* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / combine.c
blobacb742165893f649fa9dbf53bd5afd7cbaafc417
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
254 static vec<reg_stat_type> reg_stat;
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
259 static int mem_last_set;
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
264 static int last_call_luid;
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
272 static rtx subst_insn;
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
281 static int subst_low_luid;
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
286 static HARD_REG_SET newpat_used_regs;
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
292 static rtx added_links_insn;
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
299 /* Length of the currently allocated uid_insn_cost array. */
301 static int max_uid_known;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
316 static struct insn_link **uid_log_links;
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324 /* Links for LOG_LINKS are allocated from this obstack. */
326 static struct obstack insn_link_obstack;
328 /* Allocate a link. */
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
341 /* Incremented for each basic block. */
343 static int label_tick;
345 /* Reset to label_tick for each extended basic block in scanning order. */
347 static int label_tick_ebb_start;
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352 static enum machine_mode nonzero_bits_mode;
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
360 static int nonzero_sign_valid;
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368 struct undo
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
382 struct undobuf
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
389 static struct undobuf undobuf;
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
394 static int n_occurrences;
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
515 rtx ret;
516 unsigned int nregs;
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
541 switch (code)
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
566 return find_single_use_1 (dest, &SET_SRC (x));
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
572 default:
573 break;
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 if (fmt[i] == 'e')
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
597 else if (fmt[i] == 'E')
599 int j;
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
619 return result;
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
658 #endif
660 if (!REG_P (dest))
661 return 0;
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
673 if (link)
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
682 return 0;
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
691 static void
692 do_SUBST (rtx *into, rtx newval)
694 struct undo *buf;
695 rtx oldval = *into;
697 if (oldval == newval)
698 return;
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
735 buf->next = undobuf.undos, undobuf.undos = buf;
738 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
744 static void
745 do_SUBST_INT (int *into, int newval)
747 struct undo *buf;
748 int oldval = *into;
750 if (oldval == newval)
751 return;
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
763 buf->next = undobuf.undos, undobuf.undos = buf;
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
779 if (oldval == newval)
780 return;
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
792 buf->next = undobuf.undos, undobuf.undos = buf;
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 struct undo *buf;
804 struct insn_link * oldval = *into;
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
845 if (i1)
847 i1_cost = INSN_COST (i1);
848 if (i0)
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 else
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
861 else
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
875 else
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
881 if (undobuf.other_insn)
883 int old_other_cost, new_other_cost;
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
892 else
893 old_cost = 0;
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
900 if (dump_file)
902 if (i0)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 else if (i1)
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
919 else
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
928 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 return false;
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
950 return true;
954 /* Delete any insns that copy a register to itself. */
956 static void
957 delete_noop_moves (void)
959 rtx insn, next;
960 basic_block bb;
962 FOR_EACH_BB (bb)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 delete_insn_and_edges (insn);
979 /* Fill in log links field for all insns. */
981 static void
982 create_log_links (void)
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
988 next_use = XCNEWVEC (rtx, max_reg_num ());
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
999 FOR_EACH_BB (bb)
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1015 if (!next_use[regno])
1016 continue;
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1033 continue;
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 /* flow.c claimed:
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 next_use[regno] = NULL_RTX;
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1072 next_use[regno] = insn;
1077 free (next_use);
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1117 int new_direct_jump_p = 0;
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1129 rtl_hooks = combine_rtl_hooks;
1131 reg_stat.safe_grow_cleared (nregs);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf(dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1205 nonzero_sign_valid = 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1213 FOR_EACH_BB (this_basic_block)
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links, insn)
1264 rtx link = links->insn;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1361 FOR_EACH_LOG_LINK (next1, link)
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1383 for (next1 = links->next; next1; next1 = next1->next)
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1441 retry:
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1462 next = undo->next;
1463 free (undo);
1465 undobuf.frees = 0;
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1479 return new_direct_jump_p;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484 static void
1485 init_reg_last (void)
1487 unsigned int i;
1488 reg_stat_type *p;
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 /* Set up any promoted values for incoming argument registers. */
1496 static void
1497 setup_incoming_promotions (rtx first)
1499 tree arg;
1500 bool strictly_local = false;
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1624 struct insn_link *link;
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1648 rtx src = SET_SRC (set);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1675 else
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1709 if (succ)
1711 if (succ2)
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750 switch (GET_CODE (elt))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1787 while (--i >= 0);
1789 break;
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1808 set = elt;
1809 break;
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1823 else
1824 return 0;
1826 if (set == 0)
1827 return 0;
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2015 *pdest = dest;
2016 *psrc = src;
2018 return 1;
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2028 Consider:
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 rtx x = *loc;
2065 if (GET_CODE (x) == SET)
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 if (*pi3dest_killed)
2135 return 0;
2137 *pi3dest_killed = subdest;
2141 else if (GET_CODE (x) == PARALLEL)
2143 int i;
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2151 return 1;
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2157 static int
2158 contains_muldiv (rtx x)
2160 switch (GET_CODE (x))
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2176 return 0;
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2184 static int
2185 cant_combine_insn_p (rtx insn)
2187 rtx set;
2188 rtx src, dest;
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2221 return 0;
2224 struct likely_spilled_retval_info
2226 unsigned regno, nregs;
2227 unsigned mask;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2310 static void
2311 adjust_for_new_dest (rtx insn)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2321 df_insn_rescan (insn);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 unsigned int regno;
2331 if (!REG_P(x))
2332 return false;
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2378 purge_dead_edges (bb);
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2383 rtx insn;
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 else if (LABEL_P (insn))
2399 break;
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2483 if (!flag_expensive_optimizations)
2484 return 0;
2486 for (i = 0; i < 4; i++)
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2496 ngood += 2;
2497 break;
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2546 added_links_insn = 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2580 rtx p2 = PATTERN (i2);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 combine_merges++;
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2638 /* There are not explicit tests to make sure that this is not a
2639 float, but there is code here that would not be correct if it
2640 was. */
2641 gcc_assert (GET_MODE_CLASS (GET_MODE (SET_SRC (temp))) != MODE_FLOAT);
2643 if (GET_CODE (dest) == ZERO_EXTRACT)
2645 if (CONST_INT_P (XEXP (dest, 1))
2646 && CONST_INT_P (XEXP (dest, 2)))
2648 width = INTVAL (XEXP (dest, 1));
2649 offset = INTVAL (XEXP (dest, 2));
2650 dest = XEXP (dest, 0);
2651 if (BITS_BIG_ENDIAN)
2652 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2655 else
2657 if (GET_CODE (dest) == STRICT_LOW_PART)
2658 dest = XEXP (dest, 0);
2659 width = GET_MODE_PRECISION (GET_MODE (dest));
2660 offset = 0;
2663 if (offset >= 0)
2665 /* If this is the low part, we're done. */
2666 if (subreg_lowpart_p (dest))
2668 /* Handle the case where inner is twice the size of outer. */
2669 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2670 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2671 offset += GET_MODE_PRECISION (GET_MODE (dest));
2672 /* Otherwise give up for now. */
2673 else
2674 offset = -1;
2677 if (offset >= 0
2678 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2679 <= HOST_BITS_PER_DOUBLE_INT))
2681 double_int m, o, i;
2682 rtx inner = SET_SRC (PATTERN (i3));
2683 rtx outer = SET_SRC (temp);
2685 o = rtx_to_double_int (outer);
2686 i = rtx_to_double_int (inner);
2688 m = double_int::mask (width);
2689 i &= m;
2690 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2691 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2692 o = o.and_not (m) | i;
2694 combine_merges++;
2695 subst_insn = i3;
2696 subst_low_luid = DF_INSN_LUID (i2);
2697 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2698 i2dest = SET_DEST (temp);
2699 i2dest_killed = dead_or_set_p (i2, i2dest);
2701 /* Replace the source in I2 with the new constant and make the
2702 resulting insn the new pattern for I3. Then skip to where we
2703 validate the pattern. Everything was set up above. */
2704 SUBST (SET_SRC (temp),
2705 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2707 newpat = PATTERN (i2);
2709 /* The dest of I3 has been replaced with the dest of I2. */
2710 changed_i3_dest = 1;
2711 goto validate_replacement;
2715 #ifndef HAVE_cc0
2716 /* If we have no I1 and I2 looks like:
2717 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2718 (set Y OP)])
2719 make up a dummy I1 that is
2720 (set Y OP)
2721 and change I2 to be
2722 (set (reg:CC X) (compare:CC Y (const_int 0)))
2724 (We can ignore any trailing CLOBBERs.)
2726 This undoes a previous combination and allows us to match a branch-and-
2727 decrement insn. */
2729 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2730 && XVECLEN (PATTERN (i2), 0) >= 2
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2732 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2733 == MODE_CC)
2734 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2735 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2736 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2737 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2738 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2739 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2741 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2742 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2743 break;
2745 if (i == 1)
2747 /* We make I1 with the same INSN_UID as I2. This gives it
2748 the same DF_INSN_LUID for value tracking. Our fake I1 will
2749 never appear in the insn stream so giving it the same INSN_UID
2750 as I2 will not cause a problem. */
2752 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2753 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2754 INSN_LOCATION (i2), -1, NULL_RTX);
2756 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2757 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2758 SET_DEST (PATTERN (i1)));
2759 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2762 #endif
2764 /* Verify that I2 and I1 are valid for combining. */
2765 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2766 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2767 &i1dest, &i1src))
2768 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2769 &i0dest, &i0src)))
2771 undo_all ();
2772 return 0;
2775 /* Record whether I2DEST is used in I2SRC and similarly for the other
2776 cases. Knowing this will help in register status updating below. */
2777 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2778 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2779 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2780 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2781 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2782 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2783 i2dest_killed = dead_or_set_p (i2, i2dest);
2784 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2785 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2787 /* For the earlier insns, determine which of the subsequent ones they
2788 feed. */
2789 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2790 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2791 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2792 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2793 && reg_overlap_mentioned_p (i0dest, i2src))));
2795 /* Ensure that I3's pattern can be the destination of combines. */
2796 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2797 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2798 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2799 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2800 &i3dest_killed))
2802 undo_all ();
2803 return 0;
2806 /* See if any of the insns is a MULT operation. Unless one is, we will
2807 reject a combination that is, since it must be slower. Be conservative
2808 here. */
2809 if (GET_CODE (i2src) == MULT
2810 || (i1 != 0 && GET_CODE (i1src) == MULT)
2811 || (i0 != 0 && GET_CODE (i0src) == MULT)
2812 || (GET_CODE (PATTERN (i3)) == SET
2813 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2814 have_mult = 1;
2816 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2817 We used to do this EXCEPT in one case: I3 has a post-inc in an
2818 output operand. However, that exception can give rise to insns like
2819 mov r3,(r3)+
2820 which is a famous insn on the PDP-11 where the value of r3 used as the
2821 source was model-dependent. Avoid this sort of thing. */
2823 #if 0
2824 if (!(GET_CODE (PATTERN (i3)) == SET
2825 && REG_P (SET_SRC (PATTERN (i3)))
2826 && MEM_P (SET_DEST (PATTERN (i3)))
2827 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2828 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2829 /* It's not the exception. */
2830 #endif
2831 #ifdef AUTO_INC_DEC
2833 rtx link;
2834 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2835 if (REG_NOTE_KIND (link) == REG_INC
2836 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2837 || (i1 != 0
2838 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2840 undo_all ();
2841 return 0;
2844 #endif
2846 /* See if the SETs in I1 or I2 need to be kept around in the merged
2847 instruction: whenever the value set there is still needed past I3.
2848 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2850 For the SET in I1, we have two cases: If I1 and I2 independently
2851 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2852 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2853 in I1 needs to be kept around unless I1DEST dies or is set in either
2854 I2 or I3. The same consideration applies to I0. */
2856 added_sets_2 = !dead_or_set_p (i3, i2dest);
2858 if (i1)
2859 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2860 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2861 else
2862 added_sets_1 = 0;
2864 if (i0)
2865 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2866 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2867 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2868 else
2869 added_sets_0 = 0;
2871 /* We are about to copy insns for the case where they need to be kept
2872 around. Check that they can be copied in the merged instruction. */
2874 if (targetm.cannot_copy_insn_p
2875 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2876 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2877 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2879 undo_all ();
2880 return 0;
2883 /* If the set in I2 needs to be kept around, we must make a copy of
2884 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2885 PATTERN (I2), we are only substituting for the original I1DEST, not into
2886 an already-substituted copy. This also prevents making self-referential
2887 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2888 I2DEST. */
2890 if (added_sets_2)
2892 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2893 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2894 else
2895 i2pat = copy_rtx (PATTERN (i2));
2898 if (added_sets_1)
2900 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2901 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2902 else
2903 i1pat = copy_rtx (PATTERN (i1));
2906 if (added_sets_0)
2908 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2909 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2910 else
2911 i0pat = copy_rtx (PATTERN (i0));
2914 combine_merges++;
2916 /* Substitute in the latest insn for the regs set by the earlier ones. */
2918 maxreg = max_reg_num ();
2920 subst_insn = i3;
2922 #ifndef HAVE_cc0
2923 /* Many machines that don't use CC0 have insns that can both perform an
2924 arithmetic operation and set the condition code. These operations will
2925 be represented as a PARALLEL with the first element of the vector
2926 being a COMPARE of an arithmetic operation with the constant zero.
2927 The second element of the vector will set some pseudo to the result
2928 of the same arithmetic operation. If we simplify the COMPARE, we won't
2929 match such a pattern and so will generate an extra insn. Here we test
2930 for this case, where both the comparison and the operation result are
2931 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2932 I2SRC. Later we will make the PARALLEL that contains I2. */
2934 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2935 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2936 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2937 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2939 rtx newpat_dest;
2940 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2941 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2942 enum machine_mode compare_mode, orig_compare_mode;
2943 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2945 newpat = PATTERN (i3);
2946 newpat_dest = SET_DEST (newpat);
2947 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2949 if (undobuf.other_insn == 0
2950 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2951 &cc_use_insn)))
2953 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2954 compare_code = simplify_compare_const (compare_code,
2955 op0, &op1);
2956 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2959 /* Do the rest only if op1 is const0_rtx, which may be the
2960 result of simplification. */
2961 if (op1 == const0_rtx)
2963 /* If a single use of the CC is found, prepare to modify it
2964 when SELECT_CC_MODE returns a new CC-class mode, or when
2965 the above simplify_compare_const() returned a new comparison
2966 operator. undobuf.other_insn is assigned the CC use insn
2967 when modifying it. */
2968 if (cc_use_loc)
2970 #ifdef SELECT_CC_MODE
2971 enum machine_mode new_mode
2972 = SELECT_CC_MODE (compare_code, op0, op1);
2973 if (new_mode != orig_compare_mode
2974 && can_change_dest_mode (SET_DEST (newpat),
2975 added_sets_2, new_mode))
2977 unsigned int regno = REGNO (newpat_dest);
2978 compare_mode = new_mode;
2979 if (regno < FIRST_PSEUDO_REGISTER)
2980 newpat_dest = gen_rtx_REG (compare_mode, regno);
2981 else
2983 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2984 newpat_dest = regno_reg_rtx[regno];
2987 #endif
2988 /* Cases for modifying the CC-using comparison. */
2989 if (compare_code != orig_compare_code
2990 /* ??? Do we need to verify the zero rtx? */
2991 && XEXP (*cc_use_loc, 1) == const0_rtx)
2993 /* Replace cc_use_loc with entire new RTX. */
2994 SUBST (*cc_use_loc,
2995 gen_rtx_fmt_ee (compare_code, compare_mode,
2996 newpat_dest, const0_rtx));
2997 undobuf.other_insn = cc_use_insn;
2999 else if (compare_mode != orig_compare_mode)
3001 /* Just replace the CC reg with a new mode. */
3002 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3003 undobuf.other_insn = cc_use_insn;
3007 /* Now we modify the current newpat:
3008 First, SET_DEST(newpat) is updated if the CC mode has been
3009 altered. For targets without SELECT_CC_MODE, this should be
3010 optimized away. */
3011 if (compare_mode != orig_compare_mode)
3012 SUBST (SET_DEST (newpat), newpat_dest);
3013 /* This is always done to propagate i2src into newpat. */
3014 SUBST (SET_SRC (newpat),
3015 gen_rtx_COMPARE (compare_mode, op0, op1));
3016 /* Create new version of i2pat if needed; the below PARALLEL
3017 creation needs this to work correctly. */
3018 if (! rtx_equal_p (i2src, op0))
3019 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3020 i2_is_used = 1;
3023 #endif
3025 if (i2_is_used == 0)
3027 /* It is possible that the source of I2 or I1 may be performing
3028 an unneeded operation, such as a ZERO_EXTEND of something
3029 that is known to have the high part zero. Handle that case
3030 by letting subst look at the inner insns.
3032 Another way to do this would be to have a function that tries
3033 to simplify a single insn instead of merging two or more
3034 insns. We don't do this because of the potential of infinite
3035 loops and because of the potential extra memory required.
3036 However, doing it the way we are is a bit of a kludge and
3037 doesn't catch all cases.
3039 But only do this if -fexpensive-optimizations since it slows
3040 things down and doesn't usually win.
3042 This is not done in the COMPARE case above because the
3043 unmodified I2PAT is used in the PARALLEL and so a pattern
3044 with a modified I2SRC would not match. */
3046 if (flag_expensive_optimizations)
3048 /* Pass pc_rtx so no substitutions are done, just
3049 simplifications. */
3050 if (i1)
3052 subst_low_luid = DF_INSN_LUID (i1);
3053 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3056 subst_low_luid = DF_INSN_LUID (i2);
3057 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3060 n_occurrences = 0; /* `subst' counts here */
3061 subst_low_luid = DF_INSN_LUID (i2);
3063 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3064 copy of I2SRC each time we substitute it, in order to avoid creating
3065 self-referential RTL when we will be substituting I1SRC for I1DEST
3066 later. Likewise if I0 feeds into I2, either directly or indirectly
3067 through I1, and I0DEST is in I0SRC. */
3068 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3069 (i1_feeds_i2_n && i1dest_in_i1src)
3070 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3071 && i0dest_in_i0src));
3072 substed_i2 = 1;
3074 /* Record whether I2's body now appears within I3's body. */
3075 i2_is_used = n_occurrences;
3078 /* If we already got a failure, don't try to do more. Otherwise, try to
3079 substitute I1 if we have it. */
3081 if (i1 && GET_CODE (newpat) != CLOBBER)
3083 /* Check that an autoincrement side-effect on I1 has not been lost.
3084 This happens if I1DEST is mentioned in I2 and dies there, and
3085 has disappeared from the new pattern. */
3086 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3087 && i1_feeds_i2_n
3088 && dead_or_set_p (i2, i1dest)
3089 && !reg_overlap_mentioned_p (i1dest, newpat))
3090 /* Before we can do this substitution, we must redo the test done
3091 above (see detailed comments there) that ensures I1DEST isn't
3092 mentioned in any SETs in NEWPAT that are field assignments. */
3093 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3094 0, 0, 0))
3096 undo_all ();
3097 return 0;
3100 n_occurrences = 0;
3101 subst_low_luid = DF_INSN_LUID (i1);
3103 /* If the following substitution will modify I1SRC, make a copy of it
3104 for the case where it is substituted for I1DEST in I2PAT later. */
3105 if (added_sets_2 && i1_feeds_i2_n)
3106 i1src_copy = copy_rtx (i1src);
3108 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3109 copy of I1SRC each time we substitute it, in order to avoid creating
3110 self-referential RTL when we will be substituting I0SRC for I0DEST
3111 later. */
3112 newpat = subst (newpat, i1dest, i1src, 0, 0,
3113 i0_feeds_i1_n && i0dest_in_i0src);
3114 substed_i1 = 1;
3116 /* Record whether I1's body now appears within I3's body. */
3117 i1_is_used = n_occurrences;
3120 /* Likewise for I0 if we have it. */
3122 if (i0 && GET_CODE (newpat) != CLOBBER)
3124 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3125 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3126 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3127 && !reg_overlap_mentioned_p (i0dest, newpat))
3128 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3129 0, 0, 0))
3131 undo_all ();
3132 return 0;
3135 /* If the following substitution will modify I0SRC, make a copy of it
3136 for the case where it is substituted for I0DEST in I1PAT later. */
3137 if (added_sets_1 && i0_feeds_i1_n)
3138 i0src_copy = copy_rtx (i0src);
3139 /* And a copy for I0DEST in I2PAT substitution. */
3140 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3141 || (i0_feeds_i2_n)))
3142 i0src_copy2 = copy_rtx (i0src);
3144 n_occurrences = 0;
3145 subst_low_luid = DF_INSN_LUID (i0);
3146 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3147 substed_i0 = 1;
3150 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3151 to count all the ways that I2SRC and I1SRC can be used. */
3152 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3153 && i2_is_used + added_sets_2 > 1)
3154 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3155 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3156 > 1))
3157 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3158 && (n_occurrences + added_sets_0
3159 + (added_sets_1 && i0_feeds_i1_n)
3160 + (added_sets_2 && i0_feeds_i2_n)
3161 > 1))
3162 /* Fail if we tried to make a new register. */
3163 || max_reg_num () != maxreg
3164 /* Fail if we couldn't do something and have a CLOBBER. */
3165 || GET_CODE (newpat) == CLOBBER
3166 /* Fail if this new pattern is a MULT and we didn't have one before
3167 at the outer level. */
3168 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3169 && ! have_mult))
3171 undo_all ();
3172 return 0;
3175 /* If the actions of the earlier insns must be kept
3176 in addition to substituting them into the latest one,
3177 we must make a new PARALLEL for the latest insn
3178 to hold additional the SETs. */
3180 if (added_sets_0 || added_sets_1 || added_sets_2)
3182 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3183 combine_extras++;
3185 if (GET_CODE (newpat) == PARALLEL)
3187 rtvec old = XVEC (newpat, 0);
3188 total_sets = XVECLEN (newpat, 0) + extra_sets;
3189 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3190 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3191 sizeof (old->elem[0]) * old->num_elem);
3193 else
3195 rtx old = newpat;
3196 total_sets = 1 + extra_sets;
3197 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3198 XVECEXP (newpat, 0, 0) = old;
3201 if (added_sets_0)
3202 XVECEXP (newpat, 0, --total_sets) = i0pat;
3204 if (added_sets_1)
3206 rtx t = i1pat;
3207 if (i0_feeds_i1_n)
3208 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3210 XVECEXP (newpat, 0, --total_sets) = t;
3212 if (added_sets_2)
3214 rtx t = i2pat;
3215 if (i1_feeds_i2_n)
3216 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3217 i0_feeds_i1_n && i0dest_in_i0src);
3218 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3219 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3221 XVECEXP (newpat, 0, --total_sets) = t;
3225 validate_replacement:
3227 /* Note which hard regs this insn has as inputs. */
3228 mark_used_regs_combine (newpat);
3230 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3231 consider splitting this pattern, we might need these clobbers. */
3232 if (i1 && GET_CODE (newpat) == PARALLEL
3233 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3235 int len = XVECLEN (newpat, 0);
3237 newpat_vec_with_clobbers = rtvec_alloc (len);
3238 for (i = 0; i < len; i++)
3239 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3242 /* Is the result of combination a valid instruction? */
3243 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3245 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3246 the second SET's destination is a register that is unused and isn't
3247 marked as an instruction that might trap in an EH region. In that case,
3248 we just need the first SET. This can occur when simplifying a divmod
3249 insn. We *must* test for this case here because the code below that
3250 splits two independent SETs doesn't handle this case correctly when it
3251 updates the register status.
3253 It's pointless doing this if we originally had two sets, one from
3254 i3, and one from i2. Combining then splitting the parallel results
3255 in the original i2 again plus an invalid insn (which we delete).
3256 The net effect is only to move instructions around, which makes
3257 debug info less accurate.
3259 Also check the case where the first SET's destination is unused.
3260 That would not cause incorrect code, but does cause an unneeded
3261 insn to remain. */
3263 if (insn_code_number < 0
3264 && !(added_sets_2 && i1 == 0)
3265 && GET_CODE (newpat) == PARALLEL
3266 && XVECLEN (newpat, 0) == 2
3267 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3268 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3269 && asm_noperands (newpat) < 0)
3271 rtx set0 = XVECEXP (newpat, 0, 0);
3272 rtx set1 = XVECEXP (newpat, 0, 1);
3274 if (((REG_P (SET_DEST (set1))
3275 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3276 || (GET_CODE (SET_DEST (set1)) == SUBREG
3277 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3278 && insn_nothrow_p (i3)
3279 && !side_effects_p (SET_SRC (set1)))
3281 newpat = set0;
3282 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3285 else if (((REG_P (SET_DEST (set0))
3286 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3287 || (GET_CODE (SET_DEST (set0)) == SUBREG
3288 && find_reg_note (i3, REG_UNUSED,
3289 SUBREG_REG (SET_DEST (set0)))))
3290 && insn_nothrow_p (i3)
3291 && !side_effects_p (SET_SRC (set0)))
3293 newpat = set1;
3294 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3296 if (insn_code_number >= 0)
3297 changed_i3_dest = 1;
3301 /* If we were combining three insns and the result is a simple SET
3302 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3303 insns. There are two ways to do this. It can be split using a
3304 machine-specific method (like when you have an addition of a large
3305 constant) or by combine in the function find_split_point. */
3307 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3308 && asm_noperands (newpat) < 0)
3310 rtx parallel, m_split, *split;
3312 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3313 use I2DEST as a scratch register will help. In the latter case,
3314 convert I2DEST to the mode of the source of NEWPAT if we can. */
3316 m_split = combine_split_insns (newpat, i3);
3318 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3319 inputs of NEWPAT. */
3321 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3322 possible to try that as a scratch reg. This would require adding
3323 more code to make it work though. */
3325 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3327 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3329 /* First try to split using the original register as a
3330 scratch register. */
3331 parallel = gen_rtx_PARALLEL (VOIDmode,
3332 gen_rtvec (2, newpat,
3333 gen_rtx_CLOBBER (VOIDmode,
3334 i2dest)));
3335 m_split = combine_split_insns (parallel, i3);
3337 /* If that didn't work, try changing the mode of I2DEST if
3338 we can. */
3339 if (m_split == 0
3340 && new_mode != GET_MODE (i2dest)
3341 && new_mode != VOIDmode
3342 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3344 enum machine_mode old_mode = GET_MODE (i2dest);
3345 rtx ni2dest;
3347 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3348 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3349 else
3351 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3352 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3355 parallel = (gen_rtx_PARALLEL
3356 (VOIDmode,
3357 gen_rtvec (2, newpat,
3358 gen_rtx_CLOBBER (VOIDmode,
3359 ni2dest))));
3360 m_split = combine_split_insns (parallel, i3);
3362 if (m_split == 0
3363 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3365 struct undo *buf;
3367 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3368 buf = undobuf.undos;
3369 undobuf.undos = buf->next;
3370 buf->next = undobuf.frees;
3371 undobuf.frees = buf;
3375 i2scratch = m_split != 0;
3378 /* If recog_for_combine has discarded clobbers, try to use them
3379 again for the split. */
3380 if (m_split == 0 && newpat_vec_with_clobbers)
3382 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3383 m_split = combine_split_insns (parallel, i3);
3386 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3388 m_split = PATTERN (m_split);
3389 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3390 if (insn_code_number >= 0)
3391 newpat = m_split;
3393 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3394 && (next_nonnote_nondebug_insn (i2) == i3
3395 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3397 rtx i2set, i3set;
3398 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3399 newi2pat = PATTERN (m_split);
3401 i3set = single_set (NEXT_INSN (m_split));
3402 i2set = single_set (m_split);
3404 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3406 /* If I2 or I3 has multiple SETs, we won't know how to track
3407 register status, so don't use these insns. If I2's destination
3408 is used between I2 and I3, we also can't use these insns. */
3410 if (i2_code_number >= 0 && i2set && i3set
3411 && (next_nonnote_nondebug_insn (i2) == i3
3412 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3413 insn_code_number = recog_for_combine (&newi3pat, i3,
3414 &new_i3_notes);
3415 if (insn_code_number >= 0)
3416 newpat = newi3pat;
3418 /* It is possible that both insns now set the destination of I3.
3419 If so, we must show an extra use of it. */
3421 if (insn_code_number >= 0)
3423 rtx new_i3_dest = SET_DEST (i3set);
3424 rtx new_i2_dest = SET_DEST (i2set);
3426 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3427 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3428 || GET_CODE (new_i3_dest) == SUBREG)
3429 new_i3_dest = XEXP (new_i3_dest, 0);
3431 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3432 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3433 || GET_CODE (new_i2_dest) == SUBREG)
3434 new_i2_dest = XEXP (new_i2_dest, 0);
3436 if (REG_P (new_i3_dest)
3437 && REG_P (new_i2_dest)
3438 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3439 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3443 /* If we can split it and use I2DEST, go ahead and see if that
3444 helps things be recognized. Verify that none of the registers
3445 are set between I2 and I3. */
3446 if (insn_code_number < 0
3447 && (split = find_split_point (&newpat, i3, false)) != 0
3448 #ifdef HAVE_cc0
3449 && REG_P (i2dest)
3450 #endif
3451 /* We need I2DEST in the proper mode. If it is a hard register
3452 or the only use of a pseudo, we can change its mode.
3453 Make sure we don't change a hard register to have a mode that
3454 isn't valid for it, or change the number of registers. */
3455 && (GET_MODE (*split) == GET_MODE (i2dest)
3456 || GET_MODE (*split) == VOIDmode
3457 || can_change_dest_mode (i2dest, added_sets_2,
3458 GET_MODE (*split)))
3459 && (next_nonnote_nondebug_insn (i2) == i3
3460 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3461 /* We can't overwrite I2DEST if its value is still used by
3462 NEWPAT. */
3463 && ! reg_referenced_p (i2dest, newpat))
3465 rtx newdest = i2dest;
3466 enum rtx_code split_code = GET_CODE (*split);
3467 enum machine_mode split_mode = GET_MODE (*split);
3468 bool subst_done = false;
3469 newi2pat = NULL_RTX;
3471 i2scratch = true;
3473 /* *SPLIT may be part of I2SRC, so make sure we have the
3474 original expression around for later debug processing.
3475 We should not need I2SRC any more in other cases. */
3476 if (MAY_HAVE_DEBUG_INSNS)
3477 i2src = copy_rtx (i2src);
3478 else
3479 i2src = NULL;
3481 /* Get NEWDEST as a register in the proper mode. We have already
3482 validated that we can do this. */
3483 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3485 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3486 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3487 else
3489 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3490 newdest = regno_reg_rtx[REGNO (i2dest)];
3494 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3495 an ASHIFT. This can occur if it was inside a PLUS and hence
3496 appeared to be a memory address. This is a kludge. */
3497 if (split_code == MULT
3498 && CONST_INT_P (XEXP (*split, 1))
3499 && INTVAL (XEXP (*split, 1)) > 0
3500 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3502 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3503 XEXP (*split, 0), GEN_INT (i)));
3504 /* Update split_code because we may not have a multiply
3505 anymore. */
3506 split_code = GET_CODE (*split);
3509 #ifdef INSN_SCHEDULING
3510 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3511 be written as a ZERO_EXTEND. */
3512 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3514 #ifdef LOAD_EXTEND_OP
3515 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3516 what it really is. */
3517 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3518 == SIGN_EXTEND)
3519 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3521 else
3522 #endif
3523 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3524 SUBREG_REG (*split)));
3526 #endif
3528 /* Attempt to split binary operators using arithmetic identities. */
3529 if (BINARY_P (SET_SRC (newpat))
3530 && split_mode == GET_MODE (SET_SRC (newpat))
3531 && ! side_effects_p (SET_SRC (newpat)))
3533 rtx setsrc = SET_SRC (newpat);
3534 enum machine_mode mode = GET_MODE (setsrc);
3535 enum rtx_code code = GET_CODE (setsrc);
3536 rtx src_op0 = XEXP (setsrc, 0);
3537 rtx src_op1 = XEXP (setsrc, 1);
3539 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3540 if (rtx_equal_p (src_op0, src_op1))
3542 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3543 SUBST (XEXP (setsrc, 0), newdest);
3544 SUBST (XEXP (setsrc, 1), newdest);
3545 subst_done = true;
3547 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3548 else if ((code == PLUS || code == MULT)
3549 && GET_CODE (src_op0) == code
3550 && GET_CODE (XEXP (src_op0, 0)) == code
3551 && (INTEGRAL_MODE_P (mode)
3552 || (FLOAT_MODE_P (mode)
3553 && flag_unsafe_math_optimizations)))
3555 rtx p = XEXP (XEXP (src_op0, 0), 0);
3556 rtx q = XEXP (XEXP (src_op0, 0), 1);
3557 rtx r = XEXP (src_op0, 1);
3558 rtx s = src_op1;
3560 /* Split both "((X op Y) op X) op Y" and
3561 "((X op Y) op Y) op X" as "T op T" where T is
3562 "X op Y". */
3563 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3564 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3566 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3567 XEXP (src_op0, 0));
3568 SUBST (XEXP (setsrc, 0), newdest);
3569 SUBST (XEXP (setsrc, 1), newdest);
3570 subst_done = true;
3572 /* Split "((X op X) op Y) op Y)" as "T op T" where
3573 T is "X op Y". */
3574 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3576 rtx tmp = simplify_gen_binary (code, mode, p, r);
3577 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3578 SUBST (XEXP (setsrc, 0), newdest);
3579 SUBST (XEXP (setsrc, 1), newdest);
3580 subst_done = true;
3585 if (!subst_done)
3587 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3588 SUBST (*split, newdest);
3591 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3593 /* recog_for_combine might have added CLOBBERs to newi2pat.
3594 Make sure NEWPAT does not depend on the clobbered regs. */
3595 if (GET_CODE (newi2pat) == PARALLEL)
3596 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3597 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3599 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3600 if (reg_overlap_mentioned_p (reg, newpat))
3602 undo_all ();
3603 return 0;
3607 /* If the split point was a MULT and we didn't have one before,
3608 don't use one now. */
3609 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3610 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3614 /* Check for a case where we loaded from memory in a narrow mode and
3615 then sign extended it, but we need both registers. In that case,
3616 we have a PARALLEL with both loads from the same memory location.
3617 We can split this into a load from memory followed by a register-register
3618 copy. This saves at least one insn, more if register allocation can
3619 eliminate the copy.
3621 We cannot do this if the destination of the first assignment is a
3622 condition code register or cc0. We eliminate this case by making sure
3623 the SET_DEST and SET_SRC have the same mode.
3625 We cannot do this if the destination of the second assignment is
3626 a register that we have already assumed is zero-extended. Similarly
3627 for a SUBREG of such a register. */
3629 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3630 && GET_CODE (newpat) == PARALLEL
3631 && XVECLEN (newpat, 0) == 2
3632 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3633 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3634 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3635 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3636 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3637 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3638 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3639 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3640 DF_INSN_LUID (i2))
3641 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3642 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3643 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3644 (REG_P (temp)
3645 && reg_stat[REGNO (temp)].nonzero_bits != 0
3646 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3647 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3648 && (reg_stat[REGNO (temp)].nonzero_bits
3649 != GET_MODE_MASK (word_mode))))
3650 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3651 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3652 (REG_P (temp)
3653 && reg_stat[REGNO (temp)].nonzero_bits != 0
3654 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3655 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3656 && (reg_stat[REGNO (temp)].nonzero_bits
3657 != GET_MODE_MASK (word_mode)))))
3658 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3659 SET_SRC (XVECEXP (newpat, 0, 1)))
3660 && ! find_reg_note (i3, REG_UNUSED,
3661 SET_DEST (XVECEXP (newpat, 0, 0))))
3663 rtx ni2dest;
3665 newi2pat = XVECEXP (newpat, 0, 0);
3666 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3667 newpat = XVECEXP (newpat, 0, 1);
3668 SUBST (SET_SRC (newpat),
3669 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3670 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3672 if (i2_code_number >= 0)
3673 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3675 if (insn_code_number >= 0)
3676 swap_i2i3 = 1;
3679 /* Similarly, check for a case where we have a PARALLEL of two independent
3680 SETs but we started with three insns. In this case, we can do the sets
3681 as two separate insns. This case occurs when some SET allows two
3682 other insns to combine, but the destination of that SET is still live. */
3684 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3685 && GET_CODE (newpat) == PARALLEL
3686 && XVECLEN (newpat, 0) == 2
3687 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3690 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3691 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3692 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3693 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3694 XVECEXP (newpat, 0, 0))
3695 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3696 XVECEXP (newpat, 0, 1))
3697 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3698 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. */
3704 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3705 DF_INSN_LUID (i2))
3706 #ifdef HAVE_cc0
3707 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3708 #endif
3711 newi2pat = XVECEXP (newpat, 0, 1);
3712 newpat = XVECEXP (newpat, 0, 0);
3714 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3715 DF_INSN_LUID (i2))
3716 #ifdef HAVE_cc0
3717 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3718 #endif
3721 newi2pat = XVECEXP (newpat, 0, 0);
3722 newpat = XVECEXP (newpat, 0, 1);
3724 else
3726 undo_all ();
3727 return 0;
3730 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3732 if (i2_code_number >= 0)
3734 /* recog_for_combine might have added CLOBBERs to newi2pat.
3735 Make sure NEWPAT does not depend on the clobbered regs. */
3736 if (GET_CODE (newi2pat) == PARALLEL)
3738 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3739 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3741 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3742 if (reg_overlap_mentioned_p (reg, newpat))
3744 undo_all ();
3745 return 0;
3750 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3754 /* If it still isn't recognized, fail and change things back the way they
3755 were. */
3756 if ((insn_code_number < 0
3757 /* Is the result a reasonable ASM_OPERANDS? */
3758 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3760 undo_all ();
3761 return 0;
3764 /* If we had to change another insn, make sure it is valid also. */
3765 if (undobuf.other_insn)
3767 CLEAR_HARD_REG_SET (newpat_used_regs);
3769 other_pat = PATTERN (undobuf.other_insn);
3770 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3771 &new_other_notes);
3773 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3775 undo_all ();
3776 return 0;
3780 #ifdef HAVE_cc0
3781 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3782 they are adjacent to each other or not. */
3784 rtx p = prev_nonnote_insn (i3);
3785 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3786 && sets_cc0_p (newi2pat))
3788 undo_all ();
3789 return 0;
3792 #endif
3794 /* Only allow this combination if insn_rtx_costs reports that the
3795 replacement instructions are cheaper than the originals. */
3796 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3798 undo_all ();
3799 return 0;
3802 if (MAY_HAVE_DEBUG_INSNS)
3804 struct undo *undo;
3806 for (undo = undobuf.undos; undo; undo = undo->next)
3807 if (undo->kind == UNDO_MODE)
3809 rtx reg = *undo->where.r;
3810 enum machine_mode new_mode = GET_MODE (reg);
3811 enum machine_mode old_mode = undo->old_contents.m;
3813 /* Temporarily revert mode back. */
3814 adjust_reg_mode (reg, old_mode);
3816 if (reg == i2dest && i2scratch)
3818 /* If we used i2dest as a scratch register with a
3819 different mode, substitute it for the original
3820 i2src while its original mode is temporarily
3821 restored, and then clear i2scratch so that we don't
3822 do it again later. */
3823 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3824 this_basic_block);
3825 i2scratch = false;
3826 /* Put back the new mode. */
3827 adjust_reg_mode (reg, new_mode);
3829 else
3831 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3832 rtx first, last;
3834 if (reg == i2dest)
3836 first = i2;
3837 last = last_combined_insn;
3839 else
3841 first = i3;
3842 last = undobuf.other_insn;
3843 gcc_assert (last);
3844 if (DF_INSN_LUID (last)
3845 < DF_INSN_LUID (last_combined_insn))
3846 last = last_combined_insn;
3849 /* We're dealing with a reg that changed mode but not
3850 meaning, so we want to turn it into a subreg for
3851 the new mode. However, because of REG sharing and
3852 because its mode had already changed, we have to do
3853 it in two steps. First, replace any debug uses of
3854 reg, with its original mode temporarily restored,
3855 with this copy we have created; then, replace the
3856 copy with the SUBREG of the original shared reg,
3857 once again changed to the new mode. */
3858 propagate_for_debug (first, last, reg, tempreg,
3859 this_basic_block);
3860 adjust_reg_mode (reg, new_mode);
3861 propagate_for_debug (first, last, tempreg,
3862 lowpart_subreg (old_mode, reg, new_mode),
3863 this_basic_block);
3868 /* If we will be able to accept this, we have made a
3869 change to the destination of I3. This requires us to
3870 do a few adjustments. */
3872 if (changed_i3_dest)
3874 PATTERN (i3) = newpat;
3875 adjust_for_new_dest (i3);
3878 /* We now know that we can do this combination. Merge the insns and
3879 update the status of registers and LOG_LINKS. */
3881 if (undobuf.other_insn)
3883 rtx note, next;
3885 PATTERN (undobuf.other_insn) = other_pat;
3887 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3888 are still valid. Then add any non-duplicate notes added by
3889 recog_for_combine. */
3890 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3892 next = XEXP (note, 1);
3894 if (REG_NOTE_KIND (note) == REG_UNUSED
3895 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3896 remove_note (undobuf.other_insn, note);
3899 distribute_notes (new_other_notes, undobuf.other_insn,
3900 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3901 NULL_RTX);
3904 if (swap_i2i3)
3906 rtx insn;
3907 struct insn_link *link;
3908 rtx ni2dest;
3910 /* I3 now uses what used to be its destination and which is now
3911 I2's destination. This requires us to do a few adjustments. */
3912 PATTERN (i3) = newpat;
3913 adjust_for_new_dest (i3);
3915 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3916 so we still will.
