* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / ada / sem_aggr.adb
blob58f98f5ab9a8d4ed4b4143dcbeafa92010bf4303
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Itypes; use Itypes;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Namet.Sp; use Namet.Sp;
40 with Nmake; use Nmake;
41 with Nlists; use Nlists;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Ch13; use Sem_Ch13;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Sem_Type; use Sem_Type;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Snames; use Snames;
58 with Stringt; use Stringt;
59 with Stand; use Stand;
60 with Style; use Style;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Aggr is
67 type Case_Bounds is record
68 Choice_Lo : Node_Id;
69 Choice_Hi : Node_Id;
70 Choice_Node : Node_Id;
71 end record;
73 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
74 -- Table type used by Check_Case_Choices procedure
76 -----------------------
77 -- Local Subprograms --
78 -----------------------
80 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
81 -- Sort the Case Table using the Lower Bound of each Choice as the key.
82 -- A simple insertion sort is used since the number of choices in a case
83 -- statement of variant part will usually be small and probably in near
84 -- sorted order.
86 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
87 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
88 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
89 -- the array case (the component type of the array will be used) or an
90 -- E_Component/E_Discriminant entity in the record case, in which case the
91 -- type of the component will be used for the test. If Typ is any other
92 -- kind of entity, the call is ignored. Expr is the component node in the
93 -- aggregate which is known to have a null value. A warning message will be
94 -- issued if the component is null excluding.
96 -- It would be better to pass the proper type for Typ ???
98 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
99 -- Check that Expr is either not limited or else is one of the cases of
100 -- expressions allowed for a limited component association (namely, an
101 -- aggregate, function call, or <> notation). Report error for violations.
103 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
104 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
105 -- at Level are qualified. If Level = 0, this applies to Expr directly.
106 -- Only issue errors in formal verification mode.
108 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
109 -- Return True of Expr is an aggregate not contained directly in another
110 -- aggregate.
112 ------------------------------------------------------
113 -- Subprograms used for RECORD AGGREGATE Processing --
114 ------------------------------------------------------
116 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
117 -- This procedure performs all the semantic checks required for record
118 -- aggregates. Note that for aggregates analysis and resolution go
119 -- hand in hand. Aggregate analysis has been delayed up to here and
120 -- it is done while resolving the aggregate.
122 -- N is the N_Aggregate node.
123 -- Typ is the record type for the aggregate resolution
125 -- While performing the semantic checks, this procedure builds a new
126 -- Component_Association_List where each record field appears alone in a
127 -- Component_Choice_List along with its corresponding expression. The
128 -- record fields in the Component_Association_List appear in the same order
129 -- in which they appear in the record type Typ.
131 -- Once this new Component_Association_List is built and all the semantic
132 -- checks performed, the original aggregate subtree is replaced with the
133 -- new named record aggregate just built. Note that subtree substitution is
134 -- performed with Rewrite so as to be able to retrieve the original
135 -- aggregate.
137 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
138 -- yields the aggregate format expected by Gigi. Typically, this kind of
139 -- tree manipulations are done in the expander. However, because the
140 -- semantic checks that need to be performed on record aggregates really go
141 -- hand in hand with the record aggregate normalization, the aggregate
142 -- subtree transformation is performed during resolution rather than
143 -- expansion. Had we decided otherwise we would have had to duplicate most
144 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
145 -- however, that all the expansion concerning aggregates for tagged records
146 -- is done in Expand_Record_Aggregate.
148 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
150 -- 1. Make sure that the record type against which the record aggregate
151 -- has to be resolved is not abstract. Furthermore if the type is a
152 -- null aggregate make sure the input aggregate N is also null.
154 -- 2. Verify that the structure of the aggregate is that of a record
155 -- aggregate. Specifically, look for component associations and ensure
156 -- that each choice list only has identifiers or the N_Others_Choice
157 -- node. Also make sure that if present, the N_Others_Choice occurs
158 -- last and by itself.
160 -- 3. If Typ contains discriminants, the values for each discriminant is
161 -- looked for. If the record type Typ has variants, we check that the
162 -- expressions corresponding to each discriminant ruling the (possibly
163 -- nested) variant parts of Typ, are static. This allows us to determine
164 -- the variant parts to which the rest of the aggregate must conform.
165 -- The names of discriminants with their values are saved in a new
166 -- association list, New_Assoc_List which is later augmented with the
167 -- names and values of the remaining components in the record type.
169 -- During this phase we also make sure that every discriminant is
170 -- assigned exactly one value. Note that when several values for a given
171 -- discriminant are found, semantic processing continues looking for
172 -- further errors. In this case it's the first discriminant value found
173 -- which we will be recorded.
175 -- IMPORTANT NOTE: For derived tagged types this procedure expects
176 -- First_Discriminant and Next_Discriminant to give the correct list
177 -- of discriminants, in the correct order.
179 -- 4. After all the discriminant values have been gathered, we can set the
180 -- Etype of the record aggregate. If Typ contains no discriminants this
181 -- is straightforward: the Etype of N is just Typ, otherwise a new
182 -- implicit constrained subtype of Typ is built to be the Etype of N.
184 -- 5. Gather the remaining record components according to the discriminant
185 -- values. This involves recursively traversing the record type
186 -- structure to see what variants are selected by the given discriminant
187 -- values. This processing is a little more convoluted if Typ is a
188 -- derived tagged types since we need to retrieve the record structure
189 -- of all the ancestors of Typ.
191 -- 6. After gathering the record components we look for their values in the
192 -- record aggregate and emit appropriate error messages should we not
193 -- find such values or should they be duplicated.
195 -- 7. We then make sure no illegal component names appear in the record
196 -- aggregate and make sure that the type of the record components
197 -- appearing in a same choice list is the same. Finally we ensure that
198 -- the others choice, if present, is used to provide the value of at
199 -- least a record component.
201 -- 8. The original aggregate node is replaced with the new named aggregate
202 -- built in steps 3 through 6, as explained earlier.
204 -- Given the complexity of record aggregate resolution, the primary goal of
205 -- this routine is clarity and simplicity rather than execution and storage
206 -- efficiency. If there are only positional components in the aggregate the
207 -- running time is linear. If there are associations the running time is
208 -- still linear as long as the order of the associations is not too far off
209 -- the order of the components in the record type. If this is not the case
210 -- the running time is at worst quadratic in the size of the association
211 -- list.
213 procedure Check_Misspelled_Component
214 (Elements : Elist_Id;
215 Component : Node_Id);
216 -- Give possible misspelling diagnostic if Component is likely to be a
217 -- misspelling of one of the components of the Assoc_List. This is called
218 -- by Resolve_Aggr_Expr after producing an invalid component error message.
220 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
221 -- An optimization: determine whether a discriminated subtype has a static
222 -- constraint, and contains array components whose length is also static,
223 -- either because they are constrained by the discriminant, or because the
224 -- original component bounds are static.
226 -----------------------------------------------------
227 -- Subprograms used for ARRAY AGGREGATE Processing --
228 -----------------------------------------------------
230 function Resolve_Array_Aggregate
231 (N : Node_Id;
232 Index : Node_Id;
233 Index_Constr : Node_Id;
234 Component_Typ : Entity_Id;
235 Others_Allowed : Boolean) return Boolean;
236 -- This procedure performs the semantic checks for an array aggregate.
237 -- True is returned if the aggregate resolution succeeds.
239 -- The procedure works by recursively checking each nested aggregate.
240 -- Specifically, after checking a sub-aggregate nested at the i-th level
241 -- we recursively check all the subaggregates at the i+1-st level (if any).
242 -- Note that for aggregates analysis and resolution go hand in hand.
243 -- Aggregate analysis has been delayed up to here and it is done while
244 -- resolving the aggregate.
246 -- N is the current N_Aggregate node to be checked.
248 -- Index is the index node corresponding to the array sub-aggregate that
249 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
250 -- corresponding index type (or subtype).
252 -- Index_Constr is the node giving the applicable index constraint if
253 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
254 -- contexts [...] that can be used to determine the bounds of the array
255 -- value specified by the aggregate". If Others_Allowed below is False
256 -- there is no applicable index constraint and this node is set to Index.
258 -- Component_Typ is the array component type.
260 -- Others_Allowed indicates whether an others choice is allowed
261 -- in the context where the top-level aggregate appeared.
263 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
265 -- 1. Make sure that the others choice, if present, is by itself and
266 -- appears last in the sub-aggregate. Check that we do not have
267 -- positional and named components in the array sub-aggregate (unless
268 -- the named association is an others choice). Finally if an others
269 -- choice is present, make sure it is allowed in the aggregate context.
271 -- 2. If the array sub-aggregate contains discrete_choices:
273 -- (A) Verify their validity. Specifically verify that:
275 -- (a) If a null range is present it must be the only possible
276 -- choice in the array aggregate.
278 -- (b) Ditto for a non static range.
280 -- (c) Ditto for a non static expression.
282 -- In addition this step analyzes and resolves each discrete_choice,
283 -- making sure that its type is the type of the corresponding Index.
284 -- If we are not at the lowest array aggregate level (in the case of
285 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
286 -- recursively on each component expression. Otherwise, resolve the
287 -- bottom level component expressions against the expected component
288 -- type ONLY IF the component corresponds to a single discrete choice
289 -- which is not an others choice (to see why read the DELAYED
290 -- COMPONENT RESOLUTION below).
292 -- (B) Determine the bounds of the sub-aggregate and lowest and
293 -- highest choice values.
295 -- 3. For positional aggregates:
297 -- (A) Loop over the component expressions either recursively invoking
298 -- Resolve_Array_Aggregate on each of these for multi-dimensional
299 -- array aggregates or resolving the bottom level component
300 -- expressions against the expected component type.
302 -- (B) Determine the bounds of the positional sub-aggregates.
304 -- 4. Try to determine statically whether the evaluation of the array
305 -- sub-aggregate raises Constraint_Error. If yes emit proper
306 -- warnings. The precise checks are the following:
308 -- (A) Check that the index range defined by aggregate bounds is
309 -- compatible with corresponding index subtype.
310 -- We also check against the base type. In fact it could be that
311 -- Low/High bounds of the base type are static whereas those of
312 -- the index subtype are not. Thus if we can statically catch
313 -- a problem with respect to the base type we are guaranteed
314 -- that the same problem will arise with the index subtype
316 -- (B) If we are dealing with a named aggregate containing an others
317 -- choice and at least one discrete choice then make sure the range
318 -- specified by the discrete choices does not overflow the
319 -- aggregate bounds. We also check against the index type and base
320 -- type bounds for the same reasons given in (A).
322 -- (C) If we are dealing with a positional aggregate with an others
323 -- choice make sure the number of positional elements specified
324 -- does not overflow the aggregate bounds. We also check against
325 -- the index type and base type bounds as mentioned in (A).
327 -- Finally construct an N_Range node giving the sub-aggregate bounds.
328 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
329 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
330 -- to build the appropriate aggregate subtype. Aggregate_Bounds
331 -- information is needed during expansion.
333 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
334 -- expressions in an array aggregate may call Duplicate_Subexpr or some
335 -- other routine that inserts code just outside the outermost aggregate.
336 -- If the array aggregate contains discrete choices or an others choice,
337 -- this may be wrong. Consider for instance the following example.
339 -- type Rec is record
340 -- V : Integer := 0;
341 -- end record;
343 -- type Acc_Rec is access Rec;
344 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
346 -- Then the transformation of "new Rec" that occurs during resolution
347 -- entails the following code modifications
349 -- P7b : constant Acc_Rec := new Rec;
350 -- RecIP (P7b.all);
351 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
353 -- This code transformation is clearly wrong, since we need to call
354 -- "new Rec" for each of the 3 array elements. To avoid this problem we
355 -- delay resolution of the components of non positional array aggregates
356 -- to the expansion phase. As an optimization, if the discrete choice
357 -- specifies a single value we do not delay resolution.
359 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
360 -- This routine returns the type or subtype of an array aggregate.
362 -- N is the array aggregate node whose type we return.
364 -- Typ is the context type in which N occurs.
366 -- This routine creates an implicit array subtype whose bounds are
367 -- those defined by the aggregate. When this routine is invoked
368 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
369 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
370 -- sub-aggregate bounds. When building the aggregate itype, this function
371 -- traverses the array aggregate N collecting such Aggregate_Bounds and
372 -- constructs the proper array aggregate itype.
374 -- Note that in the case of multidimensional aggregates each inner
375 -- sub-aggregate corresponding to a given array dimension, may provide a
376 -- different bounds. If it is possible to determine statically that
377 -- some sub-aggregates corresponding to the same index do not have the
378 -- same bounds, then a warning is emitted. If such check is not possible
379 -- statically (because some sub-aggregate bounds are dynamic expressions)
380 -- then this job is left to the expander. In all cases the particular
381 -- bounds that this function will chose for a given dimension is the first
382 -- N_Range node for a sub-aggregate corresponding to that dimension.
384 -- Note that the Raises_Constraint_Error flag of an array aggregate
385 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
386 -- is set in Resolve_Array_Aggregate but the aggregate is not
387 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
388 -- first construct the proper itype for the aggregate (Gigi needs
389 -- this). After constructing the proper itype we will eventually replace
390 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
391 -- Of course in cases such as:
393 -- type Arr is array (integer range <>) of Integer;
394 -- A : Arr := (positive range -1 .. 2 => 0);
396 -- The bounds of the aggregate itype are cooked up to look reasonable
397 -- (in this particular case the bounds will be 1 .. 2).
399 procedure Aggregate_Constraint_Checks
400 (Exp : Node_Id;
401 Check_Typ : Entity_Id);
402 -- Checks expression Exp against subtype Check_Typ. If Exp is an
403 -- aggregate and Check_Typ a constrained record type with discriminants,
404 -- we generate the appropriate discriminant checks. If Exp is an array
405 -- aggregate then emit the appropriate length checks. If Exp is a scalar
406 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
407 -- ensure that range checks are performed at run time.
409 procedure Make_String_Into_Aggregate (N : Node_Id);
410 -- A string literal can appear in a context in which a one dimensional
411 -- array of characters is expected. This procedure simply rewrites the
412 -- string as an aggregate, prior to resolution.
414 ---------------------------------
415 -- Aggregate_Constraint_Checks --
416 ---------------------------------
418 procedure Aggregate_Constraint_Checks
419 (Exp : Node_Id;
420 Check_Typ : Entity_Id)
422 Exp_Typ : constant Entity_Id := Etype (Exp);
424 begin
425 if Raises_Constraint_Error (Exp) then
426 return;
427 end if;
429 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
430 -- component's type to force the appropriate accessibility checks.
432 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
433 -- type to force the corresponding run-time check
435 if Is_Access_Type (Check_Typ)
436 and then ((Is_Local_Anonymous_Access (Check_Typ))
437 or else (Can_Never_Be_Null (Check_Typ)
438 and then not Can_Never_Be_Null (Exp_Typ)))
439 then
440 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
441 Analyze_And_Resolve (Exp, Check_Typ);
442 Check_Unset_Reference (Exp);
443 end if;
445 -- This is really expansion activity, so make sure that expansion
446 -- is on and is allowed.
448 if not Expander_Active or else In_Spec_Expression then
449 return;
450 end if;
452 -- First check if we have to insert discriminant checks
454 if Has_Discriminants (Exp_Typ) then
455 Apply_Discriminant_Check (Exp, Check_Typ);
457 -- Next emit length checks for array aggregates
459 elsif Is_Array_Type (Exp_Typ) then
460 Apply_Length_Check (Exp, Check_Typ);
462 -- Finally emit scalar and string checks. If we are dealing with a
463 -- scalar literal we need to check by hand because the Etype of
464 -- literals is not necessarily correct.
466 elsif Is_Scalar_Type (Exp_Typ)
467 and then Compile_Time_Known_Value (Exp)
468 then
469 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
470 Apply_Compile_Time_Constraint_Error
471 (Exp, "value not in range of}??", CE_Range_Check_Failed,
472 Ent => Base_Type (Check_Typ),
473 Typ => Base_Type (Check_Typ));
475 elsif Is_Out_Of_Range (Exp, Check_Typ) then
476 Apply_Compile_Time_Constraint_Error
477 (Exp, "value not in range of}??", CE_Range_Check_Failed,
478 Ent => Check_Typ,
479 Typ => Check_Typ);
481 elsif not Range_Checks_Suppressed (Check_Typ) then
482 Apply_Scalar_Range_Check (Exp, Check_Typ);
483 end if;
485 -- Verify that target type is also scalar, to prevent view anomalies
486 -- in instantiations.
488 elsif (Is_Scalar_Type (Exp_Typ)
489 or else Nkind (Exp) = N_String_Literal)
490 and then Is_Scalar_Type (Check_Typ)
491 and then Exp_Typ /= Check_Typ
492 then
493 if Is_Entity_Name (Exp)
494 and then Ekind (Entity (Exp)) = E_Constant
495 then
496 -- If expression is a constant, it is worthwhile checking whether
497 -- it is a bound of the type.
499 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
500 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
501 or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
502 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
503 then
504 return;
506 else
507 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
508 Analyze_And_Resolve (Exp, Check_Typ);
509 Check_Unset_Reference (Exp);
510 end if;
511 else
512 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
513 Analyze_And_Resolve (Exp, Check_Typ);
514 Check_Unset_Reference (Exp);
515 end if;
517 end if;
518 end Aggregate_Constraint_Checks;
520 ------------------------
521 -- Array_Aggr_Subtype --
522 ------------------------
524 function Array_Aggr_Subtype
525 (N : Node_Id;
526 Typ : Entity_Id) return Entity_Id
528 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
529 -- Number of aggregate index dimensions
531 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
532 -- Constrained N_Range of each index dimension in our aggregate itype
534 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
535 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
536 -- Low and High bounds for each index dimension in our aggregate itype
538 Is_Fully_Positional : Boolean := True;
540 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
541 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
542 -- to (sub-)aggregate N. This procedure collects and removes the side
543 -- effects of the constrained N_Range nodes corresponding to each index
544 -- dimension of our aggregate itype. These N_Range nodes are collected
545 -- in Aggr_Range above.
