* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / ira-int.h
blobdf64d3f12c01821a1cf5bc127fafa9e1f29e9391
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "cfgloop.h"
22 #include "ira.h"
23 #include "alloc-pool.h"
25 /* To provide consistency in naming, all IRA external variables,
26 functions, common typedefs start with prefix ira_. */
28 #ifdef ENABLE_CHECKING
29 #define ENABLE_IRA_CHECKING
30 #endif
32 #ifdef ENABLE_IRA_CHECKING
33 #define ira_assert(c) gcc_assert (c)
34 #else
35 /* Always define and include C, so that warnings for empty body in an
36 ‘if’ statement and unused variable do not occur. */
37 #define ira_assert(c) ((void)(0 && (c)))
38 #endif
40 /* Compute register frequency from edge frequency FREQ. It is
41 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
42 profile driven feedback is available and the function is never
43 executed, frequency is always equivalent. Otherwise rescale the
44 edge frequency. */
45 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
46 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
47 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
48 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50 /* All natural loops. */
51 extern struct loops ira_loops;
53 /* A modified value of flag `-fira-verbose' used internally. */
54 extern int internal_flag_ira_verbose;
56 /* Dump file of the allocator if it is not NULL. */
57 extern FILE *ira_dump_file;
59 /* Typedefs for pointers to allocno live range, allocno, and copy of
60 allocnos. */
61 typedef struct live_range *live_range_t;
62 typedef struct ira_allocno *ira_allocno_t;
63 typedef struct ira_allocno_copy *ira_copy_t;
64 typedef struct ira_object *ira_object_t;
66 /* Definition of vector of allocnos and copies. */
68 /* Typedef for pointer to the subsequent structure. */
69 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
71 typedef unsigned short move_table[N_REG_CLASSES];
73 /* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81 struct ira_loop_tree_node
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
86 struct loop *loop;
87 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
88 SUBLOOP_NEXT is always NULL for BBs. */
89 ira_loop_tree_node_t subloop_next, next;
90 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
91 the node. They are NULL for BBs. */
92 ira_loop_tree_node_t subloops, children;
93 /* The node immediately containing given node. */
94 ira_loop_tree_node_t parent;
96 /* Loop level in range [0, ira_loop_tree_height). */
97 int level;
99 /* All the following members are defined only for nodes representing
100 loops. */
102 /* The loop number from CFG loop tree. The root number is 0. */
103 int loop_num;
105 /* True if the loop was marked for removal from the register
106 allocation. */
107 bool to_remove_p;
109 /* Allocnos in the loop corresponding to their regnos. If it is
110 NULL the loop does not form a separate register allocation region
111 (e.g. because it has abnormal enter/exit edges and we can not put
112 code for register shuffling on the edges if a different
113 allocation is used for a pseudo-register on different sides of
114 the edges). Caps are not in the map (remember we can have more
115 one cap with the same regno in a region). */
116 ira_allocno_t *regno_allocno_map;
118 /* True if there is an entry to given loop not from its parent (or
119 grandparent) basic block. For example, it is possible for two
120 adjacent loops inside another loop. */
121 bool entered_from_non_parent_p;
123 /* Maximal register pressure inside loop for given register class
124 (defined only for the pressure classes). */
125 int reg_pressure[N_REG_CLASSES];
127 /* Numbers of allocnos referred or living in the loop node (except
128 for its subloops). */
129 bitmap all_allocnos;
131 /* Numbers of allocnos living at the loop borders. */
132 bitmap border_allocnos;
134 /* Regnos of pseudos modified in the loop node (including its
135 subloops). */
136 bitmap modified_regnos;
138 /* Numbers of copies referred in the corresponding loop. */
139 bitmap local_copies;
142 /* The root of the loop tree corresponding to the all function. */
143 extern ira_loop_tree_node_t ira_loop_tree_root;
145 /* Height of the loop tree. */
146 extern int ira_loop_tree_height;
148 /* All nodes representing basic blocks are referred through the
149 following array. We can not use basic block member `aux' for this
150 because it is used for insertion of insns on edges. */
151 extern ira_loop_tree_node_t ira_bb_nodes;
153 /* Two access macros to the nodes representing basic blocks. */
154 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
155 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
156 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
157 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 fprintf (stderr, \
160 "\n%s: %d: error in %s: it is not a block node\n", \
161 __FILE__, __LINE__, __FUNCTION__); \
162 gcc_unreachable (); \
164 _node; }))
165 #else
166 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167 #endif
169 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171 /* All nodes representing loops are referred through the following
172 array. */
173 extern ira_loop_tree_node_t ira_loop_nodes;
175 /* Two access macros to the nodes representing loops. */
176 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
177 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
178 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
179 if (_node->children == NULL || _node->bb != NULL \
180 || (_node->loop == NULL && current_loops != NULL)) \
182 fprintf (stderr, \
183 "\n%s: %d: error in %s: it is not a loop node\n", \
184 __FILE__, __LINE__, __FUNCTION__); \
185 gcc_unreachable (); \
187 _node; }))
188 #else
189 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190 #endif
192 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
195 /* The structure describes program points where a given allocno lives.
