PR target/11183
[official-gcc.git] / gcc / explow.c
blobcd0a15836a3643bb51fbf95bf98734a0cec3dcd7
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs PARAMS ((rtx));
42 static void emit_stack_probe PARAMS ((rtx));
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (c, mode)
49 HOST_WIDE_INT c;
50 enum machine_mode mode;
52 int width = GET_MODE_BITSIZE (mode);
54 /* You want to truncate to a _what_? */
55 if (! SCALAR_INT_MODE_P (mode))
56 abort ();
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C.
78 This function should be used via the `plus_constant' macro. */
80 rtx
81 plus_constant_wide (x, c)
82 rtx x;
83 HOST_WIDE_INT c;
85 RTX_CODE code;
86 rtx y;
87 enum machine_mode mode;
88 rtx tem;
89 int all_constant = 0;
91 if (c == 0)
92 return x;
94 restart:
96 code = GET_CODE (x);
97 mode = GET_MODE (x);
98 y = x;
100 switch (code)
102 case CONST_INT:
103 return GEN_INT (INTVAL (x) + c);
105 case CONST_DOUBLE:
107 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
108 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
109 unsigned HOST_WIDE_INT l2 = c;
110 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
111 unsigned HOST_WIDE_INT lv;
112 HOST_WIDE_INT hv;
114 add_double (l1, h1, l2, h2, &lv, &hv);
116 return immed_double_const (lv, hv, VOIDmode);
119 case MEM:
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
127 = force_const_mem (GET_MODE (x),
128 plus_constant (get_pool_constant (XEXP (x, 0)),
129 c));
130 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
131 return tem;
133 break;
135 case CONST:
136 /* If adding to something entirely constant, set a flag
137 so that we can add a CONST around the result. */
138 x = XEXP (x, 0);
139 all_constant = 1;
140 goto restart;
142 case SYMBOL_REF:
143 case LABEL_REF:
144 all_constant = 1;
145 break;
147 case PLUS:
148 /* The interesting case is adding the integer to a sum.
149 Look for constant term in the sum and combine
150 with C. For an integer constant term, we make a combined
151 integer. For a constant term that is not an explicit integer,
152 we cannot really combine, but group them together anyway.
154 Restart or use a recursive call in case the remaining operand is
155 something that we handle specially, such as a SYMBOL_REF.
157 We may not immediately return from the recursive call here, lest
158 all_constant gets lost. */
160 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
162 c += INTVAL (XEXP (x, 1));
164 if (GET_MODE (x) != VOIDmode)
165 c = trunc_int_for_mode (c, GET_MODE (x));
167 x = XEXP (x, 0);
168 goto restart;
170 else if (CONSTANT_P (XEXP (x, 1)))
172 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
173 c = 0;
175 else if (find_constant_term_loc (&y))
177 /* We need to be careful since X may be shared and we can't
178 modify it in place. */
179 rtx copy = copy_rtx (x);
180 rtx *const_loc = find_constant_term_loc (&copy);
182 *const_loc = plus_constant (*const_loc, c);
183 x = copy;
184 c = 0;
186 break;
188 default:
189 break;
192 if (c != 0)
193 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
198 return gen_rtx_CONST (mode, x);
199 else
200 return x;
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
209 eliminate_constant_term (x, constptr)
210 rtx x;
211 rtx *constptr;
213 rtx x0, x1;
214 rtx tem;
216 if (GET_CODE (x) != PLUS)
217 return x;
219 /* First handle constants appearing at this level explicitly. */
220 if (GET_CODE (XEXP (x, 1)) == CONST_INT
221 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
222 XEXP (x, 1)))
223 && GET_CODE (tem) == CONST_INT)
225 *constptr = tem;
226 return eliminate_constant_term (XEXP (x, 0), constptr);
229 tem = const0_rtx;
230 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
231 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
232 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
233 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
234 *constptr, tem))
235 && GET_CODE (tem) == CONST_INT)
237 *constptr = tem;
238 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
241 return x;
244 /* Returns the insn that next references REG after INSN, or 0
245 if REG is clobbered before next referenced or we cannot find
246 an insn that references REG in a straight-line piece of code. */
249 find_next_ref (reg, insn)
250 rtx reg;
251 rtx insn;
253 rtx next;
255 for (insn = NEXT_INSN (insn); insn; insn = next)
257 next = NEXT_INSN (insn);
258 if (GET_CODE (insn) == NOTE)
259 continue;
260 if (GET_CODE (insn) == CODE_LABEL
261 || GET_CODE (insn) == BARRIER)
262 return 0;
263 if (GET_CODE (insn) == INSN
264 || GET_CODE (insn) == JUMP_INSN
265 || GET_CODE (insn) == CALL_INSN)
267 if (reg_set_p (reg, insn))
268 return 0;
269 if (reg_mentioned_p (reg, PATTERN (insn)))
270 return insn;
271 if (GET_CODE (insn) == JUMP_INSN)
273 if (any_uncondjump_p (insn))
274 next = JUMP_LABEL (insn);
275 else
276 return 0;
278 if (GET_CODE (insn) == CALL_INSN
279 && REGNO (reg) < FIRST_PSEUDO_REGISTER
280 && call_used_regs[REGNO (reg)])
281 return 0;
283 else
284 abort ();
286 return 0;
289 /* Return an rtx for the size in bytes of the value of EXP. */
292 expr_size (exp)
293 tree exp;
295 tree size = (*lang_hooks.expr_size) (exp);
297 if (CONTAINS_PLACEHOLDER_P (size))
298 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
300 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
303 /* Return a wide integer for the size in bytes of the value of EXP, or -1
304 if the size can vary or is larger than an integer. */
306 HOST_WIDE_INT
307 int_expr_size (exp)
308 tree exp;
310 tree t = (*lang_hooks.expr_size) (exp);
312 if (t == 0
313 || TREE_CODE (t) != INTEGER_CST
314 || TREE_OVERFLOW (t)
315 || TREE_INT_CST_HIGH (t) != 0
316 /* If the result would appear negative, it's too big to represent. */
317 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
318 return -1;
320 return TREE_INT_CST_LOW (t);
323 /* Return a copy of X in which all memory references
324 and all constants that involve symbol refs
325 have been replaced with new temporary registers.