547 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
548 -- bounds of each index dimension. If, when collecting, two bounds
549 -- corresponding to the same dimension are static and found to differ,
550 -- then emit a warning, and mark N as raising Constraint_Error.
552 -------------------------
553 -- Collect_Aggr_Bounds --
554 -------------------------
556 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
557 This_Range : constant Node_Id := Aggregate_Bounds (N);
558 -- The aggregate range node of this specific sub-aggregate
560 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
561 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
562 -- The aggregate bounds of this specific sub-aggregate
564 Assoc : Node_Id;
565 Expr : Node_Id;
567 begin
568 Remove_Side_Effects (This_Low, Variable_Ref => True);
569 Remove_Side_Effects (This_High, Variable_Ref => True);
571 -- Collect the first N_Range for a given dimension that you find.
572 -- For a given dimension they must be all equal anyway.
574 if No (Aggr_Range (Dim)) then
575 Aggr_Low (Dim) := This_Low;
576 Aggr_High (Dim) := This_High;
577 Aggr_Range (Dim) := This_Range;
579 else
580 if Compile_Time_Known_Value (This_Low) then
581 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
582 Aggr_Low (Dim) := This_Low;
584 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
585 Set_Raises_Constraint_Error (N);
586 Error_Msg_N ("sub-aggregate low bound mismatch??", N);
587 Error_Msg_N
588 ("\Constraint_Error will be raised at run time??", N);
589 end if;
590 end if;
592 if Compile_Time_Known_Value (This_High) then
593 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
594 Aggr_High (Dim) := This_High;
596 elsif
597 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
598 then
599 Set_Raises_Constraint_Error (N);
600 Error_Msg_N ("sub-aggregate high bound mismatch??", N);
601 Error_Msg_N
602 ("\Constraint_Error will be raised at run time??", N);
603 end if;
604 end if;
605 end if;
607 if Dim < Aggr_Dimension then
609 -- Process positional components
611 if Present (Expressions (N)) then
612 Expr := First (Expressions (N));
613 while Present (Expr) loop
614 Collect_Aggr_Bounds (Expr, Dim + 1);
615 Next (Expr);
616 end loop;
617 end if;
619 -- Process component associations
621 if Present (Component_Associations (N)) then
622 Is_Fully_Positional := False;
624 Assoc := First (Component_Associations (N));
625 while Present (Assoc) loop
626 Expr := Expression (Assoc);
627 Collect_Aggr_Bounds (Expr, Dim + 1);
628 Next (Assoc);
629 end loop;
630 end if;
631 end if;
632 end Collect_Aggr_Bounds;
634 -- Array_Aggr_Subtype variables
636 Itype : Entity_Id;
637 -- The final itype of the overall aggregate
639 Index_Constraints : constant List_Id := New_List;
640 -- The list of index constraints of the aggregate itype
642 -- Start of processing for Array_Aggr_Subtype
644 begin
645 -- Make sure that the list of index constraints is properly attached to
646 -- the tree, and then collect the aggregate bounds.
648 Set_Parent (Index_Constraints, N);
649 Collect_Aggr_Bounds (N, 1);
651 -- Build the list of constrained indexes of our aggregate itype
653 for J in 1 .. Aggr_Dimension loop
654 Create_Index : declare
655 Index_Base : constant Entity_Id :=
656 Base_Type (Etype (Aggr_Range (J)));
657 Index_Typ : Entity_Id;
659 begin
660 -- Construct the Index subtype, and associate it with the range
661 -- construct that generates it.
663 Index_Typ :=
664 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
666 Set_Etype (Index_Typ, Index_Base);
668 if Is_Character_Type (Index_Base) then
669 Set_Is_Character_Type (Index_Typ);
670 end if;
672 Set_Size_Info (Index_Typ, (Index_Base));
673 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
674 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
675 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
677 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
678 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
679 end if;
681 Set_Etype (Aggr_Range (J), Index_Typ);
683 Append (Aggr_Range (J), To => Index_Constraints);
684 end Create_Index;
685 end loop;
687 -- Now build the Itype
689 Itype := Create_Itype (E_Array_Subtype, N);
691 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
692 Set_Convention (Itype, Convention (Typ));
693 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
694 Set_Etype (Itype, Base_Type (Typ));
695 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
696 Set_Is_Aliased (Itype, Is_Aliased (Typ));
697 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
699 Copy_Suppress_Status (Index_Check, Typ, Itype);
700 Copy_Suppress_Status (Length_Check, Typ, Itype);
702 Set_First_Index (Itype, First (Index_Constraints));
703 Set_Is_Constrained (Itype, True);
704 Set_Is_Internal (Itype, True);
706 -- A simple optimization: purely positional aggregates of static
707 -- components should be passed to gigi unexpanded whenever possible, and
708 -- regardless of the staticness of the bounds themselves. Subsequent
709 -- checks in exp_aggr verify that type is not packed, etc.
711 Set_Size_Known_At_Compile_Time (Itype,
712 Is_Fully_Positional
713 and then Comes_From_Source (N)
714 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
716 -- We always need a freeze node for a packed array subtype, so that we
717 -- can build the Packed_Array_Type corresponding to the subtype. If
718 -- expansion is disabled, the packed array subtype is not built, and we
719 -- must not generate a freeze node for the type, or else it will appear
720 -- incomplete to gigi.
722 if Is_Packed (Itype)
723 and then not In_Spec_Expression
724 and then Expander_Active
725 then
726 Freeze_Itype (Itype, N);
727 end if;
729 return Itype;
730 end Array_Aggr_Subtype;
732 --------------------------------
733 -- Check_Misspelled_Component --
734 --------------------------------
736 procedure Check_Misspelled_Component
737 (Elements : Elist_Id;
738 Component : Node_Id)
740 Max_Suggestions : constant := 2;
742 Nr_Of_Suggestions : Natural := 0;
743 Suggestion_1 : Entity_Id := Empty;
744 Suggestion_2 : Entity_Id := Empty;
745 Component_Elmt : Elmt_Id;
747 begin
748 -- All the components of List are matched against Component and a count
749 -- is maintained of possible misspellings. When at the end of the the
750 -- analysis there are one or two (not more!) possible misspellings,
751 -- these misspellings will be suggested as possible correction.
753 Component_Elmt := First_Elmt (Elements);
754 while Nr_Of_Suggestions <= Max_Suggestions
755 and then Present (Component_Elmt)
756 loop
757 if Is_Bad_Spelling_Of
758 (Chars (Node (Component_Elmt)),
759 Chars (Component))
760 then
761 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
763 case Nr_Of_Suggestions is
764 when 1 => Suggestion_1 := Node (Component_Elmt);
765 when 2 => Suggestion_2 := Node (Component_Elmt);
766 when others => exit;
767 end case;
768 end if;
770 Next_Elmt (Component_Elmt);
771 end loop;
773 -- Report at most two suggestions
775 if Nr_Of_Suggestions = 1 then
776 Error_Msg_NE -- CODEFIX
777 ("\possible misspelling of&", Component, Suggestion_1);
779 elsif Nr_Of_Suggestions = 2 then
780 Error_Msg_Node_2 := Suggestion_2;
781 Error_Msg_NE -- CODEFIX
782 ("\possible misspelling of& or&", Component, Suggestion_1);
783 end if;
784 end Check_Misspelled_Component;
786 ----------------------------------------
787 -- Check_Expr_OK_In_Limited_Aggregate --
788 ----------------------------------------
790 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
791 begin
792 if Is_Limited_Type (Etype (Expr))
793 and then Comes_From_Source (Expr)
794 and then not In_Instance_Body
795 then
796 if not OK_For_Limited_Init (Etype (Expr), Expr) then
797 Error_Msg_N ("initialization not allowed for limited types", Expr);
798 Explain_Limited_Type (Etype (Expr), Expr);
799 end if;
800 end if;
801 end Check_Expr_OK_In_Limited_Aggregate;
803 -------------------------------
804 -- Check_Qualified_Aggregate --
805 -------------------------------
807 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
808 Comp_Expr : Node_Id;
809 Comp_Assn : Node_Id;
811 begin
812 if Level = 0 then
813 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
814 Check_SPARK_Restriction ("aggregate should be qualified", Expr);
815 end if;
817 else
818 Comp_Expr := First (Expressions (Expr));
819 while Present (Comp_Expr) loop
820 if Nkind (Comp_Expr) = N_Aggregate then
821 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
822 end if;
824 Comp_Expr := Next (Comp_Expr);
825 end loop;
827 Comp_Assn := First (Component_Associations (Expr));
828 while Present (Comp_Assn) loop
829 Comp_Expr := Expression (Comp_Assn);
831 if Nkind (Comp_Expr) = N_Aggregate then
832 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
833 end if;
835 Comp_Assn := Next (Comp_Assn);
836 end loop;
837 end if;
838 end Check_Qualified_Aggregate;
840 ----------------------------------------
841 -- Check_Static_Discriminated_Subtype --
842 ----------------------------------------
844 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
845 Disc : constant Entity_Id := First_Discriminant (T);
846 Comp : Entity_Id;
847 Ind : Entity_Id;
849 begin
850 if Has_Record_Rep_Clause (T) then
851 return;
853 elsif Present (Next_Discriminant (Disc)) then
854 return;
856 elsif Nkind (V) /= N_Integer_Literal then
857 return;
858 end if;
860 Comp := First_Component (T);
861 while Present (Comp) loop
862 if Is_Scalar_Type (Etype (Comp)) then
863 null;
865 elsif Is_Private_Type (Etype (Comp))
866 and then Present (Full_View (Etype (Comp)))
867 and then Is_Scalar_Type (Full_View (Etype (Comp)))
868 then
869 null;
871 elsif Is_Array_Type (Etype (Comp)) then
872 if Is_Bit_Packed_Array (Etype (Comp)) then
873 return;
874 end if;
876 Ind := First_Index (Etype (Comp));
877 while Present (Ind) loop
878 if Nkind (Ind) /= N_Range
879 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
880 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
881 then
882 return;
883 end if;
885 Next_Index (Ind);
886 end loop;
888 else
889 return;
890 end if;
892 Next_Component (Comp);
893 end loop;
895 -- On exit, all components have statically known sizes
897 Set_Size_Known_At_Compile_Time (T);
898 end Check_Static_Discriminated_Subtype;
900 -------------------------
901 -- Is_Others_Aggregate --
902 -------------------------
904 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
905 begin
906 return No (Expressions (Aggr))
907 and then
908 Nkind (First (Choices (First (Component_Associations (Aggr)))))
909 = N_Others_Choice;
910 end Is_Others_Aggregate;
912 ----------------------------
913 -- Is_Top_Level_Aggregate --
914 ----------------------------
916 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
917 begin
918 return Nkind (Parent (Expr)) /= N_Aggregate
919 and then (Nkind (Parent (Expr)) /= N_Component_Association
920 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
921 end Is_Top_Level_Aggregate;
923 --------------------------------
924 -- Make_String_Into_Aggregate --
925 --------------------------------
927 procedure Make_String_Into_Aggregate (N : Node_Id) is
928 Exprs : constant List_Id := New_List;
929 Loc : constant Source_Ptr := Sloc (N);
930 Str : constant String_Id := Strval (N);
931 Strlen : constant Nat := String_Length (Str);
932 C : Char_Code;
933 C_Node : Node_Id;
934 New_N : Node_Id;
935 P : Source_Ptr;
937 begin
938 P := Loc + 1;
939 for J in 1 .. Strlen loop
940 C := Get_String_Char (Str, J);
941 Set_Character_Literal_Name (C);
943 C_Node :=
944 Make_Character_Literal (P,
945 Chars => Name_Find,
946 Char_Literal_Value => UI_From_CC (C));
947 Set_Etype (C_Node, Any_Character);
948 Append_To (Exprs, C_Node);
950 P := P + 1;
951 -- Something special for wide strings???
952 end loop;
954 New_N := Make_Aggregate (Loc, Expressions => Exprs);
955 Set_Analyzed (New_N);
956 Set_Etype (New_N, Any_Composite);
958 Rewrite (N, New_N);
959 end Make_String_Into_Aggregate;
961 -----------------------
962 -- Resolve_Aggregate --
963 -----------------------
965 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
966 Loc : constant Source_Ptr := Sloc (N);
967 Pkind : constant Node_Kind := Nkind (Parent (N));
969 Aggr_Subtyp : Entity_Id;
970 -- The actual aggregate subtype. This is not necessarily the same as Typ
971 -- which is the subtype of the context in which the aggregate was found.
973 begin
974 -- Ignore junk empty aggregate resulting from parser error
976 if No (Expressions (N))
977 and then No (Component_Associations (N))
978 and then not Null_Record_Present (N)
979 then
980 return;
981 end if;
983 -- If the aggregate has box-initialized components, its type must be
984 -- frozen so that initialization procedures can properly be called
985 -- in the resolution that follows. The replacement of boxes with
986 -- initialization calls is properly an expansion activity but it must
987 -- be done during revolution.
989 if Expander_Active
990 and then Present (Component_Associations (N))
991 then
992 declare
993 Comp : Node_Id;
995 begin
996 Comp := First (Component_Associations (N));
997 while Present (Comp) loop
998 if Box_Present (Comp) then
999 Insert_Actions (N, Freeze_Entity (Typ, N));
1000 exit;
1001 end if;
1003 Next (Comp);
1004 end loop;
1005 end;
1006 end if;
1008 -- An unqualified aggregate is restricted in SPARK to:
1010 -- An aggregate item inside an aggregate for a multi-dimensional array
1012 -- An expression being assigned to an unconstrained array, but only if
1013 -- the aggregate specifies a value for OTHERS only.
1015 if Nkind (Parent (N)) = N_Qualified_Expression then
1016 if Is_Array_Type (Typ) then
1017 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
1018 else
1019 Check_Qualified_Aggregate (1, N);
1020 end if;
1021 else
1022 if Is_Array_Type (Typ)
1023 and then Nkind (Parent (N)) = N_Assignment_Statement
1024 and then not Is_Constrained (Etype (Name (Parent (N))))
1025 then
1026 if not Is_Others_Aggregate (N) then
1027 Check_SPARK_Restriction
1028 ("array aggregate should have only OTHERS", N);
1029 end if;
1031 elsif Is_Top_Level_Aggregate (N) then
1032 Check_SPARK_Restriction ("aggregate should be qualified", N);
1034 -- The legality of this unqualified aggregate is checked by calling
1035 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
1036 -- unless one of these already causes an error to be issued.
1038 else
1039 null;
1040 end if;
1041 end if;
1043 -- Check for aggregates not allowed in configurable run-time mode.
1044 -- We allow all cases of aggregates that do not come from source, since
1045 -- these are all assumed to be small (e.g. bounds of a string literal).
1046 -- We also allow aggregates of types we know to be small.
1048 if not Support_Aggregates_On_Target
1049 and then Comes_From_Source (N)
1050 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
1051 then
1052 Error_Msg_CRT ("aggregate", N);
1053 end if;
1055 -- Ada 2005 (AI-287): Limited aggregates allowed
1057 -- In an instance, ignore aggregate subcomponents tnat may be limited,
1058 -- because they originate in view conflicts. If the original aggregate
1059 -- is legal and the actuals are legal, the aggregate itself is legal.
1061 if Is_Limited_Type (Typ)
1062 and then Ada_Version < Ada_2005
1063 and then not In_Instance
1064 then
1065 Error_Msg_N ("aggregate type cannot be limited", N);
1066 Explain_Limited_Type (Typ, N);
1068 elsif Is_Class_Wide_Type (Typ) then
1069 Error_Msg_N ("type of aggregate cannot be class-wide", N);
1071 elsif Typ = Any_String
1072 or else Typ = Any_Composite
1073 then
1074 Error_Msg_N ("no unique type for aggregate", N);
1075 Set_Etype (N, Any_Composite);
1077 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1078 Error_Msg_N ("null record forbidden in array aggregate", N);
1080 elsif Is_Record_Type (Typ) then
1081 Resolve_Record_Aggregate (N, Typ);
1083 elsif Is_Array_Type (Typ) then
1085 -- First a special test, for the case of a positional aggregate
1086 -- of characters which can be replaced by a string literal.
1088 -- Do not perform this transformation if this was a string literal to
1089 -- start with, whose components needed constraint checks, or if the
1090 -- component type is non-static, because it will require those checks
1091 -- and be transformed back into an aggregate.
1093 if Number_Dimensions (Typ) = 1
1094 and then Is_Standard_Character_Type (Component_Type (Typ))
1095 and then No (Component_Associations (N))
1096 and then not Is_Limited_Composite (Typ)
1097 and then not Is_Private_Composite (Typ)
1098 and then not Is_Bit_Packed_Array (Typ)
1099 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1100 and then Is_Static_Subtype (Component_Type (Typ))
1101 then
1102 declare
1103 Expr : Node_Id;
1105 begin
1106 Expr := First (Expressions (N));
1107 while Present (Expr) loop
1108 exit when Nkind (Expr) /= N_Character_Literal;
1109 Next (Expr);
1110 end loop;
1112 if No (Expr) then
1113 Start_String;
1115 Expr := First (Expressions (N));
1116 while Present (Expr) loop
1117 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1118 Next (Expr);
1119 end loop;
1121 Rewrite (N, Make_String_Literal (Loc, End_String));
1123 Analyze_And_Resolve (N, Typ);
1124 return;
1125 end if;
1126 end;
1127 end if;
1129 -- Here if we have a real aggregate to deal with
1131 Array_Aggregate : declare
1132 Aggr_Resolved : Boolean;
1134 Aggr_Typ : constant Entity_Id := Etype (Typ);
1135 -- This is the unconstrained array type, which is the type against
1136 -- which the aggregate is to be resolved. Typ itself is the array
1137 -- type of the context which may not be the same subtype as the
1138 -- subtype for the final aggregate.
1140 begin
1141 -- In the following we determine whether an OTHERS choice is
1142 -- allowed inside the array aggregate. The test checks the context
1143 -- in which the array aggregate occurs. If the context does not
1144 -- permit it, or the aggregate type is unconstrained, an OTHERS
1145 -- choice is not allowed (except that it is always allowed on the
1146 -- right-hand side of an assignment statement; in this case the
1147 -- constrainedness of the type doesn't matter).