196 If the live ranges of two allocnos are intersected, the allocnos
197 are in conflict. */
198 struct live_range
200 /* Object whose live range is described by given structure. */
201 ira_object_t object;
202 /* Program point range. */
203 int start, finish;
204 /* Next structure describing program points where the allocno
205 lives. */
206 live_range_t next;
207 /* Pointer to structures with the same start/finish. */
208 live_range_t start_next, finish_next;
211 /* Program points are enumerated by numbers from range
212 0..IRA_MAX_POINT-1. There are approximately two times more program
213 points than insns. Program points are places in the program where
214 liveness info can be changed. In most general case (there are more
215 complicated cases too) some program points correspond to places
216 where input operand dies and other ones correspond to places where
217 output operands are born. */
218 extern int ira_max_point;
220 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221 live ranges with given start/finish point. */
222 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
224 /* A structure representing conflict information for an allocno
225 (or one of its subwords). */
226 struct ira_object
228 /* The allocno associated with this record. */
229 ira_allocno_t allocno;
230 /* Vector of accumulated conflicting conflict_redords with NULL end
231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232 otherwise. */
233 void *conflicts_array;
234 /* Pointer to structures describing at what program point the
235 object lives. We always maintain the list in such way that *the
236 ranges in the list are not intersected and ordered by decreasing
237 their program points*. */
238 live_range_t live_ranges;
239 /* The subword within ALLOCNO which is represented by this object.
240 Zero means the lowest-order subword (or the entire allocno in case
241 it is not being tracked in subwords). */
242 int subword;
243 /* Allocated size of the conflicts array. */
244 unsigned int conflicts_array_size;
245 /* A unique number for every instance of this structure, which is used
246 to represent it in conflict bit vectors. */
247 int id;
248 /* Before building conflicts, MIN and MAX are initialized to
249 correspondingly minimal and maximal points of the accumulated
250 live ranges. Afterwards, they hold the minimal and maximal ids
251 of other ira_objects that this one can conflict with. */
252 int min, max;
253 /* Initial and accumulated hard registers conflicting with this
254 object and as a consequences can not be assigned to the allocno.
255 All non-allocatable hard regs and hard regs of register classes
256 different from given allocno one are included in the sets. */
257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258 /* Number of accumulated conflicts in the vector of conflicting
259 objects. */
260 int num_accumulated_conflicts;
261 /* TRUE if conflicts are represented by a vector of pointers to
262 ira_object structures. Otherwise, we use a bit vector indexed
263 by conflict ID numbers. */
264 unsigned int conflict_vec_p : 1;
267 /* A structure representing an allocno (allocation entity). Allocno
268 represents a pseudo-register in an allocation region. If
269 pseudo-register does not live in a region but it lives in the
270 nested regions, it is represented in the region by special allocno
271 called *cap*. There may be more one cap representing the same
272 pseudo-register in region. It means that the corresponding
273 pseudo-register lives in more one non-intersected subregion. */
274 struct ira_allocno
276 /* The allocno order number starting with 0. Each allocno has an
277 unique number and the number is never changed for the
278 allocno. */
279 int num;
280 /* Regno for allocno or cap. */
281 int regno;
282 /* Mode of the allocno which is the mode of the corresponding
283 pseudo-register. */
284 ENUM_BITFIELD (machine_mode) mode : 8;
285 /* Register class which should be used for allocation for given
286 allocno. NO_REGS means that we should use memory. */
287 ENUM_BITFIELD (reg_class) aclass : 16;
288 /* During the reload, value TRUE means that we should not reassign a
289 hard register to the allocno got memory earlier. It is set up
290 when we removed memory-memory move insn before each iteration of
291 the reload. */
292 unsigned int dont_reassign_p : 1;
293 #ifdef STACK_REGS
294 /* Set to TRUE if allocno can't be assigned to the stack hard
295 register correspondingly in this region and area including the
296 region and all its subregions recursively. */
297 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
298 #endif
299 /* TRUE value means that there is no sense to spill the allocno
300 during coloring because the spill will result in additional
301 reloads in reload pass. */
302 unsigned int bad_spill_p : 1;
303 /* TRUE if a hard register or memory has been assigned to the
304 allocno. */
305 unsigned int assigned_p : 1;
306 /* TRUE if conflicts for given allocno are represented by vector of
307 pointers to the conflicting allocnos. Otherwise, we use a bit
308 vector where a bit with given index represents allocno with the
309 same number. */
310 unsigned int conflict_vec_p : 1;
311 /* Hard register assigned to given allocno. Negative value means
312 that memory was allocated to the allocno. During the reload,
313 spilled allocno has value equal to the corresponding stack slot
314 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
315 reload (at this point pseudo-register has only one allocno) which
316 did not get stack slot yet. */
317 short int hard_regno;
318 /* Allocnos with the same regno are linked by the following member.
319 Allocnos corresponding to inner loops are first in the list (it
320 corresponds to depth-first traverse of the loops). */
321 ira_allocno_t next_regno_allocno;
322 /* There may be different allocnos with the same regno in different
323 regions. Allocnos are bound to the corresponding loop tree node.
324 Pseudo-register may have only one regular allocno with given loop
325 tree node but more than one cap (see comments above). */
326 ira_loop_tree_node_t loop_tree_node;
327 /* Accumulated usage references of the allocno. Here and below,
328 word 'accumulated' means info for given region and all nested
329 subregions. In this case, 'accumulated' means sum of references
330 of the corresponding pseudo-register in this region and in all
331 nested subregions recursively. */
332 int nrefs;
333 /* Accumulated frequency of usage of the allocno. */
334 int freq;
335 /* Minimal accumulated and updated costs of usage register of the
336 allocno class. */
337 int class_cost, updated_class_cost;
338 /* Minimal accumulated, and updated costs of memory for the allocno.
