* g++.dg/cpp0x/constexpr-53094-2.C: Ignore non-standard ABI
[official-gcc.git] / gcc / ada / a-cborse.adb
blob3131de1370063d9494d18d4c8a3b323c19e25904
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
31 pragma Elaborate_All
32 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
34 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
35 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
37 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
38 pragma Elaborate_All
39 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
41 with Ada.Finalization; use Ada.Finalization;
43 with System; use type System.Address;
45 package body Ada.Containers.Bounded_Ordered_Sets is
47 type Iterator is new Limited_Controlled and
48 Set_Iterator_Interfaces.Reversible_Iterator with
49 record
50 Container : Set_Access;
51 Node : Count_Type;
52 end record;
54 overriding procedure Finalize (Object : in out Iterator);
56 overriding function First (Object : Iterator) return Cursor;
57 overriding function Last (Object : Iterator) return Cursor;
59 overriding function Next
60 (Object : Iterator;
61 Position : Cursor) return Cursor;
63 overriding function Previous
64 (Object : Iterator;
65 Position : Cursor) return Cursor;
67 ------------------------------
68 -- Access to Fields of Node --
69 ------------------------------
71 -- These subprograms provide functional notation for access to fields
72 -- of a node, and procedural notation for modifying these fields.
74 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
75 pragma Inline (Color);
77 function Left (Node : Node_Type) return Count_Type;
78 pragma Inline (Left);
80 function Parent (Node : Node_Type) return Count_Type;
81 pragma Inline (Parent);
83 function Right (Node : Node_Type) return Count_Type;
84 pragma Inline (Right);
86 procedure Set_Color
87 (Node : in out Node_Type;
88 Color : Red_Black_Trees.Color_Type);
89 pragma Inline (Set_Color);
91 procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
92 pragma Inline (Set_Left);
94 procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
95 pragma Inline (Set_Right);
97 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
98 pragma Inline (Set_Parent);
100 -----------------------
101 -- Local Subprograms --
102 -----------------------
104 procedure Insert_Sans_Hint
105 (Container : in out Set;
106 New_Item : Element_Type;
107 Node : out Count_Type;
108 Inserted : out Boolean);
110 procedure Insert_With_Hint
111 (Dst_Set : in out Set;
112 Dst_Hint : Count_Type;
113 Src_Node : Node_Type;
114 Dst_Node : out Count_Type);
116 function Is_Greater_Element_Node
117 (Left : Element_Type;
118 Right : Node_Type) return Boolean;
119 pragma Inline (Is_Greater_Element_Node);
121 function Is_Less_Element_Node
122 (Left : Element_Type;
123 Right : Node_Type) return Boolean;
124 pragma Inline (Is_Less_Element_Node);
126 function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
127 pragma Inline (Is_Less_Node_Node);
129 procedure Replace_Element
130 (Container : in out Set;
131 Index : Count_Type;
132 Item : Element_Type);
134 --------------------------
135 -- Local Instantiations --
136 --------------------------
138 package Tree_Operations is
139 new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
141 use Tree_Operations;
143 package Element_Keys is
144 new Red_Black_Trees.Generic_Bounded_Keys
145 (Tree_Operations => Tree_Operations,
146 Key_Type => Element_Type,
147 Is_Less_Key_Node => Is_Less_Element_Node,
148 Is_Greater_Key_Node => Is_Greater_Element_Node);
150 package Set_Ops is
151 new Red_Black_Trees.Generic_Bounded_Set_Operations
152 (Tree_Operations => Tree_Operations,
153 Set_Type => Set,
154 Assign => Assign,
155 Insert_With_Hint => Insert_With_Hint,
156 Is_Less => Is_Less_Node_Node);
158 ---------
159 -- "<" --
160 ---------
162 function "<" (Left, Right : Cursor) return Boolean is
163 begin
164 if Left.Node = 0 then
165 raise Constraint_Error with "Left cursor equals No_Element";
166 end if;
168 if Right.Node = 0 then
169 raise Constraint_Error with "Right cursor equals No_Element";
170 end if;
172 pragma Assert (Vet (Left.Container.all, Left.Node),
173 "bad Left cursor in ""<""");
175 pragma Assert (Vet (Right.Container.all, Right.Node),
176 "bad Right cursor in ""<""");
178 declare
179 LN : Nodes_Type renames Left.Container.Nodes;
180 RN : Nodes_Type renames Right.Container.Nodes;
181 begin
182 return LN (Left.Node).Element < RN (Right.Node).Element;
183 end;
184 end "<";
186 function "<" (Left : Cursor; Right : Element_Type) return Boolean is
187 begin
188 if Left.Node = 0 then
189 raise Constraint_Error with "Left cursor equals No_Element";
190 end if;
192 pragma Assert (Vet (Left.Container.all, Left.Node),
193 "bad Left cursor in ""<""");
195 return Left.Container.Nodes (Left.Node).Element < Right;
196 end "<";
198 function "<" (Left : Element_Type; Right : Cursor) return Boolean is
199 begin
200 if Right.Node = 0 then
201 raise Constraint_Error with "Right cursor equals No_Element";
202 end if;
204 pragma Assert (Vet (Right.Container.all, Right.Node),
205 "bad Right cursor in ""<""");
207 return Left < Right.Container.Nodes (Right.Node).Element;
208 end "<";
210 ---------
211 -- "=" --
212 ---------
214 function "=" (Left, Right : Set) return Boolean is
215 function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
216 pragma Inline (Is_Equal_Node_Node);
218 function Is_Equal is
219 new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
221 ------------------------
222 -- Is_Equal_Node_Node --
223 ------------------------
225 function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
226 begin
227 return L.Element = R.Element;
228 end Is_Equal_Node_Node;
230 -- Start of processing for Is_Equal
232 begin
233 return Is_Equal (Left, Right);
234 end "=";
236 ---------
237 -- ">" --
238 ---------
240 function ">" (Left, Right : Cursor) return Boolean is
241 begin
242 if Left.Node = 0 then
243 raise Constraint_Error with "Left cursor equals No_Element";
244 end if;
246 if Right.Node = 0 then