1149 -- If expansion is disabled (generic context, or semantics-only
1150 -- mode) actual subtypes cannot be constructed, and the type of an
1151 -- object may be its unconstrained nominal type. However, if the
1152 -- context is an assignment, we assume that OTHERS is allowed,
1153 -- because the target of the assignment will have a constrained
1154 -- subtype when fully compiled.
1156 -- Note that there is no node for Explicit_Actual_Parameter.
1157 -- To test for this context we therefore have to test for node
1158 -- N_Parameter_Association which itself appears only if there is a
1159 -- formal parameter. Consequently we also need to test for
1160 -- N_Procedure_Call_Statement or N_Function_Call.
1162 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1164 if Pkind = N_Assignment_Statement
1165 or else (Is_Constrained (Typ)
1166 and then
1167 (Pkind = N_Parameter_Association or else
1168 Pkind = N_Function_Call or else
1169 Pkind = N_Procedure_Call_Statement or else
1170 Pkind = N_Generic_Association or else
1171 Pkind = N_Formal_Object_Declaration or else
1172 Pkind = N_Simple_Return_Statement or else
1173 Pkind = N_Object_Declaration or else
1174 Pkind = N_Component_Declaration or else
1175 Pkind = N_Parameter_Specification or else
1176 Pkind = N_Qualified_Expression or else
1177 Pkind = N_Aggregate or else
1178 Pkind = N_Extension_Aggregate or else
1179 Pkind = N_Component_Association))
1180 then
1181 Aggr_Resolved :=
1182 Resolve_Array_Aggregate
1184 Index => First_Index (Aggr_Typ),
1185 Index_Constr => First_Index (Typ),
1186 Component_Typ => Component_Type (Typ),
1187 Others_Allowed => True);
1189 elsif not Expander_Active
1190 and then Pkind = N_Assignment_Statement
1191 then
1192 Aggr_Resolved :=
1193 Resolve_Array_Aggregate
1195 Index => First_Index (Aggr_Typ),
1196 Index_Constr => First_Index (Typ),
1197 Component_Typ => Component_Type (Typ),
1198 Others_Allowed => True);
1200 else
1201 Aggr_Resolved :=
1202 Resolve_Array_Aggregate
1204 Index => First_Index (Aggr_Typ),
1205 Index_Constr => First_Index (Aggr_Typ),
1206 Component_Typ => Component_Type (Typ),
1207 Others_Allowed => False);
1208 end if;
1210 if not Aggr_Resolved then
1212 -- A parenthesized expression may have been intended as an
1213 -- aggregate, leading to a type error when analyzing the
1214 -- component. This can also happen for a nested component
1215 -- (see Analyze_Aggr_Expr).
1217 if Paren_Count (N) > 0 then
1218 Error_Msg_N
1219 ("positional aggregate cannot have one component", N);
1220 end if;
1222 Aggr_Subtyp := Any_Composite;
1224 else
1225 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1226 end if;
1228 Set_Etype (N, Aggr_Subtyp);
1229 end Array_Aggregate;
1231 elsif Is_Private_Type (Typ)
1232 and then Present (Full_View (Typ))
1233 and then (In_Inlined_Body or In_Instance_Body)
1234 and then Is_Composite_Type (Full_View (Typ))
1235 then
1236 Resolve (N, Full_View (Typ));
1238 else
1239 Error_Msg_N ("illegal context for aggregate", N);
1240 end if;
1242 -- If we can determine statically that the evaluation of the aggregate
1243 -- raises Constraint_Error, then replace the aggregate with an
1244 -- N_Raise_Constraint_Error node, but set the Etype to the right
1245 -- aggregate subtype. Gigi needs this.
1247 if Raises_Constraint_Error (N) then
1248 Aggr_Subtyp := Etype (N);
1249 Rewrite (N,
1250 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1251 Set_Raises_Constraint_Error (N);
1252 Set_Etype (N, Aggr_Subtyp);
1253 Set_Analyzed (N);
1254 end if;
1256 Check_Function_Writable_Actuals (N);
1257 end Resolve_Aggregate;
1259 -----------------------------
1260 -- Resolve_Array_Aggregate --
1261 -----------------------------
1263 function Resolve_Array_Aggregate
1264 (N : Node_Id;
1265 Index : Node_Id;
1266 Index_Constr : Node_Id;
1267 Component_Typ : Entity_Id;
1268 Others_Allowed : Boolean) return Boolean
1270 Loc : constant Source_Ptr := Sloc (N);
1272 Failure : constant Boolean := False;
1273 Success : constant Boolean := True;
1275 Index_Typ : constant Entity_Id := Etype (Index);
1276 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1277 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1278 -- The type of the index corresponding to the array sub-aggregate along
1279 -- with its low and upper bounds.
1281 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1282 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1283 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1284 -- Ditto for the base type
1286 function Add (Val : Uint; To : Node_Id) return Node_Id;
1287 -- Creates a new expression node where Val is added to expression To.
1288 -- Tries to constant fold whenever possible. To must be an already
1289 -- analyzed expression.
1291 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1292 -- Checks that AH (the upper bound of an array aggregate) is less than
1293 -- or equal to BH (the upper bound of the index base type). If the check
1294 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1295 -- set, and AH is replaced with a duplicate of BH.
1297 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1298 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1299 -- warning if not and sets the Raises_Constraint_Error flag in N.
1301 procedure Check_Length (L, H : Node_Id; Len : Uint);
1302 -- Checks that range L .. H contains at least Len elements. Emits a
1303 -- warning if not and sets the Raises_Constraint_Error flag in N.
1305 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1306 -- Returns True if range L .. H is dynamic or null
1308 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1309 -- Given expression node From, this routine sets OK to False if it
1310 -- cannot statically evaluate From. Otherwise it stores this static
1311 -- value into Value.
1313 function Resolve_Aggr_Expr
1314 (Expr : Node_Id;
1315 Single_Elmt : Boolean) return Boolean;
1316 -- Resolves aggregate expression Expr. Returns False if resolution
1317 -- fails. If Single_Elmt is set to False, the expression Expr may be
1318 -- used to initialize several array aggregate elements (this can happen
1319 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1320 -- In this event we do not resolve Expr unless expansion is disabled.
1321 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1323 -- NOTE: In the case of "... => <>", we pass the in the
1324 -- N_Component_Association node as Expr, since there is no Expression in
1325 -- that case, and we need a Sloc for the error message.
1327 ---------
1328 -- Add --
1329 ---------
1331 function Add (Val : Uint; To : Node_Id) return Node_Id is
1332 Expr_Pos : Node_Id;
1333 Expr : Node_Id;
1334 To_Pos : Node_Id;
1336 begin
1337 if Raises_Constraint_Error (To) then
1338 return To;
1339 end if;
1341 -- First test if we can do constant folding
1343 if Compile_Time_Known_Value (To)
1344 or else Nkind (To) = N_Integer_Literal
1345 then
1346 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1347 Set_Is_Static_Expression (Expr_Pos);
1348 Set_Etype (Expr_Pos, Etype (To));
1349 Set_Analyzed (Expr_Pos, Analyzed (To));
1351 if not Is_Enumeration_Type (Index_Typ) then
1352 Expr := Expr_Pos;
1354 -- If we are dealing with enumeration return
1355 -- Index_Typ'Val (Expr_Pos)
1357 else
1358 Expr :=
1359 Make_Attribute_Reference
1360 (Loc,
1361 Prefix => New_Reference_To (Index_Typ, Loc),
1362 Attribute_Name => Name_Val,
1363 Expressions => New_List (Expr_Pos));
1364 end if;
1366 return Expr;
1367 end if;
1369 -- If we are here no constant folding possible
1371 if not Is_Enumeration_Type (Index_Base) then
1372 Expr :=
1373 Make_Op_Add (Loc,
1374 Left_Opnd => Duplicate_Subexpr (To),
1375 Right_Opnd => Make_Integer_Literal (Loc, Val));
1377 -- If we are dealing with enumeration return
1378 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1380 else
1381 To_Pos :=
1382 Make_Attribute_Reference
1383 (Loc,
1384 Prefix => New_Reference_To (Index_Typ, Loc),
1385 Attribute_Name => Name_Pos,
1386 Expressions => New_List (Duplicate_Subexpr (To)));
1388 Expr_Pos :=
1389 Make_Op_Add (Loc,
1390 Left_Opnd => To_Pos,
1391 Right_Opnd => Make_Integer_Literal (Loc, Val));
1393 Expr :=
1394 Make_Attribute_Reference
1395 (Loc,
1396 Prefix => New_Reference_To (Index_Typ, Loc),
1397 Attribute_Name => Name_Val,
1398 Expressions => New_List (Expr_Pos));
1400 -- If the index type has a non standard representation, the
1401 -- attributes 'Val and 'Pos expand into function calls and the
1402 -- resulting expression is considered non-safe for reevaluation
1403 -- by the backend. Relocate it into a constant temporary in order
1404 -- to make it safe for reevaluation.
1406 if Has_Non_Standard_Rep (Etype (N)) then
1407 declare
1408 Def_Id : Entity_Id;
1410 begin
1411 Def_Id := Make_Temporary (Loc, 'R', Expr);
1412 Set_Etype (Def_Id, Index_Typ);
1413 Insert_Action (N,
1414 Make_Object_Declaration (Loc,
1415 Defining_Identifier => Def_Id,
1416 Object_Definition => New_Reference_To (Index_Typ, Loc),
1417 Constant_Present => True,
1418 Expression => Relocate_Node (Expr)));
1420 Expr := New_Reference_To (Def_Id, Loc);
1421 end;
1422 end if;
1423 end if;
1425 return Expr;
1426 end Add;
1428 -----------------
1429 -- Check_Bound --
1430 -----------------
1432 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1433 Val_BH : Uint;
1434 Val_AH : Uint;
1436 OK_BH : Boolean;
1437 OK_AH : Boolean;
1439 begin
1440 Get (Value => Val_BH, From => BH, OK => OK_BH);
1441 Get (Value => Val_AH, From => AH, OK => OK_AH);
1443 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1444 Set_Raises_Constraint_Error (N);
1445 Error_Msg_N ("upper bound out of range??", AH);
1446 Error_Msg_N ("\Constraint_Error will be raised at run time??", AH);
1448 -- You need to set AH to BH or else in the case of enumerations
1449 -- indexes we will not be able to resolve the aggregate bounds.
1451 AH := Duplicate_Subexpr (BH);
1452 end if;
1453 end Check_Bound;
1455 ------------------
1456 -- Check_Bounds --
1457 ------------------
1459 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1460 Val_L : Uint;
1461 Val_H : Uint;
1462 Val_AL : Uint;
1463 Val_AH : Uint;
1465 OK_L : Boolean;
1466 OK_H : Boolean;
1468 OK_AL : Boolean;
1469 OK_AH : Boolean;
1470 pragma Warnings (Off, OK_AL);
1471 pragma Warnings (Off, OK_AH);
1473 begin
1474 if Raises_Constraint_Error (N)
1475 or else Dynamic_Or_Null_Range (AL, AH)
1476 then
1477 return;
1478 end if;
1480 Get (Value => Val_L, From => L, OK => OK_L);
1481 Get (Value => Val_H, From => H, OK => OK_H);
1483 Get (Value => Val_AL, From => AL, OK => OK_AL);
1484 Get (Value => Val_AH, From => AH, OK => OK_AH);
1486 if OK_L and then Val_L > Val_AL then
1487 Set_Raises_Constraint_Error (N);
1488 Error_Msg_N ("lower bound of aggregate out of range??", N);
1489 Error_Msg_N ("\Constraint_Error will be raised at run time??", N);
1490 end if;
1492 if OK_H and then Val_H < Val_AH then
1493 Set_Raises_Constraint_Error (N);
1494 Error_Msg_N ("upper bound of aggregate out of range??", N);
1495 Error_Msg_N ("\Constraint_Error will be raised at run time??", N);
1496 end if;
1497 end Check_Bounds;
1499 ------------------
1500 -- Check_Length --
1501 ------------------
1503 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1504 Val_L : Uint;
1505 Val_H : Uint;
1507 OK_L : Boolean;
1508 OK_H : Boolean;
1510 Range_Len : Uint;
1512 begin
1513 if Raises_Constraint_Error (N) then
1514 return;
1515 end if;
1517 Get (Value => Val_L, From => L, OK => OK_L);
1518 Get (Value => Val_H, From => H, OK => OK_H);
1520 if not OK_L or else not OK_H then
1521 return;
1522 end if;
1524 -- If null range length is zero
1526 if Val_L > Val_H then
1527 Range_Len := Uint_0;
1528 else
1529 Range_Len := Val_H - Val_L + 1;
1530 end if;
1532 if Range_Len < Len then
1533 Set_Raises_Constraint_Error (N);
1534 Error_Msg_N ("too many elements??", N);
1535 Error_Msg_N ("\Constraint_Error will be raised at run time??", N);
1536 end if;
1537 end Check_Length;
1539 ---------------------------
1540 -- Dynamic_Or_Null_Range --
1541 ---------------------------
1543 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1544 Val_L : Uint;
1545 Val_H : Uint;
1547 OK_L : Boolean;
1548 OK_H : Boolean;
1550 begin
1551 Get (Value => Val_L, From => L, OK => OK_L);
1552 Get (Value => Val_H, From => H, OK => OK_H);
1554 return not OK_L or else not OK_H
1555 or else not Is_OK_Static_Expression (L)
1556 or else not Is_OK_Static_Expression (H)
1557 or else Val_L > Val_H;
1558 end Dynamic_Or_Null_Range;
1560 ---------
1561 -- Get --
1562 ---------
1564 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1565 begin
1566 OK := True;
1568 if Compile_Time_Known_Value (From) then
1569 Value := Expr_Value (From);
1571 -- If expression From is something like Some_Type'Val (10) then
1572 -- Value = 10
1574 elsif Nkind (From) = N_Attribute_Reference
1575 and then Attribute_Name (From) = Name_Val
1576 and then Compile_Time_Known_Value (First (Expressions (From)))
1577 then
1578 Value := Expr_Value (First (Expressions (From)));
1580 else
1581 Value := Uint_0;
1582 OK := False;
1583 end if;
1584 end Get;
1586 -----------------------
1587 -- Resolve_Aggr_Expr --
1588 -----------------------
1590 function Resolve_Aggr_Expr
1591 (Expr : Node_Id;
1592 Single_Elmt : Boolean) return Boolean
1594 Nxt_Ind : constant Node_Id := Next_Index (Index);
1595 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1596 -- Index is the current index corresponding to the expression
1598 Resolution_OK : Boolean := True;
1599 -- Set to False if resolution of the expression failed
1601 begin
1602 -- Defend against previous errors
1604 if Nkind (Expr) = N_Error
1605 or else Error_Posted (Expr)
1606 then
1607 return True;
1608 end if;
1610 -- If the array type against which we are resolving the aggregate
1611 -- has several dimensions, the expressions nested inside the
1612 -- aggregate must be further aggregates (or strings).
1614 if Present (Nxt_Ind) then
1615 if Nkind (Expr) /= N_Aggregate then
1617 -- A string literal can appear where a one-dimensional array
1618 -- of characters is expected. If the literal looks like an
1619 -- operator, it is still an operator symbol, which will be
1620 -- transformed into a string when analyzed.
1622 if Is_Character_Type (Component_Typ)
1623 and then No (Next_Index (Nxt_Ind))
1624 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1625 then
1626 -- A string literal used in a multidimensional array
1627 -- aggregate in place of the final one-dimensional
1628 -- aggregate must not be enclosed in parentheses.
1630 if Paren_Count (Expr) /= 0 then
1631 Error_Msg_N ("no parenthesis allowed here", Expr);
1632 end if;
1634 Make_String_Into_Aggregate (Expr);
1636 else
1637 Error_Msg_N ("nested array aggregate expected", Expr);
1639 -- If the expression is parenthesized, this may be
1640 -- a missing component association for a 1-aggregate.
1642 if Paren_Count (Expr) > 0 then
1643 Error_Msg_N
1644 ("\if single-component aggregate is intended,"
1645 & " write e.g. (1 ='> ...)", Expr);
1646 end if;
1648 return Failure;
1649 end if;
1650 end if;
1652 -- If it's "... => <>", nothing to resolve
1654 if Nkind (Expr) = N_Component_Association then
1655 pragma Assert (Box_Present (Expr));
1656 return Success;
1657 end if;
1659 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1660 -- Required to check the null-exclusion attribute (if present).
1661 -- This value may be overridden later on.
1663 Set_Etype (Expr, Etype (N));
1665 Resolution_OK := Resolve_Array_Aggregate
1666 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1668 else
1670 -- If it's "... => <>", nothing to resolve
1672 if Nkind (Expr) = N_Component_Association then
1673 pragma Assert (Box_Present (Expr));
1674 return Success;
1675 end if;
1677 -- Do not resolve the expressions of discrete or others choices
1678 -- unless the expression covers a single component, or the
1679 -- expander is inactive.
1681 -- In Alfa mode, expressions that can perform side-effects will be
1682 -- recognized by the gnat2why back-end, and the whole subprogram
1683 -- will be ignored. So semantic analysis can be performed safely.
1685 if Single_Elmt
1686 or else not Full_Expander_Active
1687 or else In_Spec_Expression
1688 then
1689 Analyze_And_Resolve (Expr, Component_Typ);
1690 Check_Expr_OK_In_Limited_Aggregate (Expr);
1691 Check_Non_Static_Context (Expr);
1692 Aggregate_Constraint_Checks (Expr, Component_Typ);
1693 Check_Unset_Reference (Expr);
1694 end if;
1695 end if;
1697 -- If an aggregate component has a type with predicates, an explicit
1698 -- predicate check must be applied, as for an assignment statement,
1699 -- because the aggegate might not be expanded into individual
1700 -- component assignments.