326 Also emit code to load the memory locations and constants
327 into those registers.
329 If X contains no such constants or memory references,
330 X itself (not a copy) is returned.
332 If a constant is found in the address that is not a legitimate constant
333 in an insn, it is left alone in the hope that it might be valid in the
334 address.
336 X may contain no arithmetic except addition, subtraction and multiplication.
337 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
339 static rtx
340 break_out_memory_refs (x)
341 rtx x;
343 if (GET_CODE (x) == MEM
344 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
345 && GET_MODE (x) != VOIDmode))
346 x = force_reg (GET_MODE (x), x);
347 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
348 || GET_CODE (x) == MULT)
350 rtx op0 = break_out_memory_refs (XEXP (x, 0));
351 rtx op1 = break_out_memory_refs (XEXP (x, 1));
353 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
354 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
357 return x;
360 #ifdef POINTERS_EXTEND_UNSIGNED
362 /* Given X, a memory address in ptr_mode, convert it to an address
363 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
364 the fact that pointers are not allowed to overflow by commuting arithmetic
365 operations over conversions so that address arithmetic insns can be
366 used. */
369 convert_memory_address (to_mode, x)
370 enum machine_mode to_mode;
371 rtx x;
373 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
374 rtx temp;
375 enum rtx_code code;
377 /* Here we handle some special cases. If none of them apply, fall through
378 to the default case. */
379 switch (GET_CODE (x))
381 case CONST_INT:
382 case CONST_DOUBLE:
383 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
384 code = TRUNCATE;
385 else if (POINTERS_EXTEND_UNSIGNED < 0)
386 break;
387 else if (POINTERS_EXTEND_UNSIGNED > 0)
388 code = ZERO_EXTEND;
389 else
390 code = SIGN_EXTEND;
391 temp = simplify_unary_operation (code, to_mode, x, from_mode);
392 if (temp)
393 return temp;
394 break;
396 case SUBREG:
397 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
398 && GET_MODE (SUBREG_REG (x)) == to_mode)
399 return SUBREG_REG (x);
400 break;
402 case LABEL_REF:
403 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
404 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
405 return temp;
406 break;
408 case SYMBOL_REF:
409 temp = shallow_copy_rtx (x);
410 PUT_MODE (temp, to_mode);
411 return temp;
412 break;
414 case CONST:
415 return gen_rtx_CONST (to_mode,
416 convert_memory_address (to_mode, XEXP (x, 0)));
417 break;
419 case PLUS:
420 case MULT:
421 /* For addition we can safely permute the conversion and addition
422 operation if one operand is a constant and converting the constant
423 does not change it. We can always safely permute them if we are
424 making the address narrower. */
425 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
426 || (GET_CODE (x) == PLUS
427 && GET_CODE (XEXP (x, 1)) == CONST_INT
428 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
429 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
430 convert_memory_address (to_mode, XEXP (x, 0)),
431 XEXP (x, 1));
432 break;
434 default:
435 break;
438 return convert_modes (to_mode, from_mode,
439 x, POINTERS_EXTEND_UNSIGNED);
441 #endif
443 /* Given a memory address or facsimile X, construct a new address,
444 currently equivalent, that is stable: future stores won't change it.
446 X must be composed of constants, register and memory references
447 combined with addition, subtraction and multiplication:
448 in other words, just what you can get from expand_expr if sum_ok is 1.
450 Works by making copies of all regs and memory locations used
451 by X and combining them the same way X does.
452 You could also stabilize the reference to this address
453 by copying the address to a register with copy_to_reg;
454 but then you wouldn't get indexed addressing in the reference. */
457 copy_all_regs (x)
458 rtx x;
460 if (GET_CODE (x) == REG)
462 if (REGNO (x) != FRAME_POINTER_REGNUM
463 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
464 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
465 #endif
467 x = copy_to_reg (x);
469 else if (GET_CODE (x) == MEM)
470 x = copy_to_reg (x);
471 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
472 || GET_CODE (x) == MULT)
474 rtx op0 = copy_all_regs (XEXP (x, 0));
475 rtx op1 = copy_all_regs (XEXP (x, 1));
476 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
477 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
479 return x;
482 /* Return something equivalent to X but valid as a memory address
483 for something of mode MODE. When X is not itself valid, this
484 works by copying X or subexpressions of it into registers. */
487 memory_address (mode, x)
488 enum machine_mode mode;
489 rtx x;
491 rtx oldx = x;
493 if (GET_CODE (x) == ADDRESSOF)
494 return x;
496 #ifdef POINTERS_EXTEND_UNSIGNED
497 if (GET_MODE (x) != Pmode)
498 x = convert_memory_address (Pmode, x);
499 #endif
501 /* By passing constant addresses thru registers
502 we get a chance to cse them. */
503 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
504 x = force_reg (Pmode, x);
506 /* Accept a QUEUED that refers to a REG
507 even though that isn't a valid address.