339 At the allocation start, the original and updated costs are
340 equal. The updated cost may be changed after finishing
341 allocation in a region and starting allocation in a subregion.
342 The change reflects the cost of spill/restore code on the
343 subregion border if we assign memory to the pseudo in the
344 subregion. */
345 int memory_cost, updated_memory_cost;
346 /* Accumulated number of points where the allocno lives and there is
347 excess pressure for its class. Excess pressure for a register
348 class at some point means that there are more allocnos of given
349 register class living at the point than number of hard-registers
350 of the class available for the allocation. */
351 int excess_pressure_points_num;
352 /* Copies to other non-conflicting allocnos. The copies can
353 represent move insn or potential move insn usually because of two
354 operand insn constraints. */
355 ira_copy_t allocno_copies;
356 /* It is a allocno (cap) representing given allocno on upper loop tree
357 level. */
358 ira_allocno_t cap;
359 /* It is a link to allocno (cap) on lower loop level represented by
360 given cap. Null if given allocno is not a cap. */
361 ira_allocno_t cap_member;
362 /* The number of objects tracked in the following array. */
363 int num_objects;
364 /* An array of structures describing conflict information and live
365 ranges for each object associated with the allocno. There may be
366 more than one such object in cases where the allocno represents a
367 multi-word register. */
368 ira_object_t objects[2];
369 /* Accumulated frequency of calls which given allocno
370 intersects. */
371 int call_freq;
372 /* Accumulated number of the intersected calls. */
373 int calls_crossed_num;
374 /* The number of calls across which it is live, but which should not
375 affect register preferences. */
376 int cheap_calls_crossed_num;
377 /* Array of usage costs (accumulated and the one updated during
378 coloring) for each hard register of the allocno class. The
379 member value can be NULL if all costs are the same and equal to
380 CLASS_COST. For example, the costs of two different hard
381 registers can be different if one hard register is callee-saved
382 and another one is callee-used and the allocno lives through
383 calls. Another example can be case when for some insn the
384 corresponding pseudo-register value should be put in specific
385 register class (e.g. AREG for x86) which is a strict subset of
386 the allocno class (GENERAL_REGS for x86). We have updated costs
387 to reflect the situation when the usage cost of a hard register
388 is decreased because the allocno is connected to another allocno
389 by a copy and the another allocno has been assigned to the hard
390 register. */
391 int *hard_reg_costs, *updated_hard_reg_costs;
392 /* Array of decreasing costs (accumulated and the one updated during
393 coloring) for allocnos conflicting with given allocno for hard
394 regno of the allocno class. The member value can be NULL if all
395 costs are the same. These costs are used to reflect preferences
396 of other allocnos not assigned yet during assigning to given
397 allocno. */
398 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
399 /* Different additional data. It is used to decrease size of
400 allocno data footprint. */
401 void *add_data;
405 /* All members of the allocno structures should be accessed only
406 through the following macros. */
407 #define ALLOCNO_NUM(A) ((A)->num)
408 #define ALLOCNO_REGNO(A) ((A)->regno)
409 #define ALLOCNO_REG(A) ((A)->reg)
410 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
411 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
412 #define ALLOCNO_CAP(A) ((A)->cap)
413 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
414 #define ALLOCNO_NREFS(A) ((A)->nrefs)
415 #define ALLOCNO_FREQ(A) ((A)->freq)
416 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
417 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
418 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
419 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
420 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
421 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
422 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
423 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
424 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
425 #ifdef STACK_REGS
426 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
427 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
428 #endif
429 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
430 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
431 #define ALLOCNO_MODE(A) ((A)->mode)
432 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
433 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
434 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
435 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
436 ((A)->conflict_hard_reg_costs)
437 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
438 ((A)->updated_conflict_hard_reg_costs)
439 #define ALLOCNO_CLASS(A) ((A)->aclass)
440 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
441 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
442 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
443 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
444 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
445 ((A)->excess_pressure_points_num)
446 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
447 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
448 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
450 /* Typedef for pointer to the subsequent structure. */
451 typedef struct ira_emit_data *ira_emit_data_t;
453 /* Allocno bound data used for emit pseudo live range split insns and
454 to flattening IR. */
455 struct ira_emit_data
457 /* TRUE if the allocno assigned to memory was a destination of
458 removed move (see ira-emit.c) at loop exit because the value of
459 the corresponding pseudo-register is not changed inside the
460 loop. */
461 unsigned int mem_optimized_dest_p : 1;
462 /* TRUE if the corresponding pseudo-register has disjoint live
463 ranges and the other allocnos of the pseudo-register except this
464 one changed REG. */
465 unsigned int somewhere_renamed_p : 1;
466 /* TRUE if allocno with the same REGNO in a subregion has been
467 renamed, in other words, got a new pseudo-register. */
468 unsigned int child_renamed_p : 1;
469 /* Final rtx representation of the allocno. */
470 rtx reg;
471 /* Non NULL if we remove restoring value from given allocno to
472 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
473 allocno value is not changed inside the loop. */
474 ira_allocno_t mem_optimized_dest;
477 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