247 raise Constraint_Error with "Right cursor equals No_Element";
248 end if;
250 pragma Assert (Vet (Left.Container.all, Left.Node),
251 "bad Left cursor in "">""");
253 pragma Assert (Vet (Right.Container.all, Right.Node),
254 "bad Right cursor in "">""");
256 -- L > R same as R < L
258 declare
259 LN : Nodes_Type renames Left.Container.Nodes;
260 RN : Nodes_Type renames Right.Container.Nodes;
261 begin
262 return RN (Right.Node).Element < LN (Left.Node).Element;
263 end;
264 end ">";
266 function ">" (Left : Element_Type; Right : Cursor) return Boolean is
267 begin
268 if Right.Node = 0 then
269 raise Constraint_Error with "Right cursor equals No_Element";
270 end if;
272 pragma Assert (Vet (Right.Container.all, Right.Node),
273 "bad Right cursor in "">""");
275 return Right.Container.Nodes (Right.Node).Element < Left;
276 end ">";
278 function ">" (Left : Cursor; Right : Element_Type) return Boolean is
279 begin
280 if Left.Node = 0 then
281 raise Constraint_Error with "Left cursor equals No_Element";
282 end if;
284 pragma Assert (Vet (Left.Container.all, Left.Node),
285 "bad Left cursor in "">""");
287 return Right < Left.Container.Nodes (Left.Node).Element;
288 end ">";
290 ------------
291 -- Assign --
292 ------------
294 procedure Assign (Target : in out Set; Source : Set) is
295 procedure Append_Element (Source_Node : Count_Type);
297 procedure Append_Elements is
298 new Tree_Operations.Generic_Iteration (Append_Element);
300 --------------------
301 -- Append_Element --
302 --------------------
304 procedure Append_Element (Source_Node : Count_Type) is
305 SN : Node_Type renames Source.Nodes (Source_Node);
307 procedure Set_Element (Node : in out Node_Type);
308 pragma Inline (Set_Element);
310 function New_Node return Count_Type;
311 pragma Inline (New_Node);
313 procedure Insert_Post is
314 new Element_Keys.Generic_Insert_Post (New_Node);
316 procedure Unconditional_Insert_Sans_Hint is
317 new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
319 procedure Unconditional_Insert_Avec_Hint is
320 new Element_Keys.Generic_Unconditional_Insert_With_Hint
321 (Insert_Post,
322 Unconditional_Insert_Sans_Hint);
324 procedure Allocate is
325 new Tree_Operations.Generic_Allocate (Set_Element);
327 --------------
328 -- New_Node --
329 --------------
331 function New_Node return Count_Type is
332 Result : Count_Type;
333 begin
334 Allocate (Target, Result);
335 return Result;
336 end New_Node;
338 -----------------
339 -- Set_Element --
340 -----------------
342 procedure Set_Element (Node : in out Node_Type) is
343 begin
344 Node.Element := SN.Element;
345 end Set_Element;
347 Target_Node : Count_Type;
349 -- Start of processing for Append_Element
351 begin
352 Unconditional_Insert_Avec_Hint
353 (Tree => Target,
354 Hint => 0,
355 Key => SN.Element,
356 Node => Target_Node);
357 end Append_Element;
359 -- Start of processing for Assign
361 begin
362 if Target'Address = Source'Address then
363 return;
364 end if;
366 if Target.Capacity < Source.Length then
367 raise Capacity_Error
368 with "Target capacity is less than Source length";
369 end if;
371 Target.Clear;
372 Append_Elements (Source);
373 end Assign;
375 -------------
376 -- Ceiling --
377 -------------
379 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
380 Node : constant Count_Type :=
381 Element_Keys.Ceiling (Container, Item);
382 begin
383 return (if Node = 0 then No_Element
384 else Cursor'(Container'Unrestricted_Access, Node));
385 end Ceiling;
387 -----------
388 -- Clear --
389 -----------
391 procedure Clear (Container : in out Set) is
392 begin
393 Tree_Operations.Clear_Tree (Container);
394 end Clear;
396 -----------
397 -- Color --
398 -----------
400 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
401 begin
402 return Node.Color;
403 end Color;
405 ------------------------
406 -- Constant_Reference --
407 ------------------------
409 function Constant_Reference
410 (Container : aliased Set;
411 Position : Cursor) return Constant_Reference_Type
413 begin
414 if Position.Container = null then
415 raise Constraint_Error with "Position cursor has no element";
416 end if;
418 if Position.Container /= Container'Unrestricted_Access then
419 raise Program_Error with
420 "Position cursor designates wrong container";
421 end if;
423 pragma Assert
424 (Vet (Container, Position.Node),
425 "bad cursor in Constant_Reference");
427 declare
428 N : Node_Type renames Container.Nodes (Position.Node);
429 begin
430 return (Element => N.Element'Access);
431 end;
432 end Constant_Reference;
434 --------------
435 -- Contains --
436 --------------
438 function Contains
439 (Container : Set;
440 Item : Element_Type) return Boolean
442 begin
443 return Find (Container, Item) /= No_Element;
444 end Contains;
446 ----------
447 -- Copy --
448 ----------
450 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
451 C : Count_Type;
453 begin
454 if Capacity = 0 then
455 C := Source.Length;
456 elsif Capacity >= Source.Length then
457 C := Capacity;
458 else
459 raise Capacity_Error with "Capacity value too small";
460 end if;
462 return Target : Set (Capacity => C) do
463 Assign (Target => Target, Source => Source);
464 end return;
465 end Copy;
467 ------------
468 -- Delete --
469 ------------
471 procedure Delete (Container : in out Set; Position : in out Cursor) is
472 begin
473 if Position.Node = 0 then
474 raise Constraint_Error with "Position cursor equals No_Element";
475 end if;
477 if Position.Container /= Container'Unrestricted_Access then
478 raise Program_Error with "Position cursor designates wrong set";
479 end if;
481 pragma Assert (Vet (Container, Position.Node),
482 "bad cursor in Delete");
484 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
485 Tree_Operations.Free (Container, Position.Node);
487 Position := No_Element;
488 end Delete;
490 procedure Delete (Container : in out Set; Item : Element_Type) is
491 X : constant Count_Type := Element_Keys.Find (Container, Item);
493 begin
494 if X = 0 then