1702 if Present (Predicate_Function (Component_Typ)) then
1703 Apply_Predicate_Check (Expr, Component_Typ);
1704 end if;
1706 if Raises_Constraint_Error (Expr)
1707 and then Nkind (Parent (Expr)) /= N_Component_Association
1708 then
1709 Set_Raises_Constraint_Error (N);
1710 end if;
1712 -- If the expression has been marked as requiring a range check,
1713 -- then generate it here.
1715 if Do_Range_Check (Expr) then
1716 Set_Do_Range_Check (Expr, False);
1717 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1718 end if;
1720 return Resolution_OK;
1721 end Resolve_Aggr_Expr;
1723 -- Variables local to Resolve_Array_Aggregate
1725 Assoc : Node_Id;
1726 Choice : Node_Id;
1727 Expr : Node_Id;
1729 Discard : Node_Id;
1730 pragma Warnings (Off, Discard);
1732 Delete_Choice : Boolean;
1733 -- Used when replacing a subtype choice with predicate by a list
1735 Aggr_Low : Node_Id := Empty;
1736 Aggr_High : Node_Id := Empty;
1737 -- The actual low and high bounds of this sub-aggregate
1739 Choices_Low : Node_Id := Empty;
1740 Choices_High : Node_Id := Empty;
1741 -- The lowest and highest discrete choices values for a named aggregate
1743 Nb_Elements : Uint := Uint_0;
1744 -- The number of elements in a positional aggregate
1746 Others_Present : Boolean := False;
1748 Nb_Choices : Nat := 0;
1749 -- Contains the overall number of named choices in this sub-aggregate
1751 Nb_Discrete_Choices : Nat := 0;
1752 -- The overall number of discrete choices (not counting others choice)
1754 Case_Table_Size : Nat;
1755 -- Contains the size of the case table needed to sort aggregate choices
1757 -- Start of processing for Resolve_Array_Aggregate
1759 begin
1760 -- Ignore junk empty aggregate resulting from parser error
1762 if No (Expressions (N))
1763 and then No (Component_Associations (N))
1764 and then not Null_Record_Present (N)
1765 then
1766 return False;
1767 end if;
1769 -- STEP 1: make sure the aggregate is correctly formatted
1771 if Present (Component_Associations (N)) then
1772 Assoc := First (Component_Associations (N));
1773 while Present (Assoc) loop
1774 Choice := First (Choices (Assoc));
1775 Delete_Choice := False;
1777 while Present (Choice) loop
1778 if Nkind (Choice) = N_Others_Choice then
1779 Others_Present := True;
1781 if Choice /= First (Choices (Assoc))
1782 or else Present (Next (Choice))
1783 then
1784 Error_Msg_N
1785 ("OTHERS must appear alone in a choice list", Choice);
1786 return Failure;
1787 end if;
1789 if Present (Next (Assoc)) then
1790 Error_Msg_N
1791 ("OTHERS must appear last in an aggregate", Choice);
1792 return Failure;
1793 end if;
1795 if Ada_Version = Ada_83
1796 and then Assoc /= First (Component_Associations (N))
1797 and then Nkind_In (Parent (N), N_Assignment_Statement,
1798 N_Object_Declaration)
1799 then
1800 Error_Msg_N
1801 ("(Ada 83) illegal context for OTHERS choice", N);
1802 end if;
1804 elsif Is_Entity_Name (Choice) then
1805 Analyze (Choice);
1807 declare
1808 E : constant Entity_Id := Entity (Choice);
1809 New_Cs : List_Id;
1810 P : Node_Id;
1811 C : Node_Id;
1813 begin
1814 if Is_Type (E) and then Has_Predicates (E) then
1815 Freeze_Before (N, E);
1817 -- If the subtype has a static predicate, replace the
1818 -- original choice with the list of individual values
1819 -- covered by the predicate.
1821 if Present (Static_Predicate (E)) then
1822 Delete_Choice := True;
1824 New_Cs := New_List;
1825 P := First (Static_Predicate (E));
1826 while Present (P) loop
1827 C := New_Copy (P);
1828 Set_Sloc (C, Sloc (Choice));
1829 Append_To (New_Cs, C);
1830 Next (P);
1831 end loop;
1833 Insert_List_After (Choice, New_Cs);
1834 end if;
1835 end if;
1836 end;
1837 end if;
1839 Nb_Choices := Nb_Choices + 1;
1841 declare
1842 C : constant Node_Id := Choice;
1844 begin
1845 Next (Choice);
1847 if Delete_Choice then
1848 Remove (C);
1849 Nb_Choices := Nb_Choices - 1;
1850 Delete_Choice := False;
1851 end if;
1852 end;
1853 end loop;
1855 Next (Assoc);
1856 end loop;
1857 end if;
1859 -- At this point we know that the others choice, if present, is by
1860 -- itself and appears last in the aggregate. Check if we have mixed
1861 -- positional and discrete associations (other than the others choice).
1863 if Present (Expressions (N))
1864 and then (Nb_Choices > 1
1865 or else (Nb_Choices = 1 and then not Others_Present))
1866 then
1867 Error_Msg_N
1868 ("named association cannot follow positional association",
1869 First (Choices (First (Component_Associations (N)))));
1870 return Failure;
1871 end if;
1873 -- Test for the validity of an others choice if present
1875 if Others_Present and then not Others_Allowed then
1876 Error_Msg_N
1877 ("OTHERS choice not allowed here",
1878 First (Choices (First (Component_Associations (N)))));
1879 return Failure;
1880 end if;
1882 -- Protect against cascaded errors
1884 if Etype (Index_Typ) = Any_Type then
1885 return Failure;
1886 end if;
1888 -- STEP 2: Process named components
1890 if No (Expressions (N)) then
1891 if Others_Present then
1892 Case_Table_Size := Nb_Choices - 1;
1893 else
1894 Case_Table_Size := Nb_Choices;
1895 end if;
1897 Step_2 : declare
1898 Low : Node_Id;
1899 High : Node_Id;
1900 -- Denote the lowest and highest values in an aggregate choice
1902 Hi_Val : Uint;
1903 Lo_Val : Uint;
1904 -- High end of one range and Low end of the next. Should be
1905 -- contiguous if there is no hole in the list of values.
1907 Missing_Values : Boolean;
1908 -- Set True if missing index values
1910 S_Low : Node_Id := Empty;
1911 S_High : Node_Id := Empty;
1912 -- if a choice in an aggregate is a subtype indication these
1913 -- denote the lowest and highest values of the subtype
1915 Table : Case_Table_Type (1 .. Case_Table_Size);
1916 -- Used to sort all the different choice values
1918 Single_Choice : Boolean;
1919 -- Set to true every time there is a single discrete choice in a
1920 -- discrete association
1922 Prev_Nb_Discrete_Choices : Nat;
1923 -- Used to keep track of the number of discrete choices in the
1924 -- current association.
1926 Errors_Posted_On_Choices : Boolean := False;
1927 -- Keeps track of whether any choices have semantic errors
1929 begin
1930 -- STEP 2 (A): Check discrete choices validity
1932 Assoc := First (Component_Associations (N));
1933 while Present (Assoc) loop
1934 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1935 Choice := First (Choices (Assoc));
1936 loop
1937 Analyze (Choice);
1939 if Nkind (Choice) = N_Others_Choice then
1940 Single_Choice := False;
1941 exit;
1943 -- Test for subtype mark without constraint
1945 elsif Is_Entity_Name (Choice) and then
1946 Is_Type (Entity (Choice))
1947 then
1948 if Base_Type (Entity (Choice)) /= Index_Base then
1949 Error_Msg_N
1950 ("invalid subtype mark in aggregate choice",
1951 Choice);
1952 return Failure;
1953 end if;
1955 -- Case of subtype indication
1957 elsif Nkind (Choice) = N_Subtype_Indication then
1958 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1960 -- Does the subtype indication evaluation raise CE?
1962 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1963 Get_Index_Bounds (Choice, Low, High);
1964 Check_Bounds (S_Low, S_High, Low, High);
1966 -- Case of range or expression
1968 else
1969 Resolve (Choice, Index_Base);
1970 Check_Unset_Reference (Choice);
1971 Check_Non_Static_Context (Choice);
1973 -- If semantic errors were posted on the choice, then
1974 -- record that for possible early return from later
1975 -- processing (see handling of enumeration choices).
1977 if Error_Posted (Choice) then
1978 Errors_Posted_On_Choices := True;
1979 end if;
1981 -- Do not range check a choice. This check is redundant
1982 -- since this test is already done when we check that the
1983 -- bounds of the array aggregate are within range.
1985 Set_Do_Range_Check (Choice, False);
1987 -- In SPARK, the choice must be static
1989 if not (Is_Static_Expression (Choice)
1990 or else (Nkind (Choice) = N_Range
1991 and then Is_Static_Range (Choice)))
1992 then
1993 Check_SPARK_Restriction
1994 ("choice should be static", Choice);
1995 end if;
1996 end if;
1998 -- If we could not resolve the discrete choice stop here
2000 if Etype (Choice) = Any_Type then
2001 return Failure;
2003 -- If the discrete choice raises CE get its original bounds
2005 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2006 Set_Raises_Constraint_Error (N);
2007 Get_Index_Bounds (Original_Node (Choice), Low, High);
2009 -- Otherwise get its bounds as usual
2011 else
2012 Get_Index_Bounds (Choice, Low, High);
2013 end if;
2015 if (Dynamic_Or_Null_Range (Low, High)
2016 or else (Nkind (Choice) = N_Subtype_Indication
2017 and then
2018 Dynamic_Or_Null_Range (S_Low, S_High)))
2019 and then Nb_Choices /= 1
2020 then
2021 Error_Msg_N
2022 ("dynamic or empty choice in aggregate " &
2023 "must be the only choice", Choice);
2024 return Failure;
2025 end if;
2027 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2028 Table (Nb_Discrete_Choices).Choice_Lo := Low;
2029 Table (Nb_Discrete_Choices).Choice_Hi := High;
2030 Table (Nb_Discrete_Choices).Choice_Node := Choice;
2032 Next (Choice);
2034 if No (Choice) then
2036 -- Check if we have a single discrete choice and whether
2037 -- this discrete choice specifies a single value.
2039 Single_Choice :=
2040 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2041 and then (Low = High);
2043 exit;
2044 end if;
2045 end loop;
2047 -- Ada 2005 (AI-231)
2049 if Ada_Version >= Ada_2005
2050 and then Known_Null (Expression (Assoc))
2051 then
2052 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2053 end if;
2055 -- Ada 2005 (AI-287): In case of default initialized component
2056 -- we delay the resolution to the expansion phase.
2058 if Box_Present (Assoc) then
2060 -- Ada 2005 (AI-287): In case of default initialization of a
2061 -- component the expander will generate calls to the
2062 -- corresponding initialization subprogram. We need to call
2063 -- Resolve_Aggr_Expr to check the rules about
2064 -- dimensionality.
2066 if not Resolve_Aggr_Expr (Assoc,
2067 Single_Elmt => Single_Choice)
2068 then
2069 return Failure;
2070 end if;
2072 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2073 Single_Elmt => Single_Choice)
2074 then
2075 return Failure;
2077 -- Check incorrect use of dynamically tagged expression
2079 -- We differentiate here two cases because the expression may
2080 -- not be decorated. For example, the analysis and resolution
2081 -- of the expression associated with the others choice will be
2082 -- done later with the full aggregate. In such case we
2083 -- duplicate the expression tree to analyze the copy and
2084 -- perform the required check.
2086 elsif not Present (Etype (Expression (Assoc))) then
2087 declare
2088 Save_Analysis : constant Boolean := Full_Analysis;
2089 Expr : constant Node_Id :=
2090 New_Copy_Tree (Expression (Assoc));
2092 begin
2093 Expander_Mode_Save_And_Set (False);
2094 Full_Analysis := False;
2096 -- Analyze the expression, making sure it is properly
2097 -- attached to the tree before we do the analysis.
2099 Set_Parent (Expr, Parent (Expression (Assoc)));
2100 Analyze (Expr);
2102 -- If the expression is a literal, propagate this info
2103 -- to the expression in the association, to enable some
2104 -- optimizations downstream.
2106 if Is_Entity_Name (Expr)
2107 and then Present (Entity (Expr))
2108 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2109 then
2110 Analyze_And_Resolve
2111 (Expression (Assoc), Component_Typ);
2112 end if;
2114 Full_Analysis := Save_Analysis;
2115 Expander_Mode_Restore;
2117 if Is_Tagged_Type (Etype (Expr)) then
2118 Check_Dynamically_Tagged_Expression
2119 (Expr => Expr,
2120 Typ => Component_Type (Etype (N)),
2121 Related_Nod => N);
2122 end if;
2123 end;
2125 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2126 Check_Dynamically_Tagged_Expression
2127 (Expr => Expression (Assoc),
2128 Typ => Component_Type (Etype (N)),
2129 Related_Nod => N);
2130 end if;
2132 Next (Assoc);
2133 end loop;
2135 -- If aggregate contains more than one choice then these must be
2136 -- static. Sort them and check that they are contiguous.
2138 if Nb_Discrete_Choices > 1 then
2139 Sort_Case_Table (Table);
2140 Missing_Values := False;
2142 Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
2143 if Expr_Value (Table (J).Choice_Hi) >=
2144 Expr_Value (Table (J + 1).Choice_Lo)
2145 then
2146 Error_Msg_N
2147 ("duplicate choice values in array aggregate",
2148 Table (J).Choice_Node);
2149 return Failure;
2151 elsif not Others_Present then
2152 Hi_Val := Expr_Value (Table (J).Choice_Hi);
2153 Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
2155 -- If missing values, output error messages
2157 if Lo_Val - Hi_Val > 1 then
2159 -- Header message if not first missing value
2161 if not Missing_Values then
2162 Error_Msg_N
2163 ("missing index value(s) in array aggregate", N);
2164 Missing_Values := True;
2165 end if;
2167 -- Output values of missing indexes
2169 Lo_Val := Lo_Val - 1;
2170 Hi_Val := Hi_Val + 1;
2172 -- Enumeration type case
2174 if Is_Enumeration_Type (Index_Typ) then
2175 Error_Msg_Name_1 :=
2176 Chars
2177 (Get_Enum_Lit_From_Pos
2178 (Index_Typ, Hi_Val, Loc));
2180 if Lo_Val = Hi_Val then
2181 Error_Msg_N ("\ %", N);
2182 else
2183 Error_Msg_Name_2 :=
2184 Chars
2185 (Get_Enum_Lit_From_Pos
2186 (Index_Typ, Lo_Val, Loc));
2187 Error_Msg_N ("\ % .. %", N);
2188 end if;
2190 -- Integer types case
2192 else
2193 Error_Msg_Uint_1 := Hi_Val;
2195 if Lo_Val = Hi_Val then
2196 Error_Msg_N ("\ ^", N);
2197 else
2198 Error_Msg_Uint_2 := Lo_Val;
2199 Error_Msg_N ("\ ^ .. ^", N);
2200 end if;
2201 end if;
2202 end if;
2203 end if;
2204 end loop Outer;
2206 if Missing_Values then
2207 Set_Etype (N, Any_Composite);
2208 return Failure;
2209 end if;
2210 end if;
2212 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2214 if Nb_Discrete_Choices > 0 then
2215 Choices_Low := Table (1).Choice_Lo;
2216 Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
2217 end if;
2219 -- If Others is present, then bounds of aggregate come from the
2220 -- index constraint (not the choices in the aggregate itself).
2222 if Others_Present then
2223 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2225 -- No others clause present
2227 else
2228 -- Special processing if others allowed and not present. This
2229 -- means that the bounds of the aggregate come from the index
2230 -- constraint (and the length must match).
2232 if Others_Allowed then
2233 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2235 -- If others allowed, and no others present, then the array
2236 -- should cover all index values. If it does not, we will
2237 -- get a length check warning, but there is two cases where
2238 -- an additional warning is useful:
2240 -- If we have no positional components, and the length is
2241 -- wrong (which we can tell by others being allowed with
2242 -- missing components), and the index type is an enumeration
2243 -- type, then issue appropriate warnings about these missing
2244 -- components. They are only warnings, since the aggregate
2245 -- is fine, it's just the wrong length. We skip this check
2246 -- for standard character types (since there are no literals
2247 -- and it is too much trouble to concoct them), and also if
2248 -- any of the bounds have not-known-at-compile-time values.
2250 -- Another case warranting a warning is when the length is
2251 -- right, but as above we have an index type that is an
2252 -- enumeration, and the bounds do not match. This is a
2253 -- case where dubious sliding is allowed and we generate
2254 -- a warning that the bounds do not match.
2256 if No (Expressions (N))
2257 and then Nkind (Index) = N_Range
2258 and then Is_Enumeration_Type (Etype (Index))
2259 and then not Is_Standard_Character_Type (Etype (Index))
2260 and then Compile_Time_Known_Value (Aggr_Low)
2261 and then Compile_Time_Known_Value (Aggr_High)
2262 and then Compile_Time_Known_Value (Choices_Low)
2263 and then Compile_Time_Known_Value (Choices_High)
2264 then
2265 -- If any of the expressions or range bounds in choices
2266 -- have semantic errors, then do not attempt further
2267 -- resolution, to prevent cascaded errors.
2269 if Errors_Posted_On_Choices then
2270 return Failure;
2271 end if;
2273 declare
2274 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2275 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2276 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2277 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2279 Ent : Entity_Id;
2281 begin
2282 -- Warning case 1, missing values at start/end. Only
2283 -- do the check if the number of entries is too small.
2285 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2287 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2288 then
2289 Error_Msg_N
2290 ("missing index value(s) in array aggregate??",
2293 -- Output missing value(s) at start
2295 if Chars (ALo) /= Chars (CLo) then
2296 Ent := Prev (CLo);
2298 if Chars (ALo) = Chars (Ent) then
2299 Error_Msg_Name_1 := Chars (ALo);
2300 Error_Msg_N ("\ %??", N);
2301 else
2302 Error_Msg_Name_1 := Chars (ALo);
2303 Error_Msg_Name_2 := Chars (Ent);
2304 Error_Msg_N ("\ % .. %??", N);
2305 end if;
2306 end if;
2308 -- Output missing value(s) at end
2310 if Chars (AHi) /= Chars (CHi) then
2311 Ent := Next (CHi);
2313 if Chars (AHi) = Chars (Ent) then
2314 Error_Msg_Name_1 := Chars (Ent);
2315 Error_Msg_N ("\ %??", N);
2316 else
2317 Error_Msg_Name_1 := Chars (Ent);
2318 Error_Msg_Name_2 := Chars (AHi);
2319 Error_Msg_N ("\ % .. %??", N);
2320 end if;
2321 end if;
2323 -- Warning case 2, dubious sliding. The First_Subtype
2324 -- test distinguishes between a constrained type where
2325 -- sliding is not allowed (so we will get a warning
2326 -- later that Constraint_Error will be raised), and
2327 -- the unconstrained case where sliding is permitted.
