Daily bump.
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob076e09d4cfb9fdf8f4215aa1583ee338efc8d7bf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- $Revision: 1.2 $
10 -- --
11 -- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- GNAT was originally developed by the GNAT team at New York University. --
25 -- Extensive contributions were provided by Ada Core Technologies Inc. --
26 -- --
27 ------------------------------------------------------------------------------
29 with Atree; use Atree;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Exp_Util; use Exp_Util;
34 with Hostparm; use Hostparm;
35 with Itypes; use Itypes;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Sem; use Sem;
44 with Sem_Cat; use Sem_Cat;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Dist; use Sem_Dist;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Util; use Sem_Util;
51 with Sem_Type; use Sem_Type;
52 with Stand; use Stand;
53 with Sinfo; use Sinfo;
54 with Snames; use Snames;
55 with Tbuild; use Tbuild;
57 with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
59 package body Sem_Ch4 is
61 -----------------------
62 -- Local Subprograms --
63 -----------------------
65 procedure Analyze_Expression (N : Node_Id);
66 -- For expressions that are not names, this is just a call to analyze.
67 -- If the expression is a name, it may be a call to a parameterless
68 -- function, and if so must be converted into an explicit call node
69 -- and analyzed as such. This deproceduring must be done during the first
70 -- pass of overload resolution, because otherwise a procedure call with
71 -- overloaded actuals may fail to resolve. See 4327-001 for an example.
73 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
74 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
75 -- is an operator name or an expanded name whose selector is an operator
76 -- name, and one possible interpretation is as a predefined operator.
78 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
79 -- If the prefix of a selected_component is overloaded, the proper
80 -- interpretation that yields a record type with the proper selector
81 -- name must be selected.
83 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
84 -- Procedure to analyze a user defined binary operator, which is resolved
85 -- like a function, but instead of a list of actuals it is presented
86 -- with the left and right operands of an operator node.
88 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
89 -- Procedure to analyze a user defined unary operator, which is resolved
90 -- like a function, but instead of a list of actuals, it is presented with
91 -- the operand of the operator node.
93 procedure Ambiguous_Operands (N : Node_Id);
94 -- for equality, membership, and comparison operators with overloaded
95 -- arguments, list possible interpretations.
97 procedure Insert_Explicit_Dereference (N : Node_Id);
98 -- In a context that requires a composite or subprogram type and
99 -- where a prefix is an access type, insert an explicit dereference.
101 procedure Analyze_One_Call
102 (N : Node_Id;
103 Nam : Entity_Id;
104 Report : Boolean;
105 Success : out Boolean);
106 -- Check one interpretation of an overloaded subprogram name for
107 -- compatibility with the types of the actuals in a call. If there is a
108 -- single interpretation which does not match, post error if Report is
109 -- set to True.
111 -- Nam is the entity that provides the formals against which the actuals
112 -- are checked. Nam is either the name of a subprogram, or the internal
113 -- subprogram type constructed for an access_to_subprogram. If the actuals
114 -- are compatible with Nam, then Nam is added to the list of candidate
115 -- interpretations for N, and Success is set to True.
117 procedure Check_Misspelled_Selector
118 (Prefix : Entity_Id;
119 Sel : Node_Id);
120 -- Give possible misspelling diagnostic if Sel is likely to be
121 -- a misspelling of one of the selectors of the Prefix.
122 -- This is called by Analyze_Selected_Component after producing
123 -- an invalid selector error message.
125 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
126 -- Verify that type T is declared in scope S. Used to find intepretations
127 -- for operators given by expanded names. This is abstracted as a separate
128 -- function to handle extensions to System, where S is System, but T is
129 -- declared in the extension.
131 procedure Find_Arithmetic_Types
132 (L, R : Node_Id;
133 Op_Id : Entity_Id;
134 N : Node_Id);
135 -- L and R are the operands of an arithmetic operator. Find
136 -- consistent pairs of interpretations for L and R that have a
137 -- numeric type consistent with the semantics of the operator.
139 procedure Find_Comparison_Types
140 (L, R : Node_Id;
141 Op_Id : Entity_Id;
142 N : Node_Id);
143 -- L and R are operands of a comparison operator. Find consistent
144 -- pairs of interpretations for L and R.
146 procedure Find_Concatenation_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- For the four varieties of concatenation.
152 procedure Find_Equality_Types
153 (L, R : Node_Id;
154 Op_Id : Entity_Id;
155 N : Node_Id);
156 -- Ditto for equality operators.
158 procedure Find_Boolean_Types
159 (L, R : Node_Id;
160 Op_Id : Entity_Id;
161 N : Node_Id);
162 -- Ditto for binary logical operations.
164 procedure Find_Negation_Types
165 (R : Node_Id;
166 Op_Id : Entity_Id;
167 N : Node_Id);
168 -- Find consistent interpretation for operand of negation operator.
170 procedure Find_Non_Universal_Interpretations
171 (N : Node_Id;
172 R : Node_Id;
173 Op_Id : Entity_Id;
174 T1 : Entity_Id);
175 -- For equality and comparison operators, the result is always boolean,
176 -- and the legality of the operation is determined from the visibility
177 -- of the operand types. If one of the operands has a universal interpre-
178 -- tation, the legality check uses some compatible non-universal
179 -- interpretation of the other operand. N can be an operator node, or
180 -- a function call whose name is an operator designator.
182 procedure Find_Unary_Types
183 (R : Node_Id;
184 Op_Id : Entity_Id;
185 N : Node_Id);
186 -- Unary arithmetic types: plus, minus, abs.
188 procedure Check_Arithmetic_Pair
189 (T1, T2 : Entity_Id;
190 Op_Id : Entity_Id;
191 N : Node_Id);
192 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
193 -- types for left and right operand. Determine whether they constitute
194 -- a valid pair for the given operator, and record the corresponding
195 -- interpretation of the operator node. The node N may be an operator
196 -- node (the usual case) or a function call whose prefix is an operator
197 -- designator. In both cases Op_Id is the operator name itself.
199 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
200 -- Give detailed information on overloaded call where none of the
201 -- interpretations match. N is the call node, Nam the designator for
202 -- the overloaded entity being called.
204 function Junk_Operand (N : Node_Id) return Boolean;
205 -- Test for an operand that is an inappropriate entity (e.g. a package
206 -- name or a label). If so, issue an error message and return True. If
207 -- the operand is not an inappropriate entity kind, return False.
209 procedure Operator_Check (N : Node_Id);
210 -- Verify that an operator has received some valid interpretation.
211 -- If none was found, determine whether a use clause would make the
212 -- operation legal. The variable Candidate_Type (defined in Sem_Type) is
213 -- set for every type compatible with the operator, even if the operator
214 -- for the type is not directly visible. The routine uses this type to emit
215 -- a more informative message.
217 function Try_Indexed_Call
218 (N : Node_Id;
219 Nam : Entity_Id;
220 Typ : Entity_Id)
221 return Boolean;
222 -- If a function has defaults for all its actuals, a call to it may
223 -- in fact be an indexing on the result of the call. Try_Indexed_Call
224 -- attempts the interpretation as an indexing, prior to analysis as
225 -- a call. If both are possible, the node is overloaded with both
226 -- interpretations (same symbol but two different types).
228 function Try_Indirect_Call
229 (N : Node_Id;
230 Nam : Entity_Id;
231 Typ : Entity_Id)
232 return Boolean;
233 -- Similarly, a function F that needs no actuals can return an access
234 -- to a subprogram, and the call F (X) interpreted as F.all (X). In
235 -- this case the call may be overloaded with both interpretations.
237 ------------------------
238 -- Ambiguous_Operands --
239 ------------------------
241 procedure Ambiguous_Operands (N : Node_Id) is
242 procedure List_Interps (Opnd : Node_Id);
244 procedure List_Interps (Opnd : Node_Id) is
245 Index : Interp_Index;
246 It : Interp;
247 Nam : Node_Id;
248 Err : Node_Id := N;
250 begin
251 if Is_Overloaded (Opnd) then
252 if Nkind (Opnd) in N_Op then
253 Nam := Opnd;
255 elsif Nkind (Opnd) = N_Function_Call then
256 Nam := Name (Opnd);
258 else
259 return;
260 end if;
262 else
263 return;
264 end if;
266 if Opnd = Left_Opnd (N) then
267 Error_Msg_N
268 ("\left operand has the following interpretations", N);
269 else
270 Error_Msg_N
271 ("\right operand has the following interpretations", N);
272 Err := Opnd;
273 end if;
275 Get_First_Interp (Nam, Index, It);
277 while Present (It.Nam) loop
279 if Scope (It.Nam) = Standard_Standard
280 and then Scope (It.Typ) /= Standard_Standard
281 then
282 Error_Msg_Sloc := Sloc (Parent (It.Typ));
283 Error_Msg_NE (" & (inherited) declared#!", Err, It.Nam);
285 else
286 Error_Msg_Sloc := Sloc (It.Nam);
287 Error_Msg_NE (" & declared#!", Err, It.Nam);
288 end if;
290 Get_Next_Interp (Index, It);
291 end loop;
292 end List_Interps;
294 begin
295 if Nkind (N) = N_In
296 or else Nkind (N) = N_Not_In
297 then
298 Error_Msg_N ("ambiguous operands for membership", N);
300 elsif Nkind (N) = N_Op_Eq
301 or else Nkind (N) = N_Op_Ne
302 then
303 Error_Msg_N ("ambiguous operands for equality", N);
305 else
306 Error_Msg_N ("ambiguous operands for comparison", N);
307 end if;
309 if All_Errors_Mode then
310 List_Interps (Left_Opnd (N));
311 List_Interps (Right_Opnd (N));
312 else
314 if OpenVMS then
315 Error_Msg_N (
316 "\use '/'R'E'P'O'R'T'_'E'R'R'O'R'S'='F'U'L'L for details",
318 else
319 Error_Msg_N ("\use -gnatf for details", N);
320 end if;
321 end if;
322 end Ambiguous_Operands;
324 -----------------------
325 -- Analyze_Aggregate --
326 -----------------------
328 -- Most of the analysis of Aggregates requires that the type be known,
329 -- and is therefore put off until resolution.
331 procedure Analyze_Aggregate (N : Node_Id) is
332 begin
333 if No (Etype (N)) then
334 Set_Etype (N, Any_Composite);
335 end if;
336 end Analyze_Aggregate;
338 -----------------------
339 -- Analyze_Allocator --
340 -----------------------
342 procedure Analyze_Allocator (N : Node_Id) is
343 Loc : constant Source_Ptr := Sloc (N);
344 Sav_Errs : constant Nat := Errors_Detected;
345 E : Node_Id := Expression (N);
346 Acc_Type : Entity_Id;
347 Type_Id : Entity_Id;
349 begin
350 Check_Restriction (No_Allocators, N);
352 if Nkind (E) = N_Qualified_Expression then
353 Acc_Type := Create_Itype (E_Allocator_Type, N);
354 Set_Etype (Acc_Type, Acc_Type);
355 Init_Size_Align (Acc_Type);
356 Find_Type (Subtype_Mark (E));
357 Type_Id := Entity (Subtype_Mark (E));
358 Check_Fully_Declared (Type_Id, N);
359 Set_Directly_Designated_Type (Acc_Type, Type_Id);
361 if Is_Protected_Type (Type_Id) then
362 Check_Restriction (No_Protected_Type_Allocators, N);
363 end if;
365 if Is_Limited_Type (Type_Id)
366 and then Comes_From_Source (N)
367 and then not In_Instance_Body
368 then
369 Error_Msg_N ("initialization not allowed for limited types", N);
370 end if;
372 Analyze_And_Resolve (Expression (E), Type_Id);
374 -- A qualified expression requires an exact match of the type,
375 -- class-wide matching is not allowed.
377 if Is_Class_Wide_Type (Type_Id)
378 and then Base_Type (Etype (Expression (E))) /= Base_Type (Type_Id)
379 then
380 Wrong_Type (Expression (E), Type_Id);
381 end if;
383 Check_Non_Static_Context (Expression (E));
385 -- We don't analyze the qualified expression itself because it's
386 -- part of the allocator
388 Set_Etype (E, Type_Id);
390 else
391 declare
392 Def_Id : Entity_Id;
394 begin
395 -- If the allocator includes a N_Subtype_Indication then a
396 -- constraint is present, otherwise the node is a subtype mark.
397 -- Introduce an explicit subtype declaration into the tree
398 -- defining some anonymous subtype and rewrite the allocator to
399 -- use this subtype rather than the subtype indication.
401 -- It is important to introduce the explicit subtype declaration
402 -- so that the bounds of the subtype indication are attached to
403 -- the tree in case the allocator is inside a generic unit.
405 if Nkind (E) = N_Subtype_Indication then
407 -- A constraint is only allowed for a composite type in Ada
408 -- 95. In Ada 83, a constraint is also allowed for an
409 -- access-to-composite type, but the constraint is ignored.
411 Find_Type (Subtype_Mark (E));
413 if Is_Elementary_Type (Entity (Subtype_Mark (E))) then
414 if not (Ada_83
415 and then Is_Access_Type (Entity (Subtype_Mark (E))))
416 then
417 Error_Msg_N ("constraint not allowed here", E);
419 if Nkind (Constraint (E))
420 = N_Index_Or_Discriminant_Constraint
421 then
422 Error_Msg_N
423 ("\if qualified expression was meant, " &
424 "use apostrophe", Constraint (E));
425 end if;
426 end if;
428 -- Get rid of the bogus constraint:
430 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
431 Analyze_Allocator (N);
432 return;
433 end if;
435 if Expander_Active then
436 Def_Id :=
437 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
439 Insert_Action (E,
440 Make_Subtype_Declaration (Loc,
441 Defining_Identifier => Def_Id,
442 Subtype_Indication => Relocate_Node (E)));
444 if Sav_Errs /= Errors_Detected
445 and then Nkind (Constraint (E))
446 = N_Index_Or_Discriminant_Constraint
447 then
448 Error_Msg_N
449 ("if qualified expression was meant, " &
450 "use apostrophe!", Constraint (E));
451 end if;
453 E := New_Occurrence_Of (Def_Id, Loc);
454 Rewrite (Expression (N), E);
455 end if;
456 end if;
458 Type_Id := Process_Subtype (E, N);
459 Acc_Type := Create_Itype (E_Allocator_Type, N);
460 Set_Etype (Acc_Type, Acc_Type);
461 Init_Size_Align (Acc_Type);
462 Set_Directly_Designated_Type (Acc_Type, Type_Id);
463 Check_Fully_Declared (Type_Id, N);
465 -- Check for missing initialization. Skip this check if we already
466 -- had errors on analyzing the allocator, since in that case these
467 -- are probably cascaded errors
469 if Is_Indefinite_Subtype (Type_Id)
470 and then Errors_Detected = Sav_Errs
471 then
472 if Is_Class_Wide_Type (Type_Id) then
473 Error_Msg_N
474 ("initialization required in class-wide allocation", N);
475 else
476 Error_Msg_N
477 ("initialization required in unconstrained allocation", N);
478 end if;
479 end if;
480 end;
481 end if;
483 if Is_Abstract (Type_Id) then
484 Error_Msg_N ("cannot allocate abstract object", E);
485 end if;
487 if Has_Task (Designated_Type (Acc_Type)) then
488 Check_Restriction (No_Task_Allocators, N);
489 end if;
491 Set_Etype (N, Acc_Type);
493 if not Is_Library_Level_Entity (Acc_Type) then
494 Check_Restriction (No_Local_Allocators, N);
495 end if;
497 if Errors_Detected > Sav_Errs then
498 Set_Error_Posted (N);
499 Set_Etype (N, Any_Type);
500 end if;
502 end Analyze_Allocator;
504 ---------------------------
505 -- Analyze_Arithmetic_Op --
506 ---------------------------
508 procedure Analyze_Arithmetic_Op (N : Node_Id) is
509 L : constant Node_Id := Left_Opnd (N);
510 R : constant Node_Id := Right_Opnd (N);
511 Op_Id : Entity_Id;
513 begin
514 Candidate_Type := Empty;
515 Analyze_Expression (L);
516 Analyze_Expression (R);
518 -- If the entity is already set, the node is the instantiation of
519 -- a generic node with a non-local reference, or was manufactured
520 -- by a call to Make_Op_xxx. In either case the entity is known to
521 -- be valid, and we do not need to collect interpretations, instead
522 -- we just get the single possible interpretation.
