sh-modes.def: comment pasto fix.
[official-gcc.git] / gcc / ipa-inline.c
blob6bbfcf0c00ed9e34f140d8d877ac3f22cb14128c
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Inlining decision heuristics
24 We separate inlining decisions from the inliner itself and store it
25 inside callgraph as so called inline plan. Refer to cgraph.c
26 documentation about particular representation of inline plans in the
27 callgraph.
29 There are three major parts of this file:
31 cgraph_mark_inline implementation
33 This function allows to mark given call inline and performs necessary
34 modifications of cgraph (production of the clones and updating overall
35 statistics)
37 inlining heuristics limits
39 These functions allow to check that particular inlining is allowed
40 by the limits specified by user (allowed function growth, overall unit
41 growth and so on).
43 inlining heuristics
45 This is implementation of IPA pass aiming to get as much of benefit
46 from inlining obeying the limits checked above.
48 The implementation of particular heuristics is separated from
49 the rest of code to make it easier to replace it with more complicated
50 implementation in the future. The rest of inlining code acts as a
51 library aimed to modify the callgraph and verify that the parameters
52 on code size growth fits.
54 To mark given call inline, use cgraph_mark_inline function, the
55 verification is performed by cgraph_default_inline_p and
56 cgraph_check_inline_limits.
58 The heuristics implements simple knapsack style algorithm ordering
59 all functions by their "profitability" (estimated by code size growth)
60 and inlining them in priority order.
62 cgraph_decide_inlining implements heuristics taking whole callgraph
63 into account, while cgraph_decide_inlining_incrementally considers
64 only one function at a time and is used in non-unit-at-a-time mode. */
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "tm.h"
70 #include "tree.h"
71 #include "tree-inline.h"
72 #include "langhooks.h"
73 #include "flags.h"
74 #include "cgraph.h"
75 #include "diagnostic.h"
76 #include "timevar.h"
77 #include "params.h"
78 #include "fibheap.h"
79 #include "intl.h"
80 #include "tree-pass.h"
81 #include "hashtab.h"
82 #include "coverage.h"
83 #include "ggc.h"
85 /* Statistics we collect about inlining algorithm. */
86 static int ncalls_inlined;
87 static int nfunctions_inlined;
88 static int initial_insns;
89 static int overall_insns;
90 static int max_insns;
91 static gcov_type max_count;
93 /* Estimate size of the function after inlining WHAT into TO. */
95 static int
96 cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
97 struct cgraph_node *what)
99 int size;
100 tree fndecl = what->decl, arg;
101 int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
103 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
104 call_insns += estimate_move_cost (TREE_TYPE (arg));
105 size = (what->global.insns - call_insns) * times + to->global.insns;
106 gcc_assert (size >= 0);
107 return size;
110 /* E is expected to be an edge being inlined. Clone destination node of
111 the edge and redirect it to the new clone.
112 DUPLICATE is used for bookkeeping on whether we are actually creating new
113 clones or re-using node originally representing out-of-line function call.
115 void
116 cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate, bool update_original)
118 if (duplicate)
120 /* We may eliminate the need for out-of-line copy to be output.
121 In that case just go ahead and re-use it. */
122 if (!e->callee->callers->next_caller
123 && !e->callee->needed
124 && flag_unit_at_a_time)
126 gcc_assert (!e->callee->global.inlined_to);
127 if (DECL_SAVED_TREE (e->callee->decl))
128 overall_insns -= e->callee->global.insns, nfunctions_inlined++;
129 duplicate = false;
131 else
133 struct cgraph_node *n;
134 n = cgraph_clone_node (e->callee, e->count, e->loop_nest,
135 update_original);
136 cgraph_redirect_edge_callee (e, n);
140 if (e->caller->global.inlined_to)
141 e->callee->global.inlined_to = e->caller->global.inlined_to;
142 else
143 e->callee->global.inlined_to = e->caller;
145 /* Recursively clone all bodies. */
146 for (e = e->callee->callees; e; e = e->next_callee)
147 if (!e->inline_failed)
148 cgraph_clone_inlined_nodes (e, duplicate, update_original);
151 /* Mark edge E as inlined and update callgraph accordingly.