508 On attempting to put this in an insn we will call protect_from_queue
509 which will turn it into a REG, which is valid. */
510 else if (GET_CODE (x) == QUEUED
511 && GET_CODE (QUEUED_VAR (x)) == REG)
514 /* We get better cse by rejecting indirect addressing at this stage.
515 Let the combiner create indirect addresses where appropriate.
516 For now, generate the code so that the subexpressions useful to share
517 are visible. But not if cse won't be done! */
518 else
520 if (! cse_not_expected && GET_CODE (x) != REG)
521 x = break_out_memory_refs (x);
523 /* At this point, any valid address is accepted. */
524 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
526 /* If it was valid before but breaking out memory refs invalidated it,
527 use it the old way. */
528 if (memory_address_p (mode, oldx))
529 goto win2;
531 /* Perform machine-dependent transformations on X
532 in certain cases. This is not necessary since the code
533 below can handle all possible cases, but machine-dependent
534 transformations can make better code. */
535 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
537 /* PLUS and MULT can appear in special ways
538 as the result of attempts to make an address usable for indexing.
539 Usually they are dealt with by calling force_operand, below.
540 But a sum containing constant terms is special
541 if removing them makes the sum a valid address:
542 then we generate that address in a register
543 and index off of it. We do this because it often makes
544 shorter code, and because the addresses thus generated
545 in registers often become common subexpressions. */
546 if (GET_CODE (x) == PLUS)
548 rtx constant_term = const0_rtx;
549 rtx y = eliminate_constant_term (x, &constant_term);
550 if (constant_term == const0_rtx
551 || ! memory_address_p (mode, y))
552 x = force_operand (x, NULL_RTX);
553 else
555 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
556 if (! memory_address_p (mode, y))
557 x = force_operand (x, NULL_RTX);
558 else
559 x = y;
563 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
564 x = force_operand (x, NULL_RTX);
566 /* If we have a register that's an invalid address,
567 it must be a hard reg of the wrong class. Copy it to a pseudo. */
568 else if (GET_CODE (x) == REG)
569 x = copy_to_reg (x);
571 /* Last resort: copy the value to a register, since
572 the register is a valid address. */
573 else
574 x = force_reg (Pmode, x);
576 goto done;
578 win2:
579 x = oldx;
580 win:
581 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
582 /* Don't copy an addr via a reg if it is one of our stack slots. */
583 && ! (GET_CODE (x) == PLUS
584 && (XEXP (x, 0) == virtual_stack_vars_rtx
585 || XEXP (x, 0) == virtual_incoming_args_rtx)))
587 if (general_operand (x, Pmode))
588 x = force_reg (Pmode, x);
589 else
590 x = force_operand (x, NULL_RTX);
594 done:
596 /* If we didn't change the address, we are done. Otherwise, mark
597 a reg as a pointer if we have REG or REG + CONST_INT. */
598 if (oldx == x)
599 return x;
600 else if (GET_CODE (x) == REG)
601 mark_reg_pointer (x, BITS_PER_UNIT);
602 else if (GET_CODE (x) == PLUS
603 && GET_CODE (XEXP (x, 0)) == REG
604 && GET_CODE (XEXP (x, 1)) == CONST_INT)
605 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
607 /* OLDX may have been the address on a temporary. Update the address
608 to indicate that X is now used. */
609 update_temp_slot_address (oldx, x);
611 return x;
614 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
617 memory_address_noforce (mode, x)
618 enum machine_mode mode;
619 rtx x;
621 int ambient_force_addr = flag_force_addr;
622 rtx val;
624 flag_force_addr = 0;
625 val = memory_address (mode, x);
626 flag_force_addr = ambient_force_addr;
627 return val;
630 /* Convert a mem ref into one with a valid memory address.
631 Pass through anything else unchanged. */
634 validize_mem (ref)
635 rtx ref;
637 if (GET_CODE (ref) != MEM)
638 return ref;
639 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
640 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
641 return ref;
643 /* Don't alter REF itself, since that is probably a stack slot. */
644 return replace_equiv_address (ref, XEXP (ref, 0));
647 /* Given REF, either a MEM or a REG, and T, either the type of X or
648 the expression corresponding to REF, set RTX_UNCHANGING_P if
649 appropriate. */
651 void
652 maybe_set_unchanging (ref, t)
653 rtx ref;
654 tree t;
656 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
657 initialization is only executed once, or whose initializer always
658 has the same value. Currently we simplify this to PARM_DECLs in the
659 first case, and decls with TREE_CONSTANT initializers in the second.
661 We cannot do this for non-static aggregates, because of the double
662 writes that can be generated by store_constructor, depending on the
663 contents of the initializer. Yes, this does eliminate a good fraction
664 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
665 It also eliminates a good quantity of bugs. Let this be incentive to
666 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
667 solution, perhaps based on alias sets. */
669 if ((TREE_READONLY (t) && DECL_P (t)
670 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
671 && (TREE_CODE (t) == PARM_DECL
672 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
673 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
674 RTX_UNCHANGING_P (ref) = 1;
677 /* Return a modified copy of X with its memory address copied
678 into a temporary register to protect it from side effects.