524 Op_Id := Entity (N);
526 if Present (Op_Id) then
527 if Ekind (Op_Id) = E_Operator then
529 if (Nkind (N) = N_Op_Divide or else
530 Nkind (N) = N_Op_Mod or else
531 Nkind (N) = N_Op_Multiply or else
532 Nkind (N) = N_Op_Rem)
533 and then Treat_Fixed_As_Integer (N)
534 then
535 null;
536 else
537 Set_Etype (N, Any_Type);
538 Find_Arithmetic_Types (L, R, Op_Id, N);
539 end if;
541 else
542 Set_Etype (N, Any_Type);
543 Add_One_Interp (N, Op_Id, Etype (Op_Id));
544 end if;
546 -- Entity is not already set, so we do need to collect interpretations
548 else
549 Op_Id := Get_Name_Entity_Id (Chars (N));
550 Set_Etype (N, Any_Type);
552 while Present (Op_Id) loop
553 if Ekind (Op_Id) = E_Operator
554 and then Present (Next_Entity (First_Entity (Op_Id)))
555 then
556 Find_Arithmetic_Types (L, R, Op_Id, N);
558 -- The following may seem superfluous, because an operator cannot
559 -- be generic, but this ignores the cleverness of the author of
560 -- ACVC bc1013a.
562 elsif Is_Overloadable (Op_Id) then
563 Analyze_User_Defined_Binary_Op (N, Op_Id);
564 end if;
566 Op_Id := Homonym (Op_Id);
567 end loop;
568 end if;
570 Operator_Check (N);
571 end Analyze_Arithmetic_Op;
573 ------------------
574 -- Analyze_Call --
575 ------------------
577 -- Function, procedure, and entry calls are checked here. The Name
578 -- in the call may be overloaded. The actuals have been analyzed
579 -- and may themselves be overloaded. On exit from this procedure, the node
580 -- N may have zero, one or more interpretations. In the first case an error
581 -- message is produced. In the last case, the node is flagged as overloaded
582 -- and the interpretations are collected in All_Interp.
584 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
585 -- the type-checking is similar to that of other calls.
587 procedure Analyze_Call (N : Node_Id) is
588 Actuals : constant List_Id := Parameter_Associations (N);
589 Nam : Node_Id := Name (N);
590 X : Interp_Index;
591 It : Interp;
592 Nam_Ent : Entity_Id;
593 Success : Boolean := False;
595 function Name_Denotes_Function return Boolean;
596 -- If the type of the name is an access to subprogram, this may be
597 -- the type of a name, or the return type of the function being called.
598 -- If the name is not an entity then it can denote a protected function.
599 -- Until we distinguish Etype from Return_Type, we must use this
600 -- routine to resolve the meaning of the name in the call.
602 ---------------------------
603 -- Name_Denotes_Function --
604 ---------------------------
606 function Name_Denotes_Function return Boolean is
607 begin
608 if Is_Entity_Name (Nam) then
609 return Ekind (Entity (Nam)) = E_Function;
611 elsif Nkind (Nam) = N_Selected_Component then
612 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
614 else
615 return False;
616 end if;
617 end Name_Denotes_Function;
619 -- Start of processing for Analyze_Call
621 begin
622 -- Initialize the type of the result of the call to the error type,
623 -- which will be reset if the type is successfully resolved.
625 Set_Etype (N, Any_Type);
627 if not Is_Overloaded (Nam) then
629 -- Only one interpretation to check
631 if Ekind (Etype (Nam)) = E_Subprogram_Type then
632 Nam_Ent := Etype (Nam);
634 elsif Is_Access_Type (Etype (Nam))
635 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
636 and then not Name_Denotes_Function
637 then
638 Nam_Ent := Designated_Type (Etype (Nam));
639 Insert_Explicit_Dereference (Nam);
641 -- Selected component case. Simple entry or protected operation,
642 -- where the entry name is given by the selector name.
644 elsif Nkind (Nam) = N_Selected_Component then
645 Nam_Ent := Entity (Selector_Name (Nam));
647 if Ekind (Nam_Ent) /= E_Entry
648 and then Ekind (Nam_Ent) /= E_Entry_Family
649 and then Ekind (Nam_Ent) /= E_Function
650 and then Ekind (Nam_Ent) /= E_Procedure
651 then
652 Error_Msg_N ("name in call is not a callable entity", Nam);
653 Set_Etype (N, Any_Type);
654 return;
655 end if;
657 -- If the name is an Indexed component, it can be a call to a member
658 -- of an entry family. The prefix must be a selected component whose
659 -- selector is the entry. Analyze_Procedure_Call normalizes several
660 -- kinds of call into this form.
662 elsif Nkind (Nam) = N_Indexed_Component then
664 if Nkind (Prefix (Nam)) = N_Selected_Component then
665 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
667 else
668 Error_Msg_N ("name in call is not a callable entity", Nam);
669 Set_Etype (N, Any_Type);
670 return;
672 end if;
674 elsif not Is_Entity_Name (Nam) then
675 Error_Msg_N ("name in call is not a callable entity", Nam);
676 Set_Etype (N, Any_Type);
677 return;
679 else
680 Nam_Ent := Entity (Nam);
682 -- If no interpretations, give error message
684 if not Is_Overloadable (Nam_Ent) then
685 declare
686 L : constant Boolean := Is_List_Member (N);
687 K : constant Node_Kind := Nkind (Parent (N));
689 begin
690 -- If the node is in a list whose parent is not an
691 -- expression then it must be an attempted procedure call.
693 if L and then K not in N_Subexpr then
694 if Ekind (Entity (Nam)) = E_Generic_Procedure then
695 Error_Msg_NE
696 ("must instantiate generic procedure& before call",
697 Nam, Entity (Nam));
698 else
699 Error_Msg_N
700 ("procedure or entry name expected", Nam);
701 end if;
703 -- Check for tasking cases where only an entry call will do
705 elsif not L
706 and then (K = N_Entry_Call_Alternative
707 or else K = N_Triggering_Alternative)
708 then
709 Error_Msg_N ("entry name expected", Nam);
711 -- Otherwise give general error message
713 else
714 Error_Msg_N ("invalid prefix in call", Nam);
715 end if;
717 return;
718 end;
719 end if;
720 end if;
722 Analyze_One_Call (N, Nam_Ent, True, Success);
724 else
725 -- An overloaded selected component must denote overloaded
726 -- operations of a concurrent type. The interpretations are
727 -- attached to the simple name of those operations.
729 if Nkind (Nam) = N_Selected_Component then
730 Nam := Selector_Name (Nam);
731 end if;
733 Get_First_Interp (Nam, X, It);
735 while Present (It.Nam) loop
736 Nam_Ent := It.Nam;
738 -- Name may be call that returns an access to subprogram, or more
739 -- generally an overloaded expression one of whose interpretations
740 -- yields an access to subprogram. If the name is an entity, we
741 -- do not dereference, because the node is a call that returns
742 -- the access type: note difference between f(x), where the call
743 -- may return an access subprogram type, and f(x)(y), where the
744 -- type returned by the call to f is implicitly dereferenced to
745 -- analyze the outer call.
747 if Is_Access_Type (Nam_Ent) then
748 Nam_Ent := Designated_Type (Nam_Ent);
750 elsif Is_Access_Type (Etype (Nam_Ent))
751 and then not Is_Entity_Name (Nam)
752 and then Ekind (Designated_Type (Etype (Nam_Ent)))
753 = E_Subprogram_Type
754 then
755 Nam_Ent := Designated_Type (Etype (Nam_Ent));
756 end if;
758 Analyze_One_Call (N, Nam_Ent, False, Success);
760 -- If the interpretation succeeds, mark the proper type of the
761 -- prefix (any valid candidate will do). If not, remove the
762 -- candidate interpretation. This only needs to be done for
763 -- overloaded protected operations, for other entities disambi-
764 -- guation is done directly in Resolve.
766 if Success then
767 Set_Etype (Nam, It.Typ);
769 elsif Nkind (Name (N)) = N_Selected_Component then
770 Remove_Interp (X);
771 end if;
773 Get_Next_Interp (X, It);
774 end loop;
776 -- If the name is the result of a function call, it can only
777 -- be a call to a function returning an access to subprogram.
778 -- Insert explicit dereference.
780 if Nkind (Nam) = N_Function_Call then
781 Insert_Explicit_Dereference (Nam);
782 end if;
784 if Etype (N) = Any_Type then
786 -- None of the interpretations is compatible with the actuals
788 Diagnose_Call (N, Nam);
790 -- Special checks for uninstantiated put routines
792 if Nkind (N) = N_Procedure_Call_Statement
793 and then Is_Entity_Name (Nam)
794 and then Chars (Nam) = Name_Put
795 and then List_Length (Actuals) = 1
796 then
797 declare
798 Arg : constant Node_Id := First (Actuals);
799 Typ : Entity_Id;
801 begin
802 if Nkind (Arg) = N_Parameter_Association then
803 Typ := Etype (Explicit_Actual_Parameter (Arg));
804 else
805 Typ := Etype (Arg);
806 end if;
808 if Is_Signed_Integer_Type (Typ) then
809 Error_Msg_N
810 ("possible missing instantiation of " &
811 "'Text_'I'O.'Integer_'I'O!", Nam);
813 elsif Is_Modular_Integer_Type (Typ) then
814 Error_Msg_N
815 ("possible missing instantiation of " &
816 "'Text_'I'O.'Modular_'I'O!", Nam);
818 elsif Is_Floating_Point_Type (Typ) then
819 Error_Msg_N
820 ("possible missing instantiation of " &
821 "'Text_'I'O.'Float_'I'O!", Nam);
823 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
824 Error_Msg_N
825 ("possible missing instantiation of " &
826 "'Text_'I'O.'Fixed_'I'O!", Nam);
828 elsif Is_Decimal_Fixed_Point_Type (Typ) then
829 Error_Msg_N
830 ("possible missing instantiation of " &
831 "'Text_'I'O.'Decimal_'I'O!", Nam);
833 elsif Is_Enumeration_Type (Typ) then
834 Error_Msg_N
835 ("possible missing instantiation of " &
836 "'Text_'I'O.'Enumeration_'I'O!", Nam);
837 end if;
838 end;
839 end if;
841 elsif not Is_Overloaded (N)
842 and then Is_Entity_Name (Nam)
843 then
844 -- Resolution yields a single interpretation. Verify that
845 -- is has the proper capitalization.
847 Set_Entity_With_Style_Check (Nam, Entity (Nam));
848 Generate_Reference (Entity (Nam), Nam);
850 Set_Etype (Nam, Etype (Entity (Nam)));
851 end if;
853 End_Interp_List;
854 end if;
855 end Analyze_Call;
857 ---------------------------
858 -- Analyze_Comparison_Op --
859 ---------------------------
861 procedure Analyze_Comparison_Op (N : Node_Id) is
862 L : constant Node_Id := Left_Opnd (N);
863 R : constant Node_Id := Right_Opnd (N);
864 Op_Id : Entity_Id := Entity (N);
866 begin
867 Set_Etype (N, Any_Type);
868 Candidate_Type := Empty;
870 Analyze_Expression (L);
871 Analyze_Expression (R);
873 if Present (Op_Id) then
875 if Ekind (Op_Id) = E_Operator then
876 Find_Comparison_Types (L, R, Op_Id, N);
877 else
878 Add_One_Interp (N, Op_Id, Etype (Op_Id));
879 end if;
881 if Is_Overloaded (L) then
882 Set_Etype (L, Intersect_Types (L, R));
883 end if;
885 else
886 Op_Id := Get_Name_Entity_Id (Chars (N));
888 while Present (Op_Id) loop
890 if Ekind (Op_Id) = E_Operator then
891 Find_Comparison_Types (L, R, Op_Id, N);
892 else
893 Analyze_User_Defined_Binary_Op (N, Op_Id);
894 end if;
896 Op_Id := Homonym (Op_Id);
897 end loop;
898 end if;
900 Operator_Check (N);
901 end Analyze_Comparison_Op;
903 ---------------------------
904 -- Analyze_Concatenation --
905 ---------------------------
907 -- If the only one-dimensional array type in scope is String,
908 -- this is the resulting type of the operation. Otherwise there
909 -- will be a concatenation operation defined for each user-defined
910 -- one-dimensional array.
912 procedure Analyze_Concatenation (N : Node_Id) is
913 L : constant Node_Id := Left_Opnd (N);
914 R : constant Node_Id := Right_Opnd (N);
915 Op_Id : Entity_Id := Entity (N);
916 LT : Entity_Id;
917 RT : Entity_Id;
919 begin
920 Set_Etype (N, Any_Type);
921 Candidate_Type := Empty;
923 Analyze_Expression (L);
924 Analyze_Expression (R);
926 -- If the entity is present, the node appears in an instance,
927 -- and denotes a predefined concatenation operation. The resulting
928 -- type is obtained from the arguments when possible.
930 if Present (Op_Id) then
931 if Ekind (Op_Id) = E_Operator then
933 LT := Base_Type (Etype (L));
934 RT := Base_Type (Etype (R));
936 if Is_Array_Type (LT)
937 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
938 then
939 Add_One_Interp (N, Op_Id, LT);
941 elsif Is_Array_Type (RT)
942 and then LT = Base_Type (Component_Type (RT))
943 then
944 Add_One_Interp (N, Op_Id, RT);
946 else
947 Add_One_Interp (N, Op_Id, Etype (Op_Id));
948 end if;
950 else
951 Add_One_Interp (N, Op_Id, Etype (Op_Id));
952 end if;
954 else
955 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
957 while Present (Op_Id) loop
958 if Ekind (Op_Id) = E_Operator then
959 Find_Concatenation_Types (L, R, Op_Id, N);
960 else
961 Analyze_User_Defined_Binary_Op (N, Op_Id);
962 end if;
964 Op_Id := Homonym (Op_Id);
965 end loop;
966 end if;
968 Operator_Check (N);
969 end Analyze_Concatenation;
971 ------------------------------------
972 -- Analyze_Conditional_Expression --
973 ------------------------------------
975 procedure Analyze_Conditional_Expression (N : Node_Id) is
976 Condition : constant Node_Id := First (Expressions (N));
977 Then_Expr : constant Node_Id := Next (Condition);
978 Else_Expr : constant Node_Id := Next (Then_Expr);
980 begin
981 Analyze_Expression (Condition);
982 Analyze_Expression (Then_Expr);
983 Analyze_Expression (Else_Expr);
984 Set_Etype (N, Etype (Then_Expr));
985 end Analyze_Conditional_Expression;
987 -------------------------
988 -- Analyze_Equality_Op --
989 -------------------------
991 procedure Analyze_Equality_Op (N : Node_Id) is
992 Loc : constant Source_Ptr := Sloc (N);
993 L : constant Node_Id := Left_Opnd (N);
994 R : constant Node_Id := Right_Opnd (N);
995 Op_Id : Entity_Id;
997 begin
998 Set_Etype (N, Any_Type);
999 Candidate_Type := Empty;
1001 Analyze_Expression (L);
1002 Analyze_Expression (R);
1004 -- If the entity is set, the node is a generic instance with a non-local
1005 -- reference to the predefined operator or to a user-defined function.
1006 -- It can also be an inequality that is expanded into the negation of a
1007 -- call to a user-defined equality operator.
1009 -- For the predefined case, the result is Boolean, regardless of the
1010 -- type of the operands. The operands may even be limited, if they are
1011 -- generic actuals. If they are overloaded, label the left argument with
1012 -- the common type that must be present, or with the type of the formal
1013 -- of the user-defined function.
1015 if Present (Entity (N)) then
1017 Op_Id := Entity (N);
1019 if Ekind (Op_Id) = E_Operator then
1020 Add_One_Interp (N, Op_Id, Standard_Boolean);
1021 else
1022 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1023 end if;
1025 if Is_Overloaded (L) then
1027 if Ekind (Op_Id) = E_Operator then
1028 Set_Etype (L, Intersect_Types (L, R));
1029 else
1030 Set_Etype (L, Etype (First_Formal (Op_Id)));
1031 end if;
1032 end if;
1034 else
1035 Op_Id := Get_Name_Entity_Id (Chars (N));
1037 while Present (Op_Id) loop
1039 if Ekind (Op_Id) = E_Operator then
1040 Find_Equality_Types (L, R, Op_Id, N);
1041 else
1042 Analyze_User_Defined_Binary_Op (N, Op_Id);
1043 end if;
1045 Op_Id := Homonym (Op_Id);
1046 end loop;
1047 end if;
1049 -- If there was no match, and the operator is inequality, this may
1050 -- be a case where inequality has not been made explicit, as for
1051 -- tagged types. Analyze the node as the negation of an equality
1052 -- operation. This cannot be done earlier, because before analysis
1053 -- we cannot rule out the presence of an explicit inequality.
