* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob2e8f3a7b2f070642963dbf4074cc9344f58c4aa9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
138 -- Renamings of protected private components are turned into
139 -- constants when compiling a protected function. In the case
140 -- of single protected types, the private component appears
141 -- directly.
143 elsif (Is_Prival (Ent)
144 and then
145 (Ekind (Current_Scope) = E_Function
146 or else Ekind (Enclosing_Dynamic_Scope
147 (Current_Scope)) = E_Function))
148 or else
149 (Ekind (Ent) = E_Component
150 and then Is_Protected_Type (Scope (Ent)))
151 then
152 Error_Msg_N
153 ("protected function cannot modify protected object", N);
155 elsif Ekind (Ent) = E_Loop_Parameter then
156 Error_Msg_N
157 ("assignment to loop parameter not allowed", N);
159 else
160 Error_Msg_N
161 ("left hand side of assignment must be a variable", N);
162 end if;
163 end;
165 -- For indexed components or selected components, test prefix
167 elsif Nkind (N) = N_Indexed_Component then
168 Diagnose_Non_Variable_Lhs (Prefix (N));
170 -- Another special case for assignment to discriminant
172 elsif Nkind (N) = N_Selected_Component then
173 if Present (Entity (Selector_Name (N)))
174 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
175 then
176 Error_Msg_N
177 ("assignment to discriminant not allowed", N);
178 else
179 Diagnose_Non_Variable_Lhs (Prefix (N));
180 end if;
182 else
183 -- If we fall through, we have no special message to issue!
185 Error_Msg_N ("left hand side of assignment must be a variable", N);
186 end if;
187 end Diagnose_Non_Variable_Lhs;
189 --------------
190 -- Kill_LHS --
191 --------------
193 procedure Kill_Lhs is
194 begin
195 if Is_Entity_Name (Lhs) then
196 declare
197 Ent : constant Entity_Id := Entity (Lhs);
198 begin
199 if Present (Ent) then
200 Kill_Current_Values (Ent);
201 end if;
202 end;
203 end if;
204 end Kill_Lhs;
206 -------------------------
207 -- Set_Assignment_Type --
208 -------------------------
210 procedure Set_Assignment_Type
211 (Opnd : Node_Id;
212 Opnd_Type : in out Entity_Id)
214 begin
215 Require_Entity (Opnd);
217 -- If the assignment operand is an in-out or out parameter, then we
218 -- get the actual subtype (needed for the unconstrained case). If the
219 -- operand is the actual in an entry declaration, then within the
220 -- accept statement it is replaced with a local renaming, which may
221 -- also have an actual subtype.
223 if Is_Entity_Name (Opnd)
224 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
225 or else Ekind (Entity (Opnd)) =
226 E_In_Out_Parameter
227 or else Ekind (Entity (Opnd)) =
228 E_Generic_In_Out_Parameter
229 or else
230 (Ekind (Entity (Opnd)) = E_Variable
231 and then Nkind (Parent (Entity (Opnd))) =
232 N_Object_Renaming_Declaration
233 and then Nkind (Parent (Parent (Entity (Opnd)))) =
234 N_Accept_Statement))
235 then
236 Opnd_Type := Get_Actual_Subtype (Opnd);
238 -- If assignment operand is a component reference, then we get the
239 -- actual subtype of the component for the unconstrained case.
241 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
242 and then not Is_Unchecked_Union (Opnd_Type)
243 then
244 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
246 if Present (Decl) then
247 Insert_Action (N, Decl);
248 Mark_Rewrite_Insertion (Decl);
249 Analyze (Decl);
250 Opnd_Type := Defining_Identifier (Decl);
251 Set_Etype (Opnd, Opnd_Type);
252 Freeze_Itype (Opnd_Type, N);
254 elsif Is_Constrained (Etype (Opnd)) then
255 Opnd_Type := Etype (Opnd);
256 end if;
258 -- For slice, use the constrained subtype created for the slice
260 elsif Nkind (Opnd) = N_Slice then
261 Opnd_Type := Etype (Opnd);
262 end if;
263 end Set_Assignment_Type;
265 -- Start of processing for Analyze_Assignment
267 begin
268 Mark_Coextensions (N, Rhs);
270 Analyze (Rhs);
271 Analyze (Lhs);
273 -- Ensure that we never do an assignment on a variable marked as
274 -- as Safe_To_Reevaluate.
276 pragma Assert (not Is_Entity_Name (Lhs)
277 or else Ekind (Entity (Lhs)) /= E_Variable
278 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
280 -- Start type analysis for assignment
282 T1 := Etype (Lhs);
284 -- In the most general case, both Lhs and Rhs can be overloaded, and we
285 -- must compute the intersection of the possible types on each side.
287 if Is_Overloaded (Lhs) then
288 declare
289 I : Interp_Index;
290 It : Interp;
292 begin
293 T1 := Any_Type;
294 Get_First_Interp (Lhs, I, It);
296 while Present (It.Typ) loop
297 if Has_Compatible_Type (Rhs, It.Typ) then
298 if T1 /= Any_Type then
300 -- An explicit dereference is overloaded if the prefix
301 -- is. Try to remove the ambiguity on the prefix, the
302 -- error will be posted there if the ambiguity is real.
304 if Nkind (Lhs) = N_Explicit_Dereference then
305 declare
306 PI : Interp_Index;
307 PI1 : Interp_Index := 0;
308 PIt : Interp;
309 Found : Boolean;
311 begin
312 Found := False;
313 Get_First_Interp (Prefix (Lhs), PI, PIt);
315 while Present (PIt.Typ) loop
316 if Is_Access_Type (PIt.Typ)
317 and then Has_Compatible_Type
318 (Rhs, Designated_Type (PIt.Typ))
319 then
320 if Found then
321 PIt :=
322 Disambiguate (Prefix (Lhs),
323 PI1, PI, Any_Type);
325 if PIt = No_Interp then
326 Error_Msg_N
327 ("ambiguous left-hand side"
328 & " in assignment", Lhs);
329 exit;
330 else
331 Resolve (Prefix (Lhs), PIt.Typ);
332 end if;
334 exit;
335 else
336 Found := True;
337 PI1 := PI;
338 end if;
339 end if;
341 Get_Next_Interp (PI, PIt);
342 end loop;
343 end;
345 else
346 Error_Msg_N
347 ("ambiguous left-hand side in assignment", Lhs);
348 exit;
349 end if;
350 else
351 T1 := It.Typ;
352 end if;
353 end if;
355 Get_Next_Interp (I, It);
356 end loop;
357 end;
359 if T1 = Any_Type then
360 Error_Msg_N
361 ("no valid types for left-hand side for assignment", Lhs);
362 Kill_Lhs;
363 return;
364 end if;
365 end if;
367 -- The resulting assignment type is T1, so now we will resolve the left
368 -- hand side of the assignment using this determined type.
370 Resolve (Lhs, T1);
372 -- Cases where Lhs is not a variable
374 if not Is_Variable (Lhs) then
376 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
377 -- protected object.
379 declare
380 Ent : Entity_Id;
381 S : Entity_Id;
383 begin
384 if Ada_Version >= Ada_2005 then
386 -- Handle chains of renamings
388 Ent := Lhs;
389 while Nkind (Ent) in N_Has_Entity
390 and then Present (Entity (Ent))
391 and then Present (Renamed_Object (Entity (Ent)))
392 loop
393 Ent := Renamed_Object (Entity (Ent));
394 end loop;
396 if (Nkind (Ent) = N_Attribute_Reference
397 and then Attribute_Name (Ent) = Name_Priority)
399 -- Renamings of the attribute Priority applied to protected
400 -- objects have been previously expanded into calls to the
401 -- Get_Ceiling run-time subprogram.
403 or else
404 (Nkind (Ent) = N_Function_Call
405 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
406 or else
407 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
408 then
409 -- The enclosing subprogram cannot be a protected function
411 S := Current_Scope;
412 while not (Is_Subprogram (S)
413 and then Convention (S) = Convention_Protected)
414 and then S /= Standard_Standard
415 loop
416 S := Scope (S);
417 end loop;
419 if Ekind (S) = E_Function
420 and then Convention (S) = Convention_Protected
421 then
422 Error_Msg_N
423 ("protected function cannot modify protected object",
424 Lhs);
425 end if;
427 -- Changes of the ceiling priority of the protected object
428 -- are only effective if the Ceiling_Locking policy is in
429 -- effect (AARM D.5.2 (5/2)).
431 if Locking_Policy /= 'C' then
432 Error_Msg_N ("assignment to the attribute PRIORITY has " &
433 "no effect??", Lhs);
434 Error_Msg_N ("\since no Locking_Policy has been " &
435 "specified??", Lhs);
436 end if;
438 return;
439 end if;
440 end if;
441 end;
443 Diagnose_Non_Variable_Lhs (Lhs);
444 return;
446 -- Error of assigning to limited type. We do however allow this in
447 -- certain cases where the front end generates the assignments.
449 elsif Is_Limited_Type (T1)
450 and then not Assignment_OK (Lhs)
451 and then not Assignment_OK (Original_Node (Lhs))
452 and then not Is_Value_Type (T1)
453 then
454 -- CPP constructors can only be called in declarations
456 if Is_CPP_Constructor_Call (Rhs) then
457 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
458 else
459 Error_Msg_N
460 ("left hand of assignment must not be limited type", Lhs);
461 Explain_Limited_Type (T1, Lhs);
462 end if;
463 return;
465 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
466 -- abstract. This is only checked when the assignment Comes_From_Source,
467 -- because in some cases the expander generates such assignments (such
468 -- in the _assign operation for an abstract type).
470 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
471 Error_Msg_N
472 ("target of assignment operation must not be abstract", Lhs);
473 end if;
475 -- Resolution may have updated the subtype, in case the left-hand side
476 -- is a private protected component. Use the correct subtype to avoid
477 -- scoping issues in the back-end.
479 T1 := Etype (Lhs);
481 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
482 -- type. For example:
484 -- limited with P;
485 -- package Pkg is
486 -- type Acc is access P.T;
487 -- end Pkg;
489 -- with Pkg; use Acc;
490 -- procedure Example is
491 -- A, B : Acc;
492 -- begin
493 -- A.all := B.all; -- ERROR
494 -- end Example;
496 if Nkind (Lhs) = N_Explicit_Dereference
497 and then Ekind (T1) = E_Incomplete_Type
498 then
499 Error_Msg_N ("invalid use of incomplete type", Lhs);
500 Kill_Lhs;
501 return;
502 end if;
504 -- Now we can complete the resolution of the right hand side
506 Set_Assignment_Type (Lhs, T1);
507 Resolve (Rhs, T1);
509 -- This is the point at which we check for an unset reference
511 Check_Unset_Reference (Rhs);
512 Check_Unprotected_Access (Lhs, Rhs);
514 -- Remaining steps are skipped if Rhs was syntactically in error
516 if Rhs = Error then
517 Kill_Lhs;
518 return;
519 end if;
521 T2 := Etype (Rhs);
523 if not Covers (T1, T2) then
524 Wrong_Type (Rhs, Etype (Lhs));
525 Kill_Lhs;
526 return;
527 end if;
529 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
530 -- types, use the non-limited view if available
532 if Nkind (Rhs) = N_Explicit_Dereference
533 and then Ekind (T2) = E_Incomplete_Type
534 and then Is_Tagged_Type (T2)
535 and then Present (Non_Limited_View (T2))
536 then
537 T2 := Non_Limited_View (T2);
538 end if;
540 Set_Assignment_Type (Rhs, T2);
542 if Total_Errors_Detected /= 0 then
543 if No (T1) then
544 T1 := Any_Type;
545 end if;
547 if No (T2) then
548 T2 := Any_Type;
549 end if;
550 end if;
552 if T1 = Any_Type or else T2 = Any_Type then
553 Kill_Lhs;
554 return;
555 end if;
557 -- If the rhs is class-wide or dynamically tagged, then require the lhs
558 -- to be class-wide. The case where the rhs is a dynamically tagged call
559 -- to a dispatching operation with a controlling access result is
560 -- excluded from this check, since the target has an access type (and
561 -- no tag propagation occurs in that case).
