* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / ada / sem_eval.adb
blobab7f3c934ae5e38f1a731fa2ff6f417ffe0a246d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Namet; use Namet;
37 with Nmake; use Nmake;
38 with Nlists; use Nlists;
39 with Opt; use Opt;
40 with Rtsfind; use Rtsfind;
41 with Sem; use Sem;
42 with Sem_Aux; use Sem_Aux;
43 with Sem_Cat; use Sem_Cat;
44 with Sem_Ch6; use Sem_Ch6;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Res; use Sem_Res;
47 with Sem_Util; use Sem_Util;
48 with Sem_Type; use Sem_Type;
49 with Sem_Warn; use Sem_Warn;
50 with Sinfo; use Sinfo;
51 with Snames; use Snames;
52 with Stand; use Stand;
53 with Stringt; use Stringt;
54 with Tbuild; use Tbuild;
56 package body Sem_Eval is
58 -----------------------------------------
59 -- Handling of Compile Time Evaluation --
60 -----------------------------------------
62 -- The compile time evaluation of expressions is distributed over several
63 -- Eval_xxx procedures. These procedures are called immediately after
64 -- a subexpression is resolved and is therefore accomplished in a bottom
65 -- up fashion. The flags are synthesized using the following approach.
67 -- Is_Static_Expression is determined by following the detailed rules
68 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
69 -- flag of the operands in many cases.
71 -- Raises_Constraint_Error is set if any of the operands have the flag
72 -- set or if an attempt to compute the value of the current expression
73 -- results in detection of a runtime constraint error.
75 -- As described in the spec, the requirement is that Is_Static_Expression
76 -- be accurately set, and in addition for nodes for which this flag is set,
77 -- Raises_Constraint_Error must also be set. Furthermore a node which has
78 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
79 -- requirement is that the expression value must be precomputed, and the
80 -- node is either a literal, or the name of a constant entity whose value
81 -- is a static expression.
83 -- The general approach is as follows. First compute Is_Static_Expression.
84 -- If the node is not static, then the flag is left off in the node and
85 -- we are all done. Otherwise for a static node, we test if any of the
86 -- operands will raise constraint error, and if so, propagate the flag
87 -- Raises_Constraint_Error to the result node and we are done (since the
88 -- error was already posted at a lower level).
90 -- For the case of a static node whose operands do not raise constraint
91 -- error, we attempt to evaluate the node. If this evaluation succeeds,
92 -- then the node is replaced by the result of this computation. If the
93 -- evaluation raises constraint error, then we rewrite the node with
94 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
95 -- to post appropriate error messages.
97 ----------------
98 -- Local Data --
99 ----------------
101 type Bits is array (Nat range <>) of Boolean;
102 -- Used to convert unsigned (modular) values for folding logical ops
104 -- The following definitions are used to maintain a cache of nodes that
105 -- have compile time known values. The cache is maintained only for
106 -- discrete types (the most common case), and is populated by calls to
107 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
108 -- since it is possible for the status to change (in particular it is
109 -- possible for a node to get replaced by a constraint error node).
111 CV_Bits : constant := 5;
112 -- Number of low order bits of Node_Id value used to reference entries
113 -- in the cache table.
115 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
116 -- Size of cache for compile time values
118 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
120 type CV_Entry is record
121 N : Node_Id;
122 V : Uint;
123 end record;
125 type CV_Cache_Array is array (CV_Range) of CV_Entry;
127 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
128 -- This is the actual cache, with entries consisting of node/value pairs,
129 -- and the impossible value Node_High_Bound used for unset entries.
131 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
132 -- Range membership may either be statically known to be in range or out
133 -- of range, or not statically known. Used for Test_In_Range below.
135 -----------------------
136 -- Local Subprograms --
137 -----------------------
139 function From_Bits (B : Bits; T : Entity_Id) return Uint;
140 -- Converts a bit string of length B'Length to a Uint value to be used
141 -- for a target of type T, which is a modular type. This procedure
142 -- includes the necessary reduction by the modulus in the case of a
143 -- non-binary modulus (for a binary modulus, the bit string is the
144 -- right length any way so all is well).
146 function Get_String_Val (N : Node_Id) return Node_Id;
147 -- Given a tree node for a folded string or character value, returns
148 -- the corresponding string literal or character literal (one of the
149 -- two must be available, or the operand would not have been marked
150 -- as foldable in the earlier analysis of the operation).
152 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
153 -- Bits represents the number of bits in an integer value to be computed
154 -- (but the value has not been computed yet). If this value in Bits is
155 -- reasonable, a result of True is returned, with the implication that
156 -- the caller should go ahead and complete the calculation. If the value
157 -- in Bits is unreasonably large, then an error is posted on node N, and
158 -- False is returned (and the caller skips the proposed calculation).
160 procedure Out_Of_Range (N : Node_Id);
161 -- This procedure is called if it is determined that node N, which
162 -- appears in a non-static context, is a compile time known value
163 -- which is outside its range, i.e. the range of Etype. This is used
164 -- in contexts where this is an illegality if N is static, and should
165 -- generate a warning otherwise.
167 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
168 -- N and Exp are nodes representing an expression, Exp is known
169 -- to raise CE. N is rewritten in term of Exp in the optimal way.
171 function String_Type_Len (Stype : Entity_Id) return Uint;
172 -- Given a string type, determines the length of the index type, or,
173 -- if this index type is non-static, the length of the base type of
174 -- this index type. Note that if the string type is itself static,
175 -- then the index type is static, so the second case applies only
176 -- if the string type passed is non-static.
178 function Test (Cond : Boolean) return Uint;
179 pragma Inline (Test);
180 -- This function simply returns the appropriate Boolean'Pos value
181 -- corresponding to the value of Cond as a universal integer. It is
182 -- used for producing the result of the static evaluation of the
183 -- logical operators
185 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
186 -- Check whether an arithmetic operation with universal operands which
187 -- is a rewritten function call with an explicit scope indication is
188 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
189 -- visible numeric type declared in P and the context does not impose a
190 -- type on the result (e.g. in the expression of a type conversion).
191 -- If ambiguous, emit an error and return Empty, else return the result
192 -- type of the operator.
194 procedure Test_Expression_Is_Foldable
195 (N : Node_Id;
196 Op1 : Node_Id;
197 Stat : out Boolean;
198 Fold : out Boolean);
199 -- Tests to see if expression N whose single operand is Op1 is foldable,
200 -- i.e. the operand value is known at compile time. If the operation is
201 -- foldable, then Fold is True on return, and Stat indicates whether
202 -- the result is static (i.e. the operand was static). Note that it
203 -- is quite possible for Fold to be True, and Stat to be False, since
204 -- there are cases in which we know the value of an operand even though
205 -- it is not technically static (e.g. the static lower bound of a range
206 -- whose upper bound is non-static).
208 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
209 -- call to Check_Non_Static_Context on the operand. If Fold is False on
210 -- return, then all processing is complete, and the caller should
211 -- return, since there is nothing else to do.
213 -- If Stat is set True on return, then Is_Static_Expression is also set
214 -- true in node N. There are some cases where this is over-enthusiastic,
215 -- e.g. in the two operand case below, for string comparison, the result
216 -- is not static even though the two operands are static. In such cases,
217 -- the caller must reset the Is_Static_Expression flag in N.
219 -- If Fold and Stat are both set to False then this routine performs also
220 -- the following extra actions:
222 -- If either operand is Any_Type then propagate it to result to
223 -- prevent cascaded errors.
225 -- If some operand raises constraint error, then replace the node N
226 -- with the raise constraint error node. This replacement inherits the
227 -- Is_Static_Expression flag from the operands.
229 procedure Test_Expression_Is_Foldable
230 (N : Node_Id;
231 Op1 : Node_Id;
232 Op2 : Node_Id;
233 Stat : out Boolean;
234 Fold : out Boolean);
235 -- Same processing, except applies to an expression N with two operands
236 -- Op1 and Op2. The result is static only if both operands are static.
238 function Test_In_Range
239 (N : Node_Id;
240 Typ : Entity_Id;
241 Assume_Valid : Boolean;
242 Fixed_Int : Boolean;
243 Int_Real : Boolean) return Range_Membership;
244 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
245 -- or Out_Of_Range if it can be guaranteed at compile time that expression
246 -- N is known to be in or out of range of the subtype Typ. If not compile
247 -- time known, Unknown is returned. See documentation of Is_In_Range for
248 -- complete description of parameters.
250 procedure To_Bits (U : Uint; B : out Bits);
251 -- Converts a Uint value to a bit string of length B'Length
253 ------------------------------
254 -- Check_Non_Static_Context --
255 ------------------------------
257 procedure Check_Non_Static_Context (N : Node_Id) is
258 T : constant Entity_Id := Etype (N);
259 Checks_On : constant Boolean :=
260 not Index_Checks_Suppressed (T)
261 and not Range_Checks_Suppressed (T);
263 begin
264 -- Ignore cases of non-scalar types, error types, or universal real
265 -- types that have no usable bounds.
267 if T = Any_Type
268 or else not Is_Scalar_Type (T)
269 or else T = Universal_Fixed
270 or else T = Universal_Real
271 then
272 return;
273 end if;
275 -- At this stage we have a scalar type. If we have an expression that
276 -- raises CE, then we already issued a warning or error msg so there
277 -- is nothing more to be done in this routine.
279 if Raises_Constraint_Error (N) then
280 return;
281 end if;
283 -- Now we have a scalar type which is not marked as raising a constraint
284 -- error exception. The main purpose of this routine is to deal with
285 -- static expressions appearing in a non-static context. That means
286 -- that if we do not have a static expression then there is not much
287 -- to do. The one case that we deal with here is that if we have a
288 -- floating-point value that is out of range, then we post a warning
289 -- that an infinity will result.
291 if not Is_Static_Expression (N) then
292 if Is_Floating_Point_Type (T)
293 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
294 then
295 Error_Msg_N
296 ("??float value out of range, infinity will be generated", N);
297 end if;
299 return;
300 end if;
302 -- Here we have the case of outer level static expression of scalar
303 -- type, where the processing of this procedure is needed.
305 -- For real types, this is where we convert the value to a machine
306 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
307 -- need to do this if the parent is a constant declaration, since in
308 -- other cases, gigi should do the necessary conversion correctly, but
309 -- experimentation shows that this is not the case on all machines, in
310 -- particular if we do not convert all literals to machine values in
311 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
312 -- and SGI/Irix.
314 if Nkind (N) = N_Real_Literal
315 and then not Is_Machine_Number (N)
316 and then not Is_Generic_Type (Etype (N))
317 and then Etype (N) /= Universal_Real
318 then
319 -- Check that value is in bounds before converting to machine
320 -- number, so as not to lose case where value overflows in the
321 -- least significant bit or less. See B490001.
323 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
324 Out_Of_Range (N);
325 return;
326 end if;
328 -- Note: we have to copy the node, to avoid problems with conformance
329 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
331 Rewrite (N, New_Copy (N));
333 if not Is_Floating_Point_Type (T) then
334 Set_Realval
335 (N, Corresponding_Integer_Value (N) * Small_Value (T));
337 elsif not UR_Is_Zero (Realval (N)) then
339 -- Note: even though RM 4.9(38) specifies biased rounding, this
340 -- has been modified by AI-100 in order to prevent confusing
341 -- differences in rounding between static and non-static
342 -- expressions. AI-100 specifies that the effect of such rounding
343 -- is implementation dependent, and in GNAT we round to nearest
344 -- even to match the run-time behavior.
346 Set_Realval
347 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
348 end if;
350 Set_Is_Machine_Number (N);
351 end if;
353 -- Check for out of range universal integer. This is a non-static
354 -- context, so the integer value must be in range of the runtime
355 -- representation of universal integers.
357 -- We do this only within an expression, because that is the only
358 -- case in which non-static universal integer values can occur, and
359 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
360 -- called in contexts like the expression of a number declaration where
361 -- we certainly want to allow out of range values.
363 if Etype (N) = Universal_Integer
364 and then Nkind (N) = N_Integer_Literal
365 and then Nkind (Parent (N)) in N_Subexpr
366 and then
367 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
368 or else
369 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
370 then
371 Apply_Compile_Time_Constraint_Error
372 (N, "non-static universal integer value out of range??",
373 CE_Range_Check_Failed);
375 -- Check out of range of base type
377 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
378 Out_Of_Range (N);
380 -- Give warning if outside subtype (where one or both of the bounds of
381 -- the subtype is static). This warning is omitted if the expression
382 -- appears in a range that could be null (warnings are handled elsewhere
383 -- for this case).
385 elsif T /= Base_Type (T)
386 and then Nkind (Parent (N)) /= N_Range
387 then
388 if Is_In_Range (N, T, Assume_Valid => True) then
389 null;
391 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
392 Apply_Compile_Time_Constraint_Error
393 (N, "value not in range of}??", CE_Range_Check_Failed);
395 elsif Checks_On then
396 Enable_Range_Check (N);
398 else
399 Set_Do_Range_Check (N, False);
400 end if;
401 end if;
402 end Check_Non_Static_Context;
404 ---------------------------------
405 -- Check_String_Literal_Length --
406 ---------------------------------
408 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
409 begin
410 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
412 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
413 then
414 Apply_Compile_Time_Constraint_Error
415 (N, "string length wrong for}??",
416 CE_Length_Check_Failed,
417 Ent => Ttype,
418 Typ => Ttype);
419 end if;
420 end if;
421 end Check_String_Literal_Length;
423 --------------------------
424 -- Compile_Time_Compare --
425 --------------------------
427 function Compile_Time_Compare
428 (L, R : Node_Id;
429 Assume_Valid : Boolean) return Compare_Result
431 Discard : aliased Uint;
432 begin
433 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
434 end Compile_Time_Compare;
436 function Compile_Time_Compare
437 (L, R : Node_Id;
438 Diff : access Uint;
439 Assume_Valid : Boolean;
440 Rec : Boolean := False) return Compare_Result
442 Ltyp : Entity_Id := Underlying_Type (Etype (L));
443 Rtyp : Entity_Id := Underlying_Type (Etype (R));
444 -- These get reset to the base type for the case of entities where
445 -- Is_Known_Valid is not set. This takes care of handling possible
446 -- invalid representations using the value of the base type, in
447 -- accordance with RM 13.9.1(10).
449 Discard : aliased Uint;
451 procedure Compare_Decompose
452 (N : Node_Id;
453 R : out Node_Id;
454 V : out Uint);
455 -- This procedure decomposes the node N into an expression node and a
456 -- signed offset, so that the value of N is equal to the value of R plus
457 -- the value V (which may be negative). If no such decomposition is
458 -- possible, then on return R is a copy of N, and V is set to zero.
460 function Compare_Fixup (N : Node_Id) return Node_Id;
461 -- This function deals with replacing 'Last and 'First references with
462 -- their corresponding type bounds, which we then can compare. The
463 -- argument is the original node, the result is the identity, unless we
464 -- have a 'Last/'First reference in which case the value returned is the
465 -- appropriate type bound.
467 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
468 -- Even if the context does not assume that values are valid, some
469 -- simple cases can be recognized.
471 function Is_Same_Value (L, R : Node_Id) return Boolean;
472 -- Returns True iff L and R represent expressions that definitely have
473 -- identical (but not necessarily compile time known) values Indeed the
474 -- caller is expected to have already dealt with the cases of compile
475 -- time known values, so these are not tested here.
477 -----------------------
478 -- Compare_Decompose --
479 -----------------------
481 procedure Compare_Decompose
482 (N : Node_Id;
483 R : out Node_Id;
484 V : out Uint)
486 begin
487 if Nkind (N) = N_Op_Add
488 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
489 then
490 R := Left_Opnd (N);
491 V := Intval (Right_Opnd (N));
492 return;
494 elsif Nkind (N) = N_Op_Subtract
495 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
496 then
497 R := Left_Opnd (N);
498 V := UI_Negate (Intval (Right_Opnd (N)));
499 return;
501 elsif Nkind (N) = N_Attribute_Reference then
502 if Attribute_Name (N) = Name_Succ then
503 R := First (Expressions (N));
504 V := Uint_1;
505 return;
507 elsif Attribute_Name (N) = Name_Pred then
508 R := First (Expressions (N));
509 V := Uint_Minus_1;
510 return;
511 end if;
512 end if;
514 R := N;
515 V := Uint_0;
516 end Compare_Decompose;
518 -------------------
519 -- Compare_Fixup --
520 -------------------
522 function Compare_Fixup (N : Node_Id) return Node_Id is
523 Indx : Node_Id;
524 Xtyp : Entity_Id;
525 Subs : Nat;
527 begin
528 -- Fixup only required for First/Last attribute reference
530 if Nkind (N) = N_Attribute_Reference
531 and then (Attribute_Name (N) = Name_First
532 or else
533 Attribute_Name (N) = Name_Last)
534 then
535 Xtyp := Etype (Prefix (N));
537 -- If we have no type, then just abandon the attempt to do
538 -- a fixup, this is probably the result of some other error.
540 if No (Xtyp) then
541 return N;
542 end if;
544 -- Dereference an access type
546 if Is_Access_Type (Xtyp) then
547 Xtyp := Designated_Type (Xtyp);
548 end if;
550 -- If we don't have an array type at this stage, something
551 -- is peculiar, e.g. another error, and we abandon the attempt
552 -- at a fixup.
554 if not Is_Array_Type (Xtyp) then
555 return N;
556 end if;
558 -- Ignore unconstrained array, since bounds are not meaningful
560 if not Is_Constrained (Xtyp) then
561 return N;
562 end if;
564 if Ekind (Xtyp) = E_String_Literal_Subtype then
565 if Attribute_Name (N) = Name_First then
566 return String_Literal_Low_Bound (Xtyp);
568 else
569 return Make_Integer_Literal (Sloc (N),
570 Intval => Intval (String_Literal_Low_Bound (Xtyp))
571 + String_Literal_Length (Xtyp));
572 end if;
573 end if;
575 -- Find correct index type
577 Indx := First_Index (Xtyp);
579 if Present (Expressions (N)) then
580 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
582 for J in 2 .. Subs loop
583 Indx := Next_Index (Indx);
584 end loop;
585 end if;
587 Xtyp := Etype (Indx);
589 if Attribute_Name (N) = Name_First then
590 return Type_Low_Bound (Xtyp);
591 else
592 return Type_High_Bound (Xtyp);
593 end if;
594 end if;
596 return N;
597 end Compare_Fixup;
599 ----------------------------
600 -- Is_Known_Valid_Operand --
601 ----------------------------
603 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
604 begin
605 return (Is_Entity_Name (Opnd)
606 and then
607 (Is_Known_Valid (Entity (Opnd))
608 or else Ekind (Entity (Opnd)) = E_In_Parameter
609 or else
610 (Ekind (Entity (Opnd)) in Object_Kind
611 and then Present (Current_Value (Entity (Opnd))))))
612 or else Is_OK_Static_Expression (Opnd);
613 end Is_Known_Valid_Operand;
615 -------------------
616 -- Is_Same_Value --
617 -------------------
619 function Is_Same_Value (L, R : Node_Id) return Boolean is
620 Lf : constant Node_Id := Compare_Fixup (L);
621 Rf : constant Node_Id := Compare_Fixup (R);
623 function Is_Same_Subscript (L, R : List_Id) return Boolean;
624 -- L, R are the Expressions values from two attribute nodes for First
625 -- or Last attributes. Either may be set to No_List if no expressions
626 -- are present (indicating subscript 1). The result is True if both
627 -- expressions represent the same subscript (note one case is where
628 -- one subscript is missing and the other is explicitly set to 1).
630 -----------------------
631 -- Is_Same_Subscript --
632 -----------------------
634 function Is_Same_Subscript (L, R : List_Id) return Boolean is
635 begin
636 if L = No_List then
637 if R = No_List then
638 return True;
639 else
640 return Expr_Value (First (R)) = Uint_1;
641 end if;
643 else
644 if R = No_List then
645 return Expr_Value (First (L)) = Uint_1;
646 else
647 return Expr_Value (First (L)) = Expr_Value (First (R));
648 end if;
649 end if;
650 end Is_Same_Subscript;
652 -- Start of processing for Is_Same_Value
654 begin
655 -- Values are the same if they refer to the same entity and the
656 -- entity is non-volatile. This does not however apply to Float
657 -- types, since we may have two NaN values and they should never
658 -- compare equal.