495 raise Constraint_Error with "attempt to delete element not in set";
496 end if;
498 Tree_Operations.Delete_Node_Sans_Free (Container, X);
499 Tree_Operations.Free (Container, X);
500 end Delete;
502 ------------------
503 -- Delete_First --
504 ------------------
506 procedure Delete_First (Container : in out Set) is
507 X : constant Count_Type := Container.First;
508 begin
509 if X /= 0 then
510 Tree_Operations.Delete_Node_Sans_Free (Container, X);
511 Tree_Operations.Free (Container, X);
512 end if;
513 end Delete_First;
515 -----------------
516 -- Delete_Last --
517 -----------------
519 procedure Delete_Last (Container : in out Set) is
520 X : constant Count_Type := Container.Last;
521 begin
522 if X /= 0 then
523 Tree_Operations.Delete_Node_Sans_Free (Container, X);
524 Tree_Operations.Free (Container, X);
525 end if;
526 end Delete_Last;
528 ----------------
529 -- Difference --
530 ----------------
532 procedure Difference (Target : in out Set; Source : Set)
533 renames Set_Ops.Set_Difference;
535 function Difference (Left, Right : Set) return Set
536 renames Set_Ops.Set_Difference;
538 -------------
539 -- Element --
540 -------------
542 function Element (Position : Cursor) return Element_Type is
543 begin
544 if Position.Node = 0 then
545 raise Constraint_Error with "Position cursor equals No_Element";
546 end if;
548 pragma Assert (Vet (Position.Container.all, Position.Node),
549 "bad cursor in Element");
551 return Position.Container.Nodes (Position.Node).Element;
552 end Element;
554 -------------------------
555 -- Equivalent_Elements --
556 -------------------------
558 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
559 begin
560 return (if Left < Right or else Right < Left then False else True);
561 end Equivalent_Elements;
563 ---------------------
564 -- Equivalent_Sets --
565 ---------------------
567 function Equivalent_Sets (Left, Right : Set) return Boolean is
568 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
569 pragma Inline (Is_Equivalent_Node_Node);
571 function Is_Equivalent is
572 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
574 -----------------------------
575 -- Is_Equivalent_Node_Node --
576 -----------------------------
578 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
579 begin
580 return (if L.Element < R.Element then False
581 elsif R.Element < L.Element then False
582 else True);
583 end Is_Equivalent_Node_Node;
585 -- Start of processing for Equivalent_Sets
587 begin
588 return Is_Equivalent (Left, Right);
589 end Equivalent_Sets;
591 -------------
592 -- Exclude --
593 -------------
595 procedure Exclude (Container : in out Set; Item : Element_Type) is
596 X : constant Count_Type := Element_Keys.Find (Container, Item);
597 begin
598 if X /= 0 then
599 Tree_Operations.Delete_Node_Sans_Free (Container, X);
600 Tree_Operations.Free (Container, X);
601 end if;
602 end Exclude;
604 --------------
605 -- Finalize --
606 --------------
608 procedure Finalize (Object : in out Iterator) is
609 begin
610 if Object.Container /= null then
611 declare
612 B : Natural renames Object.Container.all.Busy;
613 begin
614 B := B - 1;
615 end;
616 end if;
617 end Finalize;
619 ----------
620 -- Find --
621 ----------
623 function Find (Container : Set; Item : Element_Type) return Cursor is
624 Node : constant Count_Type := Element_Keys.Find (Container, Item);
625 begin
626 return (if Node = 0 then No_Element
627 else Cursor'(Container'Unrestricted_Access, Node));
628 end Find;
630 -----------
631 -- First --
632 -----------
634 function First (Container : Set) return Cursor is
635 begin
636 return (if Container.First = 0 then No_Element
637 else Cursor'(Container'Unrestricted_Access, Container.First));
638 end First;
640 function First (Object : Iterator) return Cursor is
641 begin
642 -- The value of the iterator object's Node component influences the
643 -- behavior of the First (and Last) selector function.
645 -- When the Node component is 0, this means the iterator object was
646 -- constructed without a start expression, in which case the (forward)
647 -- iteration starts from the (logical) beginning of the entire sequence
648 -- of items (corresponding to Container.First, for a forward iterator).
650 -- Otherwise, this is iteration over a partial sequence of items. When
651 -- the Node component is positive, the iterator object was constructed
652 -- with a start expression, that specifies the position from which the
653 -- (forward) partial iteration begins.
655 if Object.Node = 0 then
656 return Bounded_Ordered_Sets.First (Object.Container.all);
657 else
658 return Cursor'(Object.Container, Object.Node);
659 end if;
660 end First;
662 -------------------
663 -- First_Element --
664 -------------------
666 function First_Element (Container : Set) return Element_Type is
667 begin
668 if Container.First = 0 then
669 raise Constraint_Error with "set is empty";
670 end if;
672 return Container.Nodes (Container.First).Element;
673 end First_Element;
675 -----------
676 -- Floor --
677 -----------
679 function Floor (Container : Set; Item : Element_Type) return Cursor is
680 Node : constant Count_Type := Element_Keys.Floor (Container, Item);
681 begin
682 return (if Node = 0 then No_Element
683 else Cursor'(Container'Unrestricted_Access, Node));
684 end Floor;
686 ------------------
687 -- Generic_Keys --
688 ------------------
690 package body Generic_Keys is
692 -----------------------
693 -- Local Subprograms --
694 -----------------------
696 function Is_Greater_Key_Node
697 (Left : Key_Type;
698 Right : Node_Type) return Boolean;
699 pragma Inline (Is_Greater_Key_Node);
701 function Is_Less_Key_Node
702 (Left : Key_Type;
703 Right : Node_Type) return Boolean;
704 pragma Inline (Is_Less_Key_Node);
706 --------------------------
707 -- Local Instantiations --
708 --------------------------
710 package Key_Keys is
711 new Red_Black_Trees.Generic_Bounded_Keys
712 (Tree_Operations => Tree_Operations,
713 Key_Type => Key_Type,