3918 However, some later insn might be using I2's dest and have
3919 a LOG_LINK pointing at I3. We must remove this link.
3920 The simplest way to remove the link is to point it at I1,
3921 which we know will be a NOTE. */
3923 /* newi2pat is usually a SET here; however, recog_for_combine might
3924 have added some clobbers. */
3925 if (GET_CODE (newi2pat) == PARALLEL)
3926 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3927 else
3928 ni2dest = SET_DEST (newi2pat);
3930 for (insn = NEXT_INSN (i3);
3931 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3932 || insn != BB_HEAD (this_basic_block->next_bb));
3933 insn = NEXT_INSN (insn))
3935 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3937 FOR_EACH_LOG_LINK (link, insn)
3938 if (link->insn == i3)
3939 link->insn = i1;
3941 break;
3947 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3948 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3949 rtx midnotes = 0;
3950 int from_luid;
3951 /* Compute which registers we expect to eliminate. newi2pat may be setting
3952 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3953 same as i3dest, in which case newi2pat may be setting i1dest. */
3954 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3955 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3956 || !i2dest_killed
3957 ? 0 : i2dest);
3958 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3959 || (newi2pat && reg_set_p (i1dest, newi2pat))
3960 || !i1dest_killed
3961 ? 0 : i1dest);
3962 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3963 || (newi2pat && reg_set_p (i0dest, newi2pat))
3964 || !i0dest_killed
3965 ? 0 : i0dest);
3967 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3968 clear them. */
3969 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3970 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3971 if (i1)
3972 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3973 if (i0)
3974 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3976 /* Ensure that we do not have something that should not be shared but
3977 occurs multiple times in the new insns. Check this by first
3978 resetting all the `used' flags and then copying anything is shared. */
3980 reset_used_flags (i3notes);
3981 reset_used_flags (i2notes);
3982 reset_used_flags (i1notes);
3983 reset_used_flags (i0notes);
3984 reset_used_flags (newpat);
3985 reset_used_flags (newi2pat);
3986 if (undobuf.other_insn)
3987 reset_used_flags (PATTERN (undobuf.other_insn));
3989 i3notes = copy_rtx_if_shared (i3notes);
3990 i2notes = copy_rtx_if_shared (i2notes);
3991 i1notes = copy_rtx_if_shared (i1notes);
3992 i0notes = copy_rtx_if_shared (i0notes);
3993 newpat = copy_rtx_if_shared (newpat);
3994 newi2pat = copy_rtx_if_shared (newi2pat);
3995 if (undobuf.other_insn)
3996 reset_used_flags (PATTERN (undobuf.other_insn));
3998 INSN_CODE (i3) = insn_code_number;
3999 PATTERN (i3) = newpat;
4001 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4003 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4005 reset_used_flags (call_usage);
4006 call_usage = copy_rtx (call_usage);
4008 if (substed_i2)
4010 /* I2SRC must still be meaningful at this point. Some splitting
4011 operations can invalidate I2SRC, but those operations do not
4012 apply to calls. */
4013 gcc_assert (i2src);
4014 replace_rtx (call_usage, i2dest, i2src);
4017 if (substed_i1)
4018 replace_rtx (call_usage, i1dest, i1src);
4019 if (substed_i0)
4020 replace_rtx (call_usage, i0dest, i0src);
4022 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4025 if (undobuf.other_insn)
4026 INSN_CODE (undobuf.other_insn) = other_code_number;
4028 /* We had one special case above where I2 had more than one set and
4029 we replaced a destination of one of those sets with the destination
4030 of I3. In that case, we have to update LOG_LINKS of insns later
4031 in this basic block. Note that this (expensive) case is rare.
4033 Also, in this case, we must pretend that all REG_NOTEs for I2
4034 actually came from I3, so that REG_UNUSED notes from I2 will be
4035 properly handled. */
4037 if (i3_subst_into_i2)
4039 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4040 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4041 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4042 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4043 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4044 && ! find_reg_note (i2, REG_UNUSED,
4045 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4046 for (temp = NEXT_INSN (i2);
4047 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4048 || BB_HEAD (this_basic_block) != temp);
4049 temp = NEXT_INSN (temp))
4050 if (temp != i3 && INSN_P (temp))
4051 FOR_EACH_LOG_LINK (link, temp)
4052 if (link->insn == i2)
4053 link->insn = i3;
4055 if (i3notes)
4057 rtx link = i3notes;
4058 while (XEXP (link, 1))
4059 link = XEXP (link, 1);
4060 XEXP (link, 1) = i2notes;
4062 else
4063 i3notes = i2notes;
4064 i2notes = 0;
4067 LOG_LINKS (i3) = NULL;
4068 REG_NOTES (i3) = 0;
4069 LOG_LINKS (i2) = NULL;
4070 REG_NOTES (i2) = 0;
4072 if (newi2pat)
4074 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4075 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4076 this_basic_block);
4077 INSN_CODE (i2) = i2_code_number;
4078 PATTERN (i2) = newi2pat;
4080 else
4082 if (MAY_HAVE_DEBUG_INSNS && i2src)
4083 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4084 this_basic_block);
4085 SET_INSN_DELETED (i2);
4088 if (i1)
4090 LOG_LINKS (i1) = NULL;
4091 REG_NOTES (i1) = 0;
4092 if (MAY_HAVE_DEBUG_INSNS)
4093 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4094 this_basic_block);
4095 SET_INSN_DELETED (i1);
4098 if (i0)
4100 LOG_LINKS (i0) = NULL;
4101 REG_NOTES (i0) = 0;
4102 if (MAY_HAVE_DEBUG_INSNS)
4103 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4104 this_basic_block);
4105 SET_INSN_DELETED (i0);
4108 /* Get death notes for everything that is now used in either I3 or
4109 I2 and used to die in a previous insn. If we built two new
4110 patterns, move from I1 to I2 then I2 to I3 so that we get the
4111 proper movement on registers that I2 modifies. */
4113 if (i0)
4114 from_luid = DF_INSN_LUID (i0);
4115 else if (i1)
4116 from_luid = DF_INSN_LUID (i1);
4117 else
4118 from_luid = DF_INSN_LUID (i2);
4119 if (newi2pat)
4120 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4121 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4123 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4124 if (i3notes)
4125 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4126 elim_i2, elim_i1, elim_i0);
4127 if (i2notes)
4128 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4129 elim_i2, elim_i1, elim_i0);
4130 if (i1notes)
4131 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4132 elim_i2, elim_i1, elim_i0);
4133 if (i0notes)
4134 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4135 elim_i2, elim_i1, elim_i0);
4136 if (midnotes)
4137 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4138 elim_i2, elim_i1, elim_i0);
4140 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4141 know these are REG_UNUSED and want them to go to the desired insn,
4142 so we always pass it as i3. */
4144 if (newi2pat && new_i2_notes)
4145 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4148 if (new_i3_notes)
4149 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4150 NULL_RTX);
4152 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4153 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4154 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4155 in that case, it might delete I2. Similarly for I2 and I1.
4156 Show an additional death due to the REG_DEAD note we make here. If
4157 we discard it in distribute_notes, we will decrement it again. */
4159 if (i3dest_killed)
4161 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4162 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4163 NULL_RTX),
4164 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4165 else
4166 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4167 NULL_RTX),
4168 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4169 elim_i2, elim_i1, elim_i0);
4172 if (i2dest_in_i2src)
4174 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4175 if (newi2pat && reg_set_p (i2dest, newi2pat))
4176 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4177 NULL_RTX, NULL_RTX);
4178 else
4179 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4180 NULL_RTX, NULL_RTX, NULL_RTX);
4183 if (i1dest_in_i1src)
4185 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4186 if (newi2pat && reg_set_p (i1dest, newi2pat))
4187 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4188 NULL_RTX, NULL_RTX);
4189 else
4190 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4191 NULL_RTX, NULL_RTX, NULL_RTX);
4194 if (i0dest_in_i0src)
4196 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4197 if (newi2pat && reg_set_p (i0dest, newi2pat))
4198 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4199 NULL_RTX, NULL_RTX);
4200 else
4201 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4202 NULL_RTX, NULL_RTX, NULL_RTX);
4205 distribute_links (i3links);
4206 distribute_links (i2links);
4207 distribute_links (i1links);
4208 distribute_links (i0links);
4210 if (REG_P (i2dest))
4212 struct insn_link *link;
4213 rtx i2_insn = 0, i2_val = 0, set;
4215 /* The insn that used to set this register doesn't exist, and
4216 this life of the register may not exist either. See if one of
4217 I3's links points to an insn that sets I2DEST. If it does,
4218 that is now the last known value for I2DEST. If we don't update
4219 this and I2 set the register to a value that depended on its old
4220 contents, we will get confused. If this insn is used, thing
4221 will be set correctly in combine_instructions. */
4222 FOR_EACH_LOG_LINK (link, i3)
4223 if ((set = single_set (link->insn)) != 0
4224 && rtx_equal_p (i2dest, SET_DEST (set)))
4225 i2_insn = link->insn, i2_val = SET_SRC (set);
4227 record_value_for_reg (i2dest, i2_insn, i2_val);
4229 /* If the reg formerly set in I2 died only once and that was in I3,
4230 zero its use count so it won't make `reload' do any work. */
4231 if (! added_sets_2
4232 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4233 && ! i2dest_in_i2src)
4234 INC_REG_N_SETS (REGNO (i2dest), -1);
4237 if (i1 && REG_P (i1dest))
4239 struct insn_link *link;
4240 rtx i1_insn = 0, i1_val = 0, set;
4242 FOR_EACH_LOG_LINK (link, i3)
4243 if ((set = single_set (link->insn)) != 0
4244 && rtx_equal_p (i1dest, SET_DEST (set)))
4245 i1_insn = link->insn, i1_val = SET_SRC (set);
4247 record_value_for_reg (i1dest, i1_insn, i1_val);
4249 if (! added_sets_1 && ! i1dest_in_i1src)
4250 INC_REG_N_SETS (REGNO (i1dest), -1);
4253 if (i0 && REG_P (i0dest))
4255 struct insn_link *link;
4256 rtx i0_insn = 0, i0_val = 0, set;
4258 FOR_EACH_LOG_LINK (link, i3)
4259 if ((set = single_set (link->insn)) != 0
4260 && rtx_equal_p (i0dest, SET_DEST (set)))
4261 i0_insn = link->insn, i0_val = SET_SRC (set);
4263 record_value_for_reg (i0dest, i0_insn, i0_val);
4265 if (! added_sets_0 && ! i0dest_in_i0src)
4266 INC_REG_N_SETS (REGNO (i0dest), -1);
4269 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4270 been made to this insn. The order of
4271 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4272 can affect nonzero_bits of newpat */
4273 if (newi2pat)
4274 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4275 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4278 if (undobuf.other_insn != NULL_RTX)
4280 if (dump_file)
4282 fprintf (dump_file, "modifying other_insn ");
4283 dump_insn_slim (dump_file, undobuf.other_insn);
4285 df_insn_rescan (undobuf.other_insn);
4288 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4290 if (dump_file)
4292 fprintf (dump_file, "modifying insn i1 ");
4293 dump_insn_slim (dump_file, i0);
4295 df_insn_rescan (i0);
4298 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4300 if (dump_file)
4302 fprintf (dump_file, "modifying insn i1 ");
4303 dump_insn_slim (dump_file, i1);
4305 df_insn_rescan (i1);
4308 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4310 if (dump_file)
4312 fprintf (dump_file, "modifying insn i2 ");
4313 dump_insn_slim (dump_file, i2);
4315 df_insn_rescan (i2);
4318 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4320 if (dump_file)
4322 fprintf (dump_file, "modifying insn i3 ");
4323 dump_insn_slim (dump_file, i3);
4325 df_insn_rescan (i3);
4328 /* Set new_direct_jump_p if a new return or simple jump instruction
4329 has been created. Adjust the CFG accordingly. */
4331 if (returnjump_p (i3) || any_uncondjump_p (i3))
4333 *new_direct_jump_p = 1;
4334 mark_jump_label (PATTERN (i3), i3, 0);
4335 update_cfg_for_uncondjump (i3);
4338 if (undobuf.other_insn != NULL_RTX
4339 && (returnjump_p (undobuf.other_insn)
4340 || any_uncondjump_p (undobuf.other_insn)))
4342 *new_direct_jump_p = 1;
4343 update_cfg_for_uncondjump (undobuf.other_insn);
4346 /* A noop might also need cleaning up of CFG, if it comes from the
4347 simplification of a jump. */
4348 if (JUMP_P (i3)
4349 && GET_CODE (newpat) == SET
4350 && SET_SRC (newpat) == pc_rtx
4351 && SET_DEST (newpat) == pc_rtx)
4353 *new_direct_jump_p = 1;
4354 update_cfg_for_uncondjump (i3);
4357 if (undobuf.other_insn != NULL_RTX
4358 && JUMP_P (undobuf.other_insn)
4359 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4360 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4361 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4363 *new_direct_jump_p = 1;
4364 update_cfg_for_uncondjump (undobuf.other_insn);
4367 combine_successes++;
4368 undo_commit ();
4370 if (added_links_insn
4371 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4372 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4373 return added_links_insn;
4374 else
4375 return newi2pat ? i2 : i3;
4378 /* Undo all the modifications recorded in undobuf. */
4380 static void
4381 undo_all (void)
4383 struct undo *undo, *next;
4385 for (undo = undobuf.undos; undo; undo = next)
4387 next = undo->next;
4388 switch (undo->kind)
4390 case UNDO_RTX:
4391 *undo->where.r = undo->old_contents.r;
4392 break;
4393 case UNDO_INT:
4394 *undo->where.i = undo->old_contents.i;
4395 break;
4396 case UNDO_MODE:
4397 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4398 break;
4399 case UNDO_LINKS:
4400 *undo->where.l = undo->old_contents.l;
4401 break;
4402 default:
4403 gcc_unreachable ();
4406 undo->next = undobuf.frees;
4407 undobuf.frees = undo;
4410 undobuf.undos = 0;
4413 /* We've committed to accepting the changes we made. Move all
4414 of the undos to the free list. */
4416 static void
4417 undo_commit (void)
4419 struct undo *undo, *next;
4421 for (undo = undobuf.undos; undo; undo = next)
4423 next = undo->next;
4424 undo->next = undobuf.frees;
4425 undobuf.frees = undo;
4427 undobuf.undos = 0;
4430 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4431 where we have an arithmetic expression and return that point. LOC will
4432 be inside INSN.
4434 try_combine will call this function to see if an insn can be split into
4435 two insns. */
4437 static rtx *
4438 find_split_point (rtx *loc, rtx insn, bool set_src)
4440 rtx x = *loc;
4441 enum rtx_code code = GET_CODE (x);
4442 rtx *split;
4443 unsigned HOST_WIDE_INT len = 0;
4444 HOST_WIDE_INT pos = 0;
4445 int unsignedp = 0;
4446 rtx inner = NULL_RTX;
4448 /* First special-case some codes. */
4449 switch (code)
4451 case SUBREG:
4452 #ifdef INSN_SCHEDULING
4453 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4454 point. */
4455 if (MEM_P (SUBREG_REG (x)))
4456 return loc;
4457 #endif
4458 return find_split_point (&SUBREG_REG (x), insn, false);
4460 case MEM:
4461 #ifdef HAVE_lo_sum
4462 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4463 using LO_SUM and HIGH. */
4464 if (GET_CODE (XEXP (x, 0)) == CONST
4465 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4467 enum machine_mode address_mode = get_address_mode (x);
4469 SUBST (XEXP (x, 0),
4470 gen_rtx_LO_SUM (address_mode,
4471 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4472 XEXP (x, 0)));
4473 return &XEXP (XEXP (x, 0), 0);
4475 #endif
4477 /* If we have a PLUS whose second operand is a constant and the
4478 address is not valid, perhaps will can split it up using
4479 the machine-specific way to split large constants. We use
4480 the first pseudo-reg (one of the virtual regs) as a placeholder;
4481 it will not remain in the result. */
4482 if (GET_CODE (XEXP (x, 0)) == PLUS
4483 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4484 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4485 MEM_ADDR_SPACE (x)))
4487 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4488 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4489 XEXP (x, 0)),
4490 subst_insn);
4492 /* This should have produced two insns, each of which sets our
4493 placeholder. If the source of the second is a valid address,
4494 we can make put both sources together and make a split point
4495 in the middle. */
4497 if (seq
4498 && NEXT_INSN (seq) != NULL_RTX
4499 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4500 && NONJUMP_INSN_P (seq)
4501 && GET_CODE (PATTERN (seq)) == SET
4502 && SET_DEST (PATTERN (seq)) == reg
4503 && ! reg_mentioned_p (reg,
4504 SET_SRC (PATTERN (seq)))
4505 && NONJUMP_INSN_P (NEXT_INSN (seq))
4506 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4507 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4508 && memory_address_addr_space_p
4509 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4510 MEM_ADDR_SPACE (x)))
4512 rtx src1 = SET_SRC (PATTERN (seq));
4513 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4515 /* Replace the placeholder in SRC2 with SRC1. If we can
4516 find where in SRC2 it was placed, that can become our
4517 split point and we can replace this address with SRC2.
4518 Just try two obvious places. */
4520 src2 = replace_rtx (src2, reg, src1);
4521 split = 0;
4522 if (XEXP (src2, 0) == src1)
4523 split = &XEXP (src2, 0);
4524 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4525 && XEXP (XEXP (src2, 0), 0) == src1)
4526 split = &XEXP (XEXP (src2, 0), 0);
4528 if (split)
4530 SUBST (XEXP (x, 0), src2);
4531 return split;
4535 /* If that didn't work, perhaps the first operand is complex and
4536 needs to be computed separately, so make a split point there.
4537 This will occur on machines that just support REG + CONST
4538 and have a constant moved through some previous computation. */
4540 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4541 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4542 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4543 return &XEXP (XEXP (x, 0), 0);
4546 /* If we have a PLUS whose first operand is complex, try computing it
4547 separately by making a split there. */
4548 if (GET_CODE (XEXP (x, 0)) == PLUS
4549 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4550 MEM_ADDR_SPACE (x))
4551 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4552 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4553 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4554 return &XEXP (XEXP (x, 0), 0);
4555 break;
4557 case SET:
4558 #ifdef HAVE_cc0
4559 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4560 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4561 we need to put the operand into a register. So split at that
4562 point. */
4564 if (SET_DEST (x) == cc0_rtx
4565 && GET_CODE (SET_SRC (x)) != COMPARE
4566 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4567 && !OBJECT_P (SET_SRC (x))
4568 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4569 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4570 return &SET_SRC (x);
4571 #endif
4573 /* See if we can split SET_SRC as it stands. */
4574 split = find_split_point (&SET_SRC (x), insn, true);
4575 if (split && split != &SET_SRC (x))
4576 return split;
4578 /* See if we can split SET_DEST as it stands. */
4579 split = find_split_point (&SET_DEST (x), insn, false);
4580 if (split && split != &SET_DEST (x))
4581 return split;
4583 /* See if this is a bitfield assignment with everything constant. If
4584 so, this is an IOR of an AND, so split it into that. */
4585 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4586 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4587 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4588 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4589 && CONST_INT_P (SET_SRC (x))
4590 && ((INTVAL (XEXP (SET_DEST (x), 1))
4591 + INTVAL (XEXP (SET_DEST (x), 2)))
4592 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4593 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4595 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4596 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4597 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4598 rtx dest = XEXP (SET_DEST (x), 0);
4599 enum machine_mode mode = GET_MODE (dest);
4600 unsigned HOST_WIDE_INT mask
4601 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4602 rtx or_mask;
4604 if (BITS_BIG_ENDIAN)
4605 pos = GET_MODE_PRECISION (mode) - len - pos;
4607 or_mask = gen_int_mode (src << pos, mode);
4608 if (src == mask)
4609 SUBST (SET_SRC (x),
4610 simplify_gen_binary (IOR, mode, dest, or_mask));
4611 else
4613 rtx negmask = gen_int_mode (~(mask << pos), mode);
4614 SUBST (SET_SRC (x),
4615 simplify_gen_binary (IOR, mode,
4616 simplify_gen_binary (AND, mode,
4617 dest, negmask),
4618 or_mask));
4621 SUBST (SET_DEST (x), dest);
4623 split = find_split_point (&SET_SRC (x), insn, true);
4624 if (split && split != &SET_SRC (x))
4625 return split;
4628 /* Otherwise, see if this is an operation that we can split into two.
4629 If so, try to split that. */
4630 code = GET_CODE (SET_SRC (x));
4632 switch (code)
4634 case AND:
4635 /* If we are AND'ing with a large constant that is only a single
4636 bit and the result is only being used in a context where we
4637 need to know if it is zero or nonzero, replace it with a bit
4638 extraction. This will avoid the large constant, which might
4639 have taken more than one insn to make. If the constant were
4640 not a valid argument to the AND but took only one insn to make,
4641 this is no worse, but if it took more than one insn, it will
4642 be better. */
4644 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4645 && REG_P (XEXP (SET_SRC (x), 0))
4646 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4647 && REG_P (SET_DEST (x))
4648 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4649 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4650 && XEXP (*split, 0) == SET_DEST (x)
4651 && XEXP (*split, 1) == const0_rtx)
4653 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4654 XEXP (SET_SRC (x), 0),
4655 pos, NULL_RTX, 1, 1, 0, 0);
4656 if (extraction != 0)
4658 SUBST (SET_SRC (x), extraction);
4659 return find_split_point (loc, insn, false);
4662 break;
4664 case NE:
4665 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4666 is known to be on, this can be converted into a NEG of a shift. */
4667 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4668 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4669 && 1 <= (pos = exact_log2
4670 (nonzero_bits (XEXP (SET_SRC (x), 0),
4671 GET_MODE (XEXP (SET_SRC (x), 0))))))
4673 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4675 SUBST (SET_SRC (x),
4676 gen_rtx_NEG (mode,
4677 gen_rtx_LSHIFTRT (mode,
4678 XEXP (SET_SRC (x), 0),
4679 GEN_INT (pos))));
4681 split = find_split_point (&SET_SRC (x), insn, true);
4682 if (split && split != &SET_SRC (x))
4683 return split;
4685 break;
4687 case SIGN_EXTEND:
4688 inner = XEXP (SET_SRC (x), 0);
4690 /* We can't optimize if either mode is a partial integer
4691 mode as we don't know how many bits are significant
4692 in those modes. */
4693 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4694 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4695 break;
4697 pos = 0;
4698 len = GET_MODE_PRECISION (GET_MODE (inner));
4699 unsignedp = 0;
4700 break;
4702 case SIGN_EXTRACT:
4703 case ZERO_EXTRACT:
4704 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4705 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4707 inner = XEXP (SET_SRC (x), 0);
4708 len = INTVAL (XEXP (SET_SRC (x), 1));
4709 pos = INTVAL (XEXP (SET_SRC (x), 2));
4711 if (BITS_BIG_ENDIAN)
4712 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4713 unsignedp = (code == ZERO_EXTRACT);
4715 break;
4717 default:
4718 break;
4721 if (len && pos >= 0
4722 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4724 enum machine_mode mode = GET_MODE (SET_SRC (x));
4726 /* For unsigned, we have a choice of a shift followed by an
4727 AND or two shifts. Use two shifts for field sizes where the
4728 constant might be too large. We assume here that we can
4729 always at least get 8-bit constants in an AND insn, which is
4730 true for every current RISC. */
4732 if (unsignedp && len <= 8)
4734 SUBST (SET_SRC (x),
4735 gen_rtx_AND (mode,
4736 gen_rtx_LSHIFTRT
4737 (mode, gen_lowpart (mode, inner),
4738 GEN_INT (pos)),
4739 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4740 - 1)));
4742 split = find_split_point (&SET_SRC (x), insn, true);
4743 if (split && split != &SET_SRC (x))
4744 return split;
4746 else
4748 SUBST (SET_SRC (x),
4749 gen_rtx_fmt_ee
4750 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4751 gen_rtx_ASHIFT (mode,
4752 gen_lowpart (mode, inner),
4753 GEN_INT (GET_MODE_PRECISION (mode)
4754 - len - pos)),
4755 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4757 split = find_split_point (&SET_SRC (x), insn, true);
4758 if (split && split != &SET_SRC (x))
4759 return split;
4763 /* See if this is a simple operation with a constant as the second
4764 operand. It might be that this constant is out of range and hence
4765 could be used as a split point. */
4766 if (BINARY_P (SET_SRC (x))
4767 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4768 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4769 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4770 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4771 return &XEXP (SET_SRC (x), 1);
4773 /* Finally, see if this is a simple operation with its first operand
4774 not in a register. The operation might require this operand in a
4775 register, so return it as a split point. We can always do this
4776 because if the first operand were another operation, we would have
4777 already found it as a split point. */
4778 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4779 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4780 return &XEXP (SET_SRC (x), 0);
4782 return 0;
4784 case AND:
4785 case IOR:
4786 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4787 it is better to write this as (not (ior A B)) so we can split it.
4788 Similarly for IOR. */
4789 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4791 SUBST (*loc,
4792 gen_rtx_NOT (GET_MODE (x),
4793 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4794 GET_MODE (x),
4795 XEXP (XEXP (x, 0), 0),
4796 XEXP (XEXP (x, 1), 0))));
4797 return find_split_point (loc, insn, set_src);
4800 /* Many RISC machines have a large set of logical insns. If the
4801 second operand is a NOT, put it first so we will try to split the
4802 other operand first. */
4803 if (GET_CODE (XEXP (x, 1)) == NOT)
4805 rtx tem = XEXP (x, 0);
4806 SUBST (XEXP (x, 0), XEXP (x, 1));
4807 SUBST (XEXP (x, 1), tem);
4809 break;
4811 case PLUS:
4812 case MINUS:
4813 /* Canonicalization can produce (minus A (mult B C)), where C is a
4814 constant. It may be better to try splitting (plus (mult B -C) A)
4815 instead if this isn't a multiply by a power of two. */
4816 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4817 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4818 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4820 enum machine_mode mode = GET_MODE (x);
4821 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4822 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4823 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4824 XEXP (XEXP (x, 1), 0),
4825 GEN_INT (other_int)),
4826 XEXP (x, 0)));
4827 return find_split_point (loc, insn, set_src);
4830 /* Split at a multiply-accumulate instruction. However if this is
4831 the SET_SRC, we likely do not have such an instruction and it's
4832 worthless to try this split. */
4833 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4834 return loc;
4836 default:
4837 break;
4840 /* Otherwise, select our actions depending on our rtx class. */
4841 switch (GET_RTX_CLASS (code))
4843 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4844 case RTX_TERNARY:
4845 split = find_split_point (&XEXP (x, 2), insn, false);
4846 if (split)
4847 return split;
4848 /* ... fall through ... */
4849 case RTX_BIN_ARITH:
4850 case RTX_COMM_ARITH:
4851 case RTX_COMPARE:
4852 case RTX_COMM_COMPARE:
4853 split = find_split_point (&XEXP (x, 1), insn, false);
4854 if (split)
4855 return split;
4856 /* ... fall through ... */
4857 case RTX_UNARY:
4858 /* Some machines have (and (shift ...) ...) insns. If X is not
4859 an AND, but XEXP (X, 0) is, use it as our split point. */
4860 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4861 return &XEXP (x, 0);
4863 split = find_split_point (&XEXP (x, 0), insn, false);
4864 if (split)
4865 return split;
4866 return loc;
4868 default:
4869 /* Otherwise, we don't have a split point. */
4870 return 0;
4874 /* Throughout X, replace FROM with TO, and return the result.
4875 The result is TO if X is FROM;
4876 otherwise the result is X, but its contents may have been modified.
4877 If they were modified, a record was made in undobuf so that
4878 undo_all will (among other things) return X to its original state.
4880 If the number of changes necessary is too much to record to undo,
4881 the excess changes are not made, so the result is invalid.
4882 The changes already made can still be undone.
4883 undobuf.num_undo is incremented for such changes, so by testing that
4884 the caller can tell whether the result is valid.
4886 `n_occurrences' is incremented each time FROM is replaced.
4888 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4890 IN_COND is nonzero if we are at the top level of a condition.
4892 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4893 by copying if `n_occurrences' is nonzero. */
4895 static rtx
4896 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4898 enum rtx_code code = GET_CODE (x);
4899 enum machine_mode op0_mode = VOIDmode;
4900 const char *fmt;
4901 int len, i;
4902 rtx new_rtx;
4904 /* Two expressions are equal if they are identical copies of a shared
4905 RTX or if they are both registers with the same register number
4906 and mode. */
4908 #define COMBINE_RTX_EQUAL_P(X,Y) \
4909 ((X) == (Y) \
4910 || (REG_P (X) && REG_P (Y) \
4911 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4913 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4915 n_occurrences++;
4916 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4919 /* If X and FROM are the same register but different modes, they
4920 will not have been seen as equal above. However, the log links code
4921 will make a LOG_LINKS entry for that case. If we do nothing, we
4922 will try to rerecognize our original insn and, when it succeeds,
4923 we will delete the feeding insn, which is incorrect.
4925 So force this insn not to match in this (rare) case. */
4926 if (! in_dest && code == REG && REG_P (from)
4927 && reg_overlap_mentioned_p (x, from))
4928 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4930 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4931 of which may contain things that can be combined. */
4932 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4933 return x;
4935 /* It is possible to have a subexpression appear twice in the insn.
4936 Suppose that FROM is a register that appears within TO.
4937 Then, after that subexpression has been scanned once by `subst',
4938 the second time it is scanned, TO may be found. If we were
4939 to scan TO here, we would find FROM within it and create a
4940 self-referent rtl structure which is completely wrong. */
4941 if (COMBINE_RTX_EQUAL_P (x, to))
4942 return to;
4944 /* Parallel asm_operands need special attention because all of the
4945 inputs are shared across the arms. Furthermore, unsharing the
4946 rtl results in recognition failures. Failure to handle this case
4947 specially can result in circular rtl.
4949 Solve this by doing a normal pass across the first entry of the
4950 parallel, and only processing the SET_DESTs of the subsequent
4951 entries. Ug. */
4953 if (code == PARALLEL
4954 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4955 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4957 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4959 /* If this substitution failed, this whole thing fails. */
4960 if (GET_CODE (new_rtx) == CLOBBER
4961 && XEXP (new_rtx, 0) == const0_rtx)
4962 return new_rtx;
4964 SUBST (XVECEXP (x, 0, 0), new_rtx);
4966 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4968 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4970 if (!REG_P (dest)
4971 && GET_CODE (dest) != CC0
4972 && GET_CODE (dest) != PC)
4974 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4976 /* If this substitution failed, this whole thing fails. */
4977 if (GET_CODE (new_rtx) == CLOBBER
4978 && XEXP (new_rtx, 0) == const0_rtx)
4979 return new_rtx;
4981 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4985 else
4987 len = GET_RTX_LENGTH (code);
4988 fmt = GET_RTX_FORMAT (code);
4990 /* We don't need to process a SET_DEST that is a register, CC0,
4991 or PC, so set up to skip this common case. All other cases
4992 where we want to suppress replacing something inside a
4993 SET_SRC are handled via the IN_DEST operand. */
4994 if (code == SET
4995 && (REG_P (SET_DEST (x))
4996 || GET_CODE (SET_DEST (x)) == CC0
4997 || GET_CODE (SET_DEST (x)) == PC))
4998 fmt = "ie";
5000 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5001 constant. */
5002 if (fmt[0] == 'e')
5003 op0_mode = GET_MODE (XEXP (x, 0));
5005 for (i = 0; i < len; i++)
5007 if (fmt[i] == 'E')
5009 int j;
5010 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5012 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5014 new_rtx = (unique_copy && n_occurrences
5015 ? copy_rtx (to) : to);
5016 n_occurrences++;
5018 else
5020 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5021 unique_copy);
5023 /* If this substitution failed, this whole thing
5024 fails. */
5025 if (GET_CODE (new_rtx) == CLOBBER
5026 && XEXP (new_rtx, 0) == const0_rtx)
5027 return new_rtx;
5030 SUBST (XVECEXP (x, i, j), new_rtx);
5033 else if (fmt[i] == 'e')
5035 /* If this is a register being set, ignore it. */
5036 new_rtx = XEXP (x, i);
5037 if (in_dest
5038 && i == 0
5039 && (((code == SUBREG || code == ZERO_EXTRACT)
5040 && REG_P (new_rtx))
5041 || code == STRICT_LOW_PART))
5044 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5046 /* In general, don't install a subreg involving two
5047 modes not tieable. It can worsen register
5048 allocation, and can even make invalid reload
5049 insns, since the reg inside may need to be copied
5050 from in the outside mode, and that may be invalid
5051 if it is an fp reg copied in integer mode.
5053 We allow two exceptions to this: It is valid if
5054 it is inside another SUBREG and the mode of that
5055 SUBREG and the mode of the inside of TO is
5056 tieable and it is valid if X is a SET that copies
5057 FROM to CC0. */
5059 if (GET_CODE (to) == SUBREG
5060 && ! MODES_TIEABLE_P (GET_MODE (to),
5061 GET_MODE (SUBREG_REG (to)))
5062 && ! (code == SUBREG
5063 && MODES_TIEABLE_P (GET_MODE (x),
5064 GET_MODE (SUBREG_REG (to))))
5065 #ifdef HAVE_cc0
5066 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5067 #endif
5069 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5071 #ifdef CANNOT_CHANGE_MODE_CLASS
5072 if (code == SUBREG
5073 && REG_P (to)
5074 && REGNO (to) < FIRST_PSEUDO_REGISTER
5075 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5076 GET_MODE (to),
5077 GET_MODE (x)))
5078 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5079 #endif
5081 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5082 n_occurrences++;
5084 else
5085 /* If we are in a SET_DEST, suppress most cases unless we
5086 have gone inside a MEM, in which case we want to
5087 simplify the address. We assume here that things that
5088 are actually part of the destination have their inner
5089 parts in the first expression. This is true for SUBREG,
5090 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5091 things aside from REG and MEM that should appear in a
5092 SET_DEST. */
5093 new_rtx = subst (XEXP (x, i), from, to,
5094 (((in_dest
5095 && (code == SUBREG || code == STRICT_LOW_PART
5096 || code == ZERO_EXTRACT))
5097 || code == SET)
5098 && i == 0),
5099 code == IF_THEN_ELSE && i == 0,
5100 unique_copy);
5102 /* If we found that we will have to reject this combination,
5103 indicate that by returning the CLOBBER ourselves, rather than
5104 an expression containing it. This will speed things up as
5105 well as prevent accidents where two CLOBBERs are considered
5106 to be equal, thus producing an incorrect simplification. */
5108 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5109 return new_rtx;
5111 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5113 enum machine_mode mode = GET_MODE (x);
5115 x = simplify_subreg (GET_MODE (x), new_rtx,
5116 GET_MODE (SUBREG_REG (x)),
5117 SUBREG_BYTE (x));
5118 if (! x)
5119 x = gen_rtx_CLOBBER (mode, const0_rtx);
5121 else if (CONST_INT_P (new_rtx)
5122 && GET_CODE (x) == ZERO_EXTEND)
5124 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5125 new_rtx, GET_MODE (XEXP (x, 0)));
5126 gcc_assert (x);
5128 else
5129 SUBST (XEXP (x, i), new_rtx);
5134 /* Check if we are loading something from the constant pool via float
5135 extension; in this case we would undo compress_float_constant
5136 optimization and degenerate constant load to an immediate value. */
5137 if (GET_CODE (x) == FLOAT_EXTEND
5138 && MEM_P (XEXP (x, 0))
5139 && MEM_READONLY_P (XEXP (x, 0)))
5141 rtx tmp = avoid_constant_pool_reference (x);
5142 if (x != tmp)
5143 return x;
5146 /* Try to simplify X. If the simplification changed the code, it is likely
5147 that further simplification will help, so loop, but limit the number
5148 of repetitions that will be performed. */
5150 for (i = 0; i < 4; i++)
5152 /* If X is sufficiently simple, don't bother trying to do anything
5153 with it. */
5154 if (code != CONST_INT && code != REG && code != CLOBBER)
5155 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5157 if (GET_CODE (x) == code)
5158 break;
5160 code = GET_CODE (x);
5162 /* We no longer know the original mode of operand 0 since we
5163 have changed the form of X) */
5164 op0_mode = VOIDmode;
5167 return x;
5170 /* Simplify X, a piece of RTL. We just operate on the expression at the
5171 outer level; call `subst' to simplify recursively. Return the new
5172 expression.
5174 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5175 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5176 of a condition. */
5178 static rtx
5179 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5180 int in_cond)
5182 enum rtx_code code = GET_CODE (x);
5183 enum machine_mode mode = GET_MODE (x);
5184 rtx temp;
5185 int i;
5187 /* If this is a commutative operation, put a constant last and a complex
5188 expression first. We don't need to do this for comparisons here. */
5189 if (COMMUTATIVE_ARITH_P (x)
5190 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5192 temp = XEXP (x, 0);
5193 SUBST (XEXP (x, 0), XEXP (x, 1));
5194 SUBST (XEXP (x, 1), temp);
5197 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5198 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5199 things. Check for cases where both arms are testing the same
5200 condition.