563 if (Is_Class_Wide_Type (T2)
564 or else (Is_Dynamically_Tagged (Rhs)
565 and then not Is_Access_Type (T1)))
566 and then not Is_Class_Wide_Type (T1)
567 then
568 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
570 elsif Is_Class_Wide_Type (T1)
571 and then not Is_Class_Wide_Type (T2)
572 and then not Is_Tag_Indeterminate (Rhs)
573 and then not Is_Dynamically_Tagged (Rhs)
574 then
575 Error_Msg_N ("dynamically tagged expression required!", Rhs);
576 end if;
578 -- Propagate the tag from a class-wide target to the rhs when the rhs
579 -- is a tag-indeterminate call.
581 if Is_Tag_Indeterminate (Rhs) then
582 if Is_Class_Wide_Type (T1) then
583 Propagate_Tag (Lhs, Rhs);
585 elsif Nkind (Rhs) = N_Function_Call
586 and then Is_Entity_Name (Name (Rhs))
587 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
588 then
589 Error_Msg_N
590 ("call to abstract function must be dispatching", Name (Rhs));
592 elsif Nkind (Rhs) = N_Qualified_Expression
593 and then Nkind (Expression (Rhs)) = N_Function_Call
594 and then Is_Entity_Name (Name (Expression (Rhs)))
595 and then
596 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
597 then
598 Error_Msg_N
599 ("call to abstract function must be dispatching",
600 Name (Expression (Rhs)));
601 end if;
602 end if;
604 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
605 -- apply an implicit conversion of the rhs to that type to force
606 -- appropriate static and run-time accessibility checks. This applies
607 -- as well to anonymous access-to-subprogram types that are component
608 -- subtypes or formal parameters.
610 if Ada_Version >= Ada_2005
611 and then Is_Access_Type (T1)
612 then
613 if Is_Local_Anonymous_Access (T1)
614 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
616 -- Handle assignment to an Ada 2012 stand-alone object
617 -- of an anonymous access type.
619 or else (Ekind (T1) = E_Anonymous_Access_Type
620 and then Nkind (Associated_Node_For_Itype (T1)) =
621 N_Object_Declaration)
623 then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
629 -- Ada 2005 (AI-231): Assignment to not null variable
631 if Ada_Version >= Ada_2005
632 and then Can_Never_Be_Null (T1)
633 and then not Assignment_OK (Lhs)
634 then
635 -- Case where we know the right hand side is null
637 if Known_Null (Rhs) then
638 Apply_Compile_Time_Constraint_Error
639 (N => Rhs,
640 Msg =>
641 "(Ada 2005) null not allowed in null-excluding objects??",
642 Reason => CE_Null_Not_Allowed);
644 -- We still mark this as a possible modification, that's necessary
645 -- to reset Is_True_Constant, and desirable for xref purposes.
647 Note_Possible_Modification (Lhs, Sure => True);
648 return;
650 -- If we know the right hand side is non-null, then we convert to the
651 -- target type, since we don't need a run time check in that case.
653 elsif not Can_Never_Be_Null (T2) then
654 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
655 Analyze_And_Resolve (Rhs, T1);
656 end if;
657 end if;
659 if Is_Scalar_Type (T1) then
660 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
662 -- For array types, verify that lengths match. If the right hand side
663 -- is a function call that has been inlined, the assignment has been
664 -- rewritten as a block, and the constraint check will be applied to the
665 -- assignment within the block.
667 elsif Is_Array_Type (T1)
668 and then
669 (Nkind (Rhs) /= N_Type_Conversion
670 or else Is_Constrained (Etype (Rhs)))
671 and then
672 (Nkind (Rhs) /= N_Function_Call
673 or else Nkind (N) /= N_Block_Statement)
674 then
675 -- Assignment verifies that the length of the Lsh and Rhs are equal,
676 -- but of course the indexes do not have to match. If the right-hand
677 -- side is a type conversion to an unconstrained type, a length check
678 -- is performed on the expression itself during expansion. In rare
679 -- cases, the redundant length check is computed on an index type
680 -- with a different representation, triggering incorrect code in the
681 -- back end.
683 Apply_Length_Check (Rhs, Etype (Lhs));
685 else
686 -- Discriminant checks are applied in the course of expansion
688 null;
689 end if;
691 -- Note: modifications of the Lhs may only be recorded after
692 -- checks have been applied.
694 Note_Possible_Modification (Lhs, Sure => True);
696 -- ??? a real accessibility check is needed when ???
698 -- Post warning for redundant assignment or variable to itself
700 if Warn_On_Redundant_Constructs
702 -- We only warn for source constructs
704 and then Comes_From_Source (N)
706 -- Where the object is the same on both sides
708 and then Same_Object (Lhs, Original_Node (Rhs))
710 -- But exclude the case where the right side was an operation that
711 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
712 -- don't want to warn in such a case, since it is reasonable to write
713 -- such expressions especially when K is defined symbolically in some
714 -- other package.
716 and then Nkind (Original_Node (Rhs)) not in N_Op
717 then
718 if Nkind (Lhs) in N_Has_Entity then
719 Error_Msg_NE -- CODEFIX
720 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
721 else
722 Error_Msg_N -- CODEFIX
723 ("?r?useless assignment of object to itself!", N);
724 end if;
725 end if;
727 -- Check for non-allowed composite assignment
729 if not Support_Composite_Assign_On_Target
730 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
731 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
732 then
733 Error_Msg_CRT ("composite assignment", N);
734 end if;
736 -- Check elaboration warning for left side if not in elab code
738 if not In_Subprogram_Or_Concurrent_Unit then
739 Check_Elab_Assign (Lhs);
740 end if;
742 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
743 -- assignment is a source assignment in the extended main source unit.
744 -- We are not interested in any reference information outside this
745 -- context, or in compiler generated assignment statements.
747 if Comes_From_Source (N)
748 and then In_Extended_Main_Source_Unit (Lhs)
749 then
750 Set_Referenced_Modified (Lhs, Out_Param => False);
751 end if;
753 -- Final step. If left side is an entity, then we may be able to reset
754 -- the current tracked values to new safe values. We only have something
755 -- to do if the left side is an entity name, and expansion has not
756 -- modified the node into something other than an assignment, and of
757 -- course we only capture values if it is safe to do so.
759 if Is_Entity_Name (Lhs)
760 and then Nkind (N) = N_Assignment_Statement
761 then
762 declare
763 Ent : constant Entity_Id := Entity (Lhs);
765 begin
766 if Safe_To_Capture_Value (N, Ent) then
768 -- If simple variable on left side, warn if this assignment
769 -- blots out another one (rendering it useless). We only do
770 -- this for source assignments, otherwise we can generate bogus
771 -- warnings when an assignment is rewritten as another
772 -- assignment, and gets tied up with itself.
774 if Warn_On_Modified_Unread
775 and then Is_Assignable (Ent)
776 and then Comes_From_Source (N)
777 and then In_Extended_Main_Source_Unit (Ent)
778 then
779 Warn_On_Useless_Assignment (Ent, N);
780 end if;
782 -- If we are assigning an access type and the left side is an
783 -- entity, then make sure that the Is_Known_[Non_]Null flags
784 -- properly reflect the state of the entity after assignment.
786 if Is_Access_Type (T1) then
787 if Known_Non_Null (Rhs) then
788 Set_Is_Known_Non_Null (Ent, True);
790 elsif Known_Null (Rhs)
791 and then not Can_Never_Be_Null (Ent)
792 then
793 Set_Is_Known_Null (Ent, True);
795 else
796 Set_Is_Known_Null (Ent, False);
798 if not Can_Never_Be_Null (Ent) then
799 Set_Is_Known_Non_Null (Ent, False);
800 end if;
801 end if;
803 -- For discrete types, we may be able to set the current value
804 -- if the value is known at compile time.
806 elsif Is_Discrete_Type (T1)
807 and then Compile_Time_Known_Value (Rhs)
808 then
809 Set_Current_Value (Ent, Rhs);
810 else
811 Set_Current_Value (Ent, Empty);
812 end if;
814 -- If not safe to capture values, kill them
816 else
817 Kill_Lhs;
818 end if;
819 end;
820 end if;
822 -- If assigning to an object in whole or in part, note location of
823 -- assignment in case no one references value. We only do this for
824 -- source assignments, otherwise we can generate bogus warnings when an
825 -- assignment is rewritten as another assignment, and gets tied up with
826 -- itself.
828 declare
829 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
830 begin
831 if Present (Ent)
832 and then Safe_To_Capture_Value (N, Ent)
833 and then Nkind (N) = N_Assignment_Statement
834 and then Warn_On_Modified_Unread
835 and then Is_Assignable (Ent)
836 and then Comes_From_Source (N)
837 and then In_Extended_Main_Source_Unit (Ent)
838 then
839 Set_Last_Assignment (Ent, Lhs);
840 end if;
841 end;
843 Analyze_Dimension (N);
844 end Analyze_Assignment;
846 -----------------------------
847 -- Analyze_Block_Statement --
848 -----------------------------
850 procedure Analyze_Block_Statement (N : Node_Id) is
851 procedure Install_Return_Entities (Scop : Entity_Id);
852 -- Install all entities of return statement scope Scop in the visibility
853 -- chain except for the return object since its entity is reused in a
854 -- renaming.
856 -----------------------------
857 -- Install_Return_Entities --
858 -----------------------------
860 procedure Install_Return_Entities (Scop : Entity_Id) is
861 Id : Entity_Id;
863 begin
864 Id := First_Entity (Scop);
865 while Present (Id) loop
867 -- Do not install the return object
869 if not Ekind_In (Id, E_Constant, E_Variable)
870 or else not Is_Return_Object (Id)
871 then
872 Install_Entity (Id);
873 end if;
875 Next_Entity (Id);
876 end loop;
877 end Install_Return_Entities;
879 -- Local constants and variables
881 Decls : constant List_Id := Declarations (N);
882 Id : constant Node_Id := Identifier (N);
883 HSS : constant Node_Id := Handled_Statement_Sequence (N);
885 Is_BIP_Return_Statement : Boolean;
887 -- Start of processing for Analyze_Block_Statement
889 begin
890 -- In SPARK mode, we reject block statements. Note that the case of
891 -- block statements generated by the expander is fine.
893 if Nkind (Original_Node (N)) = N_Block_Statement then
894 Check_SPARK_Restriction ("block statement is not allowed", N);
895 end if;
897 -- If no handled statement sequence is present, things are really messed
898 -- up, and we just return immediately (defence against previous errors).