660 -- If the entity is a discriminant, the two expressions may be bounds
661 -- of components of objects of the same discriminated type. The
662 -- values of the discriminants are not static, and therefore the
663 -- result is unknown.
665 -- It would be better to comment individual branches of this test ???
667 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
668 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
669 and then Entity (Lf) = Entity (Rf)
670 and then Ekind (Entity (Lf)) /= E_Discriminant
671 and then Present (Entity (Lf))
672 and then not Is_Floating_Point_Type (Etype (L))
673 and then not Is_Volatile_Reference (L)
674 and then not Is_Volatile_Reference (R)
675 then
676 return True;
678 -- Or if they are compile time known and identical
680 elsif Compile_Time_Known_Value (Lf)
681 and then
682 Compile_Time_Known_Value (Rf)
683 and then Expr_Value (Lf) = Expr_Value (Rf)
684 then
685 return True;
687 -- False if Nkind of the two nodes is different for remaining cases
689 elsif Nkind (Lf) /= Nkind (Rf) then
690 return False;
692 -- True if both 'First or 'Last values applying to the same entity
693 -- (first and last don't change even if value does). Note that we
694 -- need this even with the calls to Compare_Fixup, to handle the
695 -- case of unconstrained array attributes where Compare_Fixup
696 -- cannot find useful bounds.
698 elsif Nkind (Lf) = N_Attribute_Reference
699 and then Attribute_Name (Lf) = Attribute_Name (Rf)
700 and then (Attribute_Name (Lf) = Name_First
701 or else
702 Attribute_Name (Lf) = Name_Last)
703 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
704 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
705 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
706 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
707 then
708 return True;
710 -- True if the same selected component from the same record
712 elsif Nkind (Lf) = N_Selected_Component
713 and then Selector_Name (Lf) = Selector_Name (Rf)
714 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
715 then
716 return True;
718 -- True if the same unary operator applied to the same operand
720 elsif Nkind (Lf) in N_Unary_Op
721 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
722 then
723 return True;
725 -- True if the same binary operator applied to the same operands
727 elsif Nkind (Lf) in N_Binary_Op
728 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
729 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
730 then
731 return True;
733 -- All other cases, we can't tell, so return False
735 else
736 return False;
737 end if;
738 end Is_Same_Value;
740 -- Start of processing for Compile_Time_Compare
742 begin
743 Diff.all := No_Uint;
745 -- In preanalysis mode, always return Unknown unless the expression
746 -- is static. It is too early to be thinking we know the result of a
747 -- comparison, save that judgment for the full analysis. This is
748 -- particularly important in the case of pre and postconditions, which
749 -- otherwise can be prematurely collapsed into having True or False
750 -- conditions when this is inappropriate.
752 if not (Full_Analysis
753 or else (Is_Static_Expression (L)
754 and then
755 Is_Static_Expression (R)))
756 then
757 return Unknown;
758 end if;
760 -- If either operand could raise constraint error, then we cannot
761 -- know the result at compile time (since CE may be raised!)
763 if not (Cannot_Raise_Constraint_Error (L)
764 and then
765 Cannot_Raise_Constraint_Error (R))
766 then
767 return Unknown;
768 end if;
770 -- Identical operands are most certainly equal
772 if L = R then
773 return EQ;
775 -- If expressions have no types, then do not attempt to determine if
776 -- they are the same, since something funny is going on. One case in
777 -- which this happens is during generic template analysis, when bounds
778 -- are not fully analyzed.
780 elsif No (Ltyp) or else No (Rtyp) then
781 return Unknown;
783 -- We do not attempt comparisons for packed arrays arrays represented as
784 -- modular types, where the semantics of comparison is quite different.
786 elsif Is_Packed_Array_Type (Ltyp)
787 and then Is_Modular_Integer_Type (Ltyp)
788 then
789 return Unknown;
791 -- For access types, the only time we know the result at compile time
792 -- (apart from identical operands, which we handled already) is if we
793 -- know one operand is null and the other is not, or both operands are
794 -- known null.
796 elsif Is_Access_Type (Ltyp) then
797 if Known_Null (L) then
798 if Known_Null (R) then
799 return EQ;
800 elsif Known_Non_Null (R) then
801 return NE;
802 else
803 return Unknown;
804 end if;
806 elsif Known_Non_Null (L) and then Known_Null (R) then
807 return NE;
809 else
810 return Unknown;
811 end if;
813 -- Case where comparison involves two compile time known values
815 elsif Compile_Time_Known_Value (L)
816 and then Compile_Time_Known_Value (R)
817 then
818 -- For the floating-point case, we have to be a little careful, since
819 -- at compile time we are dealing with universal exact values, but at
820 -- runtime, these will be in non-exact target form. That's why the
821 -- returned results are LE and GE below instead of LT and GT.
823 if Is_Floating_Point_Type (Ltyp)
824 or else
825 Is_Floating_Point_Type (Rtyp)
826 then
827 declare
828 Lo : constant Ureal := Expr_Value_R (L);
829 Hi : constant Ureal := Expr_Value_R (R);
831 begin
832 if Lo < Hi then
833 return LE;
834 elsif Lo = Hi then
835 return EQ;
836 else
837 return GE;
838 end if;
839 end;
841 -- For string types, we have two string literals and we proceed to
842 -- compare them using the Ada style dictionary string comparison.
844 elsif not Is_Scalar_Type (Ltyp) then
845 declare
846 Lstring : constant String_Id := Strval (Expr_Value_S (L));
847 Rstring : constant String_Id := Strval (Expr_Value_S (R));
848 Llen : constant Nat := String_Length (Lstring);
849 Rlen : constant Nat := String_Length (Rstring);
851 begin
852 for J in 1 .. Nat'Min (Llen, Rlen) loop
853 declare
854 LC : constant Char_Code := Get_String_Char (Lstring, J);
855 RC : constant Char_Code := Get_String_Char (Rstring, J);
856 begin
857 if LC < RC then
858 return LT;
859 elsif LC > RC then
860 return GT;
861 end if;
862 end;
863 end loop;
865 if Llen < Rlen then
866 return LT;
867 elsif Llen > Rlen then
868 return GT;
869 else
870 return EQ;
871 end if;
872 end;
874 -- For remaining scalar cases we know exactly (note that this does
875 -- include the fixed-point case, where we know the run time integer
876 -- values now).
878 else
879 declare
880 Lo : constant Uint := Expr_Value (L);
881 Hi : constant Uint := Expr_Value (R);
883 begin
884 if Lo < Hi then
885 Diff.all := Hi - Lo;
886 return LT;
888 elsif Lo = Hi then
889 return EQ;
891 else
892 Diff.all := Lo - Hi;
893 return GT;
894 end if;
895 end;
896 end if;
898 -- Cases where at least one operand is not known at compile time
900 else
901 -- Remaining checks apply only for discrete types
903 if not Is_Discrete_Type (Ltyp)
904 or else not Is_Discrete_Type (Rtyp)
905 then
906 return Unknown;
907 end if;
909 -- Defend against generic types, or actually any expressions that
910 -- contain a reference to a generic type from within a generic
911 -- template. We don't want to do any range analysis of such
912 -- expressions for two reasons. First, the bounds of a generic type
913 -- itself are junk and cannot be used for any kind of analysis.
914 -- Second, we may have a case where the range at run time is indeed
915 -- known, but we don't want to do compile time analysis in the
916 -- template based on that range since in an instance the value may be
917 -- static, and able to be elaborated without reference to the bounds
918 -- of types involved. As an example, consider:
920 -- (F'Pos (F'Last) + 1) > Integer'Last
922 -- The expression on the left side of > is Universal_Integer and thus
923 -- acquires the type Integer for evaluation at run time, and at run
924 -- time it is true that this condition is always False, but within
925 -- an instance F may be a type with a static range greater than the
926 -- range of Integer, and the expression statically evaluates to True.
928 if References_Generic_Formal_Type (L)
929 or else
930 References_Generic_Formal_Type (R)
931 then
932 return Unknown;
933 end if;
935 -- Replace types by base types for the case of entities which are
936 -- not known to have valid representations. This takes care of
937 -- properly dealing with invalid representations.
939 if not Assume_Valid and then not Assume_No_Invalid_Values then
940 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
941 Ltyp := Underlying_Type (Base_Type (Ltyp));
942 end if;
944 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
945 Rtyp := Underlying_Type (Base_Type (Rtyp));
946 end if;
947 end if;
949 -- First attempt is to decompose the expressions to extract a
950 -- constant offset resulting from the use of any of the forms:
952 -- expr + literal
953 -- expr - literal
954 -- typ'Succ (expr)
955 -- typ'Pred (expr)
957 -- Then we see if the two expressions are the same value, and if so
958 -- the result is obtained by comparing the offsets.
960 -- Note: the reason we do this test first is that it returns only
961 -- decisive results (with diff set), where other tests, like the
962 -- range test, may not be as so decisive. Consider for example
963 -- J .. J + 1. This code can conclude LT with a difference of 1,
964 -- even if the range of J is not known.
966 declare
967 Lnode : Node_Id;
968 Loffs : Uint;
969 Rnode : Node_Id;
970 Roffs : Uint;
972 begin
973 Compare_Decompose (L, Lnode, Loffs);
974 Compare_Decompose (R, Rnode, Roffs);
976 if Is_Same_Value (Lnode, Rnode) then
977 if Loffs = Roffs then
978 return EQ;
980 elsif Loffs < Roffs then
981 Diff.all := Roffs - Loffs;
982 return LT;
984 else
985 Diff.all := Loffs - Roffs;
986 return GT;
987 end if;
988 end if;
989 end;
991 -- Next, try range analysis and see if operand ranges are disjoint
993 declare
994 LOK, ROK : Boolean;
995 LLo, LHi : Uint;
996 RLo, RHi : Uint;
998 Single : Boolean;
999 -- True if each range is a single point
1001 begin
1002 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1003 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1005 if LOK and ROK then
1006 Single := (LLo = LHi) and then (RLo = RHi);
1008 if LHi < RLo then
1009 if Single and Assume_Valid then
1010 Diff.all := RLo - LLo;
1011 end if;
1013 return LT;
1015 elsif RHi < LLo then
1016 if Single and Assume_Valid then
1017 Diff.all := LLo - RLo;
1018 end if;
1020 return GT;
1022 elsif Single and then LLo = RLo then
1024 -- If the range includes a single literal and we can assume
1025 -- validity then the result is known even if an operand is
1026 -- not static.
1028 if Assume_Valid then
1029 return EQ;
1030 else
1031 return Unknown;
1032 end if;
1034 elsif LHi = RLo then
1035 return LE;
1037 elsif RHi = LLo then
1038 return GE;
1040 elsif not Is_Known_Valid_Operand (L)
1041 and then not Assume_Valid
1042 then
1043 if Is_Same_Value (L, R) then
1044 return EQ;
1045 else
1046 return Unknown;
1047 end if;
1048 end if;
1050 -- If the range of either operand cannot be determined, nothing
1051 -- further can be inferred.
1053 else
1054 return Unknown;
1055 end if;
1056 end;
1058 -- Here is where we check for comparisons against maximum bounds of
1059 -- types, where we know that no value can be outside the bounds of
1060 -- the subtype. Note that this routine is allowed to assume that all
1061 -- expressions are within their subtype bounds. Callers wishing to
1062 -- deal with possibly invalid values must in any case take special
1063 -- steps (e.g. conversions to larger types) to avoid this kind of
1064 -- optimization, which is always considered to be valid. We do not
1065 -- attempt this optimization with generic types, since the type
1066 -- bounds may not be meaningful in this case.
1068 -- We are in danger of an infinite recursion here. It does not seem
1069 -- useful to go more than one level deep, so the parameter Rec is
1070 -- used to protect ourselves against this infinite recursion.
1072 if not Rec then
1074 -- See if we can get a decisive check against one operand and
1075 -- a bound of the other operand (four possible tests here).
1076 -- Note that we avoid testing junk bounds of a generic type.
1078 if not Is_Generic_Type (Rtyp) then
1079 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1080 Discard'Access,
1081 Assume_Valid, Rec => True)
1083 when LT => return LT;
1084 when LE => return LE;
1085 when EQ => return LE;
1086 when others => null;
1087 end case;
1089 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1090 Discard'Access,
1091 Assume_Valid, Rec => True)
1093 when GT => return GT;
1094 when GE => return GE;
1095 when EQ => return GE;
1096 when others => null;
1097 end case;
1098 end if;
1100 if not Is_Generic_Type (Ltyp) then
1101 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1102 Discard'Access,
1103 Assume_Valid, Rec => True)
1105 when GT => return GT;
1106 when GE => return GE;
1107 when EQ => return GE;
1108 when others => null;
1109 end case;
1111 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1112 Discard'Access,
1113 Assume_Valid, Rec => True)
1115 when LT => return LT;
1116 when LE => return LE;
1117 when EQ => return LE;
1118 when others => null;
1119 end case;
1120 end if;
1121 end if;
1123 -- Next attempt is to see if we have an entity compared with a
1124 -- compile time known value, where there is a current value
1125 -- conditional for the entity which can tell us the result.
1127 declare
1128 Var : Node_Id;
1129 -- Entity variable (left operand)
1131 Val : Uint;
1132 -- Value (right operand)
1134 Inv : Boolean;
1135 -- If False, we have reversed the operands
1137 Op : Node_Kind;
1138 -- Comparison operator kind from Get_Current_Value_Condition call
1140 Opn : Node_Id;
1141 -- Value from Get_Current_Value_Condition call
1143 Opv : Uint;
1144 -- Value of Opn
1146 Result : Compare_Result;
1147 -- Known result before inversion
1149 begin
1150 if Is_Entity_Name (L)
1151 and then Compile_Time_Known_Value (R)
1152 then
1153 Var := L;
1154 Val := Expr_Value (R);
1155 Inv := False;
1157 elsif Is_Entity_Name (R)
1158 and then Compile_Time_Known_Value (L)
1159 then
1160 Var := R;
1161 Val := Expr_Value (L);
1162 Inv := True;
1164 -- That was the last chance at finding a compile time result
1166 else
1167 return Unknown;
1168 end if;
1170 Get_Current_Value_Condition (Var, Op, Opn);
1172 -- That was the last chance, so if we got nothing return
1174 if No (Opn) then
1175 return Unknown;
1176 end if;
1178 Opv := Expr_Value (Opn);
1180 -- We got a comparison, so we might have something interesting
1182 -- Convert LE to LT and GE to GT, just so we have fewer cases
1184 if Op = N_Op_Le then
1185 Op := N_Op_Lt;
1186 Opv := Opv + 1;
1188 elsif Op = N_Op_Ge then
1189 Op := N_Op_Gt;
1190 Opv := Opv - 1;
1191 end if;
1193 -- Deal with equality case
1195 if Op = N_Op_Eq then
1196 if Val = Opv then
1197 Result := EQ;
1198 elsif Opv < Val then
1199 Result := LT;
1200 else
1201 Result := GT;
1202 end if;
1204 -- Deal with inequality case
1206 elsif Op = N_Op_Ne then
1207 if Val = Opv then
1208 Result := NE;
1209 else
1210 return Unknown;
1211 end if;
1213 -- Deal with greater than case
1215 elsif Op = N_Op_Gt then
1216 if Opv >= Val then
1217 Result := GT;
1218 elsif Opv = Val - 1 then
1219 Result := GE;
1220 else
1221 return Unknown;
1222 end if;
1224 -- Deal with less than case
1226 else pragma Assert (Op = N_Op_Lt);
1227 if Opv <= Val then
1228 Result := LT;
1229 elsif Opv = Val + 1 then
1230 Result := LE;
1231 else
1232 return Unknown;
1233 end if;
1234 end if;
1236 -- Deal with inverting result
1238 if Inv then
1239 case Result is
1240 when GT => return LT;
1241 when GE => return LE;
1242 when LT => return GT;
1243 when LE => return GE;
1244 when others => return Result;
1245 end case;
1246 end if;
1248 return Result;
1249 end;
1250 end if;
1251 end Compile_Time_Compare;
1253 -------------------------------
1254 -- Compile_Time_Known_Bounds --
1255 -------------------------------
1257 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1258 Indx : Node_Id;
1259 Typ : Entity_Id;
1261 begin
1262 if not Is_Array_Type (T) then
1263 return False;
1264 end if;
1266 Indx := First_Index (T);
1267 while Present (Indx) loop
1268 Typ := Underlying_Type (Etype (Indx));
1270 -- Never look at junk bounds of a generic type
1272 if Is_Generic_Type (Typ) then
1273 return False;
1274 end if;
1276 -- Otherwise check bounds for compile time known
1278 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1279 return False;
1280 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1281 return False;
1282 else
1283 Next_Index (Indx);
1284 end if;
1285 end loop;
1287 return True;
1288 end Compile_Time_Known_Bounds;
1290 ------------------------------
1291 -- Compile_Time_Known_Value --
1292 ------------------------------
1294 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1295 K : constant Node_Kind := Nkind (Op);
1296 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1298 begin
1299 -- Never known at compile time if bad type or raises constraint error
1300 -- or empty (latter case occurs only as a result of a previous error).
1302 if No (Op) then
1303 Check_Error_Detected;
1304 return False;
1306 elsif Op = Error
1307 or else Etype (Op) = Any_Type
1308 or else Raises_Constraint_Error (Op)
1309 then
1310 return False;
1311 end if;
1313 -- If this is not a static expression or a null literal, and we are in
1314 -- configurable run-time mode, then we consider it not known at compile
1315 -- time. This avoids anomalies where whether something is allowed with a
1316 -- given configurable run-time library depends on how good the compiler
1317 -- is at optimizing and knowing that things are constant when they are
1318 -- nonstatic.
1320 if Configurable_Run_Time_Mode
1321 and then K /= N_Null
1322 and then not Is_Static_Expression (Op)
1323 then
1324 -- We make an exception for expressions that evaluate to True/False,
1325 -- to suppress spurious checks in ZFP mode. So far we have not seen
1326 -- any negative consequences of this exception.
1328 if Is_Entity_Name (Op)
1329 and then Ekind (Entity (Op)) = E_Enumeration_Literal
1330 and then Etype (Entity (Op)) = Standard_Boolean
1331 then
1332 null;
1334 else
1335 return False;
1336 end if;
1337 end if;
1339 -- If we have an entity name, then see if it is the name of a constant
1340 -- and if so, test the corresponding constant value, or the name of
1341 -- an enumeration literal, which is always a constant.
1343 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1344 declare
1345 E : constant Entity_Id := Entity (Op);
1346 V : Node_Id;
1348 begin
1349 -- Never known at compile time if it is a packed array value.
1350 -- We might want to try to evaluate these at compile time one
1351 -- day, but we do not make that attempt now.
1353 if Is_Packed_Array_Type (Etype (Op)) then
1354 return False;
1355 end if;
1357 if Ekind (E) = E_Enumeration_Literal then
1358 return True;
1360 -- In Alfa mode, the value of deferred constants should be ignored
1361 -- outside the scope of their full view. This allows parameterized
1362 -- formal verification, in which a deferred constant value if not
1363 -- known from client units.
1365 elsif Ekind (E) = E_Constant
1366 and then not (Alfa_Mode
1367 and then Present (Full_View (E))
1368 and then not In_Open_Scopes (Scope (E)))
1369 then
1370 V := Constant_Value (E);
1371 return Present (V) and then Compile_Time_Known_Value (V);
1372 end if;
1373 end;
1375 -- We have a value, see if it is compile time known
1377 else
1378 -- Integer literals are worth storing in the cache
1380 if K = N_Integer_Literal then
1381 CV_Ent.N := Op;
1382 CV_Ent.V := Intval (Op);
1383 return True;
1385 -- Other literals and NULL are known at compile time
1387 elsif
1388 K = N_Character_Literal
1389 or else
1390 K = N_Real_Literal
1391 or else
1392 K = N_String_Literal
1393 or else
1394 K = N_Null
1395 then
1396 return True;
1398 -- Any reference to Null_Parameter is known at compile time. No
1399 -- other attribute references (that have not already been folded)
1400 -- are known at compile time.