479 /* Data used to emit live range split insns and to flattening IR. */
480 extern ira_emit_data_t ira_allocno_emit_data;
482 /* Abbreviation for frequent emit data access. */
483 static inline rtx
484 allocno_emit_reg (ira_allocno_t a)
486 return ALLOCNO_EMIT_DATA (a)->reg;
489 #define OBJECT_ALLOCNO(O) ((O)->allocno)
490 #define OBJECT_SUBWORD(O) ((O)->subword)
491 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
492 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
493 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
494 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
495 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
496 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
497 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
498 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
499 #define OBJECT_MIN(O) ((O)->min)
500 #define OBJECT_MAX(O) ((O)->max)
501 #define OBJECT_CONFLICT_ID(O) ((O)->id)
502 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
504 /* Map regno -> allocnos with given regno (see comments for
505 allocno member `next_regno_allocno'). */
506 extern ira_allocno_t *ira_regno_allocno_map;
508 /* Array of references to all allocnos. The order number of the
509 allocno corresponds to the index in the array. Removed allocnos
510 have NULL element value. */
511 extern ira_allocno_t *ira_allocnos;
513 /* The size of the previous array. */
514 extern int ira_allocnos_num;
516 /* Map a conflict id to its corresponding ira_object structure. */
517 extern ira_object_t *ira_object_id_map;
519 /* The size of the previous array. */
520 extern int ira_objects_num;
522 /* The following structure represents a copy of two allocnos. The
523 copies represent move insns or potential move insns usually because
524 of two operand insn constraints. To remove register shuffle, we
525 also create copies between allocno which is output of an insn and
526 allocno becoming dead in the insn. */
527 struct ira_allocno_copy
529 /* The unique order number of the copy node starting with 0. */
530 int num;
531 /* Allocnos connected by the copy. The first allocno should have
532 smaller order number than the second one. */
533 ira_allocno_t first, second;
534 /* Execution frequency of the copy. */
535 int freq;
536 bool constraint_p;
537 /* It is a move insn which is an origin of the copy. The member
538 value for the copy representing two operand insn constraints or
539 for the copy created to remove register shuffle is NULL. In last
540 case the copy frequency is smaller than the corresponding insn
541 execution frequency. */
542 rtx insn;
543 /* All copies with the same allocno as FIRST are linked by the two
544 following members. */
545 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
546 /* All copies with the same allocno as SECOND are linked by the two
547 following members. */
548 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
549 /* Region from which given copy is originated. */
550 ira_loop_tree_node_t loop_tree_node;
553 /* Array of references to all copies. The order number of the copy
554 corresponds to the index in the array. Removed copies have NULL
555 element value. */
556 extern ira_copy_t *ira_copies;
558 /* Size of the previous array. */
559 extern int ira_copies_num;
561 /* The following structure describes a stack slot used for spilled
562 pseudo-registers. */
563 struct ira_spilled_reg_stack_slot
565 /* pseudo-registers assigned to the stack slot. */
566 bitmap_head spilled_regs;
567 /* RTL representation of the stack slot. */
568 rtx mem;
569 /* Size of the stack slot. */
570 unsigned int width;
573 /* The number of elements in the following array. */
574 extern int ira_spilled_reg_stack_slots_num;
576 /* The following array contains info about spilled pseudo-registers
577 stack slots used in current function so far. */
578 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
580 /* Correspondingly overall cost of the allocation, cost of the
581 allocnos assigned to hard-registers, cost of the allocnos assigned
582 to memory, cost of loads, stores and register move insns generated
583 for pseudo-register live range splitting (see ira-emit.c). */
584 extern int ira_overall_cost;
585 extern int ira_reg_cost, ira_mem_cost;
586 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
587 extern int ira_move_loops_num, ira_additional_jumps_num;
590 /* This page contains a bitset implementation called 'min/max sets' used to
591 record conflicts in IRA.
592 They are named min/maxs set since we keep track of a minimum and a maximum
593 bit number for each set representing the bounds of valid elements. Otherwise,
594 the implementation resembles sbitmaps in that we store an array of integers
595 whose bits directly represent the members of the set. */
597 /* The type used as elements in the array, and the number of bits in
598 this type. */
600 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
601 #define IRA_INT_TYPE HOST_WIDE_INT
603 /* Set, clear or test bit number I in R, a bit vector of elements with
604 minimal index and maximal index equal correspondingly to MIN and
605 MAX. */
606 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
608 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
609 (({ int _min = (MIN), _max = (MAX), _i = (I); \
610 if (_i < _min || _i > _max) \
612 fprintf (stderr, \
613 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
614 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
615 gcc_unreachable (); \
617 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
618 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
621 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
622 (({ int _min = (MIN), _max = (MAX), _i = (I); \
623 if (_i < _min || _i > _max) \
625 fprintf (stderr, \
626 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
627 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
628 gcc_unreachable (); \
630 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
631 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
633 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
634 (({ int _min = (MIN), _max = (MAX), _i = (I); \
635 if (_i < _min || _i > _max) \
637 fprintf (stderr, \
638 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
639 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
640 gcc_unreachable (); \
642 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
643 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
645 #else
647 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
648 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
649 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
651 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
652 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
653 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