900 if No (HSS) then
901 Check_Error_Detected;
902 return;
903 end if;
905 -- Detect whether the block is actually a rewritten return statement of
906 -- a build-in-place function.
908 Is_BIP_Return_Statement :=
909 Present (Id)
910 and then Present (Entity (Id))
911 and then Ekind (Entity (Id)) = E_Return_Statement
912 and then Is_Build_In_Place_Function
913 (Return_Applies_To (Entity (Id)));
915 -- Normal processing with HSS present
917 declare
918 EH : constant List_Id := Exception_Handlers (HSS);
919 Ent : Entity_Id := Empty;
920 S : Entity_Id;
922 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
923 -- Recursively save value of this global, will be restored on exit
925 begin
926 -- Initialize unblocked exit count for statements of begin block
927 -- plus one for each exception handler that is present.
929 Unblocked_Exit_Count := 1;
931 if Present (EH) then
932 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
933 end if;
935 -- If a label is present analyze it and mark it as referenced
937 if Present (Id) then
938 Analyze (Id);
939 Ent := Entity (Id);
941 -- An error defense. If we have an identifier, but no entity, then
942 -- something is wrong. If previous errors, then just remove the
943 -- identifier and continue, otherwise raise an exception.
945 if No (Ent) then
946 Check_Error_Detected;
947 Set_Identifier (N, Empty);
949 else
950 Set_Ekind (Ent, E_Block);
951 Generate_Reference (Ent, N, ' ');
952 Generate_Definition (Ent);
954 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
955 Set_Label_Construct (Parent (Ent), N);
956 end if;
957 end if;
958 end if;
960 -- If no entity set, create a label entity
962 if No (Ent) then
963 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
964 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
965 Set_Parent (Ent, N);
966 end if;
968 Set_Etype (Ent, Standard_Void_Type);
969 Set_Block_Node (Ent, Identifier (N));
970 Push_Scope (Ent);
972 -- The block served as an extended return statement. Ensure that any
973 -- entities created during the analysis and expansion of the return
974 -- object declaration are once again visible.
976 if Is_BIP_Return_Statement then
977 Install_Return_Entities (Ent);
978 end if;
980 if Present (Decls) then
981 Analyze_Declarations (Decls);
982 Check_Completion;
983 Inspect_Deferred_Constant_Completion (Decls);
984 end if;
986 Analyze (HSS);
987 Process_End_Label (HSS, 'e', Ent);
989 -- If exception handlers are present, then we indicate that enclosing
990 -- scopes contain a block with handlers. We only need to mark non-
991 -- generic scopes.
993 if Present (EH) then
994 S := Scope (Ent);
995 loop
996 Set_Has_Nested_Block_With_Handler (S);
997 exit when Is_Overloadable (S)
998 or else Ekind (S) = E_Package
999 or else Is_Generic_Unit (S);
1000 S := Scope (S);
1001 end loop;
1002 end if;
1004 Check_References (Ent);
1005 Warn_On_Useless_Assignments (Ent);
1006 End_Scope;
1008 if Unblocked_Exit_Count = 0 then
1009 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1010 Check_Unreachable_Code (N);
1011 else
1012 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1013 end if;
1014 end;
1015 end Analyze_Block_Statement;
1017 ----------------------------
1018 -- Analyze_Case_Statement --
1019 ----------------------------
1021 procedure Analyze_Case_Statement (N : Node_Id) is
1022 Exp : Node_Id;
1023 Exp_Type : Entity_Id;
1024 Exp_Btype : Entity_Id;
1025 Last_Choice : Nat;
1026 Dont_Care : Boolean;
1027 Others_Present : Boolean;
1029 pragma Warnings (Off, Last_Choice);
1030 pragma Warnings (Off, Dont_Care);
1031 -- Don't care about assigned values
1033 Statements_Analyzed : Boolean := False;
1034 -- Set True if at least some statement sequences get analyzed. If False
1035 -- on exit, means we had a serious error that prevented full analysis of
1036 -- the case statement, and as a result it is not a good idea to output
1037 -- warning messages about unreachable code.
1039 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1040 -- Recursively save value of this global, will be restored on exit
1042 procedure Non_Static_Choice_Error (Choice : Node_Id);
1043 -- Error routine invoked by the generic instantiation below when the
1044 -- case statement has a non static choice.
1046 procedure Process_Statements (Alternative : Node_Id);
1047 -- Analyzes all the statements associated with a case alternative.
1048 -- Needed by the generic instantiation below.
1050 package Case_Choices_Processing is new
1051 Generic_Choices_Processing
1052 (Get_Alternatives => Alternatives,
1053 Get_Choices => Discrete_Choices,
1054 Process_Empty_Choice => No_OP,
1055 Process_Non_Static_Choice => Non_Static_Choice_Error,
1056 Process_Associated_Node => Process_Statements);
1057 use Case_Choices_Processing;
1058 -- Instantiation of the generic choice processing package
1060 -----------------------------
1061 -- Non_Static_Choice_Error --
1062 -----------------------------
1064 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1065 begin
1066 Flag_Non_Static_Expr
1067 ("choice given in case statement is not static!", Choice);
1068 end Non_Static_Choice_Error;
1070 ------------------------
1071 -- Process_Statements --
1072 ------------------------
1074 procedure Process_Statements (Alternative : Node_Id) is
1075 Choices : constant List_Id := Discrete_Choices (Alternative);
1076 Ent : Entity_Id;
1078 begin
1079 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1080 Statements_Analyzed := True;
1082 -- An interesting optimization. If the case statement expression
1083 -- is a simple entity, then we can set the current value within an
1084 -- alternative if the alternative has one possible value.
1086 -- case N is
1087 -- when 1 => alpha
1088 -- when 2 | 3 => beta
1089 -- when others => gamma
1091 -- Here we know that N is initially 1 within alpha, but for beta and
1092 -- gamma, we do not know anything more about the initial value.
1094 if Is_Entity_Name (Exp) then
1095 Ent := Entity (Exp);
1097 if Ekind_In (Ent, E_Variable,
1098 E_In_Out_Parameter,
1099 E_Out_Parameter)
1100 then
1101 if List_Length (Choices) = 1
1102 and then Nkind (First (Choices)) in N_Subexpr
1103 and then Compile_Time_Known_Value (First (Choices))
1104 then
1105 Set_Current_Value (Entity (Exp), First (Choices));
1106 end if;
1108 Analyze_Statements (Statements (Alternative));
1110 -- After analyzing the case, set the current value to empty
1111 -- since we won't know what it is for the next alternative
1112 -- (unless reset by this same circuit), or after the case.
1114 Set_Current_Value (Entity (Exp), Empty);
1115 return;
1116 end if;
1117 end if;
1119 -- Case where expression is not an entity name of a variable
1121 Analyze_Statements (Statements (Alternative));
1122 end Process_Statements;
1124 -- Start of processing for Analyze_Case_Statement
1126 begin
1127 Unblocked_Exit_Count := 0;
1128 Exp := Expression (N);
1129 Analyze (Exp);
1131 -- The expression must be of any discrete type. In rare cases, the
1132 -- expander constructs a case statement whose expression has a private
1133 -- type whose full view is discrete. This can happen when generating
1134 -- a stream operation for a variant type after the type is frozen,
1135 -- when the partial of view of the type of the discriminant is private.
1136 -- In that case, use the full view to analyze case alternatives.
1138 if not Is_Overloaded (Exp)
1139 and then not Comes_From_Source (N)
1140 and then Is_Private_Type (Etype (Exp))
1141 and then Present (Full_View (Etype (Exp)))
1142 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1143 then
1144 Resolve (Exp, Etype (Exp));
1145 Exp_Type := Full_View (Etype (Exp));
1147 else
1148 Analyze_And_Resolve (Exp, Any_Discrete);
1149 Exp_Type := Etype (Exp);
1150 end if;
1152 Check_Unset_Reference (Exp);
1153 Exp_Btype := Base_Type (Exp_Type);
1155 -- The expression must be of a discrete type which must be determinable
1156 -- independently of the context in which the expression occurs, but
1157 -- using the fact that the expression must be of a discrete type.
1158 -- Moreover, the type this expression must not be a character literal
1159 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1161 -- If error already reported by Resolve, nothing more to do
1163 if Exp_Btype = Any_Discrete
1164 or else Exp_Btype = Any_Type
1165 then
1166 return;
1168 elsif Exp_Btype = Any_Character then
1169 Error_Msg_N
1170 ("character literal as case expression is ambiguous", Exp);
1171 return;
1173 elsif Ada_Version = Ada_83
1174 and then (Is_Generic_Type (Exp_Btype)
1175 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1176 then
1177 Error_Msg_N
1178 ("(Ada 83) case expression cannot be of a generic type", Exp);
1179 return;
1180 end if;
1182 -- If the case expression is a formal object of mode in out, then treat
1183 -- it as having a nonstatic subtype by forcing use of the base type
1184 -- (which has to get passed to Check_Case_Choices below). Also use base
1185 -- type when the case expression is parenthesized.
1187 if Paren_Count (Exp) > 0
1188 or else (Is_Entity_Name (Exp)
1189 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1190 then
1191 Exp_Type := Exp_Btype;
1192 end if;
1194 -- Call instantiated Analyze_Choices which does the rest of the work
1196 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1198 -- A case statement with a single OTHERS alternative is not allowed
1199 -- in SPARK.
1201 if Others_Present
1202 and then List_Length (Alternatives (N)) = 1
1203 then
1204 Check_SPARK_Restriction
1205 ("OTHERS as unique case alternative is not allowed", N);
1206 end if;
1208 if Exp_Type = Universal_Integer and then not Others_Present then
1209 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1210 end if;
1212 -- If all our exits were blocked by unconditional transfers of control,
1213 -- then the entire CASE statement acts as an unconditional transfer of
1214 -- control, so treat it like one, and check unreachable code. Skip this
1215 -- test if we had serious errors preventing any statement analysis.
1217 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1218 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1219 Check_Unreachable_Code (N);
1220 else
1221 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1222 end if;
1224 if not Expander_Active
1225 and then Compile_Time_Known_Value (Expression (N))
1226 and then Serious_Errors_Detected = 0
1227 then
1228 declare
1229 Chosen : constant Node_Id := Find_Static_Alternative (N);
1230 Alt : Node_Id;
1232 begin
1233 Alt := First (Alternatives (N));
1234 while Present (Alt) loop
1235 if Alt /= Chosen then
1236 Remove_Warning_Messages (Statements (Alt));
1237 end if;
1239 Next (Alt);
1240 end loop;
1241 end;
1242 end if;
1243 end Analyze_Case_Statement;
1245 ----------------------------
1246 -- Analyze_Exit_Statement --
1247 ----------------------------
1249 -- If the exit includes a name, it must be the name of a currently open
1250 -- loop. Otherwise there must be an innermost open loop on the stack, to
1251 -- which the statement implicitly refers.
1253 -- Additionally, in SPARK mode:
1255 -- The exit can only name the closest enclosing loop;
1257 -- An exit with a when clause must be directly contained in a loop;
1259 -- An exit without a when clause must be directly contained in an
1260 -- if-statement with no elsif or else, which is itself directly contained
1261 -- in a loop. The exit must be the last statement in the if-statement.