1402 elsif K = N_Attribute_Reference then
1403 return Attribute_Name (Op) = Name_Null_Parameter;
1404 end if;
1405 end if;
1407 -- If we fall through, not known at compile time
1409 return False;
1411 -- If we get an exception while trying to do this test, then some error
1412 -- has occurred, and we simply say that the value is not known after all
1414 exception
1415 when others =>
1416 return False;
1417 end Compile_Time_Known_Value;
1419 --------------------------------------
1420 -- Compile_Time_Known_Value_Or_Aggr --
1421 --------------------------------------
1423 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1424 begin
1425 -- If we have an entity name, then see if it is the name of a constant
1426 -- and if so, test the corresponding constant value, or the name of
1427 -- an enumeration literal, which is always a constant.
1429 if Is_Entity_Name (Op) then
1430 declare
1431 E : constant Entity_Id := Entity (Op);
1432 V : Node_Id;
1434 begin
1435 if Ekind (E) = E_Enumeration_Literal then
1436 return True;
1438 elsif Ekind (E) /= E_Constant then
1439 return False;
1441 else
1442 V := Constant_Value (E);
1443 return Present (V)
1444 and then Compile_Time_Known_Value_Or_Aggr (V);
1445 end if;
1446 end;
1448 -- We have a value, see if it is compile time known
1450 else
1451 if Compile_Time_Known_Value (Op) then
1452 return True;
1454 elsif Nkind (Op) = N_Aggregate then
1456 if Present (Expressions (Op)) then
1457 declare
1458 Expr : Node_Id;
1460 begin
1461 Expr := First (Expressions (Op));
1462 while Present (Expr) loop
1463 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1464 return False;
1465 end if;
1467 Next (Expr);
1468 end loop;
1469 end;
1470 end if;
1472 if Present (Component_Associations (Op)) then
1473 declare
1474 Cass : Node_Id;
1476 begin
1477 Cass := First (Component_Associations (Op));
1478 while Present (Cass) loop
1479 if not
1480 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1481 then
1482 return False;
1483 end if;
1485 Next (Cass);
1486 end loop;
1487 end;
1488 end if;
1490 return True;
1492 -- All other types of values are not known at compile time
1494 else
1495 return False;
1496 end if;
1498 end if;
1499 end Compile_Time_Known_Value_Or_Aggr;
1501 -----------------
1502 -- Eval_Actual --
1503 -----------------
1505 -- This is only called for actuals of functions that are not predefined
1506 -- operators (which have already been rewritten as operators at this
1507 -- stage), so the call can never be folded, and all that needs doing for
1508 -- the actual is to do the check for a non-static context.
1510 procedure Eval_Actual (N : Node_Id) is
1511 begin
1512 Check_Non_Static_Context (N);
1513 end Eval_Actual;
1515 --------------------
1516 -- Eval_Allocator --
1517 --------------------
1519 -- Allocators are never static, so all we have to do is to do the
1520 -- check for a non-static context if an expression is present.
1522 procedure Eval_Allocator (N : Node_Id) is
1523 Expr : constant Node_Id := Expression (N);
1525 begin
1526 if Nkind (Expr) = N_Qualified_Expression then
1527 Check_Non_Static_Context (Expression (Expr));
1528 end if;
1529 end Eval_Allocator;
1531 ------------------------
1532 -- Eval_Arithmetic_Op --
1533 ------------------------
1535 -- Arithmetic operations are static functions, so the result is static
1536 -- if both operands are static (RM 4.9(7), 4.9(20)).
1538 procedure Eval_Arithmetic_Op (N : Node_Id) is
1539 Left : constant Node_Id := Left_Opnd (N);
1540 Right : constant Node_Id := Right_Opnd (N);
1541 Ltype : constant Entity_Id := Etype (Left);
1542 Rtype : constant Entity_Id := Etype (Right);
1543 Otype : Entity_Id := Empty;
1544 Stat : Boolean;
1545 Fold : Boolean;
1547 begin
1548 -- If not foldable we are done
1550 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1552 if not Fold then
1553 return;
1554 end if;
1556 if Is_Universal_Numeric_Type (Etype (Left))
1557 and then
1558 Is_Universal_Numeric_Type (Etype (Right))
1559 then
1560 Otype := Find_Universal_Operator_Type (N);
1561 end if;
1563 -- Fold for cases where both operands are of integer type
1565 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1566 declare
1567 Left_Int : constant Uint := Expr_Value (Left);
1568 Right_Int : constant Uint := Expr_Value (Right);
1569 Result : Uint;
1571 begin
1572 case Nkind (N) is
1574 when N_Op_Add =>
1575 Result := Left_Int + Right_Int;
1577 when N_Op_Subtract =>
1578 Result := Left_Int - Right_Int;
1580 when N_Op_Multiply =>
1581 if OK_Bits
1582 (N, UI_From_Int
1583 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1584 then
1585 Result := Left_Int * Right_Int;
1586 else
1587 Result := Left_Int;
1588 end if;
1590 when N_Op_Divide =>
1592 -- The exception Constraint_Error is raised by integer
1593 -- division, rem and mod if the right operand is zero.
1595 if Right_Int = 0 then
1596 Apply_Compile_Time_Constraint_Error
1597 (N, "division by zero",
1598 CE_Divide_By_Zero,
1599 Warn => not Stat);
1600 return;
1602 else
1603 Result := Left_Int / Right_Int;
1604 end if;
1606 when N_Op_Mod =>
1608 -- The exception Constraint_Error is raised by integer
1609 -- division, rem and mod if the right operand is zero.
1611 if Right_Int = 0 then
1612 Apply_Compile_Time_Constraint_Error
1613 (N, "mod with zero divisor",
1614 CE_Divide_By_Zero,
1615 Warn => not Stat);
1616 return;
1617 else
1618 Result := Left_Int mod Right_Int;
1619 end if;
1621 when N_Op_Rem =>
1623 -- The exception Constraint_Error is raised by integer
1624 -- division, rem and mod if the right operand is zero.
1626 if Right_Int = 0 then
1627 Apply_Compile_Time_Constraint_Error
1628 (N, "rem with zero divisor",
1629 CE_Divide_By_Zero,
1630 Warn => not Stat);
1631 return;
1633 else
1634 Result := Left_Int rem Right_Int;
1635 end if;
1637 when others =>
1638 raise Program_Error;
1639 end case;
1641 -- Adjust the result by the modulus if the type is a modular type
1643 if Is_Modular_Integer_Type (Ltype) then
1644 Result := Result mod Modulus (Ltype);
1646 -- For a signed integer type, check non-static overflow
1648 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1649 declare
1650 BT : constant Entity_Id := Base_Type (Ltype);
1651 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1652 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1653 begin
1654 if Result < Lo or else Result > Hi then
1655 Apply_Compile_Time_Constraint_Error
1656 (N, "value not in range of }??",
1657 CE_Overflow_Check_Failed,
1658 Ent => BT);
1659 return;
1660 end if;
1661 end;
1662 end if;
1664 -- If we get here we can fold the result
1666 Fold_Uint (N, Result, Stat);
1667 end;
1669 -- Cases where at least one operand is a real. We handle the cases of
1670 -- both reals, or mixed/real integer cases (the latter happen only for
1671 -- divide and multiply, and the result is always real).
1673 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1674 declare
1675 Left_Real : Ureal;
1676 Right_Real : Ureal;
1677 Result : Ureal;
1679 begin
1680 if Is_Real_Type (Ltype) then
1681 Left_Real := Expr_Value_R (Left);
1682 else
1683 Left_Real := UR_From_Uint (Expr_Value (Left));
1684 end if;
1686 if Is_Real_Type (Rtype) then
1687 Right_Real := Expr_Value_R (Right);
1688 else
1689 Right_Real := UR_From_Uint (Expr_Value (Right));
1690 end if;
1692 if Nkind (N) = N_Op_Add then
1693 Result := Left_Real + Right_Real;
1695 elsif Nkind (N) = N_Op_Subtract then
1696 Result := Left_Real - Right_Real;
1698 elsif Nkind (N) = N_Op_Multiply then
1699 Result := Left_Real * Right_Real;
1701 else pragma Assert (Nkind (N) = N_Op_Divide);
1702 if UR_Is_Zero (Right_Real) then
1703 Apply_Compile_Time_Constraint_Error
1704 (N, "division by zero", CE_Divide_By_Zero);
1705 return;
1706 end if;
1708 Result := Left_Real / Right_Real;
1709 end if;
1711 Fold_Ureal (N, Result, Stat);
1712 end;
1713 end if;
1715 -- If the operator was resolved to a specific type, make sure that type
1716 -- is frozen even if the expression is folded into a literal (which has
1717 -- a universal type).
1719 if Present (Otype) then
1720 Freeze_Before (N, Otype);
1721 end if;
1722 end Eval_Arithmetic_Op;
1724 ----------------------------
1725 -- Eval_Character_Literal --
1726 ----------------------------
1728 -- Nothing to be done!
1730 procedure Eval_Character_Literal (N : Node_Id) is
1731 pragma Warnings (Off, N);
1732 begin
1733 null;
1734 end Eval_Character_Literal;
1736 ---------------
1737 -- Eval_Call --
1738 ---------------
1740 -- Static function calls are either calls to predefined operators
1741 -- with static arguments, or calls to functions that rename a literal.
1742 -- Only the latter case is handled here, predefined operators are
1743 -- constant-folded elsewhere.
1745 -- If the function is itself inherited (see 7423-001) the literal of
1746 -- the parent type must be explicitly converted to the return type
1747 -- of the function.
1749 procedure Eval_Call (N : Node_Id) is
1750 Loc : constant Source_Ptr := Sloc (N);
1751 Typ : constant Entity_Id := Etype (N);
1752 Lit : Entity_Id;
1754 begin
1755 if Nkind (N) = N_Function_Call
1756 and then No (Parameter_Associations (N))
1757 and then Is_Entity_Name (Name (N))
1758 and then Present (Alias (Entity (Name (N))))
1759 and then Is_Enumeration_Type (Base_Type (Typ))
1760 then
1761 Lit := Ultimate_Alias (Entity (Name (N)));
1763 if Ekind (Lit) = E_Enumeration_Literal then
1764 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1765 Rewrite
1766 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1767 else
1768 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1769 end if;
1771 Resolve (N, Typ);
1772 end if;
1773 end if;
1774 end Eval_Call;
1776 --------------------------
1777 -- Eval_Case_Expression --
1778 --------------------------
1780 -- A conditional expression is static if all its conditions and dependent
1781 -- expressions are static.
1783 procedure Eval_Case_Expression (N : Node_Id) is
1784 Alt : Node_Id;
1785 Choice : Node_Id;
1786 Is_Static : Boolean;
1787 Result : Node_Id;
1788 Val : Uint;
1790 begin
1791 Result := Empty;
1792 Is_Static := True;
1794 if Is_Static_Expression (Expression (N)) then
1795 Val := Expr_Value (Expression (N));
1797 else
1798 Check_Non_Static_Context (Expression (N));
1799 Is_Static := False;
1800 end if;
1802 Alt := First (Alternatives (N));
1804 Search : while Present (Alt) loop
1805 if not Is_Static
1806 or else not Is_Static_Expression (Expression (Alt))
1807 then
1808 Check_Non_Static_Context (Expression (Alt));
1809 Is_Static := False;
1811 else
1812 Choice := First (Discrete_Choices (Alt));
1813 while Present (Choice) loop
1814 if Nkind (Choice) = N_Others_Choice then
1815 Result := Expression (Alt);
1816 exit Search;
1818 elsif Expr_Value (Choice) = Val then
1819 Result := Expression (Alt);
1820 exit Search;
1822 else
1823 Next (Choice);
1824 end if;
1825 end loop;
1826 end if;
1828 Next (Alt);
1829 end loop Search;
1831 if Is_Static then
1832 Rewrite (N, Relocate_Node (Result));
1834 else
1835 Set_Is_Static_Expression (N, False);
1836 end if;
1837 end Eval_Case_Expression;
1839 ------------------------
1840 -- Eval_Concatenation --
1841 ------------------------
1843 -- Concatenation is a static function, so the result is static if both
1844 -- operands are static (RM 4.9(7), 4.9(21)).
1846 procedure Eval_Concatenation (N : Node_Id) is
1847 Left : constant Node_Id := Left_Opnd (N);
1848 Right : constant Node_Id := Right_Opnd (N);
1849 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1850 Stat : Boolean;
1851 Fold : Boolean;
1853 begin
1854 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1855 -- non-static context.
1857 if Ada_Version = Ada_83
1858 and then Comes_From_Source (N)
1859 then
1860 Check_Non_Static_Context (Left);
1861 Check_Non_Static_Context (Right);
1862 return;
1863 end if;
1865 -- If not foldable we are done. In principle concatenation that yields
1866 -- any string type is static (i.e. an array type of character types).
1867 -- However, character types can include enumeration literals, and
1868 -- concatenation in that case cannot be described by a literal, so we
1869 -- only consider the operation static if the result is an array of
1870 -- (a descendant of) a predefined character type.
1872 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1874 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
1875 Set_Is_Static_Expression (N, False);
1876 return;
1877 end if;
1879 -- Compile time string concatenation
1881 -- ??? Note that operands that are aggregates can be marked as static,
1882 -- so we should attempt at a later stage to fold concatenations with
1883 -- such aggregates.
1885 declare
1886 Left_Str : constant Node_Id := Get_String_Val (Left);
1887 Left_Len : Nat;
1888 Right_Str : constant Node_Id := Get_String_Val (Right);
1889 Folded_Val : String_Id;
1891 begin
1892 -- Establish new string literal, and store left operand. We make
1893 -- sure to use the special Start_String that takes an operand if
1894 -- the left operand is a string literal. Since this is optimized
1895 -- in the case where that is the most recently created string
1896 -- literal, we ensure efficient time/space behavior for the
1897 -- case of a concatenation of a series of string literals.
1899 if Nkind (Left_Str) = N_String_Literal then
1900 Left_Len := String_Length (Strval (Left_Str));
1902 -- If the left operand is the empty string, and the right operand
1903 -- is a string literal (the case of "" & "..."), the result is the
1904 -- value of the right operand. This optimization is important when
1905 -- Is_Folded_In_Parser, to avoid copying an enormous right
1906 -- operand.
1908 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1909 Folded_Val := Strval (Right_Str);
1910 else
1911 Start_String (Strval (Left_Str));
1912 end if;
1914 else
1915 Start_String;
1916 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1917 Left_Len := 1;
1918 end if;
1920 -- Now append the characters of the right operand, unless we
1921 -- optimized the "" & "..." case above.
1923 if Nkind (Right_Str) = N_String_Literal then
1924 if Left_Len /= 0 then
1925 Store_String_Chars (Strval (Right_Str));
1926 Folded_Val := End_String;
1927 end if;
1928 else
1929 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1930 Folded_Val := End_String;
1931 end if;
1933 Set_Is_Static_Expression (N, Stat);
1935 if Stat then
1937 -- If left operand is the empty string, the result is the
1938 -- right operand, including its bounds if anomalous.
1940 if Left_Len = 0
1941 and then Is_Array_Type (Etype (Right))
1942 and then Etype (Right) /= Any_String
1943 then
1944 Set_Etype (N, Etype (Right));
1945 end if;
1947 Fold_Str (N, Folded_Val, Static => True);
1948 end if;
1949 end;
1950 end Eval_Concatenation;
1952 ----------------------
1953 -- Eval_Entity_Name --
1954 ----------------------
1956 -- This procedure is used for identifiers and expanded names other than
1957 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1958 -- static if they denote a static constant (RM 4.9(6)) or if the name
1959 -- denotes an enumeration literal (RM 4.9(22)).
1961 procedure Eval_Entity_Name (N : Node_Id) is
1962 Def_Id : constant Entity_Id := Entity (N);
1963 Val : Node_Id;
1965 begin
1966 -- Enumeration literals are always considered to be constants
1967 -- and cannot raise constraint error (RM 4.9(22)).
1969 if Ekind (Def_Id) = E_Enumeration_Literal then
1970 Set_Is_Static_Expression (N);
1971 return;
1973 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1974 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1975 -- it does not violate 10.2.1(8) here, since this is not a variable.
1977 elsif Ekind (Def_Id) = E_Constant then
1979 -- Deferred constants must always be treated as nonstatic
1980 -- outside the scope of their full view.
1982 if Present (Full_View (Def_Id))
1983 and then not In_Open_Scopes (Scope (Def_Id))
1984 then
1985 Val := Empty;
1986 else
1987 Val := Constant_Value (Def_Id);
1988 end if;
1990 if Present (Val) then
1991 Set_Is_Static_Expression
1992 (N, Is_Static_Expression (Val)
1993 and then Is_Static_Subtype (Etype (Def_Id)));
1994 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1996 if not Is_Static_Expression (N)
1997 and then not Is_Generic_Type (Etype (N))
1998 then
1999 Validate_Static_Object_Name (N);
2000 end if;
2002 return;
2003 end if;
2004 end if;
2006 -- Fall through if the name is not static
2008 Validate_Static_Object_Name (N);
2009 end Eval_Entity_Name;
2011 ------------------------
2012 -- Eval_If_Expression --
2013 ------------------------
2015 -- We can fold to a static expression if the condition and both dependent
2016 -- expressions are static. Otherwise, the only required processing is to do
2017 -- the check for non-static context for the then and else expressions.
2019 procedure Eval_If_Expression (N : Node_Id) is
2020 Condition : constant Node_Id := First (Expressions (N));
2021 Then_Expr : constant Node_Id := Next (Condition);
2022 Else_Expr : constant Node_Id := Next (Then_Expr);
2023 Result : Node_Id;
2024 Non_Result : Node_Id;
2026 Rstat : constant Boolean :=
2027 Is_Static_Expression (Condition)
2028 and then
2029 Is_Static_Expression (Then_Expr)
2030 and then
2031 Is_Static_Expression (Else_Expr);
2033 begin
2034 -- If any operand is Any_Type, just propagate to result and do not try
2035 -- to fold, this prevents cascaded errors.
2037 if Etype (Condition) = Any_Type or else
2038 Etype (Then_Expr) = Any_Type or else
2039 Etype (Else_Expr) = Any_Type
2040 then
2041 Set_Etype (N, Any_Type);
2042 Set_Is_Static_Expression (N, False);
2043 return;
2045 -- Static case where we can fold. Note that we don't try to fold cases
2046 -- where the condition is known at compile time, but the result is
2047 -- non-static. This avoids possible cases of infinite recursion where
2048 -- the expander puts in a redundant test and we remove it. Instead we
2049 -- deal with these cases in the expander.
2051 elsif Rstat then
2053 -- Select result operand
2055 if Is_True (Expr_Value (Condition)) then
2056 Result := Then_Expr;
2057 Non_Result := Else_Expr;
2058 else
2059 Result := Else_Expr;
2060 Non_Result := Then_Expr;
2061 end if;
2063 -- Note that it does not matter if the non-result operand raises a
2064 -- Constraint_Error, but if the result raises constraint error then
2065 -- we replace the node with a raise constraint error. This will
2066 -- properly propagate Raises_Constraint_Error since this flag is
2067 -- set in Result.
2069 if Raises_Constraint_Error (Result) then
2070 Rewrite_In_Raise_CE (N, Result);
2071 Check_Non_Static_Context (Non_Result);
2073 -- Otherwise the result operand replaces the original node
2075 else
2076 Rewrite (N, Relocate_Node (Result));
2077 end if;
2079 -- Case of condition not known at compile time
2081 else
2082 Check_Non_Static_Context (Condition);
2083 Check_Non_Static_Context (Then_Expr);
2084 Check_Non_Static_Context (Else_Expr);
2085 end if;
2087 Set_Is_Static_Expression (N, Rstat);
2088 end Eval_If_Expression;
2090 ----------------------------
2091 -- Eval_Indexed_Component --
2092 ----------------------------
2094 -- Indexed components are never static, so we need to perform the check
2095 -- for non-static context on the index values. Then, we check if the
2096 -- value can be obtained at compile time, even though it is non-static.
2098 procedure Eval_Indexed_Component (N : Node_Id) is
2099 Expr : Node_Id;
2101 begin
2102 -- Check for non-static context on index values
2104 Expr := First (Expressions (N));
2105 while Present (Expr) loop
2106 Check_Non_Static_Context (Expr);
2107 Next (Expr);
2108 end loop;
2110 -- If the indexed component appears in an object renaming declaration
2111 -- then we do not want to try to evaluate it, since in this case we
2112 -- need the identity of the array element.