655 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
656 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
657 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
659 #endif
661 /* The iterator for min/max sets. */
662 typedef struct {
664 /* Array containing the bit vector. */
665 IRA_INT_TYPE *vec;
667 /* The number of the current element in the vector. */
668 unsigned int word_num;
670 /* The number of bits in the bit vector. */
671 unsigned int nel;
673 /* The current bit index of the bit vector. */
674 unsigned int bit_num;
676 /* Index corresponding to the 1st bit of the bit vector. */
677 int start_val;
679 /* The word of the bit vector currently visited. */
680 unsigned IRA_INT_TYPE word;
681 } minmax_set_iterator;
683 /* Initialize the iterator I for bit vector VEC containing minimal and
684 maximal values MIN and MAX. */
685 static inline void
686 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
687 int max)
689 i->vec = vec;
690 i->word_num = 0;
691 i->nel = max < min ? 0 : max - min + 1;
692 i->start_val = min;
693 i->bit_num = 0;
694 i->word = i->nel == 0 ? 0 : vec[0];
697 /* Return TRUE if we have more allocnos to visit, in which case *N is
698 set to the number of the element to be visited. Otherwise, return
699 FALSE. */
700 static inline bool
701 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
703 /* Skip words that are zeros. */
704 for (; i->word == 0; i->word = i->vec[i->word_num])
706 i->word_num++;
707 i->bit_num = i->word_num * IRA_INT_BITS;
709 /* If we have reached the end, break. */
710 if (i->bit_num >= i->nel)
711 return false;
714 /* Skip bits that are zero. */
715 for (; (i->word & 1) == 0; i->word >>= 1)
716 i->bit_num++;
718 *n = (int) i->bit_num + i->start_val;
720 return true;
723 /* Advance to the next element in the set. */
724 static inline void
725 minmax_set_iter_next (minmax_set_iterator *i)
727 i->word >>= 1;
728 i->bit_num++;
731 /* Loop over all elements of a min/max set given by bit vector VEC and
732 their minimal and maximal values MIN and MAX. In each iteration, N
733 is set to the number of next allocno. ITER is an instance of
734 minmax_set_iterator used to iterate over the set. */
735 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
736 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
737 minmax_set_iter_cond (&(ITER), &(N)); \
738 minmax_set_iter_next (&(ITER)))
740 struct target_ira_int {
741 /* Initialized once. It is a maximal possible size of the allocated
742 struct costs. */
743 int x_max_struct_costs_size;
745 /* Allocated and initialized once, and used to initialize cost values
746 for each insn. */
747 struct costs *x_init_cost;
749 /* Allocated once, and used for temporary purposes. */
750 struct costs *x_temp_costs;
752 /* Allocated once, and used for the cost calculation. */
753 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
754 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
756 /* Hard registers that can not be used for the register allocator for
757 all functions of the current compilation unit. */
758 HARD_REG_SET x_no_unit_alloc_regs;
760 /* Map: hard regs X modes -> set of hard registers for storing value
761 of given mode starting with given hard register. */
762 HARD_REG_SET (x_ira_reg_mode_hard_regset
763 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
765 /* Maximum cost of moving from a register in one class to a register
766 in another class. Based on TARGET_REGISTER_MOVE_COST. */
767 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
769 /* Similar, but here we don't have to move if the first index is a
770 subset of the second so in that case the cost is zero. */
771 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
773 /* Similar, but here we don't have to move if the first index is a
774 superset of the second so in that case the cost is zero. */
775 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
777 /* Keep track of the last mode we initialized move costs for. */
778 int x_last_mode_for_init_move_cost;
780 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
781 cost not minimal. */
782 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
784 /* Map class->true if class is a possible allocno class, false
785 otherwise. */
786 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
788 /* Map class->true if class is a pressure class, false otherwise. */
789 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
791 /* Array of the number of hard registers of given class which are
792 available for allocation. The order is defined by the hard
793 register numbers. */
794 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
796 /* Index (in ira_class_hard_regs; for given register class and hard
797 register (in general case a hard register can belong to several
798 register classes;. The index is negative for hard registers
799 unavailable for the allocation. */
800 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
802 /* Array whose values are hard regset of hard registers available for
803 the allocation of given register class whose HARD_REGNO_MODE_OK
804 values for given mode are zero. */
805 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
807 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
809 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
811 For example, if:
813 - (reg:M 2) is valid and occupies two registers;
814 - register 2 belongs to CL; and
815 - register 3 belongs to the same pressure class as CL
817 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
818 in the set. */
819 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
821 /* The value is number of elements in the subsequent array. */
822 int x_ira_important_classes_num;
824 /* The array containing all non-empty classes. Such classes is
825 important for calculation of the hard register usage costs. */
826 enum reg_class x_ira_important_classes[N_REG_CLASSES];
828 /* The array containing indexes of important classes in the previous
829 array. The array elements are defined only for important
830 classes. */
831 int x_ira_important_class_nums[N_REG_CLASSES];
833 /* Map class->true if class is an uniform class, false otherwise. */
834 bool x_ira_uniform_class_p[N_REG_CLASSES];
836 /* The biggest important class inside of intersection of the two
837 classes (that is calculated taking only hard registers available
838 for allocation into account;. If the both classes contain no hard
839 registers available for allocation, the value is calculated with
840 taking all hard-registers including fixed ones into account. */
841 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
843 /* Classes with end marker LIM_REG_CLASSES which are intersected with
844 given class (the first index). That includes given class itself.