714 Is_Less_Key_Node => Is_Less_Key_Node,
715 Is_Greater_Key_Node => Is_Greater_Key_Node);
717 -------------
718 -- Ceiling --
719 -------------
721 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
722 Node : constant Count_Type :=
723 Key_Keys.Ceiling (Container, Key);
724 begin
725 return (if Node = 0 then No_Element
726 else Cursor'(Container'Unrestricted_Access, Node));
727 end Ceiling;
729 ------------------------
730 -- Constant_Reference --
731 ------------------------
733 function Constant_Reference
734 (Container : aliased Set;
735 Key : Key_Type) return Constant_Reference_Type
737 Node : constant Count_Type := Key_Keys.Find (Container, Key);
739 begin
740 if Node = 0 then
741 raise Constraint_Error with "key not in set";
742 end if;
744 declare
745 N : Node_Type renames Container.Nodes (Node);
746 begin
747 return (Element => N.Element'Access);
748 end;
749 end Constant_Reference;
751 --------------
752 -- Contains --
753 --------------
755 function Contains (Container : Set; Key : Key_Type) return Boolean is
756 begin
757 return Find (Container, Key) /= No_Element;
758 end Contains;
760 ------------
761 -- Delete --
762 ------------
764 procedure Delete (Container : in out Set; Key : Key_Type) is
765 X : constant Count_Type := Key_Keys.Find (Container, Key);
767 begin
768 if X = 0 then
769 raise Constraint_Error with "attempt to delete key not in set";
770 end if;
772 Tree_Operations.Delete_Node_Sans_Free (Container, X);
773 Tree_Operations.Free (Container, X);
774 end Delete;
776 -------------
777 -- Element --
778 -------------
780 function Element (Container : Set; Key : Key_Type) return Element_Type is
781 Node : constant Count_Type := Key_Keys.Find (Container, Key);
783 begin
784 if Node = 0 then
785 raise Constraint_Error with "key not in set";
786 end if;
788 return Container.Nodes (Node).Element;
789 end Element;
791 ---------------------
792 -- Equivalent_Keys --
793 ---------------------
795 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
796 begin
797 return (if Left < Right or else Right < Left then False else True);
798 end Equivalent_Keys;
800 -------------
801 -- Exclude --
802 -------------
804 procedure Exclude (Container : in out Set; Key : Key_Type) is
805 X : constant Count_Type := Key_Keys.Find (Container, Key);
806 begin
807 if X /= 0 then
808 Tree_Operations.Delete_Node_Sans_Free (Container, X);
809 Tree_Operations.Free (Container, X);
810 end if;
811 end Exclude;
813 ----------
814 -- Find --
815 ----------
817 function Find (Container : Set; Key : Key_Type) return Cursor is
818 Node : constant Count_Type := Key_Keys.Find (Container, Key);
819 begin
820 return (if Node = 0 then No_Element
821 else Cursor'(Container'Unrestricted_Access, Node));
822 end Find;
824 -----------
825 -- Floor --
826 -----------
828 function Floor (Container : Set; Key : Key_Type) return Cursor is
829 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
830 begin
831 return (if Node = 0 then No_Element
832 else Cursor'(Container'Unrestricted_Access, Node));
833 end Floor;
835 -------------------------
836 -- Is_Greater_Key_Node --
837 -------------------------
839 function Is_Greater_Key_Node
840 (Left : Key_Type;
841 Right : Node_Type) return Boolean
843 begin
844 return Key (Right.Element) < Left;
845 end Is_Greater_Key_Node;
847 ----------------------
848 -- Is_Less_Key_Node --
849 ----------------------
851 function Is_Less_Key_Node
852 (Left : Key_Type;
853 Right : Node_Type) return Boolean
855 begin
856 return Left < Key (Right.Element);
857 end Is_Less_Key_Node;
859 ---------
860 -- Key --
861 ---------
863 function Key (Position : Cursor) return Key_Type is
864 begin
865 if Position.Node = 0 then
866 raise Constraint_Error with
867 "Position cursor equals No_Element";
868 end if;
870 pragma Assert (Vet (Position.Container.all, Position.Node),
871 "bad cursor in Key");
873 return Key (Position.Container.Nodes (Position.Node).Element);
874 end Key;
876 ----------
877 -- Read --
878 ----------
880 procedure Read
881 (Stream : not null access Root_Stream_Type'Class;
882 Item : out Reference_Type)
884 begin
885 raise Program_Error with "attempt to stream reference";
886 end Read;
888 ------------------------------
889 -- Reference_Preserving_Key --
890 ------------------------------
892 function Reference_Preserving_Key
893 (Container : aliased in out Set;
894 Position : Cursor) return Reference_Type
896 begin
897 if Position.Container = null then
898 raise Constraint_Error with "Position cursor has no element";
899 end if;
901 if Position.Container /= Container'Unrestricted_Access then
902 raise Program_Error with
903 "Position cursor designates wrong container";
904 end if;
906 pragma Assert
907 (Vet (Container, Position.Node),
908 "bad cursor in function Reference_Preserving_Key");
910 -- Some form of finalization will be required in order to actually
911 -- check that the key-part of the element designated by Position has
912 -- not changed. ???
914 declare
915 N : Node_Type renames Container.Nodes (Position.Node);
916 begin
917 return (Element => N.Element'Access);
918 end;
919 end Reference_Preserving_Key;
921 function Reference_Preserving_Key
922 (Container : aliased in out Set;
923 Key : Key_Type) return Reference_Type
925 Node : constant Count_Type := Key_Keys.Find (Container, Key);
927 begin
928 if Node = 0 then
929 raise Constraint_Error with "key not in set";
930 end if;
932 declare
933 N : Node_Type renames Container.Nodes (Node);
934 begin
935 return (Element => N.Element'Access);
936 end;
937 end Reference_Preserving_Key;
939 -------------
940 -- Replace --
941 -------------
943 procedure Replace
944 (Container : in out Set;
945 Key : Key_Type;
946 New_Item : Element_Type)
948 Node : constant Count_Type := Key_Keys.Find (Container, Key);
950 begin
951 if Node = 0 then
952 raise Constraint_Error with
953 "attempt to replace key not in set";
954 end if;
956 Replace_Element (Container, Node, New_Item);
957 end Replace;
959 -----------------------------------