2114 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2115 return;
2117 -- Similarly if the indexed component appears as the prefix of an
2118 -- attribute we don't want to evaluate it, because at least for
2119 -- some cases of attributes we need the identify (e.g. Access, Size)
2121 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2122 return;
2123 end if;
2125 -- Note: there are other cases, such as the left side of an assignment,
2126 -- or an OUT parameter for a call, where the replacement results in the
2127 -- illegal use of a constant, But these cases are illegal in the first
2128 -- place, so the replacement, though silly, is harmless.
2130 -- Now see if this is a constant array reference
2132 if List_Length (Expressions (N)) = 1
2133 and then Is_Entity_Name (Prefix (N))
2134 and then Ekind (Entity (Prefix (N))) = E_Constant
2135 and then Present (Constant_Value (Entity (Prefix (N))))
2136 then
2137 declare
2138 Loc : constant Source_Ptr := Sloc (N);
2139 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2140 Sub : constant Node_Id := First (Expressions (N));
2142 Atyp : Entity_Id;
2143 -- Type of array
2145 Lin : Nat;
2146 -- Linear one's origin subscript value for array reference
2148 Lbd : Node_Id;
2149 -- Lower bound of the first array index
2151 Elm : Node_Id;
2152 -- Value from constant array
2154 begin
2155 Atyp := Etype (Arr);
2157 if Is_Access_Type (Atyp) then
2158 Atyp := Designated_Type (Atyp);
2159 end if;
2161 -- If we have an array type (we should have but perhaps there are
2162 -- error cases where this is not the case), then see if we can do
2163 -- a constant evaluation of the array reference.
2165 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2166 if Ekind (Atyp) = E_String_Literal_Subtype then
2167 Lbd := String_Literal_Low_Bound (Atyp);
2168 else
2169 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2170 end if;
2172 if Compile_Time_Known_Value (Sub)
2173 and then Nkind (Arr) = N_Aggregate
2174 and then Compile_Time_Known_Value (Lbd)
2175 and then Is_Discrete_Type (Component_Type (Atyp))
2176 then
2177 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2179 if List_Length (Expressions (Arr)) >= Lin then
2180 Elm := Pick (Expressions (Arr), Lin);
2182 -- If the resulting expression is compile time known,
2183 -- then we can rewrite the indexed component with this
2184 -- value, being sure to mark the result as non-static.
2185 -- We also reset the Sloc, in case this generates an
2186 -- error later on (e.g. 136'Access).
2188 if Compile_Time_Known_Value (Elm) then
2189 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2190 Set_Is_Static_Expression (N, False);
2191 Set_Sloc (N, Loc);
2192 end if;
2193 end if;
2195 -- We can also constant-fold if the prefix is a string literal.
2196 -- This will be useful in an instantiation or an inlining.
2198 elsif Compile_Time_Known_Value (Sub)
2199 and then Nkind (Arr) = N_String_Literal
2200 and then Compile_Time_Known_Value (Lbd)
2201 and then Expr_Value (Lbd) = 1
2202 and then Expr_Value (Sub) <=
2203 String_Literal_Length (Etype (Arr))
2204 then
2205 declare
2206 C : constant Char_Code :=
2207 Get_String_Char (Strval (Arr),
2208 UI_To_Int (Expr_Value (Sub)));
2209 begin
2210 Set_Character_Literal_Name (C);
2212 Elm :=
2213 Make_Character_Literal (Loc,
2214 Chars => Name_Find,
2215 Char_Literal_Value => UI_From_CC (C));
2216 Set_Etype (Elm, Component_Type (Atyp));
2217 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2218 Set_Is_Static_Expression (N, False);
2219 end;
2220 end if;
2221 end if;
2222 end;
2223 end if;
2224 end Eval_Indexed_Component;
2226 --------------------------
2227 -- Eval_Integer_Literal --
2228 --------------------------
2230 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2231 -- as static by the analyzer. The reason we did it that early is to allow
2232 -- the possibility of turning off the Is_Static_Expression flag after
2233 -- analysis, but before resolution, when integer literals are generated in
2234 -- the expander that do not correspond to static expressions.
2236 procedure Eval_Integer_Literal (N : Node_Id) is
2237 T : constant Entity_Id := Etype (N);
2239 function In_Any_Integer_Context return Boolean;
2240 -- If the literal is resolved with a specific type in a context where
2241 -- the expected type is Any_Integer, there are no range checks on the
2242 -- literal. By the time the literal is evaluated, it carries the type
2243 -- imposed by the enclosing expression, and we must recover the context
2244 -- to determine that Any_Integer is meant.
2246 ----------------------------
2247 -- In_Any_Integer_Context --
2248 ----------------------------
2250 function In_Any_Integer_Context return Boolean is
2251 Par : constant Node_Id := Parent (N);
2252 K : constant Node_Kind := Nkind (Par);
2254 begin
2255 -- Any_Integer also appears in digits specifications for real types,
2256 -- but those have bounds smaller that those of any integer base type,
2257 -- so we can safely ignore these cases.
2259 return K = N_Number_Declaration
2260 or else K = N_Attribute_Reference
2261 or else K = N_Attribute_Definition_Clause
2262 or else K = N_Modular_Type_Definition
2263 or else K = N_Signed_Integer_Type_Definition;
2264 end In_Any_Integer_Context;
2266 -- Start of processing for Eval_Integer_Literal
2268 begin
2270 -- If the literal appears in a non-expression context, then it is
2271 -- certainly appearing in a non-static context, so check it. This is
2272 -- actually a redundant check, since Check_Non_Static_Context would
2273 -- check it, but it seems worth while avoiding the call.
2275 if Nkind (Parent (N)) not in N_Subexpr
2276 and then not In_Any_Integer_Context
2277 then
2278 Check_Non_Static_Context (N);
2279 end if;
2281 -- Modular integer literals must be in their base range
2283 if Is_Modular_Integer_Type (T)
2284 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2285 then
2286 Out_Of_Range (N);
2287 end if;
2288 end Eval_Integer_Literal;
2290 ---------------------
2291 -- Eval_Logical_Op --
2292 ---------------------
2294 -- Logical operations are static functions, so the result is potentially
2295 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2297 procedure Eval_Logical_Op (N : Node_Id) is
2298 Left : constant Node_Id := Left_Opnd (N);
2299 Right : constant Node_Id := Right_Opnd (N);
2300 Stat : Boolean;
2301 Fold : Boolean;
2303 begin
2304 -- If not foldable we are done
2306 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2308 if not Fold then
2309 return;
2310 end if;
2312 -- Compile time evaluation of logical operation
2314 declare
2315 Left_Int : constant Uint := Expr_Value (Left);
2316 Right_Int : constant Uint := Expr_Value (Right);
2318 begin
2319 -- VMS includes bitwise operations on signed types
2321 if Is_Modular_Integer_Type (Etype (N))
2322 or else Is_VMS_Operator (Entity (N))
2323 then
2324 declare
2325 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2326 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2328 begin
2329 To_Bits (Left_Int, Left_Bits);
2330 To_Bits (Right_Int, Right_Bits);
2332 -- Note: should really be able to use array ops instead of
2333 -- these loops, but they weren't working at the time ???
2335 if Nkind (N) = N_Op_And then
2336 for J in Left_Bits'Range loop
2337 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2338 end loop;
2340 elsif Nkind (N) = N_Op_Or then
2341 for J in Left_Bits'Range loop
2342 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2343 end loop;
2345 else
2346 pragma Assert (Nkind (N) = N_Op_Xor);
2348 for J in Left_Bits'Range loop
2349 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2350 end loop;
2351 end if;
2353 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2354 end;
2356 else
2357 pragma Assert (Is_Boolean_Type (Etype (N)));
2359 if Nkind (N) = N_Op_And then
2360 Fold_Uint (N,
2361 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2363 elsif Nkind (N) = N_Op_Or then
2364 Fold_Uint (N,
2365 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2367 else
2368 pragma Assert (Nkind (N) = N_Op_Xor);
2369 Fold_Uint (N,
2370 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2371 end if;
2372 end if;
2373 end;
2374 end Eval_Logical_Op;
2376 ------------------------
2377 -- Eval_Membership_Op --
2378 ------------------------
2380 -- A membership test is potentially static if the expression is static, and
2381 -- the range is a potentially static range, or is a subtype mark denoting a
2382 -- static subtype (RM 4.9(12)).
2384 procedure Eval_Membership_Op (N : Node_Id) is
2385 Left : constant Node_Id := Left_Opnd (N);
2386 Right : constant Node_Id := Right_Opnd (N);
2387 Def_Id : Entity_Id;
2388 Lo : Node_Id;
2389 Hi : Node_Id;
2390 Result : Boolean;
2391 Stat : Boolean;
2392 Fold : Boolean;
2394 begin
2395 -- Ignore if error in either operand, except to make sure that Any_Type
2396 -- is properly propagated to avoid junk cascaded errors.
2398 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2399 Set_Etype (N, Any_Type);
2400 return;
2401 end if;
2403 -- Ignore if types involved have predicates
2405 if Present (Predicate_Function (Etype (Left)))
2406 or else
2407 Present (Predicate_Function (Etype (Right)))
2408 then
2409 return;
2410 end if;
2412 -- Case of right operand is a subtype name
2414 if Is_Entity_Name (Right) then
2415 Def_Id := Entity (Right);
2417 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2418 and then Is_OK_Static_Subtype (Def_Id)
2419 then
2420 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2422 if not Fold or else not Stat then
2423 return;
2424 end if;
2425 else
2426 Check_Non_Static_Context (Left);
2427 return;
2428 end if;
2430 -- For string membership tests we will check the length further on
2432 if not Is_String_Type (Def_Id) then
2433 Lo := Type_Low_Bound (Def_Id);
2434 Hi := Type_High_Bound (Def_Id);
2436 else
2437 Lo := Empty;
2438 Hi := Empty;
2439 end if;
2441 -- Case of right operand is a range
2443 else
2444 if Is_Static_Range (Right) then
2445 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2447 if not Fold or else not Stat then
2448 return;
2450 -- If one bound of range raises CE, then don't try to fold
2452 elsif not Is_OK_Static_Range (Right) then
2453 Check_Non_Static_Context (Left);
2454 return;
2455 end if;
2457 else
2458 Check_Non_Static_Context (Left);
2459 return;
2460 end if;
2462 -- Here we know range is an OK static range
2464 Lo := Low_Bound (Right);
2465 Hi := High_Bound (Right);
2466 end if;
2468 -- For strings we check that the length of the string expression is
2469 -- compatible with the string subtype if the subtype is constrained,
2470 -- or if unconstrained then the test is always true.
2472 if Is_String_Type (Etype (Right)) then
2473 if not Is_Constrained (Etype (Right)) then
2474 Result := True;
2476 else
2477 declare
2478 Typlen : constant Uint := String_Type_Len (Etype (Right));
2479 Strlen : constant Uint :=
2480 UI_From_Int
2481 (String_Length (Strval (Get_String_Val (Left))));
2482 begin
2483 Result := (Typlen = Strlen);
2484 end;
2485 end if;
2487 -- Fold the membership test. We know we have a static range and Lo and
2488 -- Hi are set to the expressions for the end points of this range.
2490 elsif Is_Real_Type (Etype (Right)) then
2491 declare
2492 Leftval : constant Ureal := Expr_Value_R (Left);
2494 begin
2495 Result := Expr_Value_R (Lo) <= Leftval
2496 and then Leftval <= Expr_Value_R (Hi);
2497 end;
2499 else
2500 declare
2501 Leftval : constant Uint := Expr_Value (Left);
2503 begin
2504 Result := Expr_Value (Lo) <= Leftval
2505 and then Leftval <= Expr_Value (Hi);
2506 end;
2507 end if;
2509 if Nkind (N) = N_Not_In then
2510 Result := not Result;
2511 end if;
2513 Fold_Uint (N, Test (Result), True);
2515 Warn_On_Known_Condition (N);
2516 end Eval_Membership_Op;
2518 ------------------------
2519 -- Eval_Named_Integer --
2520 ------------------------
2522 procedure Eval_Named_Integer (N : Node_Id) is
2523 begin
2524 Fold_Uint (N,
2525 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2526 end Eval_Named_Integer;
2528 ---------------------
2529 -- Eval_Named_Real --
2530 ---------------------
2532 procedure Eval_Named_Real (N : Node_Id) is
2533 begin
2534 Fold_Ureal (N,
2535 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2536 end Eval_Named_Real;
2538 -------------------
2539 -- Eval_Op_Expon --
2540 -------------------
2542 -- Exponentiation is a static functions, so the result is potentially
2543 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2545 procedure Eval_Op_Expon (N : Node_Id) is
2546 Left : constant Node_Id := Left_Opnd (N);
2547 Right : constant Node_Id := Right_Opnd (N);
2548 Stat : Boolean;
2549 Fold : Boolean;
2551 begin
2552 -- If not foldable we are done
2554 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2556 if not Fold then
2557 return;
2558 end if;
2560 -- Fold exponentiation operation
2562 declare
2563 Right_Int : constant Uint := Expr_Value (Right);
2565 begin
2566 -- Integer case
2568 if Is_Integer_Type (Etype (Left)) then
2569 declare
2570 Left_Int : constant Uint := Expr_Value (Left);
2571 Result : Uint;
2573 begin
2574 -- Exponentiation of an integer raises Constraint_Error for a
2575 -- negative exponent (RM 4.5.6).
2577 if Right_Int < 0 then
2578 Apply_Compile_Time_Constraint_Error
2579 (N, "integer exponent negative",
2580 CE_Range_Check_Failed,
2581 Warn => not Stat);
2582 return;
2584 else
2585 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2586 Result := Left_Int ** Right_Int;
2587 else
2588 Result := Left_Int;
2589 end if;
2591 if Is_Modular_Integer_Type (Etype (N)) then
2592 Result := Result mod Modulus (Etype (N));
2593 end if;
2595 Fold_Uint (N, Result, Stat);
2596 end if;
2597 end;
2599 -- Real case
2601 else
2602 declare
2603 Left_Real : constant Ureal := Expr_Value_R (Left);
2605 begin
2606 -- Cannot have a zero base with a negative exponent
2608 if UR_Is_Zero (Left_Real) then
2610 if Right_Int < 0 then
2611 Apply_Compile_Time_Constraint_Error
2612 (N, "zero ** negative integer",
2613 CE_Range_Check_Failed,
2614 Warn => not Stat);
2615 return;
2616 else
2617 Fold_Ureal (N, Ureal_0, Stat);
2618 end if;
2620 else
2621 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2622 end if;
2623 end;
2624 end if;
2625 end;
2626 end Eval_Op_Expon;
2628 -----------------
2629 -- Eval_Op_Not --
2630 -----------------
2632 -- The not operation is a static functions, so the result is potentially
2633 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2635 procedure Eval_Op_Not (N : Node_Id) is
2636 Right : constant Node_Id := Right_Opnd (N);
2637 Stat : Boolean;
2638 Fold : Boolean;
2640 begin
2641 -- If not foldable we are done
2643 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2645 if not Fold then
2646 return;
2647 end if;
2649 -- Fold not operation
2651 declare
2652 Rint : constant Uint := Expr_Value (Right);
2653 Typ : constant Entity_Id := Etype (N);
2655 begin
2656 -- Negation is equivalent to subtracting from the modulus minus one.
2657 -- For a binary modulus this is equivalent to the ones-complement of
2658 -- the original value. For non-binary modulus this is an arbitrary
2659 -- but consistent definition.
2661 if Is_Modular_Integer_Type (Typ) then
2662 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
2664 else
2665 pragma Assert (Is_Boolean_Type (Typ));
2666 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
2667 end if;
2669 Set_Is_Static_Expression (N, Stat);
2670 end;
2671 end Eval_Op_Not;
2673 -------------------------------
2674 -- Eval_Qualified_Expression --
2675 -------------------------------
2677 -- A qualified expression is potentially static if its subtype mark denotes
2678 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2680 procedure Eval_Qualified_Expression (N : Node_Id) is
2681 Operand : constant Node_Id := Expression (N);
2682 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2684 Stat : Boolean;
2685 Fold : Boolean;
2686 Hex : Boolean;
2688 begin
2689 -- Can only fold if target is string or scalar and subtype is static.
2690 -- Also, do not fold if our parent is an allocator (this is because the
2691 -- qualified expression is really part of the syntactic structure of an
2692 -- allocator, and we do not want to end up with something that
2693 -- corresponds to "new 1" where the 1 is the result of folding a
2694 -- qualified expression).
2696 if not Is_Static_Subtype (Target_Type)
2697 or else Nkind (Parent (N)) = N_Allocator
2698 then
2699 Check_Non_Static_Context (Operand);
2701 -- If operand is known to raise constraint_error, set the flag on the
2702 -- expression so it does not get optimized away.
2704 if Nkind (Operand) = N_Raise_Constraint_Error then
2705 Set_Raises_Constraint_Error (N);
2706 end if;
2708 return;
2709 end if;
2711 -- If not foldable we are done
2713 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2715 if not Fold then
2716 return;
2718 -- Don't try fold if target type has constraint error bounds
2720 elsif not Is_OK_Static_Subtype (Target_Type) then
2721 Set_Raises_Constraint_Error (N);
2722 return;
2723 end if;
2725 -- Here we will fold, save Print_In_Hex indication
2727 Hex := Nkind (Operand) = N_Integer_Literal
2728 and then Print_In_Hex (Operand);
2730 -- Fold the result of qualification
2732 if Is_Discrete_Type (Target_Type) then
2733 Fold_Uint (N, Expr_Value (Operand), Stat);
2735 -- Preserve Print_In_Hex indication
2737 if Hex and then Nkind (N) = N_Integer_Literal then
2738 Set_Print_In_Hex (N);
2739 end if;
2741 elsif Is_Real_Type (Target_Type) then
2742 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2744 else
2745 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2747 if not Stat then
2748 Set_Is_Static_Expression (N, False);
2749 else
2750 Check_String_Literal_Length (N, Target_Type);
2751 end if;
2753 return;
2754 end if;
2756 -- The expression may be foldable but not static
2758 Set_Is_Static_Expression (N, Stat);
2760 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
2761 Out_Of_Range (N);
2762 end if;
2763 end Eval_Qualified_Expression;
2765 -----------------------
2766 -- Eval_Real_Literal --
2767 -----------------------
2769 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2770 -- as static by the analyzer. The reason we did it that early is to allow
2771 -- the possibility of turning off the Is_Static_Expression flag after
2772 -- analysis, but before resolution, when integer literals are generated
2773 -- in the expander that do not correspond to static expressions.
2775 procedure Eval_Real_Literal (N : Node_Id) is
2776 PK : constant Node_Kind := Nkind (Parent (N));
2778 begin
2779 -- If the literal appears in a non-expression context and not as part of
2780 -- a number declaration, then it is appearing in a non-static context,
2781 -- so check it.
2783 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
2784 Check_Non_Static_Context (N);
2785 end if;
2786 end Eval_Real_Literal;
2788 ------------------------
2789 -- Eval_Relational_Op --
2790 ------------------------
2792 -- Relational operations are static functions, so the result is static if
2793 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2794 -- the result is never static, even if the operands are.
2796 procedure Eval_Relational_Op (N : Node_Id) is
2797 Left : constant Node_Id := Left_Opnd (N);
2798 Right : constant Node_Id := Right_Opnd (N);
2799 Typ : constant Entity_Id := Etype (Left);
2800 Otype : Entity_Id := Empty;
2801 Result : Boolean;
2803 begin
2804 -- One special case to deal with first. If we can tell that the result
2805 -- will be false because the lengths of one or more index subtypes are
2806 -- compile time known and different, then we can replace the entire
2807 -- result by False. We only do this for one dimensional arrays, because
2808 -- the case of multi-dimensional arrays is rare and too much trouble! If
2809 -- one of the operands is an illegal aggregate, its type might still be
2810 -- an arbitrary composite type, so nothing to do.
2812 if Is_Array_Type (Typ)
2813 and then Typ /= Any_Composite
2814 and then Number_Dimensions (Typ) = 1
2815 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
2816 then
2817 if Raises_Constraint_Error (Left)
2818 or else Raises_Constraint_Error (Right)
2819 then
2820 return;
2821 end if;
2823 -- OK, we have the case where we may be able to do this fold
2825 Length_Mismatch : declare
2826 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2827 -- If Op is an expression for a constrained array with a known at
2828 -- compile time length, then Len is set to this (non-negative
2829 -- length). Otherwise Len is set to minus 1.