152 UPDATE_ORIGINAL specify whether profile of original function should be
153 updated. */
155 void
156 cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original)
158 int old_insns = 0, new_insns = 0;
159 struct cgraph_node *to = NULL, *what;
161 if (e->callee->inline_decl)
162 cgraph_redirect_edge_callee (e, cgraph_node (e->callee->inline_decl));
164 gcc_assert (e->inline_failed);
165 e->inline_failed = NULL;
167 if (!e->callee->global.inlined && flag_unit_at_a_time)
168 DECL_POSSIBLY_INLINED (e->callee->decl) = true;
169 e->callee->global.inlined = true;
171 cgraph_clone_inlined_nodes (e, true, update_original);
173 what = e->callee;
175 /* Now update size of caller and all functions caller is inlined into. */
176 for (;e && !e->inline_failed; e = e->caller->callers)
178 old_insns = e->caller->global.insns;
179 new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
180 what);
181 gcc_assert (new_insns >= 0);
182 to = e->caller;
183 to->global.insns = new_insns;
185 gcc_assert (what->global.inlined_to == to);
186 if (new_insns > old_insns)
187 overall_insns += new_insns - old_insns;
188 ncalls_inlined++;
191 /* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
192 Return following unredirected edge in the list of callers
193 of EDGE->CALLEE */
195 static struct cgraph_edge *
196 cgraph_mark_inline (struct cgraph_edge *edge)
198 struct cgraph_node *to = edge->caller;
199 struct cgraph_node *what = edge->callee;
200 struct cgraph_edge *e, *next;
201 int times = 0;
203 /* Look for all calls, mark them inline and clone recursively
204 all inlined functions. */
205 for (e = what->callers; e; e = next)
207 next = e->next_caller;
208 if (e->caller == to && e->inline_failed)
210 cgraph_mark_inline_edge (e, true);
211 if (e == edge)
212 edge = next;
213 times++;
216 gcc_assert (times);
217 return edge;
220 /* Estimate the growth caused by inlining NODE into all callees. */
222 static int
223 cgraph_estimate_growth (struct cgraph_node *node)
225 int growth = 0;
226 struct cgraph_edge *e;
227 if (node->global.estimated_growth != INT_MIN)
228 return node->global.estimated_growth;
230 for (e = node->callers; e; e = e->next_caller)
231 if (e->inline_failed)
232 growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
233 - e->caller->global.insns);
235 /* ??? Wrong for self recursive functions or cases where we decide to not
236 inline for different reasons, but it is not big deal as in that case
237 we will keep the body around, but we will also avoid some inlining. */
238 if (!node->needed && !DECL_EXTERNAL (node->decl))
239 growth -= node->global.insns;
241 node->global.estimated_growth = growth;
242 return growth;
245 /* Return false when inlining WHAT into TO is not good idea
246 as it would cause too large growth of function bodies. */
248 static bool
249 cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
250 const char **reason)
252 int times = 0;
253 struct cgraph_edge *e;
254 int newsize;
255 int limit;
257 for (e = to->callees; e; e = e->next_callee)
258 if (e->callee == what)
259 times++;
261 if (to->global.inlined_to)
262 to = to->global.inlined_to;
264 /* When inlining large function body called once into small function,
265 take the inlined function as base for limiting the growth. */
266 if (to->local.self_insns > what->local.self_insns)
267 limit = to->local.self_insns;
268 else
269 limit = what->local.self_insns;
271 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
273 /* Check the size after inlining against the function limits. But allow
274 the function to shrink if it went over the limits by forced inlining. */
275 newsize = cgraph_estimate_size_after_inlining (times, to, what);
276 if (newsize >= to->global.insns
277 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
278 && newsize > limit)
280 if (reason)
281 *reason = N_("--param large-function-growth limit reached");
282 return false;
284 return true;
287 /* Return true when function N is small enough to be inlined. */
289 bool
290 cgraph_default_inline_p (struct cgraph_node *n, const char **reason)
292 tree decl = n->decl;
294 if (n->inline_decl)
295 decl = n->inline_decl;
296 if (!DECL_INLINE (decl))
298 if (reason)
299 *reason = N_("function not inlinable");
300 return false;
303 if (!DECL_STRUCT_FUNCTION (decl)->cfg)
305 if (reason)
306 *reason = N_("function body not available");
307 return false;
310 if (DECL_DECLARED_INLINE_P (decl))
312 if (n->global.insns >= MAX_INLINE_INSNS_SINGLE)
314 if (reason)
315 *reason = N_("--param max-inline-insns-single limit reached");
316 return false;
319 else
321 if (n->global.insns >= MAX_INLINE_INSNS_AUTO)
323 if (reason)
324 *reason = N_("--param max-inline-insns-auto limit reached");
325 return false;
329 return true;
332 /* Return true when inlining WHAT would create recursive inlining.