1263 procedure Analyze_Exit_Statement (N : Node_Id) is
1264 Target : constant Node_Id := Name (N);
1265 Cond : constant Node_Id := Condition (N);
1266 Scope_Id : Entity_Id;
1267 U_Name : Entity_Id;
1268 Kind : Entity_Kind;
1270 begin
1271 if No (Cond) then
1272 Check_Unreachable_Code (N);
1273 end if;
1275 if Present (Target) then
1276 Analyze (Target);
1277 U_Name := Entity (Target);
1279 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1280 Error_Msg_N ("invalid loop name in exit statement", N);
1281 return;
1283 else
1284 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1285 Check_SPARK_Restriction
1286 ("exit label must name the closest enclosing loop", N);
1287 end if;
1289 Set_Has_Exit (U_Name);
1290 end if;
1292 else
1293 U_Name := Empty;
1294 end if;
1296 for J in reverse 0 .. Scope_Stack.Last loop
1297 Scope_Id := Scope_Stack.Table (J).Entity;
1298 Kind := Ekind (Scope_Id);
1300 if Kind = E_Loop
1301 and then (No (Target) or else Scope_Id = U_Name)
1302 then
1303 Set_Has_Exit (Scope_Id);
1304 exit;
1306 elsif Kind = E_Block
1307 or else Kind = E_Loop
1308 or else Kind = E_Return_Statement
1309 then
1310 null;
1312 else
1313 Error_Msg_N
1314 ("cannot exit from program unit or accept statement", N);
1315 return;
1316 end if;
1317 end loop;
1319 -- Verify that if present the condition is a Boolean expression
1321 if Present (Cond) then
1322 Analyze_And_Resolve (Cond, Any_Boolean);
1323 Check_Unset_Reference (Cond);
1324 end if;
1326 -- In SPARK mode, verify that the exit statement respects the SPARK
1327 -- restrictions.
1329 if Present (Cond) then
1330 if Nkind (Parent (N)) /= N_Loop_Statement then
1331 Check_SPARK_Restriction
1332 ("exit with when clause must be directly in loop", N);
1333 end if;
1335 else
1336 if Nkind (Parent (N)) /= N_If_Statement then
1337 if Nkind (Parent (N)) = N_Elsif_Part then
1338 Check_SPARK_Restriction
1339 ("exit must be in IF without ELSIF", N);
1340 else
1341 Check_SPARK_Restriction ("exit must be directly in IF", N);
1342 end if;
1344 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1345 Check_SPARK_Restriction
1346 ("exit must be in IF directly in loop", N);
1348 -- First test the presence of ELSE, so that an exit in an ELSE leads
1349 -- to an error mentioning the ELSE.
1351 elsif Present (Else_Statements (Parent (N))) then
1352 Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
1354 -- An exit in an ELSIF does not reach here, as it would have been
1355 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1357 elsif Present (Elsif_Parts (Parent (N))) then
1358 Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
1359 end if;
1360 end if;
1362 -- Chain exit statement to associated loop entity
1364 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1365 Set_First_Exit_Statement (Scope_Id, N);
1367 -- Since the exit may take us out of a loop, any previous assignment
1368 -- statement is not useless, so clear last assignment indications. It
1369 -- is OK to keep other current values, since if the exit statement
1370 -- does not exit, then the current values are still valid.
1372 Kill_Current_Values (Last_Assignment_Only => True);
1373 end Analyze_Exit_Statement;
1375 ----------------------------
1376 -- Analyze_Goto_Statement --
1377 ----------------------------
1379 procedure Analyze_Goto_Statement (N : Node_Id) is
1380 Label : constant Node_Id := Name (N);
1381 Scope_Id : Entity_Id;
1382 Label_Scope : Entity_Id;
1383 Label_Ent : Entity_Id;
1385 begin
1386 Check_SPARK_Restriction ("goto statement is not allowed", N);
1388 -- Actual semantic checks
1390 Check_Unreachable_Code (N);
1391 Kill_Current_Values (Last_Assignment_Only => True);
1393 Analyze (Label);
1394 Label_Ent := Entity (Label);
1396 -- Ignore previous error
1398 if Label_Ent = Any_Id then
1399 Check_Error_Detected;
1400 return;
1402 -- We just have a label as the target of a goto
1404 elsif Ekind (Label_Ent) /= E_Label then
1405 Error_Msg_N ("target of goto statement must be a label", Label);
1406 return;
1408 -- Check that the target of the goto is reachable according to Ada
1409 -- scoping rules. Note: the special gotos we generate for optimizing
1410 -- local handling of exceptions would violate these rules, but we mark
1411 -- such gotos as analyzed when built, so this code is never entered.
1413 elsif not Reachable (Label_Ent) then
1414 Error_Msg_N ("target of goto statement is not reachable", Label);
1415 return;
1416 end if;
1418 -- Here if goto passes initial validity checks
1420 Label_Scope := Enclosing_Scope (Label_Ent);
1422 for J in reverse 0 .. Scope_Stack.Last loop
1423 Scope_Id := Scope_Stack.Table (J).Entity;
1425 if Label_Scope = Scope_Id
1426 or else (Ekind (Scope_Id) /= E_Block
1427 and then Ekind (Scope_Id) /= E_Loop
1428 and then Ekind (Scope_Id) /= E_Return_Statement)
1429 then
1430 if Scope_Id /= Label_Scope then
1431 Error_Msg_N
1432 ("cannot exit from program unit or accept statement", N);
1433 end if;
1435 return;
1436 end if;
1437 end loop;
1439 raise Program_Error;
1440 end Analyze_Goto_Statement;
1442 --------------------------
1443 -- Analyze_If_Statement --
1444 --------------------------
1446 -- A special complication arises in the analysis of if statements
1448 -- The expander has circuitry to completely delete code that it can tell
1449 -- will not be executed (as a result of compile time known conditions). In
1450 -- the analyzer, we ensure that code that will be deleted in this manner is
1451 -- analyzed but not expanded. This is obviously more efficient, but more
1452 -- significantly, difficulties arise if code is expanded and then
1453 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1454 -- generated in deleted code must be frozen from start, because the nodes
1455 -- on which they depend will not be available at the freeze point.
1457 procedure Analyze_If_Statement (N : Node_Id) is
1458 E : Node_Id;
1460 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1461 -- Recursively save value of this global, will be restored on exit
1463 Save_In_Deleted_Code : Boolean;
1465 Del : Boolean := False;
1466 -- This flag gets set True if a True condition has been found, which
1467 -- means that remaining ELSE/ELSIF parts are deleted.
1469 procedure Analyze_Cond_Then (Cnode : Node_Id);
1470 -- This is applied to either the N_If_Statement node itself or to an
1471 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1472 -- statements associated with it.
1474 -----------------------
1475 -- Analyze_Cond_Then --
1476 -----------------------
1478 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1479 Cond : constant Node_Id := Condition (Cnode);
1480 Tstm : constant List_Id := Then_Statements (Cnode);
1482 begin
1483 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1484 Analyze_And_Resolve (Cond, Any_Boolean);
1485 Check_Unset_Reference (Cond);
1486 Set_Current_Value_Condition (Cnode);
1488 -- If already deleting, then just analyze then statements
1490 if Del then
1491 Analyze_Statements (Tstm);
1493 -- Compile time known value, not deleting yet
1495 elsif Compile_Time_Known_Value (Cond) then
1496 Save_In_Deleted_Code := In_Deleted_Code;
1498 -- If condition is True, then analyze the THEN statements and set
1499 -- no expansion for ELSE and ELSIF parts.
1501 if Is_True (Expr_Value (Cond)) then
1502 Analyze_Statements (Tstm);
1503 Del := True;
1504 Expander_Mode_Save_And_Set (False);
1505 In_Deleted_Code := True;
1507 -- If condition is False, analyze THEN with expansion off
1509 else -- Is_False (Expr_Value (Cond))
1510 Expander_Mode_Save_And_Set (False);
1511 In_Deleted_Code := True;
1512 Analyze_Statements (Tstm);
1513 Expander_Mode_Restore;
1514 In_Deleted_Code := Save_In_Deleted_Code;
1515 end if;
1517 -- Not known at compile time, not deleting, normal analysis
1519 else
1520 Analyze_Statements (Tstm);
1521 end if;
1522 end Analyze_Cond_Then;
1524 -- Start of Analyze_If_Statement
1526 begin
1527 -- Initialize exit count for else statements. If there is no else part,
1528 -- this count will stay non-zero reflecting the fact that the uncovered
1529 -- else case is an unblocked exit.
1531 Unblocked_Exit_Count := 1;
1532 Analyze_Cond_Then (N);
1534 -- Now to analyze the elsif parts if any are present
1536 if Present (Elsif_Parts (N)) then
1537 E := First (Elsif_Parts (N));
1538 while Present (E) loop
1539 Analyze_Cond_Then (E);
1540 Next (E);
1541 end loop;
1542 end if;
1544 if Present (Else_Statements (N)) then
1545 Analyze_Statements (Else_Statements (N));
1546 end if;
1548 -- If all our exits were blocked by unconditional transfers of control,
1549 -- then the entire IF statement acts as an unconditional transfer of
1550 -- control, so treat it like one, and check unreachable code.
1552 if Unblocked_Exit_Count = 0 then
1553 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1554 Check_Unreachable_Code (N);
1555 else
1556 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1557 end if;
1559 if Del then
1560 Expander_Mode_Restore;
1561 In_Deleted_Code := Save_In_Deleted_Code;
1562 end if;
1564 if not Expander_Active
1565 and then Compile_Time_Known_Value (Condition (N))
1566 and then Serious_Errors_Detected = 0
1567 then
1568 if Is_True (Expr_Value (Condition (N))) then
1569 Remove_Warning_Messages (Else_Statements (N));
1571 if Present (Elsif_Parts (N)) then
1572 E := First (Elsif_Parts (N));
1573 while Present (E) loop
1574 Remove_Warning_Messages (Then_Statements (E));
1575 Next (E);
1576 end loop;
1577 end if;
1579 else
1580 Remove_Warning_Messages (Then_Statements (N));
1581 end if;
1582 end if;
1583 end Analyze_If_Statement;
1585 ----------------------------------------
1586 -- Analyze_Implicit_Label_Declaration --
1587 ----------------------------------------
1589 -- An implicit label declaration is generated in the innermost enclosing
1590 -- declarative part. This is done for labels, and block and loop names.
1592 -- Note: any changes in this routine may need to be reflected in
1593 -- Analyze_Label_Entity.
1595 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1596 Id : constant Node_Id := Defining_Identifier (N);
1597 begin
1598 Enter_Name (Id);
1599 Set_Ekind (Id, E_Label);
1600 Set_Etype (Id, Standard_Void_Type);
1601 Set_Enclosing_Scope (Id, Current_Scope);
1602 end Analyze_Implicit_Label_Declaration;
1604 ------------------------------
1605 -- Analyze_Iteration_Scheme --
1606 ------------------------------
1608 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1609 Cond : Node_Id;
1610 Iter_Spec : Node_Id;
1611 Loop_Spec : Node_Id;
1613 begin
1614 -- For an infinite loop, there is no iteration scheme
1616 if No (N) then
1617 return;
1618 end if;
1620 Cond := Condition (N);
1621 Iter_Spec := Iterator_Specification (N);
1622 Loop_Spec := Loop_Parameter_Specification (N);
1624 if Present (Cond) then
1625 Analyze_And_Resolve (Cond, Any_Boolean);
1626 Check_Unset_Reference (Cond);
1627 Set_Current_Value_Condition (N);
1629 elsif Present (Iter_Spec) then
1630 Analyze_Iterator_Specification (Iter_Spec);
1632 else
1633 Analyze_Loop_Parameter_Specification (Loop_Spec);
1634 end if;
1635 end Analyze_Iteration_Scheme;
1637 ------------------------------------
1638 -- Analyze_Iterator_Specification --
1639 ------------------------------------
1641 procedure Analyze_Iterator_Specification (N : Node_Id) is
1642 Loc : constant Source_Ptr := Sloc (N);
1643 Def_Id : constant Node_Id := Defining_Identifier (N);
1644 Subt : constant Node_Id := Subtype_Indication (N);
1645 Iter_Name : constant Node_Id := Name (N);
1647 Ent : Entity_Id;
1648 Typ : Entity_Id;
1650 begin
1651 Enter_Name (Def_Id);
1653 if Present (Subt) then
1654 Analyze (Subt);
1655 end if;
1657 Preanalyze_Range (Iter_Name);
1659 -- Set the kind of the loop variable, which is not visible within
1660 -- the iterator name.