679 If X is not a MEM, it is returned unchanged (and not copied).
680 Perhaps even if it is a MEM, if there is no need to change it. */
683 stabilize (x)
684 rtx x;
686 if (GET_CODE (x) != MEM
687 || ! rtx_unstable_p (XEXP (x, 0)))
688 return x;
690 return
691 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
694 /* Copy the value or contents of X to a new temp reg and return that reg. */
697 copy_to_reg (x)
698 rtx x;
700 rtx temp = gen_reg_rtx (GET_MODE (x));
702 /* If not an operand, must be an address with PLUS and MULT so
703 do the computation. */
704 if (! general_operand (x, VOIDmode))
705 x = force_operand (x, temp);
707 if (x != temp)
708 emit_move_insn (temp, x);
710 return temp;
713 /* Like copy_to_reg but always give the new register mode Pmode
714 in case X is a constant. */
717 copy_addr_to_reg (x)
718 rtx x;
720 return copy_to_mode_reg (Pmode, x);
723 /* Like copy_to_reg but always give the new register mode MODE
724 in case X is a constant. */
727 copy_to_mode_reg (mode, x)
728 enum machine_mode mode;
729 rtx x;
731 rtx temp = gen_reg_rtx (mode);
733 /* If not an operand, must be an address with PLUS and MULT so
734 do the computation. */
735 if (! general_operand (x, VOIDmode))
736 x = force_operand (x, temp);
738 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
739 abort ();
740 if (x != temp)
741 emit_move_insn (temp, x);
742 return temp;
745 /* Load X into a register if it is not already one.
746 Use mode MODE for the register.
747 X should be valid for mode MODE, but it may be a constant which
748 is valid for all integer modes; that's why caller must specify MODE.
750 The caller must not alter the value in the register we return,
751 since we mark it as a "constant" register. */
754 force_reg (mode, x)
755 enum machine_mode mode;
756 rtx x;
758 rtx temp, insn, set;
760 if (GET_CODE (x) == REG)
761 return x;
763 if (general_operand (x, mode))
765 temp = gen_reg_rtx (mode);
766 insn = emit_move_insn (temp, x);
768 else
770 temp = force_operand (x, NULL_RTX);
771 if (GET_CODE (temp) == REG)
772 insn = get_last_insn ();
773 else
775 rtx temp2 = gen_reg_rtx (mode);
776 insn = emit_move_insn (temp2, temp);
777 temp = temp2;
781 /* Let optimizers know that TEMP's value never changes
782 and that X can be substituted for it. Don't get confused
783 if INSN set something else (such as a SUBREG of TEMP). */
784 if (CONSTANT_P (x)
785 && (set = single_set (insn)) != 0
786 && SET_DEST (set) == temp
787 && ! rtx_equal_p (x, SET_SRC (set)))
788 set_unique_reg_note (insn, REG_EQUAL, x);
790 return temp;
793 /* If X is a memory ref, copy its contents to a new temp reg and return
794 that reg. Otherwise, return X. */
797 force_not_mem (x)
798 rtx x;
800 rtx temp;
802 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
803 return x;
805 temp = gen_reg_rtx (GET_MODE (x));
806 emit_move_insn (temp, x);
807 return temp;
810 /* Copy X to TARGET (if it's nonzero and a reg)
811 or to a new temp reg and return that reg.
812 MODE is the mode to use for X in case it is a constant. */
815 copy_to_suggested_reg (x, target, mode)
816 rtx x, target;
817 enum machine_mode mode;
819 rtx temp;
821 if (target && GET_CODE (target) == REG)
822 temp = target;
823 else
824 temp = gen_reg_rtx (mode);
826 emit_move_insn (temp, x);
827 return temp;
830 /* Return the mode to use to store a scalar of TYPE and MODE.
831 PUNSIGNEDP points to the signedness of the type and may be adjusted
832 to show what signedness to use on extension operations.
834 FOR_CALL is nonzero if this call is promoting args for a call. */
836 enum machine_mode
837 promote_mode (type, mode, punsignedp, for_call)
838 tree type;
839 enum machine_mode mode;
840 int *punsignedp;
841 int for_call ATTRIBUTE_UNUSED;
843 enum tree_code code = TREE_CODE (type);
844 int unsignedp = *punsignedp;
846 #ifdef PROMOTE_FOR_CALL_ONLY
847 if (! for_call)
848 return mode;
849 #endif
851 switch (code)
853 #ifdef PROMOTE_MODE
854 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
855 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
856 PROMOTE_MODE (mode, unsignedp, type);
857 break;
858 #endif
860 #ifdef POINTERS_EXTEND_UNSIGNED
861 case REFERENCE_TYPE:
862 case POINTER_TYPE:
863 mode = Pmode;
864 unsignedp = POINTERS_EXTEND_UNSIGNED;
865 break;
866 #endif
868 default:
869 break;
872 *punsignedp = unsignedp;
873 return mode;
876 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
877 This pops when ADJUST is positive. ADJUST need not be constant. */
879 void
880 adjust_stack (adjust)
881 rtx adjust;
883 rtx temp;
884 adjust = protect_from_queue (adjust, 0);
886 if (adjust == const0_rtx)
887 return;
889 /* We expect all variable sized adjustments to be multiple of
890 PREFERRED_STACK_BOUNDARY. */
891 if (GET_CODE (adjust) == CONST_INT)
892 stack_pointer_delta -= INTVAL (adjust);
894 temp = expand_binop (Pmode,
895 #ifdef STACK_GROWS_DOWNWARD
896 add_optab,
897 #else
898 sub_optab,
899 #endif
900 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
901 OPTAB_LIB_WIDEN);
903 if (temp != stack_pointer_rtx)
904 emit_move_insn (stack_pointer_rtx, temp);
907 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
908 This pushes when ADJUST is positive. ADJUST need not be constant. */
910 void
911 anti_adjust_stack (adjust)
912 rtx adjust;
914 rtx temp;
915 adjust = protect_from_queue (adjust, 0);
917 if (adjust == const0_rtx)
918 return;
920 /* We expect all variable sized adjustments to be multiple of
921 PREFERRED_STACK_BOUNDARY. */
922 if (GET_CODE (adjust) == CONST_INT)
923 stack_pointer_delta += INTVAL (adjust);
925 temp = expand_binop (Pmode,
926 #ifdef STACK_GROWS_DOWNWARD
927 sub_optab,
928 #else
929 add_optab,
930 #endif
931 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
932 OPTAB_LIB_WIDEN);
934 if (temp != stack_pointer_rtx)
935 emit_move_insn (stack_pointer_rtx, temp);
938 /* Round the size of a block to be pushed up to the boundary required
939 by this machine. SIZE is the desired size, which need not be constant. */
942 round_push (size)
943 rtx size;
945 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
947 if (align == 1)
948 return size;
950 if (GET_CODE (size) == CONST_INT)
952 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
954 if (INTVAL (size) != new)
955 size = GEN_INT (new);
957 else
959 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
960 but we know it can't. So add ourselves and then do
961 TRUNC_DIV_EXPR. */
962 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
963 NULL_RTX, 1, OPTAB_LIB_WIDEN);
964 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
965 NULL_RTX, 1);
966 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
969 return size;
972 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
973 to a previously-created save area. If no save area has been allocated,
974 this function will allocate one. If a save area is specified, it
975 must be of the proper mode.