1055 if Etype (N) = Any_Type
1056 and then Nkind (N) = N_Op_Ne
1057 then
1058 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1060 while Present (Op_Id) loop
1062 if Ekind (Op_Id) = E_Operator then
1063 Find_Equality_Types (L, R, Op_Id, N);
1064 else
1065 Analyze_User_Defined_Binary_Op (N, Op_Id);
1066 end if;
1068 Op_Id := Homonym (Op_Id);
1069 end loop;
1071 if Etype (N) /= Any_Type then
1072 Op_Id := Entity (N);
1074 Rewrite (N,
1075 Make_Op_Not (Loc,
1076 Right_Opnd =>
1077 Make_Op_Eq (Loc,
1078 Left_Opnd => Relocate_Node (Left_Opnd (N)),
1079 Right_Opnd => Relocate_Node (Right_Opnd (N)))));
1081 Set_Entity (Right_Opnd (N), Op_Id);
1082 Analyze (N);
1083 end if;
1084 end if;
1086 Operator_Check (N);
1087 end Analyze_Equality_Op;
1089 ----------------------------------
1090 -- Analyze_Explicit_Dereference --
1091 ----------------------------------
1093 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1094 Loc : constant Source_Ptr := Sloc (N);
1095 P : constant Node_Id := Prefix (N);
1096 T : Entity_Id;
1097 I : Interp_Index;
1098 It : Interp;
1099 New_N : Node_Id;
1101 function Is_Function_Type return Boolean;
1102 -- Check whether node may be interpreted as an implicit function call.
1104 function Is_Function_Type return Boolean is
1105 I : Interp_Index;
1106 It : Interp;
1108 begin
1109 if not Is_Overloaded (N) then
1110 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1111 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1113 else
1114 Get_First_Interp (N, I, It);
1116 while Present (It.Nam) loop
1117 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1118 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1119 then
1120 return False;
1121 end if;
1123 Get_Next_Interp (I, It);
1124 end loop;
1126 return True;
1127 end if;
1128 end Is_Function_Type;
1130 begin
1131 Analyze (P);
1132 Set_Etype (N, Any_Type);
1134 -- Test for remote access to subprogram type, and if so return
1135 -- after rewriting the original tree.
1137 if Remote_AST_E_Dereference (P) then
1138 return;
1139 end if;
1141 -- Normal processing for other than remote access to subprogram type
1143 if not Is_Overloaded (P) then
1144 if Is_Access_Type (Etype (P)) then
1146 -- Set the Etype. We need to go thru Is_For_Access_Subtypes
1147 -- to avoid other problems caused by the Private_Subtype
1148 -- and it is safe to go to the Base_Type because this is the
1149 -- same as converting the access value to its Base_Type.
1151 declare
1152 DT : Entity_Id := Designated_Type (Etype (P));
1154 begin
1155 if Ekind (DT) = E_Private_Subtype
1156 and then Is_For_Access_Subtype (DT)
1157 then
1158 DT := Base_Type (DT);
1159 end if;
1161 Set_Etype (N, DT);
1162 end;
1164 elsif Etype (P) /= Any_Type then
1165 Error_Msg_N ("prefix of dereference must be an access type", N);
1166 return;
1167 end if;
1169 else
1170 Get_First_Interp (P, I, It);
1172 while Present (It.Nam) loop
1173 T := It.Typ;
1175 if Is_Access_Type (T) then
1176 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1177 end if;
1179 Get_Next_Interp (I, It);
1180 end loop;
1182 End_Interp_List;
1184 -- Error if no interpretation of the prefix has an access type.
1186 if Etype (N) = Any_Type then
1187 Error_Msg_N
1188 ("access type required in prefix of explicit dereference", P);
1189 Set_Etype (N, Any_Type);
1190 return;
1191 end if;
1192 end if;
1194 if Is_Function_Type
1195 and then Nkind (Parent (N)) /= N_Indexed_Component
1197 and then (Nkind (Parent (N)) /= N_Function_Call
1198 or else N /= Name (Parent (N)))
1200 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1201 or else N /= Name (Parent (N)))
1203 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1204 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1205 or else
1206 (Attribute_Name (Parent (N)) /= Name_Address
1207 and then
1208 Attribute_Name (Parent (N)) /= Name_Access))
1209 then
1210 -- Name is a function call with no actuals, in a context that
1211 -- requires deproceduring (including as an actual in an enclosing
1212 -- function or procedure call). We can conceive of pathological cases
1213 -- where the prefix might include functions that return access to
1214 -- subprograms and others that return a regular type. Disambiguation
1215 -- of those will have to take place in Resolve. See e.g. 7117-014.
1217 New_N :=
1218 Make_Function_Call (Loc,
1219 Name => Make_Explicit_Dereference (Loc, P),
1220 Parameter_Associations => New_List);
1222 -- If the prefix is overloaded, remove operations that have formals,
1223 -- we know that this is a parameterless call.
1225 if Is_Overloaded (P) then
1226 Get_First_Interp (P, I, It);
1228 while Present (It.Nam) loop
1229 T := It.Typ;
1231 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1232 Set_Etype (P, T);
1233 else
1234 Remove_Interp (I);
1235 end if;
1237 Get_Next_Interp (I, It);
1238 end loop;
1239 end if;
1241 Rewrite (N, New_N);
1242 Analyze (N);
1243 end if;
1245 -- A value of remote access-to-class-wide must not be dereferenced
1246 -- (RM E.2.2(16)).
1248 Validate_Remote_Access_To_Class_Wide_Type (N);
1250 end Analyze_Explicit_Dereference;
1252 ------------------------
1253 -- Analyze_Expression --
1254 ------------------------
1256 procedure Analyze_Expression (N : Node_Id) is
1257 begin
1258 Analyze (N);
1259 Check_Parameterless_Call (N);
1260 end Analyze_Expression;
1262 ------------------------------------
1263 -- Analyze_Indexed_Component_Form --
1264 ------------------------------------
1266 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1267 P : constant Node_Id := Prefix (N);
1268 Exprs : List_Id := Expressions (N);
1269 Exp : Node_Id;
1270 P_T : Entity_Id;
1271 E : Node_Id;
1272 U_N : Entity_Id;
1274 procedure Process_Function_Call;
1275 -- Prefix in indexed component form is an overloadable entity,
1276 -- so the node is a function call. Reformat it as such.
1278 procedure Process_Indexed_Component;
1279 -- Prefix in indexed component form is actually an indexed component.
1280 -- This routine processes it, knowing that the prefix is already
1281 -- resolved.
1283 procedure Process_Indexed_Component_Or_Slice;
1284 -- An indexed component with a single index may designate a slice if
1285 -- the index is a subtype mark. This routine disambiguates these two
1286 -- cases by resolving the prefix to see if it is a subtype mark.
1288 procedure Process_Overloaded_Indexed_Component;
1289 -- If the prefix of an indexed component is overloaded, the proper
1290 -- interpretation is selected by the index types and the context.
1292 ---------------------------
1293 -- Process_Function_Call --
1294 ---------------------------
1296 procedure Process_Function_Call is
1297 Actual : Node_Id;
1299 begin
1300 Change_Node (N, N_Function_Call);
1301 Set_Name (N, P);
1302 Set_Parameter_Associations (N, Exprs);
1303 Actual := First (Parameter_Associations (N));
1305 while Present (Actual) loop
1306 Analyze (Actual);
1307 Check_Parameterless_Call (Actual);
1308 Next_Actual (Actual);
1309 end loop;
1311 Analyze_Call (N);
1312 end Process_Function_Call;
1314 -------------------------------
1315 -- Process_Indexed_Component --
1316 -------------------------------
1318 procedure Process_Indexed_Component is
1319 Exp : Node_Id;
1320 Array_Type : Entity_Id;
1321 Index : Node_Id;
1322 Entry_Family : Entity_Id;
1324 begin
1325 Exp := First (Exprs);
1327 if Is_Overloaded (P) then
1328 Process_Overloaded_Indexed_Component;
1330 else
1331 Array_Type := Etype (P);
1333 -- Prefix must be appropriate for an array type.
1334 -- Dereference the prefix if it is an access type.
1336 if Is_Access_Type (Array_Type) then
1337 Array_Type := Designated_Type (Array_Type);
1338 end if;
1340 if Is_Array_Type (Array_Type) then
1341 null;
1343 elsif (Is_Entity_Name (P)
1344 and then
1345 Ekind (Entity (P)) = E_Entry_Family)
1346 or else
1347 (Nkind (P) = N_Selected_Component
1348 and then
1349 Is_Entity_Name (Selector_Name (P))
1350 and then
1351 Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1352 then
1353 if Is_Entity_Name (P) then
1354 Entry_Family := Entity (P);
1355 else
1356 Entry_Family := Entity (Selector_Name (P));
1357 end if;
1359 Analyze (Exp);
1360 Set_Etype (N, Any_Type);
1362 if not Has_Compatible_Type
1363 (Exp, Entry_Index_Type (Entry_Family))
1364 then
1365 Error_Msg_N ("invalid index type in entry name", N);
1367 elsif Present (Next (Exp)) then
1368 Error_Msg_N ("too many subscripts in entry reference", N);
1370 else
1371 Set_Etype (N, Etype (P));
1372 end if;
1374 return;
1376 elsif Is_Record_Type (Array_Type)
1377 and then Remote_AST_I_Dereference (P)
1378 then
1379 return;
1381 elsif Array_Type = Any_Type then
1382 Set_Etype (N, Any_Type);
1383 return;
1385 -- Here we definitely have a bad indexing
1387 else
1388 if Nkind (Parent (N)) = N_Requeue_Statement
1389 and then
1390 ((Is_Entity_Name (P)
1391 and then Ekind (Entity (P)) = E_Entry)
1392 or else
1393 (Nkind (P) = N_Selected_Component
1394 and then Is_Entity_Name (Selector_Name (P))
1395 and then Ekind (Entity (Selector_Name (P))) = E_Entry))
1396 then
1397 Error_Msg_N
1398 ("REQUEUE does not permit parameters", First (Exprs));
1400 elsif Is_Entity_Name (P)
1401 and then Etype (P) = Standard_Void_Type
1402 then
1403 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1405 else
1406 Error_Msg_N ("array type required in indexed component", P);
1407 end if;
1409 Set_Etype (N, Any_Type);
1410 return;
1411 end if;
1413 Index := First_Index (Array_Type);
1415 while Present (Index) and then Present (Exp) loop
1416 if not Has_Compatible_Type (Exp, Etype (Index)) then
1417 Wrong_Type (Exp, Etype (Index));
1418 Set_Etype (N, Any_Type);
1419 return;
1420 end if;
1422 Next_Index (Index);
1423 Next (Exp);
1424 end loop;
1426 Set_Etype (N, Component_Type (Array_Type));
1428 if Present (Index) then
1429 Error_Msg_N
1430 ("too few subscripts in array reference", First (Exprs));
1432 elsif Present (Exp) then
1433 Error_Msg_N ("too many subscripts in array reference", Exp);
1434 end if;
1435 end if;
1437 end Process_Indexed_Component;
1439 ----------------------------------------
1440 -- Process_Indexed_Component_Or_Slice --
1441 ----------------------------------------
1443 procedure Process_Indexed_Component_Or_Slice is
1444 begin
1445 Exp := First (Exprs);
1447 while Present (Exp) loop
1448 Analyze_Expression (Exp);
1449 Next (Exp);
1450 end loop;
1452 Exp := First (Exprs);
1454 -- If one index is present, and it is a subtype name, then the
1455 -- node denotes a slice (note that the case of an explicit range
1456 -- for a slice was already built as an N_Slice node in the first
1457 -- place, so that case is not handled here).
1459 -- We use a replace rather than a rewrite here because this is one
1460 -- of the cases in which the tree built by the parser is plain wrong.
1462 if No (Next (Exp))
1463 and then Is_Entity_Name (Exp)
1464 and then Is_Type (Entity (Exp))
1465 then
1466 Replace (N,
1467 Make_Slice (Sloc (N),
1468 Prefix => P,
1469 Discrete_Range => New_Copy (Exp)));
1470 Analyze (N);
1472 -- Otherwise (more than one index present, or single index is not
1473 -- a subtype name), then we have the indexed component case.
1475 else
1476 Process_Indexed_Component;
1477 end if;
1478 end Process_Indexed_Component_Or_Slice;
1480 ------------------------------------------
1481 -- Process_Overloaded_Indexed_Component --
1482 ------------------------------------------
1484 procedure Process_Overloaded_Indexed_Component is
1485 Exp : Node_Id;
1486 I : Interp_Index;
1487 It : Interp;
1488 Typ : Entity_Id;
1489 Index : Node_Id;
1490 Found : Boolean;
1492 begin
1493 Set_Etype (N, Any_Type);
1494 Get_First_Interp (P, I, It);
1496 while Present (It.Nam) loop
1497 Typ := It.Typ;
1499 if Is_Access_Type (Typ) then
1500 Typ := Designated_Type (Typ);
1501 end if;
1503 if Is_Array_Type (Typ) then
1505 -- Got a candidate: verify that index types are compatible
1507 Index := First_Index (Typ);
1508 Found := True;
1510 Exp := First (Exprs);
1512 while Present (Index) and then Present (Exp) loop
1513 if Has_Compatible_Type (Exp, Etype (Index)) then
1514 null;
1515 else
1516 Found := False;
1517 Remove_Interp (I);
1518 exit;
1519 end if;
1521 Next_Index (Index);
1522 Next (Exp);
1523 end loop;
1525 if Found and then No (Index) and then No (Exp) then
1526 Add_One_Interp (N,
1527 Etype (Component_Type (Typ)),
1528 Etype (Component_Type (Typ)));
1529 end if;
1530 end if;
1532 Get_Next_Interp (I, It);
1533 end loop;
1535 if Etype (N) = Any_Type then
1536 Error_Msg_N ("no legal interpetation for indexed component", N);
1537 Set_Is_Overloaded (N, False);
1538 end if;
1540 End_Interp_List;
1541 end Process_Overloaded_Indexed_Component;
1543 ------------------------------------
1544 -- Analyze_Indexed_Component_Form --
1545 ------------------------------------
1547 begin
1548 -- Get name of array, function or type
1550 Analyze (P);
1551 P_T := Base_Type (Etype (P));
1553 if Is_Entity_Name (P)
1554 or else Nkind (P) = N_Operator_Symbol
1555 then
1556 U_N := Entity (P);
1558 if Ekind (U_N) in Type_Kind then
1560 -- Reformat node as a type conversion.
1562 E := Remove_Head (Exprs);
1564 if Present (First (Exprs)) then
1565 Error_Msg_N
1566 ("argument of type conversion must be single expression", N);
1567 end if;
1569 Change_Node (N, N_Type_Conversion);
1570 Set_Subtype_Mark (N, P);
1571 Set_Etype (N, U_N);
1572 Set_Expression (N, E);
1574 -- After changing the node, call for the specific Analysis
1575 -- routine directly, to avoid a double call to the expander.
1577 Analyze_Type_Conversion (N);
1578 return;
1579 end if;
1581 if Is_Overloadable (U_N) then
1582 Process_Function_Call;
1584 elsif Ekind (Etype (P)) = E_Subprogram_Type
1585 or else (Is_Access_Type (Etype (P))
1586 and then
1587 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1588 then
1589 -- Call to access_to-subprogram with possible implicit dereference
1591 Process_Function_Call;
1593 elsif Ekind (U_N) = E_Generic_Function
1594 or else Ekind (U_N) = E_Generic_Procedure
1595 then
1596 -- A common beginner's (or C++ templates fan) error.
1598 Error_Msg_N ("generic subprogram cannot be called", N);
1599 Set_Etype (N, Any_Type);
1600 return;
1602 else
1603 Process_Indexed_Component_Or_Slice;
1604 end if;
1606 -- If not an entity name, prefix is an expression that may denote
1607 -- an array or an access-to-subprogram.