845 This is calculated taking only hard registers available for
846 allocation into account. */
847 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
849 /* The biggest (smallest) important class inside of (covering) union
850 of the two classes (that is calculated taking only hard registers
851 available for allocation into account). If the both classes
852 contain no hard registers available for allocation, the value is
853 calculated with taking all hard-registers including fixed ones
854 into account. In other words, the value is the corresponding
855 reg_class_subunion (reg_class_superunion) value. */
856 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
857 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
859 /* For each reg class, table listing all the classes contained in it
860 (excluding the class itself. Non-allocatable registers are
861 excluded from the consideration). */
862 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
864 /* Array whose values are hard regset of hard registers for which
865 move of the hard register in given mode into itself is
866 prohibited. */
867 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
869 /* Flag of that the above array has been initialized. */
870 bool x_ira_prohibited_mode_move_regs_initialized_p;
873 extern struct target_ira_int default_target_ira_int;
874 #if SWITCHABLE_TARGET
875 extern struct target_ira_int *this_target_ira_int;
876 #else
877 #define this_target_ira_int (&default_target_ira_int)
878 #endif
880 #define ira_reg_mode_hard_regset \
881 (this_target_ira_int->x_ira_reg_mode_hard_regset)
882 #define ira_register_move_cost \
883 (this_target_ira_int->x_ira_register_move_cost)
884 #define ira_max_memory_move_cost \
885 (this_target_ira_int->x_ira_max_memory_move_cost)
886 #define ira_may_move_in_cost \
887 (this_target_ira_int->x_ira_may_move_in_cost)
888 #define ira_may_move_out_cost \
889 (this_target_ira_int->x_ira_may_move_out_cost)
890 #define ira_reg_allocno_class_p \
891 (this_target_ira_int->x_ira_reg_allocno_class_p)
892 #define ira_reg_pressure_class_p \
893 (this_target_ira_int->x_ira_reg_pressure_class_p)
894 #define ira_non_ordered_class_hard_regs \
895 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
896 #define ira_class_hard_reg_index \
897 (this_target_ira_int->x_ira_class_hard_reg_index)
898 #define ira_prohibited_class_mode_regs \
899 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
900 #define ira_useful_class_mode_regs \
901 (this_target_ira_int->x_ira_useful_class_mode_regs)
902 #define ira_important_classes_num \
903 (this_target_ira_int->x_ira_important_classes_num)
904 #define ira_important_classes \
905 (this_target_ira_int->x_ira_important_classes)
906 #define ira_important_class_nums \
907 (this_target_ira_int->x_ira_important_class_nums)
908 #define ira_uniform_class_p \
909 (this_target_ira_int->x_ira_uniform_class_p)
910 #define ira_reg_class_intersect \
911 (this_target_ira_int->x_ira_reg_class_intersect)
912 #define ira_reg_class_super_classes \
913 (this_target_ira_int->x_ira_reg_class_super_classes)
914 #define ira_reg_class_subunion \
915 (this_target_ira_int->x_ira_reg_class_subunion)
916 #define ira_reg_class_superunion \
917 (this_target_ira_int->x_ira_reg_class_superunion)
918 #define ira_prohibited_mode_move_regs \
919 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
921 /* ira.c: */
923 extern void *ira_allocate (size_t);
924 extern void ira_free (void *addr);
925 extern bitmap ira_allocate_bitmap (void);
926 extern void ira_free_bitmap (bitmap);
927 extern void ira_print_disposition (FILE *);
928 extern void ira_debug_disposition (void);
929 extern void ira_debug_allocno_classes (void);
930 extern void ira_init_register_move_cost (enum machine_mode);
932 /* ira-build.c */
934 /* The current loop tree node and its regno allocno map. */
935 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
936 extern ira_allocno_t *ira_curr_regno_allocno_map;
938 extern void ira_debug_copy (ira_copy_t);
939 extern void ira_debug_copies (void);
940 extern void ira_debug_allocno_copies (ira_allocno_t);
942 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
943 void (*) (ira_loop_tree_node_t),
944 void (*) (ira_loop_tree_node_t));
945 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
946 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
947 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
948 extern void ira_create_allocno_objects (ira_allocno_t);
949 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
950 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
951 extern void ira_allocate_conflict_vec (ira_object_t, int);
952 extern void ira_allocate_object_conflicts (ira_object_t, int);
953 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
954 extern void ira_print_expanded_allocno (ira_allocno_t);
955 extern void ira_add_live_range_to_object (ira_object_t, int, int);
956 extern live_range_t ira_create_live_range (ira_object_t, int, int,
957 live_range_t);
958 extern live_range_t ira_copy_live_range_list (live_range_t);
959 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
960 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
961 extern void ira_finish_live_range (live_range_t);
962 extern void ira_finish_live_range_list (live_range_t);
963 extern void ira_free_allocno_updated_costs (ira_allocno_t);
964 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
965 int, bool, rtx, ira_loop_tree_node_t);
966 extern void ira_add_allocno_copy_to_list (ira_copy_t);
967 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
968 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
969 bool, rtx, ira_loop_tree_node_t);
971 extern int *ira_allocate_cost_vector (reg_class_t);
972 extern void ira_free_cost_vector (int *, reg_class_t);
974 extern void ira_flattening (int, int);
975 extern bool ira_build (void);
976 extern void ira_destroy (void);
978 /* ira-costs.c */
979 extern void ira_init_costs_once (void);
980 extern void ira_init_costs (void);
981 extern void ira_finish_costs_once (void);
982 extern void ira_costs (void);
