp_simple_builtins = NULL;
566 delete hsa_allocp_operand_address;
567 delete hsa_allocp_operand_immed;
568 delete hsa_allocp_operand_reg;
569 delete hsa_allocp_operand_code_list;
570 delete hsa_allocp_operand_operand_list;
571 delete hsa_allocp_inst_basic;
572 delete hsa_allocp_inst_phi;
573 delete hsa_allocp_inst_atomic;
574 delete hsa_allocp_inst_mem;
575 delete hsa_allocp_inst_signal;
576 delete hsa_allocp_inst_seg;
577 delete hsa_allocp_inst_cmp;
578 delete hsa_allocp_inst_br;
579 delete hsa_allocp_inst_sbr;
580 delete hsa_allocp_inst_call;
581 delete hsa_allocp_inst_arg_block;
582 delete hsa_allocp_inst_comment;
583 delete hsa_allocp_inst_queue;
584 delete hsa_allocp_inst_srctype;
585 delete hsa_allocp_inst_packed;
586 delete hsa_allocp_inst_cvt;
587 delete hsa_allocp_inst_alloca;
588 delete hsa_allocp_bb;
589 delete hsa_cfun;
592 /* Return the type which holds addresses in the given SEGMENT. */
594 static BrigType16_t
595 hsa_get_segment_addr_type (BrigSegment8_t segment)
597 switch (segment)
599 case BRIG_SEGMENT_NONE:
600 gcc_unreachable ();
602 case BRIG_SEGMENT_FLAT:
603 case BRIG_SEGMENT_GLOBAL:
604 case BRIG_SEGMENT_READONLY:
605 case BRIG_SEGMENT_KERNARG:
606 return hsa_machine_large_p () ? BRIG_TYPE_U64 : BRIG_TYPE_U32;
608 case BRIG_SEGMENT_GROUP:
609 case BRIG_SEGMENT_PRIVATE:
610 case BRIG_SEGMENT_SPILL:
611 case BRIG_SEGMENT_ARG:
612 return BRIG_TYPE_U32;
614 gcc_unreachable ();
617 /* Return integer brig type according to provided SIZE in bytes. If SIGN
618 is set to true, return signed integer type. */
620 static BrigType16_t
621 get_integer_type_by_bytes (unsigned size, bool sign)
623 if (sign)
624 switch (size)
626 case 1:
627 return BRIG_TYPE_S8;
628 case 2:
629 return BRIG_TYPE_S16;
630 case 4:
631 return BRIG_TYPE_S32;
632 case 8:
633 return BRIG_TYPE_S64;
634 default:
635 break;
637 else
638 switch (size)
640 case 1:
641 return BRIG_TYPE_U8;
642 case 2:
643 return BRIG_TYPE_U16;
644 case 4:
645 return BRIG_TYPE_U32;
646 case 8:
647 return BRIG_TYPE_U64;
648 default:
649 break;
652 return 0;
655 /* Return HSA type for tree TYPE, which has to fit into BrigType16_t. Pointers
656 are assumed to use flat addressing. If min32int is true, always expand
657 integer types to one that has at least 32 bits. */
659 static BrigType16_t
660 hsa_type_for_scalar_tree_type (const_tree type, bool min32int)
662 HOST_WIDE_INT bsize;
663 const_tree base;
664 BrigType16_t res = BRIG_TYPE_NONE;
666 gcc_checking_assert (TYPE_P (type));
667 gcc_checking_assert (!AGGREGATE_TYPE_P (type));
668 if (POINTER_TYPE_P (type))
669 return hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
671 if (TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == COMPLEX_TYPE)
672 base = TREE_TYPE (type);
673 else
674 base = type;
676 if (!tree_fits_uhwi_p (TYPE_SIZE (base)))
678 HSA_SORRY_ATV (EXPR_LOCATION (type),
679 "support for HSA does not implement huge or "
680 "variable-sized type %T", type);
681 return res;
684 bsize = tree_to_uhwi (TYPE_SIZE (base));
685 unsigned byte_size = bsize / BITS_PER_UNIT;
686 if (INTEGRAL_TYPE_P (base))
687 res = get_integer_type_by_bytes (byte_size, !TYPE_UNSIGNED (base));
688 else if (SCALAR_FLOAT_TYPE_P (base))
690 switch (bsize)
692 case 16:
693 res = BRIG_TYPE_F16;
694 break;
695 case 32:
696 res = BRIG_TYPE_F32;
697 break;
698 case 64:
699 res = BRIG_TYPE_F64;
700 break;
701 default:
702 break;
706 if (res == BRIG_TYPE_NONE)
708 HSA_SORRY_ATV (EXPR_LOCATION (type),
709 "support for HSA does not implement type %T", type);
710 return res;
713 if (TREE_CODE (type) == VECTOR_TYPE)
715 HOST_WIDE_INT tsize = tree_to_uhwi (TYPE_SIZE (type));
717 if (bsize == tsize)
719 HSA_SORRY_ATV (EXPR_LOCATION (type),
720 "support for HSA does not implement a vector type "
721 "where a type and unit size are equal: %T", type);
722 return res;
725 switch (tsize)
727 case 32:
728 res |= BRIG_TYPE_PACK_32;
729 break;
730 case 64:
731 res |= BRIG_TYPE_PACK_64;
732 break;
733 case 128:
734 res |= BRIG_TYPE_PACK_128;
735 break;
736 default:
737 HSA_SORRY_ATV (EXPR_LOCATION (type),
738 "support for HSA does not implement type %T", type);
742 if (min32int)
744 /* Registers/immediate operands can only be 32bit or more except for
745 f16. */
746 if (res == BRIG_TYPE_U8 || res == BRIG_TYPE_U16)
747 res = BRIG_TYPE_U32;
748 else if (res == BRIG_TYPE_S8 || res == BRIG_TYPE_S16)
749 res = BRIG_TYPE_S32;
752 if (TREE_CODE (type) == COMPLEX_TYPE)
754 unsigned bsize = 2 * hsa_type_bit_size (res);
755 res = hsa_bittype_for_bitsize (bsize);
758 return res;
761 /* Returns the BRIG type we need to load/store entities of TYPE. */
763 static BrigType16_t
764 mem_type_for_type (BrigType16_t type)
766 /* HSA has non-intuitive constraints on load/store types. If it's
767 a bit-type it _must_ be B128, if it's not a bit-type it must be
768 64bit max. So for loading entities of 128 bits (e.g. vectors)
769 we have to to B128, while for loading the rest we have to use the
770 input type (??? or maybe also flattened to a equally sized non-vector
771 unsigned type?). */
772 if ((type & BRIG_TYPE_PACK_MASK) == BRIG_TYPE_PACK_128)
773 return BRIG_TYPE_B128;
774 else if (hsa_btype_p (type) || hsa_type_packed_p (type))
776 unsigned bitsize = hsa_type_bit_size (type);
777 if (bitsize < 128)
778 return hsa_uint_for_bitsize (bitsize);
779 else
780 return hsa_bittype_for_bitsize (bitsize);
782 return type;
785 /* Return HSA type for tree TYPE. If it cannot fit into BrigType16_t, some
786 kind of array will be generated, setting DIM appropriately. Otherwise, it
787 will be set to zero. */
789 static BrigType16_t
790 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p = NULL,
791 bool min32int = false)
793 gcc_checking_assert (TYPE_P (type));
794 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
796 HSA_SORRY_ATV (EXPR_LOCATION (type), "support for HSA does not "
797 "implement huge or variable-sized type %T", type);
798 return BRIG_TYPE_NONE;
801 if (RECORD_OR_UNION_TYPE_P (type))
803 if (dim_p)
804 *dim_p = tree_to_uhwi (TYPE_SIZE_UNIT (type));
805 return BRIG_TYPE_U8 | BRIG_TYPE_ARRAY;
808 if (TREE_CODE (type) == ARRAY_TYPE)
810 /* We try to be nice and use the real base-type when this is an array of
811 scalars and only resort to an array of bytes if the type is more
812 complex. */
814 unsigned HOST_WIDE_INT dim = 1;
816 while (TREE_CODE (type) == ARRAY_TYPE)
818 tree domain = TYPE_DOMAIN (type);
819 if (!TYPE_MIN_VALUE (domain)
820 || !TYPE_MAX_VALUE (domain)
821 || !tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
822 || !tree_fits_shwi_p (TYPE_MAX_VALUE (domain)))
824 HSA_SORRY_ATV (EXPR_LOCATION (type),
825 "support for HSA does not implement array %T with "
826 "unknown bounds", type);
827 return BRIG_TYPE_NONE;
829 HOST_WIDE_INT min = tree_to_shwi (TYPE_MIN_VALUE (domain));
830 HOST_WIDE_INT max = tree_to_shwi (TYPE_MAX_VALUE (domain));
831 dim = dim * (unsigned HOST_WIDE_INT) (max - min + 1);
832 type = TREE_TYPE (type);
835 BrigType16_t res;
836 if (RECORD_OR_UNION_TYPE_P (type))
838 dim = dim * tree_to_uhwi (TYPE_SIZE_UNIT (type));
839 res = BRIG_TYPE_U8;
841 else
842 res = hsa_type_for_scalar_tree_type (type, false);
844 if (dim_p)
845 *dim_p = dim;
846 return res | BRIG_TYPE_ARRAY;
849 /* Scalar case: */
850 if (dim_p)
851 *dim_p = 0;
853 return hsa_type_for_scalar_tree_type (type, min32int);
856 /* Returns true if converting from STYPE into DTYPE needs the _CVT
857 opcode. If false a normal _MOV is enough. */
859 static bool
860 hsa_needs_cvt (BrigType16_t dtype, BrigType16_t stype)
862 if (hsa_btype_p (dtype))
863 return false;
865 /* float <-> int conversions are real converts. */
866 if (hsa_type_float_p (dtype) != hsa_type_float_p (stype))
867 return true;
868 /* When both types have different size, then we need CVT as well. */
869 if (hsa_type_bit_size (dtype) != hsa_type_bit_size (stype))
870 return true;
871 return false;
874 /* Lookup or create the associated hsa_symbol structure with a given VAR_DECL
875 or lookup the hsa_structure corresponding to a PARM_DECL. */
877 static hsa_symbol *
878 get_symbol_for_decl (tree decl)
880 hsa_symbol **slot;
881 hsa_symbol dummy (BRIG_TYPE_NONE, BRIG_SEGMENT_NONE, BRIG_LINKAGE_NONE);
883 gcc_assert (TREE_CODE (decl) == PARM_DECL
884 || TREE_CODE (decl) == RESULT_DECL
885 || TREE_CODE (decl) == VAR_DECL);
887 dummy.m_decl = decl;
889 bool is_in_global_vars
890 = TREE_CODE (decl) == VAR_DECL && is_global_var (decl);
892 if (is_in_global_vars)
893 slot = hsa_global_variable_symbols->find_slot (&dummy, INSERT);
894 else
895 slot = hsa_cfun->m_local_symbols->find_slot (&dummy, INSERT);
897 gcc_checking_assert (slot);
898 if (*slot)
900 hsa_symbol *sym = (*slot);
902 /* If the symbol is problematic, mark current function also as
903 problematic. */
904 if (sym->m_seen_error)
905 hsa_fail_cfun ();
907 /* PR hsa/70234: If a global variable was marked to be emitted,
908 but HSAIL generation of a function using the variable fails,
909 we should retry to emit the variable in context of a different
910 function.
912 Iterate elements whether a symbol is already in m_global_symbols
913 of not. */
914 if (is_in_global_vars && !sym->m_emitted_to_brig)
916 for (unsigned i = 0; i < hsa_cfun->m_global_symbols.length (); i++)
917 if (hsa_cfun->m_global_symbols[i] == sym)
918 return *slot;
919 hsa_cfun->m_global_symbols.safe_push (sym);
922 return *slot;
924 else
926 hsa_symbol *sym;
927 gcc_assert (TREE_CODE (decl) == VAR_DECL);
928 BrigAlignment8_t align = hsa_object_alignment (decl);
930 if (is_in_global_vars)
932 sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_GLOBAL,
933 BRIG_LINKAGE_PROGRAM, true,
934 BRIG_ALLOCATION_PROGRAM, align);
935 hsa_cfun->m_global_symbols.safe_push (sym);
936 sym->fillup_for_decl (decl);
937 if (sym->m_align > align)
939 sym->m_seen_error = true;
940 HSA_SORRY_ATV (EXPR_LOCATION (decl),
941 "HSA specification requires that %E is at least "
942 "naturally aligned", decl);
945 else
947 /* As generation of efficient memory copy instructions relies
948 on alignment greater or equal to 8 bytes,
949 we need to increase alignment of all aggregate types.. */
950 if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
951 align = MAX ((BrigAlignment8_t) BRIG_ALIGNMENT_8, align);
953 /* PARM_DECL and RESULT_DECL should be already in m_local_symbols. */
954 gcc_assert (TREE_CODE (decl) == VAR_DECL);
956 sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_PRIVATE,
957 BRIG_LINKAGE_FUNCTION);
958 sym->m_align = align;
959 sym->fillup_for_decl (decl);
960 hsa_cfun->m_private_variables.safe_push (sym);
963 sym->m_name = hsa_get_declaration_name (decl);
964 *slot = sym;
965 return sym;
969 /* For a given HSA function declaration, return a host
970 function declaration. */
972 tree
973 hsa_get_host_function (tree decl)
975 hsa_function_summary *s
976 = hsa_summaries->get (cgraph_node::get_create (decl));
977 gcc_assert (s->m_kind != HSA_NONE);
978 gcc_assert (s->m_gpu_implementation_p);
980 return s->m_binded_function->decl;
983 /* Return true if function DECL has a host equivalent function. */
985 static char *
986 get_brig_function_name (tree decl)
988 tree d = decl;
990 hsa_function_summary *s = hsa_summaries->get (cgraph_node::get_create (d));
991 if (s->m_kind != HSA_NONE && s->m_gpu_implementation_p)
992 d = s->m_binded_function->decl;
994 /* IPA split can create a function that has no host equivalent. */
995 if (d == NULL)
996 d = decl;
998 char *name = xstrdup (hsa_get_declaration_name (d));
999 hsa_sanitize_name (name);
1001 return name;
1004 /* Create a spill symbol of type TYPE. */
1006 hsa_symbol *
1007 hsa_get_spill_symbol (BrigType16_t type)
1009 hsa_symbol *sym = new hsa_symbol (type, BRIG_SEGMENT_SPILL,
1010 BRIG_LINKAGE_FUNCTION);
1011 hsa_cfun->m_spill_symbols.safe_push (sym);
1012 return sym;
1015 /* Create a symbol for a read-only string constant. */
1016 hsa_symbol *
1017 hsa_get_string_cst_symbol (tree string_cst)
1019 gcc_checking_assert (TREE_CODE (string_cst) == STRING_CST);
1021 hsa_symbol **slot = hsa_cfun->m_string_constants_map.get (string_cst);
1022 if (slot)
1023 return *slot;
1025 hsa_op_immed *cst = new hsa_op_immed (string_cst);
1026 hsa_symbol *sym = new hsa_symbol (cst->m_type, BRIG_SEGMENT_GLOBAL,
1027 BRIG_LINKAGE_MODULE, true,
1028 BRIG_ALLOCATION_AGENT);
1029 sym->m_cst_value = cst;
1030 sym->m_dim = TREE_STRING_LENGTH (string_cst);
1031 sym->m_name_number = hsa_cfun->m_global_symbols.length ();
1033 hsa_cfun->m_global_symbols.safe_push (sym);
1034 hsa_cfun->m_string_constants_map.put (string_cst, sym);
1035 return sym;
1038 /* Constructor of the ancestor of all operands. K is BRIG kind that identified
1039 what the operator is. */
1041 hsa_op_base::hsa_op_base (BrigKind16_t k)
1042 : m_next (NULL), m_brig_op_offset (0), m_kind (k)
1044 hsa_operands.safe_push (this);
1047 /* Constructor of ancestor of all operands which have a type. K is BRIG kind
1048 that identified what the operator is. T is the type of the operator. */
1050 hsa_op_with_type::hsa_op_with_type (BrigKind16_t k, BrigType16_t t)
1051 : hsa_op_base (k), m_type (t)
1055 hsa_op_with_type *
1056 hsa_op_with_type::get_in_type (BrigType16_t dtype, hsa_bb *hbb)
1058 if (m_type == dtype)
1059 return this;
1061 hsa_op_reg *dest;
1063 if (hsa_needs_cvt (dtype, m_type))
1065 dest = new hsa_op_reg (dtype);
1066 hbb->append_insn (new hsa_insn_cvt (dest, this));
1068 else
1070 dest = new hsa_op_reg (m_type);
1071 hbb->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV,
1072 dest->m_type, dest, this));
1074 /* We cannot simply for instance: 'mov_u32 $_3, 48 (s32)' because
1075 type of the operand must be same as type of the instruction. */
1076 dest->m_type = dtype;
1079 return dest;
1082 /* Constructor of class representing HSA immediate values. TREE_VAL is the
1083 tree representation of the immediate value. If min32int is true,
1084 always expand integer types to one that has at least 32 bits. */
1086 hsa_op_immed::hsa_op_immed (tree tree_val, bool min32int)
1087 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES,
1088 hsa_type_for_tree_type (TREE_TYPE (tree_val), NULL,
1089 min32int))
1091 if (hsa_seen_error ())
1092 return;
1094 gcc_checking_assert ((is_gimple_min_invariant (tree_val)
1095 && (!POINTER_TYPE_P (TREE_TYPE (tree_val))
1096 || TREE_CODE (tree_val) == INTEGER_CST))
1097 || TREE_CODE (tree_val) == CONSTRUCTOR);
1098 m_tree_value = tree_val;
1100 /* Verify that all elements of a constructor are constants. */
1101 if (TREE_CODE (m_tree_value) == CONSTRUCTOR)
1102 for (unsigned i = 0;
1103 i < vec_safe_length (CONSTRUCTOR_ELTS (m_tree_value)); i++)
1105 tree v = CONSTRUCTOR_ELT (m_tree_value, i)->value;
1106 if (!CONSTANT_CLASS_P (v))
1108 HSA_SORRY_AT (EXPR_LOCATION (tree_val),
1109 "HSA ctor should have only constants");
1110 return;
1115 /* Constructor of class representing HSA immediate values. INTEGER_VALUE is the
1116 integer representation of the immediate value. TYPE is BRIG type. */
1118 hsa_op_immed::hsa_op_immed (HOST_WIDE_INT integer_value, BrigType16_t type)
1119 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES, type),
1120 m_tree_value (NULL)
1122 gcc_assert (hsa_type_integer_p (type));
1123 m_int_value = integer_value;
1126 hsa_op_immed::hsa_op_immed ()
1127 : hsa_op_with_type (BRIG_KIND_NONE, BRIG_TYPE_NONE)
1131 /* New operator to allocate immediate operands from pool alloc. */
1133 void *
1134 hsa_op_immed::operator new (size_t)
1136 return hsa_allocp_operand_immed->allocate_raw ();
1139 /* Destructor. */
1141 hsa_op_immed::~hsa_op_immed ()
1145 /* Change type of the immediate value to T. */
1147 void
1148 hsa_op_immed::set_type (BrigType16_t t)
1150 m_type = t;
1153 /* Constructor of class representing HSA registers and pseudo-registers. T is
1154 the BRIG type of the new register. */
1156 hsa_op_reg::hsa_op_reg (BrigType16_t t)
1157 : hsa_op_with_type (BRIG_KIND_OPERAND_REGISTER, t), m_gimple_ssa (NULL_TREE),
1158 m_def_insn (NULL), m_spill_sym (NULL), m_order (hsa_cfun->m_reg_count++),
1159 m_lr_begin (0), m_lr_end (0), m_reg_class (0), m_hard_num (0)
1163 /* New operator to allocate a register from pool alloc. */
1165 void *
1166 hsa_op_reg::operator new (size_t)
1168 return hsa_allocp_operand_reg->allocate_raw ();
1171 /* Verify register operand. */
1173 void
1174 hsa_op_reg::verify_ssa ()
1176 /* Verify that each HSA register has a definition assigned.
1177 Exceptions are VAR_DECL and PARM_DECL that are a default
1178 definition. */
1179 gcc_checking_assert (m_def_insn
1180 || (m_gimple_ssa != NULL
1181 && (!SSA_NAME_VAR (m_gimple_ssa)
1182 || (TREE_CODE (SSA_NAME_VAR (m_gimple_ssa))
1183 != PARM_DECL))
1184 && SSA_NAME_IS_DEFAULT_DEF (m_gimple_ssa)));
1186 /* Verify that every use of the register is really present
1187 in an instruction. */
1188 for (unsigned i = 0; i < m_uses.length (); i++)
1190 hsa_insn_basic *use = m_uses[i];
1192 bool is_visited = false;
1193 for (unsigned j = 0; j < use->operand_count (); j++)
1195 hsa_op_base *u = use->get_op (j);
1196 hsa_op_address *addr; addr = dyn_cast <hsa_op_address *> (u);
1197 if (addr && addr->m_reg)
1198 u = addr->m_reg;
1200 if (u == this)
1202 bool r = !addr && use->op_output_p (j);
1204 if (r)
1206 error ("HSA SSA name defined by instruction that is supposed "
1207 "to be using it");
1208 debug_hsa_operand (this);
1209 debug_hsa_insn (use);
1210 internal_error ("HSA SSA verification failed");
1213 is_visited = true;
1217 if (!is_visited)
1219 error ("HSA SSA name not among operands of instruction that is "
1220 "supposed to use it");
1221 debug_hsa_operand (this);
1222 debug_hsa_insn (use);
1223 internal_error ("HSA SSA verification failed");
1228 hsa_op_address::hsa_op_address (hsa_symbol *sym, hsa_op_reg *r,
1229 HOST_WIDE_INT offset)
1230 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (r),
1231 m_imm_offset (offset)
1235 hsa_op_address::hsa_op_address (hsa_symbol *sym, HOST_WIDE_INT offset)
1236 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (NULL),
1237 m_imm_offset (offset)
1241 hsa_op_address::hsa_op_address (hsa_op_reg *r, HOST_WIDE_INT offset)
1242 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (NULL), m_reg (r),
1243 m_imm_offset (offset)
1247 /* New operator to allocate address operands from pool alloc. */
1249 void *
1250 hsa_op_address::operator new (size_t)
1252 return hsa_allocp_operand_address->allocate_raw ();
1255 /* Constructor of an operand referring to HSAIL code. */
1257 hsa_op_code_ref::hsa_op_code_ref () : hsa_op_base (BRIG_KIND_OPERAND_CODE_REF),
1258 m_directive_offset (0)
1262 /* Constructor of an operand representing a code list. Set it up so that it
1263 can contain ELEMENTS number of elements. */
1265 hsa_op_code_list::hsa_op_code_list (unsigned elements)
1266 : hsa_op_base (BRIG_KIND_OPERAND_CODE_LIST)
1268 m_offsets.create (1);
1269 m_offsets.safe_grow_cleared (elements);
1272 /* New operator to allocate code list operands from pool alloc. */
1274 void *
1275 hsa_op_code_list::operator new (size_t)
1277 return hsa_allocp_operand_code_list->allocate_raw ();
1280 /* Constructor of an operand representing an operand list.
