* gimplify.c (struct gimplify_init_ctor_preeval_data): New.
[official-gcc.git] / gcc / regrename.c
blob80cbcaafd37e8b8f2a2b58ed227e2f6c4120b46b
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "toplev.h"
37 #include "obstack.h"
39 #ifndef REG_MODE_OK_FOR_BASE_P
40 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
41 #endif
43 static const char *const reg_class_names[] = REG_CLASS_NAMES;
45 struct du_chain
47 struct du_chain *next_chain;
48 struct du_chain *next_use;
50 rtx insn;
51 rtx *loc;
52 ENUM_BITFIELD(reg_class) cl : 16;
53 unsigned int need_caller_save_reg:1;
54 unsigned int earlyclobber:1;
57 enum scan_actions
59 terminate_all_read,
60 terminate_overlapping_read,
61 terminate_write,
62 terminate_dead,
63 mark_read,
64 mark_write
67 static const char * const scan_actions_name[] =
69 "terminate_all_read",
70 "terminate_overlapping_read",
71 "terminate_write",
72 "terminate_dead",
73 "mark_read",
74 "mark_write"
77 static struct obstack rename_obstack;
79 static void do_replace (struct du_chain *, int);
80 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
81 enum scan_actions, enum op_type, int);
82 static void scan_rtx_address (rtx, rtx *, enum reg_class,
83 enum scan_actions, enum machine_mode);
84 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
85 enum op_type, int);
86 static struct du_chain *build_def_use (basic_block);
87 static void dump_def_use_chain (struct du_chain *);
88 static void note_sets (rtx, rtx, void *);
89 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
90 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
91 struct du_chain *);
93 /* Called through note_stores from update_life. Find sets of registers, and
94 record them in *DATA (which is actually a HARD_REG_SET *). */
96 static void
97 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
99 HARD_REG_SET *pset = (HARD_REG_SET *) data;
100 unsigned int regno;
101 int nregs;
102 if (!REG_P (x))
103 return;
104 regno = REGNO (x);
105 nregs = hard_regno_nregs[regno][GET_MODE (x)];
107 /* There must not be pseudos at this point. */
108 if (regno + nregs > FIRST_PSEUDO_REGISTER)
109 abort ();
111 while (nregs-- > 0)
112 SET_HARD_REG_BIT (*pset, regno + nregs);
115 /* Clear all registers from *PSET for which a note of kind KIND can be found
116 in the list NOTES. */
118 static void
119 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
121 rtx note;
122 for (note = notes; note; note = XEXP (note, 1))
123 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
125 rtx reg = XEXP (note, 0);
126 unsigned int regno = REGNO (reg);
127 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
129 /* There must not be pseudos at this point. */
130 if (regno + nregs > FIRST_PSEUDO_REGISTER)
131 abort ();
133 while (nregs-- > 0)
134 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
138 /* For a def-use chain CHAIN in basic block B, find which registers overlap
139 its lifetime and set the corresponding bits in *PSET. */
141 static void
142 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
143 struct du_chain *chain)
145 struct du_chain *t = chain;
146 rtx insn;
147 HARD_REG_SET live;
149 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
150 insn = BB_HEAD (b);
151 while (t)
153 /* Search forward until the next reference to the register to be
154 renamed. */
155 while (insn != t->insn)
157 if (INSN_P (insn))
159 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
160 note_stores (PATTERN (insn), note_sets, (void *) &live);
161 /* Only record currently live regs if we are inside the
162 reg's live range. */
163 if (t != chain)
164 IOR_HARD_REG_SET (*pset, live);
165 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
167 insn = NEXT_INSN (insn);
170 IOR_HARD_REG_SET (*pset, live);
172 /* For the last reference, also merge in all registers set in the
173 same insn.
174 @@@ We only have take earlyclobbered sets into account. */
175 if (! t->next_use)
176 note_stores (PATTERN (insn), note_sets, (void *) pset);
178 t = t->next_use;
182 /* Perform register renaming on the current function. */
184 void
185 regrename_optimize (void)
187 int tick[FIRST_PSEUDO_REGISTER];
188 int this_tick = 0;
189 basic_block bb;
190 char *first_obj;
192 memset (tick, 0, sizeof tick);
194 gcc_obstack_init (&rename_obstack);
195 first_obj = obstack_alloc (&rename_obstack, 0);
197 FOR_EACH_BB (bb)
199 struct du_chain *all_chains = 0;
200 HARD_REG_SET unavailable;
201 HARD_REG_SET regs_seen;
203 CLEAR_HARD_REG_SET (unavailable);
205 if (dump_file)
206 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
208 all_chains = build_def_use (bb);
210 if (dump_file)
211 dump_def_use_chain (all_chains);
213 CLEAR_HARD_REG_SET (unavailable);
214 /* Don't clobber traceback for noreturn functions. */
215 if (frame_pointer_needed)
217 int i;
219 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
220 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
222 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
223 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
224 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
225 #endif
228 CLEAR_HARD_REG_SET (regs_seen);
229 while (all_chains)
231 int new_reg, best_new_reg;
232 int n_uses;
233 struct du_chain *this = all_chains;
234 struct du_chain *tmp, *last;
235 HARD_REG_SET this_unavailable;
236 int reg = REGNO (*this->loc);
237 int i;
239 all_chains = this->next_chain;
241 best_new_reg = reg;
243 #if 0 /* This just disables optimization opportunities. */
244 /* Only rename once we've seen the reg more than once. */
245 if (! TEST_HARD_REG_BIT (regs_seen, reg))
247 SET_HARD_REG_BIT (regs_seen, reg);
248 continue;
250 #endif
252 if (fixed_regs[reg] || global_regs[reg]
253 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