977 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
978 are emitted at the current position. */
980 void
981 emit_stack_save (save_level, psave, after)
982 enum save_level save_level;
983 rtx *psave;
984 rtx after;
986 rtx sa = *psave;
987 /* The default is that we use a move insn and save in a Pmode object. */
988 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
989 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
991 /* See if this machine has anything special to do for this kind of save. */
992 switch (save_level)
994 #ifdef HAVE_save_stack_block
995 case SAVE_BLOCK:
996 if (HAVE_save_stack_block)
997 fcn = gen_save_stack_block;
998 break;
999 #endif
1000 #ifdef HAVE_save_stack_function
1001 case SAVE_FUNCTION:
1002 if (HAVE_save_stack_function)
1003 fcn = gen_save_stack_function;
1004 break;
1005 #endif
1006 #ifdef HAVE_save_stack_nonlocal
1007 case SAVE_NONLOCAL:
1008 if (HAVE_save_stack_nonlocal)
1009 fcn = gen_save_stack_nonlocal;
1010 break;
1011 #endif
1012 default:
1013 break;
1016 /* If there is no save area and we have to allocate one, do so. Otherwise
1017 verify the save area is the proper mode. */
1019 if (sa == 0)
1021 if (mode != VOIDmode)
1023 if (save_level == SAVE_NONLOCAL)
1024 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1025 else
1026 *psave = sa = gen_reg_rtx (mode);
1029 else
1031 if (mode == VOIDmode || GET_MODE (sa) != mode)
1032 abort ();
1035 if (after)
1037 rtx seq;
1039 start_sequence ();
1040 /* We must validize inside the sequence, to ensure that any instructions
1041 created by the validize call also get moved to the right place. */
1042 if (sa != 0)
1043 sa = validize_mem (sa);
1044 emit_insn (fcn (sa, stack_pointer_rtx));
1045 seq = get_insns ();
1046 end_sequence ();
1047 emit_insn_after (seq, after);
1049 else
1051 if (sa != 0)
1052 sa = validize_mem (sa);
1053 emit_insn (fcn (sa, stack_pointer_rtx));
1057 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1058 area made by emit_stack_save. If it is zero, we have nothing to do.
1060 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1061 current position. */
1063 void
1064 emit_stack_restore (save_level, sa, after)
1065 enum save_level save_level;
1066 rtx after;
1067 rtx sa;
1069 /* The default is that we use a move insn. */
1070 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1072 /* See if this machine has anything special to do for this kind of save. */
1073 switch (save_level)
1075 #ifdef HAVE_restore_stack_block
1076 case SAVE_BLOCK:
1077 if (HAVE_restore_stack_block)
1078 fcn = gen_restore_stack_block;
1079 break;
1080 #endif
1081 #ifdef HAVE_restore_stack_function
1082 case SAVE_FUNCTION:
1083 if (HAVE_restore_stack_function)
1084 fcn = gen_restore_stack_function;
1085 break;
1086 #endif
1087 #ifdef HAVE_restore_stack_nonlocal
1088 case SAVE_NONLOCAL:
1089 if (HAVE_restore_stack_nonlocal)
1090 fcn = gen_restore_stack_nonlocal;
1091 break;
1092 #endif
1093 default:
1094 break;
1097 if (sa != 0)
1099 sa = validize_mem (sa);
1100 /* These clobbers prevent the scheduler from moving
1101 references to variable arrays below the code
1102 that deletes (pops) the arrays. */
1103 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1104 gen_rtx_MEM (BLKmode,
1105 gen_rtx_SCRATCH (VOIDmode))));
1106 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1107 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1110 if (after)
1112 rtx seq;
1114 start_sequence ();
1115 emit_insn (fcn (stack_pointer_rtx, sa));
1116 seq = get_insns ();
1117 end_sequence ();
1118 emit_insn_after (seq, after);
1120 else
1121 emit_insn (fcn (stack_pointer_rtx, sa));
1124 #ifdef SETJMP_VIA_SAVE_AREA
1125 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1126 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1127 platforms, the dynamic stack space used can corrupt the original
1128 frame, thus causing a crash if a longjmp unwinds to it. */
1130 void
1131 optimize_save_area_alloca (insns)
1132 rtx insns;
1134 rtx insn;
1136 for (insn = insns; insn; insn = NEXT_INSN(insn))
1138 rtx note;
1140 if (GET_CODE (insn) != INSN)
1141 continue;
1143 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1145 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1146 continue;
1148 if (!current_function_calls_setjmp)
1150 rtx pat = PATTERN (insn);
1152 /* If we do not see the note in a pattern matching
1153 these precise characteristics, we did something
1154 entirely wrong in allocate_dynamic_stack_space.