1281 Set it up so that it can contain ELEMENTS number of elements. */
1283 hsa_op_operand_list::hsa_op_operand_list (unsigned elements)
1284 : hsa_op_base (BRIG_KIND_OPERAND_OPERAND_LIST)
1286 m_offsets.create (elements);
1287 m_offsets.safe_grow (elements);
1290 /* New operator to allocate operand list operands from pool alloc. */
1292 void *
1293 hsa_op_operand_list::operator new (size_t)
1295 return hsa_allocp_operand_operand_list->allocate_raw ();
1298 hsa_op_operand_list::~hsa_op_operand_list ()
1300 m_offsets.release ();
1304 hsa_op_reg *
1305 hsa_function_representation::reg_for_gimple_ssa (tree ssa)
1307 hsa_op_reg *hreg;
1309 gcc_checking_assert (TREE_CODE (ssa) == SSA_NAME);
1310 if (m_ssa_map[SSA_NAME_VERSION (ssa)])
1311 return m_ssa_map[SSA_NAME_VERSION (ssa)];
1313 hreg = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (ssa),
1314 true));
1315 hreg->m_gimple_ssa = ssa;
1316 m_ssa_map[SSA_NAME_VERSION (ssa)] = hreg;
1318 return hreg;
1321 void
1322 hsa_op_reg::set_definition (hsa_insn_basic *insn)
1324 if (hsa_cfun->m_in_ssa)
1326 gcc_checking_assert (!m_def_insn);
1327 m_def_insn = insn;
1329 else
1330 m_def_insn = NULL;
1333 /* Constructor of the class which is the bases of all instructions and directly
1334 represents the most basic ones. NOPS is the number of operands that the
1335 operand vector will contain (and which will be cleared). OP is the opcode
1336 of the instruction. This constructor does not set type. */
1338 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc)
1339 : m_prev (NULL),
1340 m_next (NULL), m_bb (NULL), m_opcode (opc), m_number (0),
1341 m_type (BRIG_TYPE_NONE), m_brig_offset (0)
1343 if (nops > 0)
1344 m_operands.safe_grow_cleared (nops);
1346 hsa_instructions.safe_push (this);
1349 /* Make OP the operand number INDEX of operands of this instruction. If OP is a
1350 register or an address containing a register, then either set the definition
1351 of the register to this instruction if it an output operand or add this
1352 instruction to the uses if it is an input one. */
1354 void
1355 hsa_insn_basic::set_op (int index, hsa_op_base *op)
1357 /* Each address operand is always use. */
1358 hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
1359 if (addr && addr->m_reg)
1360 addr->m_reg->m_uses.safe_push (this);
1361 else
1363 hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
1364 if (reg)
1366 if (op_output_p (index))
1367 reg->set_definition (this);
1368 else
1369 reg->m_uses.safe_push (this);
1373 m_operands[index] = op;
1376 /* Get INDEX-th operand of the instruction. */
1378 hsa_op_base *
1379 hsa_insn_basic::get_op (int index)
1381 return m_operands[index];
1384 /* Get address of INDEX-th operand of the instruction. */
1386 hsa_op_base **
1387 hsa_insn_basic::get_op_addr (int index)
1389 return &m_operands[index];
1392 /* Get number of operands of the instruction. */
1393 unsigned int
1394 hsa_insn_basic::operand_count ()
1396 return m_operands.length ();
1399 /* Constructor of the class which is the bases of all instructions and directly
1400 represents the most basic ones. NOPS is the number of operands that the
1401 operand vector will contain (and which will be cleared). OPC is the opcode
1402 of the instruction, T is the type of the instruction. */
1404 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc, BrigType16_t t,
1405 hsa_op_base *arg0, hsa_op_base *arg1,
1406 hsa_op_base *arg2, hsa_op_base *arg3)
1407 : m_prev (NULL), m_next (NULL), m_bb (NULL), m_opcode (opc),m_number (0),
1408 m_type (t), m_brig_offset (0)
1410 if (nops > 0)
1411 m_operands.safe_grow_cleared (nops);
1413 if (arg0 != NULL)
1415 gcc_checking_assert (nops >= 1);
1416 set_op (0, arg0);
1419 if (arg1 != NULL)
1421 gcc_checking_assert (nops >= 2);
1422 set_op (1, arg1);
1425 if (arg2 != NULL)
1427 gcc_checking_assert (nops >= 3);
1428 set_op (2, arg2);
1431 if (arg3 != NULL)
1433 gcc_checking_assert (nops >= 4);
1434 set_op (3, arg3);
1437 hsa_instructions.safe_push (this);
1440 /* New operator to allocate basic instruction from pool alloc. */
1442 void *
1443 hsa_insn_basic::operator new (size_t)
1445 return hsa_allocp_inst_basic->allocate_raw ();
1448 /* Verify the instruction. */
1450 void
1451 hsa_insn_basic::verify ()
1453 hsa_op_address *addr;
1454 hsa_op_reg *reg;
1456 /* Iterate all register operands and verify that the instruction
1457 is set in uses of the register. */
1458 for (unsigned i = 0; i < operand_count (); i++)
1460 hsa_op_base *use = get_op (i);
1462 if ((addr = dyn_cast <hsa_op_address *> (use)) && addr->m_reg)
1464 gcc_assert (addr->m_reg->m_def_insn != this);
1465 use = addr->m_reg;
1468 if ((reg = dyn_cast <hsa_op_reg *> (use)) && !op_output_p (i))
1470 unsigned j;
1471 for (j = 0; j < reg->m_uses.length (); j++)
1473 if (reg->m_uses[j] == this)
1474 break;
1477 if (j == reg->m_uses.length ())
1479 error ("HSA instruction uses a register but is not among "
1480 "recorded register uses");
1481 debug_hsa_operand (reg);
1482 debug_hsa_insn (this);
1483 internal_error ("HSA instruction verification failed");
1489 /* Constructor of an instruction representing a PHI node. NOPS is the number
1490 of operands (equal to the number of predecessors). */
1492 hsa_insn_phi::hsa_insn_phi (unsigned nops, hsa_op_reg *dst)
1493 : hsa_insn_basic (nops, HSA_OPCODE_PHI), m_dest (dst)
1495 dst->set_definition (this);
1498 /* New operator to allocate PHI instruction from pool alloc. */
1500 void *
1501 hsa_insn_phi::operator new (size_t)
1503 return hsa_allocp_inst_phi->allocate_raw ();
1506 /* Constructor of class representing instruction for conditional jump, CTRL is
1507 the control register determining whether the jump will be carried out, the
1508 new instruction is automatically added to its uses list. */
1510 hsa_insn_br::hsa_insn_br (hsa_op_reg *ctrl)
1511 : hsa_insn_basic (1, BRIG_OPCODE_CBR, BRIG_TYPE_B1, ctrl),
1512 m_width (BRIG_WIDTH_1)
1516 /* New operator to allocate branch instruction from pool alloc. */
1518 void *
1519 hsa_insn_br::operator new (size_t)
1521 return hsa_allocp_inst_br->allocate_raw ();
1524 /* Constructor of class representing instruction for switch jump, CTRL is
1525 the index register. */
1527 hsa_insn_sbr::hsa_insn_sbr (hsa_op_reg *index, unsigned jump_count)
1528 : hsa_insn_basic (1, BRIG_OPCODE_SBR, BRIG_TYPE_B1, index),
1529 m_width (BRIG_WIDTH_1), m_jump_table (vNULL),
1530 m_label_code_list (new hsa_op_code_list (jump_count))
1534 /* New operator to allocate switch branch instruction from pool alloc. */
1536 void *
1537 hsa_insn_sbr::operator new (size_t)
1539 return hsa_allocp_inst_sbr->allocate_raw ();
1542 /* Replace all occurrences of OLD_BB with NEW_BB in the statements
1543 jump table. */
1545 void
1546 hsa_insn_sbr::replace_all_labels (basic_block old_bb, basic_block new_bb)
1548 for (unsigned i = 0; i < m_jump_table.length (); i++)
1549 if (m_jump_table[i] == old_bb)
1550 m_jump_table[i] = new_bb;
1553 hsa_insn_sbr::~hsa_insn_sbr ()
1555 m_jump_table.release ();
1558 /* Constructor of comparison instruction. CMP is the comparison operation and T
1559 is the result type. */
1561 hsa_insn_cmp::hsa_insn_cmp (BrigCompareOperation8_t cmp, BrigType16_t t,
1562 hsa_op_base *arg0, hsa_op_base *arg1,
1563 hsa_op_base *arg2)
1564 : hsa_insn_basic (3 , BRIG_OPCODE_CMP, t, arg0, arg1, arg2), m_compare (cmp)
1568 /* New operator to allocate compare instruction from pool alloc. */
1570 void *
1571 hsa_insn_cmp::operator new (size_t)
1573 return hsa_allocp_inst_cmp->allocate_raw ();
1576 /* Constructor of classes representing memory accesses. OPC is the opcode (must
1577 be BRIG_OPCODE_ST or BRIG_OPCODE_LD) and T is the type. The instruction
1578 operands are provided as ARG0 and ARG1. */
1580 hsa_insn_mem::hsa_insn_mem (int opc, BrigType16_t t, hsa_op_base *arg0,
1581 hsa_op_base *arg1)
1582 : hsa_insn_basic (2, opc, t, arg0, arg1),
1583 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1585 gcc_checking_assert (opc == BRIG_OPCODE_LD || opc == BRIG_OPCODE_ST);
1588 /* Constructor for descendants allowing different opcodes and number of
1589 operands, it passes its arguments directly to hsa_insn_basic
1590 constructor. The instruction operands are provided as ARG[0-3]. */
1593 hsa_insn_mem::hsa_insn_mem (unsigned nops, int opc, BrigType16_t t,
1594 hsa_op_base *arg0, hsa_op_base *arg1,
1595 hsa_op_base *arg2, hsa_op_base *arg3)
1596 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1597 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1601 /* New operator to allocate memory instruction from pool alloc. */
1603 void *
1604 hsa_insn_mem::operator new (size_t)
1606 return hsa_allocp_inst_mem->allocate_raw ();
1609 /* Constructor of class representing atomic instructions and signals. OPC is
1610 the principal opcode, aop is the specific atomic operation opcode. T is the
1611 type of the instruction. The instruction operands
1612 are provided as ARG[0-3]. */
1614 hsa_insn_atomic::hsa_insn_atomic (int nops, int opc,
1615 enum BrigAtomicOperation aop,
1616 BrigType16_t t, BrigMemoryOrder memorder,
1617 hsa_op_base *arg0,
1618 hsa_op_base *arg1, hsa_op_base *arg2,
1619 hsa_op_base *arg3)
1620 : hsa_insn_mem (nops, opc, t, arg0, arg1, arg2, arg3), m_atomicop (aop),
1621 m_memoryorder (memorder),
1622 m_memoryscope (BRIG_MEMORY_SCOPE_SYSTEM)
1624 gcc_checking_assert (opc == BRIG_OPCODE_ATOMICNORET ||
1625 opc == BRIG_OPCODE_ATOMIC ||
1626 opc == BRIG_OPCODE_SIGNAL ||
1627 opc == BRIG_OPCODE_SIGNALNORET);
1630 /* New operator to allocate signal instruction from pool alloc. */
1632 void *
1633 hsa_insn_atomic::operator new (size_t)
1635 return hsa_allocp_inst_atomic->allocate_raw ();
1638 /* Constructor of class representing signal instructions. OPC is the prinicpal
1639 opcode, sop is the specific signal operation opcode. T is the type of the
1640 instruction. The instruction operands are provided as ARG[0-3]. */
1642 hsa_insn_signal::hsa_insn_signal (int nops, int opc,
1643 enum BrigAtomicOperation sop,
1644 BrigType16_t t, hsa_op_base *arg0,
1645 hsa_op_base *arg1, hsa_op_base *arg2,
1646 hsa_op_base *arg3)
1647 : hsa_insn_atomic (nops, opc, sop, t, BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE,
1648 arg0, arg1, arg2, arg3)
1652 /* New operator to allocate signal instruction from pool alloc. */
1654 void *
1655 hsa_insn_signal::operator new (size_t)
1657 return hsa_allocp_inst_signal->allocate_raw ();
1660 /* Constructor of class representing segment conversion instructions. OPC is
1661 the opcode which must be either BRIG_OPCODE_STOF or BRIG_OPCODE_FTOS. DEST
1662 and SRCT are destination and source types respectively, SEG is the segment
1663 we are converting to or from. The instruction operands are
1664 provided as ARG0 and ARG1. */
1666 hsa_insn_seg::hsa_insn_seg (int opc, BrigType16_t dest, BrigType16_t srct,
1667 BrigSegment8_t seg, hsa_op_base *arg0,
1668 hsa_op_base *arg1)
1669 : hsa_insn_basic (2, opc, dest, arg0, arg1), m_src_type (srct),
1670 m_segment (seg)
1672 gcc_checking_assert (opc == BRIG_OPCODE_STOF || opc == BRIG_OPCODE_FTOS);
1675 /* New operator to allocate address conversion instruction from pool alloc. */
1677 void *
1678 hsa_insn_seg::operator new (size_t)
1680 return hsa_allocp_inst_seg->allocate_raw ();
1683 /* Constructor of class representing a call instruction. CALLEE is the tree
1684 representation of the function being called. */
1686 hsa_insn_call::hsa_insn_call (tree callee)
1687 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (callee),
1688 m_output_arg (NULL), m_args_code_list (NULL), m_result_code_list (NULL)
1692 hsa_insn_call::hsa_insn_call (hsa_internal_fn *fn)
1693 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (NULL),
1694 m_called_internal_fn (fn), m_output_arg (NULL), m_args_code_list (NULL),
1695 m_result_code_list (NULL)
1699 /* New operator to allocate call instruction from pool alloc. */
1701 void *
1702 hsa_insn_call::operator new (size_t)
1704 return hsa_allocp_inst_call->allocate_raw ();
1707 hsa_insn_call::~hsa_insn_call ()
1709 for (unsigned i = 0; i < m_input_args.length (); i++)
1710 delete m_input_args[i];
1712 delete m_output_arg;
1714 m_input_args.release ();
1715 m_input_arg_insns.release ();
1718 /* Constructor of class representing the argument block required to invoke
1719 a call in HSAIL. */
1720 hsa_insn_arg_block::hsa_insn_arg_block (BrigKind brig_kind,
1721 hsa_insn_call * call)
1722 : hsa_insn_basic (0, HSA_OPCODE_ARG_BLOCK), m_kind (brig_kind),
1723 m_call_insn (call)
1727 /* New operator to allocate argument block instruction from pool alloc. */
1729 void *
1730 hsa_insn_arg_block::operator new (size_t)
1732 return hsa_allocp_inst_arg_block->allocate_raw ();
1735 hsa_insn_comment::hsa_insn_comment (const char *s)
1736 : hsa_insn_basic (0, BRIG_KIND_DIRECTIVE_COMMENT)
1738 unsigned l = strlen (s);
1740 /* Append '// ' to the string. */
1741 char *buf = XNEWVEC (char, l + 4);
1742 sprintf (buf, "// %s", s);
1743 m_comment = buf;
1746 /* New operator to allocate comment instruction from pool alloc. */
1748 void *
1749 hsa_insn_comment::operator new (size_t)
1751 return hsa_allocp_inst_comment->allocate_raw ();
1754 hsa_insn_comment::~hsa_insn_comment ()
1756 gcc_checking_assert (m_comment);
1757 free (m_comment);
1758 m_comment = NULL;
1761 /* Constructor of class representing the queue instruction in HSAIL. */
1762 hsa_insn_queue::hsa_insn_queue (int nops, BrigOpcode opcode)
1763 : hsa_insn_basic (nops, opcode, BRIG_TYPE_U64)
1767 /* New operator to allocate source type instruction from pool alloc. */
1769 void *
1770 hsa_insn_srctype::operator new (size_t)
1772 return hsa_allocp_inst_srctype->allocate_raw ();
1775 /* Constructor of class representing the source type instruction in HSAIL. */
1777 hsa_insn_srctype::hsa_insn_srctype (int nops, BrigOpcode opcode,
1778 BrigType16_t destt, BrigType16_t srct,
1779 hsa_op_base *arg0, hsa_op_base *arg1,
1780 hsa_op_base *arg2 = NULL)
1781 : hsa_insn_basic (nops, opcode, destt, arg0, arg1, arg2),
1782 m_source_type (srct)
1785 /* New operator to allocate packed instruction from pool alloc. */
1787 void *
1788 hsa_insn_packed::operator new (size_t)
1790 return hsa_allocp_inst_packed->allocate_raw ();
1793 /* Constructor of class representing the packed instruction in HSAIL. */
1795 hsa_insn_packed::hsa_insn_packed (int nops, BrigOpcode opcode,
1796 BrigType16_t destt, BrigType16_t srct,
1797 hsa_op_base *arg0, hsa_op_base *arg1,
1798 hsa_op_base *arg2)
1799 : hsa_insn_srctype (nops, opcode, destt, srct, arg0, arg1, arg2)
1801 m_operand_list = new hsa_op_operand_list (nops - 1);
1804 /* New operator to allocate convert instruction from pool alloc. */
1806 void *
1807 hsa_insn_cvt::operator new (size_t)
1809 return hsa_allocp_inst_cvt->allocate_raw ();
1812 /* Constructor of class representing the convert instruction in HSAIL. */
1814 hsa_insn_cvt::hsa_insn_cvt (hsa_op_with_type *dest, hsa_op_with_type *src)
1815 : hsa_insn_basic (2, BRIG_OPCODE_CVT, dest->m_type, dest, src)
1819 /* New operator to allocate alloca from pool alloc. */
1821 void *
1822 hsa_insn_alloca::operator new (size_t)
1824 return hsa_allocp_inst_alloca->allocate_raw ();
1827 /* Constructor of class representing the alloca in HSAIL. */
1829 hsa_insn_alloca::hsa_insn_alloca (hsa_op_with_type *dest,
1830 hsa_op_with_type *size, unsigned alignment)
1831 : hsa_insn_basic (2, BRIG_OPCODE_ALLOCA, dest->m_type, dest, size),
1832 m_align (BRIG_ALIGNMENT_8)
1834 gcc_assert (dest->m_type == BRIG_TYPE_U32);
1835 if (alignment)
1836 m_align = hsa_alignment_encoding (alignment);
1839 /* Append an instruction INSN into the basic block. */
1841 void
1842 hsa_bb::append_insn (hsa_insn_basic *insn)
1844 gcc_assert (insn->m_opcode != 0 || insn->operand_count () == 0);
1845 gcc_assert (!insn->m_bb);
1847 insn->m_bb = m_bb;
1848 insn->m_prev = m_last_insn;
1849 insn->m_next = NULL;
1850 if (m_last_insn)
1851 m_last_insn->m_next = insn;
1852 m_last_insn = insn;
1853 if (!m_first_insn)
1854 m_first_insn = insn;
1857 /* Insert HSA instruction NEW_INSN immediately before an existing instruction
1858 OLD_INSN. */
1860 static void
1861 hsa_insert_insn_before (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1863 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1865 if (hbb->m_first_insn == old_insn)
1866 hbb->m_first_insn = new_insn;
1867 new_insn->m_prev = old_insn->m_prev;
1868 new_insn->m_next = old_insn;
1869 if (old_insn->m_prev)
1870 old_insn->m_prev->m_next = new_insn;
1871 old_insn->m_prev = new_insn;
1874 /* Append HSA instruction NEW_INSN immediately after an existing instruction
1875 OLD_INSN. */
1877 static void
1878 hsa_append_insn_after (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1880 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1882 if (hbb->m_last_insn == old_insn)
1883 hbb->m_last_insn = new_insn;
1884 new_insn->m_prev = old_insn;
1885 new_insn->m_next = old_insn->m_next;
1886 if (old_insn->m_next)
1887 old_insn->m_next->m_prev = new_insn;
1888 old_insn->m_next = new_insn;
1891 /* Return a register containing the calculated value of EXP which must be an
1892 expression consisting of PLUS_EXPRs, MULT_EXPRs, NOP_EXPRs, SSA_NAMEs and
1893 integer constants as returned by get_inner_reference.
1894 Newly generated HSA instructions will be appended to HBB.
1895 Perform all calculations in ADDRTYPE. */
1897 static hsa_op_with_type *
1898 gen_address_calculation (tree exp, hsa_bb *hbb, BrigType16_t addrtype)
1900 int opcode;
1902 if (TREE_CODE (exp) == NOP_EXPR)
1903 exp = TREE_OPERAND (exp, 0);
1905 switch (TREE_CODE (exp))
1907 case SSA_NAME:
1908 return hsa_cfun->reg_for_gimple_ssa (exp)->get_in_type (addrtype, hbb);
1910 case INTEGER_CST:
1912 hsa_op_immed *imm = new hsa_op_immed (exp);
1913 if (addrtype != imm->m_type)
1914 imm->m_type = addrtype;
1915 return imm;
1918 case PLUS_EXPR:
1919 opcode = BRIG_OPCODE_ADD;
1920 break;
1922 case MULT_EXPR:
1923 opcode = BRIG_OPCODE_MUL;
1924 break;
1926 default:
1927 gcc_unreachable ();
1930 hsa_op_reg *res = new hsa_op_reg (addrtype);
1931 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, addrtype);
1932 insn->set_op (0, res);
1934 hsa_op_with_type *op1 = gen_address_calculation (TREE_OPERAND (exp, 0), hbb,
1935 addrtype);
1936 hsa_op_with_type *op2 = gen_address_calculation (TREE_OPERAND (exp, 1), hbb,
1937 addrtype);
1938 insn->set_op (1, op1);
1939 insn->set_op (2, op2);
1941 hbb->append_insn (insn);
1942 return res;
1945 /* If R1 is NULL, just return R2, otherwise append an instruction adding them
1946 to HBB and return the register holding the result. */
1948 static hsa_op_reg *
1949 add_addr_regs_if_needed (hsa_op_reg *r1, hsa_op_reg *r2, hsa_bb *hbb)
1951 gcc_checking_assert (r2);
1952 if (!r1)
1953 return r2;
1955 hsa_op_reg *res = new hsa_op_reg (r1->m_type);
1956 gcc_assert (!hsa_needs_cvt (r1->m_type, r2->m_type));
1957 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_ADD, res->m_type);
1958 insn->set_op (0, res);
1959 insn->set_op (1, r1);
1960 insn->set_op (2, r2);
1961 hbb->append_insn (insn);
1962 return res;
1965 /* Helper of gen_hsa_addr. Update *SYMBOL, *ADDRTYPE, *REG and *OFFSET to
1966 reflect BASE which is the first operand of a MEM_REF or a TARGET_MEM_REF. */
1968 static void
1969 process_mem_base (tree base, hsa_symbol **symbol, BrigType16_t *addrtype,
1970 hsa_op_reg **reg, offset_int *offset, hsa_bb *hbb)
1972 if (TREE_CODE (base) == SSA_NAME)
1974 gcc_assert (!*reg);
1975 hsa_op_with_type *ssa
1976 = hsa_cfun->reg_for_gimple_ssa (base)->get_in_type (*addrtype, hbb);
1977 *reg = dyn_cast <hsa_op_reg *> (ssa);
1979 else if (TREE_CODE (base) == ADDR_EXPR)
1981 tree decl = TREE_OPERAND (base, 0);
1983 if (!DECL_P (decl) || TREE_CODE (decl) == FUNCTION_DECL)
1985 HSA_SORRY_AT (EXPR_LOCATION (base),
1986 "support for HSA does not implement a memory reference "
1987 "to a non-declaration type");
1988 return;
1991 gcc_assert (!*symbol);
1993 *symbol = get_symbol_for_decl (decl);
1994 *addrtype = hsa_get_segment_addr_type ((*symbol)->m_segment);
1996 else if (TREE_CODE (base) == INTEGER_CST)
1997 *offset += wi::to_offset (base);
1998 else
1999 gcc_unreachable ();
2002 /* Forward declaration of a function. */
2004 static void
2005 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb);
2007 /* Generate HSA address operand for a given tree memory reference REF. If
2008 instructions need to be created to calculate the address, they will be added
2009 to the end of HBB. If a caller provider OUTPUT_BITSIZE and OUTPUT_BITPOS,
2010 the function assumes that the caller will handle possible
2011 bit-field references. Otherwise if we reference a bit-field, sorry message
2012 is displayed. */
2014 static hsa_op_address *
2015 gen_hsa_addr (tree ref, hsa_bb *hbb, HOST_WIDE_INT *output_bitsize = NULL,
2016 HOST_WIDE_INT *output_bitpos = NULL)
2018 hsa_symbol *symbol = NULL;
2019 hsa_op_reg *reg = NULL;
2020 offset_int offset = 0;
2021 tree origref = ref;
2022 tree varoffset = NULL_TREE;
2023 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2024 HOST_WIDE_INT bitsize = 0, bitpos = 0;
2025 BrigType16_t flat_addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2027 if (TREE_CODE (ref) == STRING_CST)
2029 symbol = hsa_get_string_cst_symbol (ref);
2030 goto out;
2032 else if (TREE_CODE (ref) == BIT_FIELD_REF
2033 && ((tree_to_uhwi (TREE_OPERAND (ref, 1)) % BITS_PER_UNIT) != 0
2034 || (tree_to_uhwi (TREE_OPERAND (ref, 2)) % BITS_PER_UNIT) != 0))
2036 HSA_SORRY_ATV (EXPR_LOCATION (origref),
2037 "support for HSA does not implement "
2038 "bit field references such as %E", ref);
2039 goto out;
2042 if (handled_component_p (ref))
2044 enum machine_mode mode;
2045 int unsignedp, volatilep, preversep;
2047 ref = get_inner_reference (ref, &bitsize, &bitpos, &varoffset, &mode,
2048 &unsignedp, &preversep, &volatilep, false);
2050 offset = bitpos;
2051 offset = wi::rshift (offset, LOG2_BITS_PER_UNIT, SIGNED);
2054 switch (TREE_CODE (ref))
2056 case ADDR_EXPR:
2058 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
2059 symbol = hsa_cfun->create_hsa_temporary (flat_addrtype);
2060 hsa_op_reg *r = new hsa_op_reg (flat_addrtype);
2061 gen_hsa_addr_insns (ref, r, hbb);
2062 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2063 r, new hsa_op_address (symbol)));
2065 break;
2067 case SSA_NAME:
2069 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
2070 symbol = hsa_cfun->create_hsa_temporary (flat_addrtype);
2071 hsa_op_reg *r = hsa_cfun->reg_for_gimple_ssa (ref);
2073 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2074 r, new hsa_op_address (symbol)));
2076 break;
2078 case PARM_DECL:
2079 case VAR_DECL:
2080 case RESULT_DECL:
2081 gcc_assert (!symbol);
2082 symbol = get_symbol_for_decl (ref);
2083 addrtype = hsa_get_segment_addr_type (symbol->m_segment);
2084 break;
2086 case MEM_REF:
2087 process_mem_base (TREE_OPERAND (ref, 0), &symbol, &addrtype, &reg,
2088 &offset, hbb);
2090 if (!integer_zerop (TREE_OPERAND (ref, 1)))
2091 offset += wi::to_offset (TREE_OPERAND (ref, 1));
2092 break;
2094 case TARGET_MEM_REF:
2095 process_mem_base (TMR_BASE (ref), &symbol, &addrtype, &reg, &offset, hbb);
2096 if (TMR_INDEX (ref))
2098 hsa_op_reg *disp1;
2099 hsa_op_base *idx = hsa_cfun->reg_for_gimple_ssa
2100 (TMR_INDEX (ref))->get_in_type (addrtype, hbb);
2101 if (TMR_STEP (ref) && !integer_onep (TMR_STEP (ref)))
2103 disp1 = new hsa_op_reg (addrtype);
2104 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_MUL,
2105 addrtype);
2107 /* As step must respect addrtype, we overwrite the type
2108 of an immediate value. */
2109 hsa_op_immed *step = new hsa_op_immed (TMR_STEP (ref));
2110 step->m_type = addrtype;
2112 insn->set_op (0, disp1);
2113 insn->set_op (1, idx);
2114 insn->set_op (2, step);
2115 hbb->append_insn (insn);
2117 else
2118 disp1 = as_a <hsa_op_reg *> (idx);
2119 reg = add_addr_regs_if_needed (reg, disp1, hbb);
2121 if (TMR_INDEX2 (ref))
2123 if (TREE_CODE (TMR_INDEX2 (ref)) == SSA_NAME)
2125 hsa_op_base *disp2 = hsa_cfun->reg_for_gimple_ssa
2126 (TMR_INDEX2 (ref))->get_in_type (addrtype, hbb);
2127 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (disp2),
2128 hbb);
2130 else if (TREE_CODE (TMR_INDEX2 (ref)) == INTEGER_CST)
2131 offset += wi::to_offset (TMR_INDEX2 (ref));
2132 else
2133 gcc_unreachable ();
2135 offset += wi::to_offset (TMR_OFFSET (ref));
2136 break;
2137 case FUNCTION_DECL:
2138 HSA_SORRY_AT (EXPR_LOCATION (origref),
2139 "support for HSA does not implement function pointers");
2140 goto out;
2141 default:
2142 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does "
2143 "not implement memory access to %E", origref);
2144 goto out;
2147 if (varoffset)
2149 if (TREE_CODE (varoffset) == INTEGER_CST)
2150 offset += wi::to_offset (varoffset);
2151 else
2153 hsa_op_base *off_op = gen_address_calculation (varoffset, hbb,
2154 addrtype);
2155 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (off_op),
2156 hbb);
2160 gcc_checking_assert ((symbol
2161 && addrtype
2162 == hsa_get_segment_addr_type (symbol->m_segment))
2163 || (!symbol
2164 && addrtype
2165 == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT)));
2166 out:
2167 HOST_WIDE_INT hwi_offset = offset.to_shwi ();
2169 /* Calculate remaining bitsize offset (if presented). */
2170 bitpos %= BITS_PER_UNIT;
2171 /* If bitsize is a power of two that is greater or equal to BITS_PER_UNIT, it
2172 is not a reason to think this is a bit-field access. */
2173 if (bitpos == 0
2174 && (bitsize >= BITS_PER_UNIT)
2175 && !(bitsize & (bitsize - 1)))
2176 bitsize = 0;
2178 if ((bitpos || bitsize) && (output_bitpos == NULL || output_bitsize == NULL))
2179 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does not "
2180 "implement unhandled bit field reference such as %E", ref);
2182 if (output_bitsize != NULL && output_bitpos != NULL)
2184 *output_bitsize = bitsize;
2185 *output_bitpos = bitpos;
2188 return new hsa_op_address (symbol, reg, hwi_offset);
2191 /* Generate HSA address operand for a given tree memory reference REF. If
2192 instructions need to be created to calculate the address, they will be added
2193 to the end of HBB. OUTPUT_ALIGN is alignment of the created address. */
2195 static hsa_op_address *
2196 gen_hsa_addr_with_align (tree ref, hsa_bb *hbb, BrigAlignment8_t *output_align)
2198 hsa_op_address *addr = gen_hsa_addr (ref, hbb);
2199 if (addr->m_reg || !addr->m_symbol)
2200 *output_align = hsa_object_alignment (ref);
2201 else
2203 /* If the address consists only of a symbol and an offset, we
2204 compute the alignment ourselves to take into account any alignment
2205 promotions we might have done for the HSA symbol representation. */
2206 unsigned align = hsa_byte_alignment (addr->m_symbol->m_align);
2207 unsigned misalign = addr->m_imm_offset & (align - 1);
2208 if (misalign)
2209 align = (misalign & -misalign);
2210 *output_align = hsa_alignment_encoding (BITS_PER_UNIT * align);
2212 return addr;
2215 /* Generate HSA address for a function call argument of given TYPE.