254 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
255 #else
256 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
257 #endif
259 continue;
261 COPY_HARD_REG_SET (this_unavailable, unavailable);
263 /* Find last entry on chain (which has the need_caller_save bit),
264 count number of uses, and narrow the set of registers we can
265 use for renaming. */
266 n_uses = 0;
267 for (last = this; last->next_use; last = last->next_use)
269 n_uses++;
270 IOR_COMPL_HARD_REG_SET (this_unavailable,
271 reg_class_contents[last->cl]);
273 if (n_uses < 1)
274 continue;
276 IOR_COMPL_HARD_REG_SET (this_unavailable,
277 reg_class_contents[last->cl]);
279 if (this->need_caller_save_reg)
280 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
282 merge_overlapping_regs (bb, &this_unavailable, this);
284 /* Now potential_regs is a reasonable approximation, let's
285 have a closer look at each register still in there. */
286 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
288 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
290 for (i = nregs - 1; i >= 0; --i)
291 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
292 || fixed_regs[new_reg + i]
293 || global_regs[new_reg + i]
294 /* Can't use regs which aren't saved by the prologue. */
295 || (! regs_ever_live[new_reg + i]
296 && ! call_used_regs[new_reg + i])
297 #ifdef LEAF_REGISTERS
298 /* We can't use a non-leaf register if we're in a
299 leaf function. */
300 || (current_function_is_leaf
301 && !LEAF_REGISTERS[new_reg + i])
302 #endif
303 #ifdef HARD_REGNO_RENAME_OK
304 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
305 #endif
307 break;
308 if (i >= 0)
309 continue;
311 /* See whether it accepts all modes that occur in
312 definition and uses. */
313 for (tmp = this; tmp; tmp = tmp->next_use)
314 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
315 || (tmp->need_caller_save_reg
316 && ! (HARD_REGNO_CALL_PART_CLOBBERED
317 (reg, GET_MODE (*tmp->loc)))
318 && (HARD_REGNO_CALL_PART_CLOBBERED
319 (new_reg, GET_MODE (*tmp->loc)))))
320 break;
321 if (! tmp)
323 if (tick[best_new_reg] > tick[new_reg])
324 best_new_reg = new_reg;
328 if (dump_file)
330 fprintf (dump_file, "Register %s in insn %d",
331 reg_names[reg], INSN_UID (last->insn));
332 if (last->need_caller_save_reg)
333 fprintf (dump_file, " crosses a call");
336 if (best_new_reg == reg)
338 tick[reg] = ++this_tick;
339 if (dump_file)
340 fprintf (dump_file, "; no available better choice\n");
341 continue;
344 do_replace (this, best_new_reg);
345 tick[best_new_reg] = ++this_tick;
346 regs_ever_live[best_new_reg] = 1;
348 if (dump_file)
349 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
352 obstack_free (&rename_obstack, first_obj);
355 obstack_free (&rename_obstack, NULL);
357 if (dump_file)
358 fputc ('\n', dump_file);
360 count_or_remove_death_notes (NULL, 1);
361 update_life_info (NULL, UPDATE_LIFE_LOCAL,
362 PROP_DEATH_NOTES);
365 static void
366 do_replace (struct du_chain *chain, int reg)
368 while (chain)
370 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
371 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
373 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
374 if (regno >= FIRST_PSEUDO_REGISTER)
375 ORIGINAL_REGNO (*chain->loc) = regno;
376 REG_ATTRS (*chain->loc) = attr;
377 chain = chain->next_use;
382 static struct du_chain *open_chains;
383 static struct du_chain *closed_chains;
385 static void
386 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
387 enum scan_actions action, enum op_type type, int earlyclobber)
389 struct du_chain **p;
390 rtx x = *loc;
391 enum machine_mode mode = GET_MODE (x);
392 int this_regno = REGNO (x);
393 int this_nregs = hard_regno_nregs[this_regno][mode];
395 if (action == mark_write)
397 if (type == OP_OUT)
399 struct du_chain *this
400 = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
401 this->next_use = 0;
402 this->next_chain = open_chains;
403 this->loc = loc;
404 this->insn = insn;
405 this->cl = cl;
406 this->need_caller_save_reg = 0;
407 this->earlyclobber = earlyclobber;
408 open_chains = this;
410 return;
413 if ((type == OP_OUT && action != terminate_write)
414 || (type != OP_OUT && action == terminate_write))
415 return;
417 for (p = &open_chains; *p;)
419 struct du_chain *this = *p;
421 /* Check if the chain has been terminated if it has then skip to
422 the next chain.
424 This can happen when we've already appended the location to
425 the chain in Step 3, but are trying to hide in-out operands
426 from terminate_write in Step 5. */
428 if (*this->loc == cc0_rtx)
429 p = &this->next_chain;
430 else
432 int regno = REGNO (*this->loc);
433 int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
434 int exact_match = (regno == this_regno && nregs == this_nregs);
436 if (regno + nregs <= this_regno
437 || this_regno + this_nregs <= regno)
439 p = &this->next_chain;
440 continue;
443 if (action == mark_read)
445 if (! exact_match)
446 abort ();
448 /* ??? Class NO_REGS can happen if the md file makes use of
449 EXTRA_CONSTRAINTS to match registers. Which is arguably
450 wrong, but there we are. Since we know not what this may
451 be replaced with, terminate the chain. */
452 if (cl != NO_REGS)
454 this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
455 this->next_use = 0;
456 this->next_chain = (*p)->next_chain;
457 this->loc = loc;
458 this->insn = insn;
459 this->cl = cl;
460 this->need_caller_save_reg = 0;
461 while (*p)
462 p = &(*p)->next_use;
463 *p = this;
464 return;
468 if (action != terminate_overlapping_read || ! exact_match)
470 struct du_chain *next = this->next_chain;
472 /* Whether the terminated chain can be used for renaming
473 depends on the action and this being an exact match.