1662 Set_Ekind (Def_Id, E_Variable);
1664 -- If the domain of iteration is an expression, create a declaration for
1665 -- it, so that finalization actions are introduced outside of the loop.
1666 -- The declaration must be a renaming because the body of the loop may
1667 -- assign to elements.
1669 if not Is_Entity_Name (Iter_Name)
1671 -- When the context is a quantified expression, the renaming
1672 -- declaration is delayed until the expansion phase if we are
1673 -- doing expansion.
1675 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1676 or else Operating_Mode = Check_Semantics)
1678 -- Do not perform this expansion in Alfa mode, since the formal
1679 -- verification directly deals with the source form of the iterator.
1681 and then not Alfa_Mode
1682 then
1683 declare
1684 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1685 Decl : Node_Id;
1687 begin
1688 Typ := Etype (Iter_Name);
1690 -- Protect against malformed iterator
1692 if Typ = Any_Type then
1693 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1694 return;
1695 end if;
1697 -- The name in the renaming declaration may be a function call.
1698 -- Indicate that it does not come from source, to suppress
1699 -- spurious warnings on renamings of parameterless functions,
1700 -- a common enough idiom in user-defined iterators.
1702 Decl :=
1703 Make_Object_Renaming_Declaration (Loc,
1704 Defining_Identifier => Id,
1705 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1706 Name =>
1707 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1709 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1710 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1711 Set_Etype (Id, Typ);
1712 Set_Etype (Name (N), Typ);
1713 end;
1715 -- Container is an entity or an array with uncontrolled components, or
1716 -- else it is a container iterator given by a function call, typically
1717 -- called Iterate in the case of predefined containers, even though
1718 -- Iterate is not a reserved name. What matters is that the return type
1719 -- of the function is an iterator type.
1721 elsif Is_Entity_Name (Iter_Name) then
1722 Analyze (Iter_Name);
1724 if Nkind (Iter_Name) = N_Function_Call then
1725 declare
1726 C : constant Node_Id := Name (Iter_Name);
1727 I : Interp_Index;
1728 It : Interp;
1730 begin
1731 if not Is_Overloaded (Iter_Name) then
1732 Resolve (Iter_Name, Etype (C));
1734 else
1735 Get_First_Interp (C, I, It);
1736 while It.Typ /= Empty loop
1737 if Reverse_Present (N) then
1738 if Is_Reversible_Iterator (It.Typ) then
1739 Resolve (Iter_Name, It.Typ);
1740 exit;
1741 end if;
1743 elsif Is_Iterator (It.Typ) then
1744 Resolve (Iter_Name, It.Typ);
1745 exit;
1746 end if;
1748 Get_Next_Interp (I, It);
1749 end loop;
1750 end if;
1751 end;
1753 -- Domain of iteration is not overloaded
1755 else
1756 Resolve (Iter_Name, Etype (Iter_Name));
1757 end if;
1758 end if;
1760 Typ := Etype (Iter_Name);
1762 if Is_Array_Type (Typ) then
1763 if Of_Present (N) then
1764 Set_Etype (Def_Id, Component_Type (Typ));
1766 -- Here we have a missing Range attribute
1768 else
1769 Error_Msg_N
1770 ("missing Range attribute in iteration over an array", N);
1772 -- In Ada 2012 mode, this may be an attempt at an iterator
1774 if Ada_Version >= Ada_2012 then
1775 Error_Msg_NE
1776 ("\if& is meant to designate an element of the array, use OF",
1777 N, Def_Id);
1778 end if;
1780 -- Prevent cascaded errors
1782 Set_Ekind (Def_Id, E_Loop_Parameter);
1783 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1784 end if;
1786 -- Check for type error in iterator
1788 elsif Typ = Any_Type then
1789 return;
1791 -- Iteration over a container
1793 else
1794 Set_Ekind (Def_Id, E_Loop_Parameter);
1796 if Of_Present (N) then
1798 -- The type of the loop variable is the Iterator_Element aspect of
1799 -- the container type.
1801 declare
1802 Element : constant Entity_Id :=
1803 Find_Aspect (Typ, Aspect_Iterator_Element);
1804 begin
1805 if No (Element) then
1806 Error_Msg_NE ("cannot iterate over&", N, Typ);
1807 return;
1808 else
1809 Set_Etype (Def_Id, Entity (Element));
1811 -- If the container has a variable indexing aspect, the
1812 -- element is a variable and is modifiable in the loop.
1814 if Present (Find_Aspect (Typ, Aspect_Variable_Indexing)) then
1815 Set_Ekind (Def_Id, E_Variable);
1816 end if;
1817 end if;
1818 end;
1820 else
1821 -- For an iteration of the form IN, the name must denote an
1822 -- iterator, typically the result of a call to Iterate. Give a
1823 -- useful error message when the name is a container by itself.
1825 if Is_Entity_Name (Original_Node (Name (N)))
1826 and then not Is_Iterator (Typ)
1827 then
1828 if No (Find_Aspect (Typ, Aspect_Iterator_Element)) then
1829 Error_Msg_NE
1830 ("cannot iterate over&", Name (N), Typ);
1831 else
1832 Error_Msg_N
1833 ("name must be an iterator, not a container", Name (N));
1834 end if;
1836 Error_Msg_NE
1837 ("\to iterate directly over the elements of a container, " &
1838 "write `of &`", Name (N), Original_Node (Name (N)));
1839 end if;
1841 -- The result type of Iterate function is the classwide type of
1842 -- the interface parent. We need the specific Cursor type defined
1843 -- in the container package.
1845 Ent := First_Entity (Scope (Typ));
1846 while Present (Ent) loop
1847 if Chars (Ent) = Name_Cursor then
1848 Set_Etype (Def_Id, Etype (Ent));
1849 exit;
1850 end if;
1852 Next_Entity (Ent);
1853 end loop;
1854 end if;
1855 end if;
1856 end Analyze_Iterator_Specification;
1858 -------------------
1859 -- Analyze_Label --
1860 -------------------
1862 -- Note: the semantic work required for analyzing labels (setting them as
1863 -- reachable) was done in a prepass through the statements in the block,
1864 -- so that forward gotos would be properly handled. See Analyze_Statements
1865 -- for further details. The only processing required here is to deal with
1866 -- optimizations that depend on an assumption of sequential control flow,
1867 -- since of course the occurrence of a label breaks this assumption.
1869 procedure Analyze_Label (N : Node_Id) is
1870 pragma Warnings (Off, N);
1871 begin
1872 Kill_Current_Values;
1873 end Analyze_Label;
1875 --------------------------
1876 -- Analyze_Label_Entity --
1877 --------------------------
1879 procedure Analyze_Label_Entity (E : Entity_Id) is
1880 begin
1881 Set_Ekind (E, E_Label);
1882 Set_Etype (E, Standard_Void_Type);
1883 Set_Enclosing_Scope (E, Current_Scope);
1884 Set_Reachable (E, True);
1885 end Analyze_Label_Entity;
1887 ------------------------------------------
1888 -- Analyze_Loop_Parameter_Specification --
1889 ------------------------------------------
1891 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
1892 Loop_Nod : constant Node_Id := Parent (Parent (N));
1894 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1895 -- If the bounds are given by a 'Range reference on a function call
1896 -- that returns a controlled array, introduce an explicit declaration
1897 -- to capture the bounds, so that the function result can be finalized
1898 -- in timely fashion.
1900 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
1901 -- N is the node for an arbitrary construct. This function searches the
1902 -- construct N to see if any expressions within it contain function
1903 -- calls that use the secondary stack, returning True if any such call
1904 -- is found, and False otherwise.
1906 procedure Process_Bounds (R : Node_Id);
1907 -- If the iteration is given by a range, create temporaries and
1908 -- assignment statements block to capture the bounds and perform
1909 -- required finalization actions in case a bound includes a function
1910 -- call that uses the temporary stack. We first pre-analyze a copy of
1911 -- the range in order to determine the expected type, and analyze and
1912 -- resolve the original bounds.
1914 --------------------------------------
1915 -- Check_Controlled_Array_Attribute --
1916 --------------------------------------
1918 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1919 begin
1920 if Nkind (DS) = N_Attribute_Reference
1921 and then Is_Entity_Name (Prefix (DS))
1922 and then Ekind (Entity (Prefix (DS))) = E_Function
1923 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1924 and then
1925 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
1926 and then Expander_Active
1927 then
1928 declare
1929 Loc : constant Source_Ptr := Sloc (N);
1930 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1931 Indx : constant Entity_Id :=
1932 Base_Type (Etype (First_Index (Arr)));
1933 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1934 Decl : Node_Id;
1936 begin
1937 Decl :=
1938 Make_Subtype_Declaration (Loc,
1939 Defining_Identifier => Subt,
1940 Subtype_Indication =>
1941 Make_Subtype_Indication (Loc,
1942 Subtype_Mark => New_Reference_To (Indx, Loc),
1943 Constraint =>
1944 Make_Range_Constraint (Loc, Relocate_Node (DS))));
1945 Insert_Before (Loop_Nod, Decl);
1946 Analyze (Decl);
1948 Rewrite (DS,
1949 Make_Attribute_Reference (Loc,
1950 Prefix => New_Reference_To (Subt, Loc),
1951 Attribute_Name => Attribute_Name (DS)));
1953 Analyze (DS);
1954 end;
1955 end if;
1956 end Check_Controlled_Array_Attribute;
1958 ------------------------------------
1959 -- Has_Call_Using_Secondary_Stack --
1960 ------------------------------------
1962 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
1964 function Check_Call (N : Node_Id) return Traverse_Result;
1965 -- Check if N is a function call which uses the secondary stack
1967 ----------------
1968 -- Check_Call --
1969 ----------------
1971 function Check_Call (N : Node_Id) return Traverse_Result is
1972 Nam : Node_Id;
1973 Subp : Entity_Id;
1974 Return_Typ : Entity_Id;
1976 begin
1977 if Nkind (N) = N_Function_Call then
1978 Nam := Name (N);
1980 -- Call using access to subprogram with explicit dereference
1982 if Nkind (Nam) = N_Explicit_Dereference then
1983 Subp := Etype (Nam);
1985 -- Call using a selected component notation or Ada 2005 object
1986 -- operation notation
1988 elsif Nkind (Nam) = N_Selected_Component then
1989 Subp := Entity (Selector_Name (Nam));
1991 -- Common case
1993 else
1994 Subp := Entity (Nam);
1995 end if;
1997 Return_Typ := Etype (Subp);
1999 if Is_Composite_Type (Return_Typ)
2000 and then not Is_Constrained (Return_Typ)
2001 then
2002 return Abandon;
2004 elsif Sec_Stack_Needed_For_Return (Subp) then
2005 return Abandon;
2006 end if;
2007 end if;
2009 -- Continue traversing the tree
2011 return OK;
2012 end Check_Call;
2014 function Check_Calls is new Traverse_Func (Check_Call);
2016 -- Start of processing for Has_Call_Using_Secondary_Stack
2018 begin
2019 return Check_Calls (N) = Abandon;
2020 end Has_Call_Using_Secondary_Stack;
2022 --------------------
2023 -- Process_Bounds --
2024 --------------------
2026 procedure Process_Bounds (R : Node_Id) is
2027 Loc : constant Source_Ptr := Sloc (N);
2029 function One_Bound
2030 (Original_Bound : Node_Id;
2031 Analyzed_Bound : Node_Id;
2032 Typ : Entity_Id) return Node_Id;
2033 -- Capture value of bound and return captured value
2035 ---------------
2036 -- One_Bound --
2037 ---------------
2039 function One_Bound
2040 (Original_Bound : Node_Id;
2041 Analyzed_Bound : Node_Id;
2042 Typ : Entity_Id) return Node_Id
2044 Assign : Node_Id;
2045 Decl : Node_Id;
2046 Id : Entity_Id;
2048 begin
2049 -- If the bound is a constant or an object, no need for a separate
2050 -- declaration. If the bound is the result of previous expansion
2051 -- it is already analyzed and should not be modified. Note that
2052 -- the Bound will be resolved later, if needed, as part of the
2053 -- call to Make_Index (literal bounds may need to be resolved to
2054 -- type Integer).