333 We call recursive inlining all cases where same function appears more than
334 once in the single recursion nest path in the inline graph. */
336 static bool
337 cgraph_recursive_inlining_p (struct cgraph_node *to,
338 struct cgraph_node *what,
339 const char **reason)
341 bool recursive;
342 if (to->global.inlined_to)
343 recursive = what->decl == to->global.inlined_to->decl;
344 else
345 recursive = what->decl == to->decl;
346 /* Marking recursive function inline has sane semantic and thus we should
347 not warn on it. */
348 if (recursive && reason)
349 *reason = (what->local.disregard_inline_limits
350 ? N_("recursive inlining") : "");
351 return recursive;
354 /* Return true if the call can be hot. */
355 static bool
356 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
358 if (profile_info && flag_branch_probabilities
359 && (edge->count
360 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
361 return false;
362 return true;
365 /* A cost model driving the inlining heuristics in a way so the edges with
366 smallest badness are inlined first. After each inlining is performed
367 the costs of all caller edges of nodes affected are recomputed so the
368 metrics may accurately depend on values such as number of inlinable callers
369 of the function or function body size.
371 With profiling we use number of executions of each edge to drive the cost.
372 We also should distinguish hot and cold calls where the cold calls are
373 inlined into only when code size is overall improved.
376 static int
377 cgraph_edge_badness (struct cgraph_edge *edge)
379 if (max_count)
381 int growth =
382 cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
383 growth -= edge->caller->global.insns;
385 /* Always prefer inlining saving code size. */
386 if (growth <= 0)
387 return INT_MIN - growth;
388 return ((int)((double)edge->count * INT_MIN / max_count)) / growth;
390 else
392 int nest = MIN (edge->loop_nest, 8);
393 int badness = cgraph_estimate_growth (edge->callee) * 256;
395 /* Decrease badness if call is nested. */
396 if (badness > 0)
397 badness >>= nest;
398 else
399 badness <<= nest;
401 /* Make recursive inlining happen always after other inlining is done. */
402 if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
403 return badness + 1;
404 else
405 return badness;
409 /* Recompute heap nodes for each of caller edge. */
411 static void
412 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
413 bitmap updated_nodes)
415 struct cgraph_edge *edge;
416 const char *failed_reason;
418 if (!node->local.inlinable || node->local.disregard_inline_limits
419 || node->global.inlined_to)
420 return;
421 if (bitmap_bit_p (updated_nodes, node->uid))
422 return;
423 bitmap_set_bit (updated_nodes, node->uid);
424 node->global.estimated_growth = INT_MIN;
426 if (!node->local.inlinable)
427 return;
428 /* Prune out edges we won't inline into anymore. */
429 if (!cgraph_default_inline_p (node, &failed_reason))
431 for (edge = node->callers; edge; edge = edge->next_caller)
432 if (edge->aux)
434 fibheap_delete_node (heap, edge->aux);
435 edge->aux = NULL;
436 if (edge->inline_failed)
437 edge->inline_failed = failed_reason;
439 return;
442 for (edge = node->callers; edge; edge = edge->next_caller)
443 if (edge->inline_failed)
445 int badness = cgraph_edge_badness (edge);
446 if (edge->aux)
448 fibnode_t n = edge->aux;
449 gcc_assert (n->data == edge);
450 if (n->key == badness)
451 continue;
453 /* fibheap_replace_key only increase the keys. */
454 if (fibheap_replace_key (heap, n, badness))
455 continue;
456 fibheap_delete_node (heap, edge->aux);
458 edge->aux = fibheap_insert (heap, badness, edge);
462 /* Recompute heap nodes for each of caller edges of each of callees. */
464 static void
465 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
466 bitmap updated_nodes)
468 struct cgraph_edge *e;
469 node->global.estimated_growth = INT_MIN;
471 for (e = node->callees; e; e = e->next_callee)
472 if (e->inline_failed)
473 update_caller_keys (heap, e->callee, updated_nodes);
474 else if (!e->inline_failed)
475 update_callee_keys (heap, e->callee, updated_nodes);
478 /* Enqueue all recursive calls from NODE into priority queue depending on
479 how likely we want to recursively inline the call. */
481 static void
482 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
483 fibheap_t heap)
485 static int priority;
486 struct cgraph_edge *e;
487 for (e = where->callees; e; e = e->next_callee)
488 if (e->callee == node)
490 /* When profile feedback is available, prioritize by expected number
491 of calls. Without profile feedback we maintain simple queue
492 to order candidates via recursive depths. */
493 fibheap_insert (heap,
494 !max_count ? priority++
495 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
498 for (e = where->callees; e; e = e->next_callee)
499 if (!e->inline_failed)
500 lookup_recursive_calls (node, e->callee, heap);
503 /* Find callgraph nodes closing a circle in the graph. The
504 resulting hashtab can be used to avoid walking the circles.