1609 else
1611 if (Ekind (P_T) = E_Subprogram_Type)
1612 or else (Is_Access_Type (P_T)
1613 and then
1614 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1615 then
1616 Process_Function_Call;
1618 elsif Nkind (P) = N_Selected_Component
1619 and then Ekind (Entity (Selector_Name (P))) = E_Function
1620 then
1621 Process_Function_Call;
1623 else
1624 -- Indexed component, slice, or a call to a member of a family
1625 -- entry, which will be converted to an entry call later.
1626 Process_Indexed_Component_Or_Slice;
1627 end if;
1628 end if;
1629 end Analyze_Indexed_Component_Form;
1631 ------------------------
1632 -- Analyze_Logical_Op --
1633 ------------------------
1635 procedure Analyze_Logical_Op (N : Node_Id) is
1636 L : constant Node_Id := Left_Opnd (N);
1637 R : constant Node_Id := Right_Opnd (N);
1638 Op_Id : Entity_Id := Entity (N);
1640 begin
1641 Set_Etype (N, Any_Type);
1642 Candidate_Type := Empty;
1644 Analyze_Expression (L);
1645 Analyze_Expression (R);
1647 if Present (Op_Id) then
1649 if Ekind (Op_Id) = E_Operator then
1650 Find_Boolean_Types (L, R, Op_Id, N);
1651 else
1652 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1653 end if;
1655 else
1656 Op_Id := Get_Name_Entity_Id (Chars (N));
1658 while Present (Op_Id) loop
1659 if Ekind (Op_Id) = E_Operator then
1660 Find_Boolean_Types (L, R, Op_Id, N);
1661 else
1662 Analyze_User_Defined_Binary_Op (N, Op_Id);
1663 end if;
1665 Op_Id := Homonym (Op_Id);
1666 end loop;
1667 end if;
1669 Operator_Check (N);
1670 end Analyze_Logical_Op;
1672 ---------------------------
1673 -- Analyze_Membership_Op --
1674 ---------------------------
1676 procedure Analyze_Membership_Op (N : Node_Id) is
1677 L : constant Node_Id := Left_Opnd (N);
1678 R : constant Node_Id := Right_Opnd (N);
1680 Index : Interp_Index;
1681 It : Interp;
1682 Found : Boolean := False;
1683 I_F : Interp_Index;
1684 T_F : Entity_Id;
1686 procedure Try_One_Interp (T1 : Entity_Id);
1687 -- Routine to try one proposed interpretation. Note that the context
1688 -- of the operation plays no role in resolving the arguments, so that
1689 -- if there is more than one interpretation of the operands that is
1690 -- compatible with a membership test, the operation is ambiguous.
1692 procedure Try_One_Interp (T1 : Entity_Id) is
1693 begin
1694 if Has_Compatible_Type (R, T1) then
1695 if Found
1696 and then Base_Type (T1) /= Base_Type (T_F)
1697 then
1698 It := Disambiguate (L, I_F, Index, Any_Type);
1700 if It = No_Interp then
1701 Ambiguous_Operands (N);
1702 Set_Etype (L, Any_Type);
1703 return;
1705 else
1706 T_F := It.Typ;
1707 end if;
1709 else
1710 Found := True;
1711 T_F := T1;
1712 I_F := Index;
1713 end if;
1715 Set_Etype (L, T_F);
1716 end if;
1718 end Try_One_Interp;
1720 -- Start of processing for Analyze_Membership_Op
1722 begin
1723 Analyze_Expression (L);
1725 if Nkind (R) = N_Range
1726 or else (Nkind (R) = N_Attribute_Reference
1727 and then Attribute_Name (R) = Name_Range)
1728 then
1729 Analyze (R);
1731 if not Is_Overloaded (L) then
1732 Try_One_Interp (Etype (L));
1734 else
1735 Get_First_Interp (L, Index, It);
1737 while Present (It.Typ) loop
1738 Try_One_Interp (It.Typ);
1739 Get_Next_Interp (Index, It);
1740 end loop;
1741 end if;
1743 -- If not a range, it can only be a subtype mark, or else there
1744 -- is a more basic error, to be diagnosed in Find_Type.
1746 else
1747 Find_Type (R);
1749 if Is_Entity_Name (R) then
1750 Check_Fully_Declared (Entity (R), R);
1751 end if;
1752 end if;
1754 -- Compatibility between expression and subtype mark or range is
1755 -- checked during resolution. The result of the operation is Boolean
1756 -- in any case.
1758 Set_Etype (N, Standard_Boolean);
1759 end Analyze_Membership_Op;
1761 ----------------------
1762 -- Analyze_Negation --
1763 ----------------------
1765 procedure Analyze_Negation (N : Node_Id) is
1766 R : constant Node_Id := Right_Opnd (N);
1767 Op_Id : Entity_Id := Entity (N);
1769 begin
1770 Set_Etype (N, Any_Type);
1771 Candidate_Type := Empty;
1773 Analyze_Expression (R);
1775 if Present (Op_Id) then
1776 if Ekind (Op_Id) = E_Operator then
1777 Find_Negation_Types (R, Op_Id, N);
1778 else
1779 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1780 end if;
1782 else
1783 Op_Id := Get_Name_Entity_Id (Chars (N));
1785 while Present (Op_Id) loop
1786 if Ekind (Op_Id) = E_Operator then
1787 Find_Negation_Types (R, Op_Id, N);
1788 else
1789 Analyze_User_Defined_Unary_Op (N, Op_Id);
1790 end if;
1792 Op_Id := Homonym (Op_Id);
1793 end loop;
1794 end if;
1796 Operator_Check (N);
1797 end Analyze_Negation;
1799 -------------------
1800 -- Analyze_Null --
1801 -------------------
1803 procedure Analyze_Null (N : Node_Id) is
1804 begin
1805 Set_Etype (N, Any_Access);
1806 end Analyze_Null;
1808 ----------------------
1809 -- Analyze_One_Call --
1810 ----------------------
1812 procedure Analyze_One_Call
1813 (N : Node_Id;
1814 Nam : Entity_Id;
1815 Report : Boolean;
1816 Success : out Boolean)
1818 Actuals : constant List_Id := Parameter_Associations (N);
1819 Prev_T : constant Entity_Id := Etype (N);
1820 Formal : Entity_Id;
1821 Actual : Node_Id;
1822 Is_Indexed : Boolean := False;
1823 Subp_Type : constant Entity_Id := Etype (Nam);
1824 Norm_OK : Boolean;
1826 procedure Set_Name;
1827 -- If candidate interpretation matches, indicate name and type of
1828 -- result on call node.
1830 --------------
1831 -- Set_Name --
1832 --------------
1834 procedure Set_Name is
1835 begin
1836 Add_One_Interp (N, Nam, Etype (Nam));
1837 Success := True;
1839 -- If the prefix of the call is a name, indicate the entity
1840 -- being called. If it is not a name, it is an expression that
1841 -- denotes an access to subprogram or else an entry or family. In
1842 -- the latter case, the name is a selected component, and the entity
1843 -- being called is noted on the selector.
1845 if not Is_Type (Nam) then
1846 if Is_Entity_Name (Name (N))
1847 or else Nkind (Name (N)) = N_Operator_Symbol
1848 then
1849 Set_Entity (Name (N), Nam);
1851 elsif Nkind (Name (N)) = N_Selected_Component then
1852 Set_Entity (Selector_Name (Name (N)), Nam);
1853 end if;
1854 end if;
1856 if Debug_Flag_E and not Report then
1857 Write_Str (" Overloaded call ");
1858 Write_Int (Int (N));
1859 Write_Str (" compatible with ");
1860 Write_Int (Int (Nam));
1861 Write_Eol;
1862 end if;
1863 end Set_Name;
1865 -- Start of processing for Analyze_One_Call
1867 begin
1868 Success := False;
1870 -- If the subprogram has no formals, or if all the formals have
1871 -- defaults, and the return type is an array type, the node may
1872 -- denote an indexing of the result of a parameterless call.
1874 if Needs_No_Actuals (Nam)
1875 and then Present (Actuals)
1876 then
1877 if Is_Array_Type (Subp_Type) then
1878 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type);
1880 elsif Is_Access_Type (Subp_Type)
1881 and then Is_Array_Type (Designated_Type (Subp_Type))
1882 then
1883 Is_Indexed :=
1884 Try_Indexed_Call (N, Nam, Designated_Type (Subp_Type));
1886 elsif Is_Access_Type (Subp_Type)
1887 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
1888 then
1889 Is_Indexed := Try_Indirect_Call (N, Nam, Subp_Type);
1890 end if;
1892 end if;
1894 Normalize_Actuals (N, Nam, (Report and not Is_Indexed), Norm_OK);
1896 if not Norm_OK then
1898 -- Mismatch in number or names of parameters
1900 if Debug_Flag_E then
1901 Write_Str (" normalization fails in call ");
1902 Write_Int (Int (N));
1903 Write_Str (" with subprogram ");
1904 Write_Int (Int (Nam));
1905 Write_Eol;
1906 end if;
1908 -- If the context expects a function call, discard any interpretation
1909 -- that is a procedure. If the node is not overloaded, leave as is for
1910 -- better error reporting when type mismatch is found.
1912 elsif Nkind (N) = N_Function_Call
1913 and then Is_Overloaded (Name (N))
1914 and then Ekind (Nam) = E_Procedure
1915 then
1916 return;
1918 -- Ditto for function calls in a procedure context.
1920 elsif Nkind (N) = N_Procedure_Call_Statement
1921 and then Is_Overloaded (Name (N))
1922 and then Etype (Nam) /= Standard_Void_Type
1923 then
1924 return;
1926 elsif not Present (Actuals) then
1928 -- If Normalize succeeds, then there are default parameters for
1929 -- all formals.
1931 Set_Name;
1933 elsif Ekind (Nam) = E_Operator then
1935 if Nkind (N) = N_Procedure_Call_Statement then
1936 return;
1937 end if;
1939 -- This can occur when the prefix of the call is an operator
1940 -- name or an expanded name whose selector is an operator name.
1942 Analyze_Operator_Call (N, Nam);
1944 if Etype (N) /= Prev_T then
1946 -- There may be a user-defined operator that hides the
1947 -- current interpretation. We must check for this independently
1948 -- of the analysis of the call with the user-defined operation,
1949 -- because the parameter names may be wrong and yet the hiding
1950 -- takes place. Fixes b34014o.
1952 if Is_Overloaded (Name (N)) then
1953 declare
1954 I : Interp_Index;
1955 It : Interp;
1957 begin
1958 Get_First_Interp (Name (N), I, It);
1960 while Present (It.Nam) loop
1962 if Ekind (It.Nam) /= E_Operator
1963 and then Hides_Op (It.Nam, Nam)
1964 and then
1965 Has_Compatible_Type
1966 (First_Actual (N), Etype (First_Formal (It.Nam)))
1967 and then (No (Next_Actual (First_Actual (N)))
1968 or else Has_Compatible_Type
1969 (Next_Actual (First_Actual (N)),
1970 Etype (Next_Formal (First_Formal (It.Nam)))))
1971 then
1972 Set_Etype (N, Prev_T);
1973 return;
1974 end if;
1976 Get_Next_Interp (I, It);
1977 end loop;
1978 end;
1979 end if;
1981 -- If operator matches formals, record its name on the call.
1982 -- If the operator is overloaded, Resolve will select the
1983 -- correct one from the list of interpretations. The call
1984 -- node itself carries the first candidate.
1986 Set_Entity (Name (N), Nam);
1987 Success := True;
1989 elsif Report and then Etype (N) = Any_Type then
1990 Error_Msg_N ("incompatible arguments for operator", N);
1991 end if;
1993 else
1994 -- Normalize_Actuals has chained the named associations in the
1995 -- correct order of the formals.
1997 Actual := First_Actual (N);
1998 Formal := First_Formal (Nam);
2000 while Present (Actual) and then Present (Formal) loop
2002 if (Nkind (Parent (Actual)) /= N_Parameter_Association
2003 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal))
2004 then
2005 if Has_Compatible_Type (Actual, Etype (Formal)) then
2006 Next_Actual (Actual);
2007 Next_Formal (Formal);
2009 else
2010 if Debug_Flag_E then
2011 Write_Str (" type checking fails in call ");
2012 Write_Int (Int (N));
2013 Write_Str (" with formal ");
2014 Write_Int (Int (Formal));
2015 Write_Str (" in subprogram ");
2016 Write_Int (Int (Nam));
2017 Write_Eol;
2018 end if;
2020 if Report and not Is_Indexed then
2022 Wrong_Type (Actual, Etype (Formal));
2024 if Nkind (Actual) = N_Op_Eq
2025 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2026 then
2027 Formal := First_Formal (Nam);
2029 while Present (Formal) loop
2031 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2032 Error_Msg_N
2033 ("possible misspelling of `=>`!", Actual);
2034 exit;
2035 end if;
2037 Next_Formal (Formal);
2038 end loop;
2039 end if;
2041 if All_Errors_Mode then
2042 Error_Msg_Sloc := Sloc (Nam);
2044 if Is_Overloadable (Nam)
2045 and then Present (Alias (Nam))
2046 and then not Comes_From_Source (Nam)
2047 then
2048 Error_Msg_NE
2049 (" ==> in call to &#(inherited)!", Actual, Nam);
2050 else
2051 Error_Msg_NE (" ==> in call to &#!", Actual, Nam);
2052 end if;
2053 end if;
2054 end if;
2056 return;
2057 end if;
2059 else
2060 -- Normalize_Actuals has verified that a default value exists
2061 -- for this formal. Current actual names a subsequent formal.
2063 Next_Formal (Formal);
2064 end if;
2065 end loop;
2067 -- On exit, all actuals match.
2069 Set_Name;
2070 end if;
2071 end Analyze_One_Call;
2073 ----------------------------
2074 -- Analyze_Operator_Call --
2075 ----------------------------
2077 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2078 Op_Name : constant Name_Id := Chars (Op_Id);
2079 Act1 : constant Node_Id := First_Actual (N);
2080 Act2 : constant Node_Id := Next_Actual (Act1);
2082 begin
2083 if Present (Act2) then
2085 -- Maybe binary operators
2087 if Present (Next_Actual (Act2)) then
2089 -- Too many actuals for an operator
2091 return;
2093 elsif Op_Name = Name_Op_Add
2094 or else Op_Name = Name_Op_Subtract
2095 or else Op_Name = Name_Op_Multiply
2096 or else Op_Name = Name_Op_Divide
2097 or else Op_Name = Name_Op_Mod
2098 or else Op_Name = Name_Op_Rem
2099 or else Op_Name = Name_Op_Expon
2100 then
2101 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2103 elsif Op_Name = Name_Op_And
2104 or else Op_Name = Name_Op_Or
2105 or else Op_Name = Name_Op_Xor
2106 then
2107 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2109 elsif Op_Name = Name_Op_Lt
2110 or else Op_Name = Name_Op_Le
2111 or else Op_Name = Name_Op_Gt
2112 or else Op_Name = Name_Op_Ge
2113 then
2114 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2116 elsif Op_Name = Name_Op_Eq
2117 or else Op_Name = Name_Op_Ne
2118 then
2119 Find_Equality_Types (Act1, Act2, Op_Id, N);
2121 elsif Op_Name = Name_Op_Concat then
2122 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2124 -- Is this else null correct, or should it be an abort???
2126 else
2127 null;
2128 end if;
2130 else
2131 -- Unary operators
2133 if Op_Name = Name_Op_Subtract or else
2134 Op_Name = Name_Op_Add or else
2135 Op_Name = Name_Op_Abs
2136 then
2137 Find_Unary_Types (Act1, Op_Id, N);
2139 elsif
2140 Op_Name = Name_Op_Not
2141 then
2142 Find_Negation_Types (Act1, Op_Id, N);
2144 -- Is this else null correct, or should it be an abort???