2056 if Analyzed (Original_Bound) then
2057 return Original_Bound;
2059 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2060 N_Character_Literal)
2061 or else Is_Entity_Name (Analyzed_Bound)
2062 then
2063 Analyze_And_Resolve (Original_Bound, Typ);
2064 return Original_Bound;
2065 end if;
2067 -- Normally, the best approach is simply to generate a constant
2068 -- declaration that captures the bound. However, there is a nasty
2069 -- case where this is wrong. If the bound is complex, and has a
2070 -- possible use of the secondary stack, we need to generate a
2071 -- separate assignment statement to ensure the creation of a block
2072 -- which will release the secondary stack.
2074 -- We prefer the constant declaration, since it leaves us with a
2075 -- proper trace of the value, useful in optimizations that get rid
2076 -- of junk range checks.
2078 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2079 Analyze_And_Resolve (Original_Bound, Typ);
2080 Force_Evaluation (Original_Bound);
2081 return Original_Bound;
2082 end if;
2084 Id := Make_Temporary (Loc, 'R', Original_Bound);
2086 -- Here we make a declaration with a separate assignment
2087 -- statement, and insert before loop header.
2089 Decl :=
2090 Make_Object_Declaration (Loc,
2091 Defining_Identifier => Id,
2092 Object_Definition => New_Occurrence_Of (Typ, Loc));
2094 Assign :=
2095 Make_Assignment_Statement (Loc,
2096 Name => New_Occurrence_Of (Id, Loc),
2097 Expression => Relocate_Node (Original_Bound));
2099 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2101 -- Now that this temporary variable is initialized we decorate it
2102 -- as safe-to-reevaluate to inform to the backend that no further
2103 -- asignment will be issued and hence it can be handled as side
2104 -- effect free. Note that this decoration must be done when the
2105 -- assignment has been analyzed because otherwise it will be
2106 -- rejected (see Analyze_Assignment).
2108 Set_Is_Safe_To_Reevaluate (Id);
2110 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2112 if Nkind (Assign) = N_Assignment_Statement then
2113 return Expression (Assign);
2114 else
2115 return Original_Bound;
2116 end if;
2117 end One_Bound;
2119 Hi : constant Node_Id := High_Bound (R);
2120 Lo : constant Node_Id := Low_Bound (R);
2121 R_Copy : constant Node_Id := New_Copy_Tree (R);
2122 New_Hi : Node_Id;
2123 New_Lo : Node_Id;
2124 Typ : Entity_Id;
2126 -- Start of processing for Process_Bounds
2128 begin
2129 Set_Parent (R_Copy, Parent (R));
2130 Preanalyze_Range (R_Copy);
2131 Typ := Etype (R_Copy);
2133 -- If the type of the discrete range is Universal_Integer, then the
2134 -- bound's type must be resolved to Integer, and any object used to
2135 -- hold the bound must also have type Integer, unless the literal
2136 -- bounds are constant-folded expressions with a user-defined type.
2138 if Typ = Universal_Integer then
2139 if Nkind (Lo) = N_Integer_Literal
2140 and then Present (Etype (Lo))
2141 and then Scope (Etype (Lo)) /= Standard_Standard
2142 then
2143 Typ := Etype (Lo);
2145 elsif Nkind (Hi) = N_Integer_Literal
2146 and then Present (Etype (Hi))
2147 and then Scope (Etype (Hi)) /= Standard_Standard
2148 then
2149 Typ := Etype (Hi);
2151 else
2152 Typ := Standard_Integer;
2153 end if;
2154 end if;
2156 Set_Etype (R, Typ);
2158 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2159 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2161 -- Propagate staticness to loop range itself, in case the
2162 -- corresponding subtype is static.
2164 if New_Lo /= Lo
2165 and then Is_Static_Expression (New_Lo)
2166 then
2167 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2168 end if;
2170 if New_Hi /= Hi
2171 and then Is_Static_Expression (New_Hi)
2172 then
2173 Rewrite (High_Bound (R), New_Copy (New_Hi));
2174 end if;
2175 end Process_Bounds;
2177 -- Local variables
2179 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2180 Id : constant Entity_Id := Defining_Identifier (N);
2182 DS_Copy : Node_Id;
2184 -- Start of processing for Analyze_Loop_Parameter_Specification
2186 begin
2187 Enter_Name (Id);
2189 -- We always consider the loop variable to be referenced, since the loop
2190 -- may be used just for counting purposes.
2192 Generate_Reference (Id, N, ' ');
2194 -- Check for the case of loop variable hiding a local variable (used
2195 -- later on to give a nice warning if the hidden variable is never
2196 -- assigned).
2198 declare
2199 H : constant Entity_Id := Homonym (Id);
2200 begin
2201 if Present (H)
2202 and then Ekind (H) = E_Variable
2203 and then Is_Discrete_Type (Etype (H))
2204 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2205 then
2206 Set_Hiding_Loop_Variable (H, Id);
2207 end if;
2208 end;
2210 -- Loop parameter specification must include subtype mark in SPARK
2212 if Nkind (DS) = N_Range then
2213 Check_SPARK_Restriction
2214 ("loop parameter specification must include subtype mark", N);
2215 end if;
2217 -- Analyze the subtype definition and create temporaries for the bounds.
2218 -- Do not evaluate the range when preanalyzing a quantified expression
2219 -- because bounds expressed as function calls with side effects will be
2220 -- erroneously replicated.
2222 if Nkind (DS) = N_Range
2223 and then Expander_Active
2224 and then Nkind (Parent (N)) /= N_Quantified_Expression
2225 then
2226 Process_Bounds (DS);
2228 -- Either the expander not active or the range of iteration is a subtype
2229 -- indication, an entity, or a function call that yields an aggregate or
2230 -- a container.
2232 else
2233 DS_Copy := New_Copy_Tree (DS);
2234 Set_Parent (DS_Copy, Parent (DS));
2235 Preanalyze_Range (DS_Copy);
2237 -- Ada 2012: If the domain of iteration is a function call, it is the
2238 -- new iterator form.
2240 if Nkind (DS_Copy) = N_Function_Call
2241 or else
2242 (Is_Entity_Name (DS_Copy)
2243 and then not Is_Type (Entity (DS_Copy)))
2244 then
2245 -- This is an iterator specification. Rewrite it as such and
2246 -- analyze it to capture function calls that may require
2247 -- finalization actions.
2249 declare
2250 I_Spec : constant Node_Id :=
2251 Make_Iterator_Specification (Sloc (N),
2252 Defining_Identifier => Relocate_Node (Id),
2253 Name => DS_Copy,
2254 Subtype_Indication => Empty,
2255 Reverse_Present => Reverse_Present (N));
2256 Scheme : constant Node_Id := Parent (N);
2258 begin
2259 Set_Iterator_Specification (Scheme, I_Spec);
2260 Set_Loop_Parameter_Specification (Scheme, Empty);
2261 Analyze_Iterator_Specification (I_Spec);
2263 -- In a generic context, analyze the original domain of
2264 -- iteration, for name capture.
2266 if not Expander_Active then
2267 Analyze (DS);
2268 end if;
2270 -- Set kind of loop parameter, which may be used in the
2271 -- subsequent analysis of the condition in a quantified
2272 -- expression.
2274 Set_Ekind (Id, E_Loop_Parameter);
2275 return;
2276 end;
2278 -- Domain of iteration is not a function call, and is side-effect
2279 -- free.
2281 else
2282 -- A quantified expression that appears in a pre/post condition
2283 -- is pre-analyzed several times. If the range is given by an
2284 -- attribute reference it is rewritten as a range, and this is
2285 -- done even with expansion disabled. If the type is already set
2286 -- do not reanalyze, because a range with static bounds may be
2287 -- typed Integer by default.
2289 if Nkind (Parent (N)) = N_Quantified_Expression
2290 and then Present (Etype (DS))
2291 then
2292 null;
2293 else
2294 Analyze (DS);
2295 end if;
2296 end if;
2297 end if;
2299 if DS = Error then
2300 return;
2301 end if;
2303 -- Some additional checks if we are iterating through a type
2305 if Is_Entity_Name (DS)
2306 and then Present (Entity (DS))
2307 and then Is_Type (Entity (DS))
2308 then
2309 -- The subtype indication may denote the completion of an incomplete
2310 -- type declaration.
2312 if Ekind (Entity (DS)) = E_Incomplete_Type then
2313 Set_Entity (DS, Get_Full_View (Entity (DS)));
2314 Set_Etype (DS, Entity (DS));
2315 end if;
2317 -- Attempt to iterate through non-static predicate
2319 if Is_Discrete_Type (Entity (DS))
2320 and then Present (Predicate_Function (Entity (DS)))
2321 and then No (Static_Predicate (Entity (DS)))
2322 then
2323 Bad_Predicated_Subtype_Use
2324 ("cannot use subtype& with non-static predicate for loop " &
2325 "iteration", DS, Entity (DS));
2326 end if;
2327 end if;
2329 -- Error if not discrete type
2331 if not Is_Discrete_Type (Etype (DS)) then
2332 Wrong_Type (DS, Any_Discrete);
2333 Set_Etype (DS, Any_Type);
2334 end if;
2336 Check_Controlled_Array_Attribute (DS);
2338 Make_Index (DS, N, In_Iter_Schm => True);
2339 Set_Ekind (Id, E_Loop_Parameter);
2341 -- A quantified expression which appears in a pre- or post-condition may
2342 -- be analyzed multiple times. The analysis of the range creates several
2343 -- itypes which reside in different scopes depending on whether the pre-
2344 -- or post-condition has been expanded. Update the type of the loop
2345 -- variable to reflect the proper itype at each stage of analysis.