474 In either case, we remove this element from open_chains. */
476 if ((action == terminate_dead || action == terminate_write)
477 && exact_match)
479 this->next_chain = closed_chains;
480 closed_chains = this;
481 if (dump_file)
482 fprintf (dump_file,
483 "Closing chain %s at insn %d (%s)\n",
484 reg_names[REGNO (*this->loc)], INSN_UID (insn),
485 scan_actions_name[(int) action]);
487 else
489 if (dump_file)
490 fprintf (dump_file,
491 "Discarding chain %s at insn %d (%s)\n",
492 reg_names[REGNO (*this->loc)], INSN_UID (insn),
493 scan_actions_name[(int) action]);
495 *p = next;
497 else
498 p = &this->next_chain;
503 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
504 BASE_REG_CLASS depending on how the register is being considered. */
506 static void
507 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
508 enum scan_actions action, enum machine_mode mode)
510 rtx x = *loc;
511 RTX_CODE code = GET_CODE (x);
512 const char *fmt;
513 int i, j;
515 if (action == mark_write)
516 return;
518 switch (code)
520 case PLUS:
522 rtx orig_op0 = XEXP (x, 0);
523 rtx orig_op1 = XEXP (x, 1);
524 RTX_CODE code0 = GET_CODE (orig_op0);
525 RTX_CODE code1 = GET_CODE (orig_op1);
526 rtx op0 = orig_op0;
527 rtx op1 = orig_op1;
528 rtx *locI = NULL;
529 rtx *locB = NULL;
531 if (GET_CODE (op0) == SUBREG)
533 op0 = SUBREG_REG (op0);
534 code0 = GET_CODE (op0);
537 if (GET_CODE (op1) == SUBREG)
539 op1 = SUBREG_REG (op1);
540 code1 = GET_CODE (op1);
543 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
544 || code0 == ZERO_EXTEND || code1 == MEM)
546 locI = &XEXP (x, 0);
547 locB = &XEXP (x, 1);
549 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
550 || code1 == ZERO_EXTEND || code0 == MEM)
552 locI = &XEXP (x, 1);
553 locB = &XEXP (x, 0);
555 else if (code0 == CONST_INT || code0 == CONST
556 || code0 == SYMBOL_REF || code0 == LABEL_REF)
557 locB = &XEXP (x, 1);
558 else if (code1 == CONST_INT || code1 == CONST
559 || code1 == SYMBOL_REF || code1 == LABEL_REF)
560 locB = &XEXP (x, 0);
561 else if (code0 == REG && code1 == REG)
563 int index_op;
565 if (REG_OK_FOR_INDEX_P (op0)
566 && REG_MODE_OK_FOR_BASE_P (op1, mode))
567 index_op = 0;
568 else if (REG_OK_FOR_INDEX_P (op1)
569 && REG_MODE_OK_FOR_BASE_P (op0, mode))
570 index_op = 1;
571 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
572 index_op = 0;
573 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
574 index_op = 1;
575 else if (REG_OK_FOR_INDEX_P (op1))
576 index_op = 1;
577 else
578 index_op = 0;
580 locI = &XEXP (x, index_op);
581 locB = &XEXP (x, !index_op);
583 else if (code0 == REG)
585 locI = &XEXP (x, 0);
586 locB = &XEXP (x, 1);
588 else if (code1 == REG)
590 locI = &XEXP (x, 1);
591 locB = &XEXP (x, 0);
594 if (locI)
595 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
596 if (locB)
597 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
598 return;
601 case POST_INC:
602 case POST_DEC:
603 case POST_MODIFY:
604 case PRE_INC:
605 case PRE_DEC:
606 case PRE_MODIFY:
607 #ifndef AUTO_INC_DEC
608 /* If the target doesn't claim to handle autoinc, this must be
609 something special, like a stack push. Kill this chain. */
610 action = terminate_all_read;
611 #endif
612 break;
614 case MEM:
615 scan_rtx_address (insn, &XEXP (x, 0),
616 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
617 GET_MODE (x));
618 return;
620 case REG:
621 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
622 return;
624 default:
625 break;
628 fmt = GET_RTX_FORMAT (code);
629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
631 if (fmt[i] == 'e')
632 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
633 else if (fmt[i] == 'E')
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
639 static void
640 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
641 enum scan_actions action, enum op_type type, int earlyclobber)
643 const char *fmt;
644 rtx x = *loc;
645 enum rtx_code code = GET_CODE (x);
646 int i, j;
648 code = GET_CODE (x);
649 switch (code)
651 case CONST:
652 case CONST_INT:
653 case CONST_DOUBLE:
654 case CONST_VECTOR:
655 case SYMBOL_REF:
656 case LABEL_REF:
657 case CC0:
658 case PC:
659 return;
661 case REG:
662 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
663 return;
665 case MEM:
666 scan_rtx_address (insn, &XEXP (x, 0),
667 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
668 GET_MODE (x));
669 return;
671 case SET:
672 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
673 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 0);
674 return;
676 case STRICT_LOW_PART:
677 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
678 return;
680 case ZERO_EXTRACT:
681 case SIGN_EXTRACT:
682 scan_rtx (insn, &XEXP (x, 0), cl, action,
683 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
684 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
685 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
686 return;
688 case POST_INC:
689 case PRE_INC:
690 case POST_DEC:
691 case PRE_DEC:
692 case POST_MODIFY:
693 case PRE_MODIFY:
694 /* Should only happen inside MEM. */
695 abort ();
697 case CLOBBER:
698 scan_rtx (insn, &SET_DEST (x), cl, action, OP_OUT, 1);
699 return;
701 case EXPR_LIST:
702 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
703 if (XEXP (x, 1))
704 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
705 return;
707 default:
708 break;
711 fmt = GET_RTX_FORMAT (code);
712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
714 if (fmt[i] == 'e')
715 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
716 else if (fmt[i] == 'E')
717 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
718 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
722 /* Build def/use chain. */
724 static struct du_chain *
725 build_def_use (basic_block bb)
727 rtx insn;
729 open_chains = closed_chains = NULL;
731 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
733 if (INSN_P (insn))
735 int n_ops;
736 rtx note;
737 rtx old_operands[MAX_RECOG_OPERANDS];
738 rtx old_dups[MAX_DUP_OPERANDS];
739 int i, icode;
740 int alt;
741 int predicated;
743 /* Process the insn, determining its effect on the def-use
744 chains. We perform the following steps with the register
745 references in the insn:
746 (1) Any read that overlaps an open chain, but doesn't exactly
747 match, causes that chain to be closed. We can't deal
748 with overlaps yet.
749 (2) Any read outside an operand causes any chain it overlaps
750 with to be closed, since we can't replace it.
751 (3) Any read inside an operand is added if there's already
752 an open chain for it.
753 (4) For any REG_DEAD note we find, close open chains that
754 overlap it.
755 (5) For any write we find, close open chains that overlap it.
756 (6) For any write we find in an operand, make a new chain.