2329 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2331 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2332 and then Chars (ALo) /= Chars (CLo)
2333 and then
2334 not Is_Constrained (First_Subtype (Etype (N)))
2335 then
2336 Error_Msg_N
2337 ("bounds of aggregate do not match target??", N);
2338 end if;
2339 end;
2340 end if;
2341 end if;
2343 -- If no others, aggregate bounds come from aggregate
2345 Aggr_Low := Choices_Low;
2346 Aggr_High := Choices_High;
2347 end if;
2348 end Step_2;
2350 -- STEP 3: Process positional components
2352 else
2353 -- STEP 3 (A): Process positional elements
2355 Expr := First (Expressions (N));
2356 Nb_Elements := Uint_0;
2357 while Present (Expr) loop
2358 Nb_Elements := Nb_Elements + 1;
2360 -- Ada 2005 (AI-231)
2362 if Ada_Version >= Ada_2005
2363 and then Known_Null (Expr)
2364 then
2365 Check_Can_Never_Be_Null (Etype (N), Expr);
2366 end if;
2368 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2369 return Failure;
2370 end if;
2372 -- Check incorrect use of dynamically tagged expression
2374 if Is_Tagged_Type (Etype (Expr)) then
2375 Check_Dynamically_Tagged_Expression
2376 (Expr => Expr,
2377 Typ => Component_Type (Etype (N)),
2378 Related_Nod => N);
2379 end if;
2381 Next (Expr);
2382 end loop;
2384 if Others_Present then
2385 Assoc := Last (Component_Associations (N));
2387 -- Ada 2005 (AI-231)
2389 if Ada_Version >= Ada_2005
2390 and then Known_Null (Assoc)
2391 then
2392 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2393 end if;
2395 -- Ada 2005 (AI-287): In case of default initialized component,
2396 -- we delay the resolution to the expansion phase.
2398 if Box_Present (Assoc) then
2400 -- Ada 2005 (AI-287): In case of default initialization of a
2401 -- component the expander will generate calls to the
2402 -- corresponding initialization subprogram. We need to call
2403 -- Resolve_Aggr_Expr to check the rules about
2404 -- dimensionality.
2406 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2407 return Failure;
2408 end if;
2410 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2411 Single_Elmt => False)
2412 then
2413 return Failure;
2415 -- Check incorrect use of dynamically tagged expression. The
2416 -- expression of the others choice has not been resolved yet.
2417 -- In order to diagnose the semantic error we create a duplicate
2418 -- tree to analyze it and perform the check.
2420 else
2421 declare
2422 Save_Analysis : constant Boolean := Full_Analysis;
2423 Expr : constant Node_Id :=
2424 New_Copy_Tree (Expression (Assoc));
2426 begin
2427 Expander_Mode_Save_And_Set (False);
2428 Full_Analysis := False;
2429 Analyze (Expr);
2430 Full_Analysis := Save_Analysis;
2431 Expander_Mode_Restore;
2433 if Is_Tagged_Type (Etype (Expr)) then
2434 Check_Dynamically_Tagged_Expression
2435 (Expr => Expr,
2436 Typ => Component_Type (Etype (N)),
2437 Related_Nod => N);
2438 end if;
2439 end;
2440 end if;
2441 end if;
2443 -- STEP 3 (B): Compute the aggregate bounds
2445 if Others_Present then
2446 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2448 else
2449 if Others_Allowed then
2450 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2451 else
2452 Aggr_Low := Index_Typ_Low;
2453 end if;
2455 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2456 Check_Bound (Index_Base_High, Aggr_High);
2457 end if;
2458 end if;
2460 -- STEP 4: Perform static aggregate checks and save the bounds
2462 -- Check (A)
2464 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2465 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2467 -- Check (B)
2469 if Others_Present and then Nb_Discrete_Choices > 0 then
2470 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2471 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2472 Choices_Low, Choices_High);
2473 Check_Bounds (Index_Base_Low, Index_Base_High,
2474 Choices_Low, Choices_High);
2476 -- Check (C)
2478 elsif Others_Present and then Nb_Elements > 0 then
2479 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2480 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2481 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2482 end if;
2484 if Raises_Constraint_Error (Aggr_Low)
2485 or else Raises_Constraint_Error (Aggr_High)
2486 then
2487 Set_Raises_Constraint_Error (N);
2488 end if;
2490 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2492 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2493 -- since the addition node returned by Add is not yet analyzed. Attach
2494 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2495 -- analyzed when it is a literal bound whose type must be properly set.
2497 if Others_Present or else Nb_Discrete_Choices > 0 then
2498 Aggr_High := Duplicate_Subexpr (Aggr_High);
2500 if Etype (Aggr_High) = Universal_Integer then
2501 Set_Analyzed (Aggr_High, False);
2502 end if;
2503 end if;
2505 -- If the aggregate already has bounds attached to it, it means this is
2506 -- a positional aggregate created as an optimization by
2507 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2508 -- bounds.
2510 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2511 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2512 Aggr_High := High_Bound (Aggregate_Bounds (N));
2513 end if;
2515 Set_Aggregate_Bounds
2516 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2518 -- The bounds may contain expressions that must be inserted upwards.
2519 -- Attach them fully to the tree. After analysis, remove side effects
2520 -- from upper bound, if still needed.
2522 Set_Parent (Aggregate_Bounds (N), N);
2523 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2524 Check_Unset_Reference (Aggregate_Bounds (N));
2526 if not Others_Present and then Nb_Discrete_Choices = 0 then
2527 Set_High_Bound (Aggregate_Bounds (N),
2528 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2529 end if;
2531 -- Check the dimensions of each component in the array aggregate
2533 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2535 return Success;
2536 end Resolve_Array_Aggregate;
2538 ---------------------------------
2539 -- Resolve_Extension_Aggregate --
2540 ---------------------------------
2542 -- There are two cases to consider:
2544 -- a) If the ancestor part is a type mark, the components needed are the
2545 -- difference between the components of the expected type and the
2546 -- components of the given type mark.
2548 -- b) If the ancestor part is an expression, it must be unambiguous, and
2549 -- once we have its type we can also compute the needed components as in
2550 -- the previous case. In both cases, if the ancestor type is not the
2551 -- immediate ancestor, we have to build this ancestor recursively.
2553 -- In both cases, discriminants of the ancestor type do not play a role in
2554 -- the resolution of the needed components, because inherited discriminants
2555 -- cannot be used in a type extension. As a result we can compute
2556 -- independently the list of components of the ancestor type and of the
2557 -- expected type.
2559 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2560 A : constant Node_Id := Ancestor_Part (N);
2561 A_Type : Entity_Id;
2562 I : Interp_Index;
2563 It : Interp;
2565 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2566 -- If the type is limited, verify that the ancestor part is a legal
2567 -- expression (aggregate or function call, including 'Input)) that does
2568 -- not require a copy, as specified in 7.5(2).
2570 function Valid_Ancestor_Type return Boolean;
2571 -- Verify that the type of the ancestor part is a non-private ancestor
2572 -- of the expected type, which must be a type extension.
2574 ----------------------------
2575 -- Valid_Limited_Ancestor --
2576 ----------------------------
2578 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2579 begin
2580 if Is_Entity_Name (Anc)
2581 and then Is_Type (Entity (Anc))
2582 then
2583 return True;
2585 elsif Nkind_In (Anc, N_Aggregate, N_Function_Call) then
2586 return True;
2588 elsif Nkind (Anc) = N_Attribute_Reference
2589 and then Attribute_Name (Anc) = Name_Input
2590 then
2591 return True;
2593 elsif Nkind (Anc) = N_Qualified_Expression then
2594 return Valid_Limited_Ancestor (Expression (Anc));
2596 else
2597 return False;
2598 end if;
2599 end Valid_Limited_Ancestor;
2601 -------------------------
2602 -- Valid_Ancestor_Type --
2603 -------------------------
2605 function Valid_Ancestor_Type return Boolean is
2606 Imm_Type : Entity_Id;
2608 begin
2609 Imm_Type := Base_Type (Typ);
2610 while Is_Derived_Type (Imm_Type) loop
2611 if Etype (Imm_Type) = Base_Type (A_Type) then
2612 return True;
2614 -- The base type of the parent type may appear as a private
2615 -- extension if it is declared as such in a parent unit of the
2616 -- current one. For consistency of the subsequent analysis use
2617 -- the partial view for the ancestor part.
2619 elsif Is_Private_Type (Etype (Imm_Type))
2620 and then Present (Full_View (Etype (Imm_Type)))
2621 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2622 then
2623 A_Type := Etype (Imm_Type);
2624 return True;
2626 -- The parent type may be a private extension. The aggregate is
2627 -- legal if the type of the aggregate is an extension of it that
2628 -- is not a private extension.
2630 elsif Is_Private_Type (A_Type)
2631 and then not Is_Private_Type (Imm_Type)
2632 and then Present (Full_View (A_Type))
2633 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2634 then
2635 return True;
2637 else
2638 Imm_Type := Etype (Base_Type (Imm_Type));
2639 end if;
2640 end loop;
2642 -- If previous loop did not find a proper ancestor, report error
2644 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2645 return False;
2646 end Valid_Ancestor_Type;
2648 -- Start of processing for Resolve_Extension_Aggregate
2650 begin
2651 -- Analyze the ancestor part and account for the case where it is a
2652 -- parameterless function call.
2654 Analyze (A);
2655 Check_Parameterless_Call (A);
2657 -- In SPARK, the ancestor part cannot be a type mark
2659 if Is_Entity_Name (A)
2660 and then Is_Type (Entity (A))
2661 then
2662 Check_SPARK_Restriction ("ancestor part cannot be a type mark", A);
2664 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2665 -- must not have unknown discriminants.
2667 if Has_Unknown_Discriminants (Root_Type (Typ)) then
2668 Error_Msg_NE
2669 ("aggregate not available for type& whose ancestor "
2670 & "has unknown discriminants", N, Typ);
2671 end if;
2672 end if;
2674 if not Is_Tagged_Type (Typ) then
2675 Error_Msg_N ("type of extension aggregate must be tagged", N);
2676 return;
2678 elsif Is_Limited_Type (Typ) then
2680 -- Ada 2005 (AI-287): Limited aggregates are allowed
2682 if Ada_Version < Ada_2005 then
2683 Error_Msg_N ("aggregate type cannot be limited", N);
2684 Explain_Limited_Type (Typ, N);
2685 return;
2687 elsif Valid_Limited_Ancestor (A) then
2688 null;
2690 else
2691 Error_Msg_N
2692 ("limited ancestor part must be aggregate or function call", A);
2693 end if;
2695 elsif Is_Class_Wide_Type (Typ) then
2696 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2697 return;
2698 end if;
2700 if Is_Entity_Name (A)
2701 and then Is_Type (Entity (A))
2702 then
2703 A_Type := Get_Full_View (Entity (A));
2705 if Valid_Ancestor_Type then
2706 Set_Entity (A, A_Type);
2707 Set_Etype (A, A_Type);
2709 Validate_Ancestor_Part (N);
2710 Resolve_Record_Aggregate (N, Typ);
2711 end if;
2713 elsif Nkind (A) /= N_Aggregate then
2714 if Is_Overloaded (A) then
2715 A_Type := Any_Type;
2717 Get_First_Interp (A, I, It);
2718 while Present (It.Typ) loop
2719 -- Only consider limited interpretations in the Ada 2005 case
2721 if Is_Tagged_Type (It.Typ)
2722 and then (Ada_Version >= Ada_2005
2723 or else not Is_Limited_Type (It.Typ))
2724 then
2725 if A_Type /= Any_Type then
2726 Error_Msg_N ("cannot resolve expression", A);
2727 return;
2728 else
2729 A_Type := It.Typ;
2730 end if;
2731 end if;
2733 Get_Next_Interp (I, It);
2734 end loop;
2736 if A_Type = Any_Type then
2737 if Ada_Version >= Ada_2005 then
2738 Error_Msg_N ("ancestor part must be of a tagged type", A);
2739 else
2740 Error_Msg_N
2741 ("ancestor part must be of a nonlimited tagged type", A);
2742 end if;
2744 return;
2745 end if;
2747 else
2748 A_Type := Etype (A);
2749 end if;
2751 if Valid_Ancestor_Type then
2752 Resolve (A, A_Type);
2753 Check_Unset_Reference (A);
2754 Check_Non_Static_Context (A);
2756 -- The aggregate is illegal if the ancestor expression is a call
2757 -- to a function with a limited unconstrained result, unless the
2758 -- type of the aggregate is a null extension. This restriction
2759 -- was added in AI05-67 to simplify implementation.
2761 if Nkind (A) = N_Function_Call
2762 and then Is_Limited_Type (A_Type)
2763 and then not Is_Null_Extension (Typ)
2764 and then not Is_Constrained (A_Type)
2765 then
2766 Error_Msg_N
2767 ("type of limited ancestor part must be constrained", A);
2769 -- Reject the use of CPP constructors that leave objects partially
2770 -- initialized. For example:
2772 -- type CPP_Root is tagged limited record ...
2773 -- pragma Import (CPP, CPP_Root);
2775 -- type CPP_DT is new CPP_Root and Iface ...
2776 -- pragma Import (CPP, CPP_DT);
2778 -- type Ada_DT is new CPP_DT with ...
2780 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2782 -- Using the constructor of CPP_Root the slots of the dispatch
2783 -- table of CPP_DT cannot be set, and the secondary tag of
2784 -- CPP_DT is unknown.
2786 elsif Nkind (A) = N_Function_Call
2787 and then Is_CPP_Constructor_Call (A)
2788 and then Enclosing_CPP_Parent (Typ) /= A_Type
2789 then
2790 Error_Msg_NE
2791 ("??must use 'C'P'P constructor for type &", A,
2792 Enclosing_CPP_Parent (Typ));
2794 -- The following call is not needed if the previous warning
2795 -- is promoted to an error.
2797 Resolve_Record_Aggregate (N, Typ);
2799 elsif Is_Class_Wide_Type (Etype (A))
2800 and then Nkind (Original_Node (A)) = N_Function_Call
2801 then
2802 -- If the ancestor part is a dispatching call, it appears
2803 -- statically to be a legal ancestor, but it yields any member
2804 -- of the class, and it is not possible to determine whether
2805 -- it is an ancestor of the extension aggregate (much less
2806 -- which ancestor). It is not possible to determine the
2807 -- components of the extension part.
2809 -- This check implements AI-306, which in fact was motivated by
2810 -- an AdaCore query to the ARG after this test was added.
2812 Error_Msg_N ("ancestor part must be statically tagged", A);
2813 else
2814 Resolve_Record_Aggregate (N, Typ);
2815 end if;
2816 end if;
2818 else
2819 Error_Msg_N ("no unique type for this aggregate", A);
2820 end if;
2822 Check_Function_Writable_Actuals (N);
2823 end Resolve_Extension_Aggregate;
2825 ------------------------------
2826 -- Resolve_Record_Aggregate --
2827 ------------------------------
2829 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2830 Assoc : Node_Id;
2831 -- N_Component_Association node belonging to the input aggregate N
2833 Expr : Node_Id;
2834 Positional_Expr : Node_Id;
2835 Component : Entity_Id;
2836 Component_Elmt : Elmt_Id;
2838 Components : constant Elist_Id := New_Elmt_List;
2839 -- Components is the list of the record components whose value must be
2840 -- provided in the aggregate. This list does include discriminants.
2842 New_Assoc_List : constant List_Id := New_List;
2843 New_Assoc : Node_Id;
2844 -- New_Assoc_List is the newly built list of N_Component_Association
2845 -- nodes. New_Assoc is one such N_Component_Association node in it.
2846 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2847 -- they are used to iterate over two different N_Component_Association
2848 -- lists.
2850 Others_Etype : Entity_Id := Empty;
2851 -- This variable is used to save the Etype of the last record component
2852 -- that takes its value from the others choice. Its purpose is:
2854 -- (a) make sure the others choice is useful
2856 -- (b) make sure the type of all the components whose value is
2857 -- subsumed by the others choice are the same.
2859 -- This variable is updated as a side effect of function Get_Value.
2861 Is_Box_Present : Boolean := False;
2862 Others_Box : Boolean := False;
2863 -- Ada 2005 (AI-287): Variables used in case of default initialization
2864 -- to provide a functionality similar to Others_Etype. Box_Present
2865 -- indicates that the component takes its default initialization;
2866 -- Others_Box indicates that at least one component takes its default
2867 -- initialization. Similar to Others_Etype, they are also updated as a
2868 -- side effect of function Get_Value.
2870 procedure Add_Association
2871 (Component : Entity_Id;
2872 Expr : Node_Id;
2873 Assoc_List : List_Id;
2874 Is_Box_Present : Boolean := False);
2875 -- Builds a new N_Component_Association node which associates Component
2876 -- to expression Expr and adds it to the association list being built,
2877 -- either New_Assoc_List, or the association being built for an inner
2878 -- aggregate.
2880 function Discr_Present (Discr : Entity_Id) return Boolean;
2881 -- If aggregate N is a regular aggregate this routine will return True.
2882 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2883 -- whose value may already have been specified by N's ancestor part.
2884 -- This routine checks whether this is indeed the case and if so returns
2885 -- False, signaling that no value for Discr should appear in N's
2886 -- aggregate part. Also, in this case, the routine appends to
2887 -- New_Assoc_List the discriminant value specified in the ancestor part.