2216 INDEX is used to generate corresponding name of the arguments.
2217 Special value -1 represents fact that result value is created. */
2219 static hsa_op_address *
2220 gen_hsa_addr_for_arg (tree tree_type, int index)
2222 hsa_symbol *sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
2223 BRIG_LINKAGE_ARG);
2224 sym->m_type = hsa_type_for_tree_type (tree_type, &sym->m_dim);
2226 if (index == -1) /* Function result. */
2227 sym->m_name = "res";
2228 else /* Function call arguments. */
2230 sym->m_name = NULL;
2231 sym->m_name_number = index;
2234 return new hsa_op_address (sym);
2237 /* Generate HSA instructions that process all necessary conversions
2238 of an ADDR to flat addressing and place the result into DEST.
2239 Instructions are appended to HBB. */
2241 static void
2242 convert_addr_to_flat_segment (hsa_op_address *addr, hsa_op_reg *dest,
2243 hsa_bb *hbb)
2245 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_LDA);
2246 insn->set_op (1, addr);
2247 if (addr->m_symbol && addr->m_symbol->m_segment != BRIG_SEGMENT_GLOBAL)
2249 /* LDA produces segment-relative address, we need to convert
2250 it to the flat one. */
2251 hsa_op_reg *tmp;
2252 tmp = new hsa_op_reg (hsa_get_segment_addr_type
2253 (addr->m_symbol->m_segment));
2254 hsa_insn_seg *seg;
2255 seg = new hsa_insn_seg (BRIG_OPCODE_STOF,
2256 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
2257 tmp->m_type, addr->m_symbol->m_segment, dest,
2258 tmp);
2260 insn->set_op (0, tmp);
2261 insn->m_type = tmp->m_type;
2262 hbb->append_insn (insn);
2263 hbb->append_insn (seg);
2265 else
2267 insn->set_op (0, dest);
2268 insn->m_type = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2269 hbb->append_insn (insn);
2273 /* Generate HSA instructions that calculate address of VAL including all
2274 necessary conversions to flat addressing and place the result into DEST.
2275 Instructions are appended to HBB. */
2277 static void
2278 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb)
2280 /* Handle cases like tmp = NULL, where we just emit a move instruction
2281 to a register. */
2282 if (TREE_CODE (val) == INTEGER_CST)
2284 hsa_op_immed *c = new hsa_op_immed (val);
2285 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2286 dest->m_type, dest, c);
2287 hbb->append_insn (insn);
2288 return;
2291 hsa_op_address *addr;
2293 gcc_assert (dest->m_type == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2294 if (TREE_CODE (val) == ADDR_EXPR)
2295 val = TREE_OPERAND (val, 0);
2296 addr = gen_hsa_addr (val, hbb);
2298 convert_addr_to_flat_segment (addr, dest, hbb);
2301 /* Return an HSA register or HSA immediate value operand corresponding to
2302 gimple operand OP. */
2304 static hsa_op_with_type *
2305 hsa_reg_or_immed_for_gimple_op (tree op, hsa_bb *hbb)
2307 hsa_op_reg *tmp;
2309 if (TREE_CODE (op) == SSA_NAME)
2310 tmp = hsa_cfun->reg_for_gimple_ssa (op);
2311 else if (!POINTER_TYPE_P (TREE_TYPE (op)))
2312 return new hsa_op_immed (op);
2313 else
2315 tmp = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2316 gen_hsa_addr_insns (op, tmp, hbb);
2318 return tmp;
2321 /* Create a simple movement instruction with register destination DEST and
2322 register or immediate source SRC and append it to the end of HBB. */
2324 void
2325 hsa_build_append_simple_mov (hsa_op_reg *dest, hsa_op_base *src, hsa_bb *hbb)
2327 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type,
2328 dest, src);
2329 if (hsa_op_reg *sreg = dyn_cast <hsa_op_reg *> (src))
2330 gcc_assert (hsa_type_bit_size (dest->m_type)
2331 == hsa_type_bit_size (sreg->m_type));
2332 else
2333 gcc_assert (hsa_type_bit_size (dest->m_type)
2334 == hsa_type_bit_size (as_a <hsa_op_immed *> (src)->m_type));
2336 hbb->append_insn (insn);
2339 /* Generate HSAIL instructions loading a bit field into register DEST.
2340 VALUE_REG is a register of a SSA name that is used in the bit field
2341 reference. To identify a bit field BITPOS is offset to the loaded memory
2342 and BITSIZE is number of bits of the bit field.
2343 Add instructions to HBB. */
2345 static void
2346 gen_hsa_insns_for_bitfield (hsa_op_reg *dest, hsa_op_reg *value_reg,
2347 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2348 hsa_bb *hbb)
2350 unsigned type_bitsize = hsa_type_bit_size (dest->m_type);
2351 unsigned left_shift = type_bitsize - (bitsize + bitpos);
2352 unsigned right_shift = left_shift + bitpos;
2354 if (left_shift)
2356 hsa_op_reg *value_reg_2 = new hsa_op_reg (dest->m_type);
2357 hsa_op_immed *c = new hsa_op_immed (left_shift, BRIG_TYPE_U32);
2359 hsa_insn_basic *lshift
2360 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, value_reg_2->m_type,
2361 value_reg_2, value_reg, c);
2363 hbb->append_insn (lshift);
2365 value_reg = value_reg_2;
2368 if (right_shift)
2370 hsa_op_reg *value_reg_2 = new hsa_op_reg (dest->m_type);
2371 hsa_op_immed *c = new hsa_op_immed (right_shift, BRIG_TYPE_U32);
2373 hsa_insn_basic *rshift
2374 = new hsa_insn_basic (3, BRIG_OPCODE_SHR, value_reg_2->m_type,
2375 value_reg_2, value_reg, c);
2377 hbb->append_insn (rshift);
2379 value_reg = value_reg_2;
2382 hsa_insn_basic *assignment
2383 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, dest, value_reg);
2384 hbb->append_insn (assignment);
2388 /* Generate HSAIL instructions loading a bit field into register DEST. ADDR is
2389 prepared memory address which is used to load the bit field. To identify a
2390 bit field BITPOS is offset to the loaded memory and BITSIZE is number of
2391 bits of the bit field. Add instructions to HBB. Load must be performed in
2392 alignment ALIGN. */
2394 static void
2395 gen_hsa_insns_for_bitfield_load (hsa_op_reg *dest, hsa_op_address *addr,
2396 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2397 hsa_bb *hbb, BrigAlignment8_t align)
2399 hsa_op_reg *value_reg = new hsa_op_reg (dest->m_type);
2400 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, dest->m_type, value_reg,
2401 addr);
2402 mem->set_align (align);
2403 hbb->append_insn (mem);
2404 gen_hsa_insns_for_bitfield (dest, value_reg, bitsize, bitpos, hbb);
2407 /* Return the alignment of base memory accesses we issue to perform bit-field
2408 memory access REF. */
2410 static BrigAlignment8_t
2411 hsa_bitmemref_alignment (tree ref)
2413 unsigned HOST_WIDE_INT bit_offset = 0;
2415 while (true)
2417 if (TREE_CODE (ref) == BIT_FIELD_REF)
2419 if (!tree_fits_uhwi_p (TREE_OPERAND (ref, 2)))
2420 return BRIG_ALIGNMENT_1;
2421 bit_offset += tree_to_uhwi (TREE_OPERAND (ref, 2));
2423 else if (TREE_CODE (ref) == COMPONENT_REF
2424 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2425 bit_offset += int_bit_position (TREE_OPERAND (ref, 1));
2426 else
2427 break;
2428 ref = TREE_OPERAND (ref, 0);
2431 unsigned HOST_WIDE_INT bits = bit_offset % BITS_PER_UNIT;
2432 unsigned HOST_WIDE_INT byte_bits = bit_offset - bits;
2433 BrigAlignment8_t base = hsa_object_alignment (ref);
2434 if (byte_bits == 0)
2435 return base;
2436 return MIN (base, hsa_alignment_encoding (byte_bits & -byte_bits));
2439 /* Generate HSAIL instructions loading something into register DEST. RHS is
2440 tree representation of the loaded data, which are loaded as type TYPE. Add
2441 instructions to HBB. */
2443 static void
2444 gen_hsa_insns_for_load (hsa_op_reg *dest, tree rhs, tree type, hsa_bb *hbb)
2446 /* The destination SSA name will give us the type. */
2447 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
2448 rhs = TREE_OPERAND (rhs, 0);
2450 if (TREE_CODE (rhs) == SSA_NAME)
2452 hsa_op_reg *src = hsa_cfun->reg_for_gimple_ssa (rhs);
2453 hsa_build_append_simple_mov (dest, src, hbb);
2455 else if (is_gimple_min_invariant (rhs)
2456 || TREE_CODE (rhs) == ADDR_EXPR)
2458 if (POINTER_TYPE_P (TREE_TYPE (rhs)))
2460 if (dest->m_type != hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT))
2462 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2463 "support for HSA does not implement conversion "
2464 "of %E to the requested non-pointer type.", rhs);
2465 return;
2468 gen_hsa_addr_insns (rhs, dest, hbb);
2470 else if (TREE_CODE (rhs) == COMPLEX_CST)
2472 hsa_op_immed *real_part = new hsa_op_immed (TREE_REALPART (rhs));
2473 hsa_op_immed *imag_part = new hsa_op_immed (TREE_IMAGPART (rhs));
2475 hsa_op_reg *real_part_reg
2476 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2477 true));
2478 hsa_op_reg *imag_part_reg
2479 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2480 true));
2482 hsa_build_append_simple_mov (real_part_reg, real_part, hbb);
2483 hsa_build_append_simple_mov (imag_part_reg, imag_part, hbb);
2485 BrigType16_t src_type = hsa_bittype_for_type (real_part_reg->m_type);
2487 hsa_insn_packed *insn
2488 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type,
2489 src_type, dest, real_part_reg,
2490 imag_part_reg);
2491 hbb->append_insn (insn);
2493 else
2495 hsa_op_immed *imm = new hsa_op_immed (rhs);
2496 hsa_build_append_simple_mov (dest, imm, hbb);
2499 else if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR)
2501 tree pack_type = TREE_TYPE (TREE_OPERAND (rhs, 0));
2503 hsa_op_reg *packed_reg
2504 = new hsa_op_reg (hsa_type_for_scalar_tree_type (pack_type, true));
2506 tree complex_rhs = TREE_OPERAND (rhs, 0);
2507 gen_hsa_insns_for_load (packed_reg, complex_rhs, TREE_TYPE (complex_rhs),
2508 hbb);
2510 hsa_op_reg *real_reg
2511 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2513 hsa_op_reg *imag_reg
2514 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2516 BrigKind16_t brig_type = packed_reg->m_type;
2517 hsa_insn_packed *packed
2518 = new hsa_insn_packed (3, BRIG_OPCODE_EXPAND,
2519 hsa_bittype_for_type (real_reg->m_type),
2520 brig_type, real_reg, imag_reg, packed_reg);
2522 hbb->append_insn (packed);
2524 hsa_op_reg *source = TREE_CODE (rhs) == REALPART_EXPR ?
2525 real_reg : imag_reg;
2527 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2528 dest->m_type, dest, source);
2530 hbb->append_insn (insn);
2532 else if (TREE_CODE (rhs) == BIT_FIELD_REF
2533 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2535 tree ssa_name = TREE_OPERAND (rhs, 0);
2536 HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs, 1));
2537 HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs, 2));
2539 hsa_op_reg *imm_value = hsa_cfun->reg_for_gimple_ssa (ssa_name);
2540 gen_hsa_insns_for_bitfield (dest, imm_value, bitsize, bitpos, hbb);
2542 else if (DECL_P (rhs) || TREE_CODE (rhs) == MEM_REF
2543 || TREE_CODE (rhs) == TARGET_MEM_REF
2544 || handled_component_p (rhs))
2546 HOST_WIDE_INT bitsize, bitpos;
2548 /* Load from memory. */
2549 hsa_op_address *addr;
2550 addr = gen_hsa_addr (rhs, hbb, &bitsize, &bitpos);
2552 /* Handle load of a bit field. */
2553 if (bitsize > 64)
2555 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2556 "support for HSA does not implement load from a bit "
2557 "field bigger than 64 bits");
2558 return;
2561 if (bitsize || bitpos)
2562 gen_hsa_insns_for_bitfield_load (dest, addr, bitsize, bitpos, hbb,
2563 hsa_bitmemref_alignment (rhs));
2564 else
2566 BrigType16_t mtype;
2567 /* Not dest->m_type, that's possibly extended. */
2568 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (type,
2569 false));
2570 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dest,
2571 addr);
2572 mem->set_align (hsa_object_alignment (rhs));
2573 hbb->append_insn (mem);
2576 else
2577 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2578 "support for HSA does not implement loading "
2579 "of expression %E",
2580 rhs);
2583 /* Return number of bits necessary for representation of a bit field,
2584 starting at BITPOS with size of BITSIZE. */
2586 static unsigned
2587 get_bitfield_size (unsigned bitpos, unsigned bitsize)
2589 unsigned s = bitpos + bitsize;
2590 unsigned sizes[] = {8, 16, 32, 64};
2592 for (unsigned i = 0; i < 4; i++)
2593 if (s <= sizes[i])
2594 return sizes[i];
2596 gcc_unreachable ();
2597 return 0;
2600 /* Generate HSAIL instructions storing into memory. LHS is the destination of
2601 the store, SRC is the source operand. Add instructions to HBB. */
2603 static void
2604 gen_hsa_insns_for_store (tree lhs, hsa_op_base *src, hsa_bb *hbb)
2606 HOST_WIDE_INT bitsize = 0, bitpos = 0;
2607 BrigAlignment8_t req_align;
2608 BrigType16_t mtype;
2609 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
2610 false));
2611 hsa_op_address *addr;
2612 addr = gen_hsa_addr (lhs, hbb, &bitsize, &bitpos);
2614 /* Handle store to a bit field. */
2615 if (bitsize > 64)
2617 HSA_SORRY_AT (EXPR_LOCATION (lhs),
2618 "support for HSA does not implement store to a bit field "
2619 "bigger than 64 bits");
2620 return;
2623 unsigned type_bitsize = get_bitfield_size (bitpos, bitsize);
2625 /* HSAIL does not support MOV insn with 16-bits integers. */
2626 if (type_bitsize < 32)
2627 type_bitsize = 32;
2629 if (bitpos || (bitsize && type_bitsize != bitsize))
2631 unsigned HOST_WIDE_INT mask = 0;
2632 BrigType16_t mem_type
2633 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT,
2634 !TYPE_UNSIGNED (TREE_TYPE (lhs)));
2636 for (unsigned i = 0; i < type_bitsize; i++)
2637 if (i < bitpos || i >= bitpos + bitsize)
2638 mask |= ((unsigned HOST_WIDE_INT)1 << i);
2640 hsa_op_reg *value_reg = new hsa_op_reg (mem_type);
2642 req_align = hsa_bitmemref_alignment (lhs);
2643 /* Load value from memory. */
2644 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mem_type,
2645 value_reg, addr);
2646 mem->set_align (req_align);
2647 hbb->append_insn (mem);
2649 /* AND the loaded value with prepared mask. */
2650 hsa_op_reg *cleared_reg = new hsa_op_reg (mem_type);
2652 BrigType16_t t
2653 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT, false);
2654 hsa_op_immed *c = new hsa_op_immed (mask, t);
2656 hsa_insn_basic *clearing
2657 = new hsa_insn_basic (3, BRIG_OPCODE_AND, mem_type, cleared_reg,
2658 value_reg, c);
2659 hbb->append_insn (clearing);
2661 /* Shift to left a value that is going to be stored. */
2662 hsa_op_reg *new_value_reg = new hsa_op_reg (mem_type);
2664 hsa_insn_basic *basic = new hsa_insn_basic (2, BRIG_OPCODE_MOV, mem_type,
2665 new_value_reg, src);
2666 hbb->append_insn (basic);
2668 if (bitpos)
2670 hsa_op_reg *shifted_value_reg = new hsa_op_reg (mem_type);
2671 c = new hsa_op_immed (bitpos, BRIG_TYPE_U32);
2673 hsa_insn_basic *basic
2674 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, mem_type,
2675 shifted_value_reg, new_value_reg, c);
2676 hbb->append_insn (basic);
2678 new_value_reg = shifted_value_reg;
2681 /* OR the prepared value with prepared chunk loaded from memory. */
2682 hsa_op_reg *prepared_reg= new hsa_op_reg (mem_type);
2683 basic = new hsa_insn_basic (3, BRIG_OPCODE_OR, mem_type, prepared_reg,
2684 new_value_reg, cleared_reg);
2685 hbb->append_insn (basic);
2687 src = prepared_reg;
2688 mtype = mem_type;
2690 else
2691 req_align = hsa_object_alignment (lhs);
2693 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src, addr);
2694 mem->set_align (req_align);
2696 /* The HSAIL verifier has another constraint: if the source is an immediate
2697 then it must match the destination type. If it's a register the low bits
2698 will be used for sub-word stores. We're always allocating new operands so
2699 we can modify the above in place. */
2700 if (hsa_op_immed *imm = dyn_cast <hsa_op_immed *> (src))
2702 if (!hsa_type_packed_p (imm->m_type))
2703 imm->m_type = mem->m_type;
2704 else
2706 /* ...and all vector immediates apparently need to be vectors of
2707 unsigned bytes. */
2708 unsigned bs = hsa_type_bit_size (imm->m_type);
2709 gcc_assert (bs == hsa_type_bit_size (mem->m_type));
2710 switch (bs)
2712 case 32:
2713 imm->m_type = BRIG_TYPE_U8X4;
2714 break;
2715 case 64:
2716 imm->m_type = BRIG_TYPE_U8X8;
2717 break;
2718 case 128:
2719 imm->m_type = BRIG_TYPE_U8X16;
2720 break;
2721 default:
2722 gcc_unreachable ();
2727 hbb->append_insn (mem);
2730 /* Generate memory copy instructions that are going to be used
2731 for copying a SRC memory to TARGET memory,
2732 represented by pointer in a register. MIN_ALIGN is minimal alignment
2733 of provided HSA addresses. */
2735 static void
2736 gen_hsa_memory_copy (hsa_bb *hbb, hsa_op_address *target, hsa_op_address *src,
2737 unsigned size, BrigAlignment8_t min_align)
2739 hsa_op_address *addr;
2740 hsa_insn_mem *mem;
2742 unsigned offset = 0;
2743 unsigned min_byte_align = hsa_byte_alignment (min_align);
2745 while (size)
2747 unsigned s;
2748 if (size >= 8)
2749 s = 8;
2750 else if (size >= 4)
2751 s = 4;
2752 else if (size >= 2)
2753 s = 2;
2754 else
2755 s = 1;
2757 if (s > min_byte_align)
2758 s = min_byte_align;
2760 BrigType16_t t = get_integer_type_by_bytes (s, false);
2762 hsa_op_reg *tmp = new hsa_op_reg (t);
2763 addr = new hsa_op_address (src->m_symbol, src->m_reg,
2764 src->m_imm_offset + offset);
2765 mem = new hsa_insn_mem (BRIG_OPCODE_LD, t, tmp, addr);
2766 hbb->append_insn (mem);
2768 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2769 target->m_imm_offset + offset);
2770 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, tmp, addr);
2771 hbb->append_insn (mem);
2772 offset += s;
2773 size -= s;
2777 /* Create a memset mask that is created by copying a CONSTANT byte value
2778 to an integer of BYTE_SIZE bytes. */
2780 static unsigned HOST_WIDE_INT
2781 build_memset_value (unsigned HOST_WIDE_INT constant, unsigned byte_size)
2783 if (constant == 0)
2784 return 0;
2786 HOST_WIDE_INT v = constant;
2788 for (unsigned i = 1; i < byte_size; i++)
2789 v |= constant << (8 * i);
2791 return v;
2794 /* Generate memory set instructions that are going to be used
2795 for setting a CONSTANT byte value to TARGET memory of SIZE bytes.