2347 if No (Etype (Id))
2348 or else Etype (Id) = Any_Type
2349 or else
2350 (Present (Etype (Id))
2351 and then Is_Itype (Etype (Id))
2352 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2353 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2354 N_Quantified_Expression)
2355 then
2356 Set_Etype (Id, Etype (DS));
2357 end if;
2359 -- Treat a range as an implicit reference to the type, to inhibit
2360 -- spurious warnings.
2362 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2363 Set_Is_Known_Valid (Id, True);
2365 -- The loop is not a declarative part, so the loop variable must be
2366 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2367 -- expression because the freeze node will not be inserted into the
2368 -- tree due to flag Is_Spec_Expression being set.
2370 if Nkind (Parent (N)) /= N_Quantified_Expression then
2371 declare
2372 Flist : constant List_Id := Freeze_Entity (Id, N);
2373 begin
2374 if Is_Non_Empty_List (Flist) then
2375 Insert_Actions (N, Flist);
2376 end if;
2377 end;
2378 end if;
2380 -- Check for null or possibly null range and issue warning. We suppress
2381 -- such messages in generic templates and instances, because in practice
2382 -- they tend to be dubious in these cases.
2384 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
2385 declare
2386 L : constant Node_Id := Low_Bound (DS);
2387 H : constant Node_Id := High_Bound (DS);
2389 begin
2390 -- If range of loop is null, issue warning
2392 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2394 -- Suppress the warning if inside a generic template or
2395 -- instance, since in practice they tend to be dubious in these
2396 -- cases since they can result from intended parametrization.
2398 if not Inside_A_Generic
2399 and then not In_Instance
2400 then
2401 -- Specialize msg if invalid values could make the loop
2402 -- non-null after all.
2404 if Compile_Time_Compare
2405 (L, H, Assume_Valid => False) = GT
2406 then
2407 Error_Msg_N
2408 ("??loop range is null, loop will not execute", DS);
2410 -- Since we know the range of the loop is null, set the
2411 -- appropriate flag to remove the loop entirely during
2412 -- expansion.
2414 Set_Is_Null_Loop (Loop_Nod);
2416 -- Here is where the loop could execute because of invalid
2417 -- values, so issue appropriate message and in this case we
2418 -- do not set the Is_Null_Loop flag since the loop may
2419 -- execute.
2421 else
2422 Error_Msg_N
2423 ("??loop range may be null, loop may not execute",
2424 DS);
2425 Error_Msg_N
2426 ("??can only execute if invalid values are present",
2427 DS);
2428 end if;
2429 end if;
2431 -- In either case, suppress warnings in the body of the loop,
2432 -- since it is likely that these warnings will be inappropriate
2433 -- if the loop never actually executes, which is likely.
2435 Set_Suppress_Loop_Warnings (Loop_Nod);
2437 -- The other case for a warning is a reverse loop where the
2438 -- upper bound is the integer literal zero or one, and the
2439 -- lower bound can be positive.
2441 -- For example, we have
2443 -- for J in reverse N .. 1 loop
2445 -- In practice, this is very likely to be a case of reversing
2446 -- the bounds incorrectly in the range.
2448 elsif Reverse_Present (N)
2449 and then Nkind (Original_Node (H)) = N_Integer_Literal
2450 and then
2451 (Intval (Original_Node (H)) = Uint_0
2452 or else Intval (Original_Node (H)) = Uint_1)
2453 then
2454 Error_Msg_N ("??loop range may be null", DS);
2455 Error_Msg_N ("\??bounds may be wrong way round", DS);
2456 end if;
2457 end;
2458 end if;
2459 end Analyze_Loop_Parameter_Specification;
2461 ----------------------------
2462 -- Analyze_Loop_Statement --
2463 ----------------------------
2465 procedure Analyze_Loop_Statement (N : Node_Id) is
2467 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2468 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2469 -- container iteration.
2471 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2472 -- Determine whether node N is the sole statement of a block
2474 ---------------------------
2475 -- Is_Container_Iterator --
2476 ---------------------------
2478 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2479 begin
2480 -- Infinite loop
2482 if No (Iter) then
2483 return False;
2485 -- While loop
2487 elsif Present (Condition (Iter)) then
2488 return False;
2490 -- for Def_Id in [reverse] Name loop
2491 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2493 elsif Present (Iterator_Specification (Iter)) then
2494 declare
2495 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2496 Nam_Copy : Node_Id;
2498 begin
2499 Nam_Copy := New_Copy_Tree (Nam);
2500 Set_Parent (Nam_Copy, Parent (Nam));
2501 Preanalyze_Range (Nam_Copy);
2503 -- The only two options here are iteration over a container or
2504 -- an array.
2506 return not Is_Array_Type (Etype (Nam_Copy));
2507 end;
2509 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2511 else
2512 declare
2513 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2514 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2515 DS_Copy : Node_Id;
2517 begin
2518 DS_Copy := New_Copy_Tree (DS);
2519 Set_Parent (DS_Copy, Parent (DS));
2520 Preanalyze_Range (DS_Copy);
2522 -- Check for a call to Iterate ()
2524 return
2525 Nkind (DS_Copy) = N_Function_Call
2526 and then Needs_Finalization (Etype (DS_Copy));
2527 end;
2528 end if;
2529 end Is_Container_Iterator;
2531 -------------------------
2532 -- Is_Wrapped_In_Block --
2533 -------------------------
2535 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2536 HSS : constant Node_Id := Parent (N);
2538 begin
2539 return
2540 Nkind (HSS) = N_Handled_Sequence_Of_Statements
2541 and then Nkind (Parent (HSS)) = N_Block_Statement
2542 and then First (Statements (HSS)) = N
2543 and then No (Next (First (Statements (HSS))));
2544 end Is_Wrapped_In_Block;
2546 -- Local declarations
2548 Id : constant Node_Id := Identifier (N);
2549 Iter : constant Node_Id := Iteration_Scheme (N);
2550 Loc : constant Source_Ptr := Sloc (N);
2551 Ent : Entity_Id;
2553 -- Start of processing for Analyze_Loop_Statement
2555 begin
2556 if Present (Id) then
2558 -- Make name visible, e.g. for use in exit statements. Loop labels
2559 -- are always considered to be referenced.
2561 Analyze (Id);
2562 Ent := Entity (Id);
2564 -- Guard against serious error (typically, a scope mismatch when
2565 -- semantic analysis is requested) by creating loop entity to
2566 -- continue analysis.
2568 if No (Ent) then
2569 if Total_Errors_Detected /= 0 then
2570 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2571 else
2572 raise Program_Error;
2573 end if;
2575 else
2576 Generate_Reference (Ent, N, ' ');
2577 Generate_Definition (Ent);
2579 -- If we found a label, mark its type. If not, ignore it, since it
2580 -- means we have a conflicting declaration, which would already
2581 -- have been diagnosed at declaration time. Set Label_Construct
2582 -- of the implicit label declaration, which is not created by the
2583 -- parser for generic units.
2585 if Ekind (Ent) = E_Label then
2586 Set_Ekind (Ent, E_Loop);
2588 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2589 Set_Label_Construct (Parent (Ent), N);
2590 end if;
2591 end if;
2592 end if;
2594 -- Case of no identifier present
2596 else
2597 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2598 Set_Etype (Ent, Standard_Void_Type);
2599 Set_Parent (Ent, N);
2600 end if;
2602 -- Iteration over a container in Ada 2012 involves the creation of a
2603 -- controlled iterator object. Wrap the loop in a block to ensure the
2604 -- timely finalization of the iterator and release of container locks.
2606 if Ada_Version >= Ada_2012
2607 and then Is_Container_Iterator (Iter)
2608 and then not Is_Wrapped_In_Block (N)
2609 then
2610 Rewrite (N,
2611 Make_Block_Statement (Loc,
2612 Declarations => New_List,
2613 Handled_Statement_Sequence =>
2614 Make_Handled_Sequence_Of_Statements (Loc,
2615 Statements => New_List (Relocate_Node (N)))));
2617 Analyze (N);
2618 return;
2619 end if;
2621 -- Kill current values on entry to loop, since statements in the body of
2622 -- the loop may have been executed before the loop is entered. Similarly
2623 -- we kill values after the loop, since we do not know that the body of
2624 -- the loop was executed.
2626 Kill_Current_Values;
2627 Push_Scope (Ent);
2628 Analyze_Iteration_Scheme (Iter);
2630 -- Check for following case which merits a warning if the type E of is
2631 -- a multi-dimensional array (and no explicit subscript ranges present).
2633 -- for J in E'Range
2634 -- for K in E'Range
2636 if Present (Iter)
2637 and then Present (Loop_Parameter_Specification (Iter))
2638 then
2639 declare
2640 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
2641 DSD : constant Node_Id :=
2642 Original_Node (Discrete_Subtype_Definition (LPS));
2643 begin
2644 if Nkind (DSD) = N_Attribute_Reference
2645 and then Attribute_Name (DSD) = Name_Range
2646 and then No (Expressions (DSD))
2647 then
2648 declare
2649 Typ : constant Entity_Id := Etype (Prefix (DSD));
2650 begin
2651 if Is_Array_Type (Typ)
2652 and then Number_Dimensions (Typ) > 1
2653 and then Nkind (Parent (N)) = N_Loop_Statement
2654 and then Present (Iteration_Scheme (Parent (N)))
2655 then
2656 declare
2657 OIter : constant Node_Id :=
2658 Iteration_Scheme (Parent (N));
2659 OLPS : constant Node_Id :=
2660 Loop_Parameter_Specification (OIter);
2661 ODSD : constant Node_Id :=
2662 Original_Node (Discrete_Subtype_Definition (OLPS));
2663 begin
2664 if Nkind (ODSD) = N_Attribute_Reference
2665 and then Attribute_Name (ODSD) = Name_Range
2666 and then No (Expressions (ODSD))
2667 and then Etype (Prefix (ODSD)) = Typ
2668 then
2669 Error_Msg_Sloc := Sloc (ODSD);
2670 Error_Msg_N
2671 ("inner range same as outer range#??", DSD);
2672 end if;
2673 end;
2674 end if;
2675 end;
2676 end if;
2677 end;
2678 end if;
2680 -- Analyze the statements of the body except in the case of an Ada 2012
2681 -- iterator with the expander active. In this case the expander will do
2682 -- a rewrite of the loop into a while loop. We will then analyze the
2683 -- loop body when we analyze this while loop.
2685 -- We need to do this delay because if the container is for indefinite
2686 -- types the actual subtype of the components will only be determined
2687 -- when the cursor declaration is analyzed.
2689 -- If the expander is not active, or in Alfa mode, then we want to
2690 -- analyze the loop body now even in the Ada 2012 iterator case, since
2691 -- the rewriting will not be done. Insert the loop variable in the
2692 -- current scope, if not done when analysing the iteration scheme.
2694 if No (Iter)
2695 or else No (Iterator_Specification (Iter))
2696 or else not Full_Expander_Active
2697 then
2698 if Present (Iter)
2699 and then Present (Iterator_Specification (Iter))
2700 then
2701 declare
2702 Id : constant Entity_Id :=
2703 Defining_Identifier (Iterator_Specification (Iter));
2704 begin
2705 if Scope (Id) /= Current_Scope then
2706 Enter_Name (Id);
2707 end if;
2708 end;
2709 end if;
2711 Analyze_Statements (Statements (N));
2712 end if;
2714 -- Finish up processing for the loop. We kill all current values, since
2715 -- in general we don't know if the statements in the loop have been
2716 -- executed. We could do a bit better than this with a loop that we
2717 -- know will execute at least once, but it's not worth the trouble and
2718 -- the front end is not in the business of flow tracing.