757 (7) For any REG_UNUSED, close any chains we just opened. */
759 icode = recog_memoized (insn);
760 extract_insn (insn);
761 if (! constrain_operands (1))
762 fatal_insn_not_found (insn);
763 preprocess_constraints ();
764 alt = which_alternative;
765 n_ops = recog_data.n_operands;
767 /* Simplify the code below by rewriting things to reflect
768 matching constraints. Also promote OP_OUT to OP_INOUT
769 in predicated instructions. */
771 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
772 for (i = 0; i < n_ops; ++i)
774 int matches = recog_op_alt[i][alt].matches;
775 if (matches >= 0)
776 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
777 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
778 || (predicated && recog_data.operand_type[i] == OP_OUT))
779 recog_data.operand_type[i] = OP_INOUT;
782 /* Step 1: Close chains for which we have overlapping reads. */
783 for (i = 0; i < n_ops; i++)
784 scan_rtx (insn, recog_data.operand_loc[i],
785 NO_REGS, terminate_overlapping_read,
786 recog_data.operand_type[i], 0);
788 /* Step 2: Close chains for which we have reads outside operands.
789 We do this by munging all operands into CC0, and closing
790 everything remaining. */
792 for (i = 0; i < n_ops; i++)
794 old_operands[i] = recog_data.operand[i];
795 /* Don't squash match_operator or match_parallel here, since
796 we don't know that all of the contained registers are
797 reachable by proper operands. */
798 if (recog_data.constraints[i][0] == '\0')
799 continue;
800 *recog_data.operand_loc[i] = cc0_rtx;
802 for (i = 0; i < recog_data.n_dups; i++)
804 int dup_num = recog_data.dup_num[i];
806 old_dups[i] = *recog_data.dup_loc[i];
807 *recog_data.dup_loc[i] = cc0_rtx;
809 /* For match_dup of match_operator or match_parallel, share
810 them, so that we don't miss changes in the dup. */
811 if (icode >= 0
812 && insn_data[icode].operand[dup_num].eliminable == 0)
813 old_dups[i] = recog_data.operand[dup_num];
816 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
817 OP_IN, 0);
819 for (i = 0; i < recog_data.n_dups; i++)
820 *recog_data.dup_loc[i] = old_dups[i];
821 for (i = 0; i < n_ops; i++)
822 *recog_data.operand_loc[i] = old_operands[i];
824 /* Step 2B: Can't rename function call argument registers. */
825 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
826 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
827 NO_REGS, terminate_all_read, OP_IN, 0);
829 /* Step 2C: Can't rename asm operands that were originally
830 hard registers. */
831 if (asm_noperands (PATTERN (insn)) > 0)
832 for (i = 0; i < n_ops; i++)
834 rtx *loc = recog_data.operand_loc[i];
835 rtx op = *loc;
837 if (REG_P (op)
838 && REGNO (op) == ORIGINAL_REGNO (op)
839 && (recog_data.operand_type[i] == OP_IN
840 || recog_data.operand_type[i] == OP_INOUT))
841 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
844 /* Step 3: Append to chains for reads inside operands. */
845 for (i = 0; i < n_ops + recog_data.n_dups; i++)
847 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
848 rtx *loc = (i < n_ops
849 ? recog_data.operand_loc[opn]
850 : recog_data.dup_loc[i - n_ops]);
851 enum reg_class cl = recog_op_alt[opn][alt].cl;
852 enum op_type type = recog_data.operand_type[opn];
854 /* Don't scan match_operand here, since we've no reg class
855 information to pass down. Any operands that we could
856 substitute in will be represented elsewhere. */
857 if (recog_data.constraints[opn][0] == '\0')
858 continue;
860 if (recog_op_alt[opn][alt].is_address)
861 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
862 else
863 scan_rtx (insn, loc, cl, mark_read, type, 0);
866 /* Step 4: Close chains for registers that die here.
867 Also record updates for REG_INC notes. */
868 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
870 if (REG_NOTE_KIND (note) == REG_DEAD)
871 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
872 OP_IN, 0);
873 else if (REG_NOTE_KIND (note) == REG_INC)
874 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
875 OP_INOUT, 0);
878 /* Step 4B: If this is a call, any chain live at this point
879 requires a caller-saved reg. */
880 if (CALL_P (insn))
882 struct du_chain *p;
883 for (p = open_chains; p; p = p->next_chain)
884 p->need_caller_save_reg = 1;
887 /* Step 5: Close open chains that overlap writes. Similar to
888 step 2, we hide in-out operands, since we do not want to
889 close these chains. */
891 for (i = 0; i < n_ops; i++)
893 old_operands[i] = recog_data.operand[i];
894 if (recog_data.operand_type[i] == OP_INOUT)
895 *recog_data.operand_loc[i] = cc0_rtx;
897 for (i = 0; i < recog_data.n_dups; i++)
899 int opn = recog_data.dup_num[i];
900 old_dups[i] = *recog_data.dup_loc[i];
901 if (recog_data.operand_type[opn] == OP_INOUT)
902 *recog_data.dup_loc[i] = cc0_rtx;
905 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
907 for (i = 0; i < recog_data.n_dups; i++)
908 *recog_data.dup_loc[i] = old_dups[i];
909 for (i = 0; i < n_ops; i++)
910 *recog_data.operand_loc[i] = old_operands[i];
912 /* Step 6: Begin new chains for writes inside operands. */
913 /* ??? Many targets have output constraints on the SET_DEST
914 of a call insn, which is stupid, since these are certainly
915 ABI defined hard registers. Don't change calls at all.
916 Similarly take special care for asm statement that originally
917 referenced hard registers. */
918 if (asm_noperands (PATTERN (insn)) > 0)
920 for (i = 0; i < n_ops; i++)
921 if (recog_data.operand_type[i] == OP_OUT)
923 rtx *loc = recog_data.operand_loc[i];
924 rtx op = *loc;
925 enum reg_class cl = recog_op_alt[i][alt].cl;
927 if (REG_P (op)
928 && REGNO (op) == ORIGINAL_REGNO (op))
929 continue;
931 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
932 recog_op_alt[i][alt].earlyclobber);
935 else if (!CALL_P (insn))
936 for (i = 0; i < n_ops + recog_data.n_dups; i++)
938 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
939 rtx *loc = (i < n_ops
940 ? recog_data.operand_loc[opn]
941 : recog_data.dup_loc[i - n_ops]);
942 enum reg_class cl = recog_op_alt[opn][alt].cl;
944 if (recog_data.operand_type[opn] == OP_OUT)
945 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
946 recog_op_alt[opn][alt].earlyclobber);
949 /* Step 7: Close chains for registers that were never
950 really used here. */
951 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
952 if (REG_NOTE_KIND (note) == REG_UNUSED)
953 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
954 OP_IN, 0);
956 if (insn == BB_END (bb))
957 break;
960 /* Since we close every chain when we find a REG_DEAD note, anything that
961 is still open lives past the basic block, so it can't be renamed. */
962 return closed_chains;
965 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
966 printed in reverse order as that's how we build them. */
968 static void
969 dump_def_use_chain (struct du_chain *chains)
971 while (chains)
973 struct du_chain *this = chains;
974 int r = REGNO (*this->loc);
975 int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
976 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
977 while (this)
979 fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
980 reg_class_names[this->cl]);
981 this = this->next_use;
983 fprintf (dump_file, "\n");
984 chains = chains->next_chain;
988 /* The following code does forward propagation of hard register copies.