2831 -----------------------
2832 -- Get_Static_Length --
2833 -----------------------
2835 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2836 T : Entity_Id;
2838 begin
2839 -- First easy case string literal
2841 if Nkind (Op) = N_String_Literal then
2842 Len := UI_From_Int (String_Length (Strval (Op)));
2843 return;
2844 end if;
2846 -- Second easy case, not constrained subtype, so no length
2848 if not Is_Constrained (Etype (Op)) then
2849 Len := Uint_Minus_1;
2850 return;
2851 end if;
2853 -- General case
2855 T := Etype (First_Index (Etype (Op)));
2857 -- The simple case, both bounds are known at compile time
2859 if Is_Discrete_Type (T)
2860 and then
2861 Compile_Time_Known_Value (Type_Low_Bound (T))
2862 and then
2863 Compile_Time_Known_Value (Type_High_Bound (T))
2864 then
2865 Len := UI_Max (Uint_0,
2866 Expr_Value (Type_High_Bound (T)) -
2867 Expr_Value (Type_Low_Bound (T)) + 1);
2868 return;
2869 end if;
2871 -- A more complex case, where the bounds are of the form
2872 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2873 -- either A'First or A'Last (with A an entity name), or X is an
2874 -- entity name, and the two X's are the same and K1 and K2 are
2875 -- known at compile time, in this case, the length can also be
2876 -- computed at compile time, even though the bounds are not
2877 -- known. A common case of this is e.g. (X'First .. X'First+5).
2879 Extract_Length : declare
2880 procedure Decompose_Expr
2881 (Expr : Node_Id;
2882 Ent : out Entity_Id;
2883 Kind : out Character;
2884 Cons : out Uint);
2885 -- Given an expression, see if is of the form above,
2886 -- X [+/- K]. If so Ent is set to the entity in X,
2887 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2888 -- and Cons is the value of K. If the expression is
2889 -- not of the required form, Ent is set to Empty.
2891 --------------------
2892 -- Decompose_Expr --
2893 --------------------
2895 procedure Decompose_Expr
2896 (Expr : Node_Id;
2897 Ent : out Entity_Id;
2898 Kind : out Character;
2899 Cons : out Uint)
2901 Exp : Node_Id;
2903 begin
2904 if Nkind (Expr) = N_Op_Add
2905 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2906 then
2907 Exp := Left_Opnd (Expr);
2908 Cons := Expr_Value (Right_Opnd (Expr));
2910 elsif Nkind (Expr) = N_Op_Subtract
2911 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2912 then
2913 Exp := Left_Opnd (Expr);
2914 Cons := -Expr_Value (Right_Opnd (Expr));
2916 -- If the bound is a constant created to remove side
2917 -- effects, recover original expression to see if it has
2918 -- one of the recognizable forms.
2920 elsif Nkind (Expr) = N_Identifier
2921 and then not Comes_From_Source (Entity (Expr))
2922 and then Ekind (Entity (Expr)) = E_Constant
2923 and then
2924 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2925 then
2926 Exp := Expression (Parent (Entity (Expr)));
2927 Decompose_Expr (Exp, Ent, Kind, Cons);
2929 -- If original expression includes an entity, create a
2930 -- reference to it for use below.
2932 if Present (Ent) then
2933 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2934 end if;
2936 else
2937 Exp := Expr;
2938 Cons := Uint_0;
2939 end if;
2941 -- At this stage Exp is set to the potential X
2943 if Nkind (Exp) = N_Attribute_Reference then
2944 if Attribute_Name (Exp) = Name_First then
2945 Kind := 'F';
2947 elsif Attribute_Name (Exp) = Name_Last then
2948 Kind := 'L';
2950 else
2951 Ent := Empty;
2952 return;
2953 end if;
2955 Exp := Prefix (Exp);
2957 else
2958 Kind := 'E';
2959 end if;
2961 if Is_Entity_Name (Exp)
2962 and then Present (Entity (Exp))
2963 then
2964 Ent := Entity (Exp);
2965 else
2966 Ent := Empty;
2967 end if;
2968 end Decompose_Expr;
2970 -- Local Variables
2972 Ent1, Ent2 : Entity_Id;
2973 Kind1, Kind2 : Character;
2974 Cons1, Cons2 : Uint;
2976 -- Start of processing for Extract_Length
2978 begin
2979 Decompose_Expr
2980 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2981 Decompose_Expr
2982 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
2984 if Present (Ent1)
2985 and then Kind1 = Kind2
2986 and then Ent1 = Ent2
2987 then
2988 Len := Cons2 - Cons1 + 1;
2989 else
2990 Len := Uint_Minus_1;
2991 end if;
2992 end Extract_Length;
2993 end Get_Static_Length;
2995 -- Local Variables
2997 Len_L : Uint;
2998 Len_R : Uint;
3000 -- Start of processing for Length_Mismatch
3002 begin
3003 Get_Static_Length (Left, Len_L);
3004 Get_Static_Length (Right, Len_R);
3006 if Len_L /= Uint_Minus_1
3007 and then Len_R /= Uint_Minus_1
3008 and then Len_L /= Len_R
3009 then
3010 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3011 Warn_On_Known_Condition (N);
3012 return;
3013 end if;
3014 end Length_Mismatch;
3015 end if;
3017 declare
3018 Is_Static_Expression : Boolean;
3019 Is_Foldable : Boolean;
3020 pragma Unreferenced (Is_Foldable);
3022 begin
3023 -- Initialize the value of Is_Static_Expression. The value of
3024 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3025 -- since, even when some operand is a variable, we can still perform
3026 -- the static evaluation of the expression in some cases (for
3027 -- example, for a variable of a subtype of Integer we statically
3028 -- know that any value stored in such variable is smaller than
3029 -- Integer'Last).
3031 Test_Expression_Is_Foldable
3032 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3034 -- Only comparisons of scalars can give static results. In
3035 -- particular, comparisons of strings never yield a static
3036 -- result, even if both operands are static strings.
3038 if not Is_Scalar_Type (Typ) then
3039 Is_Static_Expression := False;
3040 Set_Is_Static_Expression (N, False);
3041 end if;
3043 -- For operators on universal numeric types called as functions with
3044 -- an explicit scope, determine appropriate specific numeric type,
3045 -- and diagnose possible ambiguity.
3047 if Is_Universal_Numeric_Type (Etype (Left))
3048 and then
3049 Is_Universal_Numeric_Type (Etype (Right))
3050 then
3051 Otype := Find_Universal_Operator_Type (N);
3052 end if;
3054 -- For static real type expressions, we cannot use
3055 -- Compile_Time_Compare since it worries about run-time
3056 -- results which are not exact.
3058 if Is_Static_Expression and then Is_Real_Type (Typ) then
3059 declare
3060 Left_Real : constant Ureal := Expr_Value_R (Left);
3061 Right_Real : constant Ureal := Expr_Value_R (Right);
3063 begin
3064 case Nkind (N) is
3065 when N_Op_Eq => Result := (Left_Real = Right_Real);
3066 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3067 when N_Op_Lt => Result := (Left_Real < Right_Real);
3068 when N_Op_Le => Result := (Left_Real <= Right_Real);
3069 when N_Op_Gt => Result := (Left_Real > Right_Real);
3070 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3072 when others =>
3073 raise Program_Error;
3074 end case;
3076 Fold_Uint (N, Test (Result), True);
3077 end;
3079 -- For all other cases, we use Compile_Time_Compare to do the compare
3081 else
3082 declare
3083 CR : constant Compare_Result :=
3084 Compile_Time_Compare
3085 (Left, Right, Assume_Valid => False);
3087 begin
3088 if CR = Unknown then
3089 return;
3090 end if;
3092 case Nkind (N) is
3093 when N_Op_Eq =>
3094 if CR = EQ then
3095 Result := True;
3096 elsif CR = NE or else CR = GT or else CR = LT then
3097 Result := False;
3098 else
3099 return;
3100 end if;
3102 when N_Op_Ne =>
3103 if CR = NE or else CR = GT or else CR = LT then
3104 Result := True;
3105 elsif CR = EQ then
3106 Result := False;
3107 else
3108 return;
3109 end if;
3111 when N_Op_Lt =>
3112 if CR = LT then
3113 Result := True;
3114 elsif CR = EQ or else CR = GT or else CR = GE then
3115 Result := False;
3116 else
3117 return;
3118 end if;
3120 when N_Op_Le =>
3121 if CR = LT or else CR = EQ or else CR = LE then
3122 Result := True;
3123 elsif CR = GT then
3124 Result := False;
3125 else
3126 return;
3127 end if;
3129 when N_Op_Gt =>
3130 if CR = GT then
3131 Result := True;
3132 elsif CR = EQ or else CR = LT or else CR = LE then
3133 Result := False;
3134 else
3135 return;
3136 end if;
3138 when N_Op_Ge =>
3139 if CR = GT or else CR = EQ or else CR = GE then
3140 Result := True;
3141 elsif CR = LT then
3142 Result := False;
3143 else
3144 return;
3145 end if;
3147 when others =>
3148 raise Program_Error;
3149 end case;
3150 end;
3152 Fold_Uint (N, Test (Result), Is_Static_Expression);
3153 end if;
3154 end;
3156 -- For the case of a folded relational operator on a specific numeric
3157 -- type, freeze operand type now.
3159 if Present (Otype) then
3160 Freeze_Before (N, Otype);
3161 end if;
3163 Warn_On_Known_Condition (N);
3164 end Eval_Relational_Op;
3166 ----------------
3167 -- Eval_Shift --
3168 ----------------
3170 -- Shift operations are intrinsic operations that can never be static, so
3171 -- the only processing required is to perform the required check for a non
3172 -- static context for the two operands.
3174 -- Actually we could do some compile time evaluation here some time ???
3176 procedure Eval_Shift (N : Node_Id) is
3177 begin
3178 Check_Non_Static_Context (Left_Opnd (N));
3179 Check_Non_Static_Context (Right_Opnd (N));
3180 end Eval_Shift;
3182 ------------------------
3183 -- Eval_Short_Circuit --
3184 ------------------------
3186 -- A short circuit operation is potentially static if both operands are
3187 -- potentially static (RM 4.9 (13)).
3189 procedure Eval_Short_Circuit (N : Node_Id) is
3190 Kind : constant Node_Kind := Nkind (N);
3191 Left : constant Node_Id := Left_Opnd (N);
3192 Right : constant Node_Id := Right_Opnd (N);
3193 Left_Int : Uint;
3195 Rstat : constant Boolean :=
3196 Is_Static_Expression (Left)
3197 and then
3198 Is_Static_Expression (Right);
3200 begin
3201 -- Short circuit operations are never static in Ada 83
3203 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3204 Check_Non_Static_Context (Left);
3205 Check_Non_Static_Context (Right);
3206 return;
3207 end if;
3209 -- Now look at the operands, we can't quite use the normal call to
3210 -- Test_Expression_Is_Foldable here because short circuit operations
3211 -- are a special case, they can still be foldable, even if the right
3212 -- operand raises constraint error.
3214 -- If either operand is Any_Type, just propagate to result and do not
3215 -- try to fold, this prevents cascaded errors.
3217 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3218 Set_Etype (N, Any_Type);
3219 return;
3221 -- If left operand raises constraint error, then replace node N with
3222 -- the raise constraint error node, and we are obviously not foldable.
3223 -- Is_Static_Expression is set from the two operands in the normal way,
3224 -- and we check the right operand if it is in a non-static context.
3226 elsif Raises_Constraint_Error (Left) then
3227 if not Rstat then
3228 Check_Non_Static_Context (Right);
3229 end if;
3231 Rewrite_In_Raise_CE (N, Left);
3232 Set_Is_Static_Expression (N, Rstat);
3233 return;
3235 -- If the result is not static, then we won't in any case fold
3237 elsif not Rstat then
3238 Check_Non_Static_Context (Left);
3239 Check_Non_Static_Context (Right);
3240 return;
3241 end if;
3243 -- Here the result is static, note that, unlike the normal processing
3244 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3245 -- the right operand raises constraint error, that's because it is not
3246 -- significant if the left operand is decisive.
3248 Set_Is_Static_Expression (N);
3250 -- It does not matter if the right operand raises constraint error if
3251 -- it will not be evaluated. So deal specially with the cases where
3252 -- the right operand is not evaluated. Note that we will fold these
3253 -- cases even if the right operand is non-static, which is fine, but
3254 -- of course in these cases the result is not potentially static.
3256 Left_Int := Expr_Value (Left);
3258 if (Kind = N_And_Then and then Is_False (Left_Int))
3259 or else
3260 (Kind = N_Or_Else and then Is_True (Left_Int))
3261 then
3262 Fold_Uint (N, Left_Int, Rstat);
3263 return;
3264 end if;
3266 -- If first operand not decisive, then it does matter if the right
3267 -- operand raises constraint error, since it will be evaluated, so
3268 -- we simply replace the node with the right operand. Note that this
3269 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3270 -- (both are set to True in Right).
3272 if Raises_Constraint_Error (Right) then
3273 Rewrite_In_Raise_CE (N, Right);
3274 Check_Non_Static_Context (Left);
3275 return;
3276 end if;
3278 -- Otherwise the result depends on the right operand
3280 Fold_Uint (N, Expr_Value (Right), Rstat);
3281 return;
3282 end Eval_Short_Circuit;
3284 ----------------
3285 -- Eval_Slice --
3286 ----------------
3288 -- Slices can never be static, so the only processing required is to check
3289 -- for non-static context if an explicit range is given.
3291 procedure Eval_Slice (N : Node_Id) is
3292 Drange : constant Node_Id := Discrete_Range (N);
3293 begin
3294 if Nkind (Drange) = N_Range then
3295 Check_Non_Static_Context (Low_Bound (Drange));
3296 Check_Non_Static_Context (High_Bound (Drange));
3297 end if;
3299 -- A slice of the form A (subtype), when the subtype is the index of
3300 -- the type of A, is redundant, the slice can be replaced with A, and
3301 -- this is worth a warning.
3303 if Is_Entity_Name (Prefix (N)) then
3304 declare
3305 E : constant Entity_Id := Entity (Prefix (N));
3306 T : constant Entity_Id := Etype (E);
3307 begin
3308 if Ekind (E) = E_Constant
3309 and then Is_Array_Type (T)
3310 and then Is_Entity_Name (Drange)
3311 then
3312 if Is_Entity_Name (Original_Node (First_Index (T)))
3313 and then Entity (Original_Node (First_Index (T)))
3314 = Entity (Drange)
3315 then
3316 if Warn_On_Redundant_Constructs then
3317 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3318 end if;
3320 -- The following might be a useful optimization???
3322 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3323 end if;
3324 end if;
3325 end;
3326 end if;
3327 end Eval_Slice;
3329 ---------------------------------
3330 -- Eval_Static_Predicate_Check --
3331 ---------------------------------
3333 function Eval_Static_Predicate_Check
3334 (N : Node_Id;
3335 Typ : Entity_Id) return Boolean
3337 Loc : constant Source_Ptr := Sloc (N);
3338 Pred : constant List_Id := Static_Predicate (Typ);
3339 Test : Node_Id;
3341 begin
3342 if No (Pred) then
3343 return True;
3344 end if;
3346 -- The static predicate is a list of alternatives in the proper format
3347 -- for an Ada 2012 membership test. If the argument is a literal, the
3348 -- membership test can be evaluated statically. The caller transforms
3349 -- a result of False into a static contraint error.
3351 Test := Make_In (Loc,
3352 Left_Opnd => New_Copy_Tree (N),
3353 Right_Opnd => Empty,
3354 Alternatives => Pred);
3355 Analyze_And_Resolve (Test, Standard_Boolean);
3357 return Nkind (Test) = N_Identifier
3358 and then Entity (Test) = Standard_True;
3359 end Eval_Static_Predicate_Check;
3361 -------------------------
3362 -- Eval_String_Literal --
3363 -------------------------
3365 procedure Eval_String_Literal (N : Node_Id) is
3366 Typ : constant Entity_Id := Etype (N);
3367 Bas : constant Entity_Id := Base_Type (Typ);
3368 Xtp : Entity_Id;
3369 Len : Nat;
3370 Lo : Node_Id;
3372 begin
3373 -- Nothing to do if error type (handles cases like default expressions
3374 -- or generics where we have not yet fully resolved the type).
3376 if Bas = Any_Type or else Bas = Any_String then
3377 return;
3378 end if;
3380 -- String literals are static if the subtype is static (RM 4.9(2)), so
3381 -- reset the static expression flag (it was set unconditionally in
3382 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3383 -- the subtype is static by looking at the lower bound.
3385 if Ekind (Typ) = E_String_Literal_Subtype then
3386 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3387 Set_Is_Static_Expression (N, False);
3388 return;
3389 end if;
3391 -- Here if Etype of string literal is normal Etype (not yet possible,
3392 -- but may be possible in future).
3394 elsif not Is_OK_Static_Expression
3395 (Type_Low_Bound (Etype (First_Index (Typ))))
3396 then
3397 Set_Is_Static_Expression (N, False);
3398 return;
3399 end if;
3401 -- If original node was a type conversion, then result if non-static
3403 if Nkind (Original_Node (N)) = N_Type_Conversion then
3404 Set_Is_Static_Expression (N, False);
3405 return;
3406 end if;
3408 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3409 -- if its bounds are outside the index base type and this index type is
3410 -- static. This can happen in only two ways. Either the string literal
3411 -- is too long, or it is null, and the lower bound is type'First. In
3412 -- either case it is the upper bound that is out of range of the index
3413 -- type.
3415 if Ada_Version >= Ada_95 then
3416 if Root_Type (Bas) = Standard_String
3417 or else
3418 Root_Type (Bas) = Standard_Wide_String
3419 then
3420 Xtp := Standard_Positive;
3421 else
3422 Xtp := Etype (First_Index (Bas));
3423 end if;
3425 if Ekind (Typ) = E_String_Literal_Subtype then
3426 Lo := String_Literal_Low_Bound (Typ);
3427 else
3428 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3429 end if;
3431 Len := String_Length (Strval (N));
3433 if UI_From_Int (Len) > String_Type_Len (Bas) then
3434 Apply_Compile_Time_Constraint_Error
3435 (N, "string literal too long for}", CE_Length_Check_Failed,
3436 Ent => Bas,
3437 Typ => First_Subtype (Bas));
3439 elsif Len = 0
3440 and then not Is_Generic_Type (Xtp)
3441 and then
3442 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3443 then
3444 Apply_Compile_Time_Constraint_Error
3445 (N, "null string literal not allowed for}",
3446 CE_Length_Check_Failed,
3447 Ent => Bas,
3448 Typ => First_Subtype (Bas));
3449 end if;
3450 end if;
3451 end Eval_String_Literal;
3453 --------------------------
3454 -- Eval_Type_Conversion --
3455 --------------------------
3457 -- A type conversion is potentially static if its subtype mark is for a
3458 -- static scalar subtype, and its operand expression is potentially static
3459 -- (RM 4.9(10)).
3461 procedure Eval_Type_Conversion (N : Node_Id) is
3462 Operand : constant Node_Id := Expression (N);
3463 Source_Type : constant Entity_Id := Etype (Operand);
3464 Target_Type : constant Entity_Id := Etype (N);
3466 Stat : Boolean;
3467 Fold : Boolean;
3469 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3470 -- Returns true if type T is an integer type, or if it is a fixed-point
3471 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3472 -- on the conversion node).
3474 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3475 -- Returns true if type T is a floating-point type, or if it is a
3476 -- fixed-point type that is not to be treated as an integer (i.e. the
3477 -- flag Conversion_OK is not set on the conversion node).