1156 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1157 was defined on a machine where stacks grow towards higher
1158 addresses.
1160 Right now only supported port with stack that grow upward
1161 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1162 if (GET_CODE (pat) != SET
1163 || SET_DEST (pat) != stack_pointer_rtx
1164 || GET_CODE (SET_SRC (pat)) != MINUS
1165 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1166 abort ();
1168 /* This will now be transformed into a (set REG REG)
1169 so we can just blow away all the other notes. */
1170 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1171 REG_NOTES (insn) = NULL_RTX;
1173 else
1175 /* setjmp was called, we must remove the REG_SAVE_AREA
1176 note so that later passes do not get confused by its
1177 presence. */
1178 if (note == REG_NOTES (insn))
1180 REG_NOTES (insn) = XEXP (note, 1);
1182 else
1184 rtx srch;
1186 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1187 if (XEXP (srch, 1) == note)
1188 break;
1190 if (srch == NULL_RTX)
1191 abort ();
1193 XEXP (srch, 1) = XEXP (note, 1);
1196 /* Once we've seen the note of interest, we need not look at
1197 the rest of them. */
1198 break;
1202 #endif /* SETJMP_VIA_SAVE_AREA */
1204 /* Return an rtx representing the address of an area of memory dynamically
1205 pushed on the stack. This region of memory is always aligned to
1206 a multiple of BIGGEST_ALIGNMENT.
1208 Any required stack pointer alignment is preserved.
1210 SIZE is an rtx representing the size of the area.
1211 TARGET is a place in which the address can be placed.
1213 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1216 allocate_dynamic_stack_space (size, target, known_align)
1217 rtx size;
1218 rtx target;
1219 int known_align;
1221 #ifdef SETJMP_VIA_SAVE_AREA
1222 rtx setjmpless_size = NULL_RTX;
1223 #endif
1225 /* If we're asking for zero bytes, it doesn't matter what we point
1226 to since we can't dereference it. But return a reasonable
1227 address anyway. */
1228 if (size == const0_rtx)
1229 return virtual_stack_dynamic_rtx;
1231 /* Otherwise, show we're calling alloca or equivalent. */
1232 current_function_calls_alloca = 1;
1234 /* Ensure the size is in the proper mode. */
1235 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1236 size = convert_to_mode (Pmode, size, 1);
1238 /* We can't attempt to minimize alignment necessary, because we don't
1239 know the final value of preferred_stack_boundary yet while executing
1240 this code. */
1241 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1243 /* We will need to ensure that the address we return is aligned to
1244 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1245 always know its final value at this point in the compilation (it
1246 might depend on the size of the outgoing parameter lists, for
1247 example), so we must align the value to be returned in that case.
1248 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1249 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1250 We must also do an alignment operation on the returned value if
1251 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1253 If we have to align, we must leave space in SIZE for the hole
1254 that might result from the alignment operation. */
1256 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1257 #define MUST_ALIGN 1
1258 #else
1259 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1260 #endif
1262 if (MUST_ALIGN)
1263 size
1264 = force_operand (plus_constant (size,
1265 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1266 NULL_RTX);
1268 #ifdef SETJMP_VIA_SAVE_AREA
1269 /* If setjmp restores regs from a save area in the stack frame,
1270 avoid clobbering the reg save area. Note that the offset of
1271 virtual_incoming_args_rtx includes the preallocated stack args space.
1272 It would be no problem to clobber that, but it's on the wrong side
1273 of the old save area. */
1275 rtx dynamic_offset
1276 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1277 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1279 if (!current_function_calls_setjmp)
1281 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1283 /* See optimize_save_area_alloca to understand what is being
1284 set up here. */
1286 /* ??? Code below assumes that the save area needs maximal
1287 alignment. This constraint may be too strong. */
1288 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1289 abort ();
1291 if (GET_CODE (size) == CONST_INT)
1293 HOST_WIDE_INT new = INTVAL (size) / align * align;
1295 if (INTVAL (size) != new)
1296 setjmpless_size = GEN_INT (new);
1297 else
1298 setjmpless_size = size;
1300 else
1302 /* Since we know overflow is not possible, we avoid using
1303 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1304 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1305 GEN_INT (align), NULL_RTX, 1);
1306 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1307 GEN_INT (align), NULL_RTX, 1);
1309 /* Our optimization works based upon being able to perform a simple
1310 transformation of this RTL into a (set REG REG) so make sure things
1311 did in fact end up in a REG. */
1312 if (!register_operand (setjmpless_size, Pmode))
1313 setjmpless_size = force_reg (Pmode, setjmpless_size);
1316 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1317 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1319 #endif /* SETJMP_VIA_SAVE_AREA */
1321 /* Round the size to a multiple of the required stack alignment.
1322 Since the stack if presumed to be rounded before this allocation,
1323 this will maintain the required alignment.