989 The object is to eliminate as many dependencies as possible, so that
990 we have the most scheduling freedom. As a side effect, we also clean
991 up some silly register allocation decisions made by reload. This
992 code may be obsoleted by a new register allocator. */
994 /* For each register, we have a list of registers that contain the same
995 value. The OLDEST_REGNO field points to the head of the list, and
996 the NEXT_REGNO field runs through the list. The MODE field indicates
997 what mode the data is known to be in; this field is VOIDmode when the
998 register is not known to contain valid data. */
1000 struct value_data_entry
1002 enum machine_mode mode;
1003 unsigned int oldest_regno;
1004 unsigned int next_regno;
1007 struct value_data
1009 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1010 unsigned int max_value_regs;
1013 static void kill_value_regno (unsigned, struct value_data *);
1014 static void kill_value (rtx, struct value_data *);
1015 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1016 static void init_value_data (struct value_data *);
1017 static void kill_clobbered_value (rtx, rtx, void *);
1018 static void kill_set_value (rtx, rtx, void *);
1019 static int kill_autoinc_value (rtx *, void *);
1020 static void copy_value (rtx, rtx, struct value_data *);
1021 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1022 unsigned int);
1023 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1024 enum machine_mode, unsigned int, unsigned int);
1025 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1026 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1027 struct value_data *);
1028 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1029 enum machine_mode, rtx,
1030 struct value_data *);
1031 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1032 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1033 extern void debug_value_data (struct value_data *);
1034 #ifdef ENABLE_CHECKING
1035 static void validate_value_data (struct value_data *);
1036 #endif
1038 /* Kill register REGNO. This involves removing it from any value lists,
1039 and resetting the value mode to VOIDmode. */
1041 static void
1042 kill_value_regno (unsigned int regno, struct value_data *vd)
1044 unsigned int i, next;
1046 if (vd->e[regno].oldest_regno != regno)
1048 for (i = vd->e[regno].oldest_regno;
1049 vd->e[i].next_regno != regno;
1050 i = vd->e[i].next_regno)
1051 continue;
1052 vd->e[i].next_regno = vd->e[regno].next_regno;
1054 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1056 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1057 vd->e[i].oldest_regno = next;
1060 vd->e[regno].mode = VOIDmode;
1061 vd->e[regno].oldest_regno = regno;
1062 vd->e[regno].next_regno = INVALID_REGNUM;
1064 #ifdef ENABLE_CHECKING
1065 validate_value_data (vd);
1066 #endif
1069 /* Kill X. This is a convenience function for kill_value_regno
1070 so that we mind the mode the register is in. */
1072 static void
1073 kill_value (rtx x, struct value_data *vd)
1075 /* SUBREGS are supposed to have been eliminated by now. But some
1076 ports, e.g. i386 sse, use them to smuggle vector type information
1077 through to instruction selection. Each such SUBREG should simplify,
1078 so if we get a NULL we've done something wrong elsewhere. */
1080 if (GET_CODE (x) == SUBREG)
1081 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1082 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1083 if (REG_P (x))
1085 unsigned int regno = REGNO (x);
1086 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1087 unsigned int i, j;
1089 /* Kill the value we're told to kill. */
1090 for (i = 0; i < n; ++i)
1091 kill_value_regno (regno + i, vd);
1093 /* Kill everything that overlapped what we're told to kill. */
1094 if (regno < vd->max_value_regs)
1095 j = 0;
1096 else
1097 j = regno - vd->max_value_regs;
1098 for (; j < regno; ++j)
1100 if (vd->e[j].mode == VOIDmode)
1101 continue;
1102 n = hard_regno_nregs[j][vd->e[j].mode];
1103 if (j + n > regno)
1104 for (i = 0; i < n; ++i)
1105 kill_value_regno (j + i, vd);
1110 /* Remember that REGNO is valid in MODE. */
1112 static void
1113 set_value_regno (unsigned int regno, enum machine_mode mode,
1114 struct value_data *vd)
1116 unsigned int nregs;
1118 vd->e[regno].mode = mode;
1120 nregs = hard_regno_nregs[regno][mode];
1121 if (nregs > vd->max_value_regs)
1122 vd->max_value_regs = nregs;
1125 /* Initialize VD such that there are no known relationships between regs. */
1127 static void
1128 init_value_data (struct value_data *vd)
1130 int i;
1131 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1133 vd->e[i].mode = VOIDmode;
1134 vd->e[i].oldest_regno = i;
1135 vd->e[i].next_regno = INVALID_REGNUM;
1137 vd->max_value_regs = 0;
1140 /* Called through note_stores. If X is clobbered, kill its value. */
1142 static void
1143 kill_clobbered_value (rtx x, rtx set, void *data)
1145 struct value_data *vd = data;
1146 if (GET_CODE (set) == CLOBBER)
1147 kill_value (x, vd);
1150 /* Called through note_stores. If X is set, not clobbered, kill its
1151 current value and install it as the root of its own value list. */
1153 static void
1154 kill_set_value (rtx x, rtx set, void *data)
1156 struct value_data *vd = data;
1157 if (GET_CODE (set) != CLOBBER)
1159 kill_value (x, vd);
1160 if (REG_P (x))
1161 set_value_regno (REGNO (x), GET_MODE (x), vd);
1165 /* Called through for_each_rtx. Kill any register used as the base of an
1166 auto-increment expression, and install that register as the root of its
1167 own value list. */
1169 static int
1170 kill_autoinc_value (rtx *px, void *data)
1172 rtx x = *px;
1173 struct value_data *vd = data;
1175 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1177 x = XEXP (x, 0);
1178 kill_value (x, vd);
1179 set_value_regno (REGNO (x), Pmode, vd);
1180 return -1;
1183 return 0;
1186 /* Assert that SRC has been copied to DEST. Adjust the data structures
1187 to reflect that SRC contains an older copy of the shared value. */
1189 static void
1190 copy_value (rtx dest, rtx src, struct value_data *vd)
1192 unsigned int dr = REGNO (dest);
1193 unsigned int sr = REGNO (src);
1194 unsigned int dn, sn;
1195 unsigned int i;
1197 /* ??? At present, it's possible to see noop sets. It'd be nice if
1198 this were cleaned up beforehand... */
1199 if (sr == dr)
1200 return;
1202 /* Do not propagate copies to the stack pointer, as that can leave
1203 memory accesses with no scheduling dependency on the stack update. */
1204 if (dr == STACK_POINTER_REGNUM)
1205 return;
1207 /* Likewise with the frame pointer, if we're using one. */
1208 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1209 return;
1211 /* If SRC and DEST overlap, don't record anything. */
1212 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1213 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1214 if ((dr > sr && dr < sr + sn)
1215 || (sr > dr && sr < dr + dn))
1216 return;
1218 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1219 assign it now and assume the value came from an input argument
1220 or somesuch. */
1221 if (vd->e[sr].mode == VOIDmode)
1222 set_value_regno (sr, vd->e[dr].mode, vd);
1224 /* If we are narrowing the input to a smaller number of hard regs,
1225 and it is in big endian, we are really extracting a high part.