2796 MIN_ALIGN is minimal alignment of provided HSA addresses. */
2798 static void
2799 gen_hsa_memory_set (hsa_bb *hbb, hsa_op_address *target,
2800 unsigned HOST_WIDE_INT constant,
2801 unsigned size, BrigAlignment8_t min_align)
2803 hsa_op_address *addr;
2804 hsa_insn_mem *mem;
2806 unsigned offset = 0;
2807 unsigned min_byte_align = hsa_byte_alignment (min_align);
2809 while (size)
2811 unsigned s;
2812 if (size >= 8)
2813 s = 8;
2814 else if (size >= 4)
2815 s = 4;
2816 else if (size >= 2)
2817 s = 2;
2818 else
2819 s = 1;
2821 if (s > min_byte_align)
2822 s = min_byte_align;
2824 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2825 target->m_imm_offset + offset);
2827 BrigType16_t t = get_integer_type_by_bytes (s, false);
2828 HOST_WIDE_INT c = build_memset_value (constant, s);
2830 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, new hsa_op_immed (c, t),
2831 addr);
2832 hbb->append_insn (mem);
2833 offset += s;
2834 size -= s;
2838 /* Generate HSAIL instructions for a single assignment
2839 of an empty constructor to an ADDR_LHS. Constructor is passed as a
2840 tree RHS and all instructions are appended to HBB. ALIGN is
2841 alignment of the address. */
2843 void
2844 gen_hsa_ctor_assignment (hsa_op_address *addr_lhs, tree rhs, hsa_bb *hbb,
2845 BrigAlignment8_t align)
2847 if (vec_safe_length (CONSTRUCTOR_ELTS (rhs)))
2849 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2850 "support for HSA does not implement load from constructor");
2851 return;
2854 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2855 gen_hsa_memory_set (hbb, addr_lhs, 0, size, align);
2858 /* Generate HSA instructions for a single assignment of RHS to LHS.
2859 HBB is the basic block they will be appended to. */
2861 static void
2862 gen_hsa_insns_for_single_assignment (tree lhs, tree rhs, hsa_bb *hbb)
2864 if (TREE_CODE (lhs) == SSA_NAME)
2866 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
2867 if (hsa_seen_error ())
2868 return;
2870 gen_hsa_insns_for_load (dest, rhs, TREE_TYPE (lhs), hbb);
2872 else if (TREE_CODE (rhs) == SSA_NAME
2873 || (is_gimple_min_invariant (rhs) && TREE_CODE (rhs) != STRING_CST))
2875 /* Store to memory. */
2876 hsa_op_base *src = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
2877 if (hsa_seen_error ())
2878 return;
2880 gen_hsa_insns_for_store (lhs, src, hbb);
2882 else
2884 BrigAlignment8_t lhs_align;
2885 hsa_op_address *addr_lhs = gen_hsa_addr_with_align (lhs, hbb,
2886 &lhs_align);
2888 if (TREE_CODE (rhs) == CONSTRUCTOR)
2889 gen_hsa_ctor_assignment (addr_lhs, rhs, hbb, lhs_align);
2890 else
2892 BrigAlignment8_t rhs_align;
2893 hsa_op_address *addr_rhs = gen_hsa_addr_with_align (rhs, hbb,
2894 &rhs_align);
2896 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2897 gen_hsa_memory_copy (hbb, addr_lhs, addr_rhs, size,
2898 MIN (lhs_align, rhs_align));
2903 /* Prepend before INSN a load from spill symbol of SPILL_REG. Return the
2904 register into which we loaded. If this required another register to convert
2905 from a B1 type, return it in *PTMP2, otherwise store NULL into it. We
2906 assume we are out of SSA so the returned register does not have its
2907 definition set. */
2909 hsa_op_reg *
2910 hsa_spill_in (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2912 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2913 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2914 hsa_op_address *addr = new hsa_op_address (spill_sym);
2916 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, spill_sym->m_type,
2917 reg, addr);
2918 hsa_insert_insn_before (mem, insn);
2920 *ptmp2 = NULL;
2921 if (spill_reg->m_type == BRIG_TYPE_B1)
2923 hsa_insn_basic *cvtinsn;
2924 *ptmp2 = reg;
2925 reg = new hsa_op_reg (spill_reg->m_type);
2927 cvtinsn = new hsa_insn_cvt (reg, *ptmp2);
2928 hsa_insert_insn_before (cvtinsn, insn);
2930 return reg;
2933 /* Append after INSN a store to spill symbol of SPILL_REG. Return the register
2934 from which we stored. If this required another register to convert to a B1
2935 type, return it in *PTMP2, otherwise store NULL into it. We assume we are
2936 out of SSA so the returned register does not have its use updated. */
2938 hsa_op_reg *
2939 hsa_spill_out (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2941 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2942 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2943 hsa_op_address *addr = new hsa_op_address (spill_sym);
2944 hsa_op_reg *returnreg;
2946 *ptmp2 = NULL;
2947 returnreg = reg;
2948 if (spill_reg->m_type == BRIG_TYPE_B1)
2950 hsa_insn_basic *cvtinsn;
2951 *ptmp2 = new hsa_op_reg (spill_sym->m_type);
2952 reg->m_type = spill_reg->m_type;
2954 cvtinsn = new hsa_insn_cvt (*ptmp2, returnreg);
2955 hsa_append_insn_after (cvtinsn, insn);
2956 insn = cvtinsn;
2957 reg = *ptmp2;
2960 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, spill_sym->m_type, reg,
2961 addr);
2962 hsa_append_insn_after (mem, insn);
2963 return returnreg;
2966 /* Generate a comparison instruction that will compare LHS and RHS with
2967 comparison specified by CODE and put result into register DEST. DEST has to
2968 have its type set already but must not have its definition set yet.
2969 Generated instructions will be added to HBB. */
2971 static void
2972 gen_hsa_cmp_insn_from_gimple (enum tree_code code, tree lhs, tree rhs,
2973 hsa_op_reg *dest, hsa_bb *hbb)
2975 BrigCompareOperation8_t compare;
2977 switch (code)
2979 case LT_EXPR:
2980 compare = BRIG_COMPARE_LT;
2981 break;
2982 case LE_EXPR:
2983 compare = BRIG_COMPARE_LE;
2984 break;
2985 case GT_EXPR:
2986 compare = BRIG_COMPARE_GT;
2987 break;
2988 case GE_EXPR:
2989 compare = BRIG_COMPARE_GE;
2990 break;
2991 case EQ_EXPR:
2992 compare = BRIG_COMPARE_EQ;
2993 break;
2994 case NE_EXPR:
2995 compare = BRIG_COMPARE_NE;
2996 break;
2997 case UNORDERED_EXPR:
2998 compare = BRIG_COMPARE_NAN;
2999 break;
3000 case ORDERED_EXPR:
3001 compare = BRIG_COMPARE_NUM;
3002 break;
3003 case UNLT_EXPR:
3004 compare = BRIG_COMPARE_LTU;
3005 break;
3006 case UNLE_EXPR:
3007 compare = BRIG_COMPARE_LEU;
3008 break;
3009 case UNGT_EXPR:
3010 compare = BRIG_COMPARE_GTU;
3011 break;
3012 case UNGE_EXPR:
3013 compare = BRIG_COMPARE_GEU;
3014 break;
3015 case UNEQ_EXPR:
3016 compare = BRIG_COMPARE_EQU;
3017 break;
3018 case LTGT_EXPR:
3019 compare = BRIG_COMPARE_NEU;
3020 break;
3022 default:
3023 HSA_SORRY_ATV (EXPR_LOCATION (lhs),
3024 "support for HSA does not implement comparison tree "
3025 "code %s\n", get_tree_code_name (code));
3026 return;
3029 /* CMP instruction returns e.g. 0xffffffff (for a 32-bit with integer)
3030 as a result of comparison. */
3032 BrigType16_t dest_type = hsa_type_integer_p (dest->m_type)
3033 ? (BrigType16_t) BRIG_TYPE_B1 : dest->m_type;
3035 hsa_insn_cmp *cmp = new hsa_insn_cmp (compare, dest_type);
3036 cmp->set_op (1, hsa_reg_or_immed_for_gimple_op (lhs, hbb));
3037 cmp->set_op (2, hsa_reg_or_immed_for_gimple_op (rhs, hbb));
3039 hbb->append_insn (cmp);
3040 cmp->set_output_in_type (dest, 0, hbb);
3043 /* Generate an unary instruction with OPCODE and append it to a basic block
3044 HBB. The instruction uses DEST as a destination and OP1
3045 as a single operand. */
3047 static void
3048 gen_hsa_unary_operation (BrigOpcode opcode, hsa_op_reg *dest,
3049 hsa_op_with_type *op1, hsa_bb *hbb)
3051 gcc_checking_assert (dest);
3052 hsa_insn_basic *insn;
3054 if (opcode == BRIG_OPCODE_MOV && hsa_needs_cvt (dest->m_type, op1->m_type))
3055 insn = new hsa_insn_cvt (dest, op1);
3056 else if (opcode == BRIG_OPCODE_FIRSTBIT || opcode == BRIG_OPCODE_LASTBIT)
3057 insn = new hsa_insn_srctype (2, opcode, BRIG_TYPE_U32, op1->m_type, NULL,
3058 op1);
3059 else
3061 insn = new hsa_insn_basic (2, opcode, dest->m_type, dest, op1);
3063 if (opcode == BRIG_OPCODE_ABS || opcode == BRIG_OPCODE_NEG)
3065 /* ABS and NEG only exist in _s form :-/ */
3066 if (insn->m_type == BRIG_TYPE_U32)
3067 insn->m_type = BRIG_TYPE_S32;
3068 else if (insn->m_type == BRIG_TYPE_U64)
3069 insn->m_type = BRIG_TYPE_S64;
3073 hbb->append_insn (insn);
3075 if (opcode == BRIG_OPCODE_FIRSTBIT || opcode == BRIG_OPCODE_LASTBIT)
3076 insn->set_output_in_type (dest, 0, hbb);
3079 /* Generate a binary instruction with OPCODE and append it to a basic block
3080 HBB. The instruction uses DEST as a destination and operands OP1
3081 and OP2. */
3083 static void
3084 gen_hsa_binary_operation (int opcode, hsa_op_reg *dest,
3085 hsa_op_base *op1, hsa_op_base *op2, hsa_bb *hbb)
3087 gcc_checking_assert (dest);
3089 if ((opcode == BRIG_OPCODE_SHL || opcode == BRIG_OPCODE_SHR)
3090 && is_a <hsa_op_immed *> (op2))
3092 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3093 i->set_type (BRIG_TYPE_U32);
3095 if ((opcode == BRIG_OPCODE_OR
3096 || opcode == BRIG_OPCODE_XOR
3097 || opcode == BRIG_OPCODE_AND)
3098 && is_a <hsa_op_immed *> (op2))
3100 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3101 i->set_type (hsa_unsigned_type_for_type (i->m_type));
3104 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, dest->m_type, dest,
3105 op1, op2);
3106 hbb->append_insn (insn);
3109 /* Generate HSA instructions for a single assignment. HBB is the basic block
3110 they will be appended to. */
3112 static void
3113 gen_hsa_insns_for_operation_assignment (gimple *assign, hsa_bb *hbb)
3115 tree_code code = gimple_assign_rhs_code (assign);
3116 gimple_rhs_class rhs_class = get_gimple_rhs_class (gimple_expr_code (assign));
3118 tree lhs = gimple_assign_lhs (assign);
3119 tree rhs1 = gimple_assign_rhs1 (assign);
3120 tree rhs2 = gimple_assign_rhs2 (assign);
3121 tree rhs3 = gimple_assign_rhs3 (assign);
3123 BrigOpcode opcode;
3125 switch (code)
3127 CASE_CONVERT:
3128 case FLOAT_EXPR:
3129 /* The opcode is changed to BRIG_OPCODE_CVT if BRIG types
3130 needs a conversion. */
3131 opcode = BRIG_OPCODE_MOV;
3132 break;
3134 case PLUS_EXPR:
3135 case POINTER_PLUS_EXPR:
3136 opcode = BRIG_OPCODE_ADD;
3137 break;
3138 case MINUS_EXPR:
3139 opcode = BRIG_OPCODE_SUB;
3140 break;
3141 case MULT_EXPR:
3142 opcode = BRIG_OPCODE_MUL;
3143 break;
3144 case MULT_HIGHPART_EXPR:
3145 opcode = BRIG_OPCODE_MULHI;
3146 break;
3147 case RDIV_EXPR:
3148 case TRUNC_DIV_EXPR:
3149 case EXACT_DIV_EXPR:
3150 opcode = BRIG_OPCODE_DIV;
3151 break;
3152 case CEIL_DIV_EXPR:
3153 case FLOOR_DIV_EXPR:
3154 case ROUND_DIV_EXPR:
3155 HSA_SORRY_AT (gimple_location (assign),
3156 "support for HSA does not implement CEIL_DIV_EXPR, "
3157 "FLOOR_DIV_EXPR or ROUND_DIV_EXPR");
3158 return;
3159 case TRUNC_MOD_EXPR:
3160 opcode = BRIG_OPCODE_REM;
3161 break;
3162 case CEIL_MOD_EXPR:
3163 case FLOOR_MOD_EXPR:
3164 case ROUND_MOD_EXPR:
3165 HSA_SORRY_AT (gimple_location (assign),
3166 "support for HSA does not implement CEIL_MOD_EXPR, "
3167 "FLOOR_MOD_EXPR or ROUND_MOD_EXPR");
3168 return;
3169 case NEGATE_EXPR:
3170 opcode = BRIG_OPCODE_NEG;
3171 break;
3172 case MIN_EXPR:
3173 opcode = BRIG_OPCODE_MIN;
3174 break;
3175 case MAX_EXPR:
3176 opcode = BRIG_OPCODE_MAX;
3177 break;
3178 case ABS_EXPR:
3179 opcode = BRIG_OPCODE_ABS;
3180 break;
3181 case LSHIFT_EXPR:
3182 opcode = BRIG_OPCODE_SHL;
3183 break;
3184 case RSHIFT_EXPR:
3185 opcode = BRIG_OPCODE_SHR;
3186 break;
3187 case LROTATE_EXPR:
3188 case RROTATE_EXPR:
3190 hsa_insn_basic *insn = NULL;
3191 int code1 = code == LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3192 int code2 = code != LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3193 BrigType16_t btype = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
3194 true);
3196 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3197 hsa_op_reg *op1 = new hsa_op_reg (btype);
3198 hsa_op_reg *op2 = new hsa_op_reg (btype);
3199 hsa_op_with_type *shift1 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3201 tree type = TREE_TYPE (rhs2);
3202 unsigned HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (TYPE_SIZE (type));
3204 hsa_op_with_type *shift2 = NULL;
3205 if (TREE_CODE (rhs2) == INTEGER_CST)
3206 shift2 = new hsa_op_immed (bitsize - tree_to_uhwi (rhs2),
3207 BRIG_TYPE_U32);
3208 else if (TREE_CODE (rhs2) == SSA_NAME)
3210 hsa_op_reg *s = hsa_cfun->reg_for_gimple_ssa (rhs2);
3211 hsa_op_reg *d = new hsa_op_reg (s->m_type);
3212 hsa_op_immed *size_imm = new hsa_op_immed (bitsize, BRIG_TYPE_U32);
3214 insn = new hsa_insn_basic (3, BRIG_OPCODE_SUB, d->m_type,
3215 d, s, size_imm);
3216 hbb->append_insn (insn);
3218 shift2 = d;
3220 else
3221 gcc_unreachable ();
3223 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3224 gen_hsa_binary_operation (code1, op1, src, shift1, hbb);
3225 gen_hsa_binary_operation (code2, op2, src, shift2, hbb);
3226 gen_hsa_binary_operation (BRIG_OPCODE_OR, dest, op1, op2, hbb);
3228 return;
3230 case BIT_IOR_EXPR:
3231 opcode = BRIG_OPCODE_OR;
3232 break;
3233 case BIT_XOR_EXPR:
3234 opcode = BRIG_OPCODE_XOR;
3235 break;
3236 case BIT_AND_EXPR:
3237 opcode = BRIG_OPCODE_AND;
3238 break;
3239 case BIT_NOT_EXPR:
3240 opcode = BRIG_OPCODE_NOT;
3241 break;
3242 case FIX_TRUNC_EXPR:
3244 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3245 hsa_op_with_type *v = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3247 if (hsa_needs_cvt (dest->m_type, v->m_type))
3249 hsa_op_reg *tmp = new hsa_op_reg (v->m_type);
3251 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3252 tmp->m_type, tmp, v);
3253 hbb->append_insn (insn);
3255 hsa_insn_basic *cvtinsn = new hsa_insn_cvt (dest, tmp);
3256 hbb->append_insn (cvtinsn);
3258 else
3260 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3261 dest->m_type, dest, v);
3262 hbb->append_insn (insn);
3265 return;
3267 opcode = BRIG_OPCODE_TRUNC;
3268 break;
3270 case LT_EXPR:
3271 case LE_EXPR:
3272 case GT_EXPR:
3273 case GE_EXPR:
3274 case EQ_EXPR:
3275 case NE_EXPR:
3276 case UNORDERED_EXPR:
3277 case ORDERED_EXPR:
3278 case UNLT_EXPR:
3279 case UNLE_EXPR:
3280 case UNGT_EXPR:
3281 case UNGE_EXPR:
3282 case UNEQ_EXPR:
3283 case LTGT_EXPR:
3285 hsa_op_reg *dest
3286 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3288 gen_hsa_cmp_insn_from_gimple (code, rhs1, rhs2, dest, hbb);
3289 return;
3291 case COND_EXPR:
3293 hsa_op_reg *dest
3294 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3295 hsa_op_with_type *ctrl = NULL;
3296 tree cond = rhs1;
3298 if (CONSTANT_CLASS_P (cond) || TREE_CODE (cond) == SSA_NAME)
3299 ctrl = hsa_reg_or_immed_for_gimple_op (cond, hbb);
3300 else
3302 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
3304 gen_hsa_cmp_insn_from_gimple (TREE_CODE (cond),
3305 TREE_OPERAND (cond, 0),
3306 TREE_OPERAND (cond, 1),
3307 r, hbb);
3309 ctrl = r;
3312 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3313 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3315 BrigType16_t utype = hsa_unsigned_type_for_type (dest->m_type);
3316 if (is_a <hsa_op_immed *> (op2))
3317 op2->m_type = utype;
3318 if (is_a <hsa_op_immed *> (op3))
3319 op3->m_type = utype;
3321 hsa_insn_basic *insn
3322 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV,
3323 hsa_bittype_for_type (dest->m_type),
3324 dest, ctrl, op2, op3);
3326 hbb->append_insn (insn);
3327 return;
3329 case COMPLEX_EXPR:
3331 hsa_op_reg *dest
3332 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3333 hsa_op_with_type *rhs1_reg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3334 hsa_op_with_type *rhs2_reg = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3336 if (hsa_seen_error ())
3337 return;
3339 BrigType16_t src_type = hsa_bittype_for_type (rhs1_reg->m_type);
3340 rhs1_reg = rhs1_reg->get_in_type (src_type, hbb);
3341 rhs2_reg = rhs2_reg->get_in_type (src_type, hbb);
3343 hsa_insn_packed *insn
3344 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type, src_type,
3345 dest, rhs1_reg, rhs2_reg);
3346 hbb->append_insn (insn);
3348 return;
3350 default:
3351 /* Implement others as we come across them. */
3352 HSA_SORRY_ATV (gimple_location (assign),
3353 "support for HSA does not implement operation %s",
3354 get_tree_code_name (code));
3355 return;
3359 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3361 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3362 hsa_op_with_type *op2 = rhs2 != NULL_TREE ?
3363 hsa_reg_or_immed_for_gimple_op (rhs2, hbb) : NULL;
3365 if (hsa_seen_error ())
3366 return;
3368 switch (rhs_class)
3370 case GIMPLE_TERNARY_RHS:
3371 gcc_unreachable ();
3372 return;
3374 /* Fall through */
3375 case GIMPLE_BINARY_RHS:
3376 gen_hsa_binary_operation (opcode, dest, op1, op2, hbb);
3377 break;
3378 /* Fall through */
3379 case GIMPLE_UNARY_RHS:
3380 gen_hsa_unary_operation (opcode, dest, op1, hbb);
3381 break;
3382 default:
3383 gcc_unreachable ();
3387 /* Generate HSA instructions for a given gimple condition statement COND.
3388 Instructions will be appended to HBB, which also needs to be the
3389 corresponding structure to the basic_block of COND. */
3391 static void
3392 gen_hsa_insns_for_cond_stmt (gimple *cond, hsa_bb *hbb)
3394 hsa_op_reg *ctrl = new hsa_op_reg (BRIG_TYPE_B1);
3395 hsa_insn_br *cbr;
3397 gen_hsa_cmp_insn_from_gimple (gimple_cond_code (cond),
3398 gimple_cond_lhs (cond),
3399 gimple_cond_rhs (cond),
3400 ctrl, hbb);
3402 cbr = new hsa_insn_br (ctrl);
3403 hbb->append_insn (cbr);
3406 /* Maximum number of elements in a jump table for an HSA SBR instruction. */
3408 #define HSA_MAXIMUM_SBR_LABELS 16
3410 /* Return lowest value of a switch S that is handled in a non-default
3411 label. */
3413 static tree
3414 get_switch_low (gswitch *s)
3416 unsigned labels = gimple_switch_num_labels (s);
3417 gcc_checking_assert (labels >= 1);
3419 return CASE_LOW (gimple_switch_label (s, 1));
3422 /* Return highest value of a switch S that is handled in a non-default
3423 label. */
3425 static tree
3426 get_switch_high (gswitch *s)
3428 unsigned labels = gimple_switch_num_labels (s);
3430 /* Compare last label to maximum number of labels. */
3431 tree label = gimple_switch_label (s, labels - 1);
3432 tree low = CASE_LOW (label);
3433 tree high = CASE_HIGH (label);
3435 return high != NULL_TREE ? high : low;
3438 static tree
3439 get_switch_size (gswitch *s)
3441 return int_const_binop (MINUS_EXPR, get_switch_high (s), get_switch_low (s));
3444 /* Generate HSA instructions for a given gimple switch.