2720 Process_End_Label (N, 'e', Ent);
2721 End_Scope;
2722 Kill_Current_Values;
2724 -- Check for infinite loop. Skip check for generated code, since it
2725 -- justs waste time and makes debugging the routine called harder.
2727 -- Note that we have to wait till the body of the loop is fully analyzed
2728 -- before making this call, since Check_Infinite_Loop_Warning relies on
2729 -- being able to use semantic visibility information to find references.
2731 if Comes_From_Source (N) then
2732 Check_Infinite_Loop_Warning (N);
2733 end if;
2735 -- Code after loop is unreachable if the loop has no WHILE or FOR and
2736 -- contains no EXIT statements within the body of the loop.
2738 if No (Iter) and then not Has_Exit (Ent) then
2739 Check_Unreachable_Code (N);
2740 end if;
2741 end Analyze_Loop_Statement;
2743 ----------------------------
2744 -- Analyze_Null_Statement --
2745 ----------------------------
2747 -- Note: the semantics of the null statement is implemented by a single
2748 -- null statement, too bad everything isn't as simple as this!
2750 procedure Analyze_Null_Statement (N : Node_Id) is
2751 pragma Warnings (Off, N);
2752 begin
2753 null;
2754 end Analyze_Null_Statement;
2756 ------------------------
2757 -- Analyze_Statements --
2758 ------------------------
2760 procedure Analyze_Statements (L : List_Id) is
2761 S : Node_Id;
2762 Lab : Entity_Id;
2764 begin
2765 -- The labels declared in the statement list are reachable from
2766 -- statements in the list. We do this as a prepass so that any goto
2767 -- statement will be properly flagged if its target is not reachable.
2768 -- This is not required, but is nice behavior!
2770 S := First (L);
2771 while Present (S) loop
2772 if Nkind (S) = N_Label then
2773 Analyze (Identifier (S));
2774 Lab := Entity (Identifier (S));
2776 -- If we found a label mark it as reachable
2778 if Ekind (Lab) = E_Label then
2779 Generate_Definition (Lab);
2780 Set_Reachable (Lab);
2782 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2783 Set_Label_Construct (Parent (Lab), S);
2784 end if;
2786 -- If we failed to find a label, it means the implicit declaration
2787 -- of the label was hidden. A for-loop parameter can do this to
2788 -- a label with the same name inside the loop, since the implicit
2789 -- label declaration is in the innermost enclosing body or block
2790 -- statement.
2792 else
2793 Error_Msg_Sloc := Sloc (Lab);
2794 Error_Msg_N
2795 ("implicit label declaration for & is hidden#",
2796 Identifier (S));
2797 end if;
2798 end if;
2800 Next (S);
2801 end loop;
2803 -- Perform semantic analysis on all statements
2805 Conditional_Statements_Begin;
2807 S := First (L);
2808 while Present (S) loop
2809 Analyze (S);
2811 -- Remove dimension in all statements
2813 Remove_Dimension_In_Statement (S);
2814 Next (S);
2815 end loop;
2817 Conditional_Statements_End;
2819 -- Make labels unreachable. Visibility is not sufficient, because labels
2820 -- in one if-branch for example are not reachable from the other branch,
2821 -- even though their declarations are in the enclosing declarative part.
2823 S := First (L);
2824 while Present (S) loop
2825 if Nkind (S) = N_Label then
2826 Set_Reachable (Entity (Identifier (S)), False);
2827 end if;
2829 Next (S);
2830 end loop;
2831 end Analyze_Statements;
2833 ----------------------------
2834 -- Check_Unreachable_Code --
2835 ----------------------------
2837 procedure Check_Unreachable_Code (N : Node_Id) is
2838 Error_Node : Node_Id;
2839 P : Node_Id;
2841 begin
2842 if Is_List_Member (N)
2843 and then Comes_From_Source (N)
2844 then
2845 declare
2846 Nxt : Node_Id;
2848 begin
2849 Nxt := Original_Node (Next (N));
2851 -- Skip past pragmas
2853 while Nkind (Nxt) = N_Pragma loop
2854 Nxt := Original_Node (Next (Nxt));
2855 end loop;
2857 -- If a label follows us, then we never have dead code, since
2858 -- someone could branch to the label, so we just ignore it, unless
2859 -- we are in formal mode where goto statements are not allowed.
2861 if Nkind (Nxt) = N_Label
2862 and then not Restriction_Check_Required (SPARK)
2863 then
2864 return;
2866 -- Otherwise see if we have a real statement following us
2868 elsif Present (Nxt)
2869 and then Comes_From_Source (Nxt)
2870 and then Is_Statement (Nxt)
2871 then
2872 -- Special very annoying exception. If we have a return that
2873 -- follows a raise, then we allow it without a warning, since
2874 -- the Ada RM annoyingly requires a useless return here!
2876 if Nkind (Original_Node (N)) /= N_Raise_Statement
2877 or else Nkind (Nxt) /= N_Simple_Return_Statement
2878 then
2879 -- The rather strange shenanigans with the warning message
2880 -- here reflects the fact that Kill_Dead_Code is very good
2881 -- at removing warnings in deleted code, and this is one
2882 -- warning we would prefer NOT to have removed.
2884 Error_Node := Nxt;
2886 -- If we have unreachable code, analyze and remove the
2887 -- unreachable code, since it is useless and we don't
2888 -- want to generate junk warnings.
2890 -- We skip this step if we are not in code generation mode.
2891 -- This is the one case where we remove dead code in the
2892 -- semantics as opposed to the expander, and we do not want
2893 -- to remove code if we are not in code generation mode,
2894 -- since this messes up the ASIS trees.
2896 -- Note that one might react by moving the whole circuit to
2897 -- exp_ch5, but then we lose the warning in -gnatc mode.
2899 if Operating_Mode = Generate_Code then
2900 loop
2901 Nxt := Next (N);
2903 -- Quit deleting when we have nothing more to delete
2904 -- or if we hit a label (since someone could transfer
2905 -- control to a label, so we should not delete it).
2907 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2909 -- Statement/declaration is to be deleted
2911 Analyze (Nxt);
2912 Remove (Nxt);
2913 Kill_Dead_Code (Nxt);
2914 end loop;
2915 end if;
2917 -- Now issue the warning (or error in formal mode)
2919 if Restriction_Check_Required (SPARK) then
2920 Check_SPARK_Restriction
2921 ("unreachable code is not allowed", Error_Node);
2922 else
2923 Error_Msg ("??unreachable code!", Sloc (Error_Node));
2924 end if;
2925 end if;
2927 -- If the unconditional transfer of control instruction is the
2928 -- last statement of a sequence, then see if our parent is one of
2929 -- the constructs for which we count unblocked exits, and if so,
2930 -- adjust the count.
2932 else
2933 P := Parent (N);
2935 -- Statements in THEN part or ELSE part of IF statement
2937 if Nkind (P) = N_If_Statement then
2938 null;
2940 -- Statements in ELSIF part of an IF statement
2942 elsif Nkind (P) = N_Elsif_Part then
2943 P := Parent (P);
2944 pragma Assert (Nkind (P) = N_If_Statement);
2946 -- Statements in CASE statement alternative
2948 elsif Nkind (P) = N_Case_Statement_Alternative then
2949 P := Parent (P);
2950 pragma Assert (Nkind (P) = N_Case_Statement);
2952 -- Statements in body of block
2954 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2955 and then Nkind (Parent (P)) = N_Block_Statement
2956 then
2957 null;
2959 -- Statements in exception handler in a block
2961 elsif Nkind (P) = N_Exception_Handler
2962 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2963 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2964 then
2965 null;
2967 -- None of these cases, so return
2969 else
2970 return;
2971 end if;
2973 -- This was one of the cases we are looking for (i.e. the
2974 -- parent construct was IF, CASE or block) so decrement count.
2976 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2977 end if;
2978 end;
2979 end if;
2980 end Check_Unreachable_Code;
2982 ----------------------
2983 -- Preanalyze_Range --
2984 ----------------------
2986 procedure Preanalyze_Range (R_Copy : Node_Id) is
2987 Save_Analysis : constant Boolean := Full_Analysis;
2988 Typ : Entity_Id;
2990 begin
2991 Full_Analysis := False;
2992 Expander_Mode_Save_And_Set (False);
2994 Analyze (R_Copy);
2996 if Nkind (R_Copy) in N_Subexpr
2997 and then Is_Overloaded (R_Copy)
2998 then
2999 -- Apply preference rules for range of predefined integer types, or
3000 -- diagnose true ambiguity.
3002 declare
3003 I : Interp_Index;
3004 It : Interp;
3005 Found : Entity_Id := Empty;
3007 begin
3008 Get_First_Interp (R_Copy, I, It);
3009 while Present (It.Typ) loop
3010 if Is_Discrete_Type (It.Typ) then
3011 if No (Found) then
3012 Found := It.Typ;
3013 else
3014 if Scope (Found) = Standard_Standard then
3015 null;
3017 elsif Scope (It.Typ) = Standard_Standard then
3018 Found := It.Typ;
3020 else
3021 -- Both of them are user-defined
3023 Error_Msg_N
3024 ("ambiguous bounds in range of iteration", R_Copy);
3025 Error_Msg_N ("\possible interpretations:", R_Copy);
3026 Error_Msg_NE ("\\} ", R_Copy, Found);
3027 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3028 exit;
3029 end if;
3030 end if;
3031 end if;
3033 Get_Next_Interp (I, It);
3034 end loop;
3035 end;
3036 end if;
3038 -- Subtype mark in iteration scheme
3040 if Is_Entity_Name (R_Copy)
3041 and then Is_Type (Entity (R_Copy))
3042 then
3043 null;
3045 -- Expression in range, or Ada 2012 iterator
3047 elsif Nkind (R_Copy) in N_Subexpr then
3048 Resolve (R_Copy);
3049 Typ := Etype (R_Copy);
3051 if Is_Discrete_Type (Typ) then
3052 null;
3054 -- Check that the resulting object is an iterable container
3056 elsif Present (Find_Aspect (Typ, Aspect_Iterator_Element))
3057 or else Present (Find_Aspect (Typ, Aspect_Constant_Indexing))
3058 or else Present (Find_Aspect (Typ, Aspect_Variable_Indexing))
3059 then
3060 null;
3062 -- The expression may yield an implicit reference to an iterable
3063 -- container. Insert explicit dereference so that proper type is
3064 -- visible in the loop.
3066 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3067 declare
3068 Disc : Entity_Id;
3070 begin
3071 Disc := First_Discriminant (Typ);
3072 while Present (Disc) loop
3073 if Has_Implicit_Dereference (Disc) then
3074 Build_Explicit_Dereference (R_Copy, Disc);
3075 exit;
3076 end if;
3078 Next_Discriminant (Disc);
3079 end loop;
3080 end;
3082 end if;
3083 end if;
3085 Expander_Mode_Restore;
3086 Full_Analysis := Save_Analysis;
3087 end Preanalyze_Range;
3089 end Sem_Ch5;