960 -- Update_Element_Preserving_Key --
961 -----------------------------------
963 procedure Update_Element_Preserving_Key
964 (Container : in out Set;
965 Position : Cursor;
966 Process : not null access procedure (Element : in out Element_Type))
968 begin
969 if Position.Node = 0 then
970 raise Constraint_Error with
971 "Position cursor equals No_Element";
972 end if;
974 if Position.Container /= Container'Unrestricted_Access then
975 raise Program_Error with
976 "Position cursor designates wrong set";
977 end if;
979 pragma Assert (Vet (Container, Position.Node),
980 "bad cursor in Update_Element_Preserving_Key");
982 declare
983 N : Node_Type renames Container.Nodes (Position.Node);
984 E : Element_Type renames N.Element;
985 K : constant Key_Type := Key (E);
987 B : Natural renames Container.Busy;
988 L : Natural renames Container.Lock;
990 begin
991 B := B + 1;
992 L := L + 1;
994 begin
995 Process (E);
996 exception
997 when others =>
998 L := L - 1;
999 B := B - 1;
1000 raise;
1001 end;
1003 L := L - 1;
1004 B := B - 1;
1006 if Equivalent_Keys (K, Key (E)) then
1007 return;
1008 end if;
1009 end;
1011 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
1012 Tree_Operations.Free (Container, Position.Node);
1014 raise Program_Error with "key was modified";
1015 end Update_Element_Preserving_Key;
1017 -----------
1018 -- Write --
1019 -----------
1021 procedure Write
1022 (Stream : not null access Root_Stream_Type'Class;
1023 Item : Reference_Type)
1025 begin
1026 raise Program_Error with "attempt to stream reference";
1027 end Write;
1028 end Generic_Keys;
1030 -----------------
1031 -- Has_Element --
1032 -----------------
1034 function Has_Element (Position : Cursor) return Boolean is
1035 begin
1036 return Position /= No_Element;
1037 end Has_Element;
1039 -------------
1040 -- Include --
1041 -------------
1043 procedure Include (Container : in out Set; New_Item : Element_Type) is
1044 Position : Cursor;
1045 Inserted : Boolean;
1047 begin
1048 Insert (Container, New_Item, Position, Inserted);
1050 if not Inserted then
1051 if Container.Lock > 0 then
1052 raise Program_Error with
1053 "attempt to tamper with elements (set is locked)";
1054 end if;
1056 Container.Nodes (Position.Node).Element := New_Item;
1057 end if;
1058 end Include;
1060 ------------
1061 -- Insert --
1062 ------------
1064 procedure Insert
1065 (Container : in out Set;
1066 New_Item : Element_Type;
1067 Position : out Cursor;
1068 Inserted : out Boolean)
1070 begin
1071 Insert_Sans_Hint
1072 (Container,
1073 New_Item,
1074 Position.Node,
1075 Inserted);
1077 Position.Container := Container'Unrestricted_Access;
1078 end Insert;
1080 procedure Insert
1081 (Container : in out Set;
1082 New_Item : Element_Type)
1084 Position : Cursor;
1085 pragma Unreferenced (Position);
1087 Inserted : Boolean;
1089 begin
1090 Insert (Container, New_Item, Position, Inserted);
1092 if not Inserted then
1093 raise Constraint_Error with
1094 "attempt to insert element already in set";
1095 end if;
1096 end Insert;
1098 ----------------------
1099 -- Insert_Sans_Hint --
1100 ----------------------
1102 procedure Insert_Sans_Hint
1103 (Container : in out Set;
1104 New_Item : Element_Type;
1105 Node : out Count_Type;
1106 Inserted : out Boolean)
1108 procedure Set_Element (Node : in out Node_Type);
1109 pragma Inline (Set_Element);
1111 function New_Node return Count_Type;
1112 pragma Inline (New_Node);
1114 procedure Insert_Post is
1115 new Element_Keys.Generic_Insert_Post (New_Node);
1117 procedure Conditional_Insert_Sans_Hint is
1118 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1120 procedure Allocate is
1121 new Tree_Operations.Generic_Allocate (Set_Element);
1123 --------------
1124 -- New_Node --
1125 --------------
1127 function New_Node return Count_Type is
1128 Result : Count_Type;
1129 begin
1130 Allocate (Container, Result);
1131 return Result;
1132 end New_Node;
1134 -----------------
1135 -- Set_Element --
1136 -----------------
1138 procedure Set_Element (Node : in out Node_Type) is
1139 begin
1140 Node.Element := New_Item;
1141 end Set_Element;
1143 -- Start of processing for Insert_Sans_Hint
1145 begin
1146 Conditional_Insert_Sans_Hint
1147 (Container,
1148 New_Item,
1149 Node,
1150 Inserted);
1151 end Insert_Sans_Hint;
1153 ----------------------
1154 -- Insert_With_Hint --
1155 ----------------------
1157 procedure Insert_With_Hint
1158 (Dst_Set : in out Set;
1159 Dst_Hint : Count_Type;
1160 Src_Node : Node_Type;
1161 Dst_Node : out Count_Type)
1163 Success : Boolean;
1164 pragma Unreferenced (Success);
1166 procedure Set_Element (Node : in out Node_Type);
1167 pragma Inline (Set_Element);
1169 function New_Node return Count_Type;
1170 pragma Inline (New_Node);
1172 procedure Insert_Post is
1173 new Element_Keys.Generic_Insert_Post (New_Node);
1175 procedure Insert_Sans_Hint is
1176 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1178 procedure Local_Insert_With_Hint is
1179 new Element_Keys.Generic_Conditional_Insert_With_Hint
1180 (Insert_Post,
1181 Insert_Sans_Hint);
1183 procedure Allocate is
1184 new Tree_Operations.Generic_Allocate (Set_Element);
1186 --------------
1187 -- New_Node --
1188 --------------
1190 function New_Node return Count_Type is
1191 Result : Count_Type;
1192 begin
1193 Allocate (Dst_Set, Result);
1194 return Result;
1195 end New_Node;
1197 -----------------
1198 -- Set_Element --
1199 -----------------
1201 procedure Set_Element (Node : in out Node_Type) is
1202 begin
1203 Node.Element := Src_Node.Element;
1204 end Set_Element;
1206 -- Start of processing for Insert_With_Hint
1208 begin
1209 Local_Insert_With_Hint
1210 (Dst_Set,
1211 Dst_Hint,
1212 Src_Node.Element,
1213 Dst_Node,
1214 Success);
1215 end Insert_With_Hint;
1217 ------------------
1218 -- Intersection --
1219 ------------------
1221 procedure Intersection (Target : in out Set; Source : Set)
1222 renames Set_Ops.Set_Intersection;
1224 function Intersection (Left, Right : Set) return Set
1225 renames Set_Ops.Set_Intersection;
1227 --------------