2146 else
2147 null;
2148 end if;
2149 end if;
2150 end Analyze_Operator_Call;
2152 -------------------------------------------
2153 -- Analyze_Overloaded_Selected_Component --
2154 -------------------------------------------
2156 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2157 Comp : Entity_Id;
2158 Nam : Node_Id := Prefix (N);
2159 Sel : Node_Id := Selector_Name (N);
2160 I : Interp_Index;
2161 It : Interp;
2162 T : Entity_Id;
2164 begin
2165 Get_First_Interp (Nam, I, It);
2167 Set_Etype (Sel, Any_Type);
2169 while Present (It.Typ) loop
2170 if Is_Access_Type (It.Typ) then
2171 T := Designated_Type (It.Typ);
2172 else
2173 T := It.Typ;
2174 end if;
2176 if Is_Record_Type (T) then
2177 Comp := First_Entity (T);
2179 while Present (Comp) loop
2181 if Chars (Comp) = Chars (Sel)
2182 and then Is_Visible_Component (Comp)
2183 then
2184 Set_Entity_With_Style_Check (Sel, Comp);
2185 Generate_Reference (Comp, Sel);
2187 Set_Etype (Sel, Etype (Comp));
2188 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2190 -- This also specifies a candidate to resolve the name.
2191 -- Further overloading will be resolved from context.
2193 Set_Etype (Nam, It.Typ);
2194 end if;
2196 Next_Entity (Comp);
2197 end loop;
2199 elsif Is_Concurrent_Type (T) then
2200 Comp := First_Entity (T);
2202 while Present (Comp)
2203 and then Comp /= First_Private_Entity (T)
2204 loop
2205 if Chars (Comp) = Chars (Sel) then
2206 if Is_Overloadable (Comp) then
2207 Add_One_Interp (Sel, Comp, Etype (Comp));
2208 else
2209 Set_Entity_With_Style_Check (Sel, Comp);
2210 Generate_Reference (Comp, Sel);
2211 end if;
2213 Set_Etype (Sel, Etype (Comp));
2214 Set_Etype (N, Etype (Comp));
2215 Set_Etype (Nam, It.Typ);
2217 -- For access type case, introduce explicit deference for
2218 -- more uniform treatment of entry calls.
2220 if Is_Access_Type (Etype (Nam)) then
2221 Insert_Explicit_Dereference (Nam);
2222 end if;
2223 end if;
2225 Next_Entity (Comp);
2226 end loop;
2228 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2230 end if;
2232 Get_Next_Interp (I, It);
2233 end loop;
2235 if Etype (N) = Any_Type then
2236 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2237 Set_Entity (Sel, Any_Id);
2238 Set_Etype (Sel, Any_Type);
2239 end if;
2241 end Analyze_Overloaded_Selected_Component;
2243 ----------------------------------
2244 -- Analyze_Qualified_Expression --
2245 ----------------------------------
2247 procedure Analyze_Qualified_Expression (N : Node_Id) is
2248 Mark : constant Entity_Id := Subtype_Mark (N);
2249 T : Entity_Id;
2251 begin
2252 Set_Etype (N, Any_Type);
2253 Find_Type (Mark);
2254 T := Entity (Mark);
2256 if T = Any_Type then
2257 return;
2258 end if;
2259 Check_Fully_Declared (T, N);
2261 Analyze_Expression (Expression (N));
2262 Set_Etype (N, T);
2263 end Analyze_Qualified_Expression;
2265 -------------------
2266 -- Analyze_Range --
2267 -------------------
2269 procedure Analyze_Range (N : Node_Id) is
2270 L : constant Node_Id := Low_Bound (N);
2271 H : constant Node_Id := High_Bound (N);
2272 I1, I2 : Interp_Index;
2273 It1, It2 : Interp;
2275 procedure Check_Common_Type (T1, T2 : Entity_Id);
2276 -- Verify the compatibility of two types, and choose the
2277 -- non universal one if the other is universal.
2279 procedure Check_High_Bound (T : Entity_Id);
2280 -- Test one interpretation of the low bound against all those
2281 -- of the high bound.
2283 -----------------------
2284 -- Check_Common_Type --
2285 -----------------------
2287 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2288 begin
2289 if Covers (T1, T2) or else Covers (T2, T1) then
2290 if T1 = Universal_Integer
2291 or else T1 = Universal_Real
2292 or else T1 = Any_Character
2293 then
2294 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2296 elsif (T1 = T2) then
2297 Add_One_Interp (N, T1, T1);
2299 else
2300 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2301 end if;
2302 end if;
2303 end Check_Common_Type;
2305 ----------------------
2306 -- Check_High_Bound --
2307 ----------------------
2309 procedure Check_High_Bound (T : Entity_Id) is
2310 begin
2311 if not Is_Overloaded (H) then
2312 Check_Common_Type (T, Etype (H));
2313 else
2314 Get_First_Interp (H, I2, It2);
2316 while Present (It2.Typ) loop
2317 Check_Common_Type (T, It2.Typ);
2318 Get_Next_Interp (I2, It2);
2319 end loop;
2320 end if;
2321 end Check_High_Bound;
2323 -- Start of processing for Analyze_Range
2325 begin
2326 Set_Etype (N, Any_Type);
2327 Analyze_Expression (L);
2328 Analyze_Expression (H);
2330 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
2331 return;
2333 else
2334 if not Is_Overloaded (L) then
2335 Check_High_Bound (Etype (L));
2336 else
2337 Get_First_Interp (L, I1, It1);
2339 while Present (It1.Typ) loop
2340 Check_High_Bound (It1.Typ);
2341 Get_Next_Interp (I1, It1);
2342 end loop;
2343 end if;
2345 -- If result is Any_Type, then we did not find a compatible pair
2347 if Etype (N) = Any_Type then
2348 Error_Msg_N ("incompatible types in range ", N);
2349 end if;
2350 end if;
2351 end Analyze_Range;
2353 -----------------------
2354 -- Analyze_Reference --
2355 -----------------------
2357 procedure Analyze_Reference (N : Node_Id) is
2358 P : constant Node_Id := Prefix (N);
2359 Acc_Type : Entity_Id;
2361 begin
2362 Analyze (P);
2363 Acc_Type := Create_Itype (E_Allocator_Type, N);
2364 Set_Etype (Acc_Type, Acc_Type);
2365 Init_Size_Align (Acc_Type);
2366 Set_Directly_Designated_Type (Acc_Type, Etype (P));
2367 Set_Etype (N, Acc_Type);
2368 end Analyze_Reference;
2370 --------------------------------
2371 -- Analyze_Selected_Component --
2372 --------------------------------
2374 -- Prefix is a record type or a task or protected type. In the
2375 -- later case, the selector must denote a visible entry.
2377 procedure Analyze_Selected_Component (N : Node_Id) is
2378 Name : constant Node_Id := Prefix (N);
2379 Sel : constant Node_Id := Selector_Name (N);
2380 Comp : Entity_Id;
2381 Entity_List : Entity_Id;
2382 Prefix_Type : Entity_Id;
2383 Act_Decl : Node_Id;
2384 In_Scope : Boolean;
2385 Parent_N : Node_Id;
2387 -- Start of processing for Analyze_Selected_Component
2389 begin
2390 Set_Etype (N, Any_Type);
2392 if Is_Overloaded (Name) then
2393 Analyze_Overloaded_Selected_Component (N);
2394 return;
2396 elsif Etype (Name) = Any_Type then
2397 Set_Entity (Sel, Any_Id);
2398 Set_Etype (Sel, Any_Type);
2399 return;
2401 else
2402 -- Function calls that are prefixes of selected components must be
2403 -- fully resolved in case we need to build an actual subtype, or
2404 -- do some other operation requiring a fully resolved prefix.
2406 -- Note: Resolving all Nkinds of nodes here doesn't work.
2407 -- (Breaks 2129-008) ???.
2409 if Nkind (Name) = N_Function_Call then
2410 Resolve (Name, Etype (Name));
2411 end if;
2413 Prefix_Type := Etype (Name);
2414 end if;
2416 if Is_Access_Type (Prefix_Type) then
2417 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
2418 and then Comes_From_Source (N)
2419 then
2420 -- A RACW object can never be used as prefix of a selected
2421 -- component since that means it is dereferenced without
2422 -- being a controlling operand of a dispatching operation
2423 -- (RM E.2.2(15)).
2425 Error_Msg_N
2426 ("invalid dereference of a remote access to class-wide value",
2428 end if;
2429 Prefix_Type := Designated_Type (Prefix_Type);
2430 end if;
2432 if Ekind (Prefix_Type) = E_Private_Subtype then
2433 Prefix_Type := Base_Type (Prefix_Type);
2434 end if;
2436 Entity_List := Prefix_Type;
2438 -- For class-wide types, use the entity list of the root type. This
2439 -- indirection is specially important for private extensions because
2440 -- only the root type get switched (not the class-wide type).
2442 if Is_Class_Wide_Type (Prefix_Type) then
2443 Entity_List := Root_Type (Prefix_Type);
2444 end if;
2446 Comp := First_Entity (Entity_List);
2448 -- If the selector has an original discriminant, the node appears in
2449 -- an instance. Replace the discriminant with the corresponding one
2450 -- in the current discriminated type. For nested generics, this must
2451 -- be done transitively, so note the new original discriminant.
2453 if Nkind (Sel) = N_Identifier
2454 and then Present (Original_Discriminant (Sel))
2455 then
2456 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
2458 -- Mark entity before rewriting, for completeness and because
2459 -- subsequent semantic checks might examine the original node.
2461 Set_Entity (Sel, Comp);
2462 Rewrite (Selector_Name (N),
2463 New_Occurrence_Of (Comp, Sloc (N)));
2464 Set_Original_Discriminant (Selector_Name (N), Comp);
2465 Set_Etype (N, Etype (Comp));
2467 if Is_Access_Type (Etype (Name)) then
2468 Insert_Explicit_Dereference (Name);
2469 end if;
2471 elsif Is_Record_Type (Prefix_Type) then
2473 -- Find component with given name
2475 while Present (Comp) loop
2477 if Chars (Comp) = Chars (Sel)
2478 and then Is_Visible_Component (Comp)
2479 then
2480 Set_Entity_With_Style_Check (Sel, Comp);
2481 Generate_Reference (Comp, Sel);
2483 Set_Etype (Sel, Etype (Comp));
2485 if Ekind (Comp) = E_Discriminant then
2486 if Is_Unchecked_Union (Prefix_Type) then
2487 Error_Msg_N
2488 ("cannot reference discriminant of Unchecked_Union",
2489 Sel);
2490 end if;
2492 if Is_Generic_Type (Prefix_Type)
2493 or else
2494 Is_Generic_Type (Root_Type (Prefix_Type))
2495 then
2496 Set_Original_Discriminant (Sel, Comp);
2497 end if;
2498 end if;
2500 -- Resolve the prefix early otherwise it is not possible to
2501 -- build the actual subtype of the component: it may need
2502 -- to duplicate this prefix and duplication is only allowed
2503 -- on fully resolved expressions.
2505 Resolve (Name, Etype (Name));
2507 -- We never need an actual subtype for the case of a selection
2508 -- for a indexed component of a non-packed array, since in
2509 -- this case gigi generates all the checks and can find the
2510 -- necessary bounds information.
2512 -- We also do not need an actual subtype for the case of
2513 -- a first, last, length, or range attribute applied to a
2514 -- non-packed array, since gigi can again get the bounds in
2515 -- these cases (gigi cannot handle the packed case, since it
2516 -- has the bounds of the packed array type, not the original
2517 -- bounds of the type). However, if the prefix is itself a
2518 -- selected component, as in a.b.c (i), gigi may regard a.b.c
2519 -- as a dynamic-sized temporary, so we do generate an actual
2520 -- subtype for this case.
2522 Parent_N := Parent (N);
2524 if not Is_Packed (Etype (Comp))
2525 and then
2526 ((Nkind (Parent_N) = N_Indexed_Component
2527 and then Nkind (Name) /= N_Selected_Component)
2528 or else
2529 (Nkind (Parent_N) = N_Attribute_Reference
2530 and then (Attribute_Name (Parent_N) = Name_First
2531 or else
2532 Attribute_Name (Parent_N) = Name_Last
2533 or else
2534 Attribute_Name (Parent_N) = Name_Length
2535 or else
2536 Attribute_Name (Parent_N) = Name_Range)))
2537 then
2538 Set_Etype (N, Etype (Comp));
2540 -- In all other cases, we currently build an actual subtype. It
2541 -- seems likely that many of these cases can be avoided, but
2542 -- right now, the front end makes direct references to the
2543 -- bounds (e.g. in egnerating a length check), and if we do
2544 -- not make an actual subtype, we end up getting a direct
2545 -- reference to a discriminant which will not do.
2547 else
2548 Act_Decl :=
2549 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
2550 Insert_Action (N, Act_Decl);
2552 if No (Act_Decl) then
2553 Set_Etype (N, Etype (Comp));
2555 else
2556 -- Component type depends on discriminants. Enter the
2557 -- main attributes of the subtype.
2559 declare
2560 Subt : Entity_Id := Defining_Identifier (Act_Decl);
2562 begin
2563 Set_Etype (Subt, Base_Type (Etype (Comp)));
2564 Set_Ekind (Subt, Ekind (Etype (Comp)));
2565 Set_Etype (N, Subt);
2566 end;
2567 end if;
2568 end if;
2570 return;
2571 end if;
2573 Next_Entity (Comp);
2574 end loop;
2576 elsif Is_Private_Type (Prefix_Type) then
2578 -- Allow access only to discriminants of the type. If the
2579 -- type has no full view, gigi uses the parent type for
2580 -- the components, so we do the same here.
2582 if No (Full_View (Prefix_Type)) then
2583 Entity_List := Root_Type (Base_Type (Prefix_Type));
2584 Comp := First_Entity (Entity_List);
2585 end if;
2587 while Present (Comp) loop
2589 if Chars (Comp) = Chars (Sel) then
2590 if Ekind (Comp) = E_Discriminant then
2591 Set_Entity_With_Style_Check (Sel, Comp);
2592 Generate_Reference (Comp, Sel);
2594 Set_Etype (Sel, Etype (Comp));
2595 Set_Etype (N, Etype (Comp));
2597 if Is_Generic_Type (Prefix_Type)
2598 or else
2599 Is_Generic_Type (Root_Type (Prefix_Type))
2600 then
2601 Set_Original_Discriminant (Sel, Comp);
2602 end if;
2604 else
2605 Error_Msg_NE
2606 ("invisible selector for }",
2607 N, First_Subtype (Prefix_Type));
2608 Set_Entity (Sel, Any_Id);
2609 Set_Etype (N, Any_Type);
2610 end if;
2612 return;
2613 end if;
2615 Next_Entity (Comp);
2616 end loop;
2618 elsif Is_Concurrent_Type (Prefix_Type) then
2620 -- Prefix is concurrent type. Find visible operation with given name
2621 -- For a task, this can only include entries or discriminants if
2622 -- the task type is not an enclosing scope. If it is an enclosing
2623 -- scope (e.g. in an inner task) then all entities are visible, but
2624 -- the prefix must denote the enclosing scope, i.e. can only be
2625 -- a direct name or an expanded name.
2627 Set_Etype (Sel, Any_Type);
2628 In_Scope := In_Open_Scopes (Prefix_Type);
2630 while Present (Comp) loop
2631 if Chars (Comp) = Chars (Sel) then
2632 if Is_Overloadable (Comp) then
2633 Add_One_Interp (Sel, Comp, Etype (Comp));
2635 elsif Ekind (Comp) = E_Discriminant
2636 or else Ekind (Comp) = E_Entry_Family
2637 or else (In_Scope
2638 and then Is_Entity_Name (Name))
2639 then
2640 Set_Entity_With_Style_Check (Sel, Comp);
2641 Generate_Reference (Comp, Sel);
2643 else
2644 goto Next_Comp;
2645 end if;
2647 Set_Etype (Sel, Etype (Comp));
2648 Set_Etype (N, Etype (Comp));
2650 if Ekind (Comp) = E_Discriminant then
2651 Set_Original_Discriminant (Sel, Comp);
2652 end if;
2654 -- For access type case, introduce explicit deference for
2655 -- more uniform treatment of entry calls.
2657 if Is_Access_Type (Etype (Name)) then
2658 Insert_Explicit_Dereference (Name);
2659 end if;
2660 end if;
2662 <<Next_Comp>>
2663 Next_Entity (Comp);
2664 exit when not In_Scope
2665 and then Comp = First_Private_Entity (Prefix_Type);
2666 end loop;
2668 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2670 else
2671 -- Invalid prefix
2673 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
2674 end if;
2676 -- If N still has no type, the component is not defined in the prefix.
2678 if Etype (N) = Any_Type then
2680 -- If the prefix is a single concurrent object, use its name in
2681 -- the error message, rather than that of its anonymous type.