505 Uses the cgraph nodes ->aux field which needs to be zero
506 before and will be zero after operation. */
508 static void
509 cgraph_find_cycles (struct cgraph_node *node, htab_t cycles)
511 struct cgraph_edge *e;
513 if (node->aux)
515 void **slot;
516 slot = htab_find_slot (cycles, node, INSERT);
517 if (!*slot)
519 if (dump_file)
520 fprintf (dump_file, "Cycle contains %s\n", cgraph_node_name (node));
521 *slot = node;
523 return;
526 node->aux = node;
527 for (e = node->callees; e; e = e->next_callee)
528 cgraph_find_cycles (e->callee, cycles);
529 node->aux = 0;
532 /* Leafify the cgraph node. We have to be careful in recursing
533 as to not run endlessly in circles of the callgraph.
534 We do so by using a hashtab of cycle entering nodes as generated
535 by cgraph_find_cycles. */
537 static void
538 cgraph_flatten_node (struct cgraph_node *node, htab_t cycles)
540 struct cgraph_edge *e;
542 for (e = node->callees; e; e = e->next_callee)
544 /* Inline call, if possible, and recurse. Be sure we are not
545 entering callgraph circles here. */
546 if (e->inline_failed
547 && e->callee->local.inlinable
548 && !cgraph_recursive_inlining_p (node, e->callee,
549 &e->inline_failed)
550 && !htab_find (cycles, e->callee))
552 if (dump_file)
553 fprintf (dump_file, " inlining %s", cgraph_node_name (e->callee));
554 cgraph_mark_inline_edge (e, true);
555 cgraph_flatten_node (e->callee, cycles);
557 else if (dump_file)
558 fprintf (dump_file, " !inlining %s", cgraph_node_name (e->callee));
562 /* Decide on recursive inlining: in the case function has recursive calls,
563 inline until body size reaches given argument. */
565 static bool
566 cgraph_decide_recursive_inlining (struct cgraph_node *node)
568 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
569 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
570 int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
571 fibheap_t heap;
572 struct cgraph_edge *e;
573 struct cgraph_node *master_clone, *next;
574 int depth = 0;
575 int n = 0;
577 if (DECL_DECLARED_INLINE_P (node->decl))
579 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
580 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
583 /* Make sure that function is small enough to be considered for inlining. */
584 if (!max_depth
585 || cgraph_estimate_size_after_inlining (1, node, node) >= limit)
586 return false;
587 heap = fibheap_new ();
588 lookup_recursive_calls (node, node, heap);
589 if (fibheap_empty (heap))
591 fibheap_delete (heap);
592 return false;
595 if (dump_file)
596 fprintf (dump_file,
597 " Performing recursive inlining on %s\n",
598 cgraph_node_name (node));
600 /* We need original clone to copy around. */
601 master_clone = cgraph_clone_node (node, node->count, 1, false);
602 master_clone->needed = true;
603 for (e = master_clone->callees; e; e = e->next_callee)
604 if (!e->inline_failed)
605 cgraph_clone_inlined_nodes (e, true, false);
607 /* Do the inlining and update list of recursive call during process. */
608 while (!fibheap_empty (heap)
609 && (cgraph_estimate_size_after_inlining (1, node, master_clone)
610 <= limit))
612 struct cgraph_edge *curr = fibheap_extract_min (heap);
613 struct cgraph_node *cnode;
615 depth = 1;
616 for (cnode = curr->caller;
617 cnode->global.inlined_to; cnode = cnode->callers->caller)
618 if (node->decl == curr->callee->decl)
619 depth++;
620 if (depth > max_depth)
622 if (dump_file)
623 fprintf (dump_file,
624 " maxmal depth reached\n");
625 continue;
628 if (max_count)
630 if (!cgraph_maybe_hot_edge_p (curr))
632 if (dump_file)
633 fprintf (dump_file, " Not inlining cold call\n");
634 continue;
636 if (curr->count * 100 / node->count < probability)
638 if (dump_file)
639 fprintf (dump_file,
640 " Probability of edge is too small\n");
641 continue;
645 if (dump_file)
647 fprintf (dump_file,
648 " Inlining call of depth %i", depth);
649 if (node->count)
651 fprintf (dump_file, " called approx. %.2f times per call",
652 (double)curr->count / node->count);
654 fprintf (dump_file, "\n");