1228 -- Is_Empty --
1229 --------------
1231 function Is_Empty (Container : Set) return Boolean is
1232 begin
1233 return Container.Length = 0;
1234 end Is_Empty;
1236 -----------------------------
1237 -- Is_Greater_Element_Node --
1238 -----------------------------
1240 function Is_Greater_Element_Node
1241 (Left : Element_Type;
1242 Right : Node_Type) return Boolean
1244 begin
1245 -- Compute e > node same as node < e
1247 return Right.Element < Left;
1248 end Is_Greater_Element_Node;
1250 --------------------------
1251 -- Is_Less_Element_Node --
1252 --------------------------
1254 function Is_Less_Element_Node
1255 (Left : Element_Type;
1256 Right : Node_Type) return Boolean
1258 begin
1259 return Left < Right.Element;
1260 end Is_Less_Element_Node;
1262 -----------------------
1263 -- Is_Less_Node_Node --
1264 -----------------------
1266 function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1267 begin
1268 return L.Element < R.Element;
1269 end Is_Less_Node_Node;
1271 ---------------
1272 -- Is_Subset --
1273 ---------------
1275 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
1276 renames Set_Ops.Set_Subset;
1278 -------------
1279 -- Iterate --
1280 -------------
1282 procedure Iterate
1283 (Container : Set;
1284 Process : not null access procedure (Position : Cursor))
1286 procedure Process_Node (Node : Count_Type);
1287 pragma Inline (Process_Node);
1289 procedure Local_Iterate is
1290 new Tree_Operations.Generic_Iteration (Process_Node);
1292 ------------------
1293 -- Process_Node --
1294 ------------------
1296 procedure Process_Node (Node : Count_Type) is
1297 begin
1298 Process (Cursor'(Container'Unrestricted_Access, Node));
1299 end Process_Node;
1301 S : Set renames Container'Unrestricted_Access.all;
1302 B : Natural renames S.Busy;
1304 -- Start of processing for Iterate
1306 begin
1307 B := B + 1;
1309 begin
1310 Local_Iterate (S);
1311 exception
1312 when others =>
1313 B := B - 1;
1314 raise;
1315 end;
1317 B := B - 1;
1318 end Iterate;
1320 function Iterate (Container : Set)
1321 return Set_Iterator_Interfaces.Reversible_Iterator'class
1323 B : Natural renames Container'Unrestricted_Access.all.Busy;
1325 begin
1326 -- The value of the Node component influences the behavior of the First
1327 -- and Last selector functions of the iterator object. When the Node
1328 -- component is 0 (as is the case here), this means the iterator object
1329 -- was constructed without a start expression. This is a complete
1330 -- iterator, meaning that the iteration starts from the (logical)
1331 -- beginning of the sequence of items.
1333 -- Note: For a forward iterator, Container.First is the beginning, and
1334 -- for a reverse iterator, Container.Last is the beginning.
1336 return It : constant Iterator :=
1337 Iterator'(Limited_Controlled with
1338 Container => Container'Unrestricted_Access,
1339 Node => 0)
1341 B := B + 1;
1342 end return;
1343 end Iterate;
1345 function Iterate (Container : Set; Start : Cursor)
1346 return Set_Iterator_Interfaces.Reversible_Iterator'class
1348 B : Natural renames Container'Unrestricted_Access.all.Busy;
1350 begin
1351 -- It was formerly the case that when Start = No_Element, the partial
1352 -- iterator was defined to behave the same as for a complete iterator,
1353 -- and iterate over the entire sequence of items. However, those
1354 -- semantics were unintuitive and arguably error-prone (it is too easy
1355 -- to accidentally create an endless loop), and so they were changed,
1356 -- per the ARG meeting in Denver on 2011/11. However, there was no
1357 -- consensus about what positive meaning this corner case should have,
1358 -- and so it was decided to simply raise an exception. This does imply,
1359 -- however, that it is not possible to use a partial iterator to specify
1360 -- an empty sequence of items.
1362 if Start = No_Element then
1363 raise Constraint_Error with
1364 "Start position for iterator equals No_Element";
1365 end if;
1367 if Start.Container /= Container'Unrestricted_Access then
1368 raise Program_Error with
1369 "Start cursor of Iterate designates wrong set";
1370 end if;
1372 pragma Assert (Vet (Container, Start.Node),
1373 "Start cursor of Iterate is bad");
1375 -- The value of the Node component influences the behavior of the First
1376 -- and Last selector functions of the iterator object. When the Node
1377 -- component is positive (as is the case here), it means that this
1378 -- is a partial iteration, over a subset of the complete sequence of
1379 -- items. The iterator object was constructed with a start expression,
1380 -- indicating the position from which the iteration begins. (Note that
1381 -- the start position has the same value irrespective of whether this
1382 -- is a forward or reverse iteration.)
1384 return It : constant Iterator :=
1385 Iterator'(Limited_Controlled with
1386 Container => Container'Unrestricted_Access,
1387 Node => Start.Node)
1389 B := B + 1;
1390 end return;
1391 end Iterate;
1393 ----------
1394 -- Last --
1395 ----------
1397 function Last (Container : Set) return Cursor is
1398 begin
1399 return (if Container.Last = 0 then No_Element
1400 else Cursor'(Container'Unrestricted_Access, Container.Last));
1401 end Last;
1403 function Last (Object : Iterator) return Cursor is
1404 begin
1405 -- The value of the iterator object's Node component influences the
1406 -- behavior of the Last (and First) selector function.
1408 -- When the Node component is 0, this means the iterator object was
1409 -- constructed without a start expression, in which case the (reverse)
1410 -- iteration starts from the (logical) beginning of the entire sequence
1411 -- (corresponding to Container.Last, for a reverse iterator).
1413 -- Otherwise, this is iteration over a partial sequence of items. When
1414 -- the Node component is positive, the iterator object was constructed
1415 -- with a start expression, that specifies the position from which the
1416 -- (reverse) partial iteration begins.