3445 Instructions will be appended to HBB. */
3447 static void
3448 gen_hsa_insns_for_switch_stmt (gswitch *s, hsa_bb *hbb)
3450 gimple_stmt_iterator it = gsi_for_stmt (s);
3451 gsi_prev (&it);
3453 /* Create preambule that verifies that index - lowest_label >= 0. */
3454 edge e = split_block (hbb->m_bb, gsi_stmt (it));
3455 e->flags &= ~EDGE_FALLTHRU;
3456 e->flags |= EDGE_TRUE_VALUE;
3458 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
3459 tree index_tree = gimple_switch_index (s);
3460 tree lowest = get_switch_low (s);
3461 tree highest = get_switch_high (s);
3463 hsa_op_reg *index = hsa_cfun->reg_for_gimple_ssa (index_tree);
3465 hsa_op_reg *cmp1_reg = new hsa_op_reg (BRIG_TYPE_B1);
3466 hsa_op_immed *cmp1_immed = new hsa_op_immed (lowest);
3467 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_GE, cmp1_reg->m_type,
3468 cmp1_reg, index, cmp1_immed));
3470 hsa_op_reg *cmp2_reg = new hsa_op_reg (BRIG_TYPE_B1);
3471 hsa_op_immed *cmp2_immed = new hsa_op_immed (highest);
3472 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_LE, cmp2_reg->m_type,
3473 cmp2_reg, index, cmp2_immed));
3475 hsa_op_reg *cmp_reg = new hsa_op_reg (BRIG_TYPE_B1);
3476 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_AND, cmp_reg->m_type,
3477 cmp_reg, cmp1_reg, cmp2_reg));
3479 hbb->append_insn (new hsa_insn_br (cmp_reg));
3481 tree default_label = gimple_switch_default_label (s);
3482 basic_block default_label_bb = label_to_block_fn (func,
3483 CASE_LABEL (default_label));
3485 if (!gimple_seq_empty_p (phi_nodes (default_label_bb)))
3487 default_label_bb = split_edge (find_edge (e->dest, default_label_bb));
3488 hsa_init_new_bb (default_label_bb);
3491 make_edge (e->src, default_label_bb, EDGE_FALSE_VALUE);
3493 hsa_cfun->m_modified_cfg = true;
3495 /* Basic block with the SBR instruction. */
3496 hbb = hsa_init_new_bb (e->dest);
3498 hsa_op_reg *sub_index = new hsa_op_reg (index->m_type);
3499 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_SUB, sub_index->m_type,
3500 sub_index, index,
3501 new hsa_op_immed (lowest)));
3503 hsa_op_base *tmp = sub_index->get_in_type (BRIG_TYPE_U64, hbb);
3504 sub_index = as_a <hsa_op_reg *> (tmp);
3505 unsigned labels = gimple_switch_num_labels (s);
3506 unsigned HOST_WIDE_INT size = tree_to_uhwi (get_switch_size (s));
3508 hsa_insn_sbr *sbr = new hsa_insn_sbr (sub_index, size + 1);
3510 /* Prepare array with default label destination. */
3511 for (unsigned HOST_WIDE_INT i = 0; i <= size; i++)
3512 sbr->m_jump_table.safe_push (default_label_bb);
3514 /* Iterate all labels and fill up the jump table. */
3515 for (unsigned i = 1; i < labels; i++)
3517 tree label = gimple_switch_label (s, i);
3518 basic_block bb = label_to_block_fn (func, CASE_LABEL (label));
3520 unsigned HOST_WIDE_INT sub_low
3521 = tree_to_uhwi (int_const_binop (MINUS_EXPR, CASE_LOW (label), lowest));
3523 unsigned HOST_WIDE_INT sub_high = sub_low;
3524 tree high = CASE_HIGH (label);
3525 if (high != NULL)
3526 sub_high = tree_to_uhwi (int_const_binop (MINUS_EXPR, high, lowest));
3528 for (unsigned HOST_WIDE_INT j = sub_low; j <= sub_high; j++)
3529 sbr->m_jump_table[j] = bb;
3532 hbb->append_insn (sbr);
3535 /* Verify that the function DECL can be handled by HSA. */
3537 static void
3538 verify_function_arguments (tree decl)
3540 if (DECL_STATIC_CHAIN (decl))
3542 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3543 "HSA does not support nested functions: %D", decl);
3544 return;
3546 else if (!TYPE_ARG_TYPES (TREE_TYPE (decl)))
3548 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3549 "HSA does not support functions with variadic arguments "
3550 "(or unknown return type): %D", decl);
3551 return;
3555 /* Return BRIG type for FORMAL_ARG_TYPE. If the formal argument type is NULL,
3556 return ACTUAL_ARG_TYPE. */
3558 static BrigType16_t
3559 get_format_argument_type (tree formal_arg_type, BrigType16_t actual_arg_type)
3561 if (formal_arg_type == NULL)
3562 return actual_arg_type;
3564 BrigType16_t decl_type
3565 = hsa_type_for_scalar_tree_type (formal_arg_type, false);
3566 return mem_type_for_type (decl_type);
3569 /* Generate HSA instructions for a direct call instruction.
3570 Instructions will be appended to HBB, which also needs to be the
3571 corresponding structure to the basic_block of STMT.
3572 If ASSIGN_LHS is false, do not copy HSA function result argument into the
3573 corresponding HSA representation of the gimple statement LHS. */
3575 static void
3576 gen_hsa_insns_for_direct_call (gimple *stmt, hsa_bb *hbb,
3577 bool assign_lhs = true)
3579 tree decl = gimple_call_fndecl (stmt);
3580 verify_function_arguments (decl);
3581 if (hsa_seen_error ())
3582 return;
3584 hsa_insn_call *call_insn = new hsa_insn_call (decl);
3585 hsa_cfun->m_called_functions.safe_push (call_insn->m_called_function);
3587 /* Argument block start. */
3588 hsa_insn_arg_block *arg_start
3589 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3590 hbb->append_insn (arg_start);
3592 tree parm_type_chain = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
3594 /* Preparation of arguments that will be passed to function. */
3595 const unsigned args = gimple_call_num_args (stmt);
3596 for (unsigned i = 0; i < args; ++i)
3598 tree parm = gimple_call_arg (stmt, (int)i);
3599 tree parm_decl_type = parm_type_chain != NULL_TREE
3600 ? TREE_VALUE (parm_type_chain) : NULL_TREE;
3601 hsa_op_address *addr;
3603 if (AGGREGATE_TYPE_P (TREE_TYPE (parm)))
3605 addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3606 BrigAlignment8_t align;
3607 hsa_op_address *src = gen_hsa_addr_with_align (parm, hbb, &align);
3608 gen_hsa_memory_copy (hbb, addr, src,
3609 addr->m_symbol->total_byte_size (), align);
3611 else
3613 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3615 if (parm_decl_type != NULL && AGGREGATE_TYPE_P (parm_decl_type))
3617 HSA_SORRY_AT (gimple_location (stmt),
3618 "support for HSA does not implement an aggregate "
3619 "formal argument in a function call, while actual "
3620 "argument is not an aggregate");
3621 return;
3624 BrigType16_t formal_arg_type
3625 = get_format_argument_type (parm_decl_type, src->m_type);
3626 if (hsa_seen_error ())
3627 return;
3629 if (src->m_type != formal_arg_type)
3630 src = src->get_in_type (formal_arg_type, hbb);
3632 addr
3633 = gen_hsa_addr_for_arg (parm_decl_type != NULL_TREE ?
3634 parm_decl_type: TREE_TYPE (parm), i);
3635 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, formal_arg_type,
3636 src, addr);
3638 hbb->append_insn (mem);
3641 call_insn->m_input_args.safe_push (addr->m_symbol);
3642 if (parm_type_chain)
3643 parm_type_chain = TREE_CHAIN (parm_type_chain);
3646 call_insn->m_args_code_list = new hsa_op_code_list (args);
3647 hbb->append_insn (call_insn);
3649 tree result_type = TREE_TYPE (TREE_TYPE (decl));
3651 tree result = gimple_call_lhs (stmt);
3652 hsa_insn_mem *result_insn = NULL;
3653 if (!VOID_TYPE_P (result_type))
3655 hsa_op_address *addr = gen_hsa_addr_for_arg (result_type, -1);
3657 /* Even if result of a function call is unused, we have to emit
3658 declaration for the result. */
3659 if (result && assign_lhs)
3661 tree lhs_type = TREE_TYPE (result);
3663 if (hsa_seen_error ())
3664 return;
3666 if (AGGREGATE_TYPE_P (lhs_type))
3668 BrigAlignment8_t align;
3669 hsa_op_address *result_addr
3670 = gen_hsa_addr_with_align (result, hbb, &align);
3671 gen_hsa_memory_copy (hbb, result_addr, addr,
3672 addr->m_symbol->total_byte_size (), align);
3674 else
3676 BrigType16_t mtype
3677 = mem_type_for_type (hsa_type_for_scalar_tree_type (lhs_type,
3678 false));
3680 hsa_op_reg *dst = hsa_cfun->reg_for_gimple_ssa (result);
3681 result_insn = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dst, addr);
3682 hbb->append_insn (result_insn);
3686 call_insn->m_output_arg = addr->m_symbol;
3687 call_insn->m_result_code_list = new hsa_op_code_list (1);
3689 else
3691 if (result)
3693 HSA_SORRY_AT (gimple_location (stmt),
3694 "support for HSA does not implement an assignment of "
3695 "return value from a void function");
3696 return;
3699 call_insn->m_result_code_list = new hsa_op_code_list (0);
3702 /* Argument block end. */
3703 hsa_insn_arg_block *arg_end
3704 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3705 hbb->append_insn (arg_end);
3708 /* Generate HSA instructions for a direct call of an internal fn.
3709 Instructions will be appended to HBB, which also needs to be the
3710 corresponding structure to the basic_block of STMT. */
3712 static void
3713 gen_hsa_insns_for_call_of_internal_fn (gimple *stmt, hsa_bb *hbb)
3715 tree lhs = gimple_call_lhs (stmt);
3716 if (!lhs)
3717 return;
3719 tree lhs_type = TREE_TYPE (lhs);
3720 tree rhs1 = gimple_call_arg (stmt, 0);
3721 tree rhs1_type = TREE_TYPE (rhs1);
3722 enum internal_fn fn = gimple_call_internal_fn (stmt);
3723 hsa_internal_fn *ifn
3724 = new hsa_internal_fn (fn, tree_to_uhwi (TYPE_SIZE (rhs1_type)));
3725 hsa_insn_call *call_insn = new hsa_insn_call (ifn);
3727 gcc_checking_assert (FLOAT_TYPE_P (rhs1_type));
3729 if (!hsa_emitted_internal_decls->find (call_insn->m_called_internal_fn))
3730 hsa_cfun->m_called_internal_fns.safe_push (call_insn->m_called_internal_fn);
3732 hsa_insn_arg_block *arg_start
3733 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3734 hbb->append_insn (arg_start);
3736 unsigned num_args = gimple_call_num_args (stmt);
3738 /* Function arguments. */
3739 for (unsigned i = 0; i < num_args; i++)
3741 tree parm = gimple_call_arg (stmt, (int)i);
3742 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3744 hsa_op_address *addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3745 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, src->m_type,
3746 src, addr);
3748 call_insn->m_input_args.safe_push (addr->m_symbol);
3749 hbb->append_insn (mem);
3752 call_insn->m_args_code_list = new hsa_op_code_list (num_args);
3753 hbb->append_insn (call_insn);
3755 /* Assign returned value. */
3756 hsa_op_address *addr = gen_hsa_addr_for_arg (lhs_type, -1);
3758 call_insn->m_output_arg = addr->m_symbol;
3759 call_insn->m_result_code_list = new hsa_op_code_list (1);
3761 /* Argument block end. */
3762 hsa_insn_arg_block *arg_end
3763 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3764 hbb->append_insn (arg_end);
3767 /* Generate HSA instructions for a return value instruction.
3768 Instructions will be appended to HBB, which also needs to be the
3769 corresponding structure to the basic_block of STMT. */
3771 static void
3772 gen_hsa_insns_for_return (greturn *stmt, hsa_bb *hbb)
3774 tree retval = gimple_return_retval (stmt);
3775 if (retval)
3777 hsa_op_address *addr = new hsa_op_address (hsa_cfun->m_output_arg);
3779 if (AGGREGATE_TYPE_P (TREE_TYPE (retval)))
3781 BrigAlignment8_t align;
3782 hsa_op_address *retval_addr = gen_hsa_addr_with_align (retval, hbb,
3783 &align);
3784 gen_hsa_memory_copy (hbb, addr, retval_addr,
3785 hsa_cfun->m_output_arg->total_byte_size (),
3786 align);
3788 else
3790 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (retval),
3791 false);
3792 BrigType16_t mtype = mem_type_for_type (t);
3794 /* Store of return value. */
3795 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (retval, hbb);
3796 src = src->get_in_type (mtype, hbb);
3797 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src,
3798 addr);
3799 hbb->append_insn (mem);
3803 /* HSAIL return instruction emission. */
3804 hsa_insn_basic *ret = new hsa_insn_basic (0, BRIG_OPCODE_RET);
3805 hbb->append_insn (ret);
3808 /* Set OP_INDEX-th operand of the instruction to DEST, as the DEST
3809 can have a different type, conversion instructions are possibly
3810 appended to HBB. */
3812 void
3813 hsa_insn_basic::set_output_in_type (hsa_op_reg *dest, unsigned op_index,
3814 hsa_bb *hbb)
3816 hsa_insn_basic *insn;
3817 gcc_checking_assert (op_output_p (op_index));
3819 if (dest->m_type == m_type)
3821 set_op (op_index, dest);
3822 return;
3825 hsa_op_reg *tmp = new hsa_op_reg (m_type);
3826 set_op (op_index, tmp);
3828 if (hsa_needs_cvt (dest->m_type, m_type))
3829 insn = new hsa_insn_cvt (dest, tmp);
3830 else
3831 insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type,
3832 dest, tmp->get_in_type (dest->m_type, hbb));
3834 hbb->append_insn (insn);
3837 /* Generate instruction OPCODE to query a property of HSA grid along the
3838 given DIMENSION. Store result into DEST and append the instruction to
3839 HBB. */
3841 static void
3842 query_hsa_grid (hsa_op_reg *dest, BrigType16_t opcode, int dimension,
3843 hsa_bb *hbb)
3845 /* We're using just one-dimensional kernels, so hard-coded
3846 dimension X. */
3847 hsa_op_immed *imm
3848 = new hsa_op_immed (dimension, (BrigKind16_t) BRIG_TYPE_U32);
3849 hsa_insn_basic *insn = new hsa_insn_basic (2, opcode, BRIG_TYPE_U32, NULL,
3850 imm);
3851 hbb->append_insn (insn);
3852 insn->set_output_in_type (dest, 0, hbb);
3855 /* Generate a special HSA-related instruction for gimple STMT.
3856 Instructions are appended to basic block HBB. */
3858 static void
3859 query_hsa_grid (gimple *stmt, BrigOpcode16_t opcode, int dimension,
3860 hsa_bb *hbb)
3862 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3863 if (lhs == NULL_TREE)
3864 return;
3866 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3868 query_hsa_grid (dest, opcode, dimension, hbb);
3871 /* Emit instructions that set hsa_num_threads according to provided VALUE.
3872 Instructions are appended to basic block HBB. */
3874 static void
3875 gen_set_num_threads (tree value, hsa_bb *hbb)
3877 hbb->append_insn (new hsa_insn_comment ("omp_set_num_threads"));
3878 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (value, hbb);
3880 src = src->get_in_type (hsa_num_threads->m_type, hbb);
3881 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
3883 hsa_insn_basic *basic
3884 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type, src, addr);
3885 hbb->append_insn (basic);
3888 /* Return byte offset of a FIELD_NAME in GOMP_hsa_kernel_dispatch which
3889 is defined in plugin-hsa.c. */
3891 static HOST_WIDE_INT
3892 get_hsa_kernel_dispatch_offset (const char *field_name)
3894 tree *hsa_kernel_dispatch_type = hsa_get_kernel_dispatch_type ();
3895 if (*hsa_kernel_dispatch_type == NULL)
3897 /* Collection of information needed for a dispatch of a kernel from a
3898 kernel. Keep in sync with libgomp's plugin-hsa.c. */
3900 *hsa_kernel_dispatch_type = make_node (RECORD_TYPE);
3901 tree id_f1 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3902 get_identifier ("queue"), ptr_type_node);
3903 DECL_CHAIN (id_f1) = NULL_TREE;
3904 tree id_f2 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3905 get_identifier ("omp_data_memory"),
3906 ptr_type_node);
3907 DECL_CHAIN (id_f2) = id_f1;
3908 tree id_f3 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3909 get_identifier ("kernarg_address"),
3910 ptr_type_node);
3911 DECL_CHAIN (id_f3) = id_f2;
3912 tree id_f4 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3913 get_identifier ("object"),
3914 uint64_type_node);
3915 DECL_CHAIN (id_f4) = id_f3;
3916 tree id_f5 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3917 get_identifier ("signal"),
3918 uint64_type_node);
3919 DECL_CHAIN (id_f5) = id_f4;
3920 tree id_f6 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3921 get_identifier ("private_segment_size"),
3922 uint32_type_node);
3923 DECL_CHAIN (id_f6) = id_f5;
3924 tree id_f7 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3925 get_identifier ("group_segment_size"),
3926 uint32_type_node);
3927 DECL_CHAIN (id_f7) = id_f6;
3928 tree id_f8 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3929 get_identifier ("kernel_dispatch_count"),
3930 uint64_type_node);
3931 DECL_CHAIN (id_f8) = id_f7;
3932 tree id_f9 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3933 get_identifier ("debug"),
3934 uint64_type_node);
3935 DECL_CHAIN (id_f9) = id_f8;
3936 tree id_f10 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3937 get_identifier ("omp_level"),
3938 uint64_type_node);
3939 DECL_CHAIN (id_f10) = id_f9;
3940 tree id_f11 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3941 get_identifier ("children_dispatches"),
3942 ptr_type_node);
3943 DECL_CHAIN (id_f11) = id_f10;
3944 tree id_f12 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3945 get_identifier ("omp_num_threads"),
3946 uint32_type_node);
3947 DECL_CHAIN (id_f12) = id_f11;
3950 finish_builtin_struct (*hsa_kernel_dispatch_type, "__hsa_kernel_dispatch",
3951 id_f12, NULL_TREE);
3952 TYPE_ARTIFICIAL (*hsa_kernel_dispatch_type) = 1;
3955 for (tree chain = TYPE_FIELDS (*hsa_kernel_dispatch_type);
3956 chain != NULL_TREE; chain = TREE_CHAIN (chain))
3957 if (strcmp (field_name, IDENTIFIER_POINTER (DECL_NAME (chain))) == 0)
3958 return int_byte_position (chain);
3960 gcc_unreachable ();
3963 /* Return an HSA register that will contain number of threads for
3964 a future dispatched kernel. Instructions are added to HBB. */
3966 static hsa_op_reg *
3967 gen_num_threads_for_dispatch (hsa_bb *hbb)
3969 /* Step 1) Assign to number of threads:
3970 MIN (HSA_DEFAULT_NUM_THREADS, hsa_num_threads). */
3971 hsa_op_reg *threads = new hsa_op_reg (hsa_num_threads->m_type);
3972 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
3974 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, threads->m_type,
3975 threads, addr));
3977 hsa_op_immed *limit = new hsa_op_immed (HSA_DEFAULT_NUM_THREADS,
3978 BRIG_TYPE_U32);
3979 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
3980 hsa_insn_cmp * cmp
3981 = new hsa_insn_cmp (BRIG_COMPARE_LT, r->m_type, r, threads, limit);
3982 hbb->append_insn (cmp);
3984 BrigType16_t btype = hsa_bittype_for_type (threads->m_type);
3985 hsa_op_reg *tmp = new hsa_op_reg (threads->m_type);
3987 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp, r,
3988 threads, limit));
3990 /* Step 2) If the number is equal to zero,
3991 return shadow->omp_num_threads. */
3992 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
3994 hsa_op_reg *shadow_thread_count = new hsa_op_reg (BRIG_TYPE_U32);
3995 addr
3996 = new hsa_op_address (shadow_reg_ptr,
3997 get_hsa_kernel_dispatch_offset ("omp_num_threads"));
3998 hsa_insn_basic *basic
3999 = new hsa_insn_mem (BRIG_OPCODE_LD, shadow_thread_count->m_type,
4000 shadow_thread_count, addr);
4001 hbb->append_insn (basic);
4003 hsa_op_reg *tmp2 = new hsa_op_reg (threads->m_type);
4004 r = new hsa_op_reg (BRIG_TYPE_B1);
4005 hsa_op_immed *imm = new hsa_op_immed (0, shadow_thread_count->m_type);
4006 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_EQ, r->m_type, r, tmp, imm));
4007 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp2, r,
4008 shadow_thread_count, tmp));
4010 hsa_op_base *dest = tmp2->get_in_type (BRIG_TYPE_U16, hbb);
4012 return as_a <hsa_op_reg *> (dest);
4016 /* Emit instructions that assign number of teams to lhs of gimple STMT.
4017 Instructions are appended to basic block HBB. */
4019 static void
4020 gen_get_num_teams (gimple *stmt, hsa_bb *hbb)
4022 if (gimple_call_lhs (stmt) == NULL_TREE)
4023 return;
4025 hbb->append_insn (new hsa_insn_comment ("omp_get_num_teams"));
4027 tree lhs = gimple_call_lhs (stmt);
4028 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4029 hsa_op_immed *one = new hsa_op_immed (1, dest->m_type);
4031 hsa_insn_basic *basic
4032 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, dest, one);
4034 hbb->append_insn (basic);
4037 /* Emit instructions that assign a team number to lhs of gimple STMT.
4038 Instructions are appended to basic block HBB. */
4040 static void
4041 gen_get_team_num (gimple *stmt, hsa_bb *hbb)
4043 if (gimple_call_lhs (stmt) == NULL_TREE)
4044 return;
4046 hbb->append_insn (new hsa_insn_comment ("omp_get_team_num"));
4048 tree lhs = gimple_call_lhs (stmt);
4049 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4050 hsa_op_immed *zero = new hsa_op_immed (0, dest->m_type);
4052 hsa_insn_basic *basic
4053 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, dest, zero);
4055 hbb->append_insn (basic);
4058 /* Emit instructions that get levels-var ICV to lhs of gimple STMT.
4059 Instructions are appended to basic block HBB. */
4061 static void
4062 gen_get_level (gimple *stmt, hsa_bb *hbb)
4064 if (gimple_call_lhs (stmt) == NULL_TREE)
4065 return;
4067 hbb->append_insn (new hsa_insn_comment ("omp_get_level"));
4069 tree lhs = gimple_call_lhs (stmt);
4070 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4072 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4073 if (shadow_reg_ptr == NULL)
4075 HSA_SORRY_AT (gimple_location (stmt),
4076 "support for HSA does not implement omp_get_level called "
4077 "from a function not being inlined within a kernel");
4078 return;
4081 hsa_op_address *addr
4082 = new hsa_op_address (shadow_reg_ptr,
4083 get_hsa_kernel_dispatch_offset ("omp_level"));
4085 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64,
4086 (hsa_op_base *) NULL, addr);
4087 hbb->append_insn (mem);
4088 mem->set_output_in_type (dest, 0, hbb);
4091 /* Emit instruction that implement omp_get_max_threads of gimple STMT. */
4093 static void
4094 gen_get_max_threads (gimple *stmt, hsa_bb *hbb)
4096 tree lhs = gimple_call_lhs (stmt);
4097 if (!lhs)
4098 return;
4100 hbb->append_insn (new hsa_insn_comment ("omp_get_max_threads"));
4102 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4103 hsa_op_with_type *num_theads_reg = gen_num_threads_for_dispatch (hbb)
4104 ->get_in_type (dest->m_type, hbb);
4105 hsa_build_append_simple_mov (dest, num_theads_reg, hbb);
4108 /* Emit instructions that implement alloca builtin gimple STMT.
4109 Instructions are appended to basic block HBB. */
4111 static void
4112 gen_hsa_alloca (gcall *call, hsa_bb *hbb)
4114 tree lhs = gimple_call_lhs (call);
4115 if (lhs == NULL_TREE)
4116 return;
4118 built_in_function fn = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
4120 gcc_checking_assert (fn == BUILT_IN_ALLOCA
4121 || fn == BUILT_IN_ALLOCA_WITH_ALIGN);
4123 unsigned bit_alignment = 0;
4125 if (fn == BUILT_IN_ALLOCA_WITH_ALIGN)
4127 tree alignment_tree = gimple_call_arg (call, 1);
4128 if (TREE_CODE (alignment_tree) != INTEGER_CST)
4130 HSA_SORRY_ATV (gimple_location (call),
4131 "support for HSA does not implement "
4132 "__builtin_alloca_with_align with a non-constant "
4133 "alignment: %E", alignment_tree);
4136 bit_alignment = tree_to_uhwi (alignment_tree);
4139 tree rhs1 = gimple_call_arg (call, 0);
4140 hsa_op_with_type *size = hsa_reg_or_immed_for_gimple_op (rhs1, hbb)
4141 ->get_in_type (BRIG_TYPE_U32, hbb);
4142 hsa_op_with_type *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4144 hsa_op_reg *tmp
4145 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE));
4146 hsa_insn_alloca *a = new hsa_insn_alloca (tmp, size, bit_alignment);
4147 hbb->append_insn (a);
4149 hsa_insn_seg *seg
4150 = new hsa_insn_seg (BRIG_OPCODE_STOF,
4151 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
4152 tmp->m_type, BRIG_SEGMENT_PRIVATE, dest, tmp);
4153 hbb->append_insn (seg);
4156 /* Emit instructions that implement clrsb builtin STMT:
4157 Returns the number of leading redundant sign bits in x, i.e. the number
4158 of bits following the most significant bit that are identical to it.