5202 Don't do anything if all operands are very simple. */
5204 if ((BINARY_P (x)
5205 && ((!OBJECT_P (XEXP (x, 0))
5206 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5207 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5208 || (!OBJECT_P (XEXP (x, 1))
5209 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5210 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5211 || (UNARY_P (x)
5212 && (!OBJECT_P (XEXP (x, 0))
5213 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5214 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5216 rtx cond, true_rtx, false_rtx;
5218 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5219 if (cond != 0
5220 /* If everything is a comparison, what we have is highly unlikely
5221 to be simpler, so don't use it. */
5222 && ! (COMPARISON_P (x)
5223 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5225 rtx cop1 = const0_rtx;
5226 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5228 if (cond_code == NE && COMPARISON_P (cond))
5229 return x;
5231 /* Simplify the alternative arms; this may collapse the true and
5232 false arms to store-flag values. Be careful to use copy_rtx
5233 here since true_rtx or false_rtx might share RTL with x as a
5234 result of the if_then_else_cond call above. */
5235 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5236 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5238 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5239 is unlikely to be simpler. */
5240 if (general_operand (true_rtx, VOIDmode)
5241 && general_operand (false_rtx, VOIDmode))
5243 enum rtx_code reversed;
5245 /* Restarting if we generate a store-flag expression will cause
5246 us to loop. Just drop through in this case. */
5248 /* If the result values are STORE_FLAG_VALUE and zero, we can
5249 just make the comparison operation. */
5250 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5251 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5252 cond, cop1);
5253 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5254 && ((reversed = reversed_comparison_code_parts
5255 (cond_code, cond, cop1, NULL))
5256 != UNKNOWN))
5257 x = simplify_gen_relational (reversed, mode, VOIDmode,
5258 cond, cop1);
5260 /* Likewise, we can make the negate of a comparison operation
5261 if the result values are - STORE_FLAG_VALUE and zero. */
5262 else if (CONST_INT_P (true_rtx)
5263 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5264 && false_rtx == const0_rtx)
5265 x = simplify_gen_unary (NEG, mode,
5266 simplify_gen_relational (cond_code,
5267 mode, VOIDmode,
5268 cond, cop1),
5269 mode);
5270 else if (CONST_INT_P (false_rtx)
5271 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5272 && true_rtx == const0_rtx
5273 && ((reversed = reversed_comparison_code_parts
5274 (cond_code, cond, cop1, NULL))
5275 != UNKNOWN))
5276 x = simplify_gen_unary (NEG, mode,
5277 simplify_gen_relational (reversed,
5278 mode, VOIDmode,
5279 cond, cop1),
5280 mode);
5281 else
5282 return gen_rtx_IF_THEN_ELSE (mode,
5283 simplify_gen_relational (cond_code,
5284 mode,
5285 VOIDmode,
5286 cond,
5287 cop1),
5288 true_rtx, false_rtx);
5290 code = GET_CODE (x);
5291 op0_mode = VOIDmode;
5296 /* Try to fold this expression in case we have constants that weren't
5297 present before. */
5298 temp = 0;
5299 switch (GET_RTX_CLASS (code))
5301 case RTX_UNARY:
5302 if (op0_mode == VOIDmode)
5303 op0_mode = GET_MODE (XEXP (x, 0));
5304 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5305 break;
5306 case RTX_COMPARE:
5307 case RTX_COMM_COMPARE:
5309 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5310 if (cmp_mode == VOIDmode)
5312 cmp_mode = GET_MODE (XEXP (x, 1));
5313 if (cmp_mode == VOIDmode)
5314 cmp_mode = op0_mode;
5316 temp = simplify_relational_operation (code, mode, cmp_mode,
5317 XEXP (x, 0), XEXP (x, 1));
5319 break;
5320 case RTX_COMM_ARITH:
5321 case RTX_BIN_ARITH:
5322 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5323 break;
5324 case RTX_BITFIELD_OPS:
5325 case RTX_TERNARY:
5326 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5327 XEXP (x, 1), XEXP (x, 2));
5328 break;
5329 default:
5330 break;
5333 if (temp)
5335 x = temp;
5336 code = GET_CODE (temp);
5337 op0_mode = VOIDmode;
5338 mode = GET_MODE (temp);
5341 /* First see if we can apply the inverse distributive law. */
5342 if (code == PLUS || code == MINUS
5343 || code == AND || code == IOR || code == XOR)
5345 x = apply_distributive_law (x);
5346 code = GET_CODE (x);
5347 op0_mode = VOIDmode;
5350 /* If CODE is an associative operation not otherwise handled, see if we
5351 can associate some operands. This can win if they are constants or
5352 if they are logically related (i.e. (a & b) & a). */
5353 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5354 || code == AND || code == IOR || code == XOR
5355 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5356 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5357 || (flag_associative_math && FLOAT_MODE_P (mode))))
5359 if (GET_CODE (XEXP (x, 0)) == code)
5361 rtx other = XEXP (XEXP (x, 0), 0);
5362 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5363 rtx inner_op1 = XEXP (x, 1);
5364 rtx inner;
5366 /* Make sure we pass the constant operand if any as the second
5367 one if this is a commutative operation. */
5368 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5370 rtx tem = inner_op0;
5371 inner_op0 = inner_op1;
5372 inner_op1 = tem;
5374 inner = simplify_binary_operation (code == MINUS ? PLUS
5375 : code == DIV ? MULT
5376 : code,
5377 mode, inner_op0, inner_op1);
5379 /* For commutative operations, try the other pair if that one
5380 didn't simplify. */
5381 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5383 other = XEXP (XEXP (x, 0), 1);
5384 inner = simplify_binary_operation (code, mode,
5385 XEXP (XEXP (x, 0), 0),
5386 XEXP (x, 1));
5389 if (inner)
5390 return simplify_gen_binary (code, mode, other, inner);
5394 /* A little bit of algebraic simplification here. */
5395 switch (code)
5397 case MEM:
5398 /* Ensure that our address has any ASHIFTs converted to MULT in case
5399 address-recognizing predicates are called later. */
5400 temp = make_compound_operation (XEXP (x, 0), MEM);
5401 SUBST (XEXP (x, 0), temp);
5402 break;
5404 case SUBREG:
5405 if (op0_mode == VOIDmode)
5406 op0_mode = GET_MODE (SUBREG_REG (x));
5408 /* See if this can be moved to simplify_subreg. */
5409 if (CONSTANT_P (SUBREG_REG (x))
5410 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5411 /* Don't call gen_lowpart if the inner mode
5412 is VOIDmode and we cannot simplify it, as SUBREG without
5413 inner mode is invalid. */
5414 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5415 || gen_lowpart_common (mode, SUBREG_REG (x))))
5416 return gen_lowpart (mode, SUBREG_REG (x));
5418 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5419 break;
5421 rtx temp;
5422 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5423 SUBREG_BYTE (x));
5424 if (temp)
5425 return temp;
5428 /* Don't change the mode of the MEM if that would change the meaning
5429 of the address. */
5430 if (MEM_P (SUBREG_REG (x))
5431 && (MEM_VOLATILE_P (SUBREG_REG (x))
5432 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5433 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5434 return gen_rtx_CLOBBER (mode, const0_rtx);
5436 /* Note that we cannot do any narrowing for non-constants since
5437 we might have been counting on using the fact that some bits were
5438 zero. We now do this in the SET. */
5440 break;
5442 case NEG:
5443 temp = expand_compound_operation (XEXP (x, 0));
5445 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5446 replaced by (lshiftrt X C). This will convert
5447 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5449 if (GET_CODE (temp) == ASHIFTRT
5450 && CONST_INT_P (XEXP (temp, 1))
5451 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5452 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5453 INTVAL (XEXP (temp, 1)));
5455 /* If X has only a single bit that might be nonzero, say, bit I, convert
5456 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5457 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5458 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5459 or a SUBREG of one since we'd be making the expression more
5460 complex if it was just a register. */
5462 if (!REG_P (temp)
5463 && ! (GET_CODE (temp) == SUBREG
5464 && REG_P (SUBREG_REG (temp)))
5465 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5467 rtx temp1 = simplify_shift_const
5468 (NULL_RTX, ASHIFTRT, mode,
5469 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5470 GET_MODE_PRECISION (mode) - 1 - i),
5471 GET_MODE_PRECISION (mode) - 1 - i);
5473 /* If all we did was surround TEMP with the two shifts, we
5474 haven't improved anything, so don't use it. Otherwise,
5475 we are better off with TEMP1. */
5476 if (GET_CODE (temp1) != ASHIFTRT
5477 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5478 || XEXP (XEXP (temp1, 0), 0) != temp)
5479 return temp1;
5481 break;
5483 case TRUNCATE:
5484 /* We can't handle truncation to a partial integer mode here
5485 because we don't know the real bitsize of the partial
5486 integer mode. */
5487 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5488 break;
5490 if (HWI_COMPUTABLE_MODE_P (mode))
5491 SUBST (XEXP (x, 0),
5492 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5493 GET_MODE_MASK (mode), 0));
5495 /* We can truncate a constant value and return it. */
5496 if (CONST_INT_P (XEXP (x, 0)))
5497 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5499 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5500 whose value is a comparison can be replaced with a subreg if
5501 STORE_FLAG_VALUE permits. */
5502 if (HWI_COMPUTABLE_MODE_P (mode)
5503 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5504 && (temp = get_last_value (XEXP (x, 0)))
5505 && COMPARISON_P (temp))
5506 return gen_lowpart (mode, XEXP (x, 0));
5507 break;
5509 case CONST:
5510 /* (const (const X)) can become (const X). Do it this way rather than
5511 returning the inner CONST since CONST can be shared with a
5512 REG_EQUAL note. */
5513 if (GET_CODE (XEXP (x, 0)) == CONST)
5514 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5515 break;
5517 #ifdef HAVE_lo_sum
5518 case LO_SUM:
5519 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5520 can add in an offset. find_split_point will split this address up
5521 again if it doesn't match. */
5522 if (GET_CODE (XEXP (x, 0)) == HIGH
5523 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5524 return XEXP (x, 1);
5525 break;
5526 #endif
5528 case PLUS:
5529 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5530 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5531 bit-field and can be replaced by either a sign_extend or a
5532 sign_extract. The `and' may be a zero_extend and the two
5533 <c>, -<c> constants may be reversed. */
5534 if (GET_CODE (XEXP (x, 0)) == XOR
5535 && CONST_INT_P (XEXP (x, 1))
5536 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5537 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5538 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5539 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5540 && HWI_COMPUTABLE_MODE_P (mode)
5541 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5542 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5543 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5544 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5545 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5546 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5547 == (unsigned int) i + 1))))
5548 return simplify_shift_const
5549 (NULL_RTX, ASHIFTRT, mode,
5550 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5551 XEXP (XEXP (XEXP (x, 0), 0), 0),
5552 GET_MODE_PRECISION (mode) - (i + 1)),
5553 GET_MODE_PRECISION (mode) - (i + 1));
5555 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5556 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5557 the bitsize of the mode - 1. This allows simplification of
5558 "a = (b & 8) == 0;" */
5559 if (XEXP (x, 1) == constm1_rtx
5560 && !REG_P (XEXP (x, 0))
5561 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5562 && REG_P (SUBREG_REG (XEXP (x, 0))))
5563 && nonzero_bits (XEXP (x, 0), mode) == 1)
5564 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5565 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5566 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5567 GET_MODE_PRECISION (mode) - 1),
5568 GET_MODE_PRECISION (mode) - 1);
5570 /* If we are adding two things that have no bits in common, convert
5571 the addition into an IOR. This will often be further simplified,
5572 for example in cases like ((a & 1) + (a & 2)), which can
5573 become a & 3. */
5575 if (HWI_COMPUTABLE_MODE_P (mode)
5576 && (nonzero_bits (XEXP (x, 0), mode)
5577 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5579 /* Try to simplify the expression further. */
5580 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5581 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5583 /* If we could, great. If not, do not go ahead with the IOR
5584 replacement, since PLUS appears in many special purpose
5585 address arithmetic instructions. */
5586 if (GET_CODE (temp) != CLOBBER
5587 && (GET_CODE (temp) != IOR
5588 || ((XEXP (temp, 0) != XEXP (x, 0)
5589 || XEXP (temp, 1) != XEXP (x, 1))
5590 && (XEXP (temp, 0) != XEXP (x, 1)
5591 || XEXP (temp, 1) != XEXP (x, 0)))))
5592 return temp;
5594 break;
5596 case MINUS:
5597 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5598 (and <foo> (const_int pow2-1)) */
5599 if (GET_CODE (XEXP (x, 1)) == AND
5600 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5601 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5602 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5603 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5604 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5605 break;
5607 case MULT:
5608 /* If we have (mult (plus A B) C), apply the distributive law and then
5609 the inverse distributive law to see if things simplify. This
5610 occurs mostly in addresses, often when unrolling loops. */
5612 if (GET_CODE (XEXP (x, 0)) == PLUS)
5614 rtx result = distribute_and_simplify_rtx (x, 0);
5615 if (result)
5616 return result;
5619 /* Try simplify a*(b/c) as (a*b)/c. */
5620 if (FLOAT_MODE_P (mode) && flag_associative_math
5621 && GET_CODE (XEXP (x, 0)) == DIV)
5623 rtx tem = simplify_binary_operation (MULT, mode,
5624 XEXP (XEXP (x, 0), 0),
5625 XEXP (x, 1));
5626 if (tem)
5627 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5629 break;
5631 case UDIV:
5632 /* If this is a divide by a power of two, treat it as a shift if
5633 its first operand is a shift. */
5634 if (CONST_INT_P (XEXP (x, 1))
5635 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5636 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5637 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5638 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5639 || GET_CODE (XEXP (x, 0)) == ROTATE
5640 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5641 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5642 break;
5644 case EQ: case NE:
5645 case GT: case GTU: case GE: case GEU:
5646 case LT: case LTU: case LE: case LEU:
5647 case UNEQ: case LTGT:
5648 case UNGT: case UNGE:
5649 case UNLT: case UNLE:
5650 case UNORDERED: case ORDERED:
5651 /* If the first operand is a condition code, we can't do anything
5652 with it. */
5653 if (GET_CODE (XEXP (x, 0)) == COMPARE
5654 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5655 && ! CC0_P (XEXP (x, 0))))
5657 rtx op0 = XEXP (x, 0);
5658 rtx op1 = XEXP (x, 1);
5659 enum rtx_code new_code;
5661 if (GET_CODE (op0) == COMPARE)
5662 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5664 /* Simplify our comparison, if possible. */
5665 new_code = simplify_comparison (code, &op0, &op1);
5667 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5668 if only the low-order bit is possibly nonzero in X (such as when
5669 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5670 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5671 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5672 (plus X 1).
5674 Remove any ZERO_EXTRACT we made when thinking this was a
5675 comparison. It may now be simpler to use, e.g., an AND. If a
5676 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5677 the call to make_compound_operation in the SET case.
5679 Don't apply these optimizations if the caller would
5680 prefer a comparison rather than a value.
5681 E.g., for the condition in an IF_THEN_ELSE most targets need
5682 an explicit comparison. */
5684 if (in_cond)
5687 else if (STORE_FLAG_VALUE == 1
5688 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5689 && op1 == const0_rtx
5690 && mode == GET_MODE (op0)
5691 && nonzero_bits (op0, mode) == 1)
5692 return gen_lowpart (mode,
5693 expand_compound_operation (op0));
5695 else if (STORE_FLAG_VALUE == 1
5696 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5697 && op1 == const0_rtx
5698 && mode == GET_MODE (op0)
5699 && (num_sign_bit_copies (op0, mode)
5700 == GET_MODE_PRECISION (mode)))
5702 op0 = expand_compound_operation (op0);
5703 return simplify_gen_unary (NEG, mode,
5704 gen_lowpart (mode, op0),
5705 mode);
5708 else if (STORE_FLAG_VALUE == 1
5709 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5710 && op1 == const0_rtx
5711 && mode == GET_MODE (op0)
5712 && nonzero_bits (op0, mode) == 1)
5714 op0 = expand_compound_operation (op0);
5715 return simplify_gen_binary (XOR, mode,
5716 gen_lowpart (mode, op0),
5717 const1_rtx);
5720 else if (STORE_FLAG_VALUE == 1
5721 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5722 && op1 == const0_rtx
5723 && mode == GET_MODE (op0)
5724 && (num_sign_bit_copies (op0, mode)
5725 == GET_MODE_PRECISION (mode)))
5727 op0 = expand_compound_operation (op0);
5728 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5731 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5732 those above. */
5733 if (in_cond)
5736 else if (STORE_FLAG_VALUE == -1
5737 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5738 && op1 == const0_rtx
5739 && (num_sign_bit_copies (op0, mode)
5740 == GET_MODE_PRECISION (mode)))
5741 return gen_lowpart (mode,
5742 expand_compound_operation (op0));
5744 else if (STORE_FLAG_VALUE == -1
5745 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5746 && op1 == const0_rtx
5747 && mode == GET_MODE (op0)
5748 && nonzero_bits (op0, mode) == 1)
5750 op0 = expand_compound_operation (op0);
5751 return simplify_gen_unary (NEG, mode,
5752 gen_lowpart (mode, op0),
5753 mode);
5756 else if (STORE_FLAG_VALUE == -1
5757 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5758 && op1 == const0_rtx
5759 && mode == GET_MODE (op0)
5760 && (num_sign_bit_copies (op0, mode)
5761 == GET_MODE_PRECISION (mode)))
5763 op0 = expand_compound_operation (op0);
5764 return simplify_gen_unary (NOT, mode,
5765 gen_lowpart (mode, op0),
5766 mode);
5769 /* If X is 0/1, (eq X 0) is X-1. */
5770 else if (STORE_FLAG_VALUE == -1
5771 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5772 && op1 == const0_rtx
5773 && mode == GET_MODE (op0)
5774 && nonzero_bits (op0, mode) == 1)
5776 op0 = expand_compound_operation (op0);
5777 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5780 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5781 one bit that might be nonzero, we can convert (ne x 0) to
5782 (ashift x c) where C puts the bit in the sign bit. Remove any
5783 AND with STORE_FLAG_VALUE when we are done, since we are only
5784 going to test the sign bit. */
5785 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5786 && HWI_COMPUTABLE_MODE_P (mode)
5787 && val_signbit_p (mode, STORE_FLAG_VALUE)
5788 && op1 == const0_rtx
5789 && mode == GET_MODE (op0)
5790 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5792 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5793 expand_compound_operation (op0),
5794 GET_MODE_PRECISION (mode) - 1 - i);
5795 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5796 return XEXP (x, 0);
5797 else
5798 return x;
5801 /* If the code changed, return a whole new comparison. */
5802 if (new_code != code)
5803 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5805 /* Otherwise, keep this operation, but maybe change its operands.
5806 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5807 SUBST (XEXP (x, 0), op0);
5808 SUBST (XEXP (x, 1), op1);
5810 break;
5812 case IF_THEN_ELSE:
5813 return simplify_if_then_else (x);
5815 case ZERO_EXTRACT:
5816 case SIGN_EXTRACT:
5817 case ZERO_EXTEND:
5818 case SIGN_EXTEND:
5819 /* If we are processing SET_DEST, we are done. */
5820 if (in_dest)
5821 return x;
5823 return expand_compound_operation (x);
5825 case SET:
5826 return simplify_set (x);
5828 case AND:
5829 case IOR:
5830 return simplify_logical (x);
5832 case ASHIFT:
5833 case LSHIFTRT:
5834 case ASHIFTRT:
5835 case ROTATE:
5836 case ROTATERT:
5837 /* If this is a shift by a constant amount, simplify it. */
5838 if (CONST_INT_P (XEXP (x, 1)))
5839 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5840 INTVAL (XEXP (x, 1)));
5842 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5843 SUBST (XEXP (x, 1),
5844 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5845 ((unsigned HOST_WIDE_INT) 1
5846 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5847 - 1,
5848 0));
5849 break;
5851 default:
5852 break;
5855 return x;
5858 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5860 static rtx
5861 simplify_if_then_else (rtx x)
5863 enum machine_mode mode = GET_MODE (x);
5864 rtx cond = XEXP (x, 0);
5865 rtx true_rtx = XEXP (x, 1);
5866 rtx false_rtx = XEXP (x, 2);
5867 enum rtx_code true_code = GET_CODE (cond);
5868 int comparison_p = COMPARISON_P (cond);
5869 rtx temp;
5870 int i;
5871 enum rtx_code false_code;
5872 rtx reversed;
5874 /* Simplify storing of the truth value. */
5875 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5876 return simplify_gen_relational (true_code, mode, VOIDmode,
5877 XEXP (cond, 0), XEXP (cond, 1));
5879 /* Also when the truth value has to be reversed. */
5880 if (comparison_p
5881 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5882 && (reversed = reversed_comparison (cond, mode)))
5883 return reversed;
5885 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5886 in it is being compared against certain values. Get the true and false
5887 comparisons and see if that says anything about the value of each arm. */
5889 if (comparison_p
5890 && ((false_code = reversed_comparison_code (cond, NULL))
5891 != UNKNOWN)
5892 && REG_P (XEXP (cond, 0)))
5894 HOST_WIDE_INT nzb;
5895 rtx from = XEXP (cond, 0);
5896 rtx true_val = XEXP (cond, 1);
5897 rtx false_val = true_val;
5898 int swapped = 0;
5900 /* If FALSE_CODE is EQ, swap the codes and arms. */
5902 if (false_code == EQ)
5904 swapped = 1, true_code = EQ, false_code = NE;
5905 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5908 /* If we are comparing against zero and the expression being tested has
5909 only a single bit that might be nonzero, that is its value when it is
5910 not equal to zero. Similarly if it is known to be -1 or 0. */
5912 if (true_code == EQ && true_val == const0_rtx
5913 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5915 false_code = EQ;
5916 false_val = gen_int_mode (nzb, GET_MODE (from));
5918 else if (true_code == EQ && true_val == const0_rtx
5919 && (num_sign_bit_copies (from, GET_MODE (from))
5920 == GET_MODE_PRECISION (GET_MODE (from))))
5922 false_code = EQ;
5923 false_val = constm1_rtx;
5926 /* Now simplify an arm if we know the value of the register in the
5927 branch and it is used in the arm. Be careful due to the potential
5928 of locally-shared RTL. */
5930 if (reg_mentioned_p (from, true_rtx))
5931 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5932 from, true_val),
5933 pc_rtx, pc_rtx, 0, 0, 0);
5934 if (reg_mentioned_p (from, false_rtx))
5935 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5936 from, false_val),
5937 pc_rtx, pc_rtx, 0, 0, 0);
5939 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5940 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5942 true_rtx = XEXP (x, 1);
5943 false_rtx = XEXP (x, 2);
5944 true_code = GET_CODE (cond);
5947 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5948 reversed, do so to avoid needing two sets of patterns for
5949 subtract-and-branch insns. Similarly if we have a constant in the true
5950 arm, the false arm is the same as the first operand of the comparison, or
5951 the false arm is more complicated than the true arm. */
5953 if (comparison_p
5954 && reversed_comparison_code (cond, NULL) != UNKNOWN
5955 && (true_rtx == pc_rtx
5956 || (CONSTANT_P (true_rtx)
5957 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5958 || true_rtx == const0_rtx
5959 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5960 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5961 && !OBJECT_P (false_rtx))
5962 || reg_mentioned_p (true_rtx, false_rtx)
5963 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5965 true_code = reversed_comparison_code (cond, NULL);
5966 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5967 SUBST (XEXP (x, 1), false_rtx);
5968 SUBST (XEXP (x, 2), true_rtx);
5970 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5971 cond = XEXP (x, 0);
5973 /* It is possible that the conditional has been simplified out. */
5974 true_code = GET_CODE (cond);
5975 comparison_p = COMPARISON_P (cond);
5978 /* If the two arms are identical, we don't need the comparison. */
5980 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5981 return true_rtx;
5983 /* Convert a == b ? b : a to "a". */
5984 if (true_code == EQ && ! side_effects_p (cond)
5985 && !HONOR_NANS (mode)
5986 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5987 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5988 return false_rtx;
5989 else if (true_code == NE && ! side_effects_p (cond)
5990 && !HONOR_NANS (mode)
5991 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5992 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5993 return true_rtx;
5995 /* Look for cases where we have (abs x) or (neg (abs X)). */
5997 if (GET_MODE_CLASS (mode) == MODE_INT
5998 && comparison_p
5999 && XEXP (cond, 1) == const0_rtx
6000 && GET_CODE (false_rtx) == NEG
6001 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6002 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6003 && ! side_effects_p (true_rtx))
6004 switch (true_code)
6006 case GT:
6007 case GE:
6008 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6009 case LT:
6010 case LE:
6011 return
6012 simplify_gen_unary (NEG, mode,
6013 simplify_gen_unary (ABS, mode, true_rtx, mode),
6014 mode);
6015 default:
6016 break;
6019 /* Look for MIN or MAX. */
6021 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6022 && comparison_p
6023 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6024 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6025 && ! side_effects_p (cond))
6026 switch (true_code)
6028 case GE:
6029 case GT:
6030 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6031 case LE:
6032 case LT:
6033 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6034 case GEU:
6035 case GTU:
6036 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6037 case LEU:
6038 case LTU:
6039 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6040 default:
6041 break;
6044 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6045 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6046 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6047 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6048 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6049 neither 1 or -1, but it isn't worth checking for. */
6051 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6052 && comparison_p
6053 && GET_MODE_CLASS (mode) == MODE_INT
6054 && ! side_effects_p (x))
6056 rtx t = make_compound_operation (true_rtx, SET);
6057 rtx f = make_compound_operation (false_rtx, SET);
6058 rtx cond_op0 = XEXP (cond, 0);
6059 rtx cond_op1 = XEXP (cond, 1);
6060 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6061 enum machine_mode m = mode;
6062 rtx z = 0, c1 = NULL_RTX;
6064 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6065 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6066 || GET_CODE (t) == ASHIFT
6067 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6068 && rtx_equal_p (XEXP (t, 0), f))
6069 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6071 /* If an identity-zero op is commutative, check whether there
6072 would be a match if we swapped the operands. */
6073 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6074 || GET_CODE (t) == XOR)
6075 && rtx_equal_p (XEXP (t, 1), f))
6076 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6077 else if (GET_CODE (t) == SIGN_EXTEND
6078 && (GET_CODE (XEXP (t, 0)) == PLUS
6079 || GET_CODE (XEXP (t, 0)) == MINUS
6080 || GET_CODE (XEXP (t, 0)) == IOR
6081 || GET_CODE (XEXP (t, 0)) == XOR
6082 || GET_CODE (XEXP (t, 0)) == ASHIFT
6083 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6084 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6085 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6086 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6087 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6088 && (num_sign_bit_copies (f, GET_MODE (f))
6089 > (unsigned int)
6090 (GET_MODE_PRECISION (mode)
6091 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6093 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6094 extend_op = SIGN_EXTEND;
6095 m = GET_MODE (XEXP (t, 0));
6097 else if (GET_CODE (t) == SIGN_EXTEND
6098 && (GET_CODE (XEXP (t, 0)) == PLUS
6099 || GET_CODE (XEXP (t, 0)) == IOR
6100 || GET_CODE (XEXP (t, 0)) == XOR)
6101 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6102 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6103 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6104 && (num_sign_bit_copies (f, GET_MODE (f))
6105 > (unsigned int)
6106 (GET_MODE_PRECISION (mode)
6107 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6109 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6110 extend_op = SIGN_EXTEND;
6111 m = GET_MODE (XEXP (t, 0));
6113 else if (GET_CODE (t) == ZERO_EXTEND
6114 && (GET_CODE (XEXP (t, 0)) == PLUS
6115 || GET_CODE (XEXP (t, 0)) == MINUS
6116 || GET_CODE (XEXP (t, 0)) == IOR
6117 || GET_CODE (XEXP (t, 0)) == XOR
6118 || GET_CODE (XEXP (t, 0)) == ASHIFT
6119 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6120 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6121 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6122 && HWI_COMPUTABLE_MODE_P (mode)
6123 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6124 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6125 && ((nonzero_bits (f, GET_MODE (f))
6126 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6127 == 0))
6129 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6130 extend_op = ZERO_EXTEND;
6131 m = GET_MODE (XEXP (t, 0));
6133 else if (GET_CODE (t) == ZERO_EXTEND
6134 && (GET_CODE (XEXP (t, 0)) == PLUS
6135 || GET_CODE (XEXP (t, 0)) == IOR
6136 || GET_CODE (XEXP (t, 0)) == XOR)
6137 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6138 && HWI_COMPUTABLE_MODE_P (mode)
6139 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6140 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6141 && ((nonzero_bits (f, GET_MODE (f))
6142 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6143 == 0))
6145 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6146 extend_op = ZERO_EXTEND;
6147 m = GET_MODE (XEXP (t, 0));
6150 if (z)
6152 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6153 cond_op0, cond_op1),
6154 pc_rtx, pc_rtx, 0, 0, 0);
6155 temp = simplify_gen_binary (MULT, m, temp,
6156 simplify_gen_binary (MULT, m, c1,
6157 const_true_rtx));
6158 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6159 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6161 if (extend_op != UNKNOWN)
6162 temp = simplify_gen_unary (extend_op, mode, temp, m);
6164 return temp;
6168 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6169 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6170 negation of a single bit, we can convert this operation to a shift. We
6171 can actually do this more generally, but it doesn't seem worth it. */
6173 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6174 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6175 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6176 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6177 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6178 == GET_MODE_PRECISION (mode))
6179 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6180 return
6181 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6182 gen_lowpart (mode, XEXP (cond, 0)), i);
6184 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6185 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6186 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6187 && GET_MODE (XEXP (cond, 0)) == mode
6188 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6189 == nonzero_bits (XEXP (cond, 0), mode)
6190 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6191 return XEXP (cond, 0);
6193 return x;
6196 /* Simplify X, a SET expression. Return the new expression. */
6198 static rtx
6199 simplify_set (rtx x)
6201 rtx src = SET_SRC (x);
6202 rtx dest = SET_DEST (x);
6203 enum machine_mode mode
6204 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6205 rtx other_insn;
6206 rtx *cc_use;
6208 /* (set (pc) (return)) gets written as (return). */
6209 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6210 return src;
6212 /* Now that we know for sure which bits of SRC we are using, see if we can
6213 simplify the expression for the object knowing that we only need the
6214 low-order bits. */
6216 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6218 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6219 SUBST (SET_SRC (x), src);
6222 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6223 the comparison result and try to simplify it unless we already have used
6224 undobuf.other_insn. */
6225 if ((GET_MODE_CLASS (mode) == MODE_CC
6226 || GET_CODE (src) == COMPARE
6227 || CC0_P (dest))
6228 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6229 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6230 && COMPARISON_P (*cc_use)
6231 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6233 enum rtx_code old_code = GET_CODE (*cc_use);
6234 enum rtx_code new_code;
6235 rtx op0, op1, tmp;
6236 int other_changed = 0;
6237 rtx inner_compare = NULL_RTX;
6238 enum machine_mode compare_mode = GET_MODE (dest);
6240 if (GET_CODE (src) == COMPARE)
6242 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6243 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6245 inner_compare = op0;
6246 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6249 else
6250 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6252 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6253 op0, op1);
6254 if (!tmp)
6255 new_code = old_code;
6256 else if (!CONSTANT_P (tmp))
6258 new_code = GET_CODE (tmp);
6259 op0 = XEXP (tmp, 0);
6260 op1 = XEXP (tmp, 1);
6262 else
6264 rtx pat = PATTERN (other_insn);
6265 undobuf.other_insn = other_insn;
6266 SUBST (*cc_use, tmp);
6268 /* Attempt to simplify CC user. */
6269 if (GET_CODE (pat) == SET)
6271 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6272 if (new_rtx != NULL_RTX)
6273 SUBST (SET_SRC (pat), new_rtx);
6276 /* Convert X into a no-op move. */
6277 SUBST (SET_DEST (x), pc_rtx);
6278 SUBST (SET_SRC (x), pc_rtx);
6279 return x;
6282 /* Simplify our comparison, if possible. */
6283 new_code = simplify_comparison (new_code, &op0, &op1);
6285 #ifdef SELECT_CC_MODE
6286 /* If this machine has CC modes other than CCmode, check to see if we
6287 need to use a different CC mode here. */
6288 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6289 compare_mode = GET_MODE (op0);
6290 else if (inner_compare
6291 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6292 && new_code == old_code
6293 && op0 == XEXP (inner_compare, 0)
6294 && op1 == XEXP (inner_compare, 1))
6295 compare_mode = GET_MODE (inner_compare);
6296 else
6297 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6299 #ifndef HAVE_cc0
6300 /* If the mode changed, we have to change SET_DEST, the mode in the
6301 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6302 a hard register, just build new versions with the proper mode. If it
6303 is a pseudo, we lose unless it is only time we set the pseudo, in
6304 which case we can safely change its mode. */
6305 if (compare_mode != GET_MODE (dest))
6307 if (can_change_dest_mode (dest, 0, compare_mode))
6309 unsigned int regno = REGNO (dest);
6310 rtx new_dest;
6312 if (regno < FIRST_PSEUDO_REGISTER)
6313 new_dest = gen_rtx_REG (compare_mode, regno);
6314 else
6316 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6317 new_dest = regno_reg_rtx[regno];
6320 SUBST (SET_DEST (x), new_dest);
6321 SUBST (XEXP (*cc_use, 0), new_dest);
6322 other_changed = 1;
6324 dest = new_dest;
6327 #endif /* cc0 */
6328 #endif /* SELECT_CC_MODE */
6330 /* If the code changed, we have to build a new comparison in
6331 undobuf.other_insn. */
6332 if (new_code != old_code)
6334 int other_changed_previously = other_changed;
6335 unsigned HOST_WIDE_INT mask;
6336 rtx old_cc_use = *cc_use;
6338 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6339 dest, const0_rtx));
6340 other_changed = 1;
6342 /* If the only change we made was to change an EQ into an NE or
6343 vice versa, OP0 has only one bit that might be nonzero, and OP1
6344 is zero, check if changing the user of the condition code will
6345 produce a valid insn. If it won't, we can keep the original code
6346 in that insn by surrounding our operation with an XOR. */
6348 if (((old_code == NE && new_code == EQ)
6349 || (old_code == EQ && new_code == NE))
6350 && ! other_changed_previously && op1 == const0_rtx
6351 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6352 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6354 rtx pat = PATTERN (other_insn), note = 0;
6356 if ((recog_for_combine (&pat, other_insn, &note) < 0
6357 && ! check_asm_operands (pat)))
6359 *cc_use = old_cc_use;
6360 other_changed = 0;
6362 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6363 op0, GEN_INT (mask));
6368 if (other_changed)
6369 undobuf.other_insn = other_insn;
6371 /* Otherwise, if we didn't previously have a COMPARE in the
6372 correct mode, we need one. */
6373 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6375 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6376 src = SET_SRC (x);
6378 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6380 SUBST (SET_SRC (x), op0);
6381 src = SET_SRC (x);
6383 /* Otherwise, update the COMPARE if needed. */
6384 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6386 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6387 src = SET_SRC (x);
6390 else
6392 /* Get SET_SRC in a form where we have placed back any
6393 compound expressions. Then do the checks below. */
6394 src = make_compound_operation (src, SET);
6395 SUBST (SET_SRC (x), src);
6398 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6399 and X being a REG or (subreg (reg)), we may be able to convert this to
6400 (set (subreg:m2 x) (op)).
6402 We can always do this if M1 is narrower than M2 because that means that
6403 we only care about the low bits of the result.
6405 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6406 perform a narrower operation than requested since the high-order bits will
6407 be undefined. On machine where it is defined, this transformation is safe
6408 as long as M1 and M2 have the same number of words. */
6410 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6411 && !OBJECT_P (SUBREG_REG (src))
6412 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6413 / UNITS_PER_WORD)
6414 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6415 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6416 #ifndef WORD_REGISTER_OPERATIONS
6417 && (GET_MODE_SIZE (GET_MODE (src))
6418 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6419 #endif
6420 #ifdef CANNOT_CHANGE_MODE_CLASS
6421 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6422 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6423 GET_MODE (SUBREG_REG (src)),
6424 GET_MODE (src)))
6425 #endif
6426 && (REG_P (dest)
6427 || (GET_CODE (dest) == SUBREG
6428 && REG_P (SUBREG_REG (dest)))))
6430 SUBST (SET_DEST (x),
6431 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6432 dest));
6433 SUBST (SET_SRC (x), SUBREG_REG (src));
6435 src = SET_SRC (x), dest = SET_DEST (x);
6438 #ifdef HAVE_cc0
6439 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6440 in SRC. */
6441 if (dest == cc0_rtx
6442 && GET_CODE (src) == SUBREG
6443 && subreg_lowpart_p (src)
6444 && (GET_MODE_PRECISION (GET_MODE (src))
6445 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6447 rtx inner = SUBREG_REG (src);
6448 enum machine_mode inner_mode = GET_MODE (inner);
6450 /* Here we make sure that we don't have a sign bit on. */
6451 if (val_signbit_known_clear_p (GET_MODE (src),
6452 nonzero_bits (inner, inner_mode)))
6454 SUBST (SET_SRC (x), inner);
6455 src = SET_SRC (x);
6458 #endif
6460 #ifdef LOAD_EXTEND_OP
6461 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6462 would require a paradoxical subreg. Replace the subreg with a
6463 zero_extend to avoid the reload that would otherwise be required. */
6465 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6466 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6467 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6468 && SUBREG_BYTE (src) == 0
6469 && paradoxical_subreg_p (src)
6470 && MEM_P (SUBREG_REG (src)))
6472 SUBST (SET_SRC (x),
6473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6474 GET_MODE (src), SUBREG_REG (src)));
6476 src = SET_SRC (x);
6478 #endif
6480 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6481 are comparing an item known to be 0 or -1 against 0, use a logical
6482 operation instead. Check for one of the arms being an IOR of the other
6483 arm with some value. We compute three terms to be IOR'ed together. In
6484 practice, at most two will be nonzero. Then we do the IOR's. */
6486 if (GET_CODE (dest) != PC
6487 && GET_CODE (src) == IF_THEN_ELSE
6488 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6489 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6490 && XEXP (XEXP (src, 0), 1) == const0_rtx
6491 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6492 #ifdef HAVE_conditional_move
6493 && ! can_conditionally_move_p (GET_MODE (src))
6494 #endif
6495 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6496 GET_MODE (XEXP (XEXP (src, 0), 0)))
6497 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6498 && ! side_effects_p (src))
6500 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6501 ? XEXP (src, 1) : XEXP (src, 2));
6502 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6503 ? XEXP (src, 2) : XEXP (src, 1));
6504 rtx term1 = const0_rtx, term2, term3;
6506 if (GET_CODE (true_rtx) == IOR
6507 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6508 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6509 else if (GET_CODE (true_rtx) == IOR
6510 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6511 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6512 else if (GET_CODE (false_rtx) == IOR
6513 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6514 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6515 else if (GET_CODE (false_rtx) == IOR
6516 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6517 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6519 term2 = simplify_gen_binary (AND, GET_MODE (src),
6520 XEXP (XEXP (src, 0), 0), true_rtx);
6521 term3 = simplify_gen_binary (AND, GET_MODE (src),
6522 simplify_gen_unary (NOT, GET_MODE (src),
6523 XEXP (XEXP (src, 0), 0),
6524 GET_MODE (src)),
6525 false_rtx);
6527 SUBST (SET_SRC (x),
6528 simplify_gen_binary (IOR, GET_MODE (src),
6529 simplify_gen_binary (IOR, GET_MODE (src),
6530 term1, term2),
6531 term3));
6533 src = SET_SRC (x);
6536 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6537 whole thing fail. */
6538 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6539 return src;
6540 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6541 return dest;
6542 else
6543 /* Convert this into a field assignment operation, if possible. */
6544 return make_field_assignment (x);
6547 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6548 result. */
6550 static rtx
6551 simplify_logical (rtx x)
6553 enum machine_mode mode = GET_MODE (x);
6554 rtx op0 = XEXP (x, 0);
6555 rtx op1 = XEXP (x, 1);
6557 switch (GET_CODE (x))
6559 case AND:
6560 /* We can call simplify_and_const_int only if we don't lose
6561 any (sign) bits when converting INTVAL (op1) to
6562 "unsigned HOST_WIDE_INT". */
6563 if (CONST_INT_P (op1)
6564 && (HWI_COMPUTABLE_MODE_P (mode)
6565 || INTVAL (op1) > 0))
6567 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6568 if (GET_CODE (x) != AND)
6569 return x;
6571 op0 = XEXP (x, 0);
6572 op1 = XEXP (x, 1);
6575 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6576 apply the distributive law and then the inverse distributive
6577 law to see if things simplify. */
6578 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6580 rtx result = distribute_and_simplify_rtx (x, 0);
6581 if (result)
6582 return result;
6584 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6586 rtx result = distribute_and_simplify_rtx (x, 1);
6587 if (result)
6588 return result;
6590 break;
6592 case IOR:
6593 /* If we have (ior (and A B) C), apply the distributive law and then
6594 the inverse distributive law to see if things simplify. */
6596 if (GET_CODE (op0) == AND)
6598 rtx result = distribute_and_simplify_rtx (x, 0);
6599 if (result)
6600 return result;
6603 if (GET_CODE (op1) == AND)
6605 rtx result = distribute_and_simplify_rtx (x, 1);
6606 if (result)
6607 return result;
6609 break;
6611 default:
6612 gcc_unreachable ();
6615 return x;
6618 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6619 operations" because they can be replaced with two more basic operations.
6620 ZERO_EXTEND is also considered "compound" because it can be replaced with
6621 an AND operation, which is simpler, though only one operation.
6623 The function expand_compound_operation is called with an rtx expression
6624 and will convert it to the appropriate shifts and AND operations,
6625 simplifying at each stage.