1418 if Object.Node = 0 then
1419 return Bounded_Ordered_Sets.Last (Object.Container.all);
1420 else
1421 return Cursor'(Object.Container, Object.Node);
1422 end if;
1423 end Last;
1425 ------------------
1426 -- Last_Element --
1427 ------------------
1429 function Last_Element (Container : Set) return Element_Type is
1430 begin
1431 if Container.Last = 0 then
1432 raise Constraint_Error with "set is empty";
1433 end if;
1435 return Container.Nodes (Container.Last).Element;
1436 end Last_Element;
1438 ----------
1439 -- Left --
1440 ----------
1442 function Left (Node : Node_Type) return Count_Type is
1443 begin
1444 return Node.Left;
1445 end Left;
1447 ------------
1448 -- Length --
1449 ------------
1451 function Length (Container : Set) return Count_Type is
1452 begin
1453 return Container.Length;
1454 end Length;
1456 ----------
1457 -- Move --
1458 ----------
1460 procedure Move (Target : in out Set; Source : in out Set) is
1461 begin
1462 if Target'Address = Source'Address then
1463 return;
1464 end if;
1466 if Source.Busy > 0 then
1467 raise Program_Error with
1468 "attempt to tamper with cursors (container is busy)";
1469 end if;
1471 Target.Assign (Source);
1472 Source.Clear;
1473 end Move;
1475 ----------
1476 -- Next --
1477 ----------
1479 function Next (Position : Cursor) return Cursor is
1480 begin
1481 if Position = No_Element then
1482 return No_Element;
1483 end if;
1485 pragma Assert (Vet (Position.Container.all, Position.Node),
1486 "bad cursor in Next");
1488 declare
1489 Node : constant Count_Type :=
1490 Tree_Operations.Next (Position.Container.all, Position.Node);
1492 begin
1493 if Node = 0 then
1494 return No_Element;
1495 end if;
1497 return Cursor'(Position.Container, Node);
1498 end;
1499 end Next;
1501 procedure Next (Position : in out Cursor) is
1502 begin
1503 Position := Next (Position);
1504 end Next;
1506 function Next (Object : Iterator; Position : Cursor) return Cursor is
1507 begin
1508 if Position.Container = null then
1509 return No_Element;
1510 end if;
1512 if Position.Container /= Object.Container then
1513 raise Program_Error with
1514 "Position cursor of Next designates wrong set";
1515 end if;
1517 return Next (Position);
1518 end Next;
1520 -------------
1521 -- Overlap --
1522 -------------
1524 function Overlap (Left, Right : Set) return Boolean
1525 renames Set_Ops.Set_Overlap;
1527 ------------
1528 -- Parent --
1529 ------------
1531 function Parent (Node : Node_Type) return Count_Type is
1532 begin
1533 return Node.Parent;
1534 end Parent;
1536 --------------
1537 -- Previous --
1538 --------------
1540 function Previous (Position : Cursor) return Cursor is
1541 begin
1542 if Position = No_Element then
1543 return No_Element;
1544 end if;
1546 pragma Assert (Vet (Position.Container.all, Position.Node),
1547 "bad cursor in Previous");
1549 declare
1550 Node : constant Count_Type :=
1551 Tree_Operations.Previous (Position.Container.all, Position.Node);
1552 begin
1553 return (if Node = 0 then No_Element
1554 else Cursor'(Position.Container, Node));
1555 end;
1556 end Previous;
1558 procedure Previous (Position : in out Cursor) is
1559 begin
1560 Position := Previous (Position);
1561 end Previous;
1563 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1564 begin
1565 if Position.Container = null then
1566 return No_Element;
1567 end if;
1569 if Position.Container /= Object.Container then
1570 raise Program_Error with
1571 "Position cursor of Previous designates wrong set";
1572 end if;
1574 return Previous (Position);
1575 end Previous;
1577 -------------------
1578 -- Query_Element --
1579 -------------------
1581 procedure Query_Element
1582 (Position : Cursor;
1583 Process : not null access procedure (Element : Element_Type))
1585 begin
1586 if Position.Node = 0 then
1587 raise Constraint_Error with "Position cursor equals No_Element";
1588 end if;
1590 pragma Assert (Vet (Position.Container.all, Position.Node),
1591 "bad cursor in Query_Element");
1593 declare
1594 S : Set renames Position.Container.all;
1595 B : Natural renames S.Busy;
1596 L : Natural renames S.Lock;
1598 begin
1599 B := B + 1;
1600 L := L + 1;
1602 begin
1603 Process (S.Nodes (Position.Node).Element);
1604 exception
1605 when others =>
1606 L := L - 1;
1607 B := B - 1;
1608 raise;
1609 end;
1611 L := L - 1;
1612 B := B - 1;
1613 end;
1614 end Query_Element;
1616 ----------
1617 -- Read --
1618 ----------
1620 procedure Read
1621 (Stream : not null access Root_Stream_Type'Class;
1622 Container : out Set)
1624 procedure Read_Element (Node : in out Node_Type);
1625 pragma Inline (Read_Element);
1627 procedure Allocate is
1628 new Tree_Operations.Generic_Allocate (Read_Element);
1630 procedure Read_Elements is
1631 new Tree_Operations.Generic_Read (Allocate);
1633 ------------------
1634 -- Read_Element --
1635 ------------------
1637 procedure Read_Element (Node : in out Node_Type) is
1638 begin
1639 Element_Type'Read (Stream, Node.Element);
1640 end Read_Element;
1642 -- Start of processing for Read
1644 begin
1645 Read_Elements (Stream, Container);
1646 end Read;
1648 procedure Read
1649 (Stream : not null access Root_Stream_Type'Class;
1650 Item : out Cursor)
1652 begin
1653 raise Program_Error with "attempt to stream set cursor";
1654 end Read;
1656 procedure Read
1657 (Stream : not null access Root_Stream_Type'Class;
1658 Item : out Constant_Reference_Type)
1660 begin
1661 raise Program_Error with "attempt to stream reference";
1662 end Read;
1664 -------------
1665 -- Replace --
1666 -------------
1668 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1669 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1671 begin
1672 if Node = 0 then
1673 raise Constraint_Error with
1674 "attempt to replace element not in set";
1675 end if;
1677 if Container.Lock > 0 then
1678 raise Program_Error with
1679 "attempt to tamper with elements (set is locked)";
1680 end if;
1682 Container.Nodes (Node).Element := New_Item;
1683 end Replace;
1685 ---------------------
1686 -- Replace_Element --
1687 ---------------------
1689 procedure Replace_Element
1690 (Container : in out Set;
1691 Index : Count_Type;
1692 Item : Element_Type)
1694 pragma Assert (Index /= 0);
1696 function New_Node return Count_Type;
1697 pragma Inline (New_Node);
1699 procedure Local_Insert_Post is