656 cgraph_redirect_edge_callee (curr, master_clone);
657 cgraph_mark_inline_edge (curr, false);
658 lookup_recursive_calls (node, curr->callee, heap);
659 n++;
661 if (!fibheap_empty (heap) && dump_file)
662 fprintf (dump_file, " Recursive inlining growth limit met.\n");
664 fibheap_delete (heap);
665 if (dump_file)
666 fprintf (dump_file,
667 "\n Inlined %i times, body grown from %i to %i insns\n", n,
668 master_clone->global.insns, node->global.insns);
670 /* Remove master clone we used for inlining. We rely that clones inlined
671 into master clone gets queued just before master clone so we don't
672 need recursion. */
673 for (node = cgraph_nodes; node != master_clone;
674 node = next)
676 next = node->next;
677 if (node->global.inlined_to == master_clone)
678 cgraph_remove_node (node);
680 cgraph_remove_node (master_clone);
681 /* FIXME: Recursive inlining actually reduces number of calls of the
682 function. At this place we should probably walk the function and
683 inline clones and compensate the counts accordingly. This probably
684 doesn't matter much in practice. */
685 return n > 0;
688 /* Set inline_failed for all callers of given function to REASON. */
690 static void
691 cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
693 struct cgraph_edge *e;
695 if (dump_file)
696 fprintf (dump_file, "Inlining failed: %s\n", reason);
697 for (e = node->callers; e; e = e->next_caller)
698 if (e->inline_failed)
699 e->inline_failed = reason;
702 /* We use greedy algorithm for inlining of small functions:
703 All inline candidates are put into prioritized heap based on estimated
704 growth of the overall number of instructions and then update the estimates.
706 INLINED and INLINED_CALEES are just pointers to arrays large enough
707 to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
709 static void
710 cgraph_decide_inlining_of_small_functions (void)
712 struct cgraph_node *node;
713 struct cgraph_edge *edge;
714 const char *failed_reason;
715 fibheap_t heap = fibheap_new ();
716 bitmap updated_nodes = BITMAP_ALLOC (NULL);
718 if (dump_file)
719 fprintf (dump_file, "\nDeciding on smaller functions:\n");
721 /* Put all inline candidates into the heap. */
723 for (node = cgraph_nodes; node; node = node->next)
725 if (!node->local.inlinable || !node->callers
726 || node->local.disregard_inline_limits)
727 continue;
728 if (dump_file)
729 fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
731 node->global.estimated_growth = INT_MIN;
732 if (!cgraph_default_inline_p (node, &failed_reason))
734 cgraph_set_inline_failed (node, failed_reason);
735 continue;
738 for (edge = node->callers; edge; edge = edge->next_caller)
739 if (edge->inline_failed)
741 gcc_assert (!edge->aux);
742 edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge);
745 while (overall_insns <= max_insns && (edge = fibheap_extract_min (heap)))
747 int old_insns = overall_insns;
748 struct cgraph_node *where;
749 int growth =
750 cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
752 growth -= edge->caller->global.insns;
754 if (dump_file)
756 fprintf (dump_file,
757 "\nConsidering %s with %i insns\n",
758 cgraph_node_name (edge->callee),
759 edge->callee->global.insns);
760 fprintf (dump_file,
761 " to be inlined into %s\n"
762 " Estimated growth after inlined into all callees is %+i insns.\n"
763 " Estimated badness is %i.\n",
764 cgraph_node_name (edge->caller),
765 cgraph_estimate_growth (edge->callee),
766 cgraph_edge_badness (edge));
767 if (edge->count)
768 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
770 gcc_assert (edge->aux);
771 edge->aux = NULL;
772 if (!edge->inline_failed)
773 continue;
775 /* When not having profile info ready we don't weight by any way the
776 position of call in procedure itself. This means if call of
777 function A from function B seems profitable to inline, the recursive
778 call of function A in inline copy of A in B will look profitable too
779 and we end up inlining until reaching maximal function growth. This
780 is not good idea so prohibit the recursive inlining.