3479 ------------------------------
3480 -- To_Be_Treated_As_Integer --
3481 ------------------------------
3483 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3484 begin
3485 return
3486 Is_Integer_Type (T)
3487 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3488 end To_Be_Treated_As_Integer;
3490 ---------------------------
3491 -- To_Be_Treated_As_Real --
3492 ---------------------------
3494 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3495 begin
3496 return
3497 Is_Floating_Point_Type (T)
3498 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3499 end To_Be_Treated_As_Real;
3501 -- Start of processing for Eval_Type_Conversion
3503 begin
3504 -- Cannot fold if target type is non-static or if semantic error
3506 if not Is_Static_Subtype (Target_Type) then
3507 Check_Non_Static_Context (Operand);
3508 return;
3510 elsif Error_Posted (N) then
3511 return;
3512 end if;
3514 -- If not foldable we are done
3516 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3518 if not Fold then
3519 return;
3521 -- Don't try fold if target type has constraint error bounds
3523 elsif not Is_OK_Static_Subtype (Target_Type) then
3524 Set_Raises_Constraint_Error (N);
3525 return;
3526 end if;
3528 -- Remaining processing depends on operand types. Note that in the
3529 -- following type test, fixed-point counts as real unless the flag
3530 -- Conversion_OK is set, in which case it counts as integer.
3532 -- Fold conversion, case of string type. The result is not static
3534 if Is_String_Type (Target_Type) then
3535 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3537 return;
3539 -- Fold conversion, case of integer target type
3541 elsif To_Be_Treated_As_Integer (Target_Type) then
3542 declare
3543 Result : Uint;
3545 begin
3546 -- Integer to integer conversion
3548 if To_Be_Treated_As_Integer (Source_Type) then
3549 Result := Expr_Value (Operand);
3551 -- Real to integer conversion
3553 else
3554 Result := UR_To_Uint (Expr_Value_R (Operand));
3555 end if;
3557 -- If fixed-point type (Conversion_OK must be set), then the
3558 -- result is logically an integer, but we must replace the
3559 -- conversion with the corresponding real literal, since the
3560 -- type from a semantic point of view is still fixed-point.
3562 if Is_Fixed_Point_Type (Target_Type) then
3563 Fold_Ureal
3564 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3566 -- Otherwise result is integer literal
3568 else
3569 Fold_Uint (N, Result, Stat);
3570 end if;
3571 end;
3573 -- Fold conversion, case of real target type
3575 elsif To_Be_Treated_As_Real (Target_Type) then
3576 declare
3577 Result : Ureal;
3579 begin
3580 if To_Be_Treated_As_Real (Source_Type) then
3581 Result := Expr_Value_R (Operand);
3582 else
3583 Result := UR_From_Uint (Expr_Value (Operand));
3584 end if;
3586 Fold_Ureal (N, Result, Stat);
3587 end;
3589 -- Enumeration types
3591 else
3592 Fold_Uint (N, Expr_Value (Operand), Stat);
3593 end if;
3595 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3596 Out_Of_Range (N);
3597 end if;
3599 end Eval_Type_Conversion;
3601 -------------------
3602 -- Eval_Unary_Op --
3603 -------------------
3605 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3606 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3608 procedure Eval_Unary_Op (N : Node_Id) is
3609 Right : constant Node_Id := Right_Opnd (N);
3610 Otype : Entity_Id := Empty;
3611 Stat : Boolean;
3612 Fold : Boolean;
3614 begin
3615 -- If not foldable we are done
3617 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3619 if not Fold then
3620 return;
3621 end if;
3623 if Etype (Right) = Universal_Integer
3624 or else
3625 Etype (Right) = Universal_Real
3626 then
3627 Otype := Find_Universal_Operator_Type (N);
3628 end if;
3630 -- Fold for integer case
3632 if Is_Integer_Type (Etype (N)) then
3633 declare
3634 Rint : constant Uint := Expr_Value (Right);
3635 Result : Uint;
3637 begin
3638 -- In the case of modular unary plus and abs there is no need
3639 -- to adjust the result of the operation since if the original
3640 -- operand was in bounds the result will be in the bounds of the
3641 -- modular type. However, in the case of modular unary minus the
3642 -- result may go out of the bounds of the modular type and needs
3643 -- adjustment.
3645 if Nkind (N) = N_Op_Plus then
3646 Result := Rint;
3648 elsif Nkind (N) = N_Op_Minus then
3649 if Is_Modular_Integer_Type (Etype (N)) then
3650 Result := (-Rint) mod Modulus (Etype (N));
3651 else
3652 Result := (-Rint);
3653 end if;
3655 else
3656 pragma Assert (Nkind (N) = N_Op_Abs);
3657 Result := abs Rint;
3658 end if;
3660 Fold_Uint (N, Result, Stat);
3661 end;
3663 -- Fold for real case
3665 elsif Is_Real_Type (Etype (N)) then
3666 declare
3667 Rreal : constant Ureal := Expr_Value_R (Right);
3668 Result : Ureal;
3670 begin
3671 if Nkind (N) = N_Op_Plus then
3672 Result := Rreal;
3674 elsif Nkind (N) = N_Op_Minus then
3675 Result := UR_Negate (Rreal);
3677 else
3678 pragma Assert (Nkind (N) = N_Op_Abs);
3679 Result := abs Rreal;
3680 end if;
3682 Fold_Ureal (N, Result, Stat);
3683 end;
3684 end if;
3686 -- If the operator was resolved to a specific type, make sure that type
3687 -- is frozen even if the expression is folded into a literal (which has
3688 -- a universal type).
3690 if Present (Otype) then
3691 Freeze_Before (N, Otype);
3692 end if;
3693 end Eval_Unary_Op;
3695 -------------------------------
3696 -- Eval_Unchecked_Conversion --
3697 -------------------------------
3699 -- Unchecked conversions can never be static, so the only required
3700 -- processing is to check for a non-static context for the operand.
3702 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3703 begin
3704 Check_Non_Static_Context (Expression (N));
3705 end Eval_Unchecked_Conversion;
3707 --------------------
3708 -- Expr_Rep_Value --
3709 --------------------
3711 function Expr_Rep_Value (N : Node_Id) return Uint is
3712 Kind : constant Node_Kind := Nkind (N);
3713 Ent : Entity_Id;
3715 begin
3716 if Is_Entity_Name (N) then
3717 Ent := Entity (N);
3719 -- An enumeration literal that was either in the source or created
3720 -- as a result of static evaluation.
3722 if Ekind (Ent) = E_Enumeration_Literal then
3723 return Enumeration_Rep (Ent);
3725 -- A user defined static constant
3727 else
3728 pragma Assert (Ekind (Ent) = E_Constant);
3729 return Expr_Rep_Value (Constant_Value (Ent));
3730 end if;
3732 -- An integer literal that was either in the source or created as a
3733 -- result of static evaluation.
3735 elsif Kind = N_Integer_Literal then
3736 return Intval (N);
3738 -- A real literal for a fixed-point type. This must be the fixed-point
3739 -- case, either the literal is of a fixed-point type, or it is a bound
3740 -- of a fixed-point type, with type universal real. In either case we
3741 -- obtain the desired value from Corresponding_Integer_Value.
3743 elsif Kind = N_Real_Literal then
3744 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3745 return Corresponding_Integer_Value (N);
3747 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3749 elsif Kind = N_Attribute_Reference
3750 and then Attribute_Name (N) = Name_Null_Parameter
3751 then
3752 return Uint_0;
3754 -- Otherwise must be character literal
3756 else
3757 pragma Assert (Kind = N_Character_Literal);
3758 Ent := Entity (N);
3760 -- Since Character literals of type Standard.Character don't have any
3761 -- defining character literals built for them, they do not have their
3762 -- Entity set, so just use their Char code. Otherwise for user-
3763 -- defined character literals use their Pos value as usual which is
3764 -- the same as the Rep value.
3766 if No (Ent) then
3767 return Char_Literal_Value (N);
3768 else
3769 return Enumeration_Rep (Ent);
3770 end if;
3771 end if;
3772 end Expr_Rep_Value;
3774 ----------------
3775 -- Expr_Value --
3776 ----------------
3778 function Expr_Value (N : Node_Id) return Uint is
3779 Kind : constant Node_Kind := Nkind (N);
3780 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3781 Ent : Entity_Id;
3782 Val : Uint;
3784 begin
3785 -- If already in cache, then we know it's compile time known and we can
3786 -- return the value that was previously stored in the cache since
3787 -- compile time known values cannot change.
3789 if CV_Ent.N = N then
3790 return CV_Ent.V;
3791 end if;
3793 -- Otherwise proceed to test value
3795 if Is_Entity_Name (N) then
3796 Ent := Entity (N);
3798 -- An enumeration literal that was either in the source or created as
3799 -- a result of static evaluation.
3801 if Ekind (Ent) = E_Enumeration_Literal then
3802 Val := Enumeration_Pos (Ent);
3804 -- A user defined static constant
3806 else
3807 pragma Assert (Ekind (Ent) = E_Constant);
3808 Val := Expr_Value (Constant_Value (Ent));
3809 end if;
3811 -- An integer literal that was either in the source or created as a
3812 -- result of static evaluation.
3814 elsif Kind = N_Integer_Literal then
3815 Val := Intval (N);
3817 -- A real literal for a fixed-point type. This must be the fixed-point
3818 -- case, either the literal is of a fixed-point type, or it is a bound
3819 -- of a fixed-point type, with type universal real. In either case we
3820 -- obtain the desired value from Corresponding_Integer_Value.
3822 elsif Kind = N_Real_Literal then
3824 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3825 Val := Corresponding_Integer_Value (N);
3827 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3829 elsif Kind = N_Attribute_Reference
3830 and then Attribute_Name (N) = Name_Null_Parameter
3831 then
3832 Val := Uint_0;
3834 -- Otherwise must be character literal
3836 else
3837 pragma Assert (Kind = N_Character_Literal);
3838 Ent := Entity (N);
3840 -- Since Character literals of type Standard.Character don't
3841 -- have any defining character literals built for them, they
3842 -- do not have their Entity set, so just use their Char
3843 -- code. Otherwise for user-defined character literals use
3844 -- their Pos value as usual.
3846 if No (Ent) then
3847 Val := Char_Literal_Value (N);
3848 else
3849 Val := Enumeration_Pos (Ent);
3850 end if;
3851 end if;
3853 -- Come here with Val set to value to be returned, set cache
3855 CV_Ent.N := N;
3856 CV_Ent.V := Val;
3857 return Val;
3858 end Expr_Value;
3860 ------------------
3861 -- Expr_Value_E --
3862 ------------------
3864 function Expr_Value_E (N : Node_Id) return Entity_Id is
3865 Ent : constant Entity_Id := Entity (N);
3867 begin
3868 if Ekind (Ent) = E_Enumeration_Literal then
3869 return Ent;
3870 else
3871 pragma Assert (Ekind (Ent) = E_Constant);
3872 return Expr_Value_E (Constant_Value (Ent));
3873 end if;
3874 end Expr_Value_E;
3876 ------------------
3877 -- Expr_Value_R --
3878 ------------------
3880 function Expr_Value_R (N : Node_Id) return Ureal is
3881 Kind : constant Node_Kind := Nkind (N);
3882 Ent : Entity_Id;
3884 begin
3885 if Kind = N_Real_Literal then
3886 return Realval (N);
3888 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3889 Ent := Entity (N);
3890 pragma Assert (Ekind (Ent) = E_Constant);
3891 return Expr_Value_R (Constant_Value (Ent));
3893 elsif Kind = N_Integer_Literal then
3894 return UR_From_Uint (Expr_Value (N));
3896 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3898 elsif Kind = N_Attribute_Reference
3899 and then Attribute_Name (N) = Name_Null_Parameter
3900 then
3901 return Ureal_0;
3902 end if;
3904 -- If we fall through, we have a node that cannot be interpreted as a
3905 -- compile time constant. That is definitely an error.
3907 raise Program_Error;
3908 end Expr_Value_R;
3910 ------------------
3911 -- Expr_Value_S --
3912 ------------------
3914 function Expr_Value_S (N : Node_Id) return Node_Id is
3915 begin
3916 if Nkind (N) = N_String_Literal then
3917 return N;
3918 else
3919 pragma Assert (Ekind (Entity (N)) = E_Constant);
3920 return Expr_Value_S (Constant_Value (Entity (N)));
3921 end if;
3922 end Expr_Value_S;
3924 ----------------------------------
3925 -- Find_Universal_Operator_Type --
3926 ----------------------------------
3928 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3929 PN : constant Node_Id := Parent (N);
3930 Call : constant Node_Id := Original_Node (N);
3931 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3933 Is_Fix : constant Boolean :=
3934 Nkind (N) in N_Binary_Op
3935 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3936 -- A mixed-mode operation in this context indicates the presence of
3937 -- fixed-point type in the designated package.
3939 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3940 -- Case where N is a relational (or membership) operator (else it is an
3941 -- arithmetic one).
3943 In_Membership : constant Boolean :=
3944 Nkind (PN) in N_Membership_Test
3945 and then
3946 Nkind (Right_Opnd (PN)) = N_Range
3947 and then
3948 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3949 and then
3950 Is_Universal_Numeric_Type
3951 (Etype (Low_Bound (Right_Opnd (PN))))
3952 and then
3953 Is_Universal_Numeric_Type
3954 (Etype (High_Bound (Right_Opnd (PN))));
3955 -- Case where N is part of a membership test with a universal range
3957 E : Entity_Id;
3958 Pack : Entity_Id;
3959 Typ1 : Entity_Id := Empty;
3960 Priv_E : Entity_Id;
3962 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
3963 -- Check whether one operand is a mixed-mode operation that requires the
3964 -- presence of a fixed-point type. Given that all operands are universal
3965 -- and have been constant-folded, retrieve the original function call.
3967 ---------------------------
3968 -- Is_Mixed_Mode_Operand --
3969 ---------------------------
3971 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
3972 Onod : constant Node_Id := Original_Node (Op);
3973 begin
3974 return Nkind (Onod) = N_Function_Call
3975 and then Present (Next_Actual (First_Actual (Onod)))
3976 and then Etype (First_Actual (Onod)) /=
3977 Etype (Next_Actual (First_Actual (Onod)));
3978 end Is_Mixed_Mode_Operand;
3980 -- Start of processing for Find_Universal_Operator_Type
3982 begin
3983 if Nkind (Call) /= N_Function_Call
3984 or else Nkind (Name (Call)) /= N_Expanded_Name
3985 then
3986 return Empty;
3988 -- There are several cases where the context does not imply the type of
3989 -- the operands:
3990 -- - the universal expression appears in a type conversion;
3991 -- - the expression is a relational operator applied to universal
3992 -- operands;
3993 -- - the expression is a membership test with a universal operand
3994 -- and a range with universal bounds.
3996 elsif Nkind (Parent (N)) = N_Type_Conversion
3997 or else Is_Relational
3998 or else In_Membership
3999 then
4000 Pack := Entity (Prefix (Name (Call)));
4002 -- If the prefix is a package declared elsewhere, iterate over its
4003 -- visible entities, otherwise iterate over all declarations in the
4004 -- designated scope.
4006 if Ekind (Pack) = E_Package
4007 and then not In_Open_Scopes (Pack)
4008 then
4009 Priv_E := First_Private_Entity (Pack);
4010 else
4011 Priv_E := Empty;
4012 end if;
4014 Typ1 := Empty;
4015 E := First_Entity (Pack);
4016 while Present (E) and then E /= Priv_E loop
4017 if Is_Numeric_Type (E)
4018 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4019 and then Comes_From_Source (E)
4020 and then Is_Integer_Type (E) = Is_Int
4021 and then
4022 (Nkind (N) in N_Unary_Op
4023 or else Is_Relational
4024 or else Is_Fixed_Point_Type (E) = Is_Fix)
4025 then
4026 if No (Typ1) then
4027 Typ1 := E;
4029 -- Before emitting an error, check for the presence of a
4030 -- mixed-mode operation that specifies a fixed point type.
4032 elsif Is_Relational
4033 and then
4034 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4035 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4036 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4038 then
4039 if Is_Fixed_Point_Type (E) then
4040 Typ1 := E;
4041 end if;
4043 else
4044 -- More than one type of the proper class declared in P
4046 Error_Msg_N ("ambiguous operation", N);
4047 Error_Msg_Sloc := Sloc (Typ1);
4048 Error_Msg_N ("\possible interpretation (inherited)#", N);
4049 Error_Msg_Sloc := Sloc (E);
4050 Error_Msg_N ("\possible interpretation (inherited)#", N);
4051 return Empty;
4052 end if;
4053 end if;
4055 Next_Entity (E);
4056 end loop;
4057 end if;
4059 return Typ1;
4060 end Find_Universal_Operator_Type;
4062 --------------------------
4063 -- Flag_Non_Static_Expr --
4064 --------------------------
4066 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4067 begin
4068 if Error_Posted (Expr) and then not All_Errors_Mode then
4069 return;
4070 else
4071 Error_Msg_F (Msg, Expr);
4072 Why_Not_Static (Expr);
4073 end if;
4074 end Flag_Non_Static_Expr;
4076 --------------
4077 -- Fold_Str --
4078 --------------
4080 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4081 Loc : constant Source_Ptr := Sloc (N);
4082 Typ : constant Entity_Id := Etype (N);
4084 begin
4085 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4087 -- We now have the literal with the right value, both the actual type
4088 -- and the expected type of this literal are taken from the expression
4089 -- that was evaluated. So now we do the Analyze and Resolve.
4091 -- Note that we have to reset Is_Static_Expression both after the
4092 -- analyze step (because Resolve will evaluate the literal, which
4093 -- will cause semantic errors if it is marked as static), and after
4094 -- the Resolve step (since Resolve in some cases sets this flag).
4096 Analyze (N);
4097 Set_Is_Static_Expression (N, Static);
4098 Set_Etype (N, Typ);
4099 Resolve (N);
4100 Set_Is_Static_Expression (N, Static);
4101 end Fold_Str;
4103 ---------------
4104 -- Fold_Uint --
4105 ---------------
4107 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4108 Loc : constant Source_Ptr := Sloc (N);
4109 Typ : Entity_Id := Etype (N);
4110 Ent : Entity_Id;
4112 begin
4113 -- If we are folding a named number, retain the entity in the literal,
4114 -- for ASIS use.
4116 if Is_Entity_Name (N)
4117 and then Ekind (Entity (N)) = E_Named_Integer
4118 then
4119 Ent := Entity (N);
4120 else
4121 Ent := Empty;
4122 end if;
4124 if Is_Private_Type (Typ) then
4125 Typ := Full_View (Typ);
4126 end if;
4128 -- For a result of type integer, substitute an N_Integer_Literal node
4129 -- for the result of the compile time evaluation of the expression.
4130 -- For ASIS use, set a link to the original named number when not in
4131 -- a generic context.
4133 if Is_Integer_Type (Typ) then
4134 Rewrite (N, Make_Integer_Literal (Loc, Val));
4136 Set_Original_Entity (N, Ent);
4138 -- Otherwise we have an enumeration type, and we substitute either
4139 -- an N_Identifier or N_Character_Literal to represent the enumeration
4140 -- literal corresponding to the given value, which must always be in
4141 -- range, because appropriate tests have already been made for this.
4143 else pragma Assert (Is_Enumeration_Type (Typ));
4144 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4145 end if;
4147 -- We now have the literal with the right value, both the actual type
4148 -- and the expected type of this literal are taken from the expression
4149 -- that was evaluated. So now we do the Analyze and Resolve.
4151 -- Note that we have to reset Is_Static_Expression both after the
4152 -- analyze step (because Resolve will evaluate the literal, which
4153 -- will cause semantic errors if it is marked as static), and after
4154 -- the Resolve step (since Resolve in some cases sets this flag).
4156 Analyze (N);
4157 Set_Is_Static_Expression (N, Static);
4158 Set_Etype (N, Typ);
4159 Resolve (N);
4160 Set_Is_Static_Expression (N, Static);
4161 end Fold_Uint;
4163 ----------------
4164 -- Fold_Ureal --
4165 ----------------
4167 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4168 Loc : constant Source_Ptr := Sloc (N);
4169 Typ : constant Entity_Id := Etype (N);
4170 Ent : Entity_Id;
4172 begin
4173 -- If we are folding a named number, retain the entity in the literal,
4174 -- for ASIS use.
4176 if Is_Entity_Name (N)
4177 and then Ekind (Entity (N)) = E_Named_Real
4178 then
4179 Ent := Entity (N);
4180 else
4181 Ent := Empty;
4182 end if;
4184 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4186 -- Set link to original named number, for ASIS use
4188 Set_Original_Entity (N, Ent);
4190 -- We now have the literal with the right value, both the actual type
4191 -- and the expected type of this literal are taken from the expression
4192 -- that was evaluated. So now we do the Analyze and Resolve.