6627 The function make_compound_operation is called to convert an expression
6628 consisting of shifts and ANDs into the equivalent compound expression.
6629 It is the inverse of this function, loosely speaking. */
6631 static rtx
6632 expand_compound_operation (rtx x)
6634 unsigned HOST_WIDE_INT pos = 0, len;
6635 int unsignedp = 0;
6636 unsigned int modewidth;
6637 rtx tem;
6639 switch (GET_CODE (x))
6641 case ZERO_EXTEND:
6642 unsignedp = 1;
6643 case SIGN_EXTEND:
6644 /* We can't necessarily use a const_int for a multiword mode;
6645 it depends on implicitly extending the value.
6646 Since we don't know the right way to extend it,
6647 we can't tell whether the implicit way is right.
6649 Even for a mode that is no wider than a const_int,
6650 we can't win, because we need to sign extend one of its bits through
6651 the rest of it, and we don't know which bit. */
6652 if (CONST_INT_P (XEXP (x, 0)))
6653 return x;
6655 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6656 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6657 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6658 reloaded. If not for that, MEM's would very rarely be safe.
6660 Reject MODEs bigger than a word, because we might not be able
6661 to reference a two-register group starting with an arbitrary register
6662 (and currently gen_lowpart might crash for a SUBREG). */
6664 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6665 return x;
6667 /* Reject MODEs that aren't scalar integers because turning vector
6668 or complex modes into shifts causes problems. */
6670 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6671 return x;
6673 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6674 /* If the inner object has VOIDmode (the only way this can happen
6675 is if it is an ASM_OPERANDS), we can't do anything since we don't
6676 know how much masking to do. */
6677 if (len == 0)
6678 return x;
6680 break;
6682 case ZERO_EXTRACT:
6683 unsignedp = 1;
6685 /* ... fall through ... */
6687 case SIGN_EXTRACT:
6688 /* If the operand is a CLOBBER, just return it. */
6689 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6690 return XEXP (x, 0);
6692 if (!CONST_INT_P (XEXP (x, 1))
6693 || !CONST_INT_P (XEXP (x, 2))
6694 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6695 return x;
6697 /* Reject MODEs that aren't scalar integers because turning vector
6698 or complex modes into shifts causes problems. */
6700 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6701 return x;
6703 len = INTVAL (XEXP (x, 1));
6704 pos = INTVAL (XEXP (x, 2));
6706 /* This should stay within the object being extracted, fail otherwise. */
6707 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6708 return x;
6710 if (BITS_BIG_ENDIAN)
6711 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6713 break;
6715 default:
6716 return x;
6718 /* Convert sign extension to zero extension, if we know that the high
6719 bit is not set, as this is easier to optimize. It will be converted
6720 back to cheaper alternative in make_extraction. */
6721 if (GET_CODE (x) == SIGN_EXTEND
6722 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6723 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6724 & ~(((unsigned HOST_WIDE_INT)
6725 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6726 >> 1))
6727 == 0)))
6729 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6730 rtx temp2 = expand_compound_operation (temp);
6732 /* Make sure this is a profitable operation. */
6733 if (set_src_cost (x, optimize_this_for_speed_p)
6734 > set_src_cost (temp2, optimize_this_for_speed_p))
6735 return temp2;
6736 else if (set_src_cost (x, optimize_this_for_speed_p)
6737 > set_src_cost (temp, optimize_this_for_speed_p))
6738 return temp;
6739 else
6740 return x;
6743 /* We can optimize some special cases of ZERO_EXTEND. */
6744 if (GET_CODE (x) == ZERO_EXTEND)
6746 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6747 know that the last value didn't have any inappropriate bits
6748 set. */
6749 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6750 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6751 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6752 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6753 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6754 return XEXP (XEXP (x, 0), 0);
6756 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6757 if (GET_CODE (XEXP (x, 0)) == SUBREG
6758 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6759 && subreg_lowpart_p (XEXP (x, 0))
6760 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6761 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6762 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6763 return SUBREG_REG (XEXP (x, 0));
6765 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6766 is a comparison and STORE_FLAG_VALUE permits. This is like
6767 the first case, but it works even when GET_MODE (x) is larger
6768 than HOST_WIDE_INT. */
6769 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6770 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6771 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6772 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6773 <= HOST_BITS_PER_WIDE_INT)
6774 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6775 return XEXP (XEXP (x, 0), 0);
6777 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6778 if (GET_CODE (XEXP (x, 0)) == SUBREG
6779 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6780 && subreg_lowpart_p (XEXP (x, 0))
6781 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6782 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6783 <= HOST_BITS_PER_WIDE_INT)
6784 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6785 return SUBREG_REG (XEXP (x, 0));
6789 /* If we reach here, we want to return a pair of shifts. The inner
6790 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6791 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6792 logical depending on the value of UNSIGNEDP.
6794 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6795 converted into an AND of a shift.
6797 We must check for the case where the left shift would have a negative
6798 count. This can happen in a case like (x >> 31) & 255 on machines
6799 that can't shift by a constant. On those machines, we would first
6800 combine the shift with the AND to produce a variable-position
6801 extraction. Then the constant of 31 would be substituted in
6802 to produce such a position. */
6804 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6805 if (modewidth >= pos + len)
6807 enum machine_mode mode = GET_MODE (x);
6808 tem = gen_lowpart (mode, XEXP (x, 0));
6809 if (!tem || GET_CODE (tem) == CLOBBER)
6810 return x;
6811 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6812 tem, modewidth - pos - len);
6813 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6814 mode, tem, modewidth - len);
6816 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6817 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6818 simplify_shift_const (NULL_RTX, LSHIFTRT,
6819 GET_MODE (x),
6820 XEXP (x, 0), pos),
6821 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6822 else
6823 /* Any other cases we can't handle. */
6824 return x;
6826 /* If we couldn't do this for some reason, return the original
6827 expression. */
6828 if (GET_CODE (tem) == CLOBBER)
6829 return x;
6831 return tem;
6834 /* X is a SET which contains an assignment of one object into
6835 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6836 or certain SUBREGS). If possible, convert it into a series of
6837 logical operations.
6839 We half-heartedly support variable positions, but do not at all
6840 support variable lengths. */
6842 static const_rtx
6843 expand_field_assignment (const_rtx x)
6845 rtx inner;
6846 rtx pos; /* Always counts from low bit. */
6847 int len;
6848 rtx mask, cleared, masked;
6849 enum machine_mode compute_mode;
6851 /* Loop until we find something we can't simplify. */
6852 while (1)
6854 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6855 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6857 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6858 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6859 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6861 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6862 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6864 inner = XEXP (SET_DEST (x), 0);
6865 len = INTVAL (XEXP (SET_DEST (x), 1));
6866 pos = XEXP (SET_DEST (x), 2);
6868 /* A constant position should stay within the width of INNER. */
6869 if (CONST_INT_P (pos)
6870 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6871 break;
6873 if (BITS_BIG_ENDIAN)
6875 if (CONST_INT_P (pos))
6876 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6877 - INTVAL (pos));
6878 else if (GET_CODE (pos) == MINUS
6879 && CONST_INT_P (XEXP (pos, 1))
6880 && (INTVAL (XEXP (pos, 1))
6881 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6882 /* If position is ADJUST - X, new position is X. */
6883 pos = XEXP (pos, 0);
6884 else
6885 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6886 GEN_INT (GET_MODE_PRECISION (
6887 GET_MODE (inner))
6888 - len),
6889 pos);
6893 /* A SUBREG between two modes that occupy the same numbers of words
6894 can be done by moving the SUBREG to the source. */
6895 else if (GET_CODE (SET_DEST (x)) == SUBREG
6896 /* We need SUBREGs to compute nonzero_bits properly. */
6897 && nonzero_sign_valid
6898 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6899 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6900 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6901 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6903 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6904 gen_lowpart
6905 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6906 SET_SRC (x)));
6907 continue;
6909 else
6910 break;
6912 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6913 inner = SUBREG_REG (inner);
6915 compute_mode = GET_MODE (inner);
6917 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6918 if (! SCALAR_INT_MODE_P (compute_mode))
6920 enum machine_mode imode;
6922 /* Don't do anything for vector or complex integral types. */
6923 if (! FLOAT_MODE_P (compute_mode))
6924 break;
6926 /* Try to find an integral mode to pun with. */
6927 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6928 if (imode == BLKmode)
6929 break;
6931 compute_mode = imode;
6932 inner = gen_lowpart (imode, inner);
6935 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6936 if (len >= HOST_BITS_PER_WIDE_INT)
6937 break;
6939 /* Now compute the equivalent expression. Make a copy of INNER
6940 for the SET_DEST in case it is a MEM into which we will substitute;
6941 we don't want shared RTL in that case. */
6942 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6943 cleared = simplify_gen_binary (AND, compute_mode,
6944 simplify_gen_unary (NOT, compute_mode,
6945 simplify_gen_binary (ASHIFT,
6946 compute_mode,
6947 mask, pos),
6948 compute_mode),
6949 inner);
6950 masked = simplify_gen_binary (ASHIFT, compute_mode,
6951 simplify_gen_binary (
6952 AND, compute_mode,
6953 gen_lowpart (compute_mode, SET_SRC (x)),
6954 mask),
6955 pos);
6957 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6958 simplify_gen_binary (IOR, compute_mode,
6959 cleared, masked));
6962 return x;
6965 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6966 it is an RTX that represents the (variable) starting position; otherwise,
6967 POS is the (constant) starting bit position. Both are counted from the LSB.
6969 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6971 IN_DEST is nonzero if this is a reference in the destination of a SET.
6972 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6973 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6974 be used.
6976 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6977 ZERO_EXTRACT should be built even for bits starting at bit 0.
6979 MODE is the desired mode of the result (if IN_DEST == 0).
6981 The result is an RTX for the extraction or NULL_RTX if the target
6982 can't handle it. */
6984 static rtx
6985 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6986 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6987 int in_dest, int in_compare)
6989 /* This mode describes the size of the storage area
6990 to fetch the overall value from. Within that, we
6991 ignore the POS lowest bits, etc. */
6992 enum machine_mode is_mode = GET_MODE (inner);
6993 enum machine_mode inner_mode;
6994 enum machine_mode wanted_inner_mode;
6995 enum machine_mode wanted_inner_reg_mode = word_mode;
6996 enum machine_mode pos_mode = word_mode;
6997 enum machine_mode extraction_mode = word_mode;
6998 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6999 rtx new_rtx = 0;
7000 rtx orig_pos_rtx = pos_rtx;
7001 HOST_WIDE_INT orig_pos;
7003 if (pos_rtx && CONST_INT_P (pos_rtx))
7004 pos = INTVAL (pos_rtx), pos_rtx = 0;
7006 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7008 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7009 consider just the QI as the memory to extract from.
7010 The subreg adds or removes high bits; its mode is
7011 irrelevant to the meaning of this extraction,
7012 since POS and LEN count from the lsb. */
7013 if (MEM_P (SUBREG_REG (inner)))
7014 is_mode = GET_MODE (SUBREG_REG (inner));
7015 inner = SUBREG_REG (inner);
7017 else if (GET_CODE (inner) == ASHIFT
7018 && CONST_INT_P (XEXP (inner, 1))
7019 && pos_rtx == 0 && pos == 0
7020 && len > UINTVAL (XEXP (inner, 1)))
7022 /* We're extracting the least significant bits of an rtx
7023 (ashift X (const_int C)), where LEN > C. Extract the
7024 least significant (LEN - C) bits of X, giving an rtx
7025 whose mode is MODE, then shift it left C times. */
7026 new_rtx = make_extraction (mode, XEXP (inner, 0),
7027 0, 0, len - INTVAL (XEXP (inner, 1)),
7028 unsignedp, in_dest, in_compare);
7029 if (new_rtx != 0)
7030 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7032 else if (GET_CODE (inner) == TRUNCATE)
7033 inner = XEXP (inner, 0);
7035 inner_mode = GET_MODE (inner);
7037 /* See if this can be done without an extraction. We never can if the
7038 width of the field is not the same as that of some integer mode. For
7039 registers, we can only avoid the extraction if the position is at the
7040 low-order bit and this is either not in the destination or we have the
7041 appropriate STRICT_LOW_PART operation available.
7043 For MEM, we can avoid an extract if the field starts on an appropriate
7044 boundary and we can change the mode of the memory reference. */
7046 if (tmode != BLKmode
7047 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7048 && !MEM_P (inner)
7049 && (inner_mode == tmode
7050 || !REG_P (inner)
7051 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7052 || reg_truncated_to_mode (tmode, inner))
7053 && (! in_dest
7054 || (REG_P (inner)
7055 && have_insn_for (STRICT_LOW_PART, tmode))))
7056 || (MEM_P (inner) && pos_rtx == 0
7057 && (pos
7058 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7059 : BITS_PER_UNIT)) == 0
7060 /* We can't do this if we are widening INNER_MODE (it
7061 may not be aligned, for one thing). */
7062 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7063 && (inner_mode == tmode
7064 || (! mode_dependent_address_p (XEXP (inner, 0),
7065 MEM_ADDR_SPACE (inner))
7066 && ! MEM_VOLATILE_P (inner))))))
7068 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7069 field. If the original and current mode are the same, we need not
7070 adjust the offset. Otherwise, we do if bytes big endian.
7072 If INNER is not a MEM, get a piece consisting of just the field
7073 of interest (in this case POS % BITS_PER_WORD must be 0). */
7075 if (MEM_P (inner))
7077 HOST_WIDE_INT offset;
7079 /* POS counts from lsb, but make OFFSET count in memory order. */
7080 if (BYTES_BIG_ENDIAN)
7081 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7082 else
7083 offset = pos / BITS_PER_UNIT;
7085 new_rtx = adjust_address_nv (inner, tmode, offset);
7087 else if (REG_P (inner))
7089 if (tmode != inner_mode)
7091 /* We can't call gen_lowpart in a DEST since we
7092 always want a SUBREG (see below) and it would sometimes
7093 return a new hard register. */
7094 if (pos || in_dest)
7096 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7098 if (WORDS_BIG_ENDIAN
7099 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7100 final_word = ((GET_MODE_SIZE (inner_mode)
7101 - GET_MODE_SIZE (tmode))
7102 / UNITS_PER_WORD) - final_word;
7104 final_word *= UNITS_PER_WORD;
7105 if (BYTES_BIG_ENDIAN &&
7106 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7107 final_word += (GET_MODE_SIZE (inner_mode)
7108 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7110 /* Avoid creating invalid subregs, for example when
7111 simplifying (x>>32)&255. */
7112 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7113 return NULL_RTX;
7115 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7117 else
7118 new_rtx = gen_lowpart (tmode, inner);
7120 else
7121 new_rtx = inner;
7123 else
7124 new_rtx = force_to_mode (inner, tmode,
7125 len >= HOST_BITS_PER_WIDE_INT
7126 ? ~(unsigned HOST_WIDE_INT) 0
7127 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7130 /* If this extraction is going into the destination of a SET,
7131 make a STRICT_LOW_PART unless we made a MEM. */
7133 if (in_dest)
7134 return (MEM_P (new_rtx) ? new_rtx
7135 : (GET_CODE (new_rtx) != SUBREG
7136 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7137 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7139 if (mode == tmode)
7140 return new_rtx;
7142 if (CONST_SCALAR_INT_P (new_rtx))
7143 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7144 mode, new_rtx, tmode);
7146 /* If we know that no extraneous bits are set, and that the high
7147 bit is not set, convert the extraction to the cheaper of
7148 sign and zero extension, that are equivalent in these cases. */
7149 if (flag_expensive_optimizations
7150 && (HWI_COMPUTABLE_MODE_P (tmode)
7151 && ((nonzero_bits (new_rtx, tmode)
7152 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7153 == 0)))
7155 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7156 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7158 /* Prefer ZERO_EXTENSION, since it gives more information to
7159 backends. */
7160 if (set_src_cost (temp, optimize_this_for_speed_p)
7161 <= set_src_cost (temp1, optimize_this_for_speed_p))
7162 return temp;
7163 return temp1;
7166 /* Otherwise, sign- or zero-extend unless we already are in the
7167 proper mode. */
7169 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7170 mode, new_rtx));
7173 /* Unless this is a COMPARE or we have a funny memory reference,
7174 don't do anything with zero-extending field extracts starting at
7175 the low-order bit since they are simple AND operations. */
7176 if (pos_rtx == 0 && pos == 0 && ! in_dest
7177 && ! in_compare && unsignedp)
7178 return 0;
7180 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7181 if the position is not a constant and the length is not 1. In all
7182 other cases, we would only be going outside our object in cases when
7183 an original shift would have been undefined. */
7184 if (MEM_P (inner)
7185 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7186 || (pos_rtx != 0 && len != 1)))
7187 return 0;
7189 enum extraction_pattern pattern = (in_dest ? EP_insv
7190 : unsignedp ? EP_extzv : EP_extv);
7192 /* If INNER is not from memory, we want it to have the mode of a register
7193 extraction pattern's structure operand, or word_mode if there is no
7194 such pattern. The same applies to extraction_mode and pos_mode
7195 and their respective operands.
7197 For memory, assume that the desired extraction_mode and pos_mode
7198 are the same as for a register operation, since at present we don't
7199 have named patterns for aligned memory structures. */
7200 struct extraction_insn insn;
7201 if (get_best_reg_extraction_insn (&insn, pattern,
7202 GET_MODE_BITSIZE (inner_mode), mode))
7204 wanted_inner_reg_mode = insn.struct_mode;
7205 pos_mode = insn.pos_mode;
7206 extraction_mode = insn.field_mode;
7209 /* Never narrow an object, since that might not be safe. */
7211 if (mode != VOIDmode
7212 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7213 extraction_mode = mode;
7215 if (!MEM_P (inner))
7216 wanted_inner_mode = wanted_inner_reg_mode;
7217 else
7219 /* Be careful not to go beyond the extracted object and maintain the
7220 natural alignment of the memory. */
7221 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7222 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7223 > GET_MODE_BITSIZE (wanted_inner_mode))
7225 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7226 gcc_assert (wanted_inner_mode != VOIDmode);
7230 orig_pos = pos;
7232 if (BITS_BIG_ENDIAN)
7234 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7235 BITS_BIG_ENDIAN style. If position is constant, compute new
7236 position. Otherwise, build subtraction.
7237 Note that POS is relative to the mode of the original argument.
7238 If it's a MEM we need to recompute POS relative to that.
7239 However, if we're extracting from (or inserting into) a register,
7240 we want to recompute POS relative to wanted_inner_mode. */
7241 int width = (MEM_P (inner)
7242 ? GET_MODE_BITSIZE (is_mode)
7243 : GET_MODE_BITSIZE (wanted_inner_mode));
7245 if (pos_rtx == 0)
7246 pos = width - len - pos;
7247 else
7248 pos_rtx
7249 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7250 /* POS may be less than 0 now, but we check for that below.
7251 Note that it can only be less than 0 if !MEM_P (inner). */
7254 /* If INNER has a wider mode, and this is a constant extraction, try to
7255 make it smaller and adjust the byte to point to the byte containing
7256 the value. */
7257 if (wanted_inner_mode != VOIDmode
7258 && inner_mode != wanted_inner_mode
7259 && ! pos_rtx
7260 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7261 && MEM_P (inner)
7262 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7263 && ! MEM_VOLATILE_P (inner))
7265 int offset = 0;
7267 /* The computations below will be correct if the machine is big
7268 endian in both bits and bytes or little endian in bits and bytes.
7269 If it is mixed, we must adjust. */
7271 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7272 adjust OFFSET to compensate. */
7273 if (BYTES_BIG_ENDIAN
7274 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7275 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7277 /* We can now move to the desired byte. */
7278 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7279 * GET_MODE_SIZE (wanted_inner_mode);
7280 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7282 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7283 && is_mode != wanted_inner_mode)
7284 offset = (GET_MODE_SIZE (is_mode)
7285 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7287 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7290 /* If INNER is not memory, get it into the proper mode. If we are changing
7291 its mode, POS must be a constant and smaller than the size of the new
7292 mode. */
7293 else if (!MEM_P (inner))
7295 /* On the LHS, don't create paradoxical subregs implicitely truncating
7296 the register unless TRULY_NOOP_TRUNCATION. */
7297 if (in_dest
7298 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7299 wanted_inner_mode))
7300 return NULL_RTX;
7302 if (GET_MODE (inner) != wanted_inner_mode
7303 && (pos_rtx != 0
7304 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7305 return NULL_RTX;
7307 if (orig_pos < 0)
7308 return NULL_RTX;
7310 inner = force_to_mode (inner, wanted_inner_mode,
7311 pos_rtx
7312 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7313 ? ~(unsigned HOST_WIDE_INT) 0
7314 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7315 << orig_pos),
7319 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7320 have to zero extend. Otherwise, we can just use a SUBREG. */
7321 if (pos_rtx != 0
7322 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7324 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7326 /* If we know that no extraneous bits are set, and that the high
7327 bit is not set, convert extraction to cheaper one - either
7328 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7329 cases. */
7330 if (flag_expensive_optimizations
7331 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7332 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7333 & ~(((unsigned HOST_WIDE_INT)
7334 GET_MODE_MASK (GET_MODE (pos_rtx)))
7335 >> 1))
7336 == 0)))
7338 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7340 /* Prefer ZERO_EXTENSION, since it gives more information to
7341 backends. */
7342 if (set_src_cost (temp1, optimize_this_for_speed_p)
7343 < set_src_cost (temp, optimize_this_for_speed_p))
7344 temp = temp1;
7346 pos_rtx = temp;
7349 /* Make POS_RTX unless we already have it and it is correct. If we don't
7350 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7351 be a CONST_INT. */
7352 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7353 pos_rtx = orig_pos_rtx;
7355 else if (pos_rtx == 0)
7356 pos_rtx = GEN_INT (pos);
7358 /* Make the required operation. See if we can use existing rtx. */
7359 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7360 extraction_mode, inner, GEN_INT (len), pos_rtx);
7361 if (! in_dest)
7362 new_rtx = gen_lowpart (mode, new_rtx);
7364 return new_rtx;
7367 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7368 with any other operations in X. Return X without that shift if so. */
7370 static rtx
7371 extract_left_shift (rtx x, int count)
7373 enum rtx_code code = GET_CODE (x);
7374 enum machine_mode mode = GET_MODE (x);
7375 rtx tem;
7377 switch (code)
7379 case ASHIFT:
7380 /* This is the shift itself. If it is wide enough, we will return
7381 either the value being shifted if the shift count is equal to
7382 COUNT or a shift for the difference. */
7383 if (CONST_INT_P (XEXP (x, 1))
7384 && INTVAL (XEXP (x, 1)) >= count)
7385 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7386 INTVAL (XEXP (x, 1)) - count);
7387 break;
7389 case NEG: case NOT:
7390 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7391 return simplify_gen_unary (code, mode, tem, mode);
7393 break;
7395 case PLUS: case IOR: case XOR: case AND:
7396 /* If we can safely shift this constant and we find the inner shift,
7397 make a new operation. */
7398 if (CONST_INT_P (XEXP (x, 1))
7399 && (UINTVAL (XEXP (x, 1))
7400 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7401 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7402 return simplify_gen_binary (code, mode, tem,
7403 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7405 break;
7407 default:
7408 break;
7411 return 0;
7414 /* Look at the expression rooted at X. Look for expressions
7415 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7416 Form these expressions.
7418 Return the new rtx, usually just X.
7420 Also, for machines like the VAX that don't have logical shift insns,
7421 try to convert logical to arithmetic shift operations in cases where
7422 they are equivalent. This undoes the canonicalizations to logical
7423 shifts done elsewhere.
7425 We try, as much as possible, to re-use rtl expressions to save memory.
7427 IN_CODE says what kind of expression we are processing. Normally, it is
7428 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7429 being kludges), it is MEM. When processing the arguments of a comparison
7430 or a COMPARE against zero, it is COMPARE. */
7433 make_compound_operation (rtx x, enum rtx_code in_code)
7435 enum rtx_code code = GET_CODE (x);
7436 enum machine_mode mode = GET_MODE (x);
7437 int mode_width = GET_MODE_PRECISION (mode);
7438 rtx rhs, lhs;
7439 enum rtx_code next_code;
7440 int i, j;
7441 rtx new_rtx = 0;
7442 rtx tem;
7443 const char *fmt;
7445 /* Select the code to be used in recursive calls. Once we are inside an
7446 address, we stay there. If we have a comparison, set to COMPARE,
7447 but once inside, go back to our default of SET. */
7449 next_code = (code == MEM ? MEM
7450 : ((code == PLUS || code == MINUS)
7451 && SCALAR_INT_MODE_P (mode)) ? MEM
7452 : ((code == COMPARE || COMPARISON_P (x))
7453 && XEXP (x, 1) == const0_rtx) ? COMPARE
7454 : in_code == COMPARE ? SET : in_code);
7456 /* Process depending on the code of this operation. If NEW is set
7457 nonzero, it will be returned. */
7459 switch (code)
7461 case ASHIFT:
7462 /* Convert shifts by constants into multiplications if inside
7463 an address. */
7464 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7465 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7466 && INTVAL (XEXP (x, 1)) >= 0
7467 && SCALAR_INT_MODE_P (mode))
7469 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7470 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7472 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7473 if (GET_CODE (new_rtx) == NEG)
7475 new_rtx = XEXP (new_rtx, 0);
7476 multval = -multval;
7478 multval = trunc_int_for_mode (multval, mode);
7479 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7481 break;
7483 case PLUS:
7484 lhs = XEXP (x, 0);
7485 rhs = XEXP (x, 1);
7486 lhs = make_compound_operation (lhs, next_code);
7487 rhs = make_compound_operation (rhs, next_code);
7488 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7489 && SCALAR_INT_MODE_P (mode))
7491 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7492 XEXP (lhs, 1));
7493 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7495 else if (GET_CODE (lhs) == MULT
7496 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7498 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7499 simplify_gen_unary (NEG, mode,
7500 XEXP (lhs, 1),
7501 mode));
7502 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7504 else
7506 SUBST (XEXP (x, 0), lhs);
7507 SUBST (XEXP (x, 1), rhs);
7508 goto maybe_swap;
7510 x = gen_lowpart (mode, new_rtx);
7511 goto maybe_swap;
7513 case MINUS:
7514 lhs = XEXP (x, 0);
7515 rhs = XEXP (x, 1);
7516 lhs = make_compound_operation (lhs, next_code);
7517 rhs = make_compound_operation (rhs, next_code);
7518 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7519 && SCALAR_INT_MODE_P (mode))
7521 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7522 XEXP (rhs, 1));
7523 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7525 else if (GET_CODE (rhs) == MULT
7526 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7528 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7529 simplify_gen_unary (NEG, mode,
7530 XEXP (rhs, 1),
7531 mode));
7532 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7534 else
7536 SUBST (XEXP (x, 0), lhs);
7537 SUBST (XEXP (x, 1), rhs);
7538 return x;
7540 return gen_lowpart (mode, new_rtx);
7542 case AND:
7543 /* If the second operand is not a constant, we can't do anything
7544 with it. */
7545 if (!CONST_INT_P (XEXP (x, 1)))
7546 break;
7548 /* If the constant is a power of two minus one and the first operand
7549 is a logical right shift, make an extraction. */
7550 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7551 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7553 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7554 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7555 0, in_code == COMPARE);
7558 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7559 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7560 && subreg_lowpart_p (XEXP (x, 0))
7561 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7562 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7564 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7565 next_code);
7566 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7567 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7568 0, in_code == COMPARE);
7570 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7571 else if ((GET_CODE (XEXP (x, 0)) == XOR
7572 || GET_CODE (XEXP (x, 0)) == IOR)
7573 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7574 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7575 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7577 /* Apply the distributive law, and then try to make extractions. */
7578 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7579 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7580 XEXP (x, 1)),
7581 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7582 XEXP (x, 1)));
7583 new_rtx = make_compound_operation (new_rtx, in_code);
7586 /* If we are have (and (rotate X C) M) and C is larger than the number
7587 of bits in M, this is an extraction. */
7589 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7590 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7591 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7592 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7594 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7595 new_rtx = make_extraction (mode, new_rtx,
7596 (GET_MODE_PRECISION (mode)
7597 - INTVAL (XEXP (XEXP (x, 0), 1))),
7598 NULL_RTX, i, 1, 0, in_code == COMPARE);
7601 /* On machines without logical shifts, if the operand of the AND is
7602 a logical shift and our mask turns off all the propagated sign
7603 bits, we can replace the logical shift with an arithmetic shift. */
7604 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7605 && !have_insn_for (LSHIFTRT, mode)
7606 && have_insn_for (ASHIFTRT, mode)
7607 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7608 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7609 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7610 && mode_width <= HOST_BITS_PER_WIDE_INT)
7612 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7614 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7615 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7616 SUBST (XEXP (x, 0),
7617 gen_rtx_ASHIFTRT (mode,
7618 make_compound_operation
7619 (XEXP (XEXP (x, 0), 0), next_code),
7620 XEXP (XEXP (x, 0), 1)));
7623 /* If the constant is one less than a power of two, this might be
7624 representable by an extraction even if no shift is present.
7625 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7626 we are in a COMPARE. */
7627 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7628 new_rtx = make_extraction (mode,
7629 make_compound_operation (XEXP (x, 0),
7630 next_code),
7631 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7633 /* If we are in a comparison and this is an AND with a power of two,
7634 convert this into the appropriate bit extract. */
7635 else if (in_code == COMPARE
7636 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7637 new_rtx = make_extraction (mode,
7638 make_compound_operation (XEXP (x, 0),
7639 next_code),
7640 i, NULL_RTX, 1, 1, 0, 1);
7642 break;
7644 case LSHIFTRT:
7645 /* If the sign bit is known to be zero, replace this with an
7646 arithmetic shift. */
7647 if (have_insn_for (ASHIFTRT, mode)
7648 && ! have_insn_for (LSHIFTRT, mode)
7649 && mode_width <= HOST_BITS_PER_WIDE_INT
7650 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7652 new_rtx = gen_rtx_ASHIFTRT (mode,
7653 make_compound_operation (XEXP (x, 0),
7654 next_code),
7655 XEXP (x, 1));
7656 break;
7659 /* ... fall through ... */
7661 case ASHIFTRT:
7662 lhs = XEXP (x, 0);
7663 rhs = XEXP (x, 1);
7665 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7666 this is a SIGN_EXTRACT. */
7667 if (CONST_INT_P (rhs)
7668 && GET_CODE (lhs) == ASHIFT
7669 && CONST_INT_P (XEXP (lhs, 1))
7670 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7671 && INTVAL (XEXP (lhs, 1)) >= 0
7672 && INTVAL (rhs) < mode_width)
7674 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7675 new_rtx = make_extraction (mode, new_rtx,
7676 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7677 NULL_RTX, mode_width - INTVAL (rhs),
7678 code == LSHIFTRT, 0, in_code == COMPARE);
7679 break;
7682 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7683 If so, try to merge the shifts into a SIGN_EXTEND. We could
7684 also do this for some cases of SIGN_EXTRACT, but it doesn't
7685 seem worth the effort; the case checked for occurs on Alpha. */
7687 if (!OBJECT_P (lhs)
7688 && ! (GET_CODE (lhs) == SUBREG
7689 && (OBJECT_P (SUBREG_REG (lhs))))
7690 && CONST_INT_P (rhs)
7691 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7692 && INTVAL (rhs) < mode_width
7693 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7694 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7695 0, NULL_RTX, mode_width - INTVAL (rhs),
7696 code == LSHIFTRT, 0, in_code == COMPARE);
7698 break;
7700 case SUBREG:
7701 /* Call ourselves recursively on the inner expression. If we are
7702 narrowing the object and it has a different RTL code from
7703 what it originally did, do this SUBREG as a force_to_mode. */
7705 rtx inner = SUBREG_REG (x), simplified;
7707 tem = make_compound_operation (inner, in_code);
7709 simplified
7710 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7711 if (simplified)
7712 tem = simplified;
7714 if (GET_CODE (tem) != GET_CODE (inner)
7715 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7716 && subreg_lowpart_p (x))
7718 rtx newer
7719 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7721 /* If we have something other than a SUBREG, we might have
7722 done an expansion, so rerun ourselves. */
7723 if (GET_CODE (newer) != SUBREG)
7724 newer = make_compound_operation (newer, in_code);
7726 /* force_to_mode can expand compounds. If it just re-expanded the
7727 compound, use gen_lowpart to convert to the desired mode. */
7728 if (rtx_equal_p (newer, x)
7729 /* Likewise if it re-expanded the compound only partially.
7730 This happens for SUBREG of ZERO_EXTRACT if they extract
7731 the same number of bits. */
7732 || (GET_CODE (newer) == SUBREG
7733 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7734 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7735 && GET_CODE (inner) == AND
7736 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7737 return gen_lowpart (GET_MODE (x), tem);
7739 return newer;
7742 if (simplified)
7743 return tem;
7745 break;
7747 default:
7748 break;
7751 if (new_rtx)
7753 x = gen_lowpart (mode, new_rtx);
7754 code = GET_CODE (x);
7757 /* Now recursively process each operand of this operation. We need to
7758 handle ZERO_EXTEND specially so that we don't lose track of the
7759 inner mode. */
7760 if (GET_CODE (x) == ZERO_EXTEND)
7762 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7763 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7764 new_rtx, GET_MODE (XEXP (x, 0)));
7765 if (tem)
7766 return tem;
7767 SUBST (XEXP (x, 0), new_rtx);
7768 return x;
7771 fmt = GET_RTX_FORMAT (code);
7772 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7773 if (fmt[i] == 'e')
7775 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7776 SUBST (XEXP (x, i), new_rtx);
7778 else if (fmt[i] == 'E')
7779 for (j = 0; j < XVECLEN (x, i); j++)
7781 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7782 SUBST (XVECEXP (x, i, j), new_rtx);
7785 maybe_swap:
7786 /* If this is a commutative operation, the changes to the operands
7787 may have made it noncanonical. */
7788 if (COMMUTATIVE_ARITH_P (x)
7789 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7791 tem = XEXP (x, 0);
7792 SUBST (XEXP (x, 0), XEXP (x, 1));
7793 SUBST (XEXP (x, 1), tem);
7796 return x;
7799 /* Given M see if it is a value that would select a field of bits
7800 within an item, but not the entire word. Return -1 if not.
7801 Otherwise, return the starting position of the field, where 0 is the
7802 low-order bit.
7804 *PLEN is set to the length of the field. */
7806 static int
7807 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7809 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7810 int pos = m ? ctz_hwi (m) : -1;
7811 int len = 0;
7813 if (pos >= 0)
7814 /* Now shift off the low-order zero bits and see if we have a
7815 power of two minus 1. */
7816 len = exact_log2 ((m >> pos) + 1);
7818 if (len <= 0)
7819 pos = -1;
7821 *plen = len;
7822 return pos;
7825 /* If X refers to a register that equals REG in value, replace these
7826 references with REG. */
7827 static rtx
7828 canon_reg_for_combine (rtx x, rtx reg)
7830 rtx op0, op1, op2;
7831 const char *fmt;
7832 int i;
7833 bool copied;
7835 enum rtx_code code = GET_CODE (x);
7836 switch (GET_RTX_CLASS (code))
7838 case RTX_UNARY:
7839 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7840 if (op0 != XEXP (x, 0))
7841 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7842 GET_MODE (reg));
7843 break;
7845 case RTX_BIN_ARITH:
7846 case RTX_COMM_ARITH:
7847 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7848 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7849 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7850 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7851 break;
7853 case RTX_COMPARE:
7854 case RTX_COMM_COMPARE:
7855 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7856 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7857 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7858 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7859 GET_MODE (op0), op0, op1);
7860 break;
7862 case RTX_TERNARY:
7863 case RTX_BITFIELD_OPS:
7864 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7865 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7866 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7867 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7868 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7869 GET_MODE (op0), op0, op1, op2);
7871 case RTX_OBJ:
7872 if (REG_P (x))
7874 if (rtx_equal_p (get_last_value (reg), x)
7875 || rtx_equal_p (reg, get_last_value (x)))
7876 return reg;
7877 else
7878 break;
7881 /* fall through */
7883 default:
7884 fmt = GET_RTX_FORMAT (code);
7885 copied = false;
7886 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7887 if (fmt[i] == 'e')
7889 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7890 if (op != XEXP (x, i))
7892 if (!copied)
7894 copied = true;
7895 x = copy_rtx (x);
7897 XEXP (x, i) = op;
7900 else if (fmt[i] == 'E')
7902 int j;
7903 for (j = 0; j < XVECLEN (x, i); j++)
7905 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7906 if (op != XVECEXP (x, i, j))
7908 if (!copied)
7910 copied = true;
7911 x = copy_rtx (x);
7913 XVECEXP (x, i, j) = op;
7918 break;
7921 return x;
7924 /* Return X converted to MODE. If the value is already truncated to
7925 MODE we can just return a subreg even though in the general case we
7926 would need an explicit truncation. */
7928 static rtx
7929 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7931 if (!CONST_INT_P (x)
7932 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7933 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7934 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7936 /* Bit-cast X into an integer mode. */
7937 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7938 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7939 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7940 x, GET_MODE (x));
7943 return gen_lowpart (mode, x);
7946 /* See if X can be simplified knowing that we will only refer to it in
7947 MODE and will only refer to those bits that are nonzero in MASK.
7948 If other bits are being computed or if masking operations are done
7949 that select a superset of the bits in MASK, they can sometimes be
7950 ignored.
7952 Return a possibly simplified expression, but always convert X to
7953 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7955 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7956 are all off in X. This is used when X will be complemented, by either
7957 NOT, NEG, or XOR. */
7959 static rtx
7960 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7961 int just_select)
7963 enum rtx_code code = GET_CODE (x);
7964 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7965 enum machine_mode op_mode;
7966 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7967 rtx op0, op1, temp;
7969 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7970 code below will do the wrong thing since the mode of such an
7971 expression is VOIDmode.
7973 Also do nothing if X is a CLOBBER; this can happen if X was
7974 the return value from a call to gen_lowpart. */
7975 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7976 return x;
7978 /* We want to perform the operation is its present mode unless we know
7979 that the operation is valid in MODE, in which case we do the operation
7980 in MODE. */
7981 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7982 && have_insn_for (code, mode))
7983 ? mode : GET_MODE (x));
7985 /* It is not valid to do a right-shift in a narrower mode
7986 than the one it came in with. */
7987 if ((code == LSHIFTRT || code == ASHIFTRT)
7988 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
7989 op_mode = GET_MODE (x);
7991 /* Truncate MASK to fit OP_MODE. */
7992 if (op_mode)
7993 mask &= GET_MODE_MASK (op_mode);
7995 /* When we have an arithmetic operation, or a shift whose count we
7996 do not know, we need to assume that all bits up to the highest-order
7997 bit in MASK will be needed. This is how we form such a mask. */
7998 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7999 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8000 else
8001 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8002 - 1);
8004 /* Determine what bits of X are guaranteed to be (non)zero. */
8005 nonzero = nonzero_bits (x, mode);
8007 /* If none of the bits in X are needed, return a zero. */
8008 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8009 x = const0_rtx;
8011 /* If X is a CONST_INT, return a new one. Do this here since the
8012 test below will fail. */
8013 if (CONST_INT_P (x))
8015 if (SCALAR_INT_MODE_P (mode))
8016 return gen_int_mode (INTVAL (x) & mask, mode);
8017 else
8019 x = GEN_INT (INTVAL (x) & mask);
8020 return gen_lowpart_common (mode, x);
8024 /* If X is narrower than MODE and we want all the bits in X's mode, just
8025 get X in the proper mode. */
8026 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8027 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8028 return gen_lowpart (mode, x);
8030 /* We can ignore the effect of a SUBREG if it narrows the mode or
8031 if the constant masks to zero all the bits the mode doesn't have. */
8032 if (GET_CODE (x) == SUBREG
8033 && subreg_lowpart_p (x)
8034 && ((GET_MODE_SIZE (GET_MODE (x))
8035 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8036 || (0 == (mask
8037 & GET_MODE_MASK (GET_MODE (x))
8038 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8039 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8041 /* The arithmetic simplifications here only work for scalar integer modes. */
8042 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8043 return gen_lowpart_or_truncate (mode, x);
8045 switch (code)
8047 case CLOBBER:
8048 /* If X is a (clobber (const_int)), return it since we know we are
8049 generating something that won't match. */
8050 return x;
8052 case SIGN_EXTEND:
8053 case ZERO_EXTEND:
8054 case ZERO_EXTRACT:
8055 case SIGN_EXTRACT:
8056 x = expand_compound_operation (x);
8057 if (GET_CODE (x) != code)
8058 return force_to_mode (x, mode, mask, next_select);
8059 break;
8061 case TRUNCATE:
8062 /* Similarly for a truncate. */
8063 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8065 case AND:
8066 /* If this is an AND with a constant, convert it into an AND
8067 whose constant is the AND of that constant with MASK. If it
8068 remains an AND of MASK, delete it since it is redundant. */
8070 if (CONST_INT_P (XEXP (x, 1)))
8072 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8073 mask & INTVAL (XEXP (x, 1)));
8075 /* If X is still an AND, see if it is an AND with a mask that
8076 is just some low-order bits. If so, and it is MASK, we don't
8077 need it. */
8079 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8080 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8081 == mask))
8082 x = XEXP (x, 0);
8084 /* If it remains an AND, try making another AND with the bits
8085 in the mode mask that aren't in MASK turned on. If the
8086 constant in the AND is wide enough, this might make a
8087 cheaper constant. */
8089 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8090 && GET_MODE_MASK (GET_MODE (x)) != mask
8091 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8093 unsigned HOST_WIDE_INT cval
8094 = UINTVAL (XEXP (x, 1))
8095 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8096 int width = GET_MODE_PRECISION (GET_MODE (x));
8097 rtx y;
8099 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8100 number, sign extend it. */
8101 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8102 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8103 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8105 y = simplify_gen_binary (AND, GET_MODE (x),
8106 XEXP (x, 0), GEN_INT (cval));
8107 if (set_src_cost (y, optimize_this_for_speed_p)
8108 < set_src_cost (x, optimize_this_for_speed_p))
8109 x = y;
8112 break;
8115 goto binop;
8117 case PLUS:
8118 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8119 low-order bits (as in an alignment operation) and FOO is already
8120 aligned to that boundary, mask C1 to that boundary as well.