1226 Since we generally associate a low part of a value with the value itself,
1227 we must not do the same for the high part.
1228 Note we can still get low parts for the same mode combination through
1229 a two-step copy involving differently sized hard regs.
1230 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1231 (set (reg:DI r0) (reg:DI fr0))
1232 (set (reg:SI fr2) (reg:SI r0))
1233 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1234 (set (reg:SI fr2) (reg:SI fr0))
1235 loads the high part of (reg:DI fr0) into fr2.
1237 We can't properly represent the latter case in our tables, so don't
1238 record anything then. */
1239 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1240 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1241 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1242 return;
1244 /* If SRC had been assigned a mode narrower than the copy, we can't
1245 link DEST into the chain, because not all of the pieces of the
1246 copy came from oldest_regno. */
1247 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1248 return;
1250 /* Link DR at the end of the value chain used by SR. */
1252 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1254 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1255 continue;
1256 vd->e[i].next_regno = dr;
1258 #ifdef ENABLE_CHECKING
1259 validate_value_data (vd);
1260 #endif
1263 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1265 static bool
1266 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1267 unsigned int regno ATTRIBUTE_UNUSED)
1269 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1270 return false;
1272 #ifdef CANNOT_CHANGE_MODE_CLASS
1273 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1274 #endif
1276 return true;
1279 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1280 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1281 in NEW_MODE.
1282 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1284 static rtx
1285 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1286 enum machine_mode new_mode, unsigned int regno,
1287 unsigned int copy_regno ATTRIBUTE_UNUSED)
1289 if (orig_mode == new_mode)
1290 return gen_rtx_raw_REG (new_mode, regno);
1291 else if (mode_change_ok (orig_mode, new_mode, regno))
1293 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1294 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1295 int copy_offset
1296 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1297 int offset
1298 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1299 int byteoffset = offset % UNITS_PER_WORD;
1300 int wordoffset = offset - byteoffset;
1302 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1303 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1304 return gen_rtx_raw_REG (new_mode,
1305 regno + subreg_regno_offset (regno, orig_mode,
1306 offset,
1307 new_mode));
1309 return NULL_RTX;
1312 /* Find the oldest copy of the value contained in REGNO that is in
1313 register class CL and has mode MODE. If found, return an rtx
1314 of that oldest register, otherwise return NULL. */
1316 static rtx
1317 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1319 unsigned int regno = REGNO (reg);
1320 enum machine_mode mode = GET_MODE (reg);
1321 unsigned int i;
1323 /* If we are accessing REG in some mode other that what we set it in,
1324 make sure that the replacement is valid. In particular, consider
1325 (set (reg:DI r11) (...))
1326 (set (reg:SI r9) (reg:SI r11))
1327 (set (reg:SI r10) (...))
1328 (set (...) (reg:DI r9))
1329 Replacing r9 with r11 is invalid. */
1330 if (mode != vd->e[regno].mode)
1332 if (hard_regno_nregs[regno][mode]
1333 > hard_regno_nregs[regno][vd->e[regno].mode])
1334 return NULL_RTX;
1337 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1339 enum machine_mode oldmode = vd->e[i].mode;
1340 rtx new;
1341 unsigned int last;
1343 for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
1344 if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
1345 return NULL_RTX;
1347 new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1348 if (new)
1350 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1351 REG_ATTRS (new) = REG_ATTRS (reg);
1352 return new;
1356 return NULL_RTX;
1359 /* If possible, replace the register at *LOC with the oldest register
1360 in register class CL. Return true if successfully replaced. */
1362 static bool
1363 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1364 struct value_data *vd)
1366 rtx new = find_oldest_value_reg (cl, *loc, vd);
1367 if (new)
1369 if (dump_file)
1370 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1371 INSN_UID (insn), REGNO (*loc), REGNO (new));
1373 *loc = new;
1374 return true;
1376 return false;
1379 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1380 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1381 BASE_REG_CLASS depending on how the register is being considered. */
1383 static bool
1384 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1385 enum machine_mode mode, rtx insn,
1386 struct value_data *vd)
1388 rtx x = *loc;
1389 RTX_CODE code = GET_CODE (x);
1390 const char *fmt;
1391 int i, j;
1392 bool changed = false;
1394 switch (code)
1396 case PLUS:
1398 rtx orig_op0 = XEXP (x, 0);
1399 rtx orig_op1 = XEXP (x, 1);
1400 RTX_CODE code0 = GET_CODE (orig_op0);
1401 RTX_CODE code1 = GET_CODE (orig_op1);
1402 rtx op0 = orig_op0;
1403 rtx op1 = orig_op1;
1404 rtx *locI = NULL;
1405 rtx *locB = NULL;
1407 if (GET_CODE (op0) == SUBREG)
1409 op0 = SUBREG_REG (op0);
1410 code0 = GET_CODE (op0);
1413 if (GET_CODE (op1) == SUBREG)
1415 op1 = SUBREG_REG (op1);
1416 code1 = GET_CODE (op1);
1419 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1420 || code0 == ZERO_EXTEND || code1 == MEM)
1422 locI = &XEXP (x, 0);
1423 locB = &XEXP (x, 1);
1425 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1426 || code1 == ZERO_EXTEND || code0 == MEM)
1428 locI = &XEXP (x, 1);
1429 locB = &XEXP (x, 0);