1325 If the stack grows downward, we could save an insn by subtracting
1326 SIZE from the stack pointer and then aligning the stack pointer.
1327 The problem with this is that the stack pointer may be unaligned
1328 between the execution of the subtraction and alignment insns and
1329 some machines do not allow this. Even on those that do, some
1330 signal handlers malfunction if a signal should occur between those
1331 insns. Since this is an extremely rare event, we have no reliable
1332 way of knowing which systems have this problem. So we avoid even
1333 momentarily mis-aligning the stack. */
1335 /* If we added a variable amount to SIZE,
1336 we can no longer assume it is aligned. */
1337 #if !defined (SETJMP_VIA_SAVE_AREA)
1338 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1339 #endif
1340 size = round_push (size);
1342 do_pending_stack_adjust ();
1344 /* We ought to be called always on the toplevel and stack ought to be aligned
1345 properly. */
1346 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1347 abort ();
1349 /* If needed, check that we have the required amount of stack. Take into
1350 account what has already been checked. */
1351 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1352 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1354 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1355 if (target == 0 || GET_CODE (target) != REG
1356 || REGNO (target) < FIRST_PSEUDO_REGISTER
1357 || GET_MODE (target) != Pmode)
1358 target = gen_reg_rtx (Pmode);
1360 mark_reg_pointer (target, known_align);
1362 /* Perform the required allocation from the stack. Some systems do
1363 this differently than simply incrementing/decrementing from the
1364 stack pointer, such as acquiring the space by calling malloc(). */
1365 #ifdef HAVE_allocate_stack
1366 if (HAVE_allocate_stack)
1368 enum machine_mode mode = STACK_SIZE_MODE;
1369 insn_operand_predicate_fn pred;
1371 /* We don't have to check against the predicate for operand 0 since
1372 TARGET is known to be a pseudo of the proper mode, which must
1373 be valid for the operand. For operand 1, convert to the
1374 proper mode and validate. */
1375 if (mode == VOIDmode)
1376 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1378 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1379 if (pred && ! ((*pred) (size, mode)))
1380 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1382 emit_insn (gen_allocate_stack (target, size));
1384 else
1385 #endif
1387 #ifndef STACK_GROWS_DOWNWARD
1388 emit_move_insn (target, virtual_stack_dynamic_rtx);
1389 #endif
1391 /* Check stack bounds if necessary. */
1392 if (current_function_limit_stack)
1394 rtx available;
1395 rtx space_available = gen_label_rtx ();
1396 #ifdef STACK_GROWS_DOWNWARD
1397 available = expand_binop (Pmode, sub_optab,
1398 stack_pointer_rtx, stack_limit_rtx,
1399 NULL_RTX, 1, OPTAB_WIDEN);
1400 #else
1401 available = expand_binop (Pmode, sub_optab,
1402 stack_limit_rtx, stack_pointer_rtx,
1403 NULL_RTX, 1, OPTAB_WIDEN);
1404 #endif
1405 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1406 space_available);
1407 #ifdef HAVE_trap
1408 if (HAVE_trap)
1409 emit_insn (gen_trap ());
1410 else
1411 #endif
1412 error ("stack limits not supported on this target");
1413 emit_barrier ();
1414 emit_label (space_available);
1417 anti_adjust_stack (size);
1418 #ifdef SETJMP_VIA_SAVE_AREA
1419 if (setjmpless_size != NULL_RTX)
1421 rtx note_target = get_last_insn ();
1423 REG_NOTES (note_target)
1424 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1425 REG_NOTES (note_target));
1427 #endif /* SETJMP_VIA_SAVE_AREA */
1429 #ifdef STACK_GROWS_DOWNWARD
1430 emit_move_insn (target, virtual_stack_dynamic_rtx);
1431 #endif
1434 if (MUST_ALIGN)
1436 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1437 but we know it can't. So add ourselves and then do
1438 TRUNC_DIV_EXPR. */
1439 target = expand_binop (Pmode, add_optab, target,
1440 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1441 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1442 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1443 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1444 NULL_RTX, 1);
1445 target = expand_mult (Pmode, target,
1446 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1447 NULL_RTX, 1);
1450 /* Record the new stack level for nonlocal gotos. */
1451 if (nonlocal_goto_handler_slots != 0)
1452 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1454 return target;
1457 /* A front end may want to override GCC's stack checking by providing a
1458 run-time routine to call to check the stack, so provide a mechanism for
1459 calling that routine. */
1461 static GTY(()) rtx stack_check_libfunc;
1463 void
1464 set_stack_check_libfunc (libfunc)
1465 rtx libfunc;
1467 stack_check_libfunc = libfunc;
1470 /* Emit one stack probe at ADDRESS, an address within the stack. */
1472 static void
1473 emit_stack_probe (address)
1474 rtx address;
1476 rtx memref = gen_rtx_MEM (word_mode, address);
1478 MEM_VOLATILE_P (memref) = 1;
1480 if (STACK_CHECK_PROBE_LOAD)
1481 emit_move_insn (gen_reg_rtx (word_mode), memref);
1482 else
1483 emit_move_insn (memref, const0_rtx);
1486 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1487 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1488 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1489 subtract from the stack. If SIZE is constant, this is done
1490 with a fixed number of probes. Otherwise, we must make a loop. */
1492 #ifdef STACK_GROWS_DOWNWARD
1493 #define STACK_GROW_OP MINUS
1494 #else
1495 #define STACK_GROW_OP PLUS
1496 #endif
1498 void
1499 probe_stack_range (first, size)
1500 HOST_WIDE_INT first;
1501 rtx size;
1503 /* First ensure SIZE is Pmode. */
1504 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1505 size = convert_to_mode (Pmode, size, 1);
1507 /* Next see if the front end has set up a function for us to call to