2683 if Is_Concurrent_Type (Prefix_Type)
2684 and then Is_Internal_Name (Chars (Prefix_Type))
2685 and then not Is_Derived_Type (Prefix_Type)
2686 and then Is_Entity_Name (Name)
2687 then
2689 Error_Msg_Node_2 := Entity (Name);
2690 Error_Msg_NE ("no selector& for&", N, Sel);
2692 Check_Misspelled_Selector (Entity_List, Sel);
2694 elsif Is_Generic_Type (Prefix_Type)
2695 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
2696 and then Is_Record_Type (Etype (Prefix_Type))
2697 then
2698 -- If this is a derived formal type, the parent may have a
2699 -- different visibility at this point. Try for an inherited
2700 -- component before reporting an error.
2702 Set_Etype (Prefix (N), Etype (Prefix_Type));
2703 Analyze_Selected_Component (N);
2704 return;
2706 else
2707 if Ekind (Prefix_Type) = E_Record_Subtype then
2709 -- Check whether this is a component of the base type
2710 -- which is absent from a statically constrained subtype.
2711 -- This will raise constraint error at run-time, but is
2712 -- not a compile-time error. When the selector is illegal
2713 -- for base type as well fall through and generate a
2714 -- compilation error anyway.
2716 Comp := First_Component (Base_Type (Prefix_Type));
2718 while Present (Comp) loop
2720 if Chars (Comp) = Chars (Sel)
2721 and then Is_Visible_Component (Comp)
2722 then
2723 Set_Entity_With_Style_Check (Sel, Comp);
2724 Generate_Reference (Comp, Sel);
2725 Set_Etype (Sel, Etype (Comp));
2726 Set_Etype (N, Etype (Comp));
2728 -- Emit appropriate message. Gigi will replace the
2729 -- node subsequently with the appropriate Raise.
2731 Apply_Compile_Time_Constraint_Error
2732 (N, "component not present in }?",
2733 Ent => Prefix_Type, Rep => False);
2734 Set_Raises_Constraint_Error (N);
2735 return;
2736 end if;
2738 Next_Component (Comp);
2739 end loop;
2741 end if;
2743 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
2744 Error_Msg_NE ("no selector& for}", N, Sel);
2746 Check_Misspelled_Selector (Entity_List, Sel);
2748 end if;
2750 Set_Entity (Sel, Any_Id);
2751 Set_Etype (Sel, Any_Type);
2752 end if;
2753 end Analyze_Selected_Component;
2755 ---------------------------
2756 -- Analyze_Short_Circuit --
2757 ---------------------------
2759 procedure Analyze_Short_Circuit (N : Node_Id) is
2760 L : constant Node_Id := Left_Opnd (N);
2761 R : constant Node_Id := Right_Opnd (N);
2762 Ind : Interp_Index;
2763 It : Interp;
2765 begin
2766 Analyze_Expression (L);
2767 Analyze_Expression (R);
2768 Set_Etype (N, Any_Type);
2770 if not Is_Overloaded (L) then
2772 if Root_Type (Etype (L)) = Standard_Boolean
2773 and then Has_Compatible_Type (R, Etype (L))
2774 then
2775 Add_One_Interp (N, Etype (L), Etype (L));
2776 end if;
2778 else
2779 Get_First_Interp (L, Ind, It);
2781 while Present (It.Typ) loop
2782 if Root_Type (It.Typ) = Standard_Boolean
2783 and then Has_Compatible_Type (R, It.Typ)
2784 then
2785 Add_One_Interp (N, It.Typ, It.Typ);
2786 end if;
2788 Get_Next_Interp (Ind, It);
2789 end loop;
2790 end if;
2792 -- Here we have failed to find an interpretation. Clearly we
2793 -- know that it is not the case that both operands can have
2794 -- an interpretation of Boolean, but this is by far the most
2795 -- likely intended interpretation. So we simply resolve both
2796 -- operands as Booleans, and at least one of these resolutions
2797 -- will generate an error message, and we do not need to give
2798 -- a further error message on the short circuit operation itself.
2800 if Etype (N) = Any_Type then
2801 Resolve (L, Standard_Boolean);
2802 Resolve (R, Standard_Boolean);
2803 Set_Etype (N, Standard_Boolean);
2804 end if;
2805 end Analyze_Short_Circuit;
2807 -------------------
2808 -- Analyze_Slice --
2809 -------------------
2811 procedure Analyze_Slice (N : Node_Id) is
2812 P : constant Node_Id := Prefix (N);
2813 D : constant Node_Id := Discrete_Range (N);
2814 Array_Type : Entity_Id;
2816 procedure Analyze_Overloaded_Slice;
2817 -- If the prefix is overloaded, select those interpretations that
2818 -- yield a one-dimensional array type.
2820 procedure Analyze_Overloaded_Slice is
2821 I : Interp_Index;
2822 It : Interp;
2823 Typ : Entity_Id;
2825 begin
2826 Set_Etype (N, Any_Type);
2827 Get_First_Interp (P, I, It);
2829 while Present (It.Nam) loop
2830 Typ := It.Typ;
2832 if Is_Access_Type (Typ) then
2833 Typ := Designated_Type (Typ);
2834 end if;
2836 if Is_Array_Type (Typ)
2837 and then Number_Dimensions (Typ) = 1
2838 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
2839 then
2840 Add_One_Interp (N, Typ, Typ);
2841 end if;
2843 Get_Next_Interp (I, It);
2844 end loop;
2846 if Etype (N) = Any_Type then
2847 Error_Msg_N ("expect array type in prefix of slice", N);
2848 end if;
2849 end Analyze_Overloaded_Slice;
2851 -- Start of processing for Analyze_Slice
2853 begin
2854 -- Analyze the prefix if not done already
2856 if No (Etype (P)) then
2857 Analyze (P);
2858 end if;
2860 Analyze (D);
2862 if Is_Overloaded (P) then
2863 Analyze_Overloaded_Slice;
2865 else
2866 Array_Type := Etype (P);
2867 Set_Etype (N, Any_Type);
2869 if Is_Access_Type (Array_Type) then
2870 Array_Type := Designated_Type (Array_Type);
2871 end if;
2873 if not Is_Array_Type (Array_Type) then
2874 Wrong_Type (P, Any_Array);
2876 elsif Number_Dimensions (Array_Type) > 1 then
2877 Error_Msg_N
2878 ("type is not one-dimensional array in slice prefix", N);
2880 elsif not
2881 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
2882 then
2883 Wrong_Type (D, Etype (First_Index (Array_Type)));
2885 else
2886 Set_Etype (N, Array_Type);
2887 end if;
2888 end if;
2889 end Analyze_Slice;
2891 -----------------------------
2892 -- Analyze_Type_Conversion --
2893 -----------------------------
2895 procedure Analyze_Type_Conversion (N : Node_Id) is
2896 Expr : constant Node_Id := Expression (N);
2897 T : Entity_Id;
2899 begin
2900 -- If Conversion_OK is set, then the Etype is already set, and the
2901 -- only processing required is to analyze the expression. This is
2902 -- used to construct certain "illegal" conversions which are not
2903 -- allowed by Ada semantics, but can be handled OK by Gigi, see
2904 -- Sinfo for further details.
2906 if Conversion_OK (N) then
2907 Analyze (Expr);
2908 return;
2909 end if;
2911 -- Otherwise full type analysis is required, as well as some semantic
2912 -- checks to make sure the argument of the conversion is appropriate.
2914 Find_Type (Subtype_Mark (N));
2915 T := Entity (Subtype_Mark (N));
2916 Set_Etype (N, T);
2917 Check_Fully_Declared (T, N);
2918 Analyze_Expression (Expr);
2919 Validate_Remote_Type_Type_Conversion (N);
2921 -- Only remaining step is validity checks on the argument. These
2922 -- are skipped if the conversion does not come from the source.
2924 if not Comes_From_Source (N) then
2925 return;
2927 elsif Nkind (Expr) = N_Null then
2928 Error_Msg_N ("argument of conversion cannot be null", N);
2929 Error_Msg_N ("\use qualified expression instead", N);
2930 Set_Etype (N, Any_Type);
2932 elsif Nkind (Expr) = N_Aggregate then
2933 Error_Msg_N ("argument of conversion cannot be aggregate", N);
2934 Error_Msg_N ("\use qualified expression instead", N);
2936 elsif Nkind (Expr) = N_Allocator then
2937 Error_Msg_N ("argument of conversion cannot be an allocator", N);
2938 Error_Msg_N ("\use qualified expression instead", N);
2940 elsif Nkind (Expr) = N_String_Literal then
2941 Error_Msg_N ("argument of conversion cannot be string literal", N);
2942 Error_Msg_N ("\use qualified expression instead", N);
2944 elsif Nkind (Expr) = N_Character_Literal then
2945 if Ada_83 then
2946 Resolve (Expr, T);
2947 else
2948 Error_Msg_N ("argument of conversion cannot be character literal",
2950 Error_Msg_N ("\use qualified expression instead", N);
2951 end if;
2953 elsif Nkind (Expr) = N_Attribute_Reference
2954 and then
2955 (Attribute_Name (Expr) = Name_Access or else
2956 Attribute_Name (Expr) = Name_Unchecked_Access or else
2957 Attribute_Name (Expr) = Name_Unrestricted_Access)
2958 then
2959 Error_Msg_N ("argument of conversion cannot be access", N);
2960 Error_Msg_N ("\use qualified expression instead", N);
2961 end if;
2963 end Analyze_Type_Conversion;
2965 ----------------------
2966 -- Analyze_Unary_Op --
2967 ----------------------
2969 procedure Analyze_Unary_Op (N : Node_Id) is
2970 R : constant Node_Id := Right_Opnd (N);
2971 Op_Id : Entity_Id := Entity (N);
2973 begin
2974 Set_Etype (N, Any_Type);
2975 Candidate_Type := Empty;
2977 Analyze_Expression (R);
2979 if Present (Op_Id) then
2980 if Ekind (Op_Id) = E_Operator then
2981 Find_Unary_Types (R, Op_Id, N);
2982 else
2983 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2984 end if;
2986 else
2987 Op_Id := Get_Name_Entity_Id (Chars (N));
2989 while Present (Op_Id) loop
2991 if Ekind (Op_Id) = E_Operator then
2992 if No (Next_Entity (First_Entity (Op_Id))) then
2993 Find_Unary_Types (R, Op_Id, N);
2994 end if;
2996 elsif Is_Overloadable (Op_Id) then
2997 Analyze_User_Defined_Unary_Op (N, Op_Id);
2998 end if;
3000 Op_Id := Homonym (Op_Id);
3001 end loop;
3002 end if;
3004 Operator_Check (N);
3005 end Analyze_Unary_Op;
3007 ----------------------------------
3008 -- Analyze_Unchecked_Expression --
3009 ----------------------------------
3011 procedure Analyze_Unchecked_Expression (N : Node_Id) is
3012 begin
3013 Analyze (Expression (N), Suppress => All_Checks);
3014 Set_Etype (N, Etype (Expression (N)));
3015 Save_Interps (Expression (N), N);
3016 end Analyze_Unchecked_Expression;
3018 ---------------------------------------
3019 -- Analyze_Unchecked_Type_Conversion --
3020 ---------------------------------------
3022 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
3023 begin
3024 Find_Type (Subtype_Mark (N));
3025 Analyze_Expression (Expression (N));
3026 Set_Etype (N, Entity (Subtype_Mark (N)));
3027 end Analyze_Unchecked_Type_Conversion;
3029 ------------------------------------
3030 -- Analyze_User_Defined_Binary_Op --
3031 ------------------------------------
3033 procedure Analyze_User_Defined_Binary_Op
3034 (N : Node_Id;
3035 Op_Id : Entity_Id)
3037 begin
3038 -- Only do analysis if the operator Comes_From_Source, since otherwise
3039 -- the operator was generated by the expander, and all such operators
3040 -- always refer to the operators in package Standard.
3042 if Comes_From_Source (N) then
3043 declare
3044 F1 : constant Entity_Id := First_Formal (Op_Id);
3045 F2 : constant Entity_Id := Next_Formal (F1);
3047 begin
3048 -- Verify that Op_Id is a visible binary function. Note that since
3049 -- we know Op_Id is overloaded, potentially use visible means use
3050 -- visible for sure (RM 9.4(11)).
3052 if Ekind (Op_Id) = E_Function
3053 and then Present (F2)
3054 and then (Is_Immediately_Visible (Op_Id)
3055 or else Is_Potentially_Use_Visible (Op_Id))
3056 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
3057 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
3058 then
3059 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3061 if Debug_Flag_E then
3062 Write_Str ("user defined operator ");
3063 Write_Name (Chars (Op_Id));
3064 Write_Str (" on node ");
3065 Write_Int (Int (N));
3066 Write_Eol;
3067 end if;
3068 end if;
3069 end;
3070 end if;
3071 end Analyze_User_Defined_Binary_Op;
3073 -----------------------------------
3074 -- Analyze_User_Defined_Unary_Op --
3075 -----------------------------------
3077 procedure Analyze_User_Defined_Unary_Op
3078 (N : Node_Id;
3079 Op_Id : Entity_Id)
3081 begin
3082 -- Only do analysis if the operator Comes_From_Source, since otherwise
3083 -- the operator was generated by the expander, and all such operators
3084 -- always refer to the operators in package Standard.
3086 if Comes_From_Source (N) then
3087 declare
3088 F : constant Entity_Id := First_Formal (Op_Id);
3090 begin
3091 -- Verify that Op_Id is a visible unary function. Note that since
3092 -- we know Op_Id is overloaded, potentially use visible means use
3093 -- visible for sure (RM 9.4(11)).
3095 if Ekind (Op_Id) = E_Function
3096 and then No (Next_Formal (F))
3097 and then (Is_Immediately_Visible (Op_Id)
3098 or else Is_Potentially_Use_Visible (Op_Id))
3099 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
3100 then
3101 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3102 end if;
3103 end;
3104 end if;
3105 end Analyze_User_Defined_Unary_Op;
3107 ---------------------------
3108 -- Check_Arithmetic_Pair --
3109 ---------------------------
3111 procedure Check_Arithmetic_Pair
3112 (T1, T2 : Entity_Id;
3113 Op_Id : Entity_Id;
3114 N : Node_Id)
3116 Op_Name : constant Name_Id := Chars (Op_Id);
3118 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
3119 -- Get specific type (i.e. non-universal type if there is one)
3121 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
3122 begin
3123 if T1 = Universal_Integer or else T1 = Universal_Real then
3124 return Base_Type (T2);
3125 else
3126 return Base_Type (T1);
3127 end if;
3128 end Specific_Type;
3130 -- Start of processing for Check_Arithmetic_Pair
3132 begin
3133 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
3135 if Is_Numeric_Type (T1)
3136 and then Is_Numeric_Type (T2)
3137 and then (Covers (T1, T2) or else Covers (T2, T1))
3138 then
3139 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3140 end if;
3142 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
3144 if Is_Fixed_Point_Type (T1)
3145 and then (Is_Fixed_Point_Type (T2)
3146 or else T2 = Universal_Real)
3147 then
3148 -- If Treat_Fixed_As_Integer is set then the Etype is already set
3149 -- and no further processing is required (this is the case of an
3150 -- operator constructed by Exp_Fixd for a fixed point operation)
3151 -- Otherwise add one interpretation with universal fixed result
3152 -- If the operator is given in functional notation, it comes
3153 -- from source and Fixed_As_Integer cannot apply.