4159 There are no special cases for 0 or other values.
4160 Instructions are appended to basic block HBB. */
4162 static void
4163 gen_hsa_clrsb (gcall *call, hsa_bb *hbb)
4165 tree lhs = gimple_call_lhs (call);
4166 if (lhs == NULL_TREE)
4167 return;
4169 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4170 tree rhs1 = gimple_call_arg (call, 0);
4171 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4172 BrigType16_t bittype = hsa_bittype_for_type (arg->m_type);
4173 unsigned bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1)));
4175 /* FIRSTBIT instruction is defined just for 32 and 64-bits wide integers. */
4176 gcc_checking_assert (bitsize == 32 || bitsize == 64);
4178 /* Set true to MOST_SIG if the most significant bit is set to one. */
4179 hsa_op_immed *c = new hsa_op_immed (1ul << (bitsize - 1),
4180 hsa_uint_for_bitsize (bitsize));
4182 hsa_op_reg *and_reg = new hsa_op_reg (bittype);
4183 gen_hsa_binary_operation (BRIG_OPCODE_AND, and_reg, arg, c, hbb);
4185 hsa_op_reg *most_sign = new hsa_op_reg (BRIG_TYPE_B1);
4186 hsa_insn_cmp *cmp
4187 = new hsa_insn_cmp (BRIG_COMPARE_EQ, most_sign->m_type, most_sign,
4188 and_reg, c);
4189 hbb->append_insn (cmp);
4191 /* If the most significant bit is one, negate the input. Otherwise
4192 shift the input value to left by one bit. */
4193 hsa_op_reg *arg_neg = new hsa_op_reg (arg->m_type);
4194 gen_hsa_unary_operation (BRIG_OPCODE_NEG, arg_neg, arg, hbb);
4196 hsa_op_reg *shifted_arg = new hsa_op_reg (arg->m_type);
4197 gen_hsa_binary_operation (BRIG_OPCODE_SHL, shifted_arg, arg,
4198 new hsa_op_immed (1, BRIG_TYPE_U64), hbb);
4200 /* Assign the value that can be used for FIRSTBIT instruction according
4201 to the most significant bit. */
4202 hsa_op_reg *tmp = new hsa_op_reg (bittype);
4203 hsa_insn_basic *cmov
4204 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, bittype, tmp, most_sign,
4205 arg_neg, shifted_arg);
4206 hbb->append_insn (cmov);
4208 hsa_op_reg *leading_bits = new hsa_op_reg (BRIG_TYPE_S32);
4209 gen_hsa_unary_operation (BRIG_OPCODE_FIRSTBIT, leading_bits,
4210 tmp->get_in_type (hsa_uint_for_bitsize (bitsize),
4211 hbb), hbb);
4213 /* Set flag if the input value is equal to zero. */
4214 hsa_op_reg *is_zero = new hsa_op_reg (BRIG_TYPE_B1);
4215 cmp = new hsa_insn_cmp (BRIG_COMPARE_EQ, is_zero->m_type, is_zero, arg,
4216 new hsa_op_immed (0, arg->m_type));
4217 hbb->append_insn (cmp);
4219 /* Return the number of leading bits,
4220 or (bitsize - 1) if the input value is zero. */
4221 cmov = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, BRIG_TYPE_B32, NULL, is_zero,
4222 new hsa_op_immed (bitsize - 1, BRIG_TYPE_U32),
4223 leading_bits->get_in_type (BRIG_TYPE_B32, hbb));
4224 hbb->append_insn (cmov);
4225 cmov->set_output_in_type (dest, 0, hbb);
4228 /* Emit instructions that implement ffs builtin STMT:
4229 Returns one plus the index of the least significant 1-bit of x,
4230 or if x is zero, returns zero.
4231 Instructions are appended to basic block HBB. */
4233 static void
4234 gen_hsa_ffs (gcall *call, hsa_bb *hbb)
4236 tree lhs = gimple_call_lhs (call);
4237 if (lhs == NULL_TREE)
4238 return;
4240 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4242 tree rhs1 = gimple_call_arg (call, 0);
4243 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4245 hsa_op_reg *tmp = new hsa_op_reg (BRIG_TYPE_U32);
4246 hsa_insn_srctype *insn = new hsa_insn_srctype (2, BRIG_OPCODE_LASTBIT,
4247 tmp->m_type, arg->m_type,
4248 tmp, arg);
4249 hbb->append_insn (insn);
4251 hsa_insn_basic *addition
4252 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type, NULL, tmp,
4253 new hsa_op_immed (1, tmp->m_type));
4254 hbb->append_insn (addition);
4255 addition->set_output_in_type (dest, 0, hbb);
4258 static void
4259 gen_hsa_popcount_to_dest (hsa_op_reg *dest, hsa_op_with_type *arg, hsa_bb *hbb)
4261 gcc_checking_assert (hsa_type_integer_p (arg->m_type));
4263 if (hsa_type_bit_size (arg->m_type) < 32)
4264 arg = arg->get_in_type (BRIG_TYPE_B32, hbb);
4266 if (!hsa_btype_p (arg->m_type))
4267 arg = arg->get_in_type (hsa_bittype_for_type (arg->m_type), hbb);
4269 hsa_insn_srctype *popcount
4270 = new hsa_insn_srctype (2, BRIG_OPCODE_POPCOUNT, BRIG_TYPE_U32,
4271 arg->m_type, NULL, arg);
4272 hbb->append_insn (popcount);
4273 popcount->set_output_in_type (dest, 0, hbb);
4276 /* Emit instructions that implement parity builtin STMT:
4277 Returns the parity of x, i.e. the number of 1-bits in x modulo 2.
4278 Instructions are appended to basic block HBB. */
4280 static void
4281 gen_hsa_parity (gcall *call, hsa_bb *hbb)
4283 tree lhs = gimple_call_lhs (call);
4284 if (lhs == NULL_TREE)
4285 return;
4287 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4288 tree rhs1 = gimple_call_arg (call, 0);
4289 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4291 hsa_op_reg *popcount = new hsa_op_reg (BRIG_TYPE_U32);
4292 gen_hsa_popcount_to_dest (popcount, arg, hbb);
4294 hsa_insn_basic *insn
4295 = new hsa_insn_basic (3, BRIG_OPCODE_REM, popcount->m_type, NULL, popcount,
4296 new hsa_op_immed (2, popcount->m_type));
4297 hbb->append_insn (insn);
4298 insn->set_output_in_type (dest, 0, hbb);
4301 /* Emit instructions that implement popcount builtin STMT.
4302 Instructions are appended to basic block HBB. */
4304 static void
4305 gen_hsa_popcount (gcall *call, hsa_bb *hbb)
4307 tree lhs = gimple_call_lhs (call);
4308 if (lhs == NULL_TREE)
4309 return;
4311 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4312 tree rhs1 = gimple_call_arg (call, 0);
4313 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4315 gen_hsa_popcount_to_dest (dest, arg, hbb);
4318 /* Set VALUE to a shadow kernel debug argument and append a new instruction
4319 to HBB basic block. */
4321 static void
4322 set_debug_value (hsa_bb *hbb, hsa_op_with_type *value)
4324 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4325 if (shadow_reg_ptr == NULL)
4326 return;
4328 hsa_op_address *addr
4329 = new hsa_op_address (shadow_reg_ptr,
4330 get_hsa_kernel_dispatch_offset ("debug"));
4331 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, BRIG_TYPE_U64, value,
4332 addr);
4333 hbb->append_insn (mem);
4336 void
4337 omp_simple_builtin::generate (gimple *stmt, hsa_bb *hbb)
4339 if (m_sorry)
4341 if (m_warning_message)
4342 HSA_SORRY_AT (gimple_location (stmt), m_warning_message)
4343 else
4344 HSA_SORRY_ATV (gimple_location (stmt),
4345 "Support for HSA does not implement calls to %s\n",
4346 m_name)
4348 else if (m_warning_message != NULL)
4349 warning_at (gimple_location (stmt), OPT_Whsa, m_warning_message);
4351 if (m_return_value != NULL)
4353 tree lhs = gimple_call_lhs (stmt);
4354 if (!lhs)
4355 return;
4357 hbb->append_insn (new hsa_insn_comment (m_name));
4359 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4360 hsa_op_with_type *op = m_return_value->get_in_type (dest->m_type, hbb);
4361 hsa_build_append_simple_mov (dest, op, hbb);
4365 /* If STMT is a call of a known library function, generate code to perform
4366 it and return true. */
4368 static bool
4369 gen_hsa_insns_for_known_library_call (gimple *stmt, hsa_bb *hbb)
4371 bool handled = false;
4372 const char *name = hsa_get_declaration_name (gimple_call_fndecl (stmt));
4374 char *copy = NULL;
4375 size_t len = strlen (name);
4376 if (len > 0 && name[len - 1] == '_')
4378 copy = XNEWVEC (char, len + 1);
4379 strcpy (copy, name);
4380 copy[len - 1] = '\0';
4381 name = copy;
4384 /* Handle omp_* routines. */
4385 if (strstr (name, "omp_") == name)
4387 hsa_init_simple_builtins ();
4388 omp_simple_builtin *builtin = omp_simple_builtins->get (name);
4389 if (builtin)
4391 builtin->generate (stmt, hbb);
4392 return true;
4395 handled = true;
4396 if (strcmp (name, "omp_set_num_threads") == 0)
4397 gen_set_num_threads (gimple_call_arg (stmt, 0), hbb);
4398 else if (strcmp (name, "omp_get_thread_num") == 0)
4400 hbb->append_insn (new hsa_insn_comment (name));
4401 query_hsa_grid (stmt, BRIG_OPCODE_WORKITEMABSID, 0, hbb);
4403 else if (strcmp (name, "omp_get_num_threads") == 0)
4405 hbb->append_insn (new hsa_insn_comment (name));
4406 query_hsa_grid (stmt, BRIG_OPCODE_GRIDSIZE, 0, hbb);
4408 else if (strcmp (name, "omp_get_num_teams") == 0)
4409 gen_get_num_teams (stmt, hbb);
4410 else if (strcmp (name, "omp_get_team_num") == 0)
4411 gen_get_team_num (stmt, hbb);
4412 else if (strcmp (name, "omp_get_level") == 0)
4413 gen_get_level (stmt, hbb);
4414 else if (strcmp (name, "omp_get_active_level") == 0)
4415 gen_get_level (stmt, hbb);
4416 else if (strcmp (name, "omp_in_parallel") == 0)
4417 gen_get_level (stmt, hbb);
4418 else if (strcmp (name, "omp_get_max_threads") == 0)
4419 gen_get_max_threads (stmt, hbb);
4420 else
4421 handled = false;
4423 if (handled)
4425 if (copy)
4426 free (copy);
4427 return true;
4431 if (strcmp (name, "__hsa_set_debug_value") == 0)
4433 handled = true;
4434 if (hsa_cfun->has_shadow_reg_p ())
4436 tree rhs1 = gimple_call_arg (stmt, 0);
4437 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4439 src = src->get_in_type (BRIG_TYPE_U64, hbb);
4440 set_debug_value (hbb, src);
4444 if (copy)
4445 free (copy);
4446 return handled;
4449 /* Helper functions to create a single unary HSA operations out of calls to
4450 builtins. OPCODE is the HSA operation to be generated. STMT is a gimple
4451 call to a builtin. HBB is the HSA BB to which the instruction should be
4452 added. Note that nothing will be created if STMT does not have a LHS. */
4454 static void
4455 gen_hsa_unaryop_for_builtin (BrigOpcode opcode, gimple *stmt, hsa_bb *hbb)
4457 tree lhs = gimple_call_lhs (stmt);
4458 if (!lhs)
4459 return;
4460 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4461 hsa_op_with_type *op
4462 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4463 gen_hsa_unary_operation (opcode, dest, op, hbb);
4466 /* Helper functions to create a call to standard library if LHS of the
4467 STMT is used. HBB is the HSA BB to which the instruction should be
4468 added. */
4470 static void
4471 gen_hsa_unaryop_builtin_call (gimple *stmt, hsa_bb *hbb)
4473 tree lhs = gimple_call_lhs (stmt);
4474 if (!lhs)
4475 return;
4477 if (gimple_call_internal_p (stmt))
4478 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
4479 else
4480 gen_hsa_insns_for_direct_call (stmt, hbb);
4483 /* Helper functions to create a single unary HSA operations out of calls to
4484 builtins (if unsafe math optimizations are enable). Otherwise, create
4485 a call to standard library function.
4486 OPCODE is the HSA operation to be generated. STMT is a gimple
4487 call to a builtin. HBB is the HSA BB to which the instruction should be
4488 added. Note that nothing will be created if STMT does not have a LHS. */
4490 static void
4491 gen_hsa_unaryop_or_call_for_builtin (BrigOpcode opcode, gimple *stmt,
4492 hsa_bb *hbb)
4494 if (flag_unsafe_math_optimizations)
4495 gen_hsa_unaryop_for_builtin (opcode, stmt, hbb);
4496 else
4497 gen_hsa_unaryop_builtin_call (stmt, hbb);
4500 /* Generate HSA address corresponding to a value VAL (as opposed to a memory
4501 reference tree), for example an SSA_NAME or an ADDR_EXPR. HBB is the HSA BB
4502 to which the instruction should be added. */
4504 static hsa_op_address *
4505 get_address_from_value (tree val, hsa_bb *hbb)
4507 switch (TREE_CODE (val))
4509 case SSA_NAME:
4511 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4512 hsa_op_base *reg
4513 = hsa_cfun->reg_for_gimple_ssa (val)->get_in_type (addrtype, hbb);
4514 return new hsa_op_address (NULL, as_a <hsa_op_reg *> (reg), 0);
4516 case ADDR_EXPR:
4517 return gen_hsa_addr (TREE_OPERAND (val, 0), hbb);
4519 case INTEGER_CST:
4520 if (tree_fits_shwi_p (val))
4521 return new hsa_op_address (NULL, NULL, tree_to_shwi (val));
4522 /* Otherwise fall-through */
4524 default:
4525 HSA_SORRY_ATV (EXPR_LOCATION (val),
4526 "support for HSA does not implement memory access to %E",
4527 val);
4528 return new hsa_op_address (NULL, NULL, 0);
4532 /* Expand assignment of a result of a string BUILTIN to DST.
4533 Size of the operation is N bytes, where instructions
4534 will be append to HBB. */
4536 static void
4537 expand_lhs_of_string_op (gimple *stmt,
4538 unsigned HOST_WIDE_INT n, hsa_bb *hbb,
4539 enum built_in_function builtin)
4541 /* If LHS is expected, we need to emit a PHI instruction. */
4542 tree lhs = gimple_call_lhs (stmt);
4543 if (!lhs)
4544 return;
4546 hsa_op_reg *lhs_reg = hsa_cfun->reg_for_gimple_ssa (lhs);
4548 hsa_op_with_type *dst_reg
4549 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4550 hsa_op_with_type *tmp;
4552 switch (builtin)
4554 case BUILT_IN_MEMPCPY:
4556 tmp = new hsa_op_reg (dst_reg->m_type);
4557 hsa_insn_basic *add
4558 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type,
4559 tmp, dst_reg,
4560 new hsa_op_immed (n, dst_reg->m_type));
4561 hbb->append_insn (add);
4562 break;
4564 case BUILT_IN_MEMCPY:
4565 case BUILT_IN_MEMSET:
4566 tmp = dst_reg;
4567 break;
4568 default:
4569 gcc_unreachable ();
4572 hbb->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV, lhs_reg->m_type,
4573 lhs_reg, tmp));
4576 #define HSA_MEMORY_BUILTINS_LIMIT 128
4578 /* Expand a string builtin (from a gimple STMT) in a way that
4579 according to MISALIGNED_FLAG we process either direct emission
4580 (a bunch of memory load and store instructions), or we emit a function call
4581 of a library function (for instance 'memcpy'). Actually, a basic block
4582 for direct emission is just prepared, where caller is responsible
4583 for emission of corresponding instructions.
4584 All instruction are appended to HBB. */
4586 hsa_bb *
4587 expand_string_operation_builtin (gimple *stmt, hsa_bb *hbb,
4588 hsa_op_reg *misaligned_flag)
4590 edge e = split_block (hbb->m_bb, stmt);
4591 basic_block condition_bb = e->src;
4592 hbb->append_insn (new hsa_insn_br (misaligned_flag));
4594 /* Prepare the control flow. */
4595 edge condition_edge = EDGE_SUCC (condition_bb, 0);
4596 basic_block call_bb = split_edge (condition_edge);
4598 basic_block expanded_bb = split_edge (EDGE_SUCC (call_bb, 0));
4599 basic_block cont_bb = EDGE_SUCC (expanded_bb, 0)->dest;
4600 basic_block merge_bb = split_edge (EDGE_PRED (cont_bb, 0));
4602 condition_edge->flags &= ~EDGE_FALLTHRU;
4603 condition_edge->flags |= EDGE_TRUE_VALUE;
4604 make_edge (condition_bb, expanded_bb, EDGE_FALSE_VALUE);
4606 redirect_edge_succ (EDGE_SUCC (call_bb, 0), merge_bb);
4608 hsa_cfun->m_modified_cfg = true;
4610 hsa_init_new_bb (expanded_bb);
4612 /* Slow path: function call. */
4613 gen_hsa_insns_for_direct_call (stmt, hsa_init_new_bb (call_bb), false);
4615 return hsa_bb_for_bb (expanded_bb);
4618 /* Expand a memory copy BUILTIN (BUILT_IN_MEMCPY, BUILT_IN_MEMPCPY) from
4619 a gimple STMT and store all necessary instruction to HBB basic block. */
4621 static void
4622 expand_memory_copy (gimple *stmt, hsa_bb *hbb, enum built_in_function builtin)
4624 tree byte_size = gimple_call_arg (stmt, 2);
4626 if (!tree_fits_uhwi_p (byte_size))
4628 gen_hsa_insns_for_direct_call (stmt, hbb);
4629 return;
4632 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
4634 if (n > HSA_MEMORY_BUILTINS_LIMIT)
4636 gen_hsa_insns_for_direct_call (stmt, hbb);
4637 return;
4640 tree dst = gimple_call_arg (stmt, 0);
4641 tree src = gimple_call_arg (stmt, 1);
4643 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4644 hsa_op_address *src_addr = get_address_from_value (src, hbb);
4646 /* As gen_hsa_memory_copy relies on memory alignment
4647 greater or equal to 8 bytes, we need to verify the alignment. */
4648 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4649 hsa_op_reg *src_addr_reg = new hsa_op_reg (addrtype);
4650 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4652 convert_addr_to_flat_segment (src_addr, src_addr_reg, hbb);
4653 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4655 /* Process BIT OR for source and destination addresses. */
4656 hsa_op_reg *or_reg = new hsa_op_reg (addrtype);
4657 gen_hsa_binary_operation (BRIG_OPCODE_OR, or_reg, src_addr_reg,
4658 dst_addr_reg, hbb);
4660 /* Process BIT AND with 0x7 to identify the desired alignment
4661 of 8 bytes. */
4662 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4664 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, or_reg,
4665 new hsa_op_immed (7, addrtype), hbb);
4667 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4668 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4669 misaligned, masked,
4670 new hsa_op_immed (0, masked->m_type)));
4672 hsa_bb *native_impl_bb
4673 = expand_string_operation_builtin (stmt, hbb, misaligned);
4675 gen_hsa_memory_copy (native_impl_bb, dst_addr, src_addr, n, BRIG_ALIGNMENT_8);
4676 hsa_bb *merge_bb
4677 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4678 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4682 /* Expand a memory set BUILTIN (BUILT_IN_MEMSET, BUILT_IN_BZERO) from
4683 a gimple STMT and store all necessary instruction to HBB basic block.
4684 The operation set N bytes with a CONSTANT value. */
4686 static void
4687 expand_memory_set (gimple *stmt, unsigned HOST_WIDE_INT n,
4688 unsigned HOST_WIDE_INT constant, hsa_bb *hbb,
4689 enum built_in_function builtin)
4691 tree dst = gimple_call_arg (stmt, 0);
4692 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4694 /* As gen_hsa_memory_set relies on memory alignment
4695 greater or equal to 8 bytes, we need to verify the alignment. */
4696 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4697 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4698 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4700 /* Process BIT AND with 0x7 to identify the desired alignment
4701 of 8 bytes. */
4702 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4704 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, dst_addr_reg,
4705 new hsa_op_immed (7, addrtype), hbb);
4707 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4708 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4709 misaligned, masked,
4710 new hsa_op_immed (0, masked->m_type)));
4712 hsa_bb *native_impl_bb
4713 = expand_string_operation_builtin (stmt, hbb, misaligned);
4715 gen_hsa_memory_set (native_impl_bb, dst_addr, constant, n, BRIG_ALIGNMENT_8);
4716 hsa_bb *merge_bb
4717 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4718 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4721 /* Return string for MEMMODEL. */
4723 static const char *
4724 get_memory_order_name (unsigned memmodel)
4726 switch (memmodel & MEMMODEL_BASE_MASK)
4728 case MEMMODEL_RELAXED:
4729 return "relaxed";
4730 case MEMMODEL_CONSUME:
4731 return "consume";
4732 case MEMMODEL_ACQUIRE:
4733 return "acquire";
4734 case MEMMODEL_RELEASE:
4735 return "release";
4736 case MEMMODEL_ACQ_REL:
4737 return "acq_rel";
4738 case MEMMODEL_SEQ_CST:
4739 return "seq_cst";
4740 default:
4741 return NULL;
4745 /* Return memory order according to predefined __atomic memory model
4746 constants. LOCATION is provided to locate the problematic statement. */
4748 static BrigMemoryOrder
4749 get_memory_order (unsigned memmodel, location_t location)
4751 switch (memmodel & MEMMODEL_BASE_MASK)
4753 case MEMMODEL_RELAXED:
4754 return BRIG_MEMORY_ORDER_RELAXED;
4755 case MEMMODEL_CONSUME:
4756 /* HSA does not have an equivalent, but we can use the slightly stronger
4757 ACQUIRE. */
4758 case MEMMODEL_ACQUIRE:
4759 return BRIG_MEMORY_ORDER_SC_ACQUIRE;
4760 case MEMMODEL_RELEASE:
4761 return BRIG_MEMORY_ORDER_SC_RELEASE;
4762 case MEMMODEL_ACQ_REL:
4763 case MEMMODEL_SEQ_CST:
4764 /* Callers implementing a simple load or store need to remove the release
4765 or acquire part respectively. */
4766 return BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4767 default:
4769 const char *mmname = get_memory_order_name (memmodel);
4770 HSA_SORRY_ATV (location,
4771 "support for HSA does not implement the specified "
4772 " memory model%s %s",
4773 mmname ? ": " : "", mmname ? mmname : "");
4774 return BRIG_MEMORY_ORDER_NONE;
4779 /* Helper function to create an HSA atomic binary operation instruction out of
4780 calls to atomic builtins. RET_ORIG is true if the built-in is the variant
4781 that return s the value before applying operation, and false if it should
4782 return the value after applying the operation (if it returns value at all).
4783 ACODE is the atomic operation code, STMT is a gimple call to a builtin. HBB
4784 is the HSA BB to which the instruction should be added. */
4786 static void
4787 gen_hsa_ternary_atomic_for_builtin (bool ret_orig,
4788 enum BrigAtomicOperation acode,
4789 gimple *stmt,
4790 hsa_bb *hbb)
4792 tree lhs = gimple_call_lhs (stmt);
4794 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
4795 BrigType16_t hsa_type = hsa_type_for_scalar_tree_type (type, false);
4796 BrigType16_t mtype = mem_type_for_type (hsa_type);
4797 tree model = gimple_call_arg (stmt, 2);
4799 if (!tree_fits_uhwi_p (model))
4801 HSA_SORRY_ATV (gimple_location (stmt),
4802 "support for HSA does not implement memory model %E",
4803 model);
4804 return;
4807 unsigned HOST_WIDE_INT mmodel = tree_to_uhwi (model);
4809 BrigMemoryOrder memorder = get_memory_order (mmodel, gimple_location (stmt));
4811 /* Certain atomic insns must have Bx memory types. */
4812 switch (acode)
4814 case BRIG_ATOMIC_LD:
4815 case BRIG_ATOMIC_ST:
4816 case BRIG_ATOMIC_AND:
4817 case BRIG_ATOMIC_OR:
4818 case BRIG_ATOMIC_XOR:
4819 case BRIG_ATOMIC_EXCH:
4820 mtype = hsa_bittype_for_type (mtype);
4821 break;
4822 default:
4823 break;
4826 hsa_op_reg *dest;
4827 int nops, opcode;
4828 if (lhs)
4830 if (ret_orig)
4831 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4832 else
4833 dest = new hsa_op_reg (hsa_type);
4834 opcode = BRIG_OPCODE_ATOMIC;
4835 nops = 3;
4837 else
4839 dest = NULL;
4840 opcode = BRIG_OPCODE_ATOMICNORET;
4841 nops = 2;
4844 if (acode == BRIG_ATOMIC_ST)
4846 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
4847 memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
4849 if (memorder != BRIG_MEMORY_ORDER_RELAXED
4850 && memorder != BRIG_MEMORY_ORDER_SC_RELEASE
4851 && memorder != BRIG_MEMORY_ORDER_NONE)
4853 HSA_SORRY_ATV (gimple_location (stmt),
4854 "support for HSA does not implement memory model for "
4855 "ATOMIC_ST: %s", get_memory_order_name (mmodel));
4856 return;
4860 hsa_insn_atomic *atominsn = new hsa_insn_atomic (nops, opcode, acode, mtype,
4861 memorder);
4863 hsa_op_address *addr;
4864 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
4865 if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_PRIVATE)
4867 HSA_SORRY_AT (gimple_location (stmt),
4868 "HSA does not implement atomic operations in private "
4869 "segment");
4870 return;
4872 hsa_op_base *op = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1),
4873 hbb);
4875 if (lhs)
4877 atominsn->set_op (0, dest);
4878 atominsn->set_op (1, addr);
4879 atominsn->set_op (2, op);
4881 else
4883 atominsn->set_op (0, addr);
4884 atominsn->set_op (1, op);
4887 hbb->append_insn (atominsn);
4889 /* HSA does not natively support the variants that return the modified value,
4890 so re-do the operation again non-atomically if that is what was
4891 requested. */
4892 if (lhs && !ret_orig)
4894 int arith;
4895 switch (acode)
4897 case BRIG_ATOMIC_ADD:
4898 arith = BRIG_OPCODE_ADD;
4899 break;
4900 case BRIG_ATOMIC_AND:
4901 arith = BRIG_OPCODE_AND;
4902 break;
4903 case BRIG_ATOMIC_OR:
4904 arith = BRIG_OPCODE_OR;
4905 break;
4906 case BRIG_ATOMIC_SUB:
4907 arith = BRIG_OPCODE_SUB;
4908 break;
4909 case BRIG_ATOMIC_XOR:
4910 arith = BRIG_OPCODE_XOR;
4911 break;
4912 default:
4913 gcc_unreachable ();
4915 hsa_op_reg *real_dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4916 gen_hsa_binary_operation (arith, real_dest, dest, op, hbb);
4920 /* Generate HSA instructions for an internal fn.