1700 new Element_Keys.Generic_Insert_Post (New_Node);
1702 procedure Local_Insert_Sans_Hint is
1703 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1705 procedure Local_Insert_With_Hint is
1706 new Element_Keys.Generic_Conditional_Insert_With_Hint
1707 (Local_Insert_Post,
1708 Local_Insert_Sans_Hint);
1710 Nodes : Nodes_Type renames Container.Nodes;
1711 Node : Node_Type renames Nodes (Index);
1713 --------------
1714 -- New_Node --
1715 --------------
1717 function New_Node return Count_Type is
1718 begin
1719 Node.Element := Item;
1720 Node.Color := Red_Black_Trees.Red;
1721 Node.Parent := 0;
1722 Node.Right := 0;
1723 Node.Left := 0;
1724 return Index;
1725 end New_Node;
1727 Hint : Count_Type;
1728 Result : Count_Type;
1729 Inserted : Boolean;
1731 -- Start of processing for Replace_Element
1733 begin
1734 if Item < Node.Element
1735 or else Node.Element < Item
1736 then
1737 null;
1739 else
1740 if Container.Lock > 0 then
1741 raise Program_Error with
1742 "attempt to tamper with elements (set is locked)";
1743 end if;
1745 Node.Element := Item;
1746 return;
1747 end if;
1749 Hint := Element_Keys.Ceiling (Container, Item);
1751 if Hint = 0 then
1752 null;
1754 elsif Item < Nodes (Hint).Element then
1755 if Hint = Index then
1756 if Container.Lock > 0 then
1757 raise Program_Error with
1758 "attempt to tamper with elements (set is locked)";
1759 end if;
1761 Node.Element := Item;
1762 return;
1763 end if;
1765 else
1766 pragma Assert (not (Nodes (Hint).Element < Item));
1767 raise Program_Error with "attempt to replace existing element";
1768 end if;
1770 Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1772 Local_Insert_With_Hint
1773 (Tree => Container,
1774 Position => Hint,
1775 Key => Item,
1776 Node => Result,
1777 Inserted => Inserted);
1779 pragma Assert (Inserted);
1780 pragma Assert (Result = Index);
1781 end Replace_Element;
1783 procedure Replace_Element
1784 (Container : in out Set;
1785 Position : Cursor;
1786 New_Item : Element_Type)
1788 begin
1789 if Position.Node = 0 then
1790 raise Constraint_Error with
1791 "Position cursor equals No_Element";
1792 end if;
1794 if Position.Container /= Container'Unrestricted_Access then
1795 raise Program_Error with
1796 "Position cursor designates wrong set";
1797 end if;
1799 pragma Assert (Vet (Container, Position.Node),
1800 "bad cursor in Replace_Element");
1802 Replace_Element (Container, Position.Node, New_Item);
1803 end Replace_Element;
1805 ---------------------
1806 -- Reverse_Iterate --
1807 ---------------------
1809 procedure Reverse_Iterate
1810 (Container : Set;
1811 Process : not null access procedure (Position : Cursor))
1813 procedure Process_Node (Node : Count_Type);
1814 pragma Inline (Process_Node);
1816 procedure Local_Reverse_Iterate is
1817 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1819 ------------------
1820 -- Process_Node --
1821 ------------------
1823 procedure Process_Node (Node : Count_Type) is
1824 begin
1825 Process (Cursor'(Container'Unrestricted_Access, Node));
1826 end Process_Node;
1828 S : Set renames Container'Unrestricted_Access.all;
1829 B : Natural renames S.Busy;
1831 -- Start of processing for Reverse_Iterate
1833 begin
1834 B := B + 1;
1836 begin
1837 Local_Reverse_Iterate (S);
1838 exception
1839 when others =>
1840 B := B - 1;
1841 raise;
1842 end;
1844 B := B - 1;
1845 end Reverse_Iterate;
1847 -----------
1848 -- Right --
1849 -----------
1851 function Right (Node : Node_Type) return Count_Type is
1852 begin
1853 return Node.Right;
1854 end Right;
1856 ---------------
1857 -- Set_Color --
1858 ---------------
1860 procedure Set_Color
1861 (Node : in out Node_Type;
1862 Color : Red_Black_Trees.Color_Type)
1864 begin
1865 Node.Color := Color;
1866 end Set_Color;
1868 --------------
1869 -- Set_Left --
1870 --------------
1872 procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1873 begin
1874 Node.Left := Left;
1875 end Set_Left;
1877 ----------------
1878 -- Set_Parent --
1879 ----------------
1881 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1882 begin
1883 Node.Parent := Parent;
1884 end Set_Parent;
1886 ---------------
1887 -- Set_Right --
1888 ---------------
1890 procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1891 begin
1892 Node.Right := Right;
1893 end Set_Right;
1895 --------------------------
1896 -- Symmetric_Difference --
1897 --------------------------
1899 procedure Symmetric_Difference (Target : in out Set; Source : Set)
1900 renames Set_Ops.Set_Symmetric_Difference;
1902 function Symmetric_Difference (Left, Right : Set) return Set
1903 renames Set_Ops.Set_Symmetric_Difference;
1905 ------------
1906 -- To_Set --
1907 ------------
1909 function To_Set (New_Item : Element_Type) return Set is
1910 Node : Count_Type;
1911 Inserted : Boolean;
1912 begin
1913 return S : Set (1) do
1914 Insert_Sans_Hint (S, New_Item, Node, Inserted);
1915 pragma Assert (Inserted);
1916 end return;
1917 end To_Set;
1919 -----------
1920 -- Union --
1921 -----------
1923 procedure Union (Target : in out Set; Source : Set)
1924 renames Set_Ops.Set_Union;
1926 function Union (Left, Right : Set) return Set
1927 renames Set_Ops.Set_Union;
1929 -----------
1930 -- Write --
1931 -----------
1933 procedure Write
1934 (Stream : not null access Root_Stream_Type'Class;
1935 Container : Set)
1937 procedure Write_Element
1938 (Stream : not null access Root_Stream_Type'Class;
1939 Node : Node_Type);
1940 pragma Inline (Write_Element);
1942 procedure Write_Elements is
1943 new Tree_Operations.Generic_Write (Write_Element);
1945 -------------------
1946 -- Write_Element --
1947 -------------------
1949 procedure Write_Element
1950 (Stream : not null access Root_Stream_Type'Class;
1951 Node : Node_Type)
1953 begin
1954 Element_Type'Write (Stream, Node.Element);
1955 end Write_Element;
1957 -- Start of processing for Write
1959 begin
1960 Write_Elements (Stream, Container);
1961 end Write;
1963 procedure Write
1964 (Stream : not null access Root_Stream_Type'Class;
1965 Item : Cursor)
1967 begin
1968 raise Program_Error with "attempt to stream set cursor";
1969 end Write;
1971 procedure Write
1972 (Stream : not null access Root_Stream_Type'Class;
1973 Item : Constant_Reference_Type)
1975 begin
1976 raise Program_Error with "attempt to stream reference";
1977 end Write;
1979 end Ada.Containers.Bounded_Ordered_Sets;