3155 if Nkind (N) not in N_Op
3156 or else not Treat_Fixed_As_Integer (N) then
3157 Add_One_Interp (N, Op_Id, Universal_Fixed);
3158 end if;
3160 elsif Is_Fixed_Point_Type (T2)
3161 and then (Nkind (N) not in N_Op
3162 or else not Treat_Fixed_As_Integer (N))
3163 and then T1 = Universal_Real
3164 then
3165 Add_One_Interp (N, Op_Id, Universal_Fixed);
3167 elsif Is_Numeric_Type (T1)
3168 and then Is_Numeric_Type (T2)
3169 and then (Covers (T1, T2) or else Covers (T2, T1))
3170 then
3171 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3173 elsif Is_Fixed_Point_Type (T1)
3174 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3175 or else T2 = Universal_Integer)
3176 then
3177 Add_One_Interp (N, Op_Id, T1);
3179 elsif T2 = Universal_Real
3180 and then Base_Type (T1) = Base_Type (Standard_Integer)
3181 and then Op_Name = Name_Op_Multiply
3182 then
3183 Add_One_Interp (N, Op_Id, Any_Fixed);
3185 elsif T1 = Universal_Real
3186 and then Base_Type (T2) = Base_Type (Standard_Integer)
3187 then
3188 Add_One_Interp (N, Op_Id, Any_Fixed);
3190 elsif Is_Fixed_Point_Type (T2)
3191 and then (Base_Type (T1) = Base_Type (Standard_Integer)
3192 or else T1 = Universal_Integer)
3193 and then Op_Name = Name_Op_Multiply
3194 then
3195 Add_One_Interp (N, Op_Id, T2);
3197 elsif T1 = Universal_Real and then T2 = Universal_Integer then
3198 Add_One_Interp (N, Op_Id, T1);
3200 elsif T2 = Universal_Real
3201 and then T1 = Universal_Integer
3202 and then Op_Name = Name_Op_Multiply
3203 then
3204 Add_One_Interp (N, Op_Id, T2);
3205 end if;
3207 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
3209 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
3210 -- set does not require any special processing, since the Etype is
3211 -- already set (case of operation constructed by Exp_Fixed).
3213 if Is_Integer_Type (T1)
3214 and then (Covers (T1, T2) or else Covers (T2, T1))
3215 then
3216 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
3217 end if;
3219 elsif Op_Name = Name_Op_Expon then
3221 if Is_Numeric_Type (T1)
3222 and then not Is_Fixed_Point_Type (T1)
3223 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3224 or else T2 = Universal_Integer)
3225 then
3226 Add_One_Interp (N, Op_Id, Base_Type (T1));
3227 end if;
3229 else pragma Assert (Nkind (N) in N_Op_Shift);
3231 -- If not one of the predefined operators, the node may be one
3232 -- of the intrinsic functions. Its kind is always specific, and
3233 -- we can use it directly, rather than the name of the operation.
3235 if Is_Integer_Type (T1)
3236 and then (Base_Type (T2) = Base_Type (Standard_Integer)
3237 or else T2 = Universal_Integer)
3238 then
3239 Add_One_Interp (N, Op_Id, Base_Type (T1));
3240 end if;
3241 end if;
3242 end Check_Arithmetic_Pair;
3244 -------------------------------
3245 -- Check_Misspelled_Selector --
3246 -------------------------------
3248 procedure Check_Misspelled_Selector
3249 (Prefix : Entity_Id;
3250 Sel : Node_Id)
3252 Max_Suggestions : constant := 2;
3253 Nr_Of_Suggestions : Natural := 0;
3255 Suggestion_1 : Entity_Id := Empty;
3256 Suggestion_2 : Entity_Id := Empty;
3258 Comp : Entity_Id;
3260 begin
3261 -- All the components of the prefix of selector Sel are matched
3262 -- against Sel and a count is maintained of possible misspellings.
3263 -- When at the end of the analysis there are one or two (not more!)
3264 -- possible misspellings, these misspellings will be suggested as
3265 -- possible correction.
3267 if not (Is_Private_Type (Prefix) or Is_Record_Type (Prefix)) then
3268 -- Concurrent types should be handled as well ???
3269 return;
3270 end if;
3272 Get_Name_String (Chars (Sel));
3274 declare
3275 S : constant String (1 .. Name_Len) :=
3276 Name_Buffer (1 .. Name_Len);
3278 begin
3279 Comp := First_Entity (Prefix);
3281 while Nr_Of_Suggestions <= Max_Suggestions
3282 and then Present (Comp)
3283 loop
3285 if Is_Visible_Component (Comp) then
3286 Get_Name_String (Chars (Comp));
3288 if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
3289 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
3291 case Nr_Of_Suggestions is
3292 when 1 => Suggestion_1 := Comp;
3293 when 2 => Suggestion_2 := Comp;
3294 when others => exit;
3295 end case;
3296 end if;
3297 end if;
3299 Comp := Next_Entity (Comp);
3300 end loop;
3302 -- Report at most two suggestions
3304 if Nr_Of_Suggestions = 1 then
3305 Error_Msg_NE ("\possible misspelling of&", Sel, Suggestion_1);
3307 elsif Nr_Of_Suggestions = 2 then
3308 Error_Msg_Node_2 := Suggestion_2;
3309 Error_Msg_NE ("\possible misspelling of& or&",
3310 Sel, Suggestion_1);
3311 end if;
3312 end;
3313 end Check_Misspelled_Selector;
3315 ----------------------
3316 -- Defined_In_Scope --
3317 ----------------------
3319 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
3321 S1 : constant Entity_Id := Scope (Base_Type (T));
3323 begin
3324 return S1 = S
3325 or else (S1 = System_Aux_Id and then S = Scope (S1));
3326 end Defined_In_Scope;
3328 -------------------
3329 -- Diagnose_Call --
3330 -------------------
3332 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
3333 Actual : Node_Id;
3334 X : Interp_Index;
3335 It : Interp;
3336 Success : Boolean;
3338 begin
3339 if Extensions_Allowed then
3340 Actual := First_Actual (N);
3342 while Present (Actual) loop
3343 if not Analyzed (Etype (Actual))
3344 and then From_With_Type (Etype (Actual))
3345 then
3346 Error_Msg_Qual_Level := 1;
3347 Error_Msg_NE
3348 ("missing with_clause for scope of imported type&",
3349 Actual, Etype (Actual));
3350 Error_Msg_Qual_Level := 0;
3351 end if;
3353 Next_Actual (Actual);
3354 end loop;
3355 end if;
3357 if All_Errors_Mode then
3359 -- Analyze each candidate call again, with full error reporting
3360 -- for each.
3362 Error_Msg_N ("\no candidate interpretations "
3363 & "match the actuals:!", Nam);
3365 Get_First_Interp (Nam, X, It);
3367 while Present (It.Nam) loop
3368 Analyze_One_Call (N, It.Nam, True, Success);
3369 Get_Next_Interp (X, It);
3370 end loop;
3372 else
3373 if OpenVMS then
3374 Error_Msg_N
3375 ("invalid parameter list in call " &
3376 "('/'R'E'P'O'R'T'_'E'R'R'O'R'S'='F'U'L'L for details)!",
3377 Nam);
3378 else
3379 Error_Msg_N
3380 ("invalid parameter list in call (use -gnatf for details)!",
3381 Nam);
3382 end if;
3383 end if;
3385 if Nkind (N) = N_Function_Call then
3386 Get_First_Interp (Nam, X, It);
3388 while Present (It.Nam) loop
3389 if Ekind (It.Nam) = E_Function
3390 or else Ekind (It.Nam) = E_Operator
3391 then
3392 return;
3393 else
3394 Get_Next_Interp (X, It);
3395 end if;
3396 end loop;
3398 -- If all interpretations are procedures, this deserves a
3399 -- more precise message. Ditto if this appears as the prefix
3400 -- of a selected component, which may be a lexical error.
3402 Error_Msg_N (
3403 "\context requires function call, found procedure name", Nam);
3405 if Nkind (Parent (N)) = N_Selected_Component
3406 and then N = Prefix (Parent (N))
3407 then
3408 Error_Msg_N (
3409 "\period should probably be semicolon", Parent (N));
3410 end if;
3411 end if;
3412 end Diagnose_Call;
3414 ---------------------------
3415 -- Find_Arithmetic_Types --
3416 ---------------------------
3418 procedure Find_Arithmetic_Types
3419 (L, R : Node_Id;
3420 Op_Id : Entity_Id;
3421 N : Node_Id)
3423 Index1, Index2 : Interp_Index;
3424 It1, It2 : Interp;
3426 procedure Check_Right_Argument (T : Entity_Id);
3427 -- Check right operand of operator
3429 procedure Check_Right_Argument (T : Entity_Id) is
3430 begin
3431 if not Is_Overloaded (R) then
3432 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
3433 else
3434 Get_First_Interp (R, Index2, It2);
3436 while Present (It2.Typ) loop
3437 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
3438 Get_Next_Interp (Index2, It2);
3439 end loop;
3440 end if;
3441 end Check_Right_Argument;
3443 -- Start processing for Find_Arithmetic_Types
3445 begin
3446 if not Is_Overloaded (L) then
3447 Check_Right_Argument (Etype (L));
3449 else
3450 Get_First_Interp (L, Index1, It1);
3452 while Present (It1.Typ) loop
3453 Check_Right_Argument (It1.Typ);
3454 Get_Next_Interp (Index1, It1);
3455 end loop;
3456 end if;
3458 end Find_Arithmetic_Types;
3460 ------------------------
3461 -- Find_Boolean_Types --
3462 ------------------------
3464 procedure Find_Boolean_Types
3465 (L, R : Node_Id;
3466 Op_Id : Entity_Id;
3467 N : Node_Id)
3469 Index : Interp_Index;
3470 It : Interp;
3472 procedure Check_Numeric_Argument (T : Entity_Id);
3473 -- Special case for logical operations one of whose operands is an
3474 -- integer literal. If both are literal the result is any modular type.
3476 procedure Check_Numeric_Argument (T : Entity_Id) is
3477 begin
3478 if T = Universal_Integer then
3479 Add_One_Interp (N, Op_Id, Any_Modular);
3481 elsif Is_Modular_Integer_Type (T) then
3482 Add_One_Interp (N, Op_Id, T);
3483 end if;
3484 end Check_Numeric_Argument;
3486 -- Start of processing for Find_Boolean_Types
3488 begin
3489 if not Is_Overloaded (L) then
3491 if Etype (L) = Universal_Integer
3492 or else Etype (L) = Any_Modular
3493 then
3494 if not Is_Overloaded (R) then
3495 Check_Numeric_Argument (Etype (R));
3497 else
3498 Get_First_Interp (R, Index, It);
3500 while Present (It.Typ) loop
3501 Check_Numeric_Argument (It.Typ);
3503 Get_Next_Interp (Index, It);
3504 end loop;
3505 end if;
3507 elsif Valid_Boolean_Arg (Etype (L))
3508 and then Has_Compatible_Type (R, Etype (L))
3509 then
3510 Add_One_Interp (N, Op_Id, Etype (L));
3511 end if;
3513 else
3514 Get_First_Interp (L, Index, It);
3516 while Present (It.Typ) loop
3517 if Valid_Boolean_Arg (It.Typ)
3518 and then Has_Compatible_Type (R, It.Typ)
3519 then
3520 Add_One_Interp (N, Op_Id, It.Typ);
3521 end if;
3523 Get_Next_Interp (Index, It);
3524 end loop;
3525 end if;
3526 end Find_Boolean_Types;
3528 ---------------------------
3529 -- Find_Comparison_Types --
3530 ---------------------------
3532 procedure Find_Comparison_Types
3533 (L, R : Node_Id;
3534 Op_Id : Entity_Id;
3535 N : Node_Id)
3537 Index : Interp_Index;
3538 It : Interp;
3539 Found : Boolean := False;
3540 I_F : Interp_Index;
3541 T_F : Entity_Id;
3542 Scop : Entity_Id := Empty;
3544 procedure Try_One_Interp (T1 : Entity_Id);
3545 -- Routine to try one proposed interpretation. Note that the context
3546 -- of the operator plays no role in resolving the arguments, so that
3547 -- if there is more than one interpretation of the operands that is
3548 -- compatible with comparison, the operation is ambiguous.
3550 procedure Try_One_Interp (T1 : Entity_Id) is
3551 begin
3553 -- If the operator is an expanded name, then the type of the operand
3554 -- must be defined in the corresponding scope. If the type is
3555 -- universal, the context will impose the correct type.
3557 if Present (Scop)
3558 and then not Defined_In_Scope (T1, Scop)
3559 and then T1 /= Universal_Integer
3560 and then T1 /= Universal_Real
3561 and then T1 /= Any_String
3562 and then T1 /= Any_Composite
3563 then
3564 return;
3565 end if;
3567 if Valid_Comparison_Arg (T1)
3568 and then Has_Compatible_Type (R, T1)
3569 then
3570 if Found
3571 and then Base_Type (T1) /= Base_Type (T_F)
3572 then
3573 It := Disambiguate (L, I_F, Index, Any_Type);
3575 if It = No_Interp then
3576 Ambiguous_Operands (N);
3577 Set_Etype (L, Any_Type);
3578 return;
3580 else
3581 T_F := It.Typ;
3582 end if;
3584 else
3585 Found := True;
3586 T_F := T1;
3587 I_F := Index;
3588 end if;
3590 Set_Etype (L, T_F);
3591 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
3593 end if;
3594 end Try_One_Interp;
3596 -- Start processing for Find_Comparison_Types
3598 begin
3600 if Nkind (N) = N_Function_Call
3601 and then Nkind (Name (N)) = N_Expanded_Name
3602 then
3603 Scop := Entity (Prefix (Name (N)));
3605 -- The prefix may be a package renaming, and the subsequent test
3606 -- requires the original package.
3608 if Ekind (Scop) = E_Package
3609 and then Present (Renamed_Entity (Scop))
3610 then
3611 Scop := Renamed_Entity (Scop);
3612 Set_Entity (Prefix (Name (N)), Scop);
3613 end if;
3614 end if;
3616 if not Is_Overloaded (L) then
3617 Try_One_Interp (Etype (L));
3619 else
3620 Get_First_Interp (L, Index, It);
3622 while Present (It.Typ) loop
3623 Try_One_Interp (It.Typ);
3624 Get_Next_Interp (Index, It);
3625 end loop;
3626 end if;
3627 end Find_Comparison_Types;
3629 ----------------------------------------
3630 -- Find_Non_Universal_Interpretations --
3631 ----------------------------------------
3633 procedure Find_Non_Universal_Interpretations
3634 (N : Node_Id;
3635 R : Node_Id;
3636 Op_Id : Entity_Id;
3637 T1 : Entity_Id)
3639 Index : Interp_Index;
3640 It : Interp;
3642 begin
3643 if T1 = Universal_Integer
3644 or else T1 = Universal_Real
3645 then
3646 if not Is_Overloaded (R) then
3647 Add_One_Interp
3648 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
3649 else
3650 Get_First_Interp (R, Index, It);
3652 while Present (It.Typ) loop
3653 if Covers (It.Typ, T1) then
3654 Add_One_Interp
3655 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
3656 end if;
3658 Get_Next_Interp (Index, It);
3659 end loop;
3660 end if;
3661 else
3662 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
3663 end if;
3664 end Find_Non_Universal_Interpretations;
3666 ------------------------------
3667 -- Find_Concatenation_Types --
3668 ------------------------------
3670 procedure Find_Concatenation_Types
3671 (L, R : Node_Id;
3672 Op_Id : Entity_Id;
3673 N : Node_Id)
3675 Op_Type : constant Entity_Id := Etype (Op_Id);
3677 begin
3678 if Is_Array_Type (Op_Type)
3679 and then not Is_Limited_Type (Op_Type)
3681 and then (Has_Compatible_Type (L, Op_Type)
3682 or else
3683 Has_Compatible_Type (L, Component_Type (Op_Type)))
3685 and then (Has_Compatible_Type (R, Op_Type)
3686 or else
3687 Has_Compatible_Type (R, Component_Type (Op_Type)))
3688 then
3689 Add_One_Interp (N, Op_Id, Op_Type);
3690 end if;
3691 end Find_Concatenation_Types;
3693 -------------------------
3694 -- Find_Equality_Types --
3695 -------------------------
3697 procedure Find_Equality_Types
3698 (L, R : Node_Id;
3699 Op_Id : Entity_Id;
3700 N : Node_Id)
3702 Index : Interp_Index;
3703 It : Interp;
3704 Found : Boolean := False;
3705 I_F : Interp_Index;
3706 T_F : Entity_Id;
3707 Scop : Entity_Id := Empty;
3709 procedure Try_One_Interp (T1 : Entity_Id);
3710 -- The context of the operator plays no role in resolving the
3711 -- arguments, so that if there is more than one interpretation
3712 -- of the operands that is compatible with equality, the construct
3713 -- is ambiguous and an error can be emitted now, after trying to
3714 -- disambiguate, i.e. applying preference rules.
3716 procedure Try_One_Interp (T1 : Entity_Id) is
3717 begin
3719 -- If the operator is an expanded name, then the type of the operand
3720 -- must be defined in the corresponding scope. If the type is
3721 -- universal, the context will impose the correct type. An anonymous
3722 -- type for a 'Access reference is also universal in this sense, as
3723 -- the actual type is obtained from context.