1431 else if (code0 == CONST_INT || code0 == CONST
1432 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1433 locB = &XEXP (x, 1);
1434 else if (code1 == CONST_INT || code1 == CONST
1435 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1436 locB = &XEXP (x, 0);
1437 else if (code0 == REG && code1 == REG)
1439 int index_op;
1441 if (REG_OK_FOR_INDEX_P (op0)
1442 && REG_MODE_OK_FOR_BASE_P (op1, mode))
1443 index_op = 0;
1444 else if (REG_OK_FOR_INDEX_P (op1)
1445 && REG_MODE_OK_FOR_BASE_P (op0, mode))
1446 index_op = 1;
1447 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1448 index_op = 0;
1449 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1450 index_op = 1;
1451 else if (REG_OK_FOR_INDEX_P (op1))
1452 index_op = 1;
1453 else
1454 index_op = 0;
1456 locI = &XEXP (x, index_op);
1457 locB = &XEXP (x, !index_op);
1459 else if (code0 == REG)
1461 locI = &XEXP (x, 0);
1462 locB = &XEXP (x, 1);
1464 else if (code1 == REG)
1466 locI = &XEXP (x, 1);
1467 locB = &XEXP (x, 0);
1470 if (locI)
1471 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1472 insn, vd);
1473 if (locB)
1474 changed |= replace_oldest_value_addr (locB,
1475 MODE_BASE_REG_CLASS (mode),
1476 mode, insn, vd);
1477 return changed;
1480 case POST_INC:
1481 case POST_DEC:
1482 case POST_MODIFY:
1483 case PRE_INC:
1484 case PRE_DEC:
1485 case PRE_MODIFY:
1486 return false;
1488 case MEM:
1489 return replace_oldest_value_mem (x, insn, vd);
1491 case REG:
1492 return replace_oldest_value_reg (loc, cl, insn, vd);
1494 default:
1495 break;
1498 fmt = GET_RTX_FORMAT (code);
1499 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1501 if (fmt[i] == 'e')
1502 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1503 insn, vd);
1504 else if (fmt[i] == 'E')
1505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1506 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1507 mode, insn, vd);
1510 return changed;
1513 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1515 static bool
1516 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1518 return replace_oldest_value_addr (&XEXP (x, 0),
1519 MODE_BASE_REG_CLASS (GET_MODE (x)),
1520 GET_MODE (x), insn, vd);
1523 /* Perform the forward copy propagation on basic block BB. */
1525 static bool
1526 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1528 bool changed = false;
1529 rtx insn;
1531 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1533 int n_ops, i, alt, predicated;
1534 bool is_asm;
1535 rtx set;
1537 if (! INSN_P (insn))
1539 if (insn == BB_END (bb))
1540 break;
1541 else
1542 continue;
1545 set = single_set (insn);
1546 extract_insn (insn);
1547 if (! constrain_operands (1))
1548 fatal_insn_not_found (insn);
1549 preprocess_constraints ();
1550 alt = which_alternative;
1551 n_ops = recog_data.n_operands;
1552 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1554 /* Simplify the code below by rewriting things to reflect
1555 matching constraints. Also promote OP_OUT to OP_INOUT
1556 in predicated instructions. */
1558 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1559 for (i = 0; i < n_ops; ++i)
1561 int matches = recog_op_alt[i][alt].matches;
1562 if (matches >= 0)
1563 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1564 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1565 || (predicated && recog_data.operand_type[i] == OP_OUT))
1566 recog_data.operand_type[i] = OP_INOUT;
1569 /* For each earlyclobber operand, zap the value data. */
1570 for (i = 0; i < n_ops; i++)
1571 if (recog_op_alt[i][alt].earlyclobber)
1572 kill_value (recog_data.operand[i], vd);
1574 /* Within asms, a clobber cannot overlap inputs or outputs.
1575 I wouldn't think this were true for regular insns, but
1576 scan_rtx treats them like that... */
1577 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1579 /* Kill all auto-incremented values. */
1580 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1581 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1583 /* Kill all early-clobbered operands. */
1584 for (i = 0; i < n_ops; i++)
1585 if (recog_op_alt[i][alt].earlyclobber)
1586 kill_value (recog_data.operand[i], vd);
1588 /* Special-case plain move instructions, since we may well
1589 be able to do the move from a different register class. */
1590 if (set && REG_P (SET_SRC (set)))
1592 rtx src = SET_SRC (set);
1593 unsigned int regno = REGNO (src);
1594 enum machine_mode mode = GET_MODE (src);
1595 unsigned int i;
1596 rtx new;
1598 /* If we are accessing SRC in some mode other that what we
1599 set it in, make sure that the replacement is valid. */
1600 if (mode != vd->e[regno].mode)
1602 if (hard_regno_nregs[regno][mode]
1603 > hard_regno_nregs[regno][vd->e[regno].mode])
1604 goto no_move_special_case;
1607 /* If the destination is also a register, try to find a source
1608 register in the same class. */
1609 if (REG_P (SET_DEST (set)))
1611 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1612 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1614 if (dump_file)
1615 fprintf (dump_file,
1616 "insn %u: replaced reg %u with %u\n",
1617 INSN_UID (insn), regno, REGNO (new));
1618 changed = true;
1619 goto did_replacement;
1623 /* Otherwise, try all valid registers and see if its valid. */
1624 for (i = vd->e[regno].oldest_regno; i != regno;
1625 i = vd->e[i].next_regno)
1627 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1628 mode, i, regno);
1629 if (new != NULL_RTX)
1631 if (validate_change (insn, &SET_SRC (set), new, 0))
1633 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1634 REG_ATTRS (new) = REG_ATTRS (src);
1635 if (dump_file)
1636 fprintf (dump_file,
1637 "insn %u: replaced reg %u with %u\n",
1638 INSN_UID (insn), regno, REGNO (new));
1639 changed = true;
1640 goto did_replacement;
1645 no_move_special_case:
1647 /* For each input operand, replace a hard register with the
1648 eldest live copy that's in an appropriate register class. */
1649 for (i = 0; i < n_ops; i++)