782 ??? When the frequencies are taken into account we might not need this
783 restriction. */
784 if (!max_count)
786 where = edge->caller;
787 while (where->global.inlined_to)
789 if (where->decl == edge->callee->decl)
790 break;
791 where = where->callers->caller;
793 if (where->global.inlined_to)
795 edge->inline_failed
796 = (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : "");
797 if (dump_file)
798 fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
799 continue;
803 if (!cgraph_maybe_hot_edge_p (edge) && growth > 0)
805 if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
806 &edge->inline_failed))
808 edge->inline_failed =
809 N_("call is unlikely");
810 if (dump_file)
811 fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
813 continue;
815 if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
817 if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
818 &edge->inline_failed))
820 if (dump_file)
821 fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
823 continue;
825 if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
826 &edge->inline_failed))
828 where = edge->caller;
829 if (where->global.inlined_to)
830 where = where->global.inlined_to;
831 if (!cgraph_decide_recursive_inlining (where))
832 continue;
833 update_callee_keys (heap, where, updated_nodes);
835 else
837 struct cgraph_node *callee;
838 if (!cgraph_check_inline_limits (edge->caller, edge->callee,
839 &edge->inline_failed))
841 if (dump_file)
842 fprintf (dump_file, " Not inlining into %s:%s.\n",
843 cgraph_node_name (edge->caller), edge->inline_failed);
844 continue;
846 callee = edge->callee;
847 cgraph_mark_inline_edge (edge, true);
848 update_callee_keys (heap, callee, updated_nodes);
850 where = edge->caller;
851 if (where->global.inlined_to)
852 where = where->global.inlined_to;
854 /* Our profitability metric can depend on local properties
855 such as number of inlinable calls and size of the function body.
856 After inlining these properties might change for the function we
857 inlined into (since it's body size changed) and for the functions
858 called by function we inlined (since number of it inlinable callers
859 might change). */
860 update_caller_keys (heap, where, updated_nodes);
861 bitmap_clear (updated_nodes);
863 if (dump_file)
865 fprintf (dump_file,
866 " Inlined into %s which now has %i insns,"
867 "net change of %+i insns.\n",
868 cgraph_node_name (edge->caller),
869 edge->caller->global.insns,
870 overall_insns - old_insns);
873 while ((edge = fibheap_extract_min (heap)) != NULL)
875 gcc_assert (edge->aux);
876 edge->aux = NULL;
877 if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
878 && !cgraph_recursive_inlining_p (edge->caller, edge->callee,
879 &edge->inline_failed))
880 edge->inline_failed = N_("--param inline-unit-growth limit reached");
882 fibheap_delete (heap);
883 BITMAP_FREE (updated_nodes);
886 /* Decide on the inlining. We do so in the topological order to avoid
887 expenses on updating data structures. */
889 static unsigned int
890 cgraph_decide_inlining (void)
892 struct cgraph_node *node;
893 int nnodes;
894 struct cgraph_node **order =
895 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
896 int old_insns = 0;
897 int i;
899 timevar_push (TV_INLINE_HEURISTICS);
900 max_count = 0;
901 for (node = cgraph_nodes; node; node = node->next)
903 struct cgraph_edge *e;
904 initial_insns += node->local.self_insns;
905 for (e = node->callees; e; e = e->next_callee)
906 if (max_count < e->count)
907 max_count = e->count;
909 overall_insns = initial_insns;
910 gcc_assert (!max_count || (profile_info && flag_branch_probabilities));
912 max_insns = overall_insns;
913 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
914 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
916 max_insns = ((HOST_WIDEST_INT) max_insns
917 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
919 nnodes = cgraph_postorder (order);
921 if (dump_file)
922 fprintf (dump_file,
923 "\nDeciding on inlining. Starting with %i insns.\n",
924 initial_insns);
926 for (node = cgraph_nodes; node; node = node->next)
927 node->aux = 0;
929 if (dump_file)
930 fprintf (dump_file, "\nInlining always_inline functions:\n");