2889 -- If the aggregate is in a context with expansion delayed, it will be
2890 -- reanalyzed. The inherited discriminant values must not be reinserted
2891 -- in the component list to prevent spurious errors, but they must be
2892 -- present on first analysis to build the proper subtype indications.
2893 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
2895 function Get_Value
2896 (Compon : Node_Id;
2897 From : List_Id;
2898 Consider_Others_Choice : Boolean := False)
2899 return Node_Id;
2900 -- Given a record component stored in parameter Compon, this function
2901 -- returns its value as it appears in the list From, which is a list
2902 -- of N_Component_Association nodes.
2904 -- If no component association has a choice for the searched component,
2905 -- the value provided by the others choice is returned, if there is one,
2906 -- and Consider_Others_Choice is set to true. Otherwise Empty is
2907 -- returned. If there is more than one component association giving a
2908 -- value for the searched record component, an error message is emitted
2909 -- and the first found value is returned.
2911 -- If Consider_Others_Choice is set and the returned expression comes
2912 -- from the others choice, then Others_Etype is set as a side effect.
2913 -- An error message is emitted if the components taking their value from
2914 -- the others choice do not have same type.
2916 function New_Copy_Tree_And_Copy_Dimensions
2917 (Source : Node_Id;
2918 Map : Elist_Id := No_Elist;
2919 New_Sloc : Source_Ptr := No_Location;
2920 New_Scope : Entity_Id := Empty) return Node_Id;
2921 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
2922 -- also copies the dimensions of Source to the returned node.
2924 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
2925 -- Analyzes and resolves expression Expr against the Etype of the
2926 -- Component. This routine also applies all appropriate checks to Expr.
2927 -- It finally saves a Expr in the newly created association list that
2928 -- will be attached to the final record aggregate. Note that if the
2929 -- Parent pointer of Expr is not set then Expr was produced with a
2930 -- New_Copy_Tree or some such.
2932 ---------------------
2933 -- Add_Association --
2934 ---------------------
2936 procedure Add_Association
2937 (Component : Entity_Id;
2938 Expr : Node_Id;
2939 Assoc_List : List_Id;
2940 Is_Box_Present : Boolean := False)
2942 Loc : Source_Ptr;
2943 Choice_List : constant List_Id := New_List;
2944 New_Assoc : Node_Id;
2946 begin
2947 -- If this is a box association the expression is missing, so
2948 -- use the Sloc of the aggregate itself for the new association.
2950 if Present (Expr) then
2951 Loc := Sloc (Expr);
2952 else
2953 Loc := Sloc (N);
2954 end if;
2956 Append (New_Occurrence_Of (Component, Loc), Choice_List);
2957 New_Assoc :=
2958 Make_Component_Association (Loc,
2959 Choices => Choice_List,
2960 Expression => Expr,
2961 Box_Present => Is_Box_Present);
2962 Append (New_Assoc, Assoc_List);
2963 end Add_Association;
2965 -------------------
2966 -- Discr_Present --
2967 -------------------
2969 function Discr_Present (Discr : Entity_Id) return Boolean is
2970 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
2972 Loc : Source_Ptr;
2974 Ancestor : Node_Id;
2975 Comp_Assoc : Node_Id;
2976 Discr_Expr : Node_Id;
2978 Ancestor_Typ : Entity_Id;
2979 Orig_Discr : Entity_Id;
2980 D : Entity_Id;
2981 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
2983 Ancestor_Is_Subtyp : Boolean;
2985 begin
2986 if Regular_Aggr then
2987 return True;
2988 end if;
2990 -- Check whether inherited discriminant values have already been
2991 -- inserted in the aggregate. This will be the case if we are
2992 -- re-analyzing an aggregate whose expansion was delayed.
2994 if Present (Component_Associations (N)) then
2995 Comp_Assoc := First (Component_Associations (N));
2996 while Present (Comp_Assoc) loop
2997 if Inherited_Discriminant (Comp_Assoc) then
2998 return True;
2999 end if;
3001 Next (Comp_Assoc);
3002 end loop;
3003 end if;
3005 Ancestor := Ancestor_Part (N);
3006 Ancestor_Typ := Etype (Ancestor);
3007 Loc := Sloc (Ancestor);
3009 -- For a private type with unknown discriminants, use the underlying
3010 -- record view if it is available.
3012 if Has_Unknown_Discriminants (Ancestor_Typ)
3013 and then Present (Full_View (Ancestor_Typ))
3014 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3015 then
3016 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3017 end if;
3019 Ancestor_Is_Subtyp :=
3020 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3022 -- If the ancestor part has no discriminants clearly N's aggregate
3023 -- part must provide a value for Discr.
3025 if not Has_Discriminants (Ancestor_Typ) then
3026 return True;
3028 -- If the ancestor part is an unconstrained subtype mark then the
3029 -- Discr must be present in N's aggregate part.
3031 elsif Ancestor_Is_Subtyp
3032 and then not Is_Constrained (Entity (Ancestor))
3033 then
3034 return True;
3035 end if;
3037 -- Now look to see if Discr was specified in the ancestor part
3039 if Ancestor_Is_Subtyp then
3040 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3041 end if;
3043 Orig_Discr := Original_Record_Component (Discr);
3045 D := First_Discriminant (Ancestor_Typ);
3046 while Present (D) loop
3048 -- If Ancestor has already specified Disc value then insert its
3049 -- value in the final aggregate.
3051 if Original_Record_Component (D) = Orig_Discr then
3052 if Ancestor_Is_Subtyp then
3053 Discr_Expr := New_Copy_Tree (Node (D_Val));
3054 else
3055 Discr_Expr :=
3056 Make_Selected_Component (Loc,
3057 Prefix => Duplicate_Subexpr (Ancestor),
3058 Selector_Name => New_Occurrence_Of (Discr, Loc));
3059 end if;
3061 Resolve_Aggr_Expr (Discr_Expr, Discr);
3062 Set_Inherited_Discriminant (Last (New_Assoc_List));
3063 return False;
3064 end if;
3066 Next_Discriminant (D);
3068 if Ancestor_Is_Subtyp then
3069 Next_Elmt (D_Val);
3070 end if;
3071 end loop;
3073 return True;
3074 end Discr_Present;
3076 ---------------
3077 -- Get_Value --
3078 ---------------
3080 function Get_Value
3081 (Compon : Node_Id;
3082 From : List_Id;
3083 Consider_Others_Choice : Boolean := False)
3084 return Node_Id
3086 Assoc : Node_Id;
3087 Expr : Node_Id := Empty;
3088 Selector_Name : Node_Id;
3090 begin
3091 Is_Box_Present := False;
3093 if Present (From) then
3094 Assoc := First (From);
3095 else
3096 return Empty;
3097 end if;
3099 while Present (Assoc) loop
3100 Selector_Name := First (Choices (Assoc));
3101 while Present (Selector_Name) loop
3102 if Nkind (Selector_Name) = N_Others_Choice then
3103 if Consider_Others_Choice and then No (Expr) then
3105 -- We need to duplicate the expression for each
3106 -- successive component covered by the others choice.
3107 -- This is redundant if the others_choice covers only
3108 -- one component (small optimization possible???), but
3109 -- indispensable otherwise, because each one must be
3110 -- expanded individually to preserve side-effects.
3112 -- Ada 2005 (AI-287): In case of default initialization
3113 -- of components, we duplicate the corresponding default
3114 -- expression (from the record type declaration). The
3115 -- copy must carry the sloc of the association (not the
3116 -- original expression) to prevent spurious elaboration
3117 -- checks when the default includes function calls.
3119 if Box_Present (Assoc) then
3120 Others_Box := True;
3121 Is_Box_Present := True;
3123 if Expander_Active then
3124 return
3125 New_Copy_Tree_And_Copy_Dimensions
3126 (Expression (Parent (Compon)),
3127 New_Sloc => Sloc (Assoc));
3128 else
3129 return Expression (Parent (Compon));
3130 end if;
3132 else
3133 if Present (Others_Etype) and then
3134 Base_Type (Others_Etype) /= Base_Type (Etype
3135 (Compon))
3136 then
3137 Error_Msg_N ("components in OTHERS choice must " &
3138 "have same type", Selector_Name);
3139 end if;
3141 Others_Etype := Etype (Compon);
3143 if Expander_Active then
3144 return
3145 New_Copy_Tree_And_Copy_Dimensions
3146 (Expression (Assoc));
3147 else
3148 return Expression (Assoc);
3149 end if;
3150 end if;
3151 end if;
3153 elsif Chars (Compon) = Chars (Selector_Name) then
3154 if No (Expr) then
3156 -- Ada 2005 (AI-231)
3158 if Ada_Version >= Ada_2005
3159 and then Known_Null (Expression (Assoc))
3160 then
3161 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3162 end if;
3164 -- We need to duplicate the expression when several
3165 -- components are grouped together with a "|" choice.
3166 -- For instance "filed1 | filed2 => Expr"
3168 -- Ada 2005 (AI-287)
3170 if Box_Present (Assoc) then
3171 Is_Box_Present := True;
3173 -- Duplicate the default expression of the component
3174 -- from the record type declaration, so a new copy
3175 -- can be attached to the association.
3177 -- Note that we always copy the default expression,
3178 -- even when the association has a single choice, in
3179 -- order to create a proper association for the
3180 -- expanded aggregate.
3182 -- Component may have no default, in which case the
3183 -- expression is empty and the component is default-
3184 -- initialized, but an association for the component
3185 -- exists, and it is not covered by an others clause.
3187 return
3188 New_Copy_Tree_And_Copy_Dimensions
3189 (Expression (Parent (Compon)));
3191 else
3192 if Present (Next (Selector_Name)) then
3193 Expr :=
3194 New_Copy_Tree_And_Copy_Dimensions
3195 (Expression (Assoc));
3196 else
3197 Expr := Expression (Assoc);
3198 end if;
3199 end if;
3201 Generate_Reference (Compon, Selector_Name, 'm');
3203 else
3204 Error_Msg_NE
3205 ("more than one value supplied for &",
3206 Selector_Name, Compon);
3208 end if;
3209 end if;
3211 Next (Selector_Name);
3212 end loop;
3214 Next (Assoc);
3215 end loop;
3217 return Expr;
3218 end Get_Value;
3220 ---------------------------------------
3221 -- New_Copy_Tree_And_Copy_Dimensions --
3222 ---------------------------------------
3224 function New_Copy_Tree_And_Copy_Dimensions
3225 (Source : Node_Id;
3226 Map : Elist_Id := No_Elist;
3227 New_Sloc : Source_Ptr := No_Location;
3228 New_Scope : Entity_Id := Empty) return Node_Id
3230 New_Copy : constant Node_Id :=
3231 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3232 begin
3233 -- Move the dimensions of Source to New_Copy
3235 Copy_Dimensions (Source, New_Copy);
3236 return New_Copy;
3237 end New_Copy_Tree_And_Copy_Dimensions;
3239 -----------------------
3240 -- Resolve_Aggr_Expr --
3241 -----------------------
3243 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
3244 Expr_Type : Entity_Id := Empty;
3245 New_C : Entity_Id := Component;
3246 New_Expr : Node_Id;
3248 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3249 -- If the expression is an aggregate (possibly qualified) then its
3250 -- expansion is delayed until the enclosing aggregate is expanded
3251 -- into assignments. In that case, do not generate checks on the
3252 -- expression, because they will be generated later, and will other-
3253 -- wise force a copy (to remove side-effects) that would leave a
3254 -- dynamic-sized aggregate in the code, something that gigi cannot
3255 -- handle.
3257 Relocate : Boolean;
3258 -- Set to True if the resolved Expr node needs to be relocated when
3259 -- attached to the newly created association list. This node need not
3260 -- be relocated if its parent pointer is not set. In fact in this
3261 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3262 -- True then we have analyzed the expression node in the original
3263 -- aggregate and hence it needs to be relocated when moved over to
3264 -- the new association list.
3266 ---------------------------
3267 -- Has_Expansion_Delayed --
3268 ---------------------------
3270 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3271 Kind : constant Node_Kind := Nkind (Expr);
3272 begin
3273 return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
3274 and then Present (Etype (Expr))
3275 and then Is_Record_Type (Etype (Expr))
3276 and then Expansion_Delayed (Expr))
3277 or else (Kind = N_Qualified_Expression
3278 and then Has_Expansion_Delayed (Expression (Expr)));
3279 end Has_Expansion_Delayed;
3281 -- Start of processing for Resolve_Aggr_Expr
3283 begin
3284 -- If the type of the component is elementary or the type of the
3285 -- aggregate does not contain discriminants, use the type of the
3286 -- component to resolve Expr.
3288 if Is_Elementary_Type (Etype (Component))
3289 or else not Has_Discriminants (Etype (N))
3290 then
3291 Expr_Type := Etype (Component);
3293 -- Otherwise we have to pick up the new type of the component from
3294 -- the new constrained subtype of the aggregate. In fact components
3295 -- which are of a composite type might be constrained by a
3296 -- discriminant, and we want to resolve Expr against the subtype were
3297 -- all discriminant occurrences are replaced with their actual value.
3299 else
3300 New_C := First_Component (Etype (N));
3301 while Present (New_C) loop
3302 if Chars (New_C) = Chars (Component) then
3303 Expr_Type := Etype (New_C);
3304 exit;
3305 end if;
3307 Next_Component (New_C);
3308 end loop;
3310 pragma Assert (Present (Expr_Type));
3312 -- For each range in an array type where a discriminant has been
3313 -- replaced with the constraint, check that this range is within
3314 -- the range of the base type. This checks is done in the init
3315 -- proc for regular objects, but has to be done here for
3316 -- aggregates since no init proc is called for them.
3318 if Is_Array_Type (Expr_Type) then
3319 declare
3320 Index : Node_Id;
3321 -- Range of the current constrained index in the array
3323 Orig_Index : Node_Id := First_Index (Etype (Component));
3324 -- Range corresponding to the range Index above in the
3325 -- original unconstrained record type. The bounds of this
3326 -- range may be governed by discriminants.
3328 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3329 -- Range corresponding to the range Index above for the
3330 -- unconstrained array type. This range is needed to apply
3331 -- range checks.
3333 begin
3334 Index := First_Index (Expr_Type);
3335 while Present (Index) loop
3336 if Depends_On_Discriminant (Orig_Index) then
3337 Apply_Range_Check (Index, Etype (Unconstr_Index));
3338 end if;
3340 Next_Index (Index);
3341 Next_Index (Orig_Index);
3342 Next_Index (Unconstr_Index);
3343 end loop;
3344 end;
3345 end if;
3346 end if;
3348 -- If the Parent pointer of Expr is not set, Expr is an expression
3349 -- duplicated by New_Tree_Copy (this happens for record aggregates
3350 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3351 -- Such a duplicated expression must be attached to the tree
3352 -- before analysis and resolution to enforce the rule that a tree
3353 -- fragment should never be analyzed or resolved unless it is
3354 -- attached to the current compilation unit.
3356 if No (Parent (Expr)) then
3357 Set_Parent (Expr, N);
3358 Relocate := False;
3359 else
3360 Relocate := True;
3361 end if;
3363 Analyze_And_Resolve (Expr, Expr_Type);
3364 Check_Expr_OK_In_Limited_Aggregate (Expr);
3365 Check_Non_Static_Context (Expr);
3366 Check_Unset_Reference (Expr);
3368 -- Check wrong use of class-wide types
3370 if Is_Class_Wide_Type (Etype (Expr)) then
3371 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3372 end if;
3374 if not Has_Expansion_Delayed (Expr) then
3375 Aggregate_Constraint_Checks (Expr, Expr_Type);
3376 end if;
3378 -- If an aggregate component has a type with predicates, an explicit
3379 -- predicate check must be applied, as for an assignment statement,
3380 -- because the aggegate might not be expanded into individual
3381 -- component assignments.
3383 if Present (Predicate_Function (Expr_Type)) then
3384 Apply_Predicate_Check (Expr, Expr_Type);
3385 end if;
3387 if Raises_Constraint_Error (Expr) then
3388 Set_Raises_Constraint_Error (N);
3389 end if;
3391 -- If the expression has been marked as requiring a range check, then
3392 -- generate it here.
3394 if Do_Range_Check (Expr) then
3395 Set_Do_Range_Check (Expr, False);
3396 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3397 end if;
3399 if Relocate then
3400 New_Expr := Relocate_Node (Expr);
3402 -- Since New_Expr is not gonna be analyzed later on, we need to
3403 -- propagate here the dimensions form Expr to New_Expr.
3405 Copy_Dimensions (Expr, New_Expr);
3407 else
3408 New_Expr := Expr;
3409 end if;
3411 Add_Association (New_C, New_Expr, New_Assoc_List);
3412 end Resolve_Aggr_Expr;
3414 -- Start of processing for Resolve_Record_Aggregate
3416 begin
3417 -- A record aggregate is restricted in SPARK:
3418 -- Each named association can have only a single choice.
3419 -- OTHERS cannot be used.
3420 -- Positional and named associations cannot be mixed.
3422 if Present (Component_Associations (N))
3423 and then Present (First (Component_Associations (N)))
3424 then
3426 if Present (Expressions (N)) then
3427 Check_SPARK_Restriction
3428 ("named association cannot follow positional one",
3429 First (Choices (First (Component_Associations (N)))));
3430 end if;
3432 declare
3433 Assoc : Node_Id;
3435 begin
3436 Assoc := First (Component_Associations (N));
3437 while Present (Assoc) loop
3438 if List_Length (Choices (Assoc)) > 1 then
3439 Check_SPARK_Restriction
3440 ("component association in record aggregate must "
3441 & "contain a single choice", Assoc);
3442 end if;
3444 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3445 Check_SPARK_Restriction
3446 ("record aggregate cannot contain OTHERS", Assoc);
3447 end if;
3449 Assoc := Next (Assoc);
3450 end loop;
3451 end;
3452 end if;
3454 -- We may end up calling Duplicate_Subexpr on expressions that are
3455 -- attached to New_Assoc_List. For this reason we need to attach it
3456 -- to the tree by setting its parent pointer to N. This parent point
3457 -- will change in STEP 8 below.