983 extern void ira_tune_allocno_costs (void);
985 /* ira-lives.c */
987 extern void ira_rebuild_start_finish_chains (void);
988 extern void ira_print_live_range_list (FILE *, live_range_t);
989 extern void ira_debug_live_range_list (live_range_t);
990 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
991 extern void ira_debug_live_ranges (void);
992 extern void ira_create_allocno_live_ranges (void);
993 extern void ira_compress_allocno_live_ranges (void);
994 extern void ira_finish_allocno_live_ranges (void);
996 /* ira-conflicts.c */
997 extern void ira_debug_conflicts (bool);
998 extern void ira_build_conflicts (void);
1000 /* ira-color.c */
1001 extern void ira_debug_hard_regs_forest (void);
1002 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1003 extern void ira_reassign_conflict_allocnos (int);
1004 extern void ira_initiate_assign (void);
1005 extern void ira_finish_assign (void);
1006 extern void ira_color (void);
1008 /* ira-emit.c */
1009 extern void ira_initiate_emit_data (void);
1010 extern void ira_finish_emit_data (void);
1011 extern void ira_emit (bool);
1015 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1016 static inline bool
1017 ira_equiv_no_lvalue_p (int regno)
1019 if (regno >= ira_reg_equiv_len)
1020 return false;
1021 return (ira_reg_equiv[regno].constant != NULL_RTX
1022 || ira_reg_equiv[regno].invariant != NULL_RTX
1023 || (ira_reg_equiv[regno].memory != NULL_RTX
1024 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1029 /* Initialize register costs for MODE if necessary. */
1030 static inline void
1031 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1033 if (ira_register_move_cost[mode] == NULL)
1034 ira_init_register_move_cost (mode);
1039 /* The iterator for all allocnos. */
1040 typedef struct {
1041 /* The number of the current element in IRA_ALLOCNOS. */
1042 int n;
1043 } ira_allocno_iterator;
1045 /* Initialize the iterator I. */
1046 static inline void
1047 ira_allocno_iter_init (ira_allocno_iterator *i)
1049 i->n = 0;
1052 /* Return TRUE if we have more allocnos to visit, in which case *A is
1053 set to the allocno to be visited. Otherwise, return FALSE. */
1054 static inline bool
1055 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1057 int n;
1059 for (n = i->n; n < ira_allocnos_num; n++)
1060 if (ira_allocnos[n] != NULL)
1062 *a = ira_allocnos[n];
1063 i->n = n + 1;
1064 return true;
1066 return false;
1069 /* Loop over all allocnos. In each iteration, A is set to the next
1070 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1071 the allocnos. */
1072 #define FOR_EACH_ALLOCNO(A, ITER) \
1073 for (ira_allocno_iter_init (&(ITER)); \
1074 ira_allocno_iter_cond (&(ITER), &(A));)
1076 /* The iterator for all objects. */
1077 typedef struct {
1078 /* The number of the current element in ira_object_id_map. */
1079 int n;
1080 } ira_object_iterator;
1082 /* Initialize the iterator I. */
1083 static inline void
1084 ira_object_iter_init (ira_object_iterator *i)
1086 i->n = 0;
1089 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1090 set to the object to be visited. Otherwise, return FALSE. */
1091 static inline bool
1092 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1094 int n;
1096 for (n = i->n; n < ira_objects_num; n++)
1097 if (ira_object_id_map[n] != NULL)
1099 *obj = ira_object_id_map[n];
1100 i->n = n + 1;
1101 return true;
1103 return false;
1106 /* Loop over all objects. In each iteration, OBJ is set to the next
1107 object. ITER is an instance of ira_object_iterator used to iterate
1108 the objects. */
1109 #define FOR_EACH_OBJECT(OBJ, ITER) \
1110 for (ira_object_iter_init (&(ITER)); \
1111 ira_object_iter_cond (&(ITER), &(OBJ));)
1113 /* The iterator for objects associated with an allocno. */
1114 typedef struct {
1115 /* The number of the element the allocno's object array. */
1116 int n;
1117 } ira_allocno_object_iterator;
1119 /* Initialize the iterator I. */
1120 static inline void
1121 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1123 i->n = 0;
1126 /* Return TRUE if we have more objects to visit in allocno A, in which
1127 case *O is set to the object to be visited. Otherwise, return
1128 FALSE. */
1129 static inline bool
1130 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1131 ira_object_t *o)
1133 int n = i->n++;
1134 if (n < ALLOCNO_NUM_OBJECTS (a))
1136 *o = ALLOCNO_OBJECT (a, n);
1137 return true;
1139 return false;
1142 /* Loop over all objects associated with allocno A. In each
1143 iteration, O is set to the next object. ITER is an instance of
1144 ira_allocno_object_iterator used to iterate the conflicts. */
1145 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1146 for (ira_allocno_object_iter_init (&(ITER)); \
1147 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1150 /* The iterator for copies. */
1151 typedef struct {
1152 /* The number of the current element in IRA_COPIES. */
1153 int n;
1154 } ira_copy_iterator;
1156 /* Initialize the iterator I. */
1157 static inline void
1158 ira_copy_iter_init (ira_copy_iterator *i)
1160 i->n = 0;
1163 /* Return TRUE if we have more copies to visit, in which case *CP is
1164 set to the copy to be visited. Otherwise, return FALSE. */
1165 static inline bool
1166 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1168 int n;
1170 for (n = i->n; n < ira_copies_num; n++)
1171 if (ira_copies[n] != NULL)
1173 *cp = ira_copies[n];
1174 i->n = n + 1;
1175 return true;
1177 return false;
1180 /* Loop over all copies. In each iteration, C is set to the next
1181 copy. ITER is an instance of ira_copy_iterator used to iterate
1182 the copies. */
1183 #define FOR_EACH_COPY(C, ITER) \
1184 for (ira_copy_iter_init (&(ITER)); \
1185 ira_copy_iter_cond (&(ITER), &(C));)
1187 /* The iterator for object conflicts. */
1188 typedef struct {
1190 /* TRUE if the conflicts are represented by vector of allocnos. */
1191 bool conflict_vec_p;
1193 /* The conflict vector or conflict bit vector. */
1194 void *vec;
1196 /* The number of the current element in the vector (of type
1197 ira_object_t or IRA_INT_TYPE). */
1198 unsigned int word_num;