8121 This may eliminate that PLUS and, later, the AND. */
8124 unsigned int width = GET_MODE_PRECISION (mode);
8125 unsigned HOST_WIDE_INT smask = mask;
8127 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8128 number, sign extend it. */
8130 if (width < HOST_BITS_PER_WIDE_INT
8131 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8132 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8134 if (CONST_INT_P (XEXP (x, 1))
8135 && exact_log2 (- smask) >= 0
8136 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8137 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8138 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8139 (INTVAL (XEXP (x, 1)) & smask)),
8140 mode, smask, next_select);
8143 /* ... fall through ... */
8145 case MULT:
8146 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8147 most significant bit in MASK since carries from those bits will
8148 affect the bits we are interested in. */
8149 mask = fuller_mask;
8150 goto binop;
8152 case MINUS:
8153 /* If X is (minus C Y) where C's least set bit is larger than any bit
8154 in the mask, then we may replace with (neg Y). */
8155 if (CONST_INT_P (XEXP (x, 0))
8156 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8157 & -INTVAL (XEXP (x, 0))))
8158 > mask))
8160 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8161 GET_MODE (x));
8162 return force_to_mode (x, mode, mask, next_select);
8165 /* Similarly, if C contains every bit in the fuller_mask, then we may
8166 replace with (not Y). */
8167 if (CONST_INT_P (XEXP (x, 0))
8168 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8170 x = simplify_gen_unary (NOT, GET_MODE (x),
8171 XEXP (x, 1), GET_MODE (x));
8172 return force_to_mode (x, mode, mask, next_select);
8175 mask = fuller_mask;
8176 goto binop;
8178 case IOR:
8179 case XOR:
8180 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8181 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8182 operation which may be a bitfield extraction. Ensure that the
8183 constant we form is not wider than the mode of X. */
8185 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8186 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8187 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8188 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8189 && CONST_INT_P (XEXP (x, 1))
8190 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8191 + floor_log2 (INTVAL (XEXP (x, 1))))
8192 < GET_MODE_PRECISION (GET_MODE (x)))
8193 && (UINTVAL (XEXP (x, 1))
8194 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8196 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8197 << INTVAL (XEXP (XEXP (x, 0), 1)));
8198 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8199 XEXP (XEXP (x, 0), 0), temp);
8200 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8201 XEXP (XEXP (x, 0), 1));
8202 return force_to_mode (x, mode, mask, next_select);
8205 binop:
8206 /* For most binary operations, just propagate into the operation and
8207 change the mode if we have an operation of that mode. */
8209 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8210 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8212 /* If we ended up truncating both operands, truncate the result of the
8213 operation instead. */
8214 if (GET_CODE (op0) == TRUNCATE
8215 && GET_CODE (op1) == TRUNCATE)
8217 op0 = XEXP (op0, 0);
8218 op1 = XEXP (op1, 0);
8221 op0 = gen_lowpart_or_truncate (op_mode, op0);
8222 op1 = gen_lowpart_or_truncate (op_mode, op1);
8224 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8225 x = simplify_gen_binary (code, op_mode, op0, op1);
8226 break;
8228 case ASHIFT:
8229 /* For left shifts, do the same, but just for the first operand.
8230 However, we cannot do anything with shifts where we cannot
8231 guarantee that the counts are smaller than the size of the mode
8232 because such a count will have a different meaning in a
8233 wider mode. */
8235 if (! (CONST_INT_P (XEXP (x, 1))
8236 && INTVAL (XEXP (x, 1)) >= 0
8237 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8238 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8239 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8240 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8241 break;
8243 /* If the shift count is a constant and we can do arithmetic in
8244 the mode of the shift, refine which bits we need. Otherwise, use the
8245 conservative form of the mask. */
8246 if (CONST_INT_P (XEXP (x, 1))
8247 && INTVAL (XEXP (x, 1)) >= 0
8248 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8249 && HWI_COMPUTABLE_MODE_P (op_mode))
8250 mask >>= INTVAL (XEXP (x, 1));
8251 else
8252 mask = fuller_mask;
8254 op0 = gen_lowpart_or_truncate (op_mode,
8255 force_to_mode (XEXP (x, 0), op_mode,
8256 mask, next_select));
8258 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8259 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8260 break;
8262 case LSHIFTRT:
8263 /* Here we can only do something if the shift count is a constant,
8264 this shift constant is valid for the host, and we can do arithmetic
8265 in OP_MODE. */
8267 if (CONST_INT_P (XEXP (x, 1))
8268 && INTVAL (XEXP (x, 1)) >= 0
8269 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8270 && HWI_COMPUTABLE_MODE_P (op_mode))
8272 rtx inner = XEXP (x, 0);
8273 unsigned HOST_WIDE_INT inner_mask;
8275 /* Select the mask of the bits we need for the shift operand. */
8276 inner_mask = mask << INTVAL (XEXP (x, 1));
8278 /* We can only change the mode of the shift if we can do arithmetic
8279 in the mode of the shift and INNER_MASK is no wider than the
8280 width of X's mode. */
8281 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8282 op_mode = GET_MODE (x);
8284 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8286 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8287 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8290 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8291 shift and AND produces only copies of the sign bit (C2 is one less
8292 than a power of two), we can do this with just a shift. */
8294 if (GET_CODE (x) == LSHIFTRT
8295 && CONST_INT_P (XEXP (x, 1))
8296 /* The shift puts one of the sign bit copies in the least significant
8297 bit. */
8298 && ((INTVAL (XEXP (x, 1))
8299 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8300 >= GET_MODE_PRECISION (GET_MODE (x)))
8301 && exact_log2 (mask + 1) >= 0
8302 /* Number of bits left after the shift must be more than the mask
8303 needs. */
8304 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8305 <= GET_MODE_PRECISION (GET_MODE (x)))
8306 /* Must be more sign bit copies than the mask needs. */
8307 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8308 >= exact_log2 (mask + 1)))
8309 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8310 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8311 - exact_log2 (mask + 1)));
8313 goto shiftrt;
8315 case ASHIFTRT:
8316 /* If we are just looking for the sign bit, we don't need this shift at
8317 all, even if it has a variable count. */
8318 if (val_signbit_p (GET_MODE (x), mask))
8319 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8321 /* If this is a shift by a constant, get a mask that contains those bits
8322 that are not copies of the sign bit. We then have two cases: If
8323 MASK only includes those bits, this can be a logical shift, which may
8324 allow simplifications. If MASK is a single-bit field not within
8325 those bits, we are requesting a copy of the sign bit and hence can
8326 shift the sign bit to the appropriate location. */
8328 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8329 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8331 int i;
8333 /* If the considered data is wider than HOST_WIDE_INT, we can't
8334 represent a mask for all its bits in a single scalar.
8335 But we only care about the lower bits, so calculate these. */
8337 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8339 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8341 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8342 is the number of bits a full-width mask would have set.
8343 We need only shift if these are fewer than nonzero can
8344 hold. If not, we must keep all bits set in nonzero. */
8346 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8347 < HOST_BITS_PER_WIDE_INT)
8348 nonzero >>= INTVAL (XEXP (x, 1))
8349 + HOST_BITS_PER_WIDE_INT
8350 - GET_MODE_PRECISION (GET_MODE (x)) ;
8352 else
8354 nonzero = GET_MODE_MASK (GET_MODE (x));
8355 nonzero >>= INTVAL (XEXP (x, 1));
8358 if ((mask & ~nonzero) == 0)
8360 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8361 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8362 if (GET_CODE (x) != ASHIFTRT)
8363 return force_to_mode (x, mode, mask, next_select);
8366 else if ((i = exact_log2 (mask)) >= 0)
8368 x = simplify_shift_const
8369 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8370 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8372 if (GET_CODE (x) != ASHIFTRT)
8373 return force_to_mode (x, mode, mask, next_select);
8377 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8378 even if the shift count isn't a constant. */
8379 if (mask == 1)
8380 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8381 XEXP (x, 0), XEXP (x, 1));
8383 shiftrt:
8385 /* If this is a zero- or sign-extension operation that just affects bits
8386 we don't care about, remove it. Be sure the call above returned
8387 something that is still a shift. */
8389 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8390 && CONST_INT_P (XEXP (x, 1))
8391 && INTVAL (XEXP (x, 1)) >= 0
8392 && (INTVAL (XEXP (x, 1))
8393 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8394 && GET_CODE (XEXP (x, 0)) == ASHIFT
8395 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8396 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8397 next_select);
8399 break;
8401 case ROTATE:
8402 case ROTATERT:
8403 /* If the shift count is constant and we can do computations
8404 in the mode of X, compute where the bits we care about are.
8405 Otherwise, we can't do anything. Don't change the mode of
8406 the shift or propagate MODE into the shift, though. */
8407 if (CONST_INT_P (XEXP (x, 1))
8408 && INTVAL (XEXP (x, 1)) >= 0)
8410 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8411 GET_MODE (x), GEN_INT (mask),
8412 XEXP (x, 1));
8413 if (temp && CONST_INT_P (temp))
8414 SUBST (XEXP (x, 0),
8415 force_to_mode (XEXP (x, 0), GET_MODE (x),
8416 INTVAL (temp), next_select));
8418 break;
8420 case NEG:
8421 /* If we just want the low-order bit, the NEG isn't needed since it
8422 won't change the low-order bit. */
8423 if (mask == 1)
8424 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8426 /* We need any bits less significant than the most significant bit in
8427 MASK since carries from those bits will affect the bits we are
8428 interested in. */
8429 mask = fuller_mask;
8430 goto unop;
8432 case NOT:
8433 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8434 same as the XOR case above. Ensure that the constant we form is not
8435 wider than the mode of X. */
8437 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8438 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8439 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8440 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8441 < GET_MODE_PRECISION (GET_MODE (x)))
8442 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8444 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8445 GET_MODE (x));
8446 temp = simplify_gen_binary (XOR, GET_MODE (x),
8447 XEXP (XEXP (x, 0), 0), temp);
8448 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8449 temp, XEXP (XEXP (x, 0), 1));
8451 return force_to_mode (x, mode, mask, next_select);
8454 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8455 use the full mask inside the NOT. */
8456 mask = fuller_mask;
8458 unop:
8459 op0 = gen_lowpart_or_truncate (op_mode,
8460 force_to_mode (XEXP (x, 0), mode, mask,
8461 next_select));
8462 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8463 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8464 break;
8466 case NE:
8467 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8468 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8469 which is equal to STORE_FLAG_VALUE. */
8470 if ((mask & ~STORE_FLAG_VALUE) == 0
8471 && XEXP (x, 1) == const0_rtx
8472 && GET_MODE (XEXP (x, 0)) == mode
8473 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8474 && (nonzero_bits (XEXP (x, 0), mode)
8475 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8476 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8478 break;
8480 case IF_THEN_ELSE:
8481 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8482 written in a narrower mode. We play it safe and do not do so. */
8484 SUBST (XEXP (x, 1),
8485 gen_lowpart_or_truncate (GET_MODE (x),
8486 force_to_mode (XEXP (x, 1), mode,
8487 mask, next_select)));
8488 SUBST (XEXP (x, 2),
8489 gen_lowpart_or_truncate (GET_MODE (x),
8490 force_to_mode (XEXP (x, 2), mode,
8491 mask, next_select)));
8492 break;
8494 default:
8495 break;
8498 /* Ensure we return a value of the proper mode. */
8499 return gen_lowpart_or_truncate (mode, x);
8502 /* Return nonzero if X is an expression that has one of two values depending on
8503 whether some other value is zero or nonzero. In that case, we return the
8504 value that is being tested, *PTRUE is set to the value if the rtx being
8505 returned has a nonzero value, and *PFALSE is set to the other alternative.
8507 If we return zero, we set *PTRUE and *PFALSE to X. */
8509 static rtx
8510 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8512 enum machine_mode mode = GET_MODE (x);
8513 enum rtx_code code = GET_CODE (x);
8514 rtx cond0, cond1, true0, true1, false0, false1;
8515 unsigned HOST_WIDE_INT nz;
8517 /* If we are comparing a value against zero, we are done. */
8518 if ((code == NE || code == EQ)
8519 && XEXP (x, 1) == const0_rtx)
8521 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8522 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8523 return XEXP (x, 0);
8526 /* If this is a unary operation whose operand has one of two values, apply
8527 our opcode to compute those values. */
8528 else if (UNARY_P (x)
8529 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8531 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8532 *pfalse = simplify_gen_unary (code, mode, false0,
8533 GET_MODE (XEXP (x, 0)));
8534 return cond0;
8537 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8538 make can't possibly match and would suppress other optimizations. */
8539 else if (code == COMPARE)
8542 /* If this is a binary operation, see if either side has only one of two
8543 values. If either one does or if both do and they are conditional on
8544 the same value, compute the new true and false values. */
8545 else if (BINARY_P (x))
8547 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8548 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8550 if ((cond0 != 0 || cond1 != 0)
8551 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8553 /* If if_then_else_cond returned zero, then true/false are the
8554 same rtl. We must copy one of them to prevent invalid rtl
8555 sharing. */
8556 if (cond0 == 0)
8557 true0 = copy_rtx (true0);
8558 else if (cond1 == 0)
8559 true1 = copy_rtx (true1);
8561 if (COMPARISON_P (x))
8563 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8564 true0, true1);
8565 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8566 false0, false1);
8568 else
8570 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8571 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8574 return cond0 ? cond0 : cond1;
8577 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8578 operands is zero when the other is nonzero, and vice-versa,
8579 and STORE_FLAG_VALUE is 1 or -1. */
8581 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8582 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8583 || code == UMAX)
8584 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8586 rtx op0 = XEXP (XEXP (x, 0), 1);
8587 rtx op1 = XEXP (XEXP (x, 1), 1);
8589 cond0 = XEXP (XEXP (x, 0), 0);
8590 cond1 = XEXP (XEXP (x, 1), 0);
8592 if (COMPARISON_P (cond0)
8593 && COMPARISON_P (cond1)
8594 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8595 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8596 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8597 || ((swap_condition (GET_CODE (cond0))
8598 == reversed_comparison_code (cond1, NULL))
8599 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8600 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8601 && ! side_effects_p (x))
8603 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8604 *pfalse = simplify_gen_binary (MULT, mode,
8605 (code == MINUS
8606 ? simplify_gen_unary (NEG, mode,
8607 op1, mode)
8608 : op1),
8609 const_true_rtx);
8610 return cond0;
8614 /* Similarly for MULT, AND and UMIN, except that for these the result
8615 is always zero. */
8616 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8617 && (code == MULT || code == AND || code == UMIN)
8618 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8620 cond0 = XEXP (XEXP (x, 0), 0);
8621 cond1 = XEXP (XEXP (x, 1), 0);
8623 if (COMPARISON_P (cond0)
8624 && COMPARISON_P (cond1)
8625 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8626 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8627 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8628 || ((swap_condition (GET_CODE (cond0))
8629 == reversed_comparison_code (cond1, NULL))
8630 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8631 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8632 && ! side_effects_p (x))
8634 *ptrue = *pfalse = const0_rtx;
8635 return cond0;
8640 else if (code == IF_THEN_ELSE)
8642 /* If we have IF_THEN_ELSE already, extract the condition and
8643 canonicalize it if it is NE or EQ. */
8644 cond0 = XEXP (x, 0);
8645 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8646 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8647 return XEXP (cond0, 0);
8648 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8650 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8651 return XEXP (cond0, 0);
8653 else
8654 return cond0;
8657 /* If X is a SUBREG, we can narrow both the true and false values
8658 if the inner expression, if there is a condition. */
8659 else if (code == SUBREG
8660 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8661 &true0, &false0)))
8663 true0 = simplify_gen_subreg (mode, true0,
8664 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8665 false0 = simplify_gen_subreg (mode, false0,
8666 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8667 if (true0 && false0)
8669 *ptrue = true0;
8670 *pfalse = false0;
8671 return cond0;
8675 /* If X is a constant, this isn't special and will cause confusions
8676 if we treat it as such. Likewise if it is equivalent to a constant. */
8677 else if (CONSTANT_P (x)
8678 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8681 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8682 will be least confusing to the rest of the compiler. */
8683 else if (mode == BImode)
8685 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8686 return x;
8689 /* If X is known to be either 0 or -1, those are the true and
8690 false values when testing X. */
8691 else if (x == constm1_rtx || x == const0_rtx
8692 || (mode != VOIDmode
8693 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8695 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8696 return x;
8699 /* Likewise for 0 or a single bit. */
8700 else if (HWI_COMPUTABLE_MODE_P (mode)
8701 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8703 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8704 return x;
8707 /* Otherwise fail; show no condition with true and false values the same. */
8708 *ptrue = *pfalse = x;
8709 return 0;
8712 /* Return the value of expression X given the fact that condition COND
8713 is known to be true when applied to REG as its first operand and VAL
8714 as its second. X is known to not be shared and so can be modified in
8715 place.
8717 We only handle the simplest cases, and specifically those cases that
8718 arise with IF_THEN_ELSE expressions. */
8720 static rtx
8721 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8723 enum rtx_code code = GET_CODE (x);
8724 rtx temp;
8725 const char *fmt;
8726 int i, j;
8728 if (side_effects_p (x))
8729 return x;
8731 /* If either operand of the condition is a floating point value,
8732 then we have to avoid collapsing an EQ comparison. */
8733 if (cond == EQ
8734 && rtx_equal_p (x, reg)
8735 && ! FLOAT_MODE_P (GET_MODE (x))
8736 && ! FLOAT_MODE_P (GET_MODE (val)))
8737 return val;
8739 if (cond == UNEQ && rtx_equal_p (x, reg))
8740 return val;
8742 /* If X is (abs REG) and we know something about REG's relationship
8743 with zero, we may be able to simplify this. */
8745 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8746 switch (cond)
8748 case GE: case GT: case EQ:
8749 return XEXP (x, 0);
8750 case LT: case LE:
8751 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8752 XEXP (x, 0),
8753 GET_MODE (XEXP (x, 0)));
8754 default:
8755 break;
8758 /* The only other cases we handle are MIN, MAX, and comparisons if the
8759 operands are the same as REG and VAL. */
8761 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8763 if (rtx_equal_p (XEXP (x, 0), val))
8764 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8766 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8768 if (COMPARISON_P (x))
8770 if (comparison_dominates_p (cond, code))
8771 return const_true_rtx;
8773 code = reversed_comparison_code (x, NULL);
8774 if (code != UNKNOWN
8775 && comparison_dominates_p (cond, code))
8776 return const0_rtx;
8777 else
8778 return x;
8780 else if (code == SMAX || code == SMIN
8781 || code == UMIN || code == UMAX)
8783 int unsignedp = (code == UMIN || code == UMAX);
8785 /* Do not reverse the condition when it is NE or EQ.
8786 This is because we cannot conclude anything about
8787 the value of 'SMAX (x, y)' when x is not equal to y,
8788 but we can when x equals y. */
8789 if ((code == SMAX || code == UMAX)
8790 && ! (cond == EQ || cond == NE))
8791 cond = reverse_condition (cond);
8793 switch (cond)
8795 case GE: case GT:
8796 return unsignedp ? x : XEXP (x, 1);
8797 case LE: case LT:
8798 return unsignedp ? x : XEXP (x, 0);
8799 case GEU: case GTU:
8800 return unsignedp ? XEXP (x, 1) : x;
8801 case LEU: case LTU:
8802 return unsignedp ? XEXP (x, 0) : x;
8803 default:
8804 break;
8809 else if (code == SUBREG)
8811 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8812 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8814 if (SUBREG_REG (x) != r)
8816 /* We must simplify subreg here, before we lose track of the
8817 original inner_mode. */
8818 new_rtx = simplify_subreg (GET_MODE (x), r,
8819 inner_mode, SUBREG_BYTE (x));
8820 if (new_rtx)
8821 return new_rtx;
8822 else
8823 SUBST (SUBREG_REG (x), r);
8826 return x;
8828 /* We don't have to handle SIGN_EXTEND here, because even in the
8829 case of replacing something with a modeless CONST_INT, a
8830 CONST_INT is already (supposed to be) a valid sign extension for
8831 its narrower mode, which implies it's already properly
8832 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8833 story is different. */
8834 else if (code == ZERO_EXTEND)
8836 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8837 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8839 if (XEXP (x, 0) != r)
8841 /* We must simplify the zero_extend here, before we lose
8842 track of the original inner_mode. */
8843 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8844 r, inner_mode);
8845 if (new_rtx)
8846 return new_rtx;
8847 else
8848 SUBST (XEXP (x, 0), r);
8851 return x;
8854 fmt = GET_RTX_FORMAT (code);
8855 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8857 if (fmt[i] == 'e')
8858 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8859 else if (fmt[i] == 'E')
8860 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8861 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8862 cond, reg, val));
8865 return x;
8868 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8869 assignment as a field assignment. */
8871 static int
8872 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8874 if (x == y || rtx_equal_p (x, y))
8875 return 1;
8877 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8878 return 0;
8880 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8881 Note that all SUBREGs of MEM are paradoxical; otherwise they
8882 would have been rewritten. */
8883 if (MEM_P (x) && GET_CODE (y) == SUBREG
8884 && MEM_P (SUBREG_REG (y))
8885 && rtx_equal_p (SUBREG_REG (y),
8886 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8887 return 1;
8889 if (MEM_P (y) && GET_CODE (x) == SUBREG
8890 && MEM_P (SUBREG_REG (x))
8891 && rtx_equal_p (SUBREG_REG (x),
8892 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8893 return 1;
8895 /* We used to see if get_last_value of X and Y were the same but that's
8896 not correct. In one direction, we'll cause the assignment to have
8897 the wrong destination and in the case, we'll import a register into this
8898 insn that might have already have been dead. So fail if none of the
8899 above cases are true. */
8900 return 0;
8903 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8904 Return that assignment if so.
8906 We only handle the most common cases. */
8908 static rtx
8909 make_field_assignment (rtx x)
8911 rtx dest = SET_DEST (x);
8912 rtx src = SET_SRC (x);
8913 rtx assign;
8914 rtx rhs, lhs;
8915 HOST_WIDE_INT c1;
8916 HOST_WIDE_INT pos;
8917 unsigned HOST_WIDE_INT len;
8918 rtx other;
8919 enum machine_mode mode;
8921 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8922 a clear of a one-bit field. We will have changed it to
8923 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8924 for a SUBREG. */
8926 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8927 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8928 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8929 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8931 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8932 1, 1, 1, 0);
8933 if (assign != 0)
8934 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8935 return x;
8938 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8939 && subreg_lowpart_p (XEXP (src, 0))
8940 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8941 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8942 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8943 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8944 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8945 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8947 assign = make_extraction (VOIDmode, dest, 0,
8948 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8949 1, 1, 1, 0);
8950 if (assign != 0)
8951 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8952 return x;
8955 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8956 one-bit field. */
8957 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8958 && XEXP (XEXP (src, 0), 0) == const1_rtx
8959 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8961 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8962 1, 1, 1, 0);
8963 if (assign != 0)
8964 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8965 return x;
8968 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8969 SRC is an AND with all bits of that field set, then we can discard
8970 the AND. */
8971 if (GET_CODE (dest) == ZERO_EXTRACT
8972 && CONST_INT_P (XEXP (dest, 1))
8973 && GET_CODE (src) == AND
8974 && CONST_INT_P (XEXP (src, 1)))
8976 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8977 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8978 unsigned HOST_WIDE_INT ze_mask;
8980 if (width >= HOST_BITS_PER_WIDE_INT)
8981 ze_mask = -1;
8982 else
8983 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8985 /* Complete overlap. We can remove the source AND. */
8986 if ((and_mask & ze_mask) == ze_mask)
8987 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8989 /* Partial overlap. We can reduce the source AND. */
8990 if ((and_mask & ze_mask) != and_mask)
8992 mode = GET_MODE (src);
8993 src = gen_rtx_AND (mode, XEXP (src, 0),
8994 gen_int_mode (and_mask & ze_mask, mode));
8995 return gen_rtx_SET (VOIDmode, dest, src);
8999 /* The other case we handle is assignments into a constant-position
9000 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9001 a mask that has all one bits except for a group of zero bits and
9002 OTHER is known to have zeros where C1 has ones, this is such an
9003 assignment. Compute the position and length from C1. Shift OTHER
9004 to the appropriate position, force it to the required mode, and
9005 make the extraction. Check for the AND in both operands. */
9007 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9008 return x;
9010 rhs = expand_compound_operation (XEXP (src, 0));
9011 lhs = expand_compound_operation (XEXP (src, 1));
9013 if (GET_CODE (rhs) == AND
9014 && CONST_INT_P (XEXP (rhs, 1))
9015 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9016 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9017 else if (GET_CODE (lhs) == AND
9018 && CONST_INT_P (XEXP (lhs, 1))
9019 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9020 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9021 else
9022 return x;
9024 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9025 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9026 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9027 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9028 return x;
9030 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9031 if (assign == 0)
9032 return x;
9034 /* The mode to use for the source is the mode of the assignment, or of
9035 what is inside a possible STRICT_LOW_PART. */
9036 mode = (GET_CODE (assign) == STRICT_LOW_PART
9037 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9039 /* Shift OTHER right POS places and make it the source, restricting it
9040 to the proper length and mode. */
9042 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9043 GET_MODE (src),
9044 other, pos),
9045 dest);
9046 src = force_to_mode (src, mode,
9047 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9048 ? ~(unsigned HOST_WIDE_INT) 0
9049 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9052 /* If SRC is masked by an AND that does not make a difference in
9053 the value being stored, strip it. */
9054 if (GET_CODE (assign) == ZERO_EXTRACT
9055 && CONST_INT_P (XEXP (assign, 1))
9056 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9057 && GET_CODE (src) == AND
9058 && CONST_INT_P (XEXP (src, 1))
9059 && UINTVAL (XEXP (src, 1))
9060 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9061 src = XEXP (src, 0);
9063 return gen_rtx_SET (VOIDmode, assign, src);
9066 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9067 if so. */
9069 static rtx
9070 apply_distributive_law (rtx x)
9072 enum rtx_code code = GET_CODE (x);
9073 enum rtx_code inner_code;
9074 rtx lhs, rhs, other;
9075 rtx tem;
9077 /* Distributivity is not true for floating point as it can change the
9078 value. So we don't do it unless -funsafe-math-optimizations. */
9079 if (FLOAT_MODE_P (GET_MODE (x))
9080 && ! flag_unsafe_math_optimizations)
9081 return x;
9083 /* The outer operation can only be one of the following: */
9084 if (code != IOR && code != AND && code != XOR
9085 && code != PLUS && code != MINUS)
9086 return x;
9088 lhs = XEXP (x, 0);
9089 rhs = XEXP (x, 1);
9091 /* If either operand is a primitive we can't do anything, so get out
9092 fast. */
9093 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9094 return x;
9096 lhs = expand_compound_operation (lhs);
9097 rhs = expand_compound_operation (rhs);
9098 inner_code = GET_CODE (lhs);
9099 if (inner_code != GET_CODE (rhs))
9100 return x;
9102 /* See if the inner and outer operations distribute. */
9103 switch (inner_code)
9105 case LSHIFTRT:
9106 case ASHIFTRT:
9107 case AND:
9108 case IOR:
9109 /* These all distribute except over PLUS. */
9110 if (code == PLUS || code == MINUS)
9111 return x;
9112 break;
9114 case MULT:
9115 if (code != PLUS && code != MINUS)
9116 return x;
9117 break;
9119 case ASHIFT:
9120 /* This is also a multiply, so it distributes over everything. */
9121 break;
9123 /* This used to handle SUBREG, but this turned out to be counter-
9124 productive, since (subreg (op ...)) usually is not handled by
9125 insn patterns, and this "optimization" therefore transformed
9126 recognizable patterns into unrecognizable ones. Therefore the
9127 SUBREG case was removed from here.
9129 It is possible that distributing SUBREG over arithmetic operations
9130 leads to an intermediate result than can then be optimized further,
9131 e.g. by moving the outer SUBREG to the other side of a SET as done
9132 in simplify_set. This seems to have been the original intent of
9133 handling SUBREGs here.
9135 However, with current GCC this does not appear to actually happen,
9136 at least on major platforms. If some case is found where removing
9137 the SUBREG case here prevents follow-on optimizations, distributing
9138 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9140 default:
9141 return x;
9144 /* Set LHS and RHS to the inner operands (A and B in the example
9145 above) and set OTHER to the common operand (C in the example).
9146 There is only one way to do this unless the inner operation is
9147 commutative. */
9148 if (COMMUTATIVE_ARITH_P (lhs)
9149 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9150 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9151 else if (COMMUTATIVE_ARITH_P (lhs)
9152 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9153 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9154 else if (COMMUTATIVE_ARITH_P (lhs)
9155 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9156 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9157 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9158 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9159 else
9160 return x;
9162 /* Form the new inner operation, seeing if it simplifies first. */
9163 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9165 /* There is one exception to the general way of distributing:
9166 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9167 if (code == XOR && inner_code == IOR)
9169 inner_code = AND;
9170 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9173 /* We may be able to continuing distributing the result, so call
9174 ourselves recursively on the inner operation before forming the
9175 outer operation, which we return. */
9176 return simplify_gen_binary (inner_code, GET_MODE (x),
9177 apply_distributive_law (tem), other);
9180 /* See if X is of the form (* (+ A B) C), and if so convert to
9181 (+ (* A C) (* B C)) and try to simplify.
9183 Most of the time, this results in no change. However, if some of
9184 the operands are the same or inverses of each other, simplifications
9185 will result.
9187 For example, (and (ior A B) (not B)) can occur as the result of
9188 expanding a bit field assignment. When we apply the distributive
9189 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9190 which then simplifies to (and (A (not B))).
9192 Note that no checks happen on the validity of applying the inverse
9193 distributive law. This is pointless since we can do it in the
9194 few places where this routine is called.
9196 N is the index of the term that is decomposed (the arithmetic operation,
9197 i.e. (+ A B) in the first example above). !N is the index of the term that
9198 is distributed, i.e. of C in the first example above. */
9199 static rtx
9200 distribute_and_simplify_rtx (rtx x, int n)
9202 enum machine_mode mode;
9203 enum rtx_code outer_code, inner_code;
9204 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9206 /* Distributivity is not true for floating point as it can change the
9207 value. So we don't do it unless -funsafe-math-optimizations. */
9208 if (FLOAT_MODE_P (GET_MODE (x))
9209 && ! flag_unsafe_math_optimizations)
9210 return NULL_RTX;
9212 decomposed = XEXP (x, n);
9213 if (!ARITHMETIC_P (decomposed))
9214 return NULL_RTX;
9216 mode = GET_MODE (x);
9217 outer_code = GET_CODE (x);
9218 distributed = XEXP (x, !n);
9220 inner_code = GET_CODE (decomposed);
9221 inner_op0 = XEXP (decomposed, 0);
9222 inner_op1 = XEXP (decomposed, 1);
9224 /* Special case (and (xor B C) (not A)), which is equivalent to
9225 (xor (ior A B) (ior A C)) */
9226 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9228 distributed = XEXP (distributed, 0);
9229 outer_code = IOR;
9232 if (n == 0)
9234 /* Distribute the second term. */
9235 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9236 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9238 else
9240 /* Distribute the first term. */
9241 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9242 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9245 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9246 new_op0, new_op1));
9247 if (GET_CODE (tmp) != outer_code
9248 && (set_src_cost (tmp, optimize_this_for_speed_p)
9249 < set_src_cost (x, optimize_this_for_speed_p)))
9250 return tmp;
9252 return NULL_RTX;
9255 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9256 in MODE. Return an equivalent form, if different from (and VAROP
9257 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9259 static rtx
9260 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9261 unsigned HOST_WIDE_INT constop)
9263 unsigned HOST_WIDE_INT nonzero;
9264 unsigned HOST_WIDE_INT orig_constop;
9265 rtx orig_varop;
9266 int i;
9268 orig_varop = varop;
9269 orig_constop = constop;
9270 if (GET_CODE (varop) == CLOBBER)
9271 return NULL_RTX;
9273 /* Simplify VAROP knowing that we will be only looking at some of the
9274 bits in it.
9276 Note by passing in CONSTOP, we guarantee that the bits not set in
9277 CONSTOP are not significant and will never be examined. We must
9278 ensure that is the case by explicitly masking out those bits
9279 before returning. */
9280 varop = force_to_mode (varop, mode, constop, 0);
9282 /* If VAROP is a CLOBBER, we will fail so return it. */
9283 if (GET_CODE (varop) == CLOBBER)
9284 return varop;
9286 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9287 to VAROP and return the new constant. */
9288 if (CONST_INT_P (varop))
9289 return gen_int_mode (INTVAL (varop) & constop, mode);
9291 /* See what bits may be nonzero in VAROP. Unlike the general case of
9292 a call to nonzero_bits, here we don't care about bits outside
9293 MODE. */
9295 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9297 /* Turn off all bits in the constant that are known to already be zero.
9298 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9299 which is tested below. */
9301 constop &= nonzero;
9303 /* If we don't have any bits left, return zero. */
9304 if (constop == 0)
9305 return const0_rtx;
9307 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9308 a power of two, we can replace this with an ASHIFT. */
9309 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9310 && (i = exact_log2 (constop)) >= 0)
9311 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9313 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9314 or XOR, then try to apply the distributive law. This may eliminate
9315 operations if either branch can be simplified because of the AND.
9316 It may also make some cases more complex, but those cases probably
9317 won't match a pattern either with or without this. */
9319 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9320 return
9321 gen_lowpart
9322 (mode,
9323 apply_distributive_law
9324 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9325 simplify_and_const_int (NULL_RTX,
9326 GET_MODE (varop),
9327 XEXP (varop, 0),
9328 constop),
9329 simplify_and_const_int (NULL_RTX,
9330 GET_MODE (varop),
9331 XEXP (varop, 1),
9332 constop))));
9334 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9335 the AND and see if one of the operands simplifies to zero. If so, we
9336 may eliminate it. */
9338 if (GET_CODE (varop) == PLUS
9339 && exact_log2 (constop + 1) >= 0)
9341 rtx o0, o1;
9343 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9344 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9345 if (o0 == const0_rtx)
9346 return o1;
9347 if (o1 == const0_rtx)
9348 return o0;
9351 /* Make a SUBREG if necessary. If we can't make it, fail. */
9352 varop = gen_lowpart (mode, varop);
9353 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9354 return NULL_RTX;
9356 /* If we are only masking insignificant bits, return VAROP. */
9357 if (constop == nonzero)
9358 return varop;
9360 if (varop == orig_varop && constop == orig_constop)
9361 return NULL_RTX;
9363 /* Otherwise, return an AND. */
9364 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9368 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9369 in MODE.
9371 Return an equivalent form, if different from X. Otherwise, return X. If
9372 X is zero, we are to always construct the equivalent form. */
9374 static rtx
9375 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9376 unsigned HOST_WIDE_INT constop)
9378 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9379 if (tem)
9380 return tem;
9382 if (!x)
9383 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9384 gen_int_mode (constop, mode));
9385 if (GET_MODE (x) != mode)
9386 x = gen_lowpart (mode, x);
9387 return x;
9390 /* Given a REG, X, compute which bits in X can be nonzero.
9391 We don't care about bits outside of those defined in MODE.
9393 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9394 a shift, AND, or zero_extract, we can do better. */
9396 static rtx
9397 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9398 const_rtx known_x ATTRIBUTE_UNUSED,
9399 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9400 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9401 unsigned HOST_WIDE_INT *nonzero)
9403 rtx tem;
9404 reg_stat_type *rsp;
9406 /* If X is a register whose nonzero bits value is current, use it.
9407 Otherwise, if X is a register whose value we can find, use that
9408 value. Otherwise, use the previously-computed global nonzero bits
9409 for this register. */
9411 rsp = &reg_stat[REGNO (x)];
9412 if (rsp->last_set_value != 0
9413 && (rsp->last_set_mode == mode
9414 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9415 && GET_MODE_CLASS (mode) == MODE_INT))
9416 && ((rsp->last_set_label >= label_tick_ebb_start
9417 && rsp->last_set_label < label_tick)
9418 || (rsp->last_set_label == label_tick
9419 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9420 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9421 && REG_N_SETS (REGNO (x)) == 1
9422 && !REGNO_REG_SET_P
9423 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9425 *nonzero &= rsp->last_set_nonzero_bits;
9426 return NULL;
9429 tem = get_last_value (x);
9431 if (tem)
9433 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9434 /* If X is narrower than MODE and TEM is a non-negative
9435 constant that would appear negative in the mode of X,
9436 sign-extend it for use in reg_nonzero_bits because some
9437 machines (maybe most) will actually do the sign-extension
9438 and this is the conservative approach.
9440 ??? For 2.5, try to tighten up the MD files in this regard
9441 instead of this kludge. */
9443 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9444 && CONST_INT_P (tem)
9445 && INTVAL (tem) > 0
9446 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9447 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9448 #endif
9449 return tem;
9451 else if (nonzero_sign_valid && rsp->nonzero_bits)
9453 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9455 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9456 /* We don't know anything about the upper bits. */
9457 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9458 *nonzero &= mask;
9461 return NULL;
9464 /* Return the number of bits at the high-order end of X that are known to
9465 be equal to the sign bit. X will be used in mode MODE; if MODE is
9466 VOIDmode, X will be used in its own mode. The returned value will always
9467 be between 1 and the number of bits in MODE. */
9469 static rtx
9470 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9471 const_rtx known_x ATTRIBUTE_UNUSED,
9472 enum machine_mode known_mode
9473 ATTRIBUTE_UNUSED,
9474 unsigned int known_ret ATTRIBUTE_UNUSED,
9475 unsigned int *result)
9477 rtx tem;
9478 reg_stat_type *rsp;
9480 rsp = &reg_stat[REGNO (x)];
9481 if (rsp->last_set_value != 0
9482 && rsp->last_set_mode == mode
9483 && ((rsp->last_set_label >= label_tick_ebb_start
9484 && rsp->last_set_label < label_tick)
9485 || (rsp->last_set_label == label_tick
9486 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9487 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9488 && REG_N_SETS (REGNO (x)) == 1
9489 && !REGNO_REG_SET_P
9490 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9492 *result = rsp->last_set_sign_bit_copies;
9493 return NULL;
9496 tem = get_last_value (x);
9497 if (tem != 0)
9498 return tem;
9500 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9501 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9502 *result = rsp->sign_bit_copies;
9504 return NULL;
9507 /* Return the number of "extended" bits there are in X, when interpreted
9508 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9509 unsigned quantities, this is the number of high-order zero bits.