3459 Set_Parent (New_Assoc_List, N);
3461 -- STEP 1: abstract type and null record verification
3463 if Is_Abstract_Type (Typ) then
3464 Error_Msg_N ("type of aggregate cannot be abstract", N);
3465 end if;
3467 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3468 Set_Etype (N, Typ);
3469 return;
3471 elsif Present (First_Entity (Typ))
3472 and then Null_Record_Present (N)
3473 and then not Is_Tagged_Type (Typ)
3474 then
3475 Error_Msg_N ("record aggregate cannot be null", N);
3476 return;
3478 -- If the type has no components, then the aggregate should either
3479 -- have "null record", or in Ada 2005 it could instead have a single
3480 -- component association given by "others => <>". For Ada 95 we flag an
3481 -- error at this point, but for Ada 2005 we proceed with checking the
3482 -- associations below, which will catch the case where it's not an
3483 -- aggregate with "others => <>". Note that the legality of a <>
3484 -- aggregate for a null record type was established by AI05-016.
3486 elsif No (First_Entity (Typ))
3487 and then Ada_Version < Ada_2005
3488 then
3489 Error_Msg_N ("record aggregate must be null", N);
3490 return;
3491 end if;
3493 -- STEP 2: Verify aggregate structure
3495 Step_2 : declare
3496 Selector_Name : Node_Id;
3497 Bad_Aggregate : Boolean := False;
3499 begin
3500 if Present (Component_Associations (N)) then
3501 Assoc := First (Component_Associations (N));
3502 else
3503 Assoc := Empty;
3504 end if;
3506 while Present (Assoc) loop
3507 Selector_Name := First (Choices (Assoc));
3508 while Present (Selector_Name) loop
3509 if Nkind (Selector_Name) = N_Identifier then
3510 null;
3512 elsif Nkind (Selector_Name) = N_Others_Choice then
3513 if Selector_Name /= First (Choices (Assoc))
3514 or else Present (Next (Selector_Name))
3515 then
3516 Error_Msg_N
3517 ("OTHERS must appear alone in a choice list",
3518 Selector_Name);
3519 return;
3521 elsif Present (Next (Assoc)) then
3522 Error_Msg_N
3523 ("OTHERS must appear last in an aggregate",
3524 Selector_Name);
3525 return;
3527 -- (Ada 2005): If this is an association with a box,
3528 -- indicate that the association need not represent
3529 -- any component.
3531 elsif Box_Present (Assoc) then
3532 Others_Box := True;
3533 end if;
3535 else
3536 Error_Msg_N
3537 ("selector name should be identifier or OTHERS",
3538 Selector_Name);
3539 Bad_Aggregate := True;
3540 end if;
3542 Next (Selector_Name);
3543 end loop;
3545 Next (Assoc);
3546 end loop;
3548 if Bad_Aggregate then
3549 return;
3550 end if;
3551 end Step_2;
3553 -- STEP 3: Find discriminant Values
3555 Step_3 : declare
3556 Discrim : Entity_Id;
3557 Missing_Discriminants : Boolean := False;
3559 begin
3560 if Present (Expressions (N)) then
3561 Positional_Expr := First (Expressions (N));
3562 else
3563 Positional_Expr := Empty;
3564 end if;
3566 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3567 -- must not have unknown discriminants.
3569 if Is_Derived_Type (Typ)
3570 and then Has_Unknown_Discriminants (Root_Type (Typ))
3571 and then Nkind (N) /= N_Extension_Aggregate
3572 then
3573 Error_Msg_NE
3574 ("aggregate not available for type& whose ancestor "
3575 & "has unknown discriminants ", N, Typ);
3576 end if;
3578 if Has_Unknown_Discriminants (Typ)
3579 and then Present (Underlying_Record_View (Typ))
3580 then
3581 Discrim := First_Discriminant (Underlying_Record_View (Typ));
3582 elsif Has_Discriminants (Typ) then
3583 Discrim := First_Discriminant (Typ);
3584 else
3585 Discrim := Empty;
3586 end if;
3588 -- First find the discriminant values in the positional components
3590 while Present (Discrim) and then Present (Positional_Expr) loop
3591 if Discr_Present (Discrim) then
3592 Resolve_Aggr_Expr (Positional_Expr, Discrim);
3594 -- Ada 2005 (AI-231)
3596 if Ada_Version >= Ada_2005
3597 and then Known_Null (Positional_Expr)
3598 then
3599 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3600 end if;
3602 Next (Positional_Expr);
3603 end if;
3605 if Present (Get_Value (Discrim, Component_Associations (N))) then
3606 Error_Msg_NE
3607 ("more than one value supplied for discriminant&",
3608 N, Discrim);
3609 end if;
3611 Next_Discriminant (Discrim);
3612 end loop;
3614 -- Find remaining discriminant values if any among named components
3616 while Present (Discrim) loop
3617 Expr := Get_Value (Discrim, Component_Associations (N), True);
3619 if not Discr_Present (Discrim) then
3620 if Present (Expr) then
3621 Error_Msg_NE
3622 ("more than one value supplied for discriminant&",
3623 N, Discrim);
3624 end if;
3626 elsif No (Expr) then
3627 Error_Msg_NE
3628 ("no value supplied for discriminant &", N, Discrim);
3629 Missing_Discriminants := True;
3631 else
3632 Resolve_Aggr_Expr (Expr, Discrim);
3633 end if;
3635 Next_Discriminant (Discrim);
3636 end loop;
3638 if Missing_Discriminants then
3639 return;
3640 end if;
3642 -- At this point and until the beginning of STEP 6, New_Assoc_List
3643 -- contains only the discriminants and their values.
3645 end Step_3;
3647 -- STEP 4: Set the Etype of the record aggregate
3649 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3650 -- routine should really be exported in sem_util or some such and used
3651 -- in sem_ch3 and here rather than have a copy of the code which is a
3652 -- maintenance nightmare.
3654 -- ??? Performance WARNING. The current implementation creates a new
3655 -- itype for all aggregates whose base type is discriminated. This means
3656 -- that for record aggregates nested inside an array aggregate we will
3657 -- create a new itype for each record aggregate if the array component
3658 -- type has discriminants. For large aggregates this may be a problem.
3659 -- What should be done in this case is to reuse itypes as much as
3660 -- possible.
3662 if Has_Discriminants (Typ)
3663 or else (Has_Unknown_Discriminants (Typ)
3664 and then Present (Underlying_Record_View (Typ)))
3665 then
3666 Build_Constrained_Itype : declare
3667 Loc : constant Source_Ptr := Sloc (N);
3668 Indic : Node_Id;
3669 Subtyp_Decl : Node_Id;
3670 Def_Id : Entity_Id;
3672 C : constant List_Id := New_List;
3674 begin
3675 New_Assoc := First (New_Assoc_List);
3676 while Present (New_Assoc) loop
3677 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3678 Next (New_Assoc);
3679 end loop;
3681 if Has_Unknown_Discriminants (Typ)
3682 and then Present (Underlying_Record_View (Typ))
3683 then
3684 Indic :=
3685 Make_Subtype_Indication (Loc,
3686 Subtype_Mark =>
3687 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3688 Constraint =>
3689 Make_Index_Or_Discriminant_Constraint (Loc, C));
3690 else
3691 Indic :=
3692 Make_Subtype_Indication (Loc,
3693 Subtype_Mark =>
3694 New_Occurrence_Of (Base_Type (Typ), Loc),
3695 Constraint =>
3696 Make_Index_Or_Discriminant_Constraint (Loc, C));
3697 end if;
3699 Def_Id := Create_Itype (Ekind (Typ), N);
3701 Subtyp_Decl :=
3702 Make_Subtype_Declaration (Loc,
3703 Defining_Identifier => Def_Id,
3704 Subtype_Indication => Indic);
3705 Set_Parent (Subtyp_Decl, Parent (N));
3707 -- Itypes must be analyzed with checks off (see itypes.ads)
3709 Analyze (Subtyp_Decl, Suppress => All_Checks);
3711 Set_Etype (N, Def_Id);
3712 Check_Static_Discriminated_Subtype
3713 (Def_Id, Expression (First (New_Assoc_List)));
3714 end Build_Constrained_Itype;
3716 else
3717 Set_Etype (N, Typ);
3718 end if;
3720 -- STEP 5: Get remaining components according to discriminant values
3722 Step_5 : declare
3723 Record_Def : Node_Id;
3724 Parent_Typ : Entity_Id;
3725 Root_Typ : Entity_Id;
3726 Parent_Typ_List : Elist_Id;
3727 Parent_Elmt : Elmt_Id;
3728 Errors_Found : Boolean := False;
3729 Dnode : Node_Id;
3731 function Find_Private_Ancestor return Entity_Id;
3732 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3733 -- derived from a private view. Whether the aggregate is legal
3734 -- depends on the current visibility of the type as well as that
3735 -- of the parent of the ancestor.
3737 ---------------------------
3738 -- Find_Private_Ancestor --
3739 ---------------------------
3741 function Find_Private_Ancestor return Entity_Id is
3742 Par : Entity_Id;
3743 begin
3744 Par := Typ;
3745 loop
3746 if Has_Private_Ancestor (Par)
3747 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3748 then
3749 return Par;
3751 elsif not Is_Derived_Type (Par) then
3752 return Empty;
3754 else
3755 Par := Etype (Base_Type (Par));
3756 end if;
3757 end loop;
3758 end Find_Private_Ancestor;
3760 begin
3761 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3762 Parent_Typ_List := New_Elmt_List;
3764 -- If this is an extension aggregate, the component list must
3765 -- include all components that are not in the given ancestor type.
3766 -- Otherwise, the component list must include components of all
3767 -- ancestors, starting with the root.
3769 if Nkind (N) = N_Extension_Aggregate then
3770 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3772 else
3773 -- AI05-0115: check legality of aggregate for type with
3774 -- aa private ancestor.
3776 Root_Typ := Root_Type (Typ);
3777 if Has_Private_Ancestor (Typ) then
3778 declare
3779 Ancestor : constant Entity_Id :=
3780 Find_Private_Ancestor;
3781 Ancestor_Unit : constant Entity_Id :=
3782 Cunit_Entity (Get_Source_Unit (Ancestor));
3783 Parent_Unit : constant Entity_Id :=
3784 Cunit_Entity
3785 (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3786 begin
3788 -- check whether we are in a scope that has full view
3789 -- over the private ancestor and its parent. This can
3790 -- only happen if the derivation takes place in a child
3791 -- unit of the unit that declares the parent, and we are
3792 -- in the private part or body of that child unit, else
3793 -- the aggregate is illegal.
3795 if Is_Child_Unit (Ancestor_Unit)
3796 and then Scope (Ancestor_Unit) = Parent_Unit
3797 and then In_Open_Scopes (Scope (Ancestor))
3798 and then
3799 (In_Private_Part (Scope (Ancestor))
3800 or else In_Package_Body (Scope (Ancestor)))
3801 then
3802 null;
3804 else
3805 Error_Msg_NE
3806 ("type of aggregate has private ancestor&!",
3807 N, Root_Typ);
3808 Error_Msg_N ("must use extension aggregate!", N);
3809 return;
3810 end if;
3811 end;
3812 end if;
3814 Dnode := Declaration_Node (Base_Type (Root_Typ));
3816 -- If we don't get a full declaration, then we have some error
3817 -- which will get signalled later so skip this part. Otherwise
3818 -- gather components of root that apply to the aggregate type.
3819 -- We use the base type in case there is an applicable stored
3820 -- constraint that renames the discriminants of the root.
3822 if Nkind (Dnode) = N_Full_Type_Declaration then
3823 Record_Def := Type_Definition (Dnode);
3824 Gather_Components (Base_Type (Typ),
3825 Component_List (Record_Def),
3826 Governed_By => New_Assoc_List,
3827 Into => Components,
3828 Report_Errors => Errors_Found);
3829 end if;
3830 end if;
3832 Parent_Typ := Base_Type (Typ);
3833 while Parent_Typ /= Root_Typ loop
3834 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
3835 Parent_Typ := Etype (Parent_Typ);
3837 if Nkind (Parent (Base_Type (Parent_Typ))) =
3838 N_Private_Type_Declaration
3839 or else Nkind (Parent (Base_Type (Parent_Typ))) =
3840 N_Private_Extension_Declaration
3841 then
3842 if Nkind (N) /= N_Extension_Aggregate then
3843 Error_Msg_NE
3844 ("type of aggregate has private ancestor&!",
3845 N, Parent_Typ);
3846 Error_Msg_N ("must use extension aggregate!", N);
3847 return;
3849 elsif Parent_Typ /= Root_Typ then
3850 Error_Msg_NE
3851 ("ancestor part of aggregate must be private type&",
3852 Ancestor_Part (N), Parent_Typ);
3853 return;
3854 end if;
3856 -- The current view of ancestor part may be a private type,
3857 -- while the context type is always non-private.
3859 elsif Is_Private_Type (Root_Typ)
3860 and then Present (Full_View (Root_Typ))
3861 and then Nkind (N) = N_Extension_Aggregate
3862 then
3863 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
3864 end if;
3865 end loop;
3867 -- Now collect components from all other ancestors, beginning
3868 -- with the current type. If the type has unknown discriminants
3869 -- use the component list of the Underlying_Record_View, which
3870 -- needs to be used for the subsequent expansion of the aggregate
3871 -- into assignments.
3873 Parent_Elmt := First_Elmt (Parent_Typ_List);
3874 while Present (Parent_Elmt) loop
3875 Parent_Typ := Node (Parent_Elmt);
3877 if Has_Unknown_Discriminants (Parent_Typ)
3878 and then Present (Underlying_Record_View (Typ))
3879 then
3880 Parent_Typ := Underlying_Record_View (Parent_Typ);
3881 end if;
3883 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
3884 Gather_Components (Empty,
3885 Component_List (Record_Extension_Part (Record_Def)),
3886 Governed_By => New_Assoc_List,
3887 Into => Components,
3888 Report_Errors => Errors_Found);
3890 Next_Elmt (Parent_Elmt);
3891 end loop;
3893 -- Typ is not a derived tagged type
3895 else
3896 -- A type derived from an untagged private type whose full view
3897 -- has discriminants is constructed as a record type but there
3898 -- are no legal aggregates for it.
3900 if Is_Derived_Type (Typ)
3901 and then Has_Private_Ancestor (Typ)
3902 and then Nkind (N) /= N_Extension_Aggregate
3903 then
3904 Error_Msg_Node_2 := Base_Type (Etype (Typ));
3905 Error_Msg_NE
3906 ("no aggregate available for type& derived from "
3907 & "private type&", N, Typ);
3908 return;
3909 end if;
3911 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
3913 if Null_Present (Record_Def) then
3914 null;
3916 elsif not Has_Unknown_Discriminants (Typ) then
3917 Gather_Components (Base_Type (Typ),
3918 Component_List (Record_Def),
3919 Governed_By => New_Assoc_List,
3920 Into => Components,
3921 Report_Errors => Errors_Found);
3923 else
3924 Gather_Components
3925 (Base_Type (Underlying_Record_View (Typ)),
3926 Component_List (Record_Def),
3927 Governed_By => New_Assoc_List,
3928 Into => Components,
3929 Report_Errors => Errors_Found);
3930 end if;
3931 end if;
3933 if Errors_Found then
3934 return;
3935 end if;
3936 end Step_5;
3938 -- STEP 6: Find component Values
3940 Component := Empty;
3941 Component_Elmt := First_Elmt (Components);
3943 -- First scan the remaining positional associations in the aggregate.
3944 -- Remember that at this point Positional_Expr contains the current
3945 -- positional association if any is left after looking for discriminant
3946 -- values in step 3.
3948 while Present (Positional_Expr) and then Present (Component_Elmt) loop
3949 Component := Node (Component_Elmt);
3950 Resolve_Aggr_Expr (Positional_Expr, Component);
3952 -- Ada 2005 (AI-231)
3954 if Ada_Version >= Ada_2005
3955 and then Known_Null (Positional_Expr)
3956 then
3957 Check_Can_Never_Be_Null (Component, Positional_Expr);
3958 end if;
3960 if Present (Get_Value (Component, Component_Associations (N))) then
3961 Error_Msg_NE
3962 ("more than one value supplied for Component &", N, Component);
3963 end if;
3965 Next (Positional_Expr);
3966 Next_Elmt (Component_Elmt);
3967 end loop;
3969 if Present (Positional_Expr) then
3970 Error_Msg_N
3971 ("too many components for record aggregate", Positional_Expr);
3972 end if;
3974 -- Now scan for the named arguments of the aggregate
3976 while Present (Component_Elmt) loop
3977 Component := Node (Component_Elmt);
3978 Expr := Get_Value (Component, Component_Associations (N), True);
3980 -- Note: The previous call to Get_Value sets the value of the
3981 -- variable Is_Box_Present.
3983 -- Ada 2005 (AI-287): Handle components with default initialization.
3984 -- Note: This feature was originally added to Ada 2005 for limited
3985 -- but it was finally allowed with any type.
3987 if Is_Box_Present then
3988 Check_Box_Component : declare
3989 Ctyp : constant Entity_Id := Etype (Component);
3991 begin
3992 -- If there is a default expression for the aggregate, copy
3993 -- it into a new association. This copy must modify the scopes
3994 -- of internal types that may be attached to the expression
3995 -- (e.g. index subtypes of arrays) because in general the type
3996 -- declaration and the aggregate appear in different scopes,
3997 -- and the backend requires the scope of the type to match the
3998 -- point at which it is elaborated.
4000 -- If the component has an initialization procedure (IP) we
4001 -- pass the component to the expander, which will generate
4002 -- the call to such IP.
4004 -- If the component has discriminants, their values must
4005 -- be taken from their subtype. This is indispensable for
4006 -- constraints that are given by the current instance of an
4007 -- enclosing type, to allow the expansion of the aggregate to
4008 -- replace the reference to the current instance by the target
4009 -- object of the aggregate.