1200 /* The bit vector size. It is defined only if
1201 OBJECT_CONFLICT_VEC_P is FALSE. */
1202 unsigned int size;
1204 /* The current bit index of bit vector. It is defined only if
1205 OBJECT_CONFLICT_VEC_P is FALSE. */
1206 unsigned int bit_num;
1208 /* The object id corresponding to the 1st bit of the bit vector. It
1209 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1210 int base_conflict_id;
1212 /* The word of bit vector currently visited. It is defined only if
1213 OBJECT_CONFLICT_VEC_P is FALSE. */
1214 unsigned IRA_INT_TYPE word;
1215 } ira_object_conflict_iterator;
1217 /* Initialize the iterator I with ALLOCNO conflicts. */
1218 static inline void
1219 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1220 ira_object_t obj)
1222 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1223 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1224 i->word_num = 0;
1225 if (i->conflict_vec_p)
1226 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1227 else
1229 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1230 i->size = 0;
1231 else
1232 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1233 + IRA_INT_BITS)
1234 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1235 i->bit_num = 0;
1236 i->base_conflict_id = OBJECT_MIN (obj);
1237 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1241 /* Return TRUE if we have more conflicting allocnos to visit, in which
1242 case *A is set to the allocno to be visited. Otherwise, return
1243 FALSE. */
1244 static inline bool
1245 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1246 ira_object_t *pobj)
1248 ira_object_t obj;
1250 if (i->conflict_vec_p)
1252 obj = ((ira_object_t *) i->vec)[i->word_num++];
1253 if (obj == NULL)
1254 return false;
1256 else
1258 unsigned IRA_INT_TYPE word = i->word;
1259 unsigned int bit_num = i->bit_num;
1261 /* Skip words that are zeros. */
1262 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1264 i->word_num++;
1266 /* If we have reached the end, break. */
1267 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1268 return false;
1270 bit_num = i->word_num * IRA_INT_BITS;
1273 /* Skip bits that are zero. */
1274 for (; (word & 1) == 0; word >>= 1)
1275 bit_num++;
1277 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1278 i->bit_num = bit_num + 1;
1279 i->word = word >> 1;
1282 *pobj = obj;
1283 return true;
1286 /* Loop over all objects conflicting with OBJ. In each iteration,
1287 CONF is set to the next conflicting object. ITER is an instance
1288 of ira_object_conflict_iterator used to iterate the conflicts. */
1289 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1290 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1291 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1295 /* The function returns TRUE if at least one hard register from ones
1296 starting with HARD_REGNO and containing value of MODE are in set
1297 HARD_REGSET. */
1298 static inline bool
1299 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1300 HARD_REG_SET hard_regset)
1302 int i;
1304 gcc_assert (hard_regno >= 0);
1305 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1306 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1307 return true;
1308 return false;
1311 /* Return number of hard registers in hard register SET. */
1312 static inline int
1313 hard_reg_set_size (HARD_REG_SET set)
1315 int i, size;
1317 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1318 if (TEST_HARD_REG_BIT (set, i))
1319 size++;
1320 return size;
1323 /* The function returns TRUE if hard registers starting with
1324 HARD_REGNO and containing value of MODE are fully in set
1325 HARD_REGSET. */
1326 static inline bool
1327 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1328 HARD_REG_SET hard_regset)
1330 int i;
1332 ira_assert (hard_regno >= 0);
1333 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1334 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1335 return false;
1336 return true;
1341 /* To save memory we use a lazy approach for allocation and
1342 initialization of the cost vectors. We do this only when it is
1343 really necessary. */
1345 /* Allocate cost vector *VEC for hard registers of ACLASS and
1346 initialize the elements by VAL if it is necessary */
1347 static inline void
1348 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1350 int i, *reg_costs;
1351 int len;
1353 if (*vec != NULL)
1354 return;
1355 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1356 len = ira_class_hard_regs_num[(int) aclass];
1357 for (i = 0; i < len; i++)
1358 reg_costs[i] = val;
1361 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1362 values of vector SRC into the vector if it is necessary */
1363 static inline void
1364 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1366 int len;
1368 if (*vec != NULL || src == NULL)
1369 return;
1370 *vec = ira_allocate_cost_vector (aclass);
1371 len = ira_class_hard_regs_num[aclass];
1372 memcpy (*vec, src, sizeof (int) * len);
1375 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1376 values of vector SRC into the vector if it is necessary */
1377 static inline void
1378 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1380 int i, len;
1382 if (src == NULL)
1383 return;
1384 len = ira_class_hard_regs_num[aclass];
1385 if (*vec == NULL)
1387 *vec = ira_allocate_cost_vector (aclass);
1388 memset (*vec, 0, sizeof (int) * len);
1390 for (i = 0; i < len; i++)
1391 (*vec)[i] += src[i];
1394 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1395 values of vector SRC into the vector or initialize it by VAL (if
1396 SRC is null). */
1397 static inline void
1398 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1399 int val, int *src)
1401 int i, *reg_costs;
1402 int len;
1404 if (*vec != NULL)
1405 return;
1406 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1407 len = ira_class_hard_regs_num[aclass];
1408 if (src != NULL)
1409 memcpy (reg_costs, src, sizeof (int) * len);
1410 else
1412 for (i = 0; i < len; i++)
1413 reg_costs[i] = val;
1417 extern rtx ira_create_new_reg (rtx);
1418 extern int first_moveable_pseudo, last_moveable_pseudo;