4194 -- Note that we have to reset Is_Static_Expression both after the
4195 -- analyze step (because Resolve will evaluate the literal, which
4196 -- will cause semantic errors if it is marked as static), and after
4197 -- the Resolve step (since Resolve in some cases sets this flag).
4199 Analyze (N);
4200 Set_Is_Static_Expression (N, Static);
4201 Set_Etype (N, Typ);
4202 Resolve (N);
4203 Set_Is_Static_Expression (N, Static);
4204 end Fold_Ureal;
4206 ---------------
4207 -- From_Bits --
4208 ---------------
4210 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4211 V : Uint := Uint_0;
4213 begin
4214 for J in 0 .. B'Last loop
4215 if B (J) then
4216 V := V + 2 ** J;
4217 end if;
4218 end loop;
4220 if Non_Binary_Modulus (T) then
4221 V := V mod Modulus (T);
4222 end if;
4224 return V;
4225 end From_Bits;
4227 --------------------
4228 -- Get_String_Val --
4229 --------------------
4231 function Get_String_Val (N : Node_Id) return Node_Id is
4232 begin
4233 if Nkind (N) = N_String_Literal then
4234 return N;
4236 elsif Nkind (N) = N_Character_Literal then
4237 return N;
4239 else
4240 pragma Assert (Is_Entity_Name (N));
4241 return Get_String_Val (Constant_Value (Entity (N)));
4242 end if;
4243 end Get_String_Val;
4245 ----------------
4246 -- Initialize --
4247 ----------------
4249 procedure Initialize is
4250 begin
4251 CV_Cache := (others => (Node_High_Bound, Uint_0));
4252 end Initialize;
4254 --------------------
4255 -- In_Subrange_Of --
4256 --------------------
4258 function In_Subrange_Of
4259 (T1 : Entity_Id;
4260 T2 : Entity_Id;
4261 Fixed_Int : Boolean := False) return Boolean
4263 L1 : Node_Id;
4264 H1 : Node_Id;
4266 L2 : Node_Id;
4267 H2 : Node_Id;
4269 begin
4270 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4271 return True;
4273 -- Never in range if both types are not scalar. Don't know if this can
4274 -- actually happen, but just in case.
4276 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4277 return False;
4279 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4280 -- definitely not compatible with T2.
4282 elsif Is_Floating_Point_Type (T1)
4283 and then Has_Infinities (T1)
4284 and then Is_Floating_Point_Type (T2)
4285 and then not Has_Infinities (T2)
4286 then
4287 return False;
4289 else
4290 L1 := Type_Low_Bound (T1);
4291 H1 := Type_High_Bound (T1);
4293 L2 := Type_Low_Bound (T2);
4294 H2 := Type_High_Bound (T2);
4296 -- Check bounds to see if comparison possible at compile time
4298 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4299 and then
4300 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4301 then
4302 return True;
4303 end if;
4305 -- If bounds not comparable at compile time, then the bounds of T2
4306 -- must be compile time known or we cannot answer the query.
4308 if not Compile_Time_Known_Value (L2)
4309 or else not Compile_Time_Known_Value (H2)
4310 then
4311 return False;
4312 end if;
4314 -- If the bounds of T1 are know at compile time then use these
4315 -- ones, otherwise use the bounds of the base type (which are of
4316 -- course always static).
4318 if not Compile_Time_Known_Value (L1) then
4319 L1 := Type_Low_Bound (Base_Type (T1));
4320 end if;
4322 if not Compile_Time_Known_Value (H1) then
4323 H1 := Type_High_Bound (Base_Type (T1));
4324 end if;
4326 -- Fixed point types should be considered as such only if
4327 -- flag Fixed_Int is set to False.
4329 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4330 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4331 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4332 then
4333 return
4334 Expr_Value_R (L2) <= Expr_Value_R (L1)
4335 and then
4336 Expr_Value_R (H2) >= Expr_Value_R (H1);
4338 else
4339 return
4340 Expr_Value (L2) <= Expr_Value (L1)
4341 and then
4342 Expr_Value (H2) >= Expr_Value (H1);
4344 end if;
4345 end if;
4347 -- If any exception occurs, it means that we have some bug in the compiler
4348 -- possibly triggered by a previous error, or by some unforeseen peculiar
4349 -- occurrence. However, this is only an optimization attempt, so there is
4350 -- really no point in crashing the compiler. Instead we just decide, too
4351 -- bad, we can't figure out the answer in this case after all.
4353 exception
4354 when others =>
4356 -- Debug flag K disables this behavior (useful for debugging)
4358 if Debug_Flag_K then
4359 raise;
4360 else
4361 return False;
4362 end if;
4363 end In_Subrange_Of;
4365 -----------------
4366 -- Is_In_Range --
4367 -----------------
4369 function Is_In_Range
4370 (N : Node_Id;
4371 Typ : Entity_Id;
4372 Assume_Valid : Boolean := False;
4373 Fixed_Int : Boolean := False;
4374 Int_Real : Boolean := False) return Boolean
4376 begin
4377 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4378 = In_Range;
4379 end Is_In_Range;
4381 -------------------
4382 -- Is_Null_Range --
4383 -------------------
4385 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4386 Typ : constant Entity_Id := Etype (Lo);
4388 begin
4389 if not Compile_Time_Known_Value (Lo)
4390 or else not Compile_Time_Known_Value (Hi)
4391 then
4392 return False;
4393 end if;
4395 if Is_Discrete_Type (Typ) then
4396 return Expr_Value (Lo) > Expr_Value (Hi);
4398 else
4399 pragma Assert (Is_Real_Type (Typ));
4400 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4401 end if;
4402 end Is_Null_Range;
4404 -----------------------------
4405 -- Is_OK_Static_Expression --
4406 -----------------------------
4408 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4409 begin
4410 return Is_Static_Expression (N)
4411 and then not Raises_Constraint_Error (N);
4412 end Is_OK_Static_Expression;
4414 ------------------------
4415 -- Is_OK_Static_Range --
4416 ------------------------
4418 -- A static range is a range whose bounds are static expressions, or a
4419 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4420 -- We have already converted range attribute references, so we get the
4421 -- "or" part of this rule without needing a special test.
4423 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4424 begin
4425 return Is_OK_Static_Expression (Low_Bound (N))
4426 and then Is_OK_Static_Expression (High_Bound (N));
4427 end Is_OK_Static_Range;
4429 --------------------------
4430 -- Is_OK_Static_Subtype --
4431 --------------------------
4433 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4434 -- neither bound raises constraint error when evaluated.
4436 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4437 Base_T : constant Entity_Id := Base_Type (Typ);
4438 Anc_Subt : Entity_Id;
4440 begin
4441 -- First a quick check on the non static subtype flag. As described
4442 -- in further detail in Einfo, this flag is not decisive in all cases,
4443 -- but if it is set, then the subtype is definitely non-static.
4445 if Is_Non_Static_Subtype (Typ) then
4446 return False;
4447 end if;
4449 Anc_Subt := Ancestor_Subtype (Typ);
4451 if Anc_Subt = Empty then
4452 Anc_Subt := Base_T;
4453 end if;
4455 if Is_Generic_Type (Root_Type (Base_T))
4456 or else Is_Generic_Actual_Type (Base_T)
4457 then
4458 return False;
4460 -- String types
4462 elsif Is_String_Type (Typ) then
4463 return
4464 Ekind (Typ) = E_String_Literal_Subtype
4465 or else
4466 (Is_OK_Static_Subtype (Component_Type (Typ))
4467 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4469 -- Scalar types
4471 elsif Is_Scalar_Type (Typ) then
4472 if Base_T = Typ then
4473 return True;
4475 else
4476 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4477 -- Get_Type_{Low,High}_Bound.
4479 return Is_OK_Static_Subtype (Anc_Subt)
4480 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4481 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4482 end if;
4484 -- Types other than string and scalar types are never static
4486 else
4487 return False;
4488 end if;
4489 end Is_OK_Static_Subtype;
4491 ---------------------
4492 -- Is_Out_Of_Range --
4493 ---------------------
4495 function Is_Out_Of_Range
4496 (N : Node_Id;
4497 Typ : Entity_Id;
4498 Assume_Valid : Boolean := False;
4499 Fixed_Int : Boolean := False;
4500 Int_Real : Boolean := False) return Boolean
4502 begin
4503 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4504 = Out_Of_Range;
4505 end Is_Out_Of_Range;
4507 ---------------------
4508 -- Is_Static_Range --
4509 ---------------------
4511 -- A static range is a range whose bounds are static expressions, or a
4512 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4513 -- We have already converted range attribute references, so we get the
4514 -- "or" part of this rule without needing a special test.
4516 function Is_Static_Range (N : Node_Id) return Boolean is
4517 begin
4518 return Is_Static_Expression (Low_Bound (N))
4519 and then Is_Static_Expression (High_Bound (N));
4520 end Is_Static_Range;
4522 -----------------------
4523 -- Is_Static_Subtype --
4524 -----------------------
4526 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4528 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4529 Base_T : constant Entity_Id := Base_Type (Typ);
4530 Anc_Subt : Entity_Id;
4532 begin
4533 -- First a quick check on the non static subtype flag. As described
4534 -- in further detail in Einfo, this flag is not decisive in all cases,
4535 -- but if it is set, then the subtype is definitely non-static.
4537 if Is_Non_Static_Subtype (Typ) then
4538 return False;
4539 end if;
4541 Anc_Subt := Ancestor_Subtype (Typ);
4543 if Anc_Subt = Empty then
4544 Anc_Subt := Base_T;
4545 end if;
4547 if Is_Generic_Type (Root_Type (Base_T))
4548 or else Is_Generic_Actual_Type (Base_T)
4549 then
4550 return False;
4552 -- String types
4554 elsif Is_String_Type (Typ) then
4555 return
4556 Ekind (Typ) = E_String_Literal_Subtype
4557 or else (Is_Static_Subtype (Component_Type (Typ))
4558 and then Is_Static_Subtype (Etype (First_Index (Typ))));
4560 -- Scalar types
4562 elsif Is_Scalar_Type (Typ) then
4563 if Base_T = Typ then
4564 return True;
4566 else
4567 return Is_Static_Subtype (Anc_Subt)
4568 and then Is_Static_Expression (Type_Low_Bound (Typ))
4569 and then Is_Static_Expression (Type_High_Bound (Typ));
4570 end if;
4572 -- Types other than string and scalar types are never static
4574 else
4575 return False;
4576 end if;
4577 end Is_Static_Subtype;
4579 --------------------
4580 -- Not_Null_Range --
4581 --------------------
4583 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4584 Typ : constant Entity_Id := Etype (Lo);
4586 begin
4587 if not Compile_Time_Known_Value (Lo)
4588 or else not Compile_Time_Known_Value (Hi)
4589 then
4590 return False;
4591 end if;
4593 if Is_Discrete_Type (Typ) then
4594 return Expr_Value (Lo) <= Expr_Value (Hi);
4596 else
4597 pragma Assert (Is_Real_Type (Typ));
4599 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4600 end if;
4601 end Not_Null_Range;
4603 -------------
4604 -- OK_Bits --
4605 -------------
4607 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4608 begin
4609 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4611 if Bits < 500_000 then
4612 return True;
4614 else
4615 Error_Msg_N ("static value too large, capacity exceeded", N);
4616 return False;
4617 end if;
4618 end OK_Bits;
4620 ------------------
4621 -- Out_Of_Range --
4622 ------------------
4624 procedure Out_Of_Range (N : Node_Id) is
4625 begin
4626 -- If we have the static expression case, then this is an illegality
4627 -- in Ada 95 mode, except that in an instance, we never generate an
4628 -- error (if the error is legitimate, it was already diagnosed in the
4629 -- template). The expression to compute the length of a packed array is
4630 -- attached to the array type itself, and deserves a separate message.
4632 if Is_Static_Expression (N)
4633 and then not In_Instance
4634 and then not In_Inlined_Body
4635 and then Ada_Version >= Ada_95
4636 then
4637 if Nkind (Parent (N)) = N_Defining_Identifier
4638 and then Is_Array_Type (Parent (N))
4639 and then Present (Packed_Array_Type (Parent (N)))
4640 and then Present (First_Rep_Item (Parent (N)))
4641 then
4642 Error_Msg_N
4643 ("length of packed array must not exceed Integer''Last",
4644 First_Rep_Item (Parent (N)));
4645 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4647 else
4648 Apply_Compile_Time_Constraint_Error
4649 (N, "value not in range of}", CE_Range_Check_Failed);
4650 end if;
4652 -- Here we generate a warning for the Ada 83 case, or when we are in an
4653 -- instance, or when we have a non-static expression case.
4655 else
4656 Apply_Compile_Time_Constraint_Error
4657 (N, "value not in range of}??", CE_Range_Check_Failed);
4658 end if;
4659 end Out_Of_Range;
4661 -------------------------
4662 -- Rewrite_In_Raise_CE --
4663 -------------------------
4665 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4666 Typ : constant Entity_Id := Etype (N);
4668 begin
4669 -- If we want to raise CE in the condition of a N_Raise_CE node
4670 -- we may as well get rid of the condition.
4672 if Present (Parent (N))
4673 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4674 then
4675 Set_Condition (Parent (N), Empty);
4677 -- If the expression raising CE is a N_Raise_CE node, we can use that
4678 -- one. We just preserve the type of the context.
4680 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4681 Rewrite (N, Exp);
4682 Set_Etype (N, Typ);
4684 -- Else build an explcit N_Raise_CE
4686 else
4687 Rewrite (N,
4688 Make_Raise_Constraint_Error (Sloc (Exp),
4689 Reason => CE_Range_Check_Failed));
4690 Set_Raises_Constraint_Error (N);
4691 Set_Etype (N, Typ);
4692 end if;
4693 end Rewrite_In_Raise_CE;
4695 ---------------------
4696 -- String_Type_Len --
4697 ---------------------
4699 function String_Type_Len (Stype : Entity_Id) return Uint is
4700 NT : constant Entity_Id := Etype (First_Index (Stype));
4701 T : Entity_Id;
4703 begin
4704 if Is_OK_Static_Subtype (NT) then
4705 T := NT;
4706 else
4707 T := Base_Type (NT);
4708 end if;
4710 return Expr_Value (Type_High_Bound (T)) -
4711 Expr_Value (Type_Low_Bound (T)) + 1;
4712 end String_Type_Len;
4714 ------------------------------------
4715 -- Subtypes_Statically_Compatible --
4716 ------------------------------------
4718 function Subtypes_Statically_Compatible
4719 (T1 : Entity_Id;
4720 T2 : Entity_Id) return Boolean
4722 begin
4723 -- Scalar types
4725 if Is_Scalar_Type (T1) then
4727 -- Definitely compatible if we match
4729 if Subtypes_Statically_Match (T1, T2) then
4730 return True;
4732 -- If either subtype is nonstatic then they're not compatible
4734 elsif not Is_Static_Subtype (T1)
4735 or else not Is_Static_Subtype (T2)
4736 then
4737 return False;
4739 -- If either type has constraint error bounds, then consider that
4740 -- they match to avoid junk cascaded errors here.
4742 elsif not Is_OK_Static_Subtype (T1)
4743 or else not Is_OK_Static_Subtype (T2)
4744 then
4745 return True;
4747 -- Base types must match, but we don't check that (should we???) but
4748 -- we do at least check that both types are real, or both types are
4749 -- not real.
4751 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
4752 return False;
4754 -- Here we check the bounds
4756 else
4757 declare
4758 LB1 : constant Node_Id := Type_Low_Bound (T1);
4759 HB1 : constant Node_Id := Type_High_Bound (T1);
4760 LB2 : constant Node_Id := Type_Low_Bound (T2);
4761 HB2 : constant Node_Id := Type_High_Bound (T2);
4763 begin
4764 if Is_Real_Type (T1) then
4765 return
4766 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4767 or else
4768 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4769 and then
4770 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4772 else
4773 return
4774 (Expr_Value (LB1) > Expr_Value (HB1))
4775 or else
4776 (Expr_Value (LB2) <= Expr_Value (LB1)
4777 and then
4778 Expr_Value (HB1) <= Expr_Value (HB2));
4779 end if;
4780 end;
4781 end if;
4783 -- Access types
4785 elsif Is_Access_Type (T1) then
4786 return (not Is_Constrained (T2)
4787 or else (Subtypes_Statically_Match
4788 (Designated_Type (T1), Designated_Type (T2))))
4789 and then not (Can_Never_Be_Null (T2)
4790 and then not Can_Never_Be_Null (T1));
4792 -- All other cases
4794 else
4795 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4796 or else Subtypes_Statically_Match (T1, T2);
4797 end if;
4798 end Subtypes_Statically_Compatible;
4800 -------------------------------
4801 -- Subtypes_Statically_Match --
4802 -------------------------------
4804 -- Subtypes statically match if they have statically matching constraints
4805 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4806 -- they are the same identical constraint, or if they are static and the
4807 -- values match (RM 4.9.1(1)).
4809 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
4811 function Predicates_Match return Boolean;
4812 -- In Ada 2012, subtypes statically match if their static predicates
4813 -- match as well.
4815 ----------------------
4816 -- Predicates_Match --
4817 ----------------------
4819 function Predicates_Match return Boolean is
4820 Pred1 : Node_Id;
4821 Pred2 : Node_Id;
4823 begin
4824 if Ada_Version < Ada_2012 then
4825 return True;
4827 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
4828 return False;
4830 else
4831 Pred1 :=
4832 Get_Rep_Item
4833 (T1, Name_Static_Predicate, Check_Parents => False);
4834 Pred2 :=
4835 Get_Rep_Item
4836 (T2, Name_Static_Predicate, Check_Parents => False);
4838 -- Subtypes statically match if the predicate comes from the
4839 -- same declaration, which can only happen if one is a subtype
4840 -- of the other and has no explicit predicate.
4842 -- Suppress warnings on order of actuals, which is otherwise
4843 -- triggered by one of the two calls below.
4845 pragma Warnings (Off);
4846 return Pred1 = Pred2
4847 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
4848 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
4849 pragma Warnings (On);
4850 end if;
4851 end Predicates_Match;
4853 -- Start of processing for Subtypes_Statically_Match
4855 begin
4856 -- A type always statically matches itself
4858 if T1 = T2 then
4859 return True;
4861 -- Scalar types
4863 elsif Is_Scalar_Type (T1) then
4865 -- Base types must be the same
4867 if Base_Type (T1) /= Base_Type (T2) then
4868 return False;
4869 end if;
4871 -- A constrained numeric subtype never matches an unconstrained
4872 -- subtype, i.e. both types must be constrained or unconstrained.
4874 -- To understand the requirement for this test, see RM 4.9.1(1).
4875 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4876 -- a constrained subtype with constraint bounds matching the bounds
4877 -- of its corresponding unconstrained base type. In this situation,
4878 -- Integer and Integer'Base do not statically match, even though
4879 -- they have the same bounds.
4881 -- We only apply this test to types in Standard and types that appear
4882 -- in user programs. That way, we do not have to be too careful about
4883 -- setting Is_Constrained right for Itypes.
4885 if Is_Numeric_Type (T1)
4886 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4887 and then (Scope (T1) = Standard_Standard
4888 or else Comes_From_Source (T1))
4889 and then (Scope (T2) = Standard_Standard
4890 or else Comes_From_Source (T2))
4891 then
4892 return False;
4894 -- A generic scalar type does not statically match its base type
4895 -- (AI-311). In this case we make sure that the formals, which are
4896 -- first subtypes of their bases, are constrained.
4898 elsif Is_Generic_Type (T1)
4899 and then Is_Generic_Type (T2)
4900 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4901 then
4902 return False;
4903 end if;
4905 -- If there was an error in either range, then just assume the types
4906 -- statically match to avoid further junk errors.
4908 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4909 or else Error_Posted (Scalar_Range (T1))
4910 or else Error_Posted (Scalar_Range (T2))
4911 then
4912 return True;
4913 end if;
4915 -- Otherwise both types have bound that can be compared
4917 declare
4918 LB1 : constant Node_Id := Type_Low_Bound (T1);
4919 HB1 : constant Node_Id := Type_High_Bound (T1);
4920 LB2 : constant Node_Id := Type_Low_Bound (T2);
4921 HB2 : constant Node_Id := Type_High_Bound (T2);
4923 begin
4924 -- If the bounds are the same tree node, then match if and only
4925 -- if any predicates present also match.