932 /* In the first pass mark all always_inline edges. Do this with a priority
933 so none of our later choices will make this impossible. */
934 for (i = nnodes - 1; i >= 0; i--)
936 struct cgraph_edge *e, *next;
938 node = order[i];
940 /* Handle nodes to be flattened, but don't update overall unit size. */
941 if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
943 int old_overall_insns = overall_insns;
944 htab_t cycles;
945 if (dump_file)
946 fprintf (dump_file,
947 "Leafifying %s\n", cgraph_node_name (node));
948 cycles = htab_create (7, htab_hash_pointer, htab_eq_pointer, NULL);
949 cgraph_find_cycles (node, cycles);
950 cgraph_flatten_node (node, cycles);
951 htab_delete (cycles);
952 overall_insns = old_overall_insns;
953 /* We don't need to consider always_inline functions inside the flattened
954 function anymore. */
955 continue;
958 if (!node->local.disregard_inline_limits)
959 continue;
960 if (dump_file)
961 fprintf (dump_file,
962 "\nConsidering %s %i insns (always inline)\n",
963 cgraph_node_name (node), node->global.insns);
964 old_insns = overall_insns;
965 for (e = node->callers; e; e = next)
967 next = e->next_caller;
968 if (!e->inline_failed)
969 continue;
970 if (cgraph_recursive_inlining_p (e->caller, e->callee,
971 &e->inline_failed))
972 continue;
973 cgraph_mark_inline_edge (e, true);
974 if (dump_file)
975 fprintf (dump_file,
976 " Inlined into %s which now has %i insns.\n",
977 cgraph_node_name (e->caller),
978 e->caller->global.insns);
980 if (dump_file)
981 fprintf (dump_file,
982 " Inlined for a net change of %+i insns.\n",
983 overall_insns - old_insns);
986 if (!flag_really_no_inline)
987 cgraph_decide_inlining_of_small_functions ();
989 if (!flag_really_no_inline
990 && flag_inline_functions_called_once)
992 if (dump_file)
993 fprintf (dump_file, "\nDeciding on functions called once:\n");
995 /* And finally decide what functions are called once. */
997 for (i = nnodes - 1; i >= 0; i--)
999 node = order[i];
1001 if (node->callers && !node->callers->next_caller && !node->needed
1002 && node->local.inlinable && node->callers->inline_failed
1003 && !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
1005 bool ok = true;
1006 struct cgraph_node *node1;
1008 /* Verify that we won't duplicate the caller. */
1009 for (node1 = node->callers->caller;
1010 node1->callers && !node1->callers->inline_failed
1011 && ok; node1 = node1->callers->caller)
1012 if (node1->callers->next_caller || node1->needed)
1013 ok = false;
1014 if (ok)
1016 if (dump_file)
1018 fprintf (dump_file,
1019 "\nConsidering %s %i insns.\n",
1020 cgraph_node_name (node), node->global.insns);
1021 fprintf (dump_file,
1022 " Called once from %s %i insns.\n",
1023 cgraph_node_name (node->callers->caller),
1024 node->callers->caller->global.insns);
1027 old_insns = overall_insns;
1029 if (cgraph_check_inline_limits (node->callers->caller, node,
1030 NULL))
1032 cgraph_mark_inline (node->callers);
1033 if (dump_file)
1034 fprintf (dump_file,
1035 " Inlined into %s which now has %i insns"
1036 " for a net change of %+i insns.\n",
1037 cgraph_node_name (node->callers->caller),
1038 node->callers->caller->global.insns,
1039 overall_insns - old_insns);
1041 else
1043 if (dump_file)
1044 fprintf (dump_file,
1045 " Inline limit reached, not inlined.\n");
1052 if (dump_file)
1053 fprintf (dump_file,
1054 "\nInlined %i calls, eliminated %i functions, "
1055 "%i insns turned to %i insns.\n\n",
1056 ncalls_inlined, nfunctions_inlined, initial_insns,
1057 overall_insns);
1058 free (order);
1059 timevar_pop (TV_INLINE_HEURISTICS);
1060 return 0;
1063 /* Decide on the inlining. We do so in the topological order to avoid
1064 expenses on updating data structures. */
1066 bool
1067 cgraph_decide_inlining_incrementally (struct cgraph_node *node, bool early)
1069 struct cgraph_edge *e;
1070 bool inlined = false;
1071 const char *failed_reason;
1073 /* First of all look for always inline functions. */
1074 for (e = node->callees; e; e = e->next_callee)
1075 if (e->callee->local.disregard_inline_limits
1076 && e->inline_failed
1077 && !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
1078 /* ??? It is possible that renaming variable removed the function body
1079 in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