4921 Instructions will be appended to HBB, which also needs to be the
4922 corresponding structure to the basic_block of STMT. */
4924 static void
4925 gen_hsa_insn_for_internal_fn_call (gcall *stmt, hsa_bb *hbb)
4927 gcc_checking_assert (gimple_call_internal_fn (stmt));
4928 internal_fn fn = gimple_call_internal_fn (stmt);
4930 bool is_float_type_p = false;
4931 if (gimple_call_lhs (stmt) != NULL
4932 && TREE_TYPE (gimple_call_lhs (stmt)) == float_type_node)
4933 is_float_type_p = true;
4935 switch (fn)
4937 case IFN_CEIL:
4938 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
4939 break;
4941 case IFN_FLOOR:
4942 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
4943 break;
4945 case IFN_RINT:
4946 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
4947 break;
4949 case IFN_SQRT:
4950 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
4951 break;
4953 case IFN_TRUNC:
4954 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
4955 break;
4957 case IFN_COS:
4959 if (is_float_type_p)
4960 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
4961 else
4962 gen_hsa_unaryop_builtin_call (stmt, hbb);
4964 break;
4966 case IFN_EXP2:
4968 if (is_float_type_p)
4969 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
4970 else
4971 gen_hsa_unaryop_builtin_call (stmt, hbb);
4973 break;
4976 case IFN_LOG2:
4978 if (is_float_type_p)
4979 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
4980 else
4981 gen_hsa_unaryop_builtin_call (stmt, hbb);
4983 break;
4986 case IFN_SIN:
4988 if (is_float_type_p)
4989 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
4990 else
4991 gen_hsa_unaryop_builtin_call (stmt, hbb);
4992 break;
4995 case IFN_CLRSB:
4996 gen_hsa_clrsb (stmt, hbb);
4997 break;
4999 case IFN_CLZ:
5000 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5001 break;
5003 case IFN_CTZ:
5004 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5005 break;
5007 case IFN_FFS:
5008 gen_hsa_ffs (stmt, hbb);
5009 break;
5011 case IFN_PARITY:
5012 gen_hsa_parity (stmt, hbb);
5013 break;
5015 case IFN_POPCOUNT:
5016 gen_hsa_popcount (stmt, hbb);
5017 break;
5019 case IFN_ACOS:
5020 case IFN_ASIN:
5021 case IFN_ATAN:
5022 case IFN_EXP:
5023 case IFN_EXP10:
5024 case IFN_EXPM1:
5025 case IFN_LOG:
5026 case IFN_LOG10:
5027 case IFN_LOG1P:
5028 case IFN_LOGB:
5029 case IFN_SIGNIFICAND:
5030 case IFN_TAN:
5031 case IFN_NEARBYINT:
5032 case IFN_ROUND:
5033 case IFN_ATAN2:
5034 case IFN_COPYSIGN:
5035 case IFN_FMOD:
5036 case IFN_POW:
5037 case IFN_REMAINDER:
5038 case IFN_SCALB:
5039 case IFN_FMIN:
5040 case IFN_FMAX:
5041 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
5043 default:
5044 HSA_SORRY_ATV (gimple_location (stmt),
5045 "support for HSA does not implement internal function: %s",
5046 internal_fn_name (fn));
5047 break;
5051 /* Generate HSA instructions for the given call statement STMT. Instructions
5052 will be appended to HBB. */
5054 static void
5055 gen_hsa_insns_for_call (gimple *stmt, hsa_bb *hbb)
5057 gcall *call = as_a <gcall *> (stmt);
5058 tree lhs = gimple_call_lhs (stmt);
5059 hsa_op_reg *dest;
5061 if (gimple_call_internal_p (stmt))
5063 gen_hsa_insn_for_internal_fn_call (call, hbb);
5064 return;
5067 if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
5069 tree function_decl = gimple_call_fndecl (stmt);
5070 if (function_decl == NULL_TREE)
5072 HSA_SORRY_AT (gimple_location (stmt),
5073 "support for HSA does not implement indirect calls");
5074 return;
5077 if (hsa_callable_function_p (function_decl))
5078 gen_hsa_insns_for_direct_call (stmt, hbb);
5079 else if (!gen_hsa_insns_for_known_library_call (stmt, hbb))
5080 HSA_SORRY_AT (gimple_location (stmt),
5081 "HSA supports only calls of functions marked with pragma "
5082 "omp declare target");
5083 return;
5086 tree fndecl = gimple_call_fndecl (stmt);
5087 enum built_in_function builtin = DECL_FUNCTION_CODE (fndecl);
5088 switch (builtin)
5090 case BUILT_IN_FABS:
5091 case BUILT_IN_FABSF:
5092 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_ABS, stmt, hbb);
5093 break;
5095 case BUILT_IN_CEIL:
5096 case BUILT_IN_CEILF:
5097 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5098 break;
5100 case BUILT_IN_FLOOR:
5101 case BUILT_IN_FLOORF:
5102 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5103 break;
5105 case BUILT_IN_RINT:
5106 case BUILT_IN_RINTF:
5107 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5108 break;
5110 case BUILT_IN_SQRT:
5111 case BUILT_IN_SQRTF:
5112 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5113 break;
5115 case BUILT_IN_TRUNC:
5116 case BUILT_IN_TRUNCF:
5117 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5118 break;
5120 case BUILT_IN_COS:
5121 case BUILT_IN_SIN:
5122 case BUILT_IN_EXP2:
5123 case BUILT_IN_LOG2:
5124 /* HSAIL does not provide an instruction for double argument type. */
5125 gen_hsa_unaryop_builtin_call (stmt, hbb);
5126 break;
5128 case BUILT_IN_COSF:
5129 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5130 break;
5132 case BUILT_IN_EXP2F:
5133 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5134 break;
5136 case BUILT_IN_LOG2F:
5137 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5138 break;
5140 case BUILT_IN_SINF:
5141 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5142 break;
5144 case BUILT_IN_CLRSB:
5145 case BUILT_IN_CLRSBL:
5146 case BUILT_IN_CLRSBLL:
5147 gen_hsa_clrsb (call, hbb);
5148 break;
5150 case BUILT_IN_CLZ:
5151 case BUILT_IN_CLZL:
5152 case BUILT_IN_CLZLL:
5153 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5154 break;
5156 case BUILT_IN_CTZ:
5157 case BUILT_IN_CTZL:
5158 case BUILT_IN_CTZLL:
5159 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5160 break;
5162 case BUILT_IN_FFS:
5163 case BUILT_IN_FFSL:
5164 case BUILT_IN_FFSLL:
5165 gen_hsa_ffs (call, hbb);
5166 break;
5168 case BUILT_IN_PARITY:
5169 case BUILT_IN_PARITYL:
5170 case BUILT_IN_PARITYLL:
5171 gen_hsa_parity (call, hbb);
5172 break;
5174 case BUILT_IN_POPCOUNT:
5175 case BUILT_IN_POPCOUNTL:
5176 case BUILT_IN_POPCOUNTLL:
5177 gen_hsa_popcount (call, hbb);
5178 break;
5180 case BUILT_IN_ATOMIC_LOAD_1:
5181 case BUILT_IN_ATOMIC_LOAD_2:
5182 case BUILT_IN_ATOMIC_LOAD_4:
5183 case BUILT_IN_ATOMIC_LOAD_8:
5184 case BUILT_IN_ATOMIC_LOAD_16:
5186 BrigType16_t mtype;
5187 hsa_op_address *addr;
5188 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5189 tree model = gimple_call_arg (stmt, 1);
5190 if (!tree_fits_uhwi_p (model))
5192 HSA_SORRY_ATV (gimple_location (stmt),
5193 "support for HSA does not implement "
5194 "memory model: %E",
5195 model);
5196 return;
5199 unsigned HOST_WIDE_INT mmodel = tree_to_uhwi (model);
5200 BrigMemoryOrder memorder = get_memory_order (mmodel,
5201 gimple_location (stmt));
5203 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5204 memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
5206 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5207 && memorder != BRIG_MEMORY_ORDER_SC_ACQUIRE
5208 && memorder != BRIG_MEMORY_ORDER_NONE)
5210 HSA_SORRY_ATV (gimple_location (stmt),
5211 "support for HSA does not implement "
5212 "memory model for ATOMIC_LD: %s",
5213 get_memory_order_name (mmodel));
5214 return;
5217 if (lhs)
5219 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
5220 false);
5221 mtype = mem_type_for_type (t);
5222 mtype = hsa_bittype_for_type (mtype);
5223 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5225 else
5227 mtype = BRIG_TYPE_B64;
5228 dest = new hsa_op_reg (mtype);
5231 hsa_insn_atomic *atominsn
5232 = new hsa_insn_atomic (2, BRIG_OPCODE_ATOMIC, BRIG_ATOMIC_LD, mtype,
5233 memorder, dest, addr);
5235 hbb->append_insn (atominsn);
5236 break;
5239 case BUILT_IN_ATOMIC_EXCHANGE_1:
5240 case BUILT_IN_ATOMIC_EXCHANGE_2:
5241 case BUILT_IN_ATOMIC_EXCHANGE_4:
5242 case BUILT_IN_ATOMIC_EXCHANGE_8:
5243 case BUILT_IN_ATOMIC_EXCHANGE_16:
5244 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_EXCH, stmt, hbb);
5245 break;
5247 case BUILT_IN_ATOMIC_FETCH_ADD_1:
5248 case BUILT_IN_ATOMIC_FETCH_ADD_2:
5249 case BUILT_IN_ATOMIC_FETCH_ADD_4:
5250 case BUILT_IN_ATOMIC_FETCH_ADD_8:
5251 case BUILT_IN_ATOMIC_FETCH_ADD_16:
5252 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_ADD, stmt, hbb);
5253 break;
5255 case BUILT_IN_ATOMIC_FETCH_SUB_1:
5256 case BUILT_IN_ATOMIC_FETCH_SUB_2:
5257 case BUILT_IN_ATOMIC_FETCH_SUB_4:
5258 case BUILT_IN_ATOMIC_FETCH_SUB_8:
5259 case BUILT_IN_ATOMIC_FETCH_SUB_16:
5260 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_SUB, stmt, hbb);
5261 break;
5263 case BUILT_IN_ATOMIC_FETCH_AND_1:
5264 case BUILT_IN_ATOMIC_FETCH_AND_2:
5265 case BUILT_IN_ATOMIC_FETCH_AND_4:
5266 case BUILT_IN_ATOMIC_FETCH_AND_8:
5267 case BUILT_IN_ATOMIC_FETCH_AND_16:
5268 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_AND, stmt, hbb);
5269 break;
5271 case BUILT_IN_ATOMIC_FETCH_XOR_1:
5272 case BUILT_IN_ATOMIC_FETCH_XOR_2:
5273 case BUILT_IN_ATOMIC_FETCH_XOR_4:
5274 case BUILT_IN_ATOMIC_FETCH_XOR_8:
5275 case BUILT_IN_ATOMIC_FETCH_XOR_16:
5276 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_XOR, stmt, hbb);
5277 break;
5279 case BUILT_IN_ATOMIC_FETCH_OR_1:
5280 case BUILT_IN_ATOMIC_FETCH_OR_2:
5281 case BUILT_IN_ATOMIC_FETCH_OR_4:
5282 case BUILT_IN_ATOMIC_FETCH_OR_8:
5283 case BUILT_IN_ATOMIC_FETCH_OR_16:
5284 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_OR, stmt, hbb);
5285 break;
5287 case BUILT_IN_ATOMIC_STORE_1:
5288 case BUILT_IN_ATOMIC_STORE_2:
5289 case BUILT_IN_ATOMIC_STORE_4:
5290 case BUILT_IN_ATOMIC_STORE_8:
5291 case BUILT_IN_ATOMIC_STORE_16:
5292 /* Since there cannot be any LHS, the first parameter is meaningless. */
5293 gen_hsa_ternary_atomic_for_builtin (true, BRIG_ATOMIC_ST, stmt, hbb);
5294 break;
5296 case BUILT_IN_ATOMIC_ADD_FETCH_1:
5297 case BUILT_IN_ATOMIC_ADD_FETCH_2:
5298 case BUILT_IN_ATOMIC_ADD_FETCH_4:
5299 case BUILT_IN_ATOMIC_ADD_FETCH_8:
5300 case BUILT_IN_ATOMIC_ADD_FETCH_16:
5301 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_ADD, stmt, hbb);
5302 break;
5304 case BUILT_IN_ATOMIC_SUB_FETCH_1:
5305 case BUILT_IN_ATOMIC_SUB_FETCH_2:
5306 case BUILT_IN_ATOMIC_SUB_FETCH_4:
5307 case BUILT_IN_ATOMIC_SUB_FETCH_8:
5308 case BUILT_IN_ATOMIC_SUB_FETCH_16:
5309 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_SUB, stmt, hbb);
5310 break;
5312 case BUILT_IN_ATOMIC_AND_FETCH_1:
5313 case BUILT_IN_ATOMIC_AND_FETCH_2:
5314 case BUILT_IN_ATOMIC_AND_FETCH_4:
5315 case BUILT_IN_ATOMIC_AND_FETCH_8:
5316 case BUILT_IN_ATOMIC_AND_FETCH_16:
5317 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_AND, stmt, hbb);
5318 break;
5320 case BUILT_IN_ATOMIC_XOR_FETCH_1:
5321 case BUILT_IN_ATOMIC_XOR_FETCH_2:
5322 case BUILT_IN_ATOMIC_XOR_FETCH_4:
5323 case BUILT_IN_ATOMIC_XOR_FETCH_8:
5324 case BUILT_IN_ATOMIC_XOR_FETCH_16:
5325 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_XOR, stmt, hbb);
5326 break;
5328 case BUILT_IN_ATOMIC_OR_FETCH_1:
5329 case BUILT_IN_ATOMIC_OR_FETCH_2:
5330 case BUILT_IN_ATOMIC_OR_FETCH_4:
5331 case BUILT_IN_ATOMIC_OR_FETCH_8:
5332 case BUILT_IN_ATOMIC_OR_FETCH_16:
5333 gen_hsa_ternary_atomic_for_builtin (false, BRIG_ATOMIC_OR, stmt, hbb);
5334 break;
5336 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
5337 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
5338 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
5339 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
5340 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
5342 /* TODO: Use the appropriate memory model for now. */
5343 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
5345 BrigType16_t atype
5346 = hsa_bittype_for_type (hsa_type_for_scalar_tree_type (type, false));
5348 hsa_insn_atomic *atominsn
5349 = new hsa_insn_atomic (4, BRIG_OPCODE_ATOMIC, BRIG_ATOMIC_CAS, atype,
5350 BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE);
5351 hsa_op_address *addr;
5352 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5354 if (lhs != NULL)
5355 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5356 else
5357 dest = new hsa_op_reg (atype);
5359 /* Should check what the memory scope is. */
5360 atominsn->m_memoryscope = BRIG_MEMORY_SCOPE_WORKGROUP;
5361 atominsn->set_op (0, dest);
5362 atominsn->set_op (1, addr);
5364 hsa_op_with_type *op
5365 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5366 atominsn->set_op (2, op);
5367 op = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 2), hbb);
5368 atominsn->set_op (3, op);
5370 hbb->append_insn (atominsn);
5371 break;
5373 case BUILT_IN_GOMP_PARALLEL:
5374 HSA_SORRY_AT (gimple_location (stmt),
5375 "support for HSA does not implement non-gridified "
5376 "OpenMP parallel constructs.");
5377 break;
5378 case BUILT_IN_OMP_GET_THREAD_NUM:
5380 query_hsa_grid (stmt, BRIG_OPCODE_WORKITEMABSID, 0, hbb);
5381 break;
5384 case BUILT_IN_OMP_GET_NUM_THREADS:
5386 query_hsa_grid (stmt, BRIG_OPCODE_GRIDSIZE, 0, hbb);
5387 break;
5389 case BUILT_IN_GOMP_TEAMS:
5391 gen_set_num_threads (gimple_call_arg (stmt, 1), hbb);
5392 break;
5394 case BUILT_IN_OMP_GET_NUM_TEAMS:
5396 gen_get_num_teams (stmt, hbb);
5397 break;
5399 case BUILT_IN_OMP_GET_TEAM_NUM:
5401 gen_get_team_num (stmt, hbb);
5402 break;
5404 case BUILT_IN_MEMCPY:
5405 case BUILT_IN_MEMPCPY:
5407 expand_memory_copy (stmt, hbb, builtin);
5408 break;
5410 case BUILT_IN_MEMSET:
5412 tree c = gimple_call_arg (stmt, 1);
5414 if (TREE_CODE (c) != INTEGER_CST)
5416 gen_hsa_insns_for_direct_call (stmt, hbb);
5417 return;
5420 tree byte_size = gimple_call_arg (stmt, 2);
5422 if (!tree_fits_uhwi_p (byte_size))
5424 gen_hsa_insns_for_direct_call (stmt, hbb);
5425 return;
5428 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5430 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5432 gen_hsa_insns_for_direct_call (stmt, hbb);
5433 return;
5436 unsigned HOST_WIDE_INT constant
5437 = tree_to_uhwi (fold_convert (unsigned_char_type_node, c));
5439 expand_memory_set (stmt, n, constant, hbb, builtin);
5441 break;
5443 case BUILT_IN_BZERO:
5445 tree byte_size = gimple_call_arg (stmt, 1);
5447 if (!tree_fits_uhwi_p (byte_size))
5449 gen_hsa_insns_for_direct_call (stmt, hbb);
5450 return;
5453 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5455 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5457 gen_hsa_insns_for_direct_call (stmt, hbb);
5458 return;
5461 expand_memory_set (stmt, n, 0, hbb, builtin);
5463 break;
5465 case BUILT_IN_ALLOCA:
5466 case BUILT_IN_ALLOCA_WITH_ALIGN:
5468 gen_hsa_alloca (call, hbb);
5469 break;
5471 default:
5473 gen_hsa_insns_for_direct_call (stmt, hbb);
5474 return;
5479 /* Generate HSA instructions for a given gimple statement. Instructions will be
5480 appended to HBB. */
5482 static void
5483 gen_hsa_insns_for_gimple_stmt (gimple *stmt, hsa_bb *hbb)
5485 switch (gimple_code (stmt))
5487 case GIMPLE_ASSIGN:
5488 if (gimple_clobber_p (stmt))
5489 break;
5491 if (gimple_assign_single_p (stmt))
5493 tree lhs = gimple_assign_lhs (stmt);
5494 tree rhs = gimple_assign_rhs1 (stmt);
5495 gen_hsa_insns_for_single_assignment (lhs, rhs, hbb);
5497 else
5498 gen_hsa_insns_for_operation_assignment (stmt, hbb);
5499 break;
5500 case GIMPLE_RETURN:
5501 gen_hsa_insns_for_return (as_a <greturn *> (stmt), hbb);
5502 break;
5503 case GIMPLE_COND:
5504 gen_hsa_insns_for_cond_stmt (stmt, hbb);
5505 break;
5506 case GIMPLE_CALL:
5507 gen_hsa_insns_for_call (stmt, hbb);
5508 break;
5509 case GIMPLE_DEBUG:
5510 /* ??? HSA supports some debug facilities. */
5511 break;
5512 case GIMPLE_LABEL:
5514 tree label = gimple_label_label (as_a <glabel *> (stmt));
5515 if (FORCED_LABEL (label))
5516 HSA_SORRY_AT (gimple_location (stmt),
5517 "support for HSA does not implement gimple label with "
5518 "address taken");
5520 break;
5522 case GIMPLE_NOP:
5524 hbb->append_insn (new hsa_insn_basic (0, BRIG_OPCODE_NOP));
5525 break;
5527 case GIMPLE_SWITCH:
5529 gen_hsa_insns_for_switch_stmt (as_a <gswitch *> (stmt), hbb);
5530 break;
5532 default:
5533 HSA_SORRY_ATV (gimple_location (stmt),
5534 "support for HSA does not implement gimple statement %s",
5535 gimple_code_name[(int) gimple_code (stmt)]);
5539 /* Generate a HSA PHI from a gimple PHI. */
5541 static void
5542 gen_hsa_phi_from_gimple_phi (gimple *phi_stmt, hsa_bb *hbb)
5544 hsa_insn_phi *hphi;
5545 unsigned count = gimple_phi_num_args (phi_stmt);
5547 hsa_op_reg *dest
5548 = hsa_cfun->reg_for_gimple_ssa (gimple_phi_result (phi_stmt));
5549 hphi = new hsa_insn_phi (count, dest);
5550 hphi->m_bb = hbb->m_bb;
5552 tree lhs = gimple_phi_result (phi_stmt);
5554 for (unsigned i = 0; i < count; i++)
5556 tree op = gimple_phi_arg_def (phi_stmt, i);
5558 if (TREE_CODE (op) == SSA_NAME)
5560 hsa_op_reg *hreg = hsa_cfun->reg_for_gimple_ssa (op);
5561 hphi->set_op (i, hreg);
5563 else
5565 gcc_assert (is_gimple_min_invariant (op));
5566 tree t = TREE_TYPE (op);
5567 if (!POINTER_TYPE_P (t)
5568 || (TREE_CODE (op) == STRING_CST
5569 && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
5570 hphi->set_op (i, new hsa_op_immed (op));
5571 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
5572 && TREE_CODE (op) == INTEGER_CST)
5574 /* Handle assignment of NULL value to a pointer type. */
5575 hphi->set_op (i, new hsa_op_immed (op));
5577 else if (TREE_CODE (op) == ADDR_EXPR)
5579 edge e = gimple_phi_arg_edge (as_a <gphi *> (phi_stmt), i);
5580 hsa_bb *hbb_src = hsa_init_new_bb (split_edge (e));
5581 hsa_op_address *addr = gen_hsa_addr (TREE_OPERAND (op, 0),
5582 hbb_src);
5584 hsa_op_reg *dest
5585 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
5586 hsa_insn_basic *insn
5587 = new hsa_insn_basic (2, BRIG_OPCODE_LDA, BRIG_TYPE_U64,
5588 dest, addr);
5589 hbb_src->append_insn (insn);
5591 hphi->set_op (i, dest);
5593 else
5595 HSA_SORRY_AT (gimple_location (phi_stmt),
5596 "support for HSA does not handle PHI nodes with "
5597 "constant address operands");
5598 return;
5603 hphi->m_prev = hbb->m_last_phi;
5604 hphi->m_next = NULL;
5605 if (hbb->m_last_phi)
5606 hbb->m_last_phi->m_next = hphi;
5607 hbb->m_last_phi = hphi;
5608 if (!hbb->m_first_phi)
5609 hbb->m_first_phi = hphi;
5612 /* Constructor of class containing HSA-specific information about a basic
5613 block. CFG_BB is the CFG BB this HSA BB is associated with. IDX is the new
5614 index of this BB (so that the constructor does not attempt to use
5615 hsa_cfun during its construction). */
5617 hsa_bb::hsa_bb (basic_block cfg_bb, int idx)
5618 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5619 m_last_phi (NULL), m_index (idx), m_liveout (BITMAP_ALLOC (NULL)),
5620 m_livein (BITMAP_ALLOC (NULL))
5622 gcc_assert (!cfg_bb->aux);
5623 cfg_bb->aux = this;
5626 /* Constructor of class containing HSA-specific information about a basic
5627 block. CFG_BB is the CFG BB this HSA BB is associated with. */
5629 hsa_bb::hsa_bb (basic_block cfg_bb)
5630 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5631 m_last_phi (NULL), m_index (hsa_cfun->m_hbb_count++),
5632 m_liveout (BITMAP_ALLOC (NULL)), m_livein (BITMAP_ALLOC (NULL))
5634 gcc_assert (!cfg_bb->aux);
5635 cfg_bb->aux = this;
5638 /* Destructor of class representing HSA BB. */
5640 hsa_bb::~hsa_bb ()
5642 BITMAP_FREE (m_livein);
5643 BITMAP_FREE (m_liveout);
5646 /* Create and initialize and return a new hsa_bb structure for a given CFG
5647 basic block BB. */
5649 hsa_bb *
5650 hsa_init_new_bb (basic_block bb)
5652 return new (*hsa_allocp_bb) hsa_bb (bb);
5655 /* Initialize OMP in an HSA basic block PROLOGUE. */
5657 static void
5658 init_prologue (void)
5660 if (!hsa_cfun->m_kern_p)
5661 return;
5663 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5665 /* Create a magic number that is going to be printed by libgomp. */
5666 unsigned index = hsa_get_number_decl_kernel_mappings ();
5668 /* Emit store to debug argument. */
5669 if (PARAM_VALUE (PARAM_HSA_GEN_DEBUG_STORES) > 0)
5670 set_debug_value (prologue, new hsa_op_immed (1000 + index, BRIG_TYPE_U64));