4927 if LB1 = LB2 and then HB1 = HB2 then
4928 return Predicates_Match;
4930 -- Otherwise bounds must be static and identical value
4932 else
4933 if not Is_Static_Subtype (T1)
4934 or else not Is_Static_Subtype (T2)
4935 then
4936 return False;
4938 -- If either type has constraint error bounds, then say that
4939 -- they match to avoid junk cascaded errors here.
4941 elsif not Is_OK_Static_Subtype (T1)
4942 or else not Is_OK_Static_Subtype (T2)
4943 then
4944 return True;
4946 elsif Is_Real_Type (T1) then
4947 return
4948 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4949 and then
4950 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4952 else
4953 return
4954 Expr_Value (LB1) = Expr_Value (LB2)
4955 and then
4956 Expr_Value (HB1) = Expr_Value (HB2);
4957 end if;
4958 end if;
4959 end;
4961 -- Type with discriminants
4963 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
4965 -- Because of view exchanges in multiple instantiations, conformance
4966 -- checking might try to match a partial view of a type with no
4967 -- discriminants with a full view that has defaulted discriminants.
4968 -- In such a case, use the discriminant constraint of the full view,
4969 -- which must exist because we know that the two subtypes have the
4970 -- same base type.
4972 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
4973 if In_Instance then
4974 if Is_Private_Type (T2)
4975 and then Present (Full_View (T2))
4976 and then Has_Discriminants (Full_View (T2))
4977 then
4978 return Subtypes_Statically_Match (T1, Full_View (T2));
4980 elsif Is_Private_Type (T1)
4981 and then Present (Full_View (T1))
4982 and then Has_Discriminants (Full_View (T1))
4983 then
4984 return Subtypes_Statically_Match (Full_View (T1), T2);
4986 else
4987 return False;
4988 end if;
4989 else
4990 return False;
4991 end if;
4992 end if;
4994 declare
4995 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4996 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4998 DA1 : Elmt_Id;
4999 DA2 : Elmt_Id;
5001 begin
5002 if DL1 = DL2 then
5003 return True;
5004 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5005 return False;
5006 end if;
5008 -- Now loop through the discriminant constraints
5010 -- Note: the guard here seems necessary, since it is possible at
5011 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5013 if Present (DL1) and then Present (DL2) then
5014 DA1 := First_Elmt (DL1);
5015 DA2 := First_Elmt (DL2);
5016 while Present (DA1) loop
5017 declare
5018 Expr1 : constant Node_Id := Node (DA1);
5019 Expr2 : constant Node_Id := Node (DA2);
5021 begin
5022 if not Is_Static_Expression (Expr1)
5023 or else not Is_Static_Expression (Expr2)
5024 then
5025 return False;
5027 -- If either expression raised a constraint error,
5028 -- consider the expressions as matching, since this
5029 -- helps to prevent cascading errors.
5031 elsif Raises_Constraint_Error (Expr1)
5032 or else Raises_Constraint_Error (Expr2)
5033 then
5034 null;
5036 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5037 return False;
5038 end if;
5039 end;
5041 Next_Elmt (DA1);
5042 Next_Elmt (DA2);
5043 end loop;
5044 end if;
5045 end;
5047 return True;
5049 -- A definite type does not match an indefinite or classwide type.
5050 -- However, a generic type with unknown discriminants may be
5051 -- instantiated with a type with no discriminants, and conformance
5052 -- checking on an inherited operation may compare the actual with the
5053 -- subtype that renames it in the instance.
5055 elsif
5056 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5057 then
5058 return
5059 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5061 -- Array type
5063 elsif Is_Array_Type (T1) then
5065 -- If either subtype is unconstrained then both must be, and if both
5066 -- are unconstrained then no further checking is needed.
5068 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5069 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5070 end if;
5072 -- Both subtypes are constrained, so check that the index subtypes
5073 -- statically match.
5075 declare
5076 Index1 : Node_Id := First_Index (T1);
5077 Index2 : Node_Id := First_Index (T2);
5079 begin
5080 while Present (Index1) loop
5081 if not
5082 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5083 then
5084 return False;
5085 end if;
5087 Next_Index (Index1);
5088 Next_Index (Index2);
5089 end loop;
5091 return True;
5092 end;
5094 elsif Is_Access_Type (T1) then
5095 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5096 return False;
5098 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5099 E_Anonymous_Access_Subprogram_Type)
5100 then
5101 return
5102 Subtype_Conformant
5103 (Designated_Type (T1),
5104 Designated_Type (T2));
5105 else
5106 return
5107 Subtypes_Statically_Match
5108 (Designated_Type (T1),
5109 Designated_Type (T2))
5110 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5111 end if;
5113 -- All other types definitely match
5115 else
5116 return True;
5117 end if;
5118 end Subtypes_Statically_Match;
5120 ----------
5121 -- Test --
5122 ----------
5124 function Test (Cond : Boolean) return Uint is
5125 begin
5126 if Cond then
5127 return Uint_1;
5128 else
5129 return Uint_0;
5130 end if;
5131 end Test;
5133 ---------------------------------
5134 -- Test_Expression_Is_Foldable --
5135 ---------------------------------
5137 -- One operand case
5139 procedure Test_Expression_Is_Foldable
5140 (N : Node_Id;
5141 Op1 : Node_Id;
5142 Stat : out Boolean;
5143 Fold : out Boolean)
5145 begin
5146 Stat := False;
5147 Fold := False;
5149 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5150 return;
5151 end if;
5153 -- If operand is Any_Type, just propagate to result and do not
5154 -- try to fold, this prevents cascaded errors.
5156 if Etype (Op1) = Any_Type then
5157 Set_Etype (N, Any_Type);
5158 return;
5160 -- If operand raises constraint error, then replace node N with the
5161 -- raise constraint error node, and we are obviously not foldable.
5162 -- Note that this replacement inherits the Is_Static_Expression flag
5163 -- from the operand.
5165 elsif Raises_Constraint_Error (Op1) then
5166 Rewrite_In_Raise_CE (N, Op1);
5167 return;
5169 -- If the operand is not static, then the result is not static, and
5170 -- all we have to do is to check the operand since it is now known
5171 -- to appear in a non-static context.
5173 elsif not Is_Static_Expression (Op1) then
5174 Check_Non_Static_Context (Op1);
5175 Fold := Compile_Time_Known_Value (Op1);
5176 return;
5178 -- An expression of a formal modular type is not foldable because
5179 -- the modulus is unknown.
5181 elsif Is_Modular_Integer_Type (Etype (Op1))
5182 and then Is_Generic_Type (Etype (Op1))
5183 then
5184 Check_Non_Static_Context (Op1);
5185 return;
5187 -- Here we have the case of an operand whose type is OK, which is
5188 -- static, and which does not raise constraint error, we can fold.
5190 else
5191 Set_Is_Static_Expression (N);
5192 Fold := True;
5193 Stat := True;
5194 end if;
5195 end Test_Expression_Is_Foldable;
5197 -- Two operand case
5199 procedure Test_Expression_Is_Foldable
5200 (N : Node_Id;
5201 Op1 : Node_Id;
5202 Op2 : Node_Id;
5203 Stat : out Boolean;
5204 Fold : out Boolean)
5206 Rstat : constant Boolean := Is_Static_Expression (Op1)
5207 and then Is_Static_Expression (Op2);
5209 begin
5210 Stat := False;
5211 Fold := False;
5213 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5214 return;
5215 end if;
5217 -- If either operand is Any_Type, just propagate to result and
5218 -- do not try to fold, this prevents cascaded errors.
5220 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5221 Set_Etype (N, Any_Type);
5222 return;
5224 -- If left operand raises constraint error, then replace node N with the
5225 -- Raise_Constraint_Error node, and we are obviously not foldable.
5226 -- Is_Static_Expression is set from the two operands in the normal way,
5227 -- and we check the right operand if it is in a non-static context.
5229 elsif Raises_Constraint_Error (Op1) then
5230 if not Rstat then
5231 Check_Non_Static_Context (Op2);
5232 end if;
5234 Rewrite_In_Raise_CE (N, Op1);
5235 Set_Is_Static_Expression (N, Rstat);
5236 return;
5238 -- Similar processing for the case of the right operand. Note that we
5239 -- don't use this routine for the short-circuit case, so we do not have
5240 -- to worry about that special case here.
5242 elsif Raises_Constraint_Error (Op2) then
5243 if not Rstat then
5244 Check_Non_Static_Context (Op1);
5245 end if;
5247 Rewrite_In_Raise_CE (N, Op2);
5248 Set_Is_Static_Expression (N, Rstat);
5249 return;
5251 -- Exclude expressions of a generic modular type, as above
5253 elsif Is_Modular_Integer_Type (Etype (Op1))
5254 and then Is_Generic_Type (Etype (Op1))
5255 then
5256 Check_Non_Static_Context (Op1);
5257 return;
5259 -- If result is not static, then check non-static contexts on operands
5260 -- since one of them may be static and the other one may not be static.
5262 elsif not Rstat then
5263 Check_Non_Static_Context (Op1);
5264 Check_Non_Static_Context (Op2);
5265 Fold := Compile_Time_Known_Value (Op1)
5266 and then Compile_Time_Known_Value (Op2);
5267 return;
5269 -- Else result is static and foldable. Both operands are static, and
5270 -- neither raises constraint error, so we can definitely fold.
5272 else
5273 Set_Is_Static_Expression (N);
5274 Fold := True;
5275 Stat := True;
5276 return;
5277 end if;
5278 end Test_Expression_Is_Foldable;
5280 -------------------
5281 -- Test_In_Range --
5282 -------------------
5284 function Test_In_Range
5285 (N : Node_Id;
5286 Typ : Entity_Id;
5287 Assume_Valid : Boolean;
5288 Fixed_Int : Boolean;
5289 Int_Real : Boolean) return Range_Membership
5291 Val : Uint;
5292 Valr : Ureal;
5294 pragma Warnings (Off, Assume_Valid);
5295 -- For now Assume_Valid is unreferenced since the current implementation
5296 -- always returns Unknown if N is not a compile time known value, but we
5297 -- keep the parameter to allow for future enhancements in which we try
5298 -- to get the information in the variable case as well.
5300 begin
5301 -- Universal types have no range limits, so always in range
5303 if Typ = Universal_Integer or else Typ = Universal_Real then
5304 return In_Range;
5306 -- Never known if not scalar type. Don't know if this can actually
5307 -- happen, but our spec allows it, so we must check!
5309 elsif not Is_Scalar_Type (Typ) then
5310 return Unknown;
5312 -- Never known if this is a generic type, since the bounds of generic
5313 -- types are junk. Note that if we only checked for static expressions
5314 -- (instead of compile time known values) below, we would not need this
5315 -- check, because values of a generic type can never be static, but they
5316 -- can be known at compile time.
5318 elsif Is_Generic_Type (Typ) then
5319 return Unknown;
5321 -- Never known unless we have a compile time known value
5323 elsif not Compile_Time_Known_Value (N) then
5324 return Unknown;
5326 -- General processing with a known compile time value
5328 else
5329 declare
5330 Lo : Node_Id;
5331 Hi : Node_Id;
5333 LB_Known : Boolean;
5334 HB_Known : Boolean;
5336 begin
5337 Lo := Type_Low_Bound (Typ);
5338 Hi := Type_High_Bound (Typ);
5340 LB_Known := Compile_Time_Known_Value (Lo);
5341 HB_Known := Compile_Time_Known_Value (Hi);
5343 -- Fixed point types should be considered as such only if flag
5344 -- Fixed_Int is set to False.
5346 if Is_Floating_Point_Type (Typ)
5347 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5348 or else Int_Real
5349 then
5350 Valr := Expr_Value_R (N);
5352 if LB_Known and HB_Known then
5353 if Valr >= Expr_Value_R (Lo)
5354 and then
5355 Valr <= Expr_Value_R (Hi)
5356 then
5357 return In_Range;
5358 else
5359 return Out_Of_Range;
5360 end if;
5362 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5363 or else
5364 (HB_Known and then Valr > Expr_Value_R (Hi))
5365 then
5366 return Out_Of_Range;
5368 else
5369 return Unknown;
5370 end if;
5372 else
5373 Val := Expr_Value (N);
5375 if LB_Known and HB_Known then
5376 if Val >= Expr_Value (Lo)
5377 and then
5378 Val <= Expr_Value (Hi)
5379 then
5380 return In_Range;
5381 else
5382 return Out_Of_Range;
5383 end if;
5385 elsif (LB_Known and then Val < Expr_Value (Lo))
5386 or else
5387 (HB_Known and then Val > Expr_Value (Hi))
5388 then
5389 return Out_Of_Range;
5391 else
5392 return Unknown;
5393 end if;
5394 end if;
5395 end;
5396 end if;
5397 end Test_In_Range;
5399 --------------
5400 -- To_Bits --
5401 --------------
5403 procedure To_Bits (U : Uint; B : out Bits) is
5404 begin
5405 for J in 0 .. B'Last loop
5406 B (J) := (U / (2 ** J)) mod 2 /= 0;
5407 end loop;
5408 end To_Bits;
5410 --------------------
5411 -- Why_Not_Static --
5412 --------------------
5414 procedure Why_Not_Static (Expr : Node_Id) is
5415 N : constant Node_Id := Original_Node (Expr);
5416 Typ : Entity_Id;
5417 E : Entity_Id;
5419 procedure Why_Not_Static_List (L : List_Id);
5420 -- A version that can be called on a list of expressions. Finds all
5421 -- non-static violations in any element of the list.
5423 -------------------------
5424 -- Why_Not_Static_List --
5425 -------------------------
5427 procedure Why_Not_Static_List (L : List_Id) is
5428 N : Node_Id;
5430 begin
5431 if Is_Non_Empty_List (L) then
5432 N := First (L);
5433 while Present (N) loop
5434 Why_Not_Static (N);
5435 Next (N);
5436 end loop;
5437 end if;
5438 end Why_Not_Static_List;
5440 -- Start of processing for Why_Not_Static
5442 begin
5443 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5444 -- this avoids massive updates to the ACATS base line.
5446 if Debug_Flag_2 then
5447 return;
5448 end if;
5450 -- Ignore call on error or empty node
5452 if No (Expr) or else Nkind (Expr) = N_Error then
5453 return;
5454 end if;
5456 -- Preprocessing for sub expressions
5458 if Nkind (Expr) in N_Subexpr then
5460 -- Nothing to do if expression is static
5462 if Is_OK_Static_Expression (Expr) then
5463 return;
5464 end if;
5466 -- Test for constraint error raised
5468 if Raises_Constraint_Error (Expr) then
5469 Error_Msg_N
5470 ("expression raises exception, cannot be static " &
5471 "(RM 4.9(34))!", N);
5472 return;
5473 end if;
5475 -- If no type, then something is pretty wrong, so ignore
5477 Typ := Etype (Expr);
5479 if No (Typ) then
5480 return;
5481 end if;
5483 -- Type must be scalar or string type (but allow Bignum, since this
5484 -- is really a scalar type from our point of view in this diagnosis).
5486 if not Is_Scalar_Type (Typ)
5487 and then not Is_String_Type (Typ)
5488 and then not Is_RTE (Typ, RE_Bignum)
5489 then
5490 Error_Msg_N
5491 ("static expression must have scalar or string type " &
5492 "(RM 4.9(2))!", N);
5493 return;
5494 end if;
5495 end if;
5497 -- If we got through those checks, test particular node kind
5499 case Nkind (N) is
5500 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5501 E := Entity (N);
5503 if Is_Named_Number (E) then
5504 null;
5506 elsif Ekind (E) = E_Constant then
5507 if not Is_Static_Expression (Constant_Value (E)) then
5508 Error_Msg_NE
5509 ("& is not a static constant (RM 4.9(5))!", N, E);
5510 end if;
5512 else
5513 Error_Msg_NE
5514 ("& is not static constant or named number " &
5515 "(RM 4.9(5))!", N, E);
5516 end if;
5518 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
5519 if Nkind (N) in N_Op_Shift then
5520 Error_Msg_N
5521 ("shift functions are never static (RM 4.9(6,18))!", N);
5523 else
5524 Why_Not_Static (Left_Opnd (N));
5525 Why_Not_Static (Right_Opnd (N));
5526 end if;
5528 when N_Unary_Op =>
5529 Why_Not_Static (Right_Opnd (N));
5531 when N_Attribute_Reference =>
5532 Why_Not_Static_List (Expressions (N));
5534 E := Etype (Prefix (N));
5536 if E = Standard_Void_Type then
5537 return;
5538 end if;
5540 -- Special case non-scalar'Size since this is a common error
5542 if Attribute_Name (N) = Name_Size then
5543 Error_Msg_N
5544 ("size attribute is only static for static scalar type " &
5545 "(RM 4.9(7,8))", N);
5547 -- Flag array cases
5549 elsif Is_Array_Type (E) then
5550 if Attribute_Name (N) /= Name_First
5551 and then
5552 Attribute_Name (N) /= Name_Last
5553 and then
5554 Attribute_Name (N) /= Name_Length
5555 then
5556 Error_Msg_N
5557 ("static array attribute must be Length, First, or Last " &
5558 "(RM 4.9(8))!", N);
5560 -- Since we know the expression is not-static (we already
5561 -- tested for this, must mean array is not static).
5563 else
5564 Error_Msg_N
5565 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
5566 end if;
5568 return;
5570 -- Special case generic types, since again this is a common source
5571 -- of confusion.
5573 elsif Is_Generic_Actual_Type (E)
5574 or else
5575 Is_Generic_Type (E)
5576 then
5577 Error_Msg_N
5578 ("attribute of generic type is never static " &
5579 "(RM 4.9(7,8))!", N);
5581 elsif Is_Static_Subtype (E) then
5582 null;
5584 elsif Is_Scalar_Type (E) then
5585 Error_Msg_N
5586 ("prefix type for attribute is not static scalar subtype " &
5587 "(RM 4.9(7))!", N);
5589 else
5590 Error_Msg_N
5591 ("static attribute must apply to array/scalar type " &
5592 "(RM 4.9(7,8))!", N);
5593 end if;
5595 when N_String_Literal =>
5596 Error_Msg_N
5597 ("subtype of string literal is non-static (RM 4.9(4))!", N);
5599 when N_Explicit_Dereference =>
5600 Error_Msg_N
5601 ("explicit dereference is never static (RM 4.9)!", N);
5603 when N_Function_Call =>
5604 Why_Not_Static_List (Parameter_Associations (N));
5606 -- Complain about non-static function call unless we have Bignum
5607 -- which means that the underlying expression is really some
5608 -- scalar arithmetic operation.
5610 if not Is_RTE (Typ, RE_Bignum) then
5611 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
5612 end if;
5614 when N_Parameter_Association =>
5615 Why_Not_Static (Explicit_Actual_Parameter (N));
5617 when N_Indexed_Component =>
5618 Error_Msg_N
5619 ("indexed component is never static (RM 4.9)!", N);
5621 when N_Procedure_Call_Statement =>
5622 Error_Msg_N
5623 ("procedure call is never static (RM 4.9)!", N);
5625 when N_Qualified_Expression =>
5626 Why_Not_Static (Expression (N));
5628 when N_Aggregate | N_Extension_Aggregate =>
5629 Error_Msg_N
5630 ("an aggregate is never static (RM 4.9)!", N);
5632 when N_Range =>
5633 Why_Not_Static (Low_Bound (N));
5634 Why_Not_Static (High_Bound (N));
5636 when N_Range_Constraint =>
5637 Why_Not_Static (Range_Expression (N));
5639 when N_Subtype_Indication =>
5640 Why_Not_Static (Constraint (N));
5642 when N_Selected_Component =>
5643 Error_Msg_N
5644 ("selected component is never static (RM 4.9)!", N);
5646 when N_Slice =>
5647 Error_Msg_N
5648 ("slice is never static (RM 4.9)!", N);
5650 when N_Type_Conversion =>
5651 Why_Not_Static (Expression (N));
5653 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5654 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
5655 then
5656 Error_Msg_N
5657 ("static conversion requires static scalar subtype result " &
5658 "(RM 4.9(9))!", N);
5659 end if;
5661 when N_Unchecked_Type_Conversion =>
5662 Error_Msg_N
5663 ("unchecked type conversion is never static (RM 4.9)!", N);
5665 when others =>
5666 null;
5668 end case;
5669 end Why_Not_Static;
5671 end Sem_Eval;