1508 check the stack. */
1509 if (stack_check_libfunc != 0)
1511 rtx addr = memory_address (QImode,
1512 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1513 stack_pointer_rtx,
1514 plus_constant (size, first)));
1516 #ifdef POINTERS_EXTEND_UNSIGNED
1517 if (GET_MODE (addr) != ptr_mode)
1518 addr = convert_memory_address (ptr_mode, addr);
1519 #endif
1521 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1522 ptr_mode);
1525 /* Next see if we have an insn to check the stack. Use it if so. */
1526 #ifdef HAVE_check_stack
1527 else if (HAVE_check_stack)
1529 insn_operand_predicate_fn pred;
1530 rtx last_addr
1531 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1532 stack_pointer_rtx,
1533 plus_constant (size, first)),
1534 NULL_RTX);
1536 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1537 if (pred && ! ((*pred) (last_addr, Pmode)))
1538 last_addr = copy_to_mode_reg (Pmode, last_addr);
1540 emit_insn (gen_check_stack (last_addr));
1542 #endif
1544 /* If we have to generate explicit probes, see if we have a constant
1545 small number of them to generate. If so, that's the easy case. */
1546 else if (GET_CODE (size) == CONST_INT
1547 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1549 HOST_WIDE_INT offset;
1551 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1552 for values of N from 1 until it exceeds LAST. If only one
1553 probe is needed, this will not generate any code. Then probe
1554 at LAST. */
1555 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1556 offset < INTVAL (size);
1557 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1558 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1559 stack_pointer_rtx,
1560 GEN_INT (offset)));
1562 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1563 stack_pointer_rtx,
1564 plus_constant (size, first)));
1567 /* In the variable case, do the same as above, but in a loop. We emit loop
1568 notes so that loop optimization can be done. */
1569 else
1571 rtx test_addr
1572 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1573 stack_pointer_rtx,
1574 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1575 NULL_RTX);
1576 rtx last_addr
1577 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1578 stack_pointer_rtx,
1579 plus_constant (size, first)),
1580 NULL_RTX);
1581 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1582 rtx loop_lab = gen_label_rtx ();
1583 rtx test_lab = gen_label_rtx ();
1584 rtx end_lab = gen_label_rtx ();
1585 rtx temp;
1587 if (GET_CODE (test_addr) != REG
1588 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1589 test_addr = force_reg (Pmode, test_addr);
1591 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1592 emit_jump (test_lab);
1594 emit_label (loop_lab);
1595 emit_stack_probe (test_addr);
1597 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1599 #ifdef STACK_GROWS_DOWNWARD
1600 #define CMP_OPCODE GTU
1601 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1602 1, OPTAB_WIDEN);
1603 #else
1604 #define CMP_OPCODE LTU
1605 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1606 1, OPTAB_WIDEN);
1607 #endif
1609 if (temp != test_addr)
1610 abort ();
1612 emit_label (test_lab);
1613 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1614 NULL_RTX, Pmode, 1, loop_lab);
1615 emit_jump (end_lab);
1616 emit_note (NULL, NOTE_INSN_LOOP_END);
1617 emit_label (end_lab);
1619 emit_stack_probe (last_addr);
1623 /* Return an rtx representing the register or memory location
1624 in which a scalar value of data type VALTYPE
1625 was returned by a function call to function FUNC.
1626 FUNC is a FUNCTION_DECL node if the precise function is known,
1627 otherwise 0.
1628 OUTGOING is 1 if on a machine with register windows this function
1629 should return the register in which the function will put its result
1630 and 0 otherwise. */
1633 hard_function_value (valtype, func, outgoing)
1634 tree valtype;
1635 tree func ATTRIBUTE_UNUSED;
1636 int outgoing ATTRIBUTE_UNUSED;
1638 rtx val;
1640 #ifdef FUNCTION_OUTGOING_VALUE
1641 if (outgoing)
1642 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1643 else
1644 #endif
1645 val = FUNCTION_VALUE (valtype, func);
1647 if (GET_CODE (val) == REG
1648 && GET_MODE (val) == BLKmode)
1650 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1651 enum machine_mode tmpmode;
1653 /* int_size_in_bytes can return -1. We don't need a check here
1654 since the value of bytes will be large enough that no mode
1655 will match and we will abort later in this function. */
1657 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1658 tmpmode != VOIDmode;
1659 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1661 /* Have we found a large enough mode? */
1662 if (GET_MODE_SIZE (tmpmode) >= bytes)
1663 break;
1666 /* No suitable mode found. */
1667 if (tmpmode == VOIDmode)
1668 abort ();
1670 PUT_MODE (val, tmpmode);
1672 return val;
1675 /* Return an rtx representing the register or memory location
1676 in which a scalar value of mode MODE was returned by a library call. */
1679 hard_libcall_value (mode)
1680 enum machine_mode mode;
1682 return LIBCALL_VALUE (mode);
1685 /* Look up the tree code for a given rtx code
1686 to provide the arithmetic operation for REAL_ARITHMETIC.
1687 The function returns an int because the caller may not know
1688 what `enum tree_code' means. */
1691 rtx_to_tree_code (code)
1692 enum rtx_code code;
1694 enum tree_code tcode;
1696 switch (code)
1698 case PLUS:
1699 tcode = PLUS_EXPR;
1700 break;
1701 case MINUS:
1702 tcode = MINUS_EXPR;
1703 break;
1704 case MULT:
1705 tcode = MULT_EXPR;
1706 break;
1707 case DIV:
1708 tcode = RDIV_EXPR;
1709 break;
1710 case SMIN:
1711 tcode = MIN_EXPR;
1712 break;
1713 case SMAX:
1714 tcode = MAX_EXPR;
1715 break;
1716 default:
1717 tcode = LAST_AND_UNUSED_TREE_CODE;
1718 break;
1720 return ((int) tcode);
1723 #include "gt-explow.h"