3725 if Present (Scop)
3726 and then not Defined_In_Scope (T1, Scop)
3727 and then T1 /= Universal_Integer
3728 and then T1 /= Universal_Real
3729 and then T1 /= Any_Access
3730 and then T1 /= Any_String
3731 and then T1 /= Any_Composite
3732 and then (Ekind (T1) /= E_Access_Subprogram_Type
3733 or else Comes_From_Source (T1))
3734 then
3735 return;
3736 end if;
3738 if T1 /= Standard_Void_Type
3739 and then not Is_Limited_Type (T1)
3740 and then not Is_Limited_Composite (T1)
3741 and then Ekind (T1) /= E_Anonymous_Access_Type
3742 and then Has_Compatible_Type (R, T1)
3743 then
3744 if Found
3745 and then Base_Type (T1) /= Base_Type (T_F)
3746 then
3747 It := Disambiguate (L, I_F, Index, Any_Type);
3749 if It = No_Interp then
3750 Ambiguous_Operands (N);
3751 Set_Etype (L, Any_Type);
3752 return;
3754 else
3755 T_F := It.Typ;
3756 end if;
3758 else
3759 Found := True;
3760 T_F := T1;
3761 I_F := Index;
3762 end if;
3764 if not Analyzed (L) then
3765 Set_Etype (L, T_F);
3766 end if;
3768 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
3770 if Etype (N) = Any_Type then
3772 -- Operator was not visible.
3774 Found := False;
3775 end if;
3776 end if;
3777 end Try_One_Interp;
3779 -- Start of processing for Find_Equality_Types
3781 begin
3783 if Nkind (N) = N_Function_Call
3784 and then Nkind (Name (N)) = N_Expanded_Name
3785 then
3786 Scop := Entity (Prefix (Name (N)));
3788 -- The prefix may be a package renaming, and the subsequent test
3789 -- requires the original package.
3791 if Ekind (Scop) = E_Package
3792 and then Present (Renamed_Entity (Scop))
3793 then
3794 Scop := Renamed_Entity (Scop);
3795 Set_Entity (Prefix (Name (N)), Scop);
3796 end if;
3797 end if;
3799 if not Is_Overloaded (L) then
3800 Try_One_Interp (Etype (L));
3801 else
3803 Get_First_Interp (L, Index, It);
3805 while Present (It.Typ) loop
3806 Try_One_Interp (It.Typ);
3807 Get_Next_Interp (Index, It);
3808 end loop;
3809 end if;
3810 end Find_Equality_Types;
3812 -------------------------
3813 -- Find_Negation_Types --
3814 -------------------------
3816 procedure Find_Negation_Types
3817 (R : Node_Id;
3818 Op_Id : Entity_Id;
3819 N : Node_Id)
3821 Index : Interp_Index;
3822 It : Interp;
3824 begin
3825 if not Is_Overloaded (R) then
3827 if Etype (R) = Universal_Integer then
3828 Add_One_Interp (N, Op_Id, Any_Modular);
3830 elsif Valid_Boolean_Arg (Etype (R)) then
3831 Add_One_Interp (N, Op_Id, Etype (R));
3832 end if;
3834 else
3835 Get_First_Interp (R, Index, It);
3837 while Present (It.Typ) loop
3838 if Valid_Boolean_Arg (It.Typ) then
3839 Add_One_Interp (N, Op_Id, It.Typ);
3840 end if;
3842 Get_Next_Interp (Index, It);
3843 end loop;
3844 end if;
3845 end Find_Negation_Types;
3847 ----------------------
3848 -- Find_Unary_Types --
3849 ----------------------
3851 procedure Find_Unary_Types
3852 (R : Node_Id;
3853 Op_Id : Entity_Id;
3854 N : Node_Id)
3856 Index : Interp_Index;
3857 It : Interp;
3859 begin
3860 if not Is_Overloaded (R) then
3861 if Is_Numeric_Type (Etype (R)) then
3862 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
3863 end if;
3865 else
3866 Get_First_Interp (R, Index, It);
3868 while Present (It.Typ) loop
3869 if Is_Numeric_Type (It.Typ) then
3870 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
3871 end if;
3873 Get_Next_Interp (Index, It);
3874 end loop;
3875 end if;
3876 end Find_Unary_Types;
3878 ---------------------------------
3879 -- Insert_Explicit_Dereference --
3880 ---------------------------------
3882 procedure Insert_Explicit_Dereference (N : Node_Id) is
3883 New_Prefix : Node_Id := Relocate_Node (N);
3884 I : Interp_Index;
3885 It : Interp;
3886 T : Entity_Id;
3888 begin
3889 Save_Interps (N, New_Prefix);
3890 Rewrite (N,
3891 Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
3893 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
3895 if Is_Overloaded (New_Prefix) then
3897 -- The deference is also overloaded, and its interpretations are the
3898 -- designated types of the interpretations of the original node.
3900 Set_Is_Overloaded (N);
3901 Get_First_Interp (New_Prefix, I, It);
3903 while Present (It.Nam) loop
3904 T := It.Typ;
3906 if Is_Access_Type (T) then
3907 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
3908 end if;
3910 Get_Next_Interp (I, It);
3911 end loop;
3913 End_Interp_List;
3914 end if;
3916 end Insert_Explicit_Dereference;
3918 ------------------
3919 -- Junk_Operand --
3920 ------------------
3922 function Junk_Operand (N : Node_Id) return Boolean is
3923 Enode : Node_Id;
3925 begin
3926 if Error_Posted (N) then
3927 return False;
3928 end if;
3930 -- Get entity to be tested
3932 if Is_Entity_Name (N)
3933 and then Present (Entity (N))
3934 then
3935 Enode := N;
3937 -- An odd case, a procedure name gets converted to a very peculiar
3938 -- function call, and here is where we detect this happening.
3940 elsif Nkind (N) = N_Function_Call
3941 and then Is_Entity_Name (Name (N))
3942 and then Present (Entity (Name (N)))
3943 then
3944 Enode := Name (N);
3946 -- Another odd case, there are at least some cases of selected
3947 -- components where the selected component is not marked as having
3948 -- an entity, even though the selector does have an entity
3950 elsif Nkind (N) = N_Selected_Component
3951 and then Present (Entity (Selector_Name (N)))
3952 then
3953 Enode := Selector_Name (N);
3955 else
3956 return False;
3957 end if;
3959 -- Now test the entity we got to see if it a bad case
3961 case Ekind (Entity (Enode)) is
3963 when E_Package =>
3964 Error_Msg_N
3965 ("package name cannot be used as operand", Enode);
3967 when Generic_Unit_Kind =>
3968 Error_Msg_N
3969 ("generic unit name cannot be used as operand", Enode);
3971 when Type_Kind =>
3972 Error_Msg_N
3973 ("subtype name cannot be used as operand", Enode);
3975 when Entry_Kind =>
3976 Error_Msg_N
3977 ("entry name cannot be used as operand", Enode);
3979 when E_Procedure =>
3980 Error_Msg_N
3981 ("procedure name cannot be used as operand", Enode);
3983 when E_Exception =>
3984 Error_Msg_N
3985 ("exception name cannot be used as operand", Enode);
3987 when E_Block | E_Label | E_Loop =>
3988 Error_Msg_N
3989 ("label name cannot be used as operand", Enode);
3991 when others =>
3992 return False;
3994 end case;
3996 return True;
3997 end Junk_Operand;
3999 --------------------
4000 -- Operator_Check --
4001 --------------------
4003 procedure Operator_Check (N : Node_Id) is
4004 begin
4005 -- Test for case of no interpretation found for operator
4007 if Etype (N) = Any_Type then
4008 declare
4009 L : Node_Id;
4010 R : Node_Id;
4012 begin
4013 R := Right_Opnd (N);
4015 if Nkind (N) in N_Binary_Op then
4016 L := Left_Opnd (N);
4017 else
4018 L := Empty;
4019 end if;
4021 -- If either operand has no type, then don't complain further,
4022 -- since this simply means that we have a propragated error.
4024 if R = Error
4025 or else Etype (R) = Any_Type
4026 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
4027 then
4028 return;
4030 -- We explicitly check for the case of concatenation of
4031 -- component with component to avoid reporting spurious
4032 -- matching array types that might happen to be lurking
4033 -- in distant packages (such as run-time packages). This
4034 -- also prevents inconsistencies in the messages for certain
4035 -- ACVC B tests, which can vary depending on types declared
4036 -- in run-time interfaces. A further improvement, when
4037 -- aggregates are present, is to look for a well-typed operand.
4039 elsif Present (Candidate_Type)
4040 and then (Nkind (N) /= N_Op_Concat
4041 or else Is_Array_Type (Etype (L))
4042 or else Is_Array_Type (Etype (R)))
4043 then
4045 if Nkind (N) = N_Op_Concat then
4046 if Etype (L) /= Any_Composite
4047 and then Is_Array_Type (Etype (L))
4048 then
4049 Candidate_Type := Etype (L);
4051 elsif Etype (R) /= Any_Composite
4052 and then Is_Array_Type (Etype (R))
4053 then
4054 Candidate_Type := Etype (R);
4055 end if;
4056 end if;
4058 Error_Msg_NE
4059 ("operator for} is not directly visible!",
4060 N, First_Subtype (Candidate_Type));
4061 Error_Msg_N ("use clause would make operation legal!", N);
4062 return;
4064 -- If either operand is a junk operand (e.g. package name), then
4065 -- post appropriate error messages, but do not complain further.
4067 -- Note that the use of OR in this test instead of OR ELSE
4068 -- is quite deliberate, we may as well check both operands
4069 -- in the binary operator case.
4071 elsif Junk_Operand (R)
4072 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
4073 then
4074 return;
4076 -- If we have a logical operator, one of whose operands is
4077 -- Boolean, then we know that the other operand cannot resolve
4078 -- to Boolean (since we got no interpretations), but in that
4079 -- case we pretty much know that the other operand should be
4080 -- Boolean, so resolve it that way (generating an error)
4082 elsif Nkind (N) = N_Op_And
4083 or else
4084 Nkind (N) = N_Op_Or
4085 or else
4086 Nkind (N) = N_Op_Xor
4087 then
4088 if Etype (L) = Standard_Boolean then
4089 Resolve (R, Standard_Boolean);
4090 return;
4091 elsif Etype (R) = Standard_Boolean then
4092 Resolve (L, Standard_Boolean);
4093 return;
4094 end if;
4096 -- For an arithmetic operator or comparison operator, if one
4097 -- of the operands is numeric, then we know the other operand
4098 -- is not the same numeric type. If it is a non-numeric type,
4099 -- then probably it is intended to match the other operand.
4101 elsif Nkind (N) = N_Op_Add or else
4102 Nkind (N) = N_Op_Divide or else
4103 Nkind (N) = N_Op_Ge or else
4104 Nkind (N) = N_Op_Gt or else
4105 Nkind (N) = N_Op_Le or else
4106 Nkind (N) = N_Op_Lt or else
4107 Nkind (N) = N_Op_Mod or else
4108 Nkind (N) = N_Op_Multiply or else
4109 Nkind (N) = N_Op_Rem or else
4110 Nkind (N) = N_Op_Subtract
4111 then
4112 if Is_Numeric_Type (Etype (L))
4113 and then not Is_Numeric_Type (Etype (R))
4114 then
4115 Resolve (R, Etype (L));
4116 return;
4118 elsif Is_Numeric_Type (Etype (R))
4119 and then not Is_Numeric_Type (Etype (L))
4120 then
4121 Resolve (L, Etype (R));
4122 return;
4123 end if;
4125 -- Comparisons on A'Access are common enough to deserve a
4126 -- special message.
4128 elsif (Nkind (N) = N_Op_Eq or else
4129 Nkind (N) = N_Op_Ne)
4130 and then Ekind (Etype (L)) = E_Access_Attribute_Type
4131 and then Ekind (Etype (R)) = E_Access_Attribute_Type
4132 then
4133 Error_Msg_N
4134 ("two access attributes cannot be compared directly", N);
4135 Error_Msg_N
4136 ("\they must be converted to an explicit type for comparison",
4138 return;
4140 -- Another one for C programmers
4142 elsif Nkind (N) = N_Op_Concat
4143 and then Valid_Boolean_Arg (Etype (L))
4144 and then Valid_Boolean_Arg (Etype (R))
4145 then
4146 Error_Msg_N ("invalid operands for concatenation", N);
4147 Error_Msg_N ("\maybe AND was meant", N);
4148 return;
4150 -- A special case for comparison of access parameter with null
4152 elsif Nkind (N) = N_Op_Eq
4153 and then Is_Entity_Name (L)
4154 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
4155 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
4156 N_Access_Definition
4157 and then Nkind (R) = N_Null
4158 then
4159 Error_Msg_N ("access parameter is not allowed to be null", L);
4160 Error_Msg_N ("\(call would raise Constraint_Error)", L);
4161 return;
4162 end if;
4164 -- If we fall through then just give general message. Note
4165 -- that in the following messages, if the operand is overloaded
4166 -- we choose an arbitrary type to complain about, but that is
4167 -- probably more useful than not giving a type at all.
4169 if Nkind (N) in N_Unary_Op then
4170 Error_Msg_Node_2 := Etype (R);
4171 Error_Msg_N ("operator& not defined for}", N);
4172 return;
4174 else
4175 Error_Msg_N ("invalid operand types for operator&", N);
4177 if Nkind (N) in N_Binary_Op
4178 and then Nkind (N) /= N_Op_Concat
4179 then
4180 Error_Msg_NE ("\left operand has}!", N, Etype (L));
4181 Error_Msg_NE ("\right operand has}!", N, Etype (R));
4182 end if;
4183 end if;
4184 end;
4185 end if;
4186 end Operator_Check;
4188 -----------------------
4189 -- Try_Indirect_Call --
4190 -----------------------
4192 function Try_Indirect_Call
4193 (N : Node_Id;
4194 Nam : Entity_Id;
4195 Typ : Entity_Id)
4196 return Boolean
4198 Actuals : List_Id := Parameter_Associations (N);
4199 Actual : Node_Id := First (Actuals);
4200 Formal : Entity_Id := First_Formal (Designated_Type (Typ));
4202 begin
4203 while Present (Actual)
4204 and then Present (Formal)
4205 loop
4206 if not Has_Compatible_Type (Actual, Etype (Formal)) then
4207 return False;
4208 end if;
4210 Next (Actual);
4211 Next_Formal (Formal);
4212 end loop;
4214 if No (Actual) and then No (Formal) then
4215 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
4217 -- Nam is a candidate interpretation for the name in the call,
4218 -- if it is not an indirect call.
4220 if not Is_Type (Nam)
4221 and then Is_Entity_Name (Name (N))
4222 then
4223 Set_Entity (Name (N), Nam);
4224 end if;
4226 return True;
4227 else
4228 return False;
4229 end if;
4230 end Try_Indirect_Call;
4232 ----------------------
4233 -- Try_Indexed_Call --
4234 ----------------------
4236 function Try_Indexed_Call
4237 (N : Node_Id;
4238 Nam : Entity_Id;
4239 Typ : Entity_Id)
4240 return Boolean
4242 Actuals : List_Id := Parameter_Associations (N);
4243 Actual : Node_Id := First (Actuals);
4244 Index : Entity_Id := First_Index (Typ);
4246 begin
4247 while Present (Actual)
4248 and then Present (Index)
4249 loop
4250 -- If the parameter list has a named association, the expression
4251 -- is definitely a call and not an indexed component.
4253 if Nkind (Actual) = N_Parameter_Association then
4254 return False;
4255 end if;
4257 if not Has_Compatible_Type (Actual, Etype (Index)) then
4258 return False;
4259 end if;
4261 Next (Actual);
4262 Next_Index (Index);
4263 end loop;
4265 if No (Actual) and then No (Index) then
4266 Add_One_Interp (N, Nam, Component_Type (Typ));
4268 -- Nam is a candidate interpretation for the name in the call,
4269 -- if it is not an indirect call.
4271 if not Is_Type (Nam)
4272 and then Is_Entity_Name (Name (N))
4273 then
4274 Set_Entity (Name (N), Nam);
4275 end if;
4277 return True;
4278 else
4279 return False;
4280 end if;
4282 end Try_Indexed_Call;
4284 end Sem_Ch4;