9510 For signed quantities, this is the number of copies of the sign bit
9511 minus 1. In both case, this function returns the number of "spare"
9512 bits. For example, if two quantities for which this function returns
9513 at least 1 are added, the addition is known not to overflow.
9515 This function will always return 0 unless called during combine, which
9516 implies that it must be called from a define_split. */
9518 unsigned int
9519 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9521 if (nonzero_sign_valid == 0)
9522 return 0;
9524 return (unsignedp
9525 ? (HWI_COMPUTABLE_MODE_P (mode)
9526 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9527 - floor_log2 (nonzero_bits (x, mode)))
9528 : 0)
9529 : num_sign_bit_copies (x, mode) - 1);
9532 /* This function is called from `simplify_shift_const' to merge two
9533 outer operations. Specifically, we have already found that we need
9534 to perform operation *POP0 with constant *PCONST0 at the outermost
9535 position. We would now like to also perform OP1 with constant CONST1
9536 (with *POP0 being done last).
9538 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9539 the resulting operation. *PCOMP_P is set to 1 if we would need to
9540 complement the innermost operand, otherwise it is unchanged.
9542 MODE is the mode in which the operation will be done. No bits outside
9543 the width of this mode matter. It is assumed that the width of this mode
9544 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9546 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9547 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9548 result is simply *PCONST0.
9550 If the resulting operation cannot be expressed as one operation, we
9551 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9553 static int
9554 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9556 enum rtx_code op0 = *pop0;
9557 HOST_WIDE_INT const0 = *pconst0;
9559 const0 &= GET_MODE_MASK (mode);
9560 const1 &= GET_MODE_MASK (mode);
9562 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9563 if (op0 == AND)
9564 const1 &= const0;
9566 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9567 if OP0 is SET. */
9569 if (op1 == UNKNOWN || op0 == SET)
9570 return 1;
9572 else if (op0 == UNKNOWN)
9573 op0 = op1, const0 = const1;
9575 else if (op0 == op1)
9577 switch (op0)
9579 case AND:
9580 const0 &= const1;
9581 break;
9582 case IOR:
9583 const0 |= const1;
9584 break;
9585 case XOR:
9586 const0 ^= const1;
9587 break;
9588 case PLUS:
9589 const0 += const1;
9590 break;
9591 case NEG:
9592 op0 = UNKNOWN;
9593 break;
9594 default:
9595 break;
9599 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9600 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9601 return 0;
9603 /* If the two constants aren't the same, we can't do anything. The
9604 remaining six cases can all be done. */
9605 else if (const0 != const1)
9606 return 0;
9608 else
9609 switch (op0)
9611 case IOR:
9612 if (op1 == AND)
9613 /* (a & b) | b == b */
9614 op0 = SET;
9615 else /* op1 == XOR */
9616 /* (a ^ b) | b == a | b */
9618 break;
9620 case XOR:
9621 if (op1 == AND)
9622 /* (a & b) ^ b == (~a) & b */
9623 op0 = AND, *pcomp_p = 1;
9624 else /* op1 == IOR */
9625 /* (a | b) ^ b == a & ~b */
9626 op0 = AND, const0 = ~const0;
9627 break;
9629 case AND:
9630 if (op1 == IOR)
9631 /* (a | b) & b == b */
9632 op0 = SET;
9633 else /* op1 == XOR */
9634 /* (a ^ b) & b) == (~a) & b */
9635 *pcomp_p = 1;
9636 break;
9637 default:
9638 break;
9641 /* Check for NO-OP cases. */
9642 const0 &= GET_MODE_MASK (mode);
9643 if (const0 == 0
9644 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9645 op0 = UNKNOWN;
9646 else if (const0 == 0 && op0 == AND)
9647 op0 = SET;
9648 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9649 && op0 == AND)
9650 op0 = UNKNOWN;
9652 *pop0 = op0;
9654 /* ??? Slightly redundant with the above mask, but not entirely.
9655 Moving this above means we'd have to sign-extend the mode mask
9656 for the final test. */
9657 if (op0 != UNKNOWN && op0 != NEG)
9658 *pconst0 = trunc_int_for_mode (const0, mode);
9660 return 1;
9663 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9664 the shift in. The original shift operation CODE is performed on OP in
9665 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9666 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9667 result of the shift is subject to operation OUTER_CODE with operand
9668 OUTER_CONST. */
9670 static enum machine_mode
9671 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9672 enum machine_mode orig_mode, enum machine_mode mode,
9673 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9675 if (orig_mode == mode)
9676 return mode;
9677 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9679 /* In general we can't perform in wider mode for right shift and rotate. */
9680 switch (code)
9682 case ASHIFTRT:
9683 /* We can still widen if the bits brought in from the left are identical
9684 to the sign bit of ORIG_MODE. */
9685 if (num_sign_bit_copies (op, mode)
9686 > (unsigned) (GET_MODE_PRECISION (mode)
9687 - GET_MODE_PRECISION (orig_mode)))
9688 return mode;
9689 return orig_mode;
9691 case LSHIFTRT:
9692 /* Similarly here but with zero bits. */
9693 if (HWI_COMPUTABLE_MODE_P (mode)
9694 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9695 return mode;
9697 /* We can also widen if the bits brought in will be masked off. This
9698 operation is performed in ORIG_MODE. */
9699 if (outer_code == AND)
9701 int care_bits = low_bitmask_len (orig_mode, outer_const);
9703 if (care_bits >= 0
9704 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9705 return mode;
9707 /* fall through */
9709 case ROTATE:
9710 return orig_mode;
9712 case ROTATERT:
9713 gcc_unreachable ();
9715 default:
9716 return mode;
9720 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9721 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9722 if we cannot simplify it. Otherwise, return a simplified value.
9724 The shift is normally computed in the widest mode we find in VAROP, as
9725 long as it isn't a different number of words than RESULT_MODE. Exceptions
9726 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9728 static rtx
9729 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9730 rtx varop, int orig_count)
9732 enum rtx_code orig_code = code;
9733 rtx orig_varop = varop;
9734 int count;
9735 enum machine_mode mode = result_mode;
9736 enum machine_mode shift_mode, tmode;
9737 unsigned int mode_words
9738 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9739 /* We form (outer_op (code varop count) (outer_const)). */
9740 enum rtx_code outer_op = UNKNOWN;
9741 HOST_WIDE_INT outer_const = 0;
9742 int complement_p = 0;
9743 rtx new_rtx, x;
9745 /* Make sure and truncate the "natural" shift on the way in. We don't
9746 want to do this inside the loop as it makes it more difficult to
9747 combine shifts. */
9748 if (SHIFT_COUNT_TRUNCATED)
9749 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9751 /* If we were given an invalid count, don't do anything except exactly
9752 what was requested. */
9754 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9755 return NULL_RTX;
9757 count = orig_count;
9759 /* Unless one of the branches of the `if' in this loop does a `continue',
9760 we will `break' the loop after the `if'. */
9762 while (count != 0)
9764 /* If we have an operand of (clobber (const_int 0)), fail. */
9765 if (GET_CODE (varop) == CLOBBER)
9766 return NULL_RTX;
9768 /* Convert ROTATERT to ROTATE. */
9769 if (code == ROTATERT)
9771 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9772 code = ROTATE;
9773 if (VECTOR_MODE_P (result_mode))
9774 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9775 else
9776 count = bitsize - count;
9779 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9780 mode, outer_op, outer_const);
9782 /* Handle cases where the count is greater than the size of the mode
9783 minus 1. For ASHIFT, use the size minus one as the count (this can
9784 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9785 take the count modulo the size. For other shifts, the result is
9786 zero.
9788 Since these shifts are being produced by the compiler by combining
9789 multiple operations, each of which are defined, we know what the
9790 result is supposed to be. */
9792 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9794 if (code == ASHIFTRT)
9795 count = GET_MODE_PRECISION (shift_mode) - 1;
9796 else if (code == ROTATE || code == ROTATERT)
9797 count %= GET_MODE_PRECISION (shift_mode);
9798 else
9800 /* We can't simply return zero because there may be an
9801 outer op. */
9802 varop = const0_rtx;
9803 count = 0;
9804 break;
9808 /* If we discovered we had to complement VAROP, leave. Making a NOT
9809 here would cause an infinite loop. */
9810 if (complement_p)
9811 break;
9813 /* An arithmetic right shift of a quantity known to be -1 or 0
9814 is a no-op. */
9815 if (code == ASHIFTRT
9816 && (num_sign_bit_copies (varop, shift_mode)
9817 == GET_MODE_PRECISION (shift_mode)))
9819 count = 0;
9820 break;
9823 /* If we are doing an arithmetic right shift and discarding all but
9824 the sign bit copies, this is equivalent to doing a shift by the
9825 bitsize minus one. Convert it into that shift because it will often
9826 allow other simplifications. */
9828 if (code == ASHIFTRT
9829 && (count + num_sign_bit_copies (varop, shift_mode)
9830 >= GET_MODE_PRECISION (shift_mode)))
9831 count = GET_MODE_PRECISION (shift_mode) - 1;
9833 /* We simplify the tests below and elsewhere by converting
9834 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9835 `make_compound_operation' will convert it to an ASHIFTRT for
9836 those machines (such as VAX) that don't have an LSHIFTRT. */
9837 if (code == ASHIFTRT
9838 && val_signbit_known_clear_p (shift_mode,
9839 nonzero_bits (varop, shift_mode)))
9840 code = LSHIFTRT;
9842 if (((code == LSHIFTRT
9843 && HWI_COMPUTABLE_MODE_P (shift_mode)
9844 && !(nonzero_bits (varop, shift_mode) >> count))
9845 || (code == ASHIFT
9846 && HWI_COMPUTABLE_MODE_P (shift_mode)
9847 && !((nonzero_bits (varop, shift_mode) << count)
9848 & GET_MODE_MASK (shift_mode))))
9849 && !side_effects_p (varop))
9850 varop = const0_rtx;
9852 switch (GET_CODE (varop))
9854 case SIGN_EXTEND:
9855 case ZERO_EXTEND:
9856 case SIGN_EXTRACT:
9857 case ZERO_EXTRACT:
9858 new_rtx = expand_compound_operation (varop);
9859 if (new_rtx != varop)
9861 varop = new_rtx;
9862 continue;
9864 break;
9866 case MEM:
9867 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9868 minus the width of a smaller mode, we can do this with a
9869 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9870 if ((code == ASHIFTRT || code == LSHIFTRT)
9871 && ! mode_dependent_address_p (XEXP (varop, 0),
9872 MEM_ADDR_SPACE (varop))
9873 && ! MEM_VOLATILE_P (varop)
9874 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9875 MODE_INT, 1)) != BLKmode)
9877 new_rtx = adjust_address_nv (varop, tmode,
9878 BYTES_BIG_ENDIAN ? 0
9879 : count / BITS_PER_UNIT);
9881 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9882 : ZERO_EXTEND, mode, new_rtx);
9883 count = 0;
9884 continue;
9886 break;
9888 case SUBREG:
9889 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9890 the same number of words as what we've seen so far. Then store
9891 the widest mode in MODE. */
9892 if (subreg_lowpart_p (varop)
9893 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9894 > GET_MODE_SIZE (GET_MODE (varop)))
9895 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9896 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9897 == mode_words
9898 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9899 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9901 varop = SUBREG_REG (varop);
9902 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9903 mode = GET_MODE (varop);
9904 continue;
9906 break;
9908 case MULT:
9909 /* Some machines use MULT instead of ASHIFT because MULT
9910 is cheaper. But it is still better on those machines to
9911 merge two shifts into one. */
9912 if (CONST_INT_P (XEXP (varop, 1))
9913 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9915 varop
9916 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9917 XEXP (varop, 0),
9918 GEN_INT (exact_log2 (
9919 UINTVAL (XEXP (varop, 1)))));
9920 continue;
9922 break;
9924 case UDIV:
9925 /* Similar, for when divides are cheaper. */
9926 if (CONST_INT_P (XEXP (varop, 1))
9927 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9929 varop
9930 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9931 XEXP (varop, 0),
9932 GEN_INT (exact_log2 (
9933 UINTVAL (XEXP (varop, 1)))));
9934 continue;
9936 break;
9938 case ASHIFTRT:
9939 /* If we are extracting just the sign bit of an arithmetic
9940 right shift, that shift is not needed. However, the sign
9941 bit of a wider mode may be different from what would be
9942 interpreted as the sign bit in a narrower mode, so, if
9943 the result is narrower, don't discard the shift. */
9944 if (code == LSHIFTRT
9945 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9946 && (GET_MODE_BITSIZE (result_mode)
9947 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9949 varop = XEXP (varop, 0);
9950 continue;
9953 /* ... fall through ... */
9955 case LSHIFTRT:
9956 case ASHIFT:
9957 case ROTATE:
9958 /* Here we have two nested shifts. The result is usually the
9959 AND of a new shift with a mask. We compute the result below. */
9960 if (CONST_INT_P (XEXP (varop, 1))
9961 && INTVAL (XEXP (varop, 1)) >= 0
9962 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9963 && HWI_COMPUTABLE_MODE_P (result_mode)
9964 && HWI_COMPUTABLE_MODE_P (mode)
9965 && !VECTOR_MODE_P (result_mode))
9967 enum rtx_code first_code = GET_CODE (varop);
9968 unsigned int first_count = INTVAL (XEXP (varop, 1));
9969 unsigned HOST_WIDE_INT mask;
9970 rtx mask_rtx;
9972 /* We have one common special case. We can't do any merging if
9973 the inner code is an ASHIFTRT of a smaller mode. However, if
9974 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9975 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9976 we can convert it to
9977 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
9978 This simplifies certain SIGN_EXTEND operations. */
9979 if (code == ASHIFT && first_code == ASHIFTRT
9980 && count == (GET_MODE_PRECISION (result_mode)
9981 - GET_MODE_PRECISION (GET_MODE (varop))))
9983 /* C3 has the low-order C1 bits zero. */
9985 mask = GET_MODE_MASK (mode)
9986 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
9988 varop = simplify_and_const_int (NULL_RTX, result_mode,
9989 XEXP (varop, 0), mask);
9990 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9991 varop, count);
9992 count = first_count;
9993 code = ASHIFTRT;
9994 continue;
9997 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9998 than C1 high-order bits equal to the sign bit, we can convert
9999 this to either an ASHIFT or an ASHIFTRT depending on the
10000 two counts.
10002 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10004 if (code == ASHIFTRT && first_code == ASHIFT
10005 && GET_MODE (varop) == shift_mode
10006 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10007 > first_count))
10009 varop = XEXP (varop, 0);
10010 count -= first_count;
10011 if (count < 0)
10013 count = -count;
10014 code = ASHIFT;
10017 continue;
10020 /* There are some cases we can't do. If CODE is ASHIFTRT,
10021 we can only do this if FIRST_CODE is also ASHIFTRT.
10023 We can't do the case when CODE is ROTATE and FIRST_CODE is
10024 ASHIFTRT.
10026 If the mode of this shift is not the mode of the outer shift,
10027 we can't do this if either shift is a right shift or ROTATE.
10029 Finally, we can't do any of these if the mode is too wide
10030 unless the codes are the same.
10032 Handle the case where the shift codes are the same
10033 first. */
10035 if (code == first_code)
10037 if (GET_MODE (varop) != result_mode
10038 && (code == ASHIFTRT || code == LSHIFTRT
10039 || code == ROTATE))
10040 break;
10042 count += first_count;
10043 varop = XEXP (varop, 0);
10044 continue;
10047 if (code == ASHIFTRT
10048 || (code == ROTATE && first_code == ASHIFTRT)
10049 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10050 || (GET_MODE (varop) != result_mode
10051 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10052 || first_code == ROTATE
10053 || code == ROTATE)))
10054 break;
10056 /* To compute the mask to apply after the shift, shift the
10057 nonzero bits of the inner shift the same way the
10058 outer shift will. */
10060 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10062 mask_rtx
10063 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10064 GEN_INT (count));
10066 /* Give up if we can't compute an outer operation to use. */
10067 if (mask_rtx == 0
10068 || !CONST_INT_P (mask_rtx)
10069 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10070 INTVAL (mask_rtx),
10071 result_mode, &complement_p))
10072 break;
10074 /* If the shifts are in the same direction, we add the
10075 counts. Otherwise, we subtract them. */
10076 if ((code == ASHIFTRT || code == LSHIFTRT)
10077 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10078 count += first_count;
10079 else
10080 count -= first_count;
10082 /* If COUNT is positive, the new shift is usually CODE,
10083 except for the two exceptions below, in which case it is
10084 FIRST_CODE. If the count is negative, FIRST_CODE should
10085 always be used */
10086 if (count > 0
10087 && ((first_code == ROTATE && code == ASHIFT)
10088 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10089 code = first_code;
10090 else if (count < 0)
10091 code = first_code, count = -count;
10093 varop = XEXP (varop, 0);
10094 continue;
10097 /* If we have (A << B << C) for any shift, we can convert this to
10098 (A << C << B). This wins if A is a constant. Only try this if
10099 B is not a constant. */
10101 else if (GET_CODE (varop) == code
10102 && CONST_INT_P (XEXP (varop, 0))
10103 && !CONST_INT_P (XEXP (varop, 1)))
10105 rtx new_rtx = simplify_const_binary_operation (code, mode,
10106 XEXP (varop, 0),
10107 GEN_INT (count));
10108 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10109 count = 0;
10110 continue;
10112 break;
10114 case NOT:
10115 if (VECTOR_MODE_P (mode))
10116 break;
10118 /* Make this fit the case below. */
10119 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10120 continue;
10122 case IOR:
10123 case AND:
10124 case XOR:
10125 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10126 with C the size of VAROP - 1 and the shift is logical if
10127 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10128 we have an (le X 0) operation. If we have an arithmetic shift
10129 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10130 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10132 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10133 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10134 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10135 && (code == LSHIFTRT || code == ASHIFTRT)
10136 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10137 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10139 count = 0;
10140 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10141 const0_rtx);
10143 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10144 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10146 continue;
10149 /* If we have (shift (logical)), move the logical to the outside
10150 to allow it to possibly combine with another logical and the
10151 shift to combine with another shift. This also canonicalizes to
10152 what a ZERO_EXTRACT looks like. Also, some machines have
10153 (and (shift)) insns. */
10155 if (CONST_INT_P (XEXP (varop, 1))
10156 /* We can't do this if we have (ashiftrt (xor)) and the
10157 constant has its sign bit set in shift_mode. */
10158 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10159 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10160 shift_mode))
10161 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10162 XEXP (varop, 1),
10163 GEN_INT (count))) != 0
10164 && CONST_INT_P (new_rtx)
10165 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10166 INTVAL (new_rtx), result_mode, &complement_p))
10168 varop = XEXP (varop, 0);
10169 continue;
10172 /* If we can't do that, try to simplify the shift in each arm of the
10173 logical expression, make a new logical expression, and apply
10174 the inverse distributive law. This also can't be done
10175 for some (ashiftrt (xor)). */
10176 if (CONST_INT_P (XEXP (varop, 1))
10177 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10178 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10179 shift_mode)))
10181 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10182 XEXP (varop, 0), count);
10183 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10184 XEXP (varop, 1), count);
10186 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10187 lhs, rhs);
10188 varop = apply_distributive_law (varop);
10190 count = 0;
10191 continue;
10193 break;
10195 case EQ:
10196 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10197 says that the sign bit can be tested, FOO has mode MODE, C is
10198 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10199 that may be nonzero. */
10200 if (code == LSHIFTRT
10201 && XEXP (varop, 1) == const0_rtx
10202 && GET_MODE (XEXP (varop, 0)) == result_mode
10203 && count == (GET_MODE_PRECISION (result_mode) - 1)
10204 && HWI_COMPUTABLE_MODE_P (result_mode)
10205 && STORE_FLAG_VALUE == -1
10206 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10207 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10208 &complement_p))
10210 varop = XEXP (varop, 0);
10211 count = 0;
10212 continue;
10214 break;
10216 case NEG:
10217 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10218 than the number of bits in the mode is equivalent to A. */
10219 if (code == LSHIFTRT
10220 && count == (GET_MODE_PRECISION (result_mode) - 1)
10221 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10223 varop = XEXP (varop, 0);
10224 count = 0;
10225 continue;
10228 /* NEG commutes with ASHIFT since it is multiplication. Move the
10229 NEG outside to allow shifts to combine. */
10230 if (code == ASHIFT
10231 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10232 &complement_p))
10234 varop = XEXP (varop, 0);
10235 continue;
10237 break;
10239 case PLUS:
10240 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10241 is one less than the number of bits in the mode is
10242 equivalent to (xor A 1). */
10243 if (code == LSHIFTRT
10244 && count == (GET_MODE_PRECISION (result_mode) - 1)
10245 && XEXP (varop, 1) == constm1_rtx
10246 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10247 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10248 &complement_p))
10250 count = 0;
10251 varop = XEXP (varop, 0);
10252 continue;
10255 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10256 that might be nonzero in BAR are those being shifted out and those
10257 bits are known zero in FOO, we can replace the PLUS with FOO.
10258 Similarly in the other operand order. This code occurs when
10259 we are computing the size of a variable-size array. */
10261 if ((code == ASHIFTRT || code == LSHIFTRT)
10262 && count < HOST_BITS_PER_WIDE_INT
10263 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10264 && (nonzero_bits (XEXP (varop, 1), result_mode)
10265 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10267 varop = XEXP (varop, 0);
10268 continue;
10270 else if ((code == ASHIFTRT || code == LSHIFTRT)
10271 && count < HOST_BITS_PER_WIDE_INT
10272 && HWI_COMPUTABLE_MODE_P (result_mode)
10273 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10274 >> count)
10275 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10276 & nonzero_bits (XEXP (varop, 1),
10277 result_mode)))
10279 varop = XEXP (varop, 1);
10280 continue;
10283 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10284 if (code == ASHIFT
10285 && CONST_INT_P (XEXP (varop, 1))
10286 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10287 XEXP (varop, 1),
10288 GEN_INT (count))) != 0
10289 && CONST_INT_P (new_rtx)
10290 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10291 INTVAL (new_rtx), result_mode, &complement_p))
10293 varop = XEXP (varop, 0);
10294 continue;
10297 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10298 signbit', and attempt to change the PLUS to an XOR and move it to
10299 the outer operation as is done above in the AND/IOR/XOR case
10300 leg for shift(logical). See details in logical handling above
10301 for reasoning in doing so. */
10302 if (code == LSHIFTRT
10303 && CONST_INT_P (XEXP (varop, 1))
10304 && mode_signbit_p (result_mode, XEXP (varop, 1))
10305 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10306 XEXP (varop, 1),
10307 GEN_INT (count))) != 0
10308 && CONST_INT_P (new_rtx)
10309 && merge_outer_ops (&outer_op, &outer_const, XOR,
10310 INTVAL (new_rtx), result_mode, &complement_p))
10312 varop = XEXP (varop, 0);
10313 continue;
10316 break;
10318 case MINUS:
10319 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10320 with C the size of VAROP - 1 and the shift is logical if
10321 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10322 we have a (gt X 0) operation. If the shift is arithmetic with
10323 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10324 we have a (neg (gt X 0)) operation. */
10326 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10327 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10328 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10329 && (code == LSHIFTRT || code == ASHIFTRT)
10330 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10331 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10332 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10334 count = 0;
10335 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10336 const0_rtx);
10338 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10339 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10341 continue;
10343 break;
10345 case TRUNCATE:
10346 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10347 if the truncate does not affect the value. */
10348 if (code == LSHIFTRT
10349 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10350 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10351 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10352 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10353 - GET_MODE_PRECISION (GET_MODE (varop)))))
10355 rtx varop_inner = XEXP (varop, 0);
10357 varop_inner
10358 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10359 XEXP (varop_inner, 0),
10360 GEN_INT
10361 (count + INTVAL (XEXP (varop_inner, 1))));
10362 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10363 count = 0;
10364 continue;
10366 break;
10368 default:
10369 break;
10372 break;
10375 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10376 outer_op, outer_const);
10378 /* We have now finished analyzing the shift. The result should be
10379 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10380 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10381 to the result of the shift. OUTER_CONST is the relevant constant,
10382 but we must turn off all bits turned off in the shift. */
10384 if (outer_op == UNKNOWN
10385 && orig_code == code && orig_count == count
10386 && varop == orig_varop
10387 && shift_mode == GET_MODE (varop))
10388 return NULL_RTX;
10390 /* Make a SUBREG if necessary. If we can't make it, fail. */
10391 varop = gen_lowpart (shift_mode, varop);
10392 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10393 return NULL_RTX;
10395 /* If we have an outer operation and we just made a shift, it is
10396 possible that we could have simplified the shift were it not
10397 for the outer operation. So try to do the simplification
10398 recursively. */
10400 if (outer_op != UNKNOWN)
10401 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10402 else
10403 x = NULL_RTX;
10405 if (x == NULL_RTX)
10406 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10408 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10409 turn off all the bits that the shift would have turned off. */
10410 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10411 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10412 GET_MODE_MASK (result_mode) >> orig_count);
10414 /* Do the remainder of the processing in RESULT_MODE. */
10415 x = gen_lowpart_or_truncate (result_mode, x);
10417 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10418 operation. */
10419 if (complement_p)
10420 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10422 if (outer_op != UNKNOWN)
10424 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10425 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10426 outer_const = trunc_int_for_mode (outer_const, result_mode);
10428 if (outer_op == AND)
10429 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10430 else if (outer_op == SET)
10432 /* This means that we have determined that the result is
10433 equivalent to a constant. This should be rare. */
10434 if (!side_effects_p (x))
10435 x = GEN_INT (outer_const);
10437 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10438 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10439 else
10440 x = simplify_gen_binary (outer_op, result_mode, x,
10441 GEN_INT (outer_const));
10444 return x;
10447 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10448 The result of the shift is RESULT_MODE. If we cannot simplify it,
10449 return X or, if it is NULL, synthesize the expression with
10450 simplify_gen_binary. Otherwise, return a simplified value.
10452 The shift is normally computed in the widest mode we find in VAROP, as
10453 long as it isn't a different number of words than RESULT_MODE. Exceptions
10454 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10456 static rtx
10457 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10458 rtx varop, int count)
10460 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10461 if (tem)
10462 return tem;
10464 if (!x)
10465 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10466 if (GET_MODE (x) != result_mode)
10467 x = gen_lowpart (result_mode, x);
10468 return x;
10472 /* Like recog, but we receive the address of a pointer to a new pattern.
10473 We try to match the rtx that the pointer points to.
10474 If that fails, we may try to modify or replace the pattern,
10475 storing the replacement into the same pointer object.
10477 Modifications include deletion or addition of CLOBBERs.
10479 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10480 the CLOBBERs are placed.
10482 The value is the final insn code from the pattern ultimately matched,
10483 or -1. */
10485 static int
10486 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10488 rtx pat = *pnewpat;
10489 rtx pat_without_clobbers;
10490 int insn_code_number;
10491 int num_clobbers_to_add = 0;
10492 int i;
10493 rtx notes = NULL_RTX;
10494 rtx old_notes, old_pat;
10495 int old_icode;
10497 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10498 we use to indicate that something didn't match. If we find such a
10499 thing, force rejection. */
10500 if (GET_CODE (pat) == PARALLEL)
10501 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10502 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10503 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10504 return -1;
10506 old_pat = PATTERN (insn);
10507 old_notes = REG_NOTES (insn);
10508 PATTERN (insn) = pat;
10509 REG_NOTES (insn) = NULL_RTX;
10511 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10512 if (dump_file && (dump_flags & TDF_DETAILS))
10514 if (insn_code_number < 0)
10515 fputs ("Failed to match this instruction:\n", dump_file);
10516 else
10517 fputs ("Successfully matched this instruction:\n", dump_file);
10518 print_rtl_single (dump_file, pat);
10521 /* If it isn't, there is the possibility that we previously had an insn
10522 that clobbered some register as a side effect, but the combined
10523 insn doesn't need to do that. So try once more without the clobbers
10524 unless this represents an ASM insn. */
10526 if (insn_code_number < 0 && ! check_asm_operands (pat)
10527 && GET_CODE (pat) == PARALLEL)
10529 int pos;
10531 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10532 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10534 if (i != pos)
10535 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10536 pos++;
10539 SUBST_INT (XVECLEN (pat, 0), pos);
10541 if (pos == 1)
10542 pat = XVECEXP (pat, 0, 0);
10544 PATTERN (insn) = pat;
10545 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10546 if (dump_file && (dump_flags & TDF_DETAILS))
10548 if (insn_code_number < 0)
10549 fputs ("Failed to match this instruction:\n", dump_file);
10550 else
10551 fputs ("Successfully matched this instruction:\n", dump_file);
10552 print_rtl_single (dump_file, pat);
10556 pat_without_clobbers = pat;
10558 PATTERN (insn) = old_pat;
10559 REG_NOTES (insn) = old_notes;
10561 /* Recognize all noop sets, these will be killed by followup pass. */
10562 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10563 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10565 /* If we had any clobbers to add, make a new pattern than contains
10566 them. Then check to make sure that all of them are dead. */
10567 if (num_clobbers_to_add)
10569 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10570 rtvec_alloc (GET_CODE (pat) == PARALLEL
10571 ? (XVECLEN (pat, 0)
10572 + num_clobbers_to_add)
10573 : num_clobbers_to_add + 1));
10575 if (GET_CODE (pat) == PARALLEL)
10576 for (i = 0; i < XVECLEN (pat, 0); i++)
10577 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10578 else
10579 XVECEXP (newpat, 0, 0) = pat;
10581 add_clobbers (newpat, insn_code_number);
10583 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10584 i < XVECLEN (newpat, 0); i++)
10586 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10587 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10588 return -1;
10589 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10591 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10592 notes = alloc_reg_note (REG_UNUSED,
10593 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10596 pat = newpat;
10599 if (insn_code_number >= 0
10600 && insn_code_number != NOOP_MOVE_INSN_CODE)
10602 old_pat = PATTERN (insn);
10603 old_notes = REG_NOTES (insn);
10604 old_icode = INSN_CODE (insn);
10605 PATTERN (insn) = pat;
10606 REG_NOTES (insn) = notes;
10608 /* Allow targets to reject combined insn. */
10609 if (!targetm.legitimate_combined_insn (insn))
10611 if (dump_file && (dump_flags & TDF_DETAILS))
10612 fputs ("Instruction not appropriate for target.",
10613 dump_file);
10615 /* Callers expect recog_for_combine to strip
10616 clobbers from the pattern on failure. */
10617 pat = pat_without_clobbers;
10618 notes = NULL_RTX;
10620 insn_code_number = -1;
10623 PATTERN (insn) = old_pat;
10624 REG_NOTES (insn) = old_notes;
10625 INSN_CODE (insn) = old_icode;
10628 *pnewpat = pat;
10629 *pnotes = notes;
10631 return insn_code_number;
10634 /* Like gen_lowpart_general but for use by combine. In combine it
10635 is not possible to create any new pseudoregs. However, it is
10636 safe to create invalid memory addresses, because combine will
10637 try to recognize them and all they will do is make the combine
10638 attempt fail.
10640 If for some reason this cannot do its job, an rtx
10641 (clobber (const_int 0)) is returned.
10642 An insn containing that will not be recognized. */
10644 static rtx
10645 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10647 enum machine_mode imode = GET_MODE (x);
10648 unsigned int osize = GET_MODE_SIZE (omode);
10649 unsigned int isize = GET_MODE_SIZE (imode);
10650 rtx result;
10652 if (omode == imode)
10653 return x;
10655 /* We can only support MODE being wider than a word if X is a
10656 constant integer or has a mode the same size. */
10657 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10658 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10659 goto fail;
10661 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10662 won't know what to do. So we will strip off the SUBREG here and
10663 process normally. */
10664 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10666 x = SUBREG_REG (x);
10668 /* For use in case we fall down into the address adjustments
10669 further below, we need to adjust the known mode and size of
10670 x; imode and isize, since we just adjusted x. */
10671 imode = GET_MODE (x);
10673 if (imode == omode)
10674 return x;
10676 isize = GET_MODE_SIZE (imode);
10679 result = gen_lowpart_common (omode, x);
10681 if (result)
10682 return result;
10684 if (MEM_P (x))
10686 int offset = 0;
10688 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10689 address. */
10690 if (MEM_VOLATILE_P (x)
10691 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10692 goto fail;
10694 /* If we want to refer to something bigger than the original memref,
10695 generate a paradoxical subreg instead. That will force a reload
10696 of the original memref X. */
10697 if (isize < osize)
10698 return gen_rtx_SUBREG (omode, x, 0);
10700 if (WORDS_BIG_ENDIAN)
10701 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10703 /* Adjust the address so that the address-after-the-data is
10704 unchanged. */
10705 if (BYTES_BIG_ENDIAN)
10706 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10708 return adjust_address_nv (x, omode, offset);
10711 /* If X is a comparison operator, rewrite it in a new mode. This
10712 probably won't match, but may allow further simplifications. */
10713 else if (COMPARISON_P (x))
10714 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10716 /* If we couldn't simplify X any other way, just enclose it in a
10717 SUBREG. Normally, this SUBREG won't match, but some patterns may
10718 include an explicit SUBREG or we may simplify it further in combine. */
10719 else
10721 int offset = 0;
10722 rtx res;
10724 offset = subreg_lowpart_offset (omode, imode);
10725 if (imode == VOIDmode)
10727 imode = int_mode_for_mode (omode);
10728 x = gen_lowpart_common (imode, x);
10729 if (x == NULL)
10730 goto fail;
10732 res = simplify_gen_subreg (omode, x, imode, offset);
10733 if (res)
10734 return res;
10737 fail:
10738 return gen_rtx_CLOBBER (omode, const0_rtx);
10741 /* Try to simplify a comparison between OP0 and a constant OP1,
10742 where CODE is the comparison code that will be tested, into a
10743 (CODE OP0 const0_rtx) form.
10745 The result is a possibly different comparison code to use.
10746 *POP1 may be updated. */
10748 static enum rtx_code
10749 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10751 enum machine_mode mode = GET_MODE (op0);
10752 unsigned int mode_width = GET_MODE_PRECISION (mode);
10753 HOST_WIDE_INT const_op = INTVAL (*pop1);
10755 /* Get the constant we are comparing against and turn off all bits
10756 not on in our mode. */
10757 if (mode != VOIDmode)
10758 const_op = trunc_int_for_mode (const_op, mode);
10760 /* If we are comparing against a constant power of two and the value
10761 being compared can only have that single bit nonzero (e.g., it was
10762 `and'ed with that bit), we can replace this with a comparison
10763 with zero. */
10764 if (const_op
10765 && (code == EQ || code == NE || code == GE || code == GEU
10766 || code == LT || code == LTU)
10767 && mode_width <= HOST_BITS_PER_WIDE_INT
10768 && exact_log2 (const_op) >= 0
10769 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10771 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10772 const_op = 0;
10775 /* Similarly, if we are comparing a value known to be either -1 or
10776 0 with -1, change it to the opposite comparison against zero. */
10777 if (const_op == -1
10778 && (code == EQ || code == NE || code == GT || code == LE
10779 || code == GEU || code == LTU)
10780 && num_sign_bit_copies (op0, mode) == mode_width)
10782 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10783 const_op = 0;
10786 /* Do some canonicalizations based on the comparison code. We prefer
10787 comparisons against zero and then prefer equality comparisons.
10788 If we can reduce the size of a constant, we will do that too. */
10789 switch (code)
10791 case LT:
10792 /* < C is equivalent to <= (C - 1) */
10793 if (const_op > 0)
10795 const_op -= 1;
10796 code = LE;
10797 /* ... fall through to LE case below. */
10799 else
10800 break;
10802 case LE:
10803 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10804 if (const_op < 0)
10806 const_op += 1;
10807 code = LT;
10810 /* If we are doing a <= 0 comparison on a value known to have
10811 a zero sign bit, we can replace this with == 0. */
10812 else if (const_op == 0
10813 && mode_width <= HOST_BITS_PER_WIDE_INT
10814 && (nonzero_bits (op0, mode)
10815 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10816 == 0)
10817 code = EQ;
10818 break;
10820 case GE:
10821 /* >= C is equivalent to > (C - 1). */
10822 if (const_op > 0)
10824 const_op -= 1;
10825 code = GT;
10826 /* ... fall through to GT below. */
10828 else
10829 break;
10831 case GT:
10832 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10833 if (const_op < 0)
10835 const_op += 1;
10836 code = GE;
10839 /* If we are doing a > 0 comparison on a value known to have
10840 a zero sign bit, we can replace this with != 0. */
10841 else if (const_op == 0
10842 && mode_width <= HOST_BITS_PER_WIDE_INT
10843 && (nonzero_bits (op0, mode)
10844 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10845 == 0)
10846 code = NE;
10847 break;
10849 case LTU:
10850 /* < C is equivalent to <= (C - 1). */
10851 if (const_op > 0)
10853 const_op -= 1;
10854 code = LEU;
10855 /* ... fall through ... */
10857 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10858 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10859 && (unsigned HOST_WIDE_INT) const_op
10860 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10862 const_op = 0;
10863 code = GE;
10864 break;
10866 else
10867 break;
10869 case LEU:
10870 /* unsigned <= 0 is equivalent to == 0 */
10871 if (const_op == 0)
10872 code = EQ;
10873 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10874 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10875 && (unsigned HOST_WIDE_INT) const_op
10876 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10878 const_op = 0;
10879 code = GE;
10881 break;
10883 case GEU:
10884 /* >= C is equivalent to > (C - 1). */
10885 if (const_op > 1)
10887 const_op -= 1;
10888 code = GTU;
10889 /* ... fall through ... */
10892 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10893 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10894 && (unsigned HOST_WIDE_INT) const_op
10895 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10897 const_op = 0;
10898 code = LT;
10899 break;
10901 else
10902 break;
10904 case GTU:
10905 /* unsigned > 0 is equivalent to != 0 */
10906 if (const_op == 0)
10907 code = NE;
10908 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10909 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10910 && (unsigned HOST_WIDE_INT) const_op
10911 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10913 const_op = 0;
10914 code = LT;
10916 break;
10918 default:
10919 break;
10922 *pop1 = GEN_INT (const_op);
10923 return code;
10926 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10927 comparison code that will be tested.
10929 The result is a possibly different comparison code to use. *POP0 and
10930 *POP1 may be updated.