4011 if Present (Parent (Component))
4012 and then
4013 Nkind (Parent (Component)) = N_Component_Declaration
4014 and then Present (Expression (Parent (Component)))
4015 then
4016 Expr :=
4017 New_Copy_Tree_And_Copy_Dimensions
4018 (Expression (Parent (Component)),
4019 New_Scope => Current_Scope,
4020 New_Sloc => Sloc (N));
4022 Add_Association
4023 (Component => Component,
4024 Expr => Expr,
4025 Assoc_List => New_Assoc_List);
4026 Set_Has_Self_Reference (N);
4028 -- A box-defaulted access component gets the value null. Also
4029 -- included are components of private types whose underlying
4030 -- type is an access type. In either case set the type of the
4031 -- literal, for subsequent use in semantic checks.
4033 elsif Present (Underlying_Type (Ctyp))
4034 and then Is_Access_Type (Underlying_Type (Ctyp))
4035 then
4036 if not Is_Private_Type (Ctyp) then
4037 Expr := Make_Null (Sloc (N));
4038 Set_Etype (Expr, Ctyp);
4039 Add_Association
4040 (Component => Component,
4041 Expr => Expr,
4042 Assoc_List => New_Assoc_List);
4044 -- If the component's type is private with an access type as
4045 -- its underlying type then we have to create an unchecked
4046 -- conversion to satisfy type checking.
4048 else
4049 declare
4050 Qual_Null : constant Node_Id :=
4051 Make_Qualified_Expression (Sloc (N),
4052 Subtype_Mark =>
4053 New_Occurrence_Of
4054 (Underlying_Type (Ctyp), Sloc (N)),
4055 Expression => Make_Null (Sloc (N)));
4057 Convert_Null : constant Node_Id :=
4058 Unchecked_Convert_To
4059 (Ctyp, Qual_Null);
4061 begin
4062 Analyze_And_Resolve (Convert_Null, Ctyp);
4063 Add_Association
4064 (Component => Component,
4065 Expr => Convert_Null,
4066 Assoc_List => New_Assoc_List);
4067 end;
4068 end if;
4070 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4071 or else not Expander_Active
4072 then
4073 if Is_Record_Type (Ctyp)
4074 and then Has_Discriminants (Ctyp)
4075 and then not Is_Private_Type (Ctyp)
4076 then
4077 -- We build a partially initialized aggregate with the
4078 -- values of the discriminants and box initialization
4079 -- for the rest, if other components are present.
4081 -- The type of the aggregate is the known subtype of
4082 -- the component. The capture of discriminants must
4083 -- be recursive because subcomponents may be constrained
4084 -- (transitively) by discriminants of enclosing types.
4085 -- For a private type with discriminants, a call to the
4086 -- initialization procedure will be generated, and no
4087 -- subaggregate is needed.
4089 Capture_Discriminants : declare
4090 Loc : constant Source_Ptr := Sloc (N);
4091 Expr : Node_Id;
4093 procedure Add_Discriminant_Values
4094 (New_Aggr : Node_Id;
4095 Assoc_List : List_Id);
4096 -- The constraint to a component may be given by a
4097 -- discriminant of the enclosing type, in which case
4098 -- we have to retrieve its value, which is part of the
4099 -- enclosing aggregate. Assoc_List provides the
4100 -- discriminant associations of the current type or
4101 -- of some enclosing record.
4103 procedure Propagate_Discriminants
4104 (Aggr : Node_Id;
4105 Assoc_List : List_Id);
4106 -- Nested components may themselves be discriminated
4107 -- types constrained by outer discriminants, whose
4108 -- values must be captured before the aggregate is
4109 -- expanded into assignments.
4111 -----------------------------
4112 -- Add_Discriminant_Values --
4113 -----------------------------
4115 procedure Add_Discriminant_Values
4116 (New_Aggr : Node_Id;
4117 Assoc_List : List_Id)
4119 Assoc : Node_Id;
4120 Discr : Entity_Id;
4121 Discr_Elmt : Elmt_Id;
4122 Discr_Val : Node_Id;
4123 Val : Entity_Id;
4125 begin
4126 Discr := First_Discriminant (Etype (New_Aggr));
4127 Discr_Elmt :=
4128 First_Elmt
4129 (Discriminant_Constraint (Etype (New_Aggr)));
4130 while Present (Discr_Elmt) loop
4131 Discr_Val := Node (Discr_Elmt);
4133 -- If the constraint is given by a discriminant
4134 -- it is a discriminant of an enclosing record,
4135 -- and its value has already been placed in the
4136 -- association list.
4138 if Is_Entity_Name (Discr_Val)
4139 and then
4140 Ekind (Entity (Discr_Val)) = E_Discriminant
4141 then
4142 Val := Entity (Discr_Val);
4144 Assoc := First (Assoc_List);
4145 while Present (Assoc) loop
4146 if Present
4147 (Entity (First (Choices (Assoc))))
4148 and then
4149 Entity (First (Choices (Assoc)))
4150 = Val
4151 then
4152 Discr_Val := Expression (Assoc);
4153 exit;
4154 end if;
4155 Next (Assoc);
4156 end loop;
4157 end if;
4159 Add_Association
4160 (Discr, New_Copy_Tree (Discr_Val),
4161 Component_Associations (New_Aggr));
4163 -- If the discriminant constraint is a current
4164 -- instance, mark the current aggregate so that
4165 -- the self-reference can be expanded later.
4167 if Nkind (Discr_Val) = N_Attribute_Reference
4168 and then Is_Entity_Name (Prefix (Discr_Val))
4169 and then Is_Type (Entity (Prefix (Discr_Val)))
4170 and then Etype (N) =
4171 Entity (Prefix (Discr_Val))
4172 then
4173 Set_Has_Self_Reference (N);
4174 end if;
4176 Next_Elmt (Discr_Elmt);
4177 Next_Discriminant (Discr);
4178 end loop;
4179 end Add_Discriminant_Values;
4181 ------------------------------
4182 -- Propagate_Discriminants --
4183 ------------------------------
4185 procedure Propagate_Discriminants
4186 (Aggr : Node_Id;
4187 Assoc_List : List_Id)
4189 Aggr_Type : constant Entity_Id :=
4190 Base_Type (Etype (Aggr));
4191 Def_Node : constant Node_Id :=
4192 Type_Definition
4193 (Declaration_Node (Aggr_Type));
4195 Comp : Node_Id;
4196 Comp_Elmt : Elmt_Id;
4197 Components : constant Elist_Id := New_Elmt_List;
4198 Needs_Box : Boolean := False;
4199 Errors : Boolean;
4201 procedure Process_Component (Comp : Entity_Id);
4202 -- Add one component with a box association to the
4203 -- inner aggregate, and recurse if component is
4204 -- itself composite.
4206 ------------------------
4207 -- Process_Component --
4208 ------------------------
4210 procedure Process_Component (Comp : Entity_Id) is
4211 T : constant Entity_Id := Etype (Comp);
4212 New_Aggr : Node_Id;
4214 begin
4215 if Is_Record_Type (T)
4216 and then Has_Discriminants (T)
4217 then
4218 New_Aggr :=
4219 Make_Aggregate (Loc, New_List, New_List);
4220 Set_Etype (New_Aggr, T);
4221 Add_Association
4222 (Comp, New_Aggr,
4223 Component_Associations (Aggr));
4225 -- Collect discriminant values and recurse
4227 Add_Discriminant_Values
4228 (New_Aggr, Assoc_List);
4229 Propagate_Discriminants
4230 (New_Aggr, Assoc_List);
4232 else
4233 Needs_Box := True;
4234 end if;
4235 end Process_Component;
4237 -- Start of processing for Propagate_Discriminants
4239 begin
4240 -- The component type may be a variant type, so
4241 -- collect the components that are ruled by the
4242 -- known values of the discriminants. Their values
4243 -- have already been inserted into the component
4244 -- list of the current aggregate.
4246 if Nkind (Def_Node) = N_Record_Definition
4247 and then
4248 Present (Component_List (Def_Node))
4249 and then
4250 Present
4251 (Variant_Part (Component_List (Def_Node)))
4252 then
4253 Gather_Components (Aggr_Type,
4254 Component_List (Def_Node),
4255 Governed_By => Component_Associations (Aggr),
4256 Into => Components,
4257 Report_Errors => Errors);
4259 Comp_Elmt := First_Elmt (Components);
4260 while Present (Comp_Elmt) loop
4262 Ekind (Node (Comp_Elmt)) /= E_Discriminant
4263 then
4264 Process_Component (Node (Comp_Elmt));
4265 end if;
4267 Next_Elmt (Comp_Elmt);
4268 end loop;
4270 -- No variant part, iterate over all components
4272 else
4273 Comp := First_Component (Etype (Aggr));
4274 while Present (Comp) loop
4275 Process_Component (Comp);
4276 Next_Component (Comp);
4277 end loop;
4278 end if;
4280 if Needs_Box then
4281 Append
4282 (Make_Component_Association (Loc,
4283 Choices =>
4284 New_List (Make_Others_Choice (Loc)),
4285 Expression => Empty,
4286 Box_Present => True),
4287 Component_Associations (Aggr));
4288 end if;
4289 end Propagate_Discriminants;
4291 -- Start of processing for Capture_Discriminants
4293 begin
4294 Expr := Make_Aggregate (Loc, New_List, New_List);
4295 Set_Etype (Expr, Ctyp);
4297 -- If the enclosing type has discriminants, they have
4298 -- been collected in the aggregate earlier, and they
4299 -- may appear as constraints of subcomponents.
4301 -- Similarly if this component has discriminants, they
4302 -- might in turn be propagated to their components.
4304 if Has_Discriminants (Typ) then
4305 Add_Discriminant_Values (Expr, New_Assoc_List);
4306 Propagate_Discriminants (Expr, New_Assoc_List);
4308 elsif Has_Discriminants (Ctyp) then
4309 Add_Discriminant_Values
4310 (Expr, Component_Associations (Expr));
4311 Propagate_Discriminants
4312 (Expr, Component_Associations (Expr));
4314 else
4315 declare
4316 Comp : Entity_Id;
4318 begin
4319 -- If the type has additional components, create
4320 -- an OTHERS box association for them.
4322 Comp := First_Component (Ctyp);
4323 while Present (Comp) loop
4324 if Ekind (Comp) = E_Component then
4325 if not Is_Record_Type (Etype (Comp)) then
4326 Append
4327 (Make_Component_Association (Loc,
4328 Choices =>
4329 New_List
4330 (Make_Others_Choice (Loc)),
4331 Expression => Empty,
4332 Box_Present => True),
4333 Component_Associations (Expr));
4334 end if;
4335 exit;
4336 end if;
4338 Next_Component (Comp);
4339 end loop;
4340 end;
4341 end if;
4343 Add_Association
4344 (Component => Component,
4345 Expr => Expr,
4346 Assoc_List => New_Assoc_List);
4347 end Capture_Discriminants;
4349 else
4350 Add_Association
4351 (Component => Component,
4352 Expr => Empty,
4353 Assoc_List => New_Assoc_List,
4354 Is_Box_Present => True);
4355 end if;
4357 -- Otherwise we only need to resolve the expression if the
4358 -- component has partially initialized values (required to
4359 -- expand the corresponding assignments and run-time checks).
4361 elsif Present (Expr)
4362 and then Is_Partially_Initialized_Type (Ctyp)
4363 then
4364 Resolve_Aggr_Expr (Expr, Component);
4365 end if;
4366 end Check_Box_Component;
4368 elsif No (Expr) then
4370 -- Ignore hidden components associated with the position of the
4371 -- interface tags: these are initialized dynamically.
4373 if not Present (Related_Type (Component)) then
4374 Error_Msg_NE
4375 ("no value supplied for component &!", N, Component);
4376 end if;
4378 else
4379 Resolve_Aggr_Expr (Expr, Component);
4380 end if;
4382 Next_Elmt (Component_Elmt);
4383 end loop;
4385 -- STEP 7: check for invalid components + check type in choice list
4387 Step_7 : declare
4388 Selectr : Node_Id;
4389 -- Selector name
4391 Typech : Entity_Id;
4392 -- Type of first component in choice list
4394 begin
4395 if Present (Component_Associations (N)) then
4396 Assoc := First (Component_Associations (N));
4397 else
4398 Assoc := Empty;
4399 end if;
4401 Verification : while Present (Assoc) loop
4402 Selectr := First (Choices (Assoc));
4403 Typech := Empty;
4405 if Nkind (Selectr) = N_Others_Choice then
4407 -- Ada 2005 (AI-287): others choice may have expression or box
4409 if No (Others_Etype)
4410 and then not Others_Box
4411 then
4412 Error_Msg_N
4413 ("OTHERS must represent at least one component", Selectr);
4414 end if;
4416 exit Verification;
4417 end if;
4419 while Present (Selectr) loop
4420 New_Assoc := First (New_Assoc_List);
4421 while Present (New_Assoc) loop
4422 Component := First (Choices (New_Assoc));
4424 if Chars (Selectr) = Chars (Component) then
4425 if Style_Check then
4426 Check_Identifier (Selectr, Entity (Component));
4427 end if;
4429 exit;
4430 end if;
4432 Next (New_Assoc);
4433 end loop;
4435 -- If no association, this is not a legal component of the type
4436 -- in question, unless its association is provided with a box.
4438 if No (New_Assoc) then
4439 if Box_Present (Parent (Selectr)) then
4441 -- This may still be a bogus component with a box. Scan
4442 -- list of components to verify that a component with
4443 -- that name exists.
4445 declare
4446 C : Entity_Id;
4448 begin
4449 C := First_Component (Typ);
4450 while Present (C) loop
4451 if Chars (C) = Chars (Selectr) then
4453 -- If the context is an extension aggregate,
4454 -- the component must not be inherited from
4455 -- the ancestor part of the aggregate.
4457 if Nkind (N) /= N_Extension_Aggregate
4458 or else
4459 Scope (Original_Record_Component (C)) /=
4460 Etype (Ancestor_Part (N))
4461 then
4462 exit;
4463 end if;
4464 end if;
4466 Next_Component (C);
4467 end loop;
4469 if No (C) then
4470 Error_Msg_Node_2 := Typ;
4471 Error_Msg_N ("& is not a component of}", Selectr);
4472 end if;
4473 end;
4475 elsif Chars (Selectr) /= Name_uTag
4476 and then Chars (Selectr) /= Name_uParent
4477 then
4478 if not Has_Discriminants (Typ) then
4479 Error_Msg_Node_2 := Typ;
4480 Error_Msg_N ("& is not a component of}", Selectr);
4481 else
4482 Error_Msg_N
4483 ("& is not a component of the aggregate subtype",
4484 Selectr);
4485 end if;
4487 Check_Misspelled_Component (Components, Selectr);
4488 end if;
4490 elsif No (Typech) then
4491 Typech := Base_Type (Etype (Component));
4493 -- AI05-0199: In Ada 2012, several components of anonymous
4494 -- access types can appear in a choice list, as long as the
4495 -- designated types match.
4497 elsif Typech /= Base_Type (Etype (Component)) then
4498 if Ada_Version >= Ada_2012
4499 and then Ekind (Typech) = E_Anonymous_Access_Type
4500 and then
4501 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4502 and then Base_Type (Designated_Type (Typech)) =
4503 Base_Type (Designated_Type (Etype (Component)))
4504 and then
4505 Subtypes_Statically_Match (Typech, (Etype (Component)))
4506 then
4507 null;
4509 elsif not Box_Present (Parent (Selectr)) then
4510 Error_Msg_N
4511 ("components in choice list must have same type",
4512 Selectr);
4513 end if;
4514 end if;
4516 Next (Selectr);
4517 end loop;
4519 Next (Assoc);
4520 end loop Verification;
4521 end Step_7;
4523 -- STEP 8: replace the original aggregate
4525 Step_8 : declare
4526 New_Aggregate : constant Node_Id := New_Copy (N);
4528 begin
4529 Set_Expressions (New_Aggregate, No_List);
4530 Set_Etype (New_Aggregate, Etype (N));
4531 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4533 Rewrite (N, New_Aggregate);
4534 end Step_8;
4536 -- Check the dimensions of the components in the record aggregate
4538 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4539 end Resolve_Record_Aggregate;
4541 -----------------------------
4542 -- Check_Can_Never_Be_Null --
4543 -----------------------------
4545 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4546 Comp_Typ : Entity_Id;
4548 begin
4549 pragma Assert
4550 (Ada_Version >= Ada_2005
4551 and then Present (Expr)
4552 and then Known_Null (Expr));
4554 case Ekind (Typ) is
4555 when E_Array_Type =>
4556 Comp_Typ := Component_Type (Typ);
4558 when E_Component |
4559 E_Discriminant =>
4560 Comp_Typ := Etype (Typ);
4562 when others =>
4563 return;
4564 end case;
4566 if Can_Never_Be_Null (Comp_Typ) then
4568 -- Here we know we have a constraint error. Note that we do not use
4569 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4570 -- seem the more natural approach. That's because in some cases the
4571 -- components are rewritten, and the replacement would be missed.
4573 Insert_Action
4574 (Compile_Time_Constraint_Error
4575 (Expr,
4576 "(Ada 2005) null not allowed in null-excluding component??"),
4577 Make_Raise_Constraint_Error
4578 (Sloc (Expr), Reason => CE_Access_Check_Failed));
4580 -- Set proper type for bogus component (why is this needed???)
4582 Set_Etype (Expr, Comp_Typ);
4583 Set_Analyzed (Expr);
4584 end if;
4585 end Check_Can_Never_Be_Null;
4587 ---------------------
4588 -- Sort_Case_Table --
4589 ---------------------
4591 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4592 L : constant Int := Case_Table'First;
4593 U : constant Int := Case_Table'Last;
4594 K : Int;
4595 J : Int;
4596 T : Case_Bounds;
4598 begin
4599 K := L;
4600 while K /= U loop
4601 T := Case_Table (K + 1);
4603 J := K + 1;
4604 while J /= L
4605 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
4606 Expr_Value (T.Choice_Lo)
4607 loop
4608 Case_Table (J) := Case_Table (J - 1);
4609 J := J - 1;
4610 end loop;
4612 Case_Table (J) := T;
4613 K := K + 1;
4614 end loop;
4615 end Sort_Case_Table;
4617 end Sem_Aggr;