1080 && (DECL_SAVED_TREE (e->callee->decl) || e->callee->inline_decl))
1082 if (dump_file && early)
1084 fprintf (dump_file, " Early inlining %s",
1085 cgraph_node_name (e->callee));
1086 fprintf (dump_file, " into %s\n", cgraph_node_name (node));
1088 cgraph_mark_inline (e);
1089 inlined = true;
1092 /* Now do the automatic inlining. */
1093 if (!flag_really_no_inline)
1094 for (e = node->callees; e; e = e->next_callee)
1095 if (e->callee->local.inlinable
1096 && e->inline_failed
1097 && !e->callee->local.disregard_inline_limits
1098 && !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
1099 && (!early
1100 || (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
1101 <= e->caller->global.insns))
1102 && cgraph_check_inline_limits (node, e->callee, &e->inline_failed)
1103 && (DECL_SAVED_TREE (e->callee->decl) || e->callee->inline_decl))
1105 if (cgraph_default_inline_p (e->callee, &failed_reason))
1107 if (dump_file && early)
1109 fprintf (dump_file, " Early inlining %s",
1110 cgraph_node_name (e->callee));
1111 fprintf (dump_file, " into %s\n", cgraph_node_name (node));
1113 cgraph_mark_inline (e);
1114 inlined = true;
1116 else if (!early)
1117 e->inline_failed = failed_reason;
1119 if (early && inlined)
1121 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
1122 tree_register_cfg_hooks ();
1123 current_function_decl = node->decl;
1124 optimize_inline_calls (current_function_decl);
1125 node->local.self_insns = node->global.insns;
1126 current_function_decl = NULL;
1127 pop_cfun ();
1129 return inlined;
1132 /* When inlining shall be performed. */
1133 static bool
1134 cgraph_gate_inlining (void)
1136 return flag_inline_trees;
1139 struct tree_opt_pass pass_ipa_inline =
1141 "inline", /* name */
1142 cgraph_gate_inlining, /* gate */
1143 cgraph_decide_inlining, /* execute */
1144 NULL, /* sub */
1145 NULL, /* next */
1146 0, /* static_pass_number */
1147 TV_INTEGRATION, /* tv_id */
1148 0, /* properties_required */
1149 PROP_cfg, /* properties_provided */
1150 0, /* properties_destroyed */
1151 0, /* todo_flags_start */
1152 TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
1153 0 /* letter */
1156 /* Because inlining might remove no-longer reachable nodes, we need to
1157 keep the array visible to garbage collector to avoid reading collected
1158 out nodes. */
1159 static int nnodes;
1160 static GTY ((length ("nnodes"))) struct cgraph_node **order;
1162 /* Do inlining of small functions. Doing so early helps profiling and other
1163 passes to be somewhat more effective and avoids some code duplication in
1164 later real inlining pass for testcases with very many function calls. */
1165 static unsigned int
1166 cgraph_early_inlining (void)
1168 struct cgraph_node *node;
1169 int i;
1171 if (sorrycount || errorcount)
1172 return 0;
1173 #ifdef ENABLE_CHECKING
1174 for (node = cgraph_nodes; node; node = node->next)
1175 gcc_assert (!node->aux);
1176 #endif
1178 order = ggc_alloc (sizeof (*order) * cgraph_n_nodes);
1179 nnodes = cgraph_postorder (order);
1180 for (i = nnodes - 1; i >= 0; i--)
1182 node = order[i];
1183 if (node->analyzed && node->local.inlinable
1184 && (node->needed || node->reachable)
1185 && node->callers)
1187 if (cgraph_decide_inlining_incrementally (node, true))
1188 ggc_collect ();
1191 cgraph_remove_unreachable_nodes (true, dump_file);
1192 #ifdef ENABLE_CHECKING
1193 for (node = cgraph_nodes; node; node = node->next)
1194 gcc_assert (!node->global.inlined_to);
1195 #endif
1196 ggc_free (order);
1197 order = NULL;
1198 nnodes = 0;
1199 return 0;
1202 /* When inlining shall be performed. */
1203 static bool
1204 cgraph_gate_early_inlining (void)
1206 return flag_inline_trees && flag_early_inlining;
1209 struct tree_opt_pass pass_early_ipa_inline =
1211 "einline", /* name */
1212 cgraph_gate_early_inlining, /* gate */
1213 cgraph_early_inlining, /* execute */
1214 NULL, /* sub */
1215 NULL, /* next */
1216 0, /* static_pass_number */
1217 TV_INTEGRATION, /* tv_id */
1218 0, /* properties_required */
1219 PROP_cfg, /* properties_provided */
1220 0, /* properties_destroyed */
1221 0, /* todo_flags_start */
1222 TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
1223 0 /* letter */
1226 #include "gt-ipa-inline.h"