1651 bool replaced = false;
1653 /* Don't scan match_operand here, since we've no reg class
1654 information to pass down. Any operands that we could
1655 substitute in will be represented elsewhere. */
1656 if (recog_data.constraints[i][0] == '\0')
1657 continue;
1659 /* Don't replace in asms intentionally referencing hard regs. */
1660 if (is_asm && REG_P (recog_data.operand[i])
1661 && (REGNO (recog_data.operand[i])
1662 == ORIGINAL_REGNO (recog_data.operand[i])))
1663 continue;
1665 if (recog_data.operand_type[i] == OP_IN)
1667 if (recog_op_alt[i][alt].is_address)
1668 replaced
1669 = replace_oldest_value_addr (recog_data.operand_loc[i],
1670 recog_op_alt[i][alt].cl,
1671 VOIDmode, insn, vd);
1672 else if (REG_P (recog_data.operand[i]))
1673 replaced
1674 = replace_oldest_value_reg (recog_data.operand_loc[i],
1675 recog_op_alt[i][alt].cl,
1676 insn, vd);
1677 else if (MEM_P (recog_data.operand[i]))
1678 replaced = replace_oldest_value_mem (recog_data.operand[i],
1679 insn, vd);
1681 else if (MEM_P (recog_data.operand[i]))
1682 replaced = replace_oldest_value_mem (recog_data.operand[i],
1683 insn, vd);
1685 /* If we performed any replacement, update match_dups. */
1686 if (replaced)
1688 int j;
1689 rtx new;
1691 changed = true;
1693 new = *recog_data.operand_loc[i];
1694 recog_data.operand[i] = new;
1695 for (j = 0; j < recog_data.n_dups; j++)
1696 if (recog_data.dup_num[j] == i)
1697 *recog_data.dup_loc[j] = new;
1701 did_replacement:
1702 /* Clobber call-clobbered registers. */
1703 if (CALL_P (insn))
1704 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1705 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1706 kill_value_regno (i, vd);
1708 /* Notice stores. */
1709 note_stores (PATTERN (insn), kill_set_value, vd);
1711 /* Notice copies. */
1712 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1713 copy_value (SET_DEST (set), SET_SRC (set), vd);
1715 if (insn == BB_END (bb))
1716 break;
1719 return changed;
1722 /* Main entry point for the forward copy propagation optimization. */
1724 void
1725 copyprop_hardreg_forward (void)
1727 struct value_data *all_vd;
1728 bool need_refresh;
1729 basic_block bb, bbp = 0;
1731 need_refresh = false;
1733 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1735 FOR_EACH_BB (bb)
1737 /* If a block has a single predecessor, that we've already
1738 processed, begin with the value data that was live at
1739 the end of the predecessor block. */
1740 /* ??? Ought to use more intelligent queuing of blocks. */
1741 if (bb->pred)
1742 for (bbp = bb; bbp && bbp != bb->pred->src; bbp = bbp->prev_bb);
1743 if (bb->pred
1744 && ! bb->pred->pred_next
1745 && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1746 && bb->pred->src != ENTRY_BLOCK_PTR
1747 && bbp)
1748 all_vd[bb->index] = all_vd[bb->pred->src->index];
1749 else
1750 init_value_data (all_vd + bb->index);
1752 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1753 need_refresh = true;
1756 if (need_refresh)
1758 if (dump_file)
1759 fputs ("\n\n", dump_file);
1761 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1762 to scan, so we have to do a life update with no initial set of
1763 blocks Just In Case. */
1764 delete_noop_moves ();
1765 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1766 PROP_DEATH_NOTES
1767 | PROP_SCAN_DEAD_CODE
1768 | PROP_KILL_DEAD_CODE);
1771 free (all_vd);
1774 /* Dump the value chain data to stderr. */
1776 void
1777 debug_value_data (struct value_data *vd)
1779 HARD_REG_SET set;
1780 unsigned int i, j;
1782 CLEAR_HARD_REG_SET (set);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1785 if (vd->e[i].oldest_regno == i)
1787 if (vd->e[i].mode == VOIDmode)
1789 if (vd->e[i].next_regno != INVALID_REGNUM)
1790 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1791 i, vd->e[i].next_regno);
1792 continue;
1795 SET_HARD_REG_BIT (set, i);
1796 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1798 for (j = vd->e[i].next_regno;
1799 j != INVALID_REGNUM;
1800 j = vd->e[j].next_regno)
1802 if (TEST_HARD_REG_BIT (set, j))
1804 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1805 return;
1808 if (vd->e[j].oldest_regno != i)
1810 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1811 j, vd->e[j].oldest_regno);
1812 return;
1814 SET_HARD_REG_BIT (set, j);
1815 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1817 fputc ('\n', stderr);
1820 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1821 if (! TEST_HARD_REG_BIT (set, i)
1822 && (vd->e[i].mode != VOIDmode
1823 || vd->e[i].oldest_regno != i
1824 || vd->e[i].next_regno != INVALID_REGNUM))
1825 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1826 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1827 vd->e[i].next_regno);
1830 #ifdef ENABLE_CHECKING
1831 static void
1832 validate_value_data (struct value_data *vd)
1834 HARD_REG_SET set;
1835 unsigned int i, j;
1837 CLEAR_HARD_REG_SET (set);
1839 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1840 if (vd->e[i].oldest_regno == i)
1842 if (vd->e[i].mode == VOIDmode)
1844 if (vd->e[i].next_regno != INVALID_REGNUM)
1845 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1846 i, vd->e[i].next_regno);
1847 continue;
1850 SET_HARD_REG_BIT (set, i);
1852 for (j = vd->e[i].next_regno;
1853 j != INVALID_REGNUM;
1854 j = vd->e[j].next_regno)
1856 if (TEST_HARD_REG_BIT (set, j))
1857 internal_error ("validate_value_data: Loop in regno chain (%u)",
1859 if (vd->e[j].oldest_regno != i)
1860 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1861 j, vd->e[j].oldest_regno);
1863 SET_HARD_REG_BIT (set, j);
1867 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1868 if (! TEST_HARD_REG_BIT (set, i)
1869 && (vd->e[i].mode != VOIDmode
1870 || vd->e[i].oldest_regno != i
1871 || vd->e[i].next_regno != INVALID_REGNUM))
1872 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1873 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1874 vd->e[i].next_regno);
1876 #endif