5673 /* Initialize hsa_num_threads to a default value. */
5675 static void
5676 init_hsa_num_threads (void)
5678 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5680 /* Save the default value to private variable hsa_num_threads. */
5681 hsa_insn_basic *basic
5682 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type,
5683 new hsa_op_immed (0, hsa_num_threads->m_type),
5684 new hsa_op_address (hsa_num_threads));
5685 prologue->append_insn (basic);
5688 /* Go over gimple representation and generate our internal HSA one. */
5690 static void
5691 gen_body_from_gimple ()
5693 basic_block bb;
5695 /* Verify CFG for complex edges we are unable to handle. */
5696 edge_iterator ei;
5697 edge e;
5699 FOR_EACH_BB_FN (bb, cfun)
5701 FOR_EACH_EDGE (e, ei, bb->succs)
5703 /* Verify all unsupported flags for edges that point
5704 to the same basic block. */
5705 if (e->flags & EDGE_EH)
5707 HSA_SORRY_AT (UNKNOWN_LOCATION,
5708 "support for HSA does not implement exception "
5709 "handling");
5710 return;
5715 FOR_EACH_BB_FN (bb, cfun)
5717 gimple_stmt_iterator gsi;
5718 hsa_bb *hbb = hsa_bb_for_bb (bb);
5719 if (hbb)
5720 continue;
5722 hbb = hsa_init_new_bb (bb);
5724 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5726 gen_hsa_insns_for_gimple_stmt (gsi_stmt (gsi), hbb);
5727 if (hsa_seen_error ())
5728 return;
5732 FOR_EACH_BB_FN (bb, cfun)
5734 gimple_stmt_iterator gsi;
5735 hsa_bb *hbb = hsa_bb_for_bb (bb);
5736 gcc_assert (hbb != NULL);
5738 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5739 if (!virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
5740 gen_hsa_phi_from_gimple_phi (gsi_stmt (gsi), hbb);
5743 if (dump_file && (dump_flags & TDF_DETAILS))
5745 fprintf (dump_file, "------- Generated SSA form -------\n");
5746 dump_hsa_cfun (dump_file);
5750 static void
5751 gen_function_decl_parameters (hsa_function_representation *f,
5752 tree decl)
5754 tree parm;
5755 unsigned i;
5757 for (parm = TYPE_ARG_TYPES (TREE_TYPE (decl)), i = 0;
5758 parm;
5759 parm = TREE_CHAIN (parm), i++)
5761 /* Result type if last in the tree list. */
5762 if (TREE_CHAIN (parm) == NULL)
5763 break;
5765 tree v = TREE_VALUE (parm);
5767 hsa_symbol *arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5768 BRIG_LINKAGE_NONE);
5769 arg->m_type = hsa_type_for_tree_type (v, &arg->m_dim);
5770 arg->m_name_number = i;
5772 f->m_input_args.safe_push (arg);
5775 tree result_type = TREE_TYPE (TREE_TYPE (decl));
5776 if (!VOID_TYPE_P (result_type))
5778 f->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5779 BRIG_LINKAGE_NONE);
5780 f->m_output_arg->m_type
5781 = hsa_type_for_tree_type (result_type, &f->m_output_arg->m_dim);
5782 f->m_output_arg->m_name = "res";
5786 /* Generate the vector of parameters of the HSA representation of the current
5787 function. This also includes the output parameter representing the
5788 result. */
5790 static void
5791 gen_function_def_parameters ()
5793 tree parm;
5795 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5797 for (parm = DECL_ARGUMENTS (cfun->decl); parm;
5798 parm = DECL_CHAIN (parm))
5800 struct hsa_symbol **slot;
5802 hsa_symbol *arg
5803 = new hsa_symbol (BRIG_TYPE_NONE, hsa_cfun->m_kern_p
5804 ? BRIG_SEGMENT_KERNARG : BRIG_SEGMENT_ARG,
5805 BRIG_LINKAGE_FUNCTION);
5806 arg->fillup_for_decl (parm);
5808 hsa_cfun->m_input_args.safe_push (arg);
5810 if (hsa_seen_error ())
5811 return;
5813 arg->m_name = hsa_get_declaration_name (parm);
5815 /* Copy all input arguments and create corresponding private symbols
5816 for them. */
5817 hsa_symbol *private_arg;
5818 hsa_op_address *parm_addr = new hsa_op_address (arg);
5820 if (TREE_ADDRESSABLE (parm)
5821 || (!is_gimple_reg (parm) && !TREE_READONLY (parm)))
5823 private_arg = hsa_cfun->create_hsa_temporary (arg->m_type);
5824 private_arg->fillup_for_decl (parm);
5826 BrigAlignment8_t align = MIN (arg->m_align, private_arg->m_align);
5828 hsa_op_address *private_arg_addr = new hsa_op_address (private_arg);
5829 gen_hsa_memory_copy (prologue, private_arg_addr, parm_addr,
5830 arg->total_byte_size (), align);
5832 else
5833 private_arg = arg;
5835 slot = hsa_cfun->m_local_symbols->find_slot (private_arg, INSERT);
5836 gcc_assert (!*slot);
5837 *slot = private_arg;
5839 if (is_gimple_reg (parm))
5841 tree ddef = ssa_default_def (cfun, parm);
5842 if (ddef && !has_zero_uses (ddef))
5844 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (ddef),
5845 false);
5846 BrigType16_t mtype = mem_type_for_type (t);
5847 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (ddef);
5848 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype,
5849 dest, parm_addr);
5850 gcc_assert (!parm_addr->m_reg);
5851 prologue->append_insn (mem);
5856 if (!VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5858 struct hsa_symbol **slot;
5860 hsa_cfun->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
5861 BRIG_LINKAGE_FUNCTION);
5862 hsa_cfun->m_output_arg->fillup_for_decl (DECL_RESULT (cfun->decl));
5864 if (hsa_seen_error ())
5865 return;
5867 hsa_cfun->m_output_arg->m_name = "res";
5868 slot = hsa_cfun->m_local_symbols->find_slot (hsa_cfun->m_output_arg,
5869 INSERT);
5870 gcc_assert (!*slot);
5871 *slot = hsa_cfun->m_output_arg;
5875 /* Generate function representation that corresponds to
5876 a function declaration. */
5878 hsa_function_representation *
5879 hsa_generate_function_declaration (tree decl)
5881 hsa_function_representation *fun
5882 = new hsa_function_representation (decl, false, 0);
5884 fun->m_declaration_p = true;
5885 fun->m_name = get_brig_function_name (decl);
5886 gen_function_decl_parameters (fun, decl);
5888 return fun;
5892 /* Generate function representation that corresponds to
5893 an internal FN. */
5895 hsa_function_representation *
5896 hsa_generate_internal_fn_decl (hsa_internal_fn *fn)
5898 hsa_function_representation *fun = new hsa_function_representation (fn);
5900 fun->m_name = fn->name ();
5902 for (unsigned i = 0; i < fn->get_arity (); i++)
5904 hsa_symbol *arg
5905 = new hsa_symbol (fn->get_argument_type (i), BRIG_SEGMENT_ARG,
5906 BRIG_LINKAGE_NONE);
5907 arg->m_name_number = i;
5908 fun->m_input_args.safe_push (arg);
5911 fun->m_output_arg = new hsa_symbol (fn->get_argument_type (-1),
5912 BRIG_SEGMENT_ARG, BRIG_LINKAGE_NONE);
5913 fun->m_output_arg->m_name = "res";
5915 return fun;
5918 /* Return true if switch statement S can be transformed
5919 to a SBR instruction in HSAIL. */
5921 static bool
5922 transformable_switch_to_sbr_p (gswitch *s)
5924 /* Identify if a switch statement can be transformed to
5925 SBR instruction, like:
5927 sbr_u32 $s1 [@label1, @label2, @label3];
5930 tree size = get_switch_size (s);
5931 if (!tree_fits_uhwi_p (size))
5932 return false;
5934 if (tree_to_uhwi (size) > HSA_MAXIMUM_SBR_LABELS)
5935 return false;
5937 return true;
5940 /* Structure hold connection between PHI nodes and immediate
5941 values hold by there nodes. */
5943 struct phi_definition
5945 phi_definition (unsigned phi_i, unsigned label_i, tree imm):
5946 phi_index (phi_i), label_index (label_i), phi_value (imm)
5949 unsigned phi_index;
5950 unsigned label_index;
5951 tree phi_value;
5954 /* Sum slice of a vector V, starting from index START and ending
5955 at the index END - 1. */
5957 template <typename T>
5958 static
5959 T sum_slice (const auto_vec <T> &v, unsigned start, unsigned end)
5961 T s = 0;
5963 for (unsigned i = start; i < end; i++)
5964 s += v[i];
5966 return s;
5969 /* Function transforms GIMPLE SWITCH statements to a series of IF statements.
5970 Let's assume following example:
5973 switch (index)
5974 case C1:
5975 L1: hard_work_1 ();
5976 break;
5977 case C2..C3:
5978 L2: hard_work_2 ();
5979 break;
5980 default:
5981 LD: hard_work_3 ();
5982 break;
5984 The transformation encompasses following steps:
5985 1) all immediate values used by edges coming from the switch basic block
5986 are saved
5987 2) all these edges are removed
5988 3) the switch statement (in L0) is replaced by:
5989 if (index == C1)
5990 goto L1;
5991 else
5992 goto L1';
5994 4) newly created basic block Lx' is used for generation of
5995 a next condition
5996 5) else branch of the last condition goes to LD
5997 6) fix all immediate values in PHI nodes that were propagated though
5998 edges that were removed in step 2
6000 Note: if a case is made by a range C1..C2, then process
6001 following transformation:
6003 switch_cond_op1 = C1 <= index;
6004 switch_cond_op2 = index <= C2;
6005 switch_cond_and = switch_cond_op1 & switch_cond_op2;
6006 if (switch_cond_and != 0)
6007 goto Lx;
6008 else
6009 goto Ly;
6013 static bool
6014 convert_switch_statements (void)
6016 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6017 basic_block bb;
6019 bool modified_cfg = false;
6021 FOR_EACH_BB_FN (bb, func)
6023 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6024 if (gsi_end_p (gsi))
6025 continue;
6027 gimple *stmt = gsi_stmt (gsi);
6029 if (gimple_code (stmt) == GIMPLE_SWITCH)
6031 gswitch *s = as_a <gswitch *> (stmt);
6033 /* If the switch can utilize SBR insn, skip the statement. */
6034 if (transformable_switch_to_sbr_p (s))
6035 continue;
6037 modified_cfg = true;
6039 unsigned labels = gimple_switch_num_labels (s);
6040 tree index = gimple_switch_index (s);
6041 tree index_type = TREE_TYPE (index);
6042 tree default_label = gimple_switch_default_label (s);
6043 basic_block default_label_bb
6044 = label_to_block_fn (func, CASE_LABEL (default_label));
6045 basic_block cur_bb = bb;
6047 auto_vec <edge> new_edges;
6048 auto_vec <phi_definition *> phi_todo_list;
6049 auto_vec <gcov_type> edge_counts;
6050 auto_vec <int> edge_probabilities;
6052 /* Investigate all labels that and PHI nodes in these edges which
6053 should be fixed after we add new collection of edges. */
6054 for (unsigned i = 0; i < labels; i++)
6056 tree label = gimple_switch_label (s, i);
6057 basic_block label_bb = label_to_block_fn (func, CASE_LABEL (label));
6058 edge e = find_edge (bb, label_bb);
6059 edge_counts.safe_push (e->count);
6060 edge_probabilities.safe_push (e->probability);
6061 gphi_iterator phi_gsi;
6063 /* Save PHI definitions that will be destroyed because of an edge
6064 is going to be removed. */
6065 unsigned phi_index = 0;
6066 for (phi_gsi = gsi_start_phis (e->dest);
6067 !gsi_end_p (phi_gsi); gsi_next (&phi_gsi))
6069 gphi *phi = phi_gsi.phi ();
6070 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
6072 if (gimple_phi_arg_edge (phi, j) == e)
6074 tree imm = gimple_phi_arg_def (phi, j);
6075 phi_definition *p = new phi_definition (phi_index, i,
6076 imm);
6077 phi_todo_list.safe_push (p);
6078 break;
6081 phi_index++;
6085 /* Remove all edges for the current basic block. */
6086 for (int i = EDGE_COUNT (bb->succs) - 1; i >= 0; i--)
6088 edge e = EDGE_SUCC (bb, i);
6089 remove_edge (e);
6092 /* Iterate all non-default labels. */
6093 for (unsigned i = 1; i < labels; i++)
6095 tree label = gimple_switch_label (s, i);
6096 tree low = CASE_LOW (label);
6097 tree high = CASE_HIGH (label);
6099 if (!useless_type_conversion_p (TREE_TYPE (low), index_type))
6100 low = fold_convert (index_type, low);
6102 gimple_stmt_iterator cond_gsi = gsi_last_bb (cur_bb);
6103 gimple *c = NULL;
6104 if (high)
6106 tree tmp1 = make_temp_ssa_name (boolean_type_node, NULL,
6107 "switch_cond_op1");
6109 gimple *assign1 = gimple_build_assign (tmp1, LE_EXPR, low,
6110 index);
6112 tree tmp2 = make_temp_ssa_name (boolean_type_node, NULL,
6113 "switch_cond_op2");
6115 if (!useless_type_conversion_p (TREE_TYPE (high), index_type))
6116 high = fold_convert (index_type, high);
6117 gimple *assign2 = gimple_build_assign (tmp2, LE_EXPR, index,
6118 high);
6120 tree tmp3 = make_temp_ssa_name (boolean_type_node, NULL,
6121 "switch_cond_and");
6122 gimple *assign3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp1,
6123 tmp2);
6125 gsi_insert_before (&cond_gsi, assign1, GSI_SAME_STMT);
6126 gsi_insert_before (&cond_gsi, assign2, GSI_SAME_STMT);
6127 gsi_insert_before (&cond_gsi, assign3, GSI_SAME_STMT);
6129 tree b = constant_boolean_node (false, boolean_type_node);
6130 c = gimple_build_cond (NE_EXPR, tmp3, b, NULL, NULL);
6132 else
6133 c = gimple_build_cond (EQ_EXPR, index, low, NULL, NULL);
6135 gimple_set_location (c, gimple_location (stmt));
6137 gsi_insert_before (&cond_gsi, c, GSI_SAME_STMT);
6139 basic_block label_bb
6140 = label_to_block_fn (func, CASE_LABEL (label));
6141 edge new_edge = make_edge (cur_bb, label_bb, EDGE_TRUE_VALUE);
6142 int prob_sum = sum_slice <int> (edge_probabilities, i, labels) +
6143 edge_probabilities[0];
6145 if (prob_sum)
6146 new_edge->probability
6147 = RDIV (REG_BR_PROB_BASE * edge_probabilities[i], prob_sum);
6149 new_edge->count = edge_counts[i];
6150 new_edges.safe_push (new_edge);
6152 if (i < labels - 1)
6154 /* Prepare another basic block that will contain
6155 next condition. */
6156 basic_block next_bb = create_empty_bb (cur_bb);
6157 if (current_loops)
6159 add_bb_to_loop (next_bb, cur_bb->loop_father);
6160 loops_state_set (LOOPS_NEED_FIXUP);
6163 edge next_edge = make_edge (cur_bb, next_bb, EDGE_FALSE_VALUE);
6164 next_edge->probability
6165 = inverse_probability (new_edge->probability);
6166 next_edge->count = edge_counts[0]
6167 + sum_slice <gcov_type> (edge_counts, i, labels);
6168 next_bb->frequency = EDGE_FREQUENCY (next_edge);
6169 cur_bb = next_bb;
6171 else /* Link last IF statement and default label
6172 of the switch. */
6174 edge e = make_edge (cur_bb, default_label_bb, EDGE_FALSE_VALUE);
6175 e->probability = inverse_probability (new_edge->probability);
6176 e->count = edge_counts[0];
6177 new_edges.safe_insert (0, e);
6181 /* Restore original PHI immediate value. */
6182 for (unsigned i = 0; i < phi_todo_list.length (); i++)
6184 phi_definition *phi_def = phi_todo_list[i];
6185 edge new_edge = new_edges[phi_def->label_index];
6187 gphi_iterator it = gsi_start_phis (new_edge->dest);
6188 for (unsigned i = 0; i < phi_def->phi_index; i++)
6189 gsi_next (&it);
6191 gphi *phi = it.phi ();
6192 add_phi_arg (phi, phi_def->phi_value, new_edge, UNKNOWN_LOCATION);
6193 delete phi_def;
6196 /* Remove the original GIMPLE switch statement. */
6197 gsi_remove (&gsi, true);
6201 if (dump_file)
6202 dump_function_to_file (current_function_decl, dump_file, TDF_DETAILS);
6204 return modified_cfg;
6207 /* Expand builtins that can't be handled by HSA back-end. */
6209 static void
6210 expand_builtins ()
6212 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6213 basic_block bb;
6215 FOR_EACH_BB_FN (bb, func)
6217 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6218 gsi_next (&gsi))
6220 gimple *stmt = gsi_stmt (gsi);
6222 if (gimple_code (stmt) != GIMPLE_CALL)
6223 continue;
6225 gcall *call = as_a <gcall *> (stmt);
6227 if (!gimple_call_builtin_p (call, BUILT_IN_NORMAL))
6228 continue;
6230 tree fndecl = gimple_call_fndecl (stmt);
6231 enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
6232 switch (fn)
6234 case BUILT_IN_CEXPF:
6235 case BUILT_IN_CEXPIF:
6236 case BUILT_IN_CEXPI:
6238 /* Similar to builtins.c (expand_builtin_cexpi), the builtin
6239 can be transformed to: cexp(I * z) = ccos(z) + I * csin(z). */
6240 tree lhs = gimple_call_lhs (stmt);
6241 tree rhs = gimple_call_arg (stmt, 0);
6242 tree rhs_type = TREE_TYPE (rhs);
6243 bool float_type_p = rhs_type == float_type_node;
6244 tree real_part = make_temp_ssa_name (rhs_type, NULL,
6245 "cexp_real_part");
6246 tree imag_part = make_temp_ssa_name (rhs_type, NULL,
6247 "cexp_imag_part");
6249 tree cos_fndecl
6250 = mathfn_built_in (rhs_type, fn == float_type_p
6251 ? BUILT_IN_COSF : BUILT_IN_COS);
6252 gcall *cos = gimple_build_call (cos_fndecl, 1, rhs);
6253 gimple_call_set_lhs (cos, real_part);
6254 gsi_insert_before (&gsi, cos, GSI_SAME_STMT);
6256 tree sin_fndecl
6257 = mathfn_built_in (rhs_type, fn == float_type_p
6258 ? BUILT_IN_SINF : BUILT_IN_SIN);
6259 gcall *sin = gimple_build_call (sin_fndecl, 1, rhs);
6260 gimple_call_set_lhs (sin, imag_part);
6261 gsi_insert_before (&gsi, sin, GSI_SAME_STMT);
6264 gassign *assign = gimple_build_assign (lhs, COMPLEX_EXPR,
6265 real_part, imag_part);
6266 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
6267 gsi_remove (&gsi, true);
6269 break;
6271 default:
6272 break;
6278 /* Emit HSA module variables that are global for the entire module. */
6280 static void
6281 emit_hsa_module_variables (void)
6283 hsa_num_threads = new hsa_symbol (BRIG_TYPE_U32, BRIG_SEGMENT_PRIVATE,
6284 BRIG_LINKAGE_MODULE, true);
6286 hsa_num_threads->m_name = "hsa_num_threads";
6288 hsa_brig_emit_omp_symbols ();
6291 /* Generate HSAIL representation of the current function and write into a
6292 special section of the output file. If KERNEL is set, the function will be
6293 considered an HSA kernel callable from the host, otherwise it will be
6294 compiled as an HSA function callable from other HSA code. */
6296 static void
6297 generate_hsa (bool kernel)
6299 hsa_init_data_for_cfun ();
6301 if (hsa_num_threads == NULL)
6302 emit_hsa_module_variables ();
6304 bool modified_cfg = convert_switch_statements ();
6305 /* Initialize hsa_cfun. */
6306 hsa_cfun = new hsa_function_representation (cfun->decl, kernel,
6307 SSANAMES (cfun)->length (),
6308 modified_cfg);
6309 hsa_cfun->init_extra_bbs ();
6311 if (flag_tm)
6313 HSA_SORRY_AT (UNKNOWN_LOCATION,
6314 "support for HSA does not implement transactional memory");
6315 goto fail;
6318 verify_function_arguments (cfun->decl);
6319 if (hsa_seen_error ())
6320 goto fail;
6322 hsa_cfun->m_name = get_brig_function_name (cfun->decl);
6324 gen_function_def_parameters ();
6325 if (hsa_seen_error ())
6326 goto fail;
6328 init_prologue ();
6330 gen_body_from_gimple ();
6331 if (hsa_seen_error ())
6332 goto fail;
6334 if (hsa_cfun->m_kernel_dispatch_count)
6335 init_hsa_num_threads ();
6337 if (hsa_cfun->m_kern_p)
6339 hsa_function_summary *s
6340 = hsa_summaries->get (cgraph_node::get (hsa_cfun->m_decl));
6341 hsa_add_kern_decl_mapping (current_function_decl, hsa_cfun->m_name,
6342 hsa_cfun->m_maximum_omp_data_size,
6343 s->m_gridified_kernel_p);
6346 if (flag_checking)
6348 for (unsigned i = 0; i < hsa_cfun->m_ssa_map.length (); i++)
6349 if (hsa_cfun->m_ssa_map[i])
6350 hsa_cfun->m_ssa_map[i]->verify_ssa ();
6352 basic_block bb;
6353 FOR_EACH_BB_FN (bb, cfun)
6355 hsa_bb *hbb = hsa_bb_for_bb (bb);
6357 for (hsa_insn_basic *insn = hbb->m_first_insn; insn;
6358 insn = insn->m_next)
6359 insn->verify ();
6363 hsa_regalloc ();
6364 hsa_brig_emit_function ();
6366 fail:
6367 hsa_deinit_data_for_cfun ();
6370 namespace {
6372 const pass_data pass_data_gen_hsail =
6374 GIMPLE_PASS,
6375 "hsagen", /* name */
6376 OPTGROUP_NONE, /* optinfo_flags */
6377 TV_NONE, /* tv_id */
6378 PROP_cfg | PROP_ssa, /* properties_required */
6379 0, /* properties_provided */
6380 0, /* properties_destroyed */
6381 0, /* todo_flags_start */
6382 0 /* todo_flags_finish */
6385 class pass_gen_hsail : public gimple_opt_pass
6387 public:
6388 pass_gen_hsail (gcc::context *ctxt)
6389 : gimple_opt_pass(pass_data_gen_hsail, ctxt)
6392 /* opt_pass methods: */
6393 bool gate (function *);
6394 unsigned int execute (function *);
6396 }; // class pass_gen_hsail
6398 /* Determine whether or not to run generation of HSAIL. */
6400 bool
6401 pass_gen_hsail::gate (function *f)
6403 return hsa_gen_requested_p ()
6404 && hsa_gpu_implementation_p (f->decl);
6407 unsigned int
6408 pass_gen_hsail::execute (function *)
6410 hsa_function_summary *s
6411 = hsa_summaries->get (cgraph_node::get_create (current_function_decl));
6413 expand_builtins ();
6414 generate_hsa (s->m_kind == HSA_KERNEL);
6415 TREE_ASM_WRITTEN (current_function_decl) = 1;
6416 return TODO_discard_function;
6419 } // anon namespace
6421 /* Create the instance of hsa gen pass. */
6423 gimple_opt_pass *
6424 make_pass_gen_hsail (gcc::context *ctxt)
6426 return new pass_gen_hsail (ctxt);