10932 It is possible that we might detect that a comparison is either always
10933 true or always false. However, we do not perform general constant
10934 folding in combine, so this knowledge isn't useful. Such tautologies
10935 should have been detected earlier. Hence we ignore all such cases. */
10937 static enum rtx_code
10938 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10940 rtx op0 = *pop0;
10941 rtx op1 = *pop1;
10942 rtx tem, tem1;
10943 int i;
10944 enum machine_mode mode, tmode;
10946 /* Try a few ways of applying the same transformation to both operands. */
10947 while (1)
10949 #ifndef WORD_REGISTER_OPERATIONS
10950 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10951 so check specially. */
10952 if (code != GTU && code != GEU && code != LTU && code != LEU
10953 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10954 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10955 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10956 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10957 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10958 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10959 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10960 && CONST_INT_P (XEXP (op0, 1))
10961 && XEXP (op0, 1) == XEXP (op1, 1)
10962 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10963 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10964 && (INTVAL (XEXP (op0, 1))
10965 == (GET_MODE_PRECISION (GET_MODE (op0))
10966 - (GET_MODE_PRECISION
10967 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10969 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10970 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10972 #endif
10974 /* If both operands are the same constant shift, see if we can ignore the
10975 shift. We can if the shift is a rotate or if the bits shifted out of
10976 this shift are known to be zero for both inputs and if the type of
10977 comparison is compatible with the shift. */
10978 if (GET_CODE (op0) == GET_CODE (op1)
10979 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
10980 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10981 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10982 && (code != GT && code != LT && code != GE && code != LE))
10983 || (GET_CODE (op0) == ASHIFTRT
10984 && (code != GTU && code != LTU
10985 && code != GEU && code != LEU)))
10986 && CONST_INT_P (XEXP (op0, 1))
10987 && INTVAL (XEXP (op0, 1)) >= 0
10988 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10989 && XEXP (op0, 1) == XEXP (op1, 1))
10991 enum machine_mode mode = GET_MODE (op0);
10992 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10993 int shift_count = INTVAL (XEXP (op0, 1));
10995 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10996 mask &= (mask >> shift_count) << shift_count;
10997 else if (GET_CODE (op0) == ASHIFT)
10998 mask = (mask & (mask << shift_count)) >> shift_count;
11000 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11001 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11002 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11003 else
11004 break;
11007 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11008 SUBREGs are of the same mode, and, in both cases, the AND would
11009 be redundant if the comparison was done in the narrower mode,
11010 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11011 and the operand's possibly nonzero bits are 0xffffff01; in that case
11012 if we only care about QImode, we don't need the AND). This case
11013 occurs if the output mode of an scc insn is not SImode and
11014 STORE_FLAG_VALUE == 1 (e.g., the 386).
11016 Similarly, check for a case where the AND's are ZERO_EXTEND
11017 operations from some narrower mode even though a SUBREG is not
11018 present. */
11020 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11021 && CONST_INT_P (XEXP (op0, 1))
11022 && CONST_INT_P (XEXP (op1, 1)))
11024 rtx inner_op0 = XEXP (op0, 0);
11025 rtx inner_op1 = XEXP (op1, 0);
11026 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11027 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11028 int changed = 0;
11030 if (paradoxical_subreg_p (inner_op0)
11031 && GET_CODE (inner_op1) == SUBREG
11032 && (GET_MODE (SUBREG_REG (inner_op0))
11033 == GET_MODE (SUBREG_REG (inner_op1)))
11034 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11035 <= HOST_BITS_PER_WIDE_INT)
11036 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11037 GET_MODE (SUBREG_REG (inner_op0)))))
11038 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11039 GET_MODE (SUBREG_REG (inner_op1))))))
11041 op0 = SUBREG_REG (inner_op0);
11042 op1 = SUBREG_REG (inner_op1);
11044 /* The resulting comparison is always unsigned since we masked
11045 off the original sign bit. */
11046 code = unsigned_condition (code);
11048 changed = 1;
11051 else if (c0 == c1)
11052 for (tmode = GET_CLASS_NARROWEST_MODE
11053 (GET_MODE_CLASS (GET_MODE (op0)));
11054 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11055 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11057 op0 = gen_lowpart (tmode, inner_op0);
11058 op1 = gen_lowpart (tmode, inner_op1);
11059 code = unsigned_condition (code);
11060 changed = 1;
11061 break;
11064 if (! changed)
11065 break;
11068 /* If both operands are NOT, we can strip off the outer operation
11069 and adjust the comparison code for swapped operands; similarly for
11070 NEG, except that this must be an equality comparison. */
11071 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11072 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11073 && (code == EQ || code == NE)))
11074 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11076 else
11077 break;
11080 /* If the first operand is a constant, swap the operands and adjust the
11081 comparison code appropriately, but don't do this if the second operand
11082 is already a constant integer. */
11083 if (swap_commutative_operands_p (op0, op1))
11085 tem = op0, op0 = op1, op1 = tem;
11086 code = swap_condition (code);
11089 /* We now enter a loop during which we will try to simplify the comparison.
11090 For the most part, we only are concerned with comparisons with zero,
11091 but some things may really be comparisons with zero but not start
11092 out looking that way. */
11094 while (CONST_INT_P (op1))
11096 enum machine_mode mode = GET_MODE (op0);
11097 unsigned int mode_width = GET_MODE_PRECISION (mode);
11098 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11099 int equality_comparison_p;
11100 int sign_bit_comparison_p;
11101 int unsigned_comparison_p;
11102 HOST_WIDE_INT const_op;
11104 /* We only want to handle integral modes. This catches VOIDmode,
11105 CCmode, and the floating-point modes. An exception is that we
11106 can handle VOIDmode if OP0 is a COMPARE or a comparison
11107 operation. */
11109 if (GET_MODE_CLASS (mode) != MODE_INT
11110 && ! (mode == VOIDmode
11111 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11112 break;
11114 /* Try to simplify the compare to constant, possibly changing the
11115 comparison op, and/or changing op1 to zero. */
11116 code = simplify_compare_const (code, op0, &op1);
11117 const_op = INTVAL (op1);
11119 /* Compute some predicates to simplify code below. */
11121 equality_comparison_p = (code == EQ || code == NE);
11122 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11123 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11124 || code == GEU);
11126 /* If this is a sign bit comparison and we can do arithmetic in
11127 MODE, say that we will only be needing the sign bit of OP0. */
11128 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11129 op0 = force_to_mode (op0, mode,
11130 (unsigned HOST_WIDE_INT) 1
11131 << (GET_MODE_PRECISION (mode) - 1),
11134 /* Now try cases based on the opcode of OP0. If none of the cases
11135 does a "continue", we exit this loop immediately after the
11136 switch. */
11138 switch (GET_CODE (op0))
11140 case ZERO_EXTRACT:
11141 /* If we are extracting a single bit from a variable position in
11142 a constant that has only a single bit set and are comparing it
11143 with zero, we can convert this into an equality comparison
11144 between the position and the location of the single bit. */
11145 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11146 have already reduced the shift count modulo the word size. */
11147 if (!SHIFT_COUNT_TRUNCATED
11148 && CONST_INT_P (XEXP (op0, 0))
11149 && XEXP (op0, 1) == const1_rtx
11150 && equality_comparison_p && const_op == 0
11151 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11153 if (BITS_BIG_ENDIAN)
11154 i = BITS_PER_WORD - 1 - i;
11156 op0 = XEXP (op0, 2);
11157 op1 = GEN_INT (i);
11158 const_op = i;
11160 /* Result is nonzero iff shift count is equal to I. */
11161 code = reverse_condition (code);
11162 continue;
11165 /* ... fall through ... */
11167 case SIGN_EXTRACT:
11168 tem = expand_compound_operation (op0);
11169 if (tem != op0)
11171 op0 = tem;
11172 continue;
11174 break;
11176 case NOT:
11177 /* If testing for equality, we can take the NOT of the constant. */
11178 if (equality_comparison_p
11179 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11181 op0 = XEXP (op0, 0);
11182 op1 = tem;
11183 continue;
11186 /* If just looking at the sign bit, reverse the sense of the
11187 comparison. */
11188 if (sign_bit_comparison_p)
11190 op0 = XEXP (op0, 0);
11191 code = (code == GE ? LT : GE);
11192 continue;
11194 break;
11196 case NEG:
11197 /* If testing for equality, we can take the NEG of the constant. */
11198 if (equality_comparison_p
11199 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11201 op0 = XEXP (op0, 0);
11202 op1 = tem;
11203 continue;
11206 /* The remaining cases only apply to comparisons with zero. */
11207 if (const_op != 0)
11208 break;
11210 /* When X is ABS or is known positive,
11211 (neg X) is < 0 if and only if X != 0. */
11213 if (sign_bit_comparison_p
11214 && (GET_CODE (XEXP (op0, 0)) == ABS
11215 || (mode_width <= HOST_BITS_PER_WIDE_INT
11216 && (nonzero_bits (XEXP (op0, 0), mode)
11217 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11218 == 0)))
11220 op0 = XEXP (op0, 0);
11221 code = (code == LT ? NE : EQ);
11222 continue;
11225 /* If we have NEG of something whose two high-order bits are the
11226 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11227 if (num_sign_bit_copies (op0, mode) >= 2)
11229 op0 = XEXP (op0, 0);
11230 code = swap_condition (code);
11231 continue;
11233 break;
11235 case ROTATE:
11236 /* If we are testing equality and our count is a constant, we
11237 can perform the inverse operation on our RHS. */
11238 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11239 && (tem = simplify_binary_operation (ROTATERT, mode,
11240 op1, XEXP (op0, 1))) != 0)
11242 op0 = XEXP (op0, 0);
11243 op1 = tem;
11244 continue;
11247 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11248 a particular bit. Convert it to an AND of a constant of that
11249 bit. This will be converted into a ZERO_EXTRACT. */
11250 if (const_op == 0 && sign_bit_comparison_p
11251 && CONST_INT_P (XEXP (op0, 1))
11252 && mode_width <= HOST_BITS_PER_WIDE_INT)
11254 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11255 ((unsigned HOST_WIDE_INT) 1
11256 << (mode_width - 1
11257 - INTVAL (XEXP (op0, 1)))));
11258 code = (code == LT ? NE : EQ);
11259 continue;
11262 /* Fall through. */
11264 case ABS:
11265 /* ABS is ignorable inside an equality comparison with zero. */
11266 if (const_op == 0 && equality_comparison_p)
11268 op0 = XEXP (op0, 0);
11269 continue;
11271 break;
11273 case SIGN_EXTEND:
11274 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11275 (compare FOO CONST) if CONST fits in FOO's mode and we
11276 are either testing inequality or have an unsigned
11277 comparison with ZERO_EXTEND or a signed comparison with
11278 SIGN_EXTEND. But don't do it if we don't have a compare
11279 insn of the given mode, since we'd have to revert it
11280 later on, and then we wouldn't know whether to sign- or
11281 zero-extend. */
11282 mode = GET_MODE (XEXP (op0, 0));
11283 if (GET_MODE_CLASS (mode) == MODE_INT
11284 && ! unsigned_comparison_p
11285 && HWI_COMPUTABLE_MODE_P (mode)
11286 && trunc_int_for_mode (const_op, mode) == const_op
11287 && have_insn_for (COMPARE, mode))
11289 op0 = XEXP (op0, 0);
11290 continue;
11292 break;
11294 case SUBREG:
11295 /* Check for the case where we are comparing A - C1 with C2, that is
11297 (subreg:MODE (plus (A) (-C1))) op (C2)
11299 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11300 comparison in the wider mode. One of the following two conditions
11301 must be true in order for this to be valid:
11303 1. The mode extension results in the same bit pattern being added
11304 on both sides and the comparison is equality or unsigned. As
11305 C2 has been truncated to fit in MODE, the pattern can only be
11306 all 0s or all 1s.
11308 2. The mode extension results in the sign bit being copied on
11309 each side.
11311 The difficulty here is that we have predicates for A but not for
11312 (A - C1) so we need to check that C1 is within proper bounds so
11313 as to perturbate A as little as possible. */
11315 if (mode_width <= HOST_BITS_PER_WIDE_INT
11316 && subreg_lowpart_p (op0)
11317 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11318 && GET_CODE (SUBREG_REG (op0)) == PLUS
11319 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11321 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11322 rtx a = XEXP (SUBREG_REG (op0), 0);
11323 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11325 if ((c1 > 0
11326 && (unsigned HOST_WIDE_INT) c1
11327 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11328 && (equality_comparison_p || unsigned_comparison_p)
11329 /* (A - C1) zero-extends if it is positive and sign-extends
11330 if it is negative, C2 both zero- and sign-extends. */
11331 && ((0 == (nonzero_bits (a, inner_mode)
11332 & ~GET_MODE_MASK (mode))
11333 && const_op >= 0)
11334 /* (A - C1) sign-extends if it is positive and 1-extends
11335 if it is negative, C2 both sign- and 1-extends. */
11336 || (num_sign_bit_copies (a, inner_mode)
11337 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11338 - mode_width)
11339 && const_op < 0)))
11340 || ((unsigned HOST_WIDE_INT) c1
11341 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11342 /* (A - C1) always sign-extends, like C2. */
11343 && num_sign_bit_copies (a, inner_mode)
11344 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11345 - (mode_width - 1))))
11347 op0 = SUBREG_REG (op0);
11348 continue;
11352 /* If the inner mode is narrower and we are extracting the low part,
11353 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11354 if (subreg_lowpart_p (op0)
11355 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11356 /* Fall through */ ;
11357 else
11358 break;
11360 /* ... fall through ... */
11362 case ZERO_EXTEND:
11363 mode = GET_MODE (XEXP (op0, 0));
11364 if (GET_MODE_CLASS (mode) == MODE_INT
11365 && (unsigned_comparison_p || equality_comparison_p)
11366 && HWI_COMPUTABLE_MODE_P (mode)
11367 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11368 && const_op >= 0
11369 && have_insn_for (COMPARE, mode))
11371 op0 = XEXP (op0, 0);
11372 continue;
11374 break;
11376 case PLUS:
11377 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11378 this for equality comparisons due to pathological cases involving
11379 overflows. */
11380 if (equality_comparison_p
11381 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11382 op1, XEXP (op0, 1))))
11384 op0 = XEXP (op0, 0);
11385 op1 = tem;
11386 continue;
11389 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11390 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11391 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11393 op0 = XEXP (XEXP (op0, 0), 0);
11394 code = (code == LT ? EQ : NE);
11395 continue;
11397 break;
11399 case MINUS:
11400 /* We used to optimize signed comparisons against zero, but that
11401 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11402 arrive here as equality comparisons, or (GEU, LTU) are
11403 optimized away. No need to special-case them. */
11405 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11406 (eq B (minus A C)), whichever simplifies. We can only do
11407 this for equality comparisons due to pathological cases involving
11408 overflows. */
11409 if (equality_comparison_p
11410 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11411 XEXP (op0, 1), op1)))
11413 op0 = XEXP (op0, 0);
11414 op1 = tem;
11415 continue;
11418 if (equality_comparison_p
11419 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11420 XEXP (op0, 0), op1)))
11422 op0 = XEXP (op0, 1);
11423 op1 = tem;
11424 continue;
11427 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11428 of bits in X minus 1, is one iff X > 0. */
11429 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11430 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11431 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11432 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11434 op0 = XEXP (op0, 1);
11435 code = (code == GE ? LE : GT);
11436 continue;
11438 break;
11440 case XOR:
11441 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11442 if C is zero or B is a constant. */
11443 if (equality_comparison_p
11444 && 0 != (tem = simplify_binary_operation (XOR, mode,
11445 XEXP (op0, 1), op1)))
11447 op0 = XEXP (op0, 0);
11448 op1 = tem;
11449 continue;
11451 break;
11453 case EQ: case NE:
11454 case UNEQ: case LTGT:
11455 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11456 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11457 case UNORDERED: case ORDERED:
11458 /* We can't do anything if OP0 is a condition code value, rather
11459 than an actual data value. */
11460 if (const_op != 0
11461 || CC0_P (XEXP (op0, 0))
11462 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11463 break;
11465 /* Get the two operands being compared. */
11466 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11467 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11468 else
11469 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11471 /* Check for the cases where we simply want the result of the
11472 earlier test or the opposite of that result. */
11473 if (code == NE || code == EQ
11474 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11475 && (code == LT || code == GE)))
11477 enum rtx_code new_code;
11478 if (code == LT || code == NE)
11479 new_code = GET_CODE (op0);
11480 else
11481 new_code = reversed_comparison_code (op0, NULL);
11483 if (new_code != UNKNOWN)
11485 code = new_code;
11486 op0 = tem;
11487 op1 = tem1;
11488 continue;
11491 break;
11493 case IOR:
11494 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11495 iff X <= 0. */
11496 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11497 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11498 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11500 op0 = XEXP (op0, 1);
11501 code = (code == GE ? GT : LE);
11502 continue;
11504 break;
11506 case AND:
11507 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11508 will be converted to a ZERO_EXTRACT later. */
11509 if (const_op == 0 && equality_comparison_p
11510 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11511 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11513 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11514 XEXP (XEXP (op0, 0), 1));
11515 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11516 continue;
11519 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11520 zero and X is a comparison and C1 and C2 describe only bits set
11521 in STORE_FLAG_VALUE, we can compare with X. */
11522 if (const_op == 0 && equality_comparison_p
11523 && mode_width <= HOST_BITS_PER_WIDE_INT
11524 && CONST_INT_P (XEXP (op0, 1))
11525 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11526 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11527 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11528 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11530 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11531 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11532 if ((~STORE_FLAG_VALUE & mask) == 0
11533 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11534 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11535 && COMPARISON_P (tem))))
11537 op0 = XEXP (XEXP (op0, 0), 0);
11538 continue;
11542 /* If we are doing an equality comparison of an AND of a bit equal
11543 to the sign bit, replace this with a LT or GE comparison of
11544 the underlying value. */
11545 if (equality_comparison_p
11546 && const_op == 0
11547 && CONST_INT_P (XEXP (op0, 1))
11548 && mode_width <= HOST_BITS_PER_WIDE_INT
11549 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11550 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11552 op0 = XEXP (op0, 0);
11553 code = (code == EQ ? GE : LT);
11554 continue;
11557 /* If this AND operation is really a ZERO_EXTEND from a narrower
11558 mode, the constant fits within that mode, and this is either an
11559 equality or unsigned comparison, try to do this comparison in
11560 the narrower mode.
11562 Note that in:
11564 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11565 -> (ne:DI (reg:SI 4) (const_int 0))
11567 unless TRULY_NOOP_TRUNCATION allows it or the register is
11568 known to hold a value of the required mode the
11569 transformation is invalid. */
11570 if ((equality_comparison_p || unsigned_comparison_p)
11571 && CONST_INT_P (XEXP (op0, 1))
11572 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11573 & GET_MODE_MASK (mode))
11574 + 1)) >= 0
11575 && const_op >> i == 0
11576 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11577 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11578 || (REG_P (XEXP (op0, 0))
11579 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11581 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11582 continue;
11585 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11586 fits in both M1 and M2 and the SUBREG is either paradoxical
11587 or represents the low part, permute the SUBREG and the AND
11588 and try again. */
11589 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11591 unsigned HOST_WIDE_INT c1;
11592 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11593 /* Require an integral mode, to avoid creating something like
11594 (AND:SF ...). */
11595 if (SCALAR_INT_MODE_P (tmode)
11596 /* It is unsafe to commute the AND into the SUBREG if the
11597 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11598 not defined. As originally written the upper bits
11599 have a defined value due to the AND operation.
11600 However, if we commute the AND inside the SUBREG then
11601 they no longer have defined values and the meaning of
11602 the code has been changed. */
11603 && (0
11604 #ifdef WORD_REGISTER_OPERATIONS
11605 || (mode_width > GET_MODE_PRECISION (tmode)
11606 && mode_width <= BITS_PER_WORD)
11607 #endif
11608 || (mode_width <= GET_MODE_PRECISION (tmode)
11609 && subreg_lowpart_p (XEXP (op0, 0))))
11610 && CONST_INT_P (XEXP (op0, 1))
11611 && mode_width <= HOST_BITS_PER_WIDE_INT
11612 && HWI_COMPUTABLE_MODE_P (tmode)
11613 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11614 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11615 && c1 != mask
11616 && c1 != GET_MODE_MASK (tmode))
11618 op0 = simplify_gen_binary (AND, tmode,
11619 SUBREG_REG (XEXP (op0, 0)),
11620 gen_int_mode (c1, tmode));
11621 op0 = gen_lowpart (mode, op0);
11622 continue;
11626 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11627 if (const_op == 0 && equality_comparison_p
11628 && XEXP (op0, 1) == const1_rtx
11629 && GET_CODE (XEXP (op0, 0)) == NOT)
11631 op0 = simplify_and_const_int (NULL_RTX, mode,
11632 XEXP (XEXP (op0, 0), 0), 1);
11633 code = (code == NE ? EQ : NE);
11634 continue;
11637 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11638 (eq (and (lshiftrt X) 1) 0).
11639 Also handle the case where (not X) is expressed using xor. */
11640 if (const_op == 0 && equality_comparison_p
11641 && XEXP (op0, 1) == const1_rtx
11642 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11644 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11645 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11647 if (GET_CODE (shift_op) == NOT
11648 || (GET_CODE (shift_op) == XOR
11649 && CONST_INT_P (XEXP (shift_op, 1))
11650 && CONST_INT_P (shift_count)
11651 && HWI_COMPUTABLE_MODE_P (mode)
11652 && (UINTVAL (XEXP (shift_op, 1))
11653 == (unsigned HOST_WIDE_INT) 1
11654 << INTVAL (shift_count))))
11657 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11658 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11659 code = (code == NE ? EQ : NE);
11660 continue;
11663 break;
11665 case ASHIFT:
11666 /* If we have (compare (ashift FOO N) (const_int C)) and
11667 the high order N bits of FOO (N+1 if an inequality comparison)
11668 are known to be zero, we can do this by comparing FOO with C
11669 shifted right N bits so long as the low-order N bits of C are
11670 zero. */
11671 if (CONST_INT_P (XEXP (op0, 1))
11672 && INTVAL (XEXP (op0, 1)) >= 0
11673 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11674 < HOST_BITS_PER_WIDE_INT)
11675 && (((unsigned HOST_WIDE_INT) const_op
11676 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11677 - 1)) == 0)
11678 && mode_width <= HOST_BITS_PER_WIDE_INT
11679 && (nonzero_bits (XEXP (op0, 0), mode)
11680 & ~(mask >> (INTVAL (XEXP (op0, 1))
11681 + ! equality_comparison_p))) == 0)
11683 /* We must perform a logical shift, not an arithmetic one,
11684 as we want the top N bits of C to be zero. */
11685 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11687 temp >>= INTVAL (XEXP (op0, 1));
11688 op1 = gen_int_mode (temp, mode);
11689 op0 = XEXP (op0, 0);
11690 continue;
11693 /* If we are doing a sign bit comparison, it means we are testing
11694 a particular bit. Convert it to the appropriate AND. */
11695 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11696 && mode_width <= HOST_BITS_PER_WIDE_INT)
11698 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11699 ((unsigned HOST_WIDE_INT) 1
11700 << (mode_width - 1
11701 - INTVAL (XEXP (op0, 1)))));
11702 code = (code == LT ? NE : EQ);
11703 continue;
11706 /* If this an equality comparison with zero and we are shifting
11707 the low bit to the sign bit, we can convert this to an AND of the
11708 low-order bit. */
11709 if (const_op == 0 && equality_comparison_p
11710 && CONST_INT_P (XEXP (op0, 1))
11711 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11713 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11714 continue;
11716 break;
11718 case ASHIFTRT:
11719 /* If this is an equality comparison with zero, we can do this
11720 as a logical shift, which might be much simpler. */
11721 if (equality_comparison_p && const_op == 0
11722 && CONST_INT_P (XEXP (op0, 1)))
11724 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11725 XEXP (op0, 0),
11726 INTVAL (XEXP (op0, 1)));
11727 continue;
11730 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11731 do the comparison in a narrower mode. */
11732 if (! unsigned_comparison_p
11733 && CONST_INT_P (XEXP (op0, 1))
11734 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11735 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11736 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11737 MODE_INT, 1)) != BLKmode
11738 && (((unsigned HOST_WIDE_INT) const_op
11739 + (GET_MODE_MASK (tmode) >> 1) + 1)
11740 <= GET_MODE_MASK (tmode)))
11742 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11743 continue;
11746 /* Likewise if OP0 is a PLUS of a sign extension with a
11747 constant, which is usually represented with the PLUS
11748 between the shifts. */
11749 if (! unsigned_comparison_p
11750 && CONST_INT_P (XEXP (op0, 1))
11751 && GET_CODE (XEXP (op0, 0)) == PLUS
11752 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11753 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11754 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11755 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11756 MODE_INT, 1)) != BLKmode
11757 && (((unsigned HOST_WIDE_INT) const_op
11758 + (GET_MODE_MASK (tmode) >> 1) + 1)
11759 <= GET_MODE_MASK (tmode)))
11761 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11762 rtx add_const = XEXP (XEXP (op0, 0), 1);
11763 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11764 add_const, XEXP (op0, 1));
11766 op0 = simplify_gen_binary (PLUS, tmode,
11767 gen_lowpart (tmode, inner),
11768 new_const);
11769 continue;
11772 /* ... fall through ... */
11773 case LSHIFTRT:
11774 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11775 the low order N bits of FOO are known to be zero, we can do this
11776 by comparing FOO with C shifted left N bits so long as no
11777 overflow occurs. Even if the low order N bits of FOO aren't known
11778 to be zero, if the comparison is >= or < we can use the same
11779 optimization and for > or <= by setting all the low
11780 order N bits in the comparison constant. */
11781 if (CONST_INT_P (XEXP (op0, 1))
11782 && INTVAL (XEXP (op0, 1)) > 0
11783 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11784 && mode_width <= HOST_BITS_PER_WIDE_INT
11785 && (((unsigned HOST_WIDE_INT) const_op
11786 + (GET_CODE (op0) != LSHIFTRT
11787 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11788 + 1)
11789 : 0))
11790 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11792 unsigned HOST_WIDE_INT low_bits
11793 = (nonzero_bits (XEXP (op0, 0), mode)
11794 & (((unsigned HOST_WIDE_INT) 1
11795 << INTVAL (XEXP (op0, 1))) - 1));
11796 if (low_bits == 0 || !equality_comparison_p)
11798 /* If the shift was logical, then we must make the condition
11799 unsigned. */
11800 if (GET_CODE (op0) == LSHIFTRT)
11801 code = unsigned_condition (code);
11803 const_op <<= INTVAL (XEXP (op0, 1));
11804 if (low_bits != 0
11805 && (code == GT || code == GTU
11806 || code == LE || code == LEU))
11807 const_op
11808 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11809 op1 = GEN_INT (const_op);
11810 op0 = XEXP (op0, 0);
11811 continue;
11815 /* If we are using this shift to extract just the sign bit, we
11816 can replace this with an LT or GE comparison. */
11817 if (const_op == 0
11818 && (equality_comparison_p || sign_bit_comparison_p)
11819 && CONST_INT_P (XEXP (op0, 1))
11820 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11822 op0 = XEXP (op0, 0);
11823 code = (code == NE || code == GT ? LT : GE);
11824 continue;
11826 break;
11828 default:
11829 break;
11832 break;
11835 /* Now make any compound operations involved in this comparison. Then,
11836 check for an outmost SUBREG on OP0 that is not doing anything or is
11837 paradoxical. The latter transformation must only be performed when
11838 it is known that the "extra" bits will be the same in op0 and op1 or
11839 that they don't matter. There are three cases to consider:
11841 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11842 care bits and we can assume they have any convenient value. So
11843 making the transformation is safe.
11845 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11846 In this case the upper bits of op0 are undefined. We should not make
11847 the simplification in that case as we do not know the contents of
11848 those bits.
11850 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11851 UNKNOWN. In that case we know those bits are zeros or ones. We must
11852 also be sure that they are the same as the upper bits of op1.
11854 We can never remove a SUBREG for a non-equality comparison because
11855 the sign bit is in a different place in the underlying object. */
11857 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11858 op1 = make_compound_operation (op1, SET);
11860 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11861 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11862 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11863 && (code == NE || code == EQ))
11865 if (paradoxical_subreg_p (op0))
11867 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11868 implemented. */
11869 if (REG_P (SUBREG_REG (op0)))
11871 op0 = SUBREG_REG (op0);
11872 op1 = gen_lowpart (GET_MODE (op0), op1);
11875 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11876 <= HOST_BITS_PER_WIDE_INT)
11877 && (nonzero_bits (SUBREG_REG (op0),
11878 GET_MODE (SUBREG_REG (op0)))
11879 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11881 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11883 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11884 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11885 op0 = SUBREG_REG (op0), op1 = tem;
11889 /* We now do the opposite procedure: Some machines don't have compare
11890 insns in all modes. If OP0's mode is an integer mode smaller than a
11891 word and we can't do a compare in that mode, see if there is a larger
11892 mode for which we can do the compare. There are a number of cases in
11893 which we can use the wider mode. */
11895 mode = GET_MODE (op0);
11896 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11897 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11898 && ! have_insn_for (COMPARE, mode))
11899 for (tmode = GET_MODE_WIDER_MODE (mode);
11900 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11901 tmode = GET_MODE_WIDER_MODE (tmode))
11902 if (have_insn_for (COMPARE, tmode))
11904 int zero_extended;
11906 /* If this is a test for negative, we can make an explicit
11907 test of the sign bit. Test this first so we can use
11908 a paradoxical subreg to extend OP0. */
11910 if (op1 == const0_rtx && (code == LT || code == GE)
11911 && HWI_COMPUTABLE_MODE_P (mode))
11913 op0 = simplify_gen_binary (AND, tmode,
11914 gen_lowpart (tmode, op0),
11915 GEN_INT ((unsigned HOST_WIDE_INT) 1
11916 << (GET_MODE_BITSIZE (mode)
11917 - 1)));
11918 code = (code == LT) ? NE : EQ;
11919 break;
11922 /* If the only nonzero bits in OP0 and OP1 are those in the
11923 narrower mode and this is an equality or unsigned comparison,
11924 we can use the wider mode. Similarly for sign-extended
11925 values, in which case it is true for all comparisons. */
11926 zero_extended = ((code == EQ || code == NE
11927 || code == GEU || code == GTU
11928 || code == LEU || code == LTU)
11929 && (nonzero_bits (op0, tmode)
11930 & ~GET_MODE_MASK (mode)) == 0
11931 && ((CONST_INT_P (op1)
11932 || (nonzero_bits (op1, tmode)
11933 & ~GET_MODE_MASK (mode)) == 0)));
11935 if (zero_extended
11936 || ((num_sign_bit_copies (op0, tmode)
11937 > (unsigned int) (GET_MODE_PRECISION (tmode)
11938 - GET_MODE_PRECISION (mode)))
11939 && (num_sign_bit_copies (op1, tmode)
11940 > (unsigned int) (GET_MODE_PRECISION (tmode)
11941 - GET_MODE_PRECISION (mode)))))
11943 /* If OP0 is an AND and we don't have an AND in MODE either,
11944 make a new AND in the proper mode. */
11945 if (GET_CODE (op0) == AND
11946 && !have_insn_for (AND, mode))
11947 op0 = simplify_gen_binary (AND, tmode,
11948 gen_lowpart (tmode,
11949 XEXP (op0, 0)),
11950 gen_lowpart (tmode,
11951 XEXP (op0, 1)));
11952 else
11954 if (zero_extended)
11956 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11957 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11959 else
11961 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11962 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11964 break;
11969 /* If this machine only supports a subset of valid comparisons, see if we
11970 can convert an unsupported one into a supported one. */
11971 target_canonicalize_comparison (&code, &op0, &op1, 0);
11973 *pop0 = op0;
11974 *pop1 = op1;
11976 return code;
11979 /* Utility function for record_value_for_reg. Count number of
11980 rtxs in X. */
11981 static int
11982 count_rtxs (rtx x)
11984 enum rtx_code code = GET_CODE (x);
11985 const char *fmt;
11986 int i, j, ret = 1;
11988 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
11989 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
11991 rtx x0 = XEXP (x, 0);
11992 rtx x1 = XEXP (x, 1);
11994 if (x0 == x1)
11995 return 1 + 2 * count_rtxs (x0);
11997 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
11998 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
11999 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12000 return 2 + 2 * count_rtxs (x0)
12001 + count_rtxs (x == XEXP (x1, 0)
12002 ? XEXP (x1, 1) : XEXP (x1, 0));
12004 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12005 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12006 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12007 return 2 + 2 * count_rtxs (x1)
12008 + count_rtxs (x == XEXP (x0, 0)
12009 ? XEXP (x0, 1) : XEXP (x0, 0));
12012 fmt = GET_RTX_FORMAT (code);
12013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12014 if (fmt[i] == 'e')
12015 ret += count_rtxs (XEXP (x, i));
12016 else if (fmt[i] == 'E')
12017 for (j = 0; j < XVECLEN (x, i); j++)
12018 ret += count_rtxs (XVECEXP (x, i, j));
12020 return ret;
12023 /* Utility function for following routine. Called when X is part of a value
12024 being stored into last_set_value. Sets last_set_table_tick
12025 for each register mentioned. Similar to mention_regs in cse.c */
12027 static void
12028 update_table_tick (rtx x)
12030 enum rtx_code code = GET_CODE (x);
12031 const char *fmt = GET_RTX_FORMAT (code);
12032 int i, j;
12034 if (code == REG)
12036 unsigned int regno = REGNO (x);
12037 unsigned int endregno = END_REGNO (x);
12038 unsigned int r;
12040 for (r = regno; r < endregno; r++)
12042 reg_stat_type *rsp = &reg_stat[r];
12043 rsp->last_set_table_tick = label_tick;
12046 return;
12049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12050 if (fmt[i] == 'e')
12052 /* Check for identical subexpressions. If x contains
12053 identical subexpression we only have to traverse one of
12054 them. */
12055 if (i == 0 && ARITHMETIC_P (x))
12057 /* Note that at this point x1 has already been
12058 processed. */
12059 rtx x0 = XEXP (x, 0);
12060 rtx x1 = XEXP (x, 1);
12062 /* If x0 and x1 are identical then there is no need to
12063 process x0. */
12064 if (x0 == x1)
12065 break;
12067 /* If x0 is identical to a subexpression of x1 then while
12068 processing x1, x0 has already been processed. Thus we
12069 are done with x. */
12070 if (ARITHMETIC_P (x1)
12071 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12072 break;
12074 /* If x1 is identical to a subexpression of x0 then we
12075 still have to process the rest of x0. */
12076 if (ARITHMETIC_P (x0)
12077 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12079 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12080 break;
12084 update_table_tick (XEXP (x, i));
12086 else if (fmt[i] == 'E')
12087 for (j = 0; j < XVECLEN (x, i); j++)
12088 update_table_tick (XVECEXP (x, i, j));
12091 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12092 are saying that the register is clobbered and we no longer know its
12093 value. If INSN is zero, don't update reg_stat[].last_set; this is
12094 only permitted with VALUE also zero and is used to invalidate the
12095 register. */
12097 static void
12098 record_value_for_reg (rtx reg, rtx insn, rtx value)
12100 unsigned int regno = REGNO (reg);
12101 unsigned int endregno = END_REGNO (reg);
12102 unsigned int i;
12103 reg_stat_type *rsp;
12105 /* If VALUE contains REG and we have a previous value for REG, substitute
12106 the previous value. */
12107 if (value && insn && reg_overlap_mentioned_p (reg, value))
12109 rtx tem;
12111 /* Set things up so get_last_value is allowed to see anything set up to
12112 our insn. */
12113 subst_low_luid = DF_INSN_LUID (insn);
12114 tem = get_last_value (reg);
12116 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12117 it isn't going to be useful and will take a lot of time to process,
12118 so just use the CLOBBER. */
12120 if (tem)
12122 if (ARITHMETIC_P (tem)
12123 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12124 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12125 tem = XEXP (tem, 0);
12126 else if (count_occurrences (value, reg, 1) >= 2)
12128 /* If there are two or more occurrences of REG in VALUE,
12129 prevent the value from growing too much. */
12130 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12131 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12134 value = replace_rtx (copy_rtx (value), reg, tem);
12138 /* For each register modified, show we don't know its value, that
12139 we don't know about its bitwise content, that its value has been
12140 updated, and that we don't know the location of the death of the
12141 register. */
12142 for (i = regno; i < endregno; i++)
12144 rsp = &reg_stat[i];
12146 if (insn)
12147 rsp->last_set = insn;
12149 rsp->last_set_value = 0;
12150 rsp->last_set_mode = VOIDmode;
12151 rsp->last_set_nonzero_bits = 0;
12152 rsp->last_set_sign_bit_copies = 0;
12153 rsp->last_death = 0;
12154 rsp->truncated_to_mode = VOIDmode;
12157 /* Mark registers that are being referenced in this value. */
12158 if (value)
12159 update_table_tick (value);
12161 /* Now update the status of each register being set.
12162 If someone is using this register in this block, set this register
12163 to invalid since we will get confused between the two lives in this
12164 basic block. This makes using this register always invalid. In cse, we
12165 scan the table to invalidate all entries using this register, but this
12166 is too much work for us. */
12168 for (i = regno; i < endregno; i++)
12170 rsp = &reg_stat[i];
12171 rsp->last_set_label = label_tick;
12172 if (!insn
12173 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12174 rsp->last_set_invalid = 1;
12175 else
12176 rsp->last_set_invalid = 0;
12179 /* The value being assigned might refer to X (like in "x++;"). In that
12180 case, we must replace it with (clobber (const_int 0)) to prevent
12181 infinite loops. */
12182 rsp = &reg_stat[regno];
12183 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12185 value = copy_rtx (value);
12186 if (!get_last_value_validate (&value, insn, label_tick, 1))
12187 value = 0;
12190 /* For the main register being modified, update the value, the mode, the
12191 nonzero bits, and the number of sign bit copies. */
12193 rsp->last_set_value = value;
12195 if (value)
12197 enum machine_mode mode = GET_MODE (reg);
12198 subst_low_luid = DF_INSN_LUID (insn);
12199 rsp->last_set_mode = mode;
12200 if (GET_MODE_CLASS (mode) == MODE_INT
12201 && HWI_COMPUTABLE_MODE_P (mode))
12202 mode = nonzero_bits_mode;
12203 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12204 rsp->last_set_sign_bit_copies
12205 = num_sign_bit_copies (value, GET_MODE (reg));
12209 /* Called via note_stores from record_dead_and_set_regs to handle one
12210 SET or CLOBBER in an insn. DATA is the instruction in which the
12211 set is occurring. */
12213 static void
12214 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12216 rtx record_dead_insn = (rtx) data;
12218 if (GET_CODE (dest) == SUBREG)
12219 dest = SUBREG_REG (dest);
12221 if (!record_dead_insn)
12223 if (REG_P (dest))
12224 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12225 return;
12228 if (REG_P (dest))
12230 /* If we are setting the whole register, we know its value. Otherwise
12231 show that we don't know the value. We can handle SUBREG in
12232 some cases. */
12233 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12234 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12235 else if (GET_CODE (setter) == SET
12236 && GET_CODE (SET_DEST (setter)) == SUBREG
12237 && SUBREG_REG (SET_DEST (setter)) == dest
12238 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12239 && subreg_lowpart_p (SET_DEST (setter)))
12240 record_value_for_reg (dest, record_dead_insn,
12241 gen_lowpart (GET_MODE (dest),
12242 SET_SRC (setter)));
12243 else
12244 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12246 else if (MEM_P (dest)
12247 /* Ignore pushes, they clobber nothing. */
12248 && ! push_operand (dest, GET_MODE (dest)))
12249 mem_last_set = DF_INSN_LUID (record_dead_insn);
12252 /* Update the records of when each REG was most recently set or killed
12253 for the things done by INSN. This is the last thing done in processing
12254 INSN in the combiner loop.
12256 We update reg_stat[], in particular fields last_set, last_set_value,
12257 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12258 last_death, and also the similar information mem_last_set (which insn
12259 most recently modified memory) and last_call_luid (which insn was the
12260 most recent subroutine call). */
12262 static void
12263 record_dead_and_set_regs (rtx insn)
12265 rtx link;
12266 unsigned int i;
12268 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12270 if (REG_NOTE_KIND (link) == REG_DEAD
12271 && REG_P (XEXP (link, 0)))
12273 unsigned int regno = REGNO (XEXP (link, 0));
12274 unsigned int endregno = END_REGNO (XEXP (link, 0));
12276 for (i = regno; i < endregno; i++)
12278 reg_stat_type *rsp;
12280 rsp = &reg_stat[i];
12281 rsp->last_death = insn;
12284 else if (REG_NOTE_KIND (link) == REG_INC)
12285 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12288 if (CALL_P (insn))
12290 hard_reg_set_iterator hrsi;
12291 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12293 reg_stat_type *rsp;
12295 rsp = &reg_stat[i];
12296 rsp->last_set_invalid = 1;
12297 rsp->last_set = insn;
12298 rsp->last_set_value = 0;
12299 rsp->last_set_mode = VOIDmode;
12300 rsp->last_set_nonzero_bits = 0;
12301 rsp->last_set_sign_bit_copies = 0;
12302 rsp->last_death = 0;
12303 rsp->truncated_to_mode = VOIDmode;
12306 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12308 /* We can't combine into a call pattern. Remember, though, that
12309 the return value register is set at this LUID. We could
12310 still replace a register with the return value from the
12311 wrong subroutine call! */
12312 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12314 else
12315 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12318 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12319 register present in the SUBREG, so for each such SUBREG go back and
12320 adjust nonzero and sign bit information of the registers that are
12321 known to have some zero/sign bits set.
12323 This is needed because when combine blows the SUBREGs away, the
12324 information on zero/sign bits is lost and further combines can be
12325 missed because of that. */
12327 static void
12328 record_promoted_value (rtx insn, rtx subreg)
12330 struct insn_link *links;
12331 rtx set;
12332 unsigned int regno = REGNO (SUBREG_REG (subreg));
12333 enum machine_mode mode = GET_MODE (subreg);
12335 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12336 return;
12338 for (links = LOG_LINKS (insn); links;)
12340 reg_stat_type *rsp;
12342 insn = links->insn;
12343 set = single_set (insn);
12345 if (! set || !REG_P (SET_DEST (set))
12346 || REGNO (SET_DEST (set)) != regno
12347 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12349 links = links->next;
12350 continue;
12353 rsp = &reg_stat[regno];
12354 if (rsp->last_set == insn)
12356 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12357 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12360 if (REG_P (SET_SRC (set)))
12362 regno = REGNO (SET_SRC (set));
12363 links = LOG_LINKS (insn);
12365 else
12366 break;
12370 /* Check if X, a register, is known to contain a value already
12371 truncated to MODE. In this case we can use a subreg to refer to
12372 the truncated value even though in the generic case we would need
12373 an explicit truncation. */
12375 static bool
12376 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12378 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12379 enum machine_mode truncated = rsp->truncated_to_mode;
12381 if (truncated == 0
12382 || rsp->truncation_label < label_tick_ebb_start)
12383 return false;
12384 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12385 return true;
12386 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12387 return true;
12388 return false;
12391 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12392 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12393 might be able to turn a truncate into a subreg using this information.
12394 Return -1 if traversing *P is complete or 0 otherwise. */
12396 static int
12397 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12399 rtx x = *p;
12400 enum machine_mode truncated_mode;
12401 reg_stat_type *rsp;
12403 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12405 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12406 truncated_mode = GET_MODE (x);
12408 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12409 return -1;
12411 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12412 return -1;
12414 x = SUBREG_REG (x);
12416 /* ??? For hard-regs we now record everything. We might be able to
12417 optimize this using last_set_mode. */
12418 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12419 truncated_mode = GET_MODE (x);
12420 else
12421 return 0;
12423 rsp = &reg_stat[REGNO (x)];
12424 if (rsp->truncated_to_mode == 0
12425 || rsp->truncation_label < label_tick_ebb_start
12426 || (GET_MODE_SIZE (truncated_mode)
12427 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12429 rsp->truncated_to_mode = truncated_mode;
12430 rsp->truncation_label = label_tick;
12433 return -1;
12436 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12437 the modes they are used in. This can help truning TRUNCATEs into
12438 SUBREGs. */
12440 static void
12441 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12443 for_each_rtx (x, record_truncated_value, NULL);
12446 /* Scan X for promoted SUBREGs. For each one found,
12447 note what it implies to the registers used in it. */
12449 static void
12450 check_promoted_subreg (rtx insn, rtx x)
12452 if (GET_CODE (x) == SUBREG
12453 && SUBREG_PROMOTED_VAR_P (x)
12454 && REG_P (SUBREG_REG (x)))
12455 record_promoted_value (insn, x);
12456 else
12458 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12459 int i, j;
12461 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12462 switch (format[i])
12464 case 'e':
12465 check_promoted_subreg (insn, XEXP (x, i));
12466 break;
12467 case 'V':
12468 case 'E':
12469 if (XVEC (x, i) != 0)
12470 for (j = 0; j < XVECLEN (x, i); j++)
12471 check_promoted_subreg (insn, XVECEXP (x, i, j));
12472 break;
12477 /* Verify that all the registers and memory references mentioned in *LOC are
12478 still valid. *LOC was part of a value set in INSN when label_tick was
12479 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12480 the invalid references with (clobber (const_int 0)) and return 1. This
12481 replacement is useful because we often can get useful information about
12482 the form of a value (e.g., if it was produced by a shift that always
12483 produces -1 or 0) even though we don't know exactly what registers it
12484 was produced from. */
12486 static int
12487 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12489 rtx x = *loc;
12490 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12491 int len = GET_RTX_LENGTH (GET_CODE (x));
12492 int i, j;
12494 if (REG_P (x))
12496 unsigned int regno = REGNO (x);
12497 unsigned int endregno = END_REGNO (x);
12498 unsigned int j;
12500 for (j = regno; j < endregno; j++)
12502 reg_stat_type *rsp = &reg_stat[j];
12503 if (rsp->last_set_invalid
12504 /* If this is a pseudo-register that was only set once and not
12505 live at the beginning of the function, it is always valid. */
12506 || (! (regno >= FIRST_PSEUDO_REGISTER
12507 && REG_N_SETS (regno) == 1
12508 && (!REGNO_REG_SET_P
12509 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12510 && rsp->last_set_label > tick))
12512 if (replace)
12513 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12514 return replace;
12518 return 1;
12520 /* If this is a memory reference, make sure that there were no stores after
12521 it that might have clobbered the value. We don't have alias info, so we
12522 assume any store invalidates it. Moreover, we only have local UIDs, so
12523 we also assume that there were stores in the intervening basic blocks. */
12524 else if (MEM_P (x) && !MEM_READONLY_P (x)
12525 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12527 if (replace)
12528 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12529 return replace;
12532 for (i = 0; i < len; i++)
12534 if (fmt[i] == 'e')
12536 /* Check for identical subexpressions. If x contains
12537 identical subexpression we only have to traverse one of
12538 them. */
12539 if (i == 1 && ARITHMETIC_P (x))
12541 /* Note that at this point x0 has already been checked
12542 and found valid. */
12543 rtx x0 = XEXP (x, 0);
12544 rtx x1 = XEXP (x, 1);
12546 /* If x0 and x1 are identical then x is also valid. */
12547 if (x0 == x1)
12548 return 1;
12550 /* If x1 is identical to a subexpression of x0 then
12551 while checking x0, x1 has already been checked. Thus
12552 it is valid and so as x. */
12553 if (ARITHMETIC_P (x0)
12554 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12555 return 1;
12557 /* If x0 is identical to a subexpression of x1 then x is
12558 valid iff the rest of x1 is valid. */
12559 if (ARITHMETIC_P (x1)
12560 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12561 return
12562 get_last_value_validate (&XEXP (x1,
12563 x0 == XEXP (x1, 0) ? 1 : 0),
12564 insn, tick, replace);
12567 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12568 replace) == 0)
12569 return 0;
12571 else if (fmt[i] == 'E')
12572 for (j = 0; j < XVECLEN (x, i); j++)
12573 if (get_last_value_validate (&XVECEXP (x, i, j),
12574 insn, tick, replace) == 0)
12575 return 0;
12578 /* If we haven't found a reason for it to be invalid, it is valid. */
12579 return 1;
12582 /* Get the last value assigned to X, if known. Some registers
12583 in the value may be replaced with (clobber (const_int 0)) if their value
12584 is known longer known reliably. */
12586 static rtx
12587 get_last_value (const_rtx x)
12589 unsigned int regno;
12590 rtx value;
12591 reg_stat_type *rsp;
12593 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12594 then convert it to the desired mode. If this is a paradoxical SUBREG,
12595 we cannot predict what values the "extra" bits might have. */
12596 if (GET_CODE (x) == SUBREG
12597 && subreg_lowpart_p (x)
12598 && !paradoxical_subreg_p (x)
12599 && (value = get_last_value (SUBREG_REG (x))) != 0)
12600 return gen_lowpart (GET_MODE (x), value);
12602 if (!REG_P (x))
12603 return 0;
12605 regno = REGNO (x);
12606 rsp = &reg_stat[regno];
12607 value = rsp->last_set_value;
12609 /* If we don't have a value, or if it isn't for this basic block and
12610 it's either a hard register, set more than once, or it's a live
12611 at the beginning of the function, return 0.
12613 Because if it's not live at the beginning of the function then the reg
12614 is always set before being used (is never used without being set).
12615 And, if it's set only once, and it's always set before use, then all
12616 uses must have the same last value, even if it's not from this basic
12617 block. */
12619 if (value == 0
12620 || (rsp->last_set_label < label_tick_ebb_start
12621 && (regno < FIRST_PSEUDO_REGISTER
12622 || REG_N_SETS (regno) != 1
12623 || REGNO_REG_SET_P
12624 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12625 return 0;
12627 /* If the value was set in a later insn than the ones we are processing,
12628 we can't use it even if the register was only set once. */
12629 if (rsp->last_set_label == label_tick
12630 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12631 return 0;
12633 /* If the value has all its registers valid, return it. */
12634 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12635 return value;
12637 /* Otherwise, make a copy and replace any invalid register with
12638 (clobber (const_int 0)). If that fails for some reason, return 0. */
12640 value = copy_rtx (value);
12641 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12642 return value;
12644 return 0;
12647 /* Return nonzero if expression X refers to a REG or to memory
12648 that is set in an instruction more recent than FROM_LUID. */
12650 static int
12651 use_crosses_set_p (const_rtx x, int from_luid)
12653 const char *fmt;
12654 int i;
12655 enum rtx_code code = GET_CODE (x);
12657 if (code == REG)
12659 unsigned int regno = REGNO (x);
12660 unsigned endreg = END_REGNO (x);
12662 #ifdef PUSH_ROUNDING
12663 /* Don't allow uses of the stack pointer to be moved,
12664 because we don't know whether the move crosses a push insn. */
12665 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12666 return 1;
12667 #endif
12668 for (; regno < endreg; regno++)
12670 reg_stat_type *rsp = &reg_stat[regno];
12671 if (rsp->last_set
12672 && rsp->last_set_label == label_tick
12673 && DF_INSN_LUID (rsp->last_set) > from_luid)
12674 return 1;
12676 return 0;
12679 if (code == MEM && mem_last_set > from_luid)
12680 return 1;
12682 fmt = GET_RTX_FORMAT (code);
12684 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12686 if (fmt[i] == 'E')
12688 int j;
12689 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12690 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12691 return 1;
12693 else if (fmt[i] == 'e'
12694 && use_crosses_set_p (XEXP (x, i), from_luid))
12695 return 1;
12697 return 0;
12700 /* Define three variables used for communication between the following
12701 routines. */
12703 static unsigned int reg_dead_regno, reg_dead_endregno;
12704 static int reg_dead_flag;
12706 /* Function called via note_stores from reg_dead_at_p.
12708 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12709 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12711 static void
12712 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12714 unsigned int regno, endregno;
12716 if (!REG_P (dest))
12717 return;
12719 regno = REGNO (dest);
12720 endregno = END_REGNO (dest);
12721 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12722 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12725 /* Return nonzero if REG is known to be dead at INSN.
12727 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12728 referencing REG, it is dead. If we hit a SET referencing REG, it is
12729 live. Otherwise, see if it is live or dead at the start of the basic
12730 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12731 must be assumed to be always live. */
12733 static int
12734 reg_dead_at_p (rtx reg, rtx insn)
12736 basic_block block;
12737 unsigned int i;
12739 /* Set variables for reg_dead_at_p_1. */
12740 reg_dead_regno = REGNO (reg);
12741 reg_dead_endregno = END_REGNO (reg);
12743 reg_dead_flag = 0;
12745 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12746 we allow the machine description to decide whether use-and-clobber
12747 patterns are OK. */
12748 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12750 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12751 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12752 return 0;
12755 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12756 beginning of basic block. */
12757 block = BLOCK_FOR_INSN (insn);
12758 for (;;)
12760 if (INSN_P (insn))
12762 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12763 if (reg_dead_flag)
12764 return reg_dead_flag == 1 ? 1 : 0;
12766 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12767 return 1;
12770 if (insn == BB_HEAD (block))
12771 break;
12773 insn = PREV_INSN (insn);
12776 /* Look at live-in sets for the basic block that we were in. */
12777 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12778 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12779 return 0;
12781 return 1;
12784 /* Note hard registers in X that are used. */
12786 static void
12787 mark_used_regs_combine (rtx x)
12789 RTX_CODE code = GET_CODE (x);
12790 unsigned int regno;
12791 int i;
12793 switch (code)
12795 case LABEL_REF:
12796 case SYMBOL_REF:
12797 case CONST:
12798 CASE_CONST_ANY:
12799 case PC:
12800 case ADDR_VEC:
12801 case ADDR_DIFF_VEC:
12802 case ASM_INPUT:
12803 #ifdef HAVE_cc0
12804 /* CC0 must die in the insn after it is set, so we don't need to take
12805 special note of it here. */
12806 case CC0:
12807 #endif
12808 return;
12810 case CLOBBER:
12811 /* If we are clobbering a MEM, mark any hard registers inside the
12812 address as used. */
12813 if (MEM_P (XEXP (x, 0)))
12814 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12815 return;
12817 case REG:
12818 regno = REGNO (x);
12819 /* A hard reg in a wide mode may really be multiple registers.
12820 If so, mark all of them just like the first. */
12821 if (regno < FIRST_PSEUDO_REGISTER)
12823 /* None of this applies to the stack, frame or arg pointers. */
12824 if (regno == STACK_POINTER_REGNUM
12825 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12826 || regno == HARD_FRAME_POINTER_REGNUM
12827 #endif
12828 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12829 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12830 #endif
12831 || regno == FRAME_POINTER_REGNUM)
12832 return;
12834 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12836 return;
12838 case SET:
12840 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12841 the address. */
12842 rtx testreg = SET_DEST (x);
12844 while (GET_CODE (testreg) == SUBREG
12845 || GET_CODE (testreg) == ZERO_EXTRACT
12846 || GET_CODE (testreg) == STRICT_LOW_PART)
12847 testreg = XEXP (testreg, 0);
12849 if (MEM_P (testreg))
12850 mark_used_regs_combine (XEXP (testreg, 0));
12852 mark_used_regs_combine (SET_SRC (x));
12854 return;
12856 default:
12857 break;
12860 /* Recursively scan the operands of this expression. */
12863 const char *fmt = GET_RTX_FORMAT (code);
12865 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12867 if (fmt[i] == 'e')
12868 mark_used_regs_combine (XEXP (x, i));
12869 else if (fmt[i] == 'E')
12871 int j;
12873 for (j = 0; j < XVECLEN (x, i); j++)
12874 mark_used_regs_combine (XVECEXP (x, i, j));
12880 /* Remove register number REGNO from the dead registers list of INSN.
12882 Return the note used to record the death, if there was one. */
12885 remove_death (unsigned int regno, rtx insn)
12887 rtx note = find_regno_note (insn, REG_DEAD, regno);
12889 if (note)
12890 remove_note (insn, note);
12892 return note;
12895 /* For each register (hardware or pseudo) used within expression X, if its
12896 death is in an instruction with luid between FROM_LUID (inclusive) and
12897 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12898 list headed by PNOTES.
12900 That said, don't move registers killed by maybe_kill_insn.
12902 This is done when X is being merged by combination into TO_INSN. These
12903 notes will then be distributed as needed. */
12905 static void
12906 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12907 rtx *pnotes)
12909 const char *fmt;
12910 int len, i;
12911 enum rtx_code code = GET_CODE (x);
12913 if (code == REG)
12915 unsigned int regno = REGNO (x);
12916 rtx where_dead = reg_stat[regno].last_death;
12918 /* Don't move the register if it gets killed in between from and to. */
12919 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12920 && ! reg_referenced_p (x, maybe_kill_insn))
12921 return;
12923 if (where_dead
12924 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12925 && DF_INSN_LUID (where_dead) >= from_luid
12926 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12928 rtx note = remove_death (regno, where_dead);
12930 /* It is possible for the call above to return 0. This can occur
12931 when last_death points to I2 or I1 that we combined with.
12932 In that case make a new note.
12934 We must also check for the case where X is a hard register
12935 and NOTE is a death note for a range of hard registers
12936 including X. In that case, we must put REG_DEAD notes for
12937 the remaining registers in place of NOTE. */
12939 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12940 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12941 > GET_MODE_SIZE (GET_MODE (x))))
12943 unsigned int deadregno = REGNO (XEXP (note, 0));
12944 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12945 unsigned int ourend = END_HARD_REGNO (x);
12946 unsigned int i;
12948 for (i = deadregno; i < deadend; i++)
12949 if (i < regno || i >= ourend)
12950 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12953 /* If we didn't find any note, or if we found a REG_DEAD note that
12954 covers only part of the given reg, and we have a multi-reg hard
12955 register, then to be safe we must check for REG_DEAD notes
12956 for each register other than the first. They could have
12957 their own REG_DEAD notes lying around. */
12958 else if ((note == 0
12959 || (note != 0
12960 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12961 < GET_MODE_SIZE (GET_MODE (x)))))
12962 && regno < FIRST_PSEUDO_REGISTER
12963 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12965 unsigned int ourend = END_HARD_REGNO (x);
12966 unsigned int i, offset;
12967 rtx oldnotes = 0;
12969 if (note)
12970 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12971 else
12972 offset = 1;
12974 for (i = regno + offset; i < ourend; i++)
12975 move_deaths (regno_reg_rtx[i],
12976 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12979 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12981 XEXP (note, 1) = *pnotes;
12982 *pnotes = note;
12984 else
12985 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12988 return;
12991 else if (GET_CODE (x) == SET)
12993 rtx dest = SET_DEST (x);
12995 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12997 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12998 that accesses one word of a multi-word item, some
12999 piece of everything register in the expression is used by
13000 this insn, so remove any old death. */
13001 /* ??? So why do we test for equality of the sizes? */
13003 if (GET_CODE (dest) == ZERO_EXTRACT
13004 || GET_CODE (dest) == STRICT_LOW_PART
13005 || (GET_CODE (dest) == SUBREG
13006 && (((GET_MODE_SIZE (GET_MODE (dest))
13007 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13008 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13009 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13011 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13012 return;
13015 /* If this is some other SUBREG, we know it replaces the entire
13016 value, so use that as the destination. */
13017 if (GET_CODE (dest) == SUBREG)
13018 dest = SUBREG_REG (dest);
13020 /* If this is a MEM, adjust deaths of anything used in the address.
13021 For a REG (the only other possibility), the entire value is
13022 being replaced so the old value is not used in this insn. */
13024 if (MEM_P (dest))
13025 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13026 to_insn, pnotes);
13027 return;
13030 else if (GET_CODE (x) == CLOBBER)
13031 return;
13033 len = GET_RTX_LENGTH (code);
13034 fmt = GET_RTX_FORMAT (code);
13036 for (i = 0; i < len; i++)
13038 if (fmt[i] == 'E')
13040 int j;
13041 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13042 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13043 to_insn, pnotes);
13045 else if (fmt[i] == 'e')
13046 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13050 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13051 pattern of an insn. X must be a REG. */
13053 static int
13054 reg_bitfield_target_p (rtx x, rtx body)
13056 int i;
13058 if (GET_CODE (body) == SET)
13060 rtx dest = SET_DEST (body);
13061 rtx target;
13062 unsigned int regno, tregno, endregno, endtregno;
13064 if (GET_CODE (dest) == ZERO_EXTRACT)
13065 target = XEXP (dest, 0);
13066 else if (GET_CODE (dest) == STRICT_LOW_PART)
13067 target = SUBREG_REG (XEXP (dest, 0));
13068 else
13069 return 0;
13071 if (GET_CODE (target) == SUBREG)
13072 target = SUBREG_REG (target);
13074 if (!REG_P (target))
13075 return 0;
13077 tregno = REGNO (target), regno = REGNO (x);
13078 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13079 return target == x;
13081 endtregno = end_hard_regno (GET_MODE (target), tregno);
13082 endregno = end_hard_regno (GET_MODE (x), regno);
13084 return endregno > tregno && regno < endtregno;
13087 else if (GET_CODE (body) == PARALLEL)
13088 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13089 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13090 return 1;
13092 return 0;
13095 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13096 as appropriate. I3 and I2 are the insns resulting from the combination
13097 insns including FROM (I2 may be zero).
13099 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13100 not need REG_DEAD notes because they are being substituted for. This
13101 saves searching in the most common cases.
13103 Each note in the list is either ignored or placed on some insns, depending
13104 on the type of note. */
13106 static void
13107 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13108 rtx elim_i1, rtx elim_i0)
13110 rtx note, next_note;
13111 rtx tem;
13113 for (note = notes; note; note = next_note)
13115 rtx place = 0, place2 = 0;
13117 next_note = XEXP (note, 1);
13118 switch (REG_NOTE_KIND (note))
13120 case REG_BR_PROB:
13121 case REG_BR_PRED:
13122 /* Doesn't matter much where we put this, as long as it's somewhere.
13123 It is preferable to keep these notes on branches, which is most
13124 likely to be i3. */
13125 place = i3;
13126 break;
13128 case REG_NON_LOCAL_GOTO:
13129 if (JUMP_P (i3))
13130 place = i3;
13131 else
13133 gcc_assert (i2 && JUMP_P (i2));
13134 place = i2;
13136 break;
13138 case REG_EH_REGION:
13139 /* These notes must remain with the call or trapping instruction. */
13140 if (CALL_P (i3))
13141 place = i3;
13142 else if (i2 && CALL_P (i2))
13143 place = i2;
13144 else
13146 gcc_assert (cfun->can_throw_non_call_exceptions);
13147 if (may_trap_p (i3))
13148 place = i3;
13149 else if (i2 && may_trap_p (i2))
13150 place = i2;
13151 /* ??? Otherwise assume we've combined things such that we
13152 can now prove that the instructions can't trap. Drop the
13153 note in this case. */
13155 break;
13157 case REG_ARGS_SIZE:
13158 /* ??? How to distribute between i3-i1. Assume i3 contains the
13159 entire adjustment. Assert i3 contains at least some adjust. */
13160 if (!noop_move_p (i3))
13162 int old_size, args_size = INTVAL (XEXP (note, 0));
13163 /* fixup_args_size_notes looks at REG_NORETURN note,
13164 so ensure the note is placed there first. */
13165 if (CALL_P (i3))
13167 rtx *np;
13168 for (np = &next_note; *np; np = &XEXP (*np, 1))
13169 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13171 rtx n = *np;
13172 *np = XEXP (n, 1);
13173 XEXP (n, 1) = REG_NOTES (i3);
13174 REG_NOTES (i3) = n;
13175 break;
13178 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13179 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13180 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13181 gcc_assert (old_size != args_size
13182 || (CALL_P (i3)
13183 && !ACCUMULATE_OUTGOING_ARGS
13184 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13186 break;
13188 case REG_NORETURN:
13189 case REG_SETJMP:
13190 case REG_TM:
13191 /* These notes must remain with the call. It should not be
13192 possible for both I2 and I3 to be a call. */
13193 if (CALL_P (i3))
13194 place = i3;
13195 else
13197 gcc_assert (i2 && CALL_P (i2));
13198 place = i2;
13200 break;
13202 case REG_UNUSED:
13203 /* Any clobbers for i3 may still exist, and so we must process
13204 REG_UNUSED notes from that insn.
13206 Any clobbers from i2 or i1 can only exist if they were added by
13207 recog_for_combine. In that case, recog_for_combine created the
13208 necessary REG_UNUSED notes. Trying to keep any original
13209 REG_UNUSED notes from these insns can cause incorrect output
13210 if it is for the same register as the original i3 dest.
13211 In that case, we will notice that the register is set in i3,
13212 and then add a REG_UNUSED note for the destination of i3, which
13213 is wrong. However, it is possible to have REG_UNUSED notes from
13214 i2 or i1 for register which were both used and clobbered, so
13215 we keep notes from i2 or i1 if they will turn into REG_DEAD
13216 notes. */
13218 /* If this register is set or clobbered in I3, put the note there
13219 unless there is one already. */
13220 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13222 if (from_insn != i3)
13223 break;
13225 if (! (REG_P (XEXP (note, 0))
13226 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13227 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13228 place = i3;
13230 /* Otherwise, if this register is used by I3, then this register
13231 now dies here, so we must put a REG_DEAD note here unless there
13232 is one already. */
13233 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13234 && ! (REG_P (XEXP (note, 0))
13235 ? find_regno_note (i3, REG_DEAD,
13236 REGNO (XEXP (note, 0)))
13237 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13239 PUT_REG_NOTE_KIND (note, REG_DEAD);
13240 place = i3;
13242 break;
13244 case REG_EQUAL:
13245 case REG_EQUIV:
13246 case REG_NOALIAS:
13247 /* These notes say something about results of an insn. We can
13248 only support them if they used to be on I3 in which case they
13249 remain on I3. Otherwise they are ignored.
13251 If the note refers to an expression that is not a constant, we
13252 must also ignore the note since we cannot tell whether the
13253 equivalence is still true. It might be possible to do
13254 slightly better than this (we only have a problem if I2DEST
13255 or I1DEST is present in the expression), but it doesn't
13256 seem worth the trouble. */
13258 if (from_insn == i3
13259 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13260 place = i3;
13261 break;
13263 case REG_INC:
13264 /* These notes say something about how a register is used. They must
13265 be present on any use of the register in I2 or I3. */
13266 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13267 place = i3;
13269 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13271 if (place)
13272 place2 = i2;
13273 else
13274 place = i2;
13276 break;
13278 case REG_LABEL_TARGET:
13279 case REG_LABEL_OPERAND:
13280 /* This can show up in several ways -- either directly in the
13281 pattern, or hidden off in the constant pool with (or without?)
13282 a REG_EQUAL note. */
13283 /* ??? Ignore the without-reg_equal-note problem for now. */
13284 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13285 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13286 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13287 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13288 place = i3;
13290 if (i2
13291 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13292 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13293 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13294 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13296 if (place)
13297 place2 = i2;
13298 else
13299 place = i2;
13302 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13303 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13304 there. */
13305 if (place && JUMP_P (place)
13306 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13307 && (JUMP_LABEL (place) == NULL
13308 || JUMP_LABEL (place) == XEXP (note, 0)))
13310 rtx label = JUMP_LABEL (place);
13312 if (!label)
13313 JUMP_LABEL (place) = XEXP (note, 0);
13314 else if (LABEL_P (label))
13315 LABEL_NUSES (label)--;
13318 if (place2 && JUMP_P (place2)
13319 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13320 && (JUMP_LABEL (place2) == NULL
13321 || JUMP_LABEL (place2) == XEXP (note, 0)))
13323 rtx label = JUMP_LABEL (place2);
13325 if (!label)
13326 JUMP_LABEL (place2) = XEXP (note, 0);
13327 else if (LABEL_P (label))
13328 LABEL_NUSES (label)--;
13329 place2 = 0;
13331 break;
13333 case REG_NONNEG:
13334 /* This note says something about the value of a register prior
13335 to the execution of an insn. It is too much trouble to see
13336 if the note is still correct in all situations. It is better
13337 to simply delete it. */
13338 break;
13340 case REG_DEAD:
13341 /* If we replaced the right hand side of FROM_INSN with a
13342 REG_EQUAL note, the original use of the dying register
13343 will not have been combined into I3 and I2. In such cases,
13344 FROM_INSN is guaranteed to be the first of the combined
13345 instructions, so we simply need to search back before
13346 FROM_INSN for the previous use or set of this register,
13347 then alter the notes there appropriately.
13349 If the register is used as an input in I3, it dies there.
13350 Similarly for I2, if it is nonzero and adjacent to I3.
13352 If the register is not used as an input in either I3 or I2
13353 and it is not one of the registers we were supposed to eliminate,
13354 there are two possibilities. We might have a non-adjacent I2
13355 or we might have somehow eliminated an additional register
13356 from a computation. For example, we might have had A & B where
13357 we discover that B will always be zero. In this case we will
13358 eliminate the reference to A.
13360 In both cases, we must search to see if we can find a previous
13361 use of A and put the death note there. */
13363 if (from_insn
13364 && from_insn == i2mod
13365 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13366 tem = from_insn;
13367 else
13369 if (from_insn
13370 && CALL_P (from_insn)
13371 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13372 place = from_insn;
13373 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13374 place = i3;
13375 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13376 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13377 place = i2;
13378 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13379 && !(i2mod
13380 && reg_overlap_mentioned_p (XEXP (note, 0),
13381 i2mod_old_rhs)))
13382 || rtx_equal_p (XEXP (note, 0), elim_i1)
13383 || rtx_equal_p (XEXP (note, 0), elim_i0))
13384 break;
13385 tem = i3;
13388 if (place == 0)
13390 basic_block bb = this_basic_block;
13392 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13394 if (!NONDEBUG_INSN_P (tem))
13396 if (tem == BB_HEAD (bb))
13397 break;
13398 continue;
13401 /* If the register is being set at TEM, see if that is all
13402 TEM is doing. If so, delete TEM. Otherwise, make this
13403 into a REG_UNUSED note instead. Don't delete sets to
13404 global register vars. */
13405 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13406 || !global_regs[REGNO (XEXP (note, 0))])
13407 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13409 rtx set = single_set (tem);
13410 rtx inner_dest = 0;
13411 #ifdef HAVE_cc0
13412 rtx cc0_setter = NULL_RTX;
13413 #endif
13415 if (set != 0)
13416 for (inner_dest = SET_DEST (set);
13417 (GET_CODE (inner_dest) == STRICT_LOW_PART
13418 || GET_CODE (inner_dest) == SUBREG
13419 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13420 inner_dest = XEXP (inner_dest, 0))
13423 /* Verify that it was the set, and not a clobber that
13424 modified the register.
13426 CC0 targets must be careful to maintain setter/user
13427 pairs. If we cannot delete the setter due to side
13428 effects, mark the user with an UNUSED note instead
13429 of deleting it. */
13431 if (set != 0 && ! side_effects_p (SET_SRC (set))
13432 && rtx_equal_p (XEXP (note, 0), inner_dest)
13433 #ifdef HAVE_cc0
13434 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13435 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13436 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13437 #endif
13440 /* Move the notes and links of TEM elsewhere.
13441 This might delete other dead insns recursively.
13442 First set the pattern to something that won't use
13443 any register. */
13444 rtx old_notes = REG_NOTES (tem);
13446 PATTERN (tem) = pc_rtx;
13447 REG_NOTES (tem) = NULL;
13449 distribute_notes (old_notes, tem, tem, NULL_RTX,
13450 NULL_RTX, NULL_RTX, NULL_RTX);
13451 distribute_links (LOG_LINKS (tem));
13453 SET_INSN_DELETED (tem);
13454 if (tem == i2)
13455 i2 = NULL_RTX;
13457 #ifdef HAVE_cc0
13458 /* Delete the setter too. */
13459 if (cc0_setter)
13461 PATTERN (cc0_setter) = pc_rtx;
13462 old_notes = REG_NOTES (cc0_setter);
13463 REG_NOTES (cc0_setter) = NULL;
13465 distribute_notes (old_notes, cc0_setter,
13466 cc0_setter, NULL_RTX,
13467 NULL_RTX, NULL_RTX, NULL_RTX);
13468 distribute_links (LOG_LINKS (cc0_setter));
13470 SET_INSN_DELETED (cc0_setter);
13471 if (cc0_setter == i2)
13472 i2 = NULL_RTX;
13474 #endif
13476 else
13478 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13480 /* If there isn't already a REG_UNUSED note, put one
13481 here. Do not place a REG_DEAD note, even if
13482 the register is also used here; that would not
13483 match the algorithm used in lifetime analysis
13484 and can cause the consistency check in the
13485 scheduler to fail. */
13486 if (! find_regno_note (tem, REG_UNUSED,
13487 REGNO (XEXP (note, 0))))
13488 place = tem;
13489 break;
13492 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13493 || (CALL_P (tem)
13494 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13496 place = tem;
13498 /* If we are doing a 3->2 combination, and we have a
13499 register which formerly died in i3 and was not used
13500 by i2, which now no longer dies in i3 and is used in
13501 i2 but does not die in i2, and place is between i2
13502 and i3, then we may need to move a link from place to
13503 i2. */
13504 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13505 && from_insn
13506 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13507 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13509 struct insn_link *links = LOG_LINKS (place);
13510 LOG_LINKS (place) = NULL;
13511 distribute_links (links);
13513 break;
13516 if (tem == BB_HEAD (bb))
13517 break;
13522 /* If the register is set or already dead at PLACE, we needn't do
13523 anything with this note if it is still a REG_DEAD note.
13524 We check here if it is set at all, not if is it totally replaced,
13525 which is what `dead_or_set_p' checks, so also check for it being
13526 set partially. */
13528 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13530 unsigned int regno = REGNO (XEXP (note, 0));
13531 reg_stat_type *rsp = &reg_stat[regno];
13533 if (dead_or_set_p (place, XEXP (note, 0))
13534 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13536 /* Unless the register previously died in PLACE, clear
13537 last_death. [I no longer understand why this is
13538 being done.] */
13539 if (rsp->last_death != place)
13540 rsp->last_death = 0;
13541 place = 0;
13543 else
13544 rsp->last_death = place;
13546 /* If this is a death note for a hard reg that is occupying
13547 multiple registers, ensure that we are still using all
13548 parts of the object. If we find a piece of the object
13549 that is unused, we must arrange for an appropriate REG_DEAD
13550 note to be added for it. However, we can't just emit a USE
13551 and tag the note to it, since the register might actually
13552 be dead; so we recourse, and the recursive call then finds
13553 the previous insn that used this register. */
13555 if (place && regno < FIRST_PSEUDO_REGISTER
13556 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13558 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13559 int all_used = 1;
13560 unsigned int i;
13562 for (i = regno; i < endregno; i++)
13563 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13564 && ! find_regno_fusage (place, USE, i))
13565 || dead_or_set_regno_p (place, i))
13566 all_used = 0;
13568 if (! all_used)
13570 /* Put only REG_DEAD notes for pieces that are
13571 not already dead or set. */
13573 for (i = regno; i < endregno;
13574 i += hard_regno_nregs[i][reg_raw_mode[i]])
13576 rtx piece = regno_reg_rtx[i];
13577 basic_block bb = this_basic_block;
13579 if (! dead_or_set_p (place, piece)
13580 && ! reg_bitfield_target_p (piece,
13581 PATTERN (place)))
13583 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13584 NULL_RTX);
13586 distribute_notes (new_note, place, place,
13587 NULL_RTX, NULL_RTX, NULL_RTX,
13588 NULL_RTX);
13590 else if (! refers_to_regno_p (i, i + 1,
13591 PATTERN (place), 0)
13592 && ! find_regno_fusage (place, USE, i))
13593 for (tem = PREV_INSN (place); ;
13594 tem = PREV_INSN (tem))
13596 if (!NONDEBUG_INSN_P (tem))
13598 if (tem == BB_HEAD (bb))
13599 break;
13600 continue;
13602 if (dead_or_set_p (tem, piece)
13603 || reg_bitfield_target_p (piece,
13604 PATTERN (tem)))
13606 add_reg_note (tem, REG_UNUSED, piece);
13607 break;
13613 place = 0;
13617 break;
13619 default:
13620 /* Any other notes should not be present at this point in the
13621 compilation. */
13622 gcc_unreachable ();
13625 if (place)
13627 XEXP (note, 1) = REG_NOTES (place);
13628 REG_NOTES (place) = note;
13631 if (place2)
13632 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13636 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13637 I3, I2, and I1 to new locations. This is also called to add a link
13638 pointing at I3 when I3's destination is changed. */
13640 static void
13641 distribute_links (struct insn_link *links)
13643 struct insn_link *link, *next_link;
13645 for (link = links; link; link = next_link)
13647 rtx place = 0;
13648 rtx insn;
13649 rtx set, reg;
13651 next_link = link->next;
13653 /* If the insn that this link points to is a NOTE or isn't a single
13654 set, ignore it. In the latter case, it isn't clear what we
13655 can do other than ignore the link, since we can't tell which
13656 register it was for. Such links wouldn't be used by combine
13657 anyway.
13659 It is not possible for the destination of the target of the link to
13660 have been changed by combine. The only potential of this is if we
13661 replace I3, I2, and I1 by I3 and I2. But in that case the
13662 destination of I2 also remains unchanged. */
13664 if (NOTE_P (link->insn)
13665 || (set = single_set (link->insn)) == 0)
13666 continue;
13668 reg = SET_DEST (set);
13669 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13670 || GET_CODE (reg) == STRICT_LOW_PART)
13671 reg = XEXP (reg, 0);
13673 /* A LOG_LINK is defined as being placed on the first insn that uses
13674 a register and points to the insn that sets the register. Start
13675 searching at the next insn after the target of the link and stop
13676 when we reach a set of the register or the end of the basic block.
13678 Note that this correctly handles the link that used to point from
13679 I3 to I2. Also note that not much searching is typically done here
13680 since most links don't point very far away. */
13682 for (insn = NEXT_INSN (link->insn);
13683 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13684 || BB_HEAD (this_basic_block->next_bb) != insn));
13685 insn = NEXT_INSN (insn))
13686 if (DEBUG_INSN_P (insn))
13687 continue;
13688 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13690 if (reg_referenced_p (reg, PATTERN (insn)))
13691 place = insn;
13692 break;
13694 else if (CALL_P (insn)
13695 && find_reg_fusage (insn, USE, reg))
13697 place = insn;
13698 break;
13700 else if (INSN_P (insn) && reg_set_p (reg, insn))
13701 break;
13703 /* If we found a place to put the link, place it there unless there
13704 is already a link to the same insn as LINK at that point. */
13706 if (place)
13708 struct insn_link *link2;
13710 FOR_EACH_LOG_LINK (link2, place)
13711 if (link2->insn == link->insn)
13712 break;
13714 if (link2 == NULL)
13716 link->next = LOG_LINKS (place);
13717 LOG_LINKS (place) = link;
13719 /* Set added_links_insn to the earliest insn we added a
13720 link to. */
13721 if (added_links_insn == 0
13722 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13723 added_links_insn = place;
13729 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13730 Check whether the expression pointer to by LOC is a register or
13731 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13732 Otherwise return zero. */
13734 static int
13735 unmentioned_reg_p_1 (rtx *loc, void *expr)
13737 rtx x = *loc;
13739 if (x != NULL_RTX
13740 && (REG_P (x) || MEM_P (x))
13741 && ! reg_mentioned_p (x, (rtx) expr))
13742 return 1;
13743 return 0;
13746 /* Check for any register or memory mentioned in EQUIV that is not
13747 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13748 of EXPR where some registers may have been replaced by constants. */
13750 static bool
13751 unmentioned_reg_p (rtx equiv, rtx expr)
13753 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13756 DEBUG_FUNCTION void
13757 dump_combine_stats (FILE *file)
13759 fprintf
13760 (file,
13761 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13762 combine_attempts, combine_merges, combine_extras, combine_successes);
13765 void
13766 dump_combine_total_stats (FILE *file)
13768 fprintf
13769 (file,
13770 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13771 total_attempts, total_merges, total_extras, total_successes);
13774 static bool
13775 gate_handle_combine (void)
13777 return (optimize > 0);
13780 /* Try combining insns through substitution. */
13781 static unsigned int
13782 rest_of_handle_combine (void)
13784 int rebuild_jump_labels_after_combine;
13786 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13787 df_note_add_problem ();
13788 df_analyze ();
13790 regstat_init_n_sets_and_refs ();
13792 rebuild_jump_labels_after_combine
13793 = combine_instructions (get_insns (), max_reg_num ());
13795 /* Combining insns may have turned an indirect jump into a
13796 direct jump. Rebuild the JUMP_LABEL fields of jumping
13797 instructions. */
13798 if (rebuild_jump_labels_after_combine)
13800 timevar_push (TV_JUMP);
13801 rebuild_jump_labels (get_insns ());
13802 cleanup_cfg (0);
13803 timevar_pop (TV_JUMP);
13806 regstat_free_n_sets_and_refs ();
13807 return 0;
13810 struct rtl_opt_pass pass_combine =
13813 RTL_PASS,
13814 "combine", /* name */
13815 OPTGROUP_NONE, /* optinfo_flags */
13816 gate_handle_combine, /* gate */
13817 rest_of_handle_combine, /* execute */
13818 NULL, /* sub */
13819 NULL, /* next */
13820 0, /* static_pass_number */
13821 TV_COMBINE, /* tv_id */
13822 PROP_cfglayout, /* properties_required */
13823 0, /* properties_provided */
13824 0, /* properties_destroyed */
13825 0, /* todo_flags_start */
13826 TODO_df_finish | TODO_verify_rtl_sharing |
13827 TODO_ggc_collect, /* todo_flags_finish */