1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-ssa-propagate.h"
36 #include "langhooks.h"
39 /* This file implements optimizations on the dominator tree. */
41 /* Representation of a "naked" right-hand-side expression, to be used
42 in recording available expressions in the expression hash table. */
59 struct { tree rhs
; } single
;
60 struct { enum tree_code op
; tree opnd
; } unary
;
61 struct { enum tree_code op
; tree opnd0
, opnd1
; } binary
;
62 struct { enum tree_code op
; tree opnd0
, opnd1
, opnd2
; } ternary
;
63 struct { gimple fn_from
; bool pure
; size_t nargs
; tree
*args
; } call
;
64 struct { size_t nargs
; tree
*args
; } phi
;
68 /* Structure for recording known values of a conditional expression
69 at the exits from its block. */
71 typedef struct cond_equivalence_s
73 struct hashable_expr cond
;
78 /* Structure for recording edge equivalences as well as any pending
79 edge redirections during the dominator optimizer.
81 Computing and storing the edge equivalences instead of creating
82 them on-demand can save significant amounts of time, particularly
83 for pathological cases involving switch statements.
85 These structures live for a single iteration of the dominator
86 optimizer in the edge's AUX field. At the end of an iteration we
87 free each of these structures and update the AUX field to point
88 to any requested redirection target (the code for updating the
89 CFG and SSA graph for edge redirection expects redirection edge
90 targets to be in the AUX field for each edge. */
94 /* If this edge creates a simple equivalence, the LHS and RHS of
95 the equivalence will be stored here. */
99 /* Traversing an edge may also indicate one or more particular conditions
100 are true or false. */
101 vec
<cond_equivalence
> cond_equivalences
;
104 /* Hash table with expressions made available during the renaming process.
105 When an assignment of the form X_i = EXPR is found, the statement is
106 stored in this table. If the same expression EXPR is later found on the
107 RHS of another statement, it is replaced with X_i (thus performing
108 global redundancy elimination). Similarly as we pass through conditionals
109 we record the conditional itself as having either a true or false value
111 static htab_t avail_exprs
;
113 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
114 expressions it enters into the hash table along with a marker entry
115 (null). When we finish processing the block, we pop off entries and
116 remove the expressions from the global hash table until we hit the
118 typedef struct expr_hash_elt
* expr_hash_elt_t
;
120 static vec
<expr_hash_elt_t
> avail_exprs_stack
;
122 /* Structure for entries in the expression hash table. */
126 /* The value (lhs) of this expression. */
129 /* The expression (rhs) we want to record. */
130 struct hashable_expr expr
;
132 /* The stmt pointer if this element corresponds to a statement. */
135 /* The hash value for RHS. */
138 /* A unique stamp, typically the address of the hash
139 element itself, used in removing entries from the table. */
140 struct expr_hash_elt
*stamp
;
143 /* Stack of dest,src pairs that need to be restored during finalization.
145 A NULL entry is used to mark the end of pairs which need to be
146 restored during finalization of this block. */
147 static vec
<tree
> const_and_copies_stack
;
149 /* Track whether or not we have changed the control flow graph. */
150 static bool cfg_altered
;
152 /* Bitmap of blocks that have had EH statements cleaned. We should
153 remove their dead edges eventually. */
154 static bitmap need_eh_cleanup
;
156 /* Statistics for dominator optimizations. */
160 long num_exprs_considered
;
166 static struct opt_stats_d opt_stats
;
168 /* Local functions. */
169 static void optimize_stmt (basic_block
, gimple_stmt_iterator
);
170 static tree
lookup_avail_expr (gimple
, bool);
171 static hashval_t
avail_expr_hash (const void *);
172 static hashval_t
real_avail_expr_hash (const void *);
173 static int avail_expr_eq (const void *, const void *);
174 static void htab_statistics (FILE *, htab_t
);
175 static void record_cond (cond_equivalence
*);
176 static void record_const_or_copy (tree
, tree
);
177 static void record_equality (tree
, tree
);
178 static void record_equivalences_from_phis (basic_block
);
179 static void record_equivalences_from_incoming_edge (basic_block
);
180 static void eliminate_redundant_computations (gimple_stmt_iterator
*);
181 static void record_equivalences_from_stmt (gimple
, int);
182 static void dom_thread_across_edge (struct dom_walk_data
*, edge
);
183 static void dom_opt_leave_block (struct dom_walk_data
*, basic_block
);
184 static void dom_opt_enter_block (struct dom_walk_data
*, basic_block
);
185 static void remove_local_expressions_from_table (void);
186 static void restore_vars_to_original_value (void);
187 static edge
single_incoming_edge_ignoring_loop_edges (basic_block
);
190 /* Given a statement STMT, initialize the hash table element pointed to
194 initialize_hash_element (gimple stmt
, tree lhs
,
195 struct expr_hash_elt
*element
)
197 enum gimple_code code
= gimple_code (stmt
);
198 struct hashable_expr
*expr
= &element
->expr
;
200 if (code
== GIMPLE_ASSIGN
)
202 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
204 switch (get_gimple_rhs_class (subcode
))
206 case GIMPLE_SINGLE_RHS
:
207 expr
->kind
= EXPR_SINGLE
;
208 expr
->type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
209 expr
->ops
.single
.rhs
= gimple_assign_rhs1 (stmt
);
211 case GIMPLE_UNARY_RHS
:
212 expr
->kind
= EXPR_UNARY
;
213 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
214 expr
->ops
.unary
.op
= subcode
;
215 expr
->ops
.unary
.opnd
= gimple_assign_rhs1 (stmt
);
217 case GIMPLE_BINARY_RHS
:
218 expr
->kind
= EXPR_BINARY
;
219 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
220 expr
->ops
.binary
.op
= subcode
;
221 expr
->ops
.binary
.opnd0
= gimple_assign_rhs1 (stmt
);
222 expr
->ops
.binary
.opnd1
= gimple_assign_rhs2 (stmt
);
224 case GIMPLE_TERNARY_RHS
:
225 expr
->kind
= EXPR_TERNARY
;
226 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
227 expr
->ops
.ternary
.op
= subcode
;
228 expr
->ops
.ternary
.opnd0
= gimple_assign_rhs1 (stmt
);
229 expr
->ops
.ternary
.opnd1
= gimple_assign_rhs2 (stmt
);
230 expr
->ops
.ternary
.opnd2
= gimple_assign_rhs3 (stmt
);
236 else if (code
== GIMPLE_COND
)
238 expr
->type
= boolean_type_node
;
239 expr
->kind
= EXPR_BINARY
;
240 expr
->ops
.binary
.op
= gimple_cond_code (stmt
);
241 expr
->ops
.binary
.opnd0
= gimple_cond_lhs (stmt
);
242 expr
->ops
.binary
.opnd1
= gimple_cond_rhs (stmt
);
244 else if (code
== GIMPLE_CALL
)
246 size_t nargs
= gimple_call_num_args (stmt
);
249 gcc_assert (gimple_call_lhs (stmt
));
251 expr
->type
= TREE_TYPE (gimple_call_lhs (stmt
));
252 expr
->kind
= EXPR_CALL
;
253 expr
->ops
.call
.fn_from
= stmt
;
255 if (gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
))
256 expr
->ops
.call
.pure
= true;
258 expr
->ops
.call
.pure
= false;
260 expr
->ops
.call
.nargs
= nargs
;
261 expr
->ops
.call
.args
= XCNEWVEC (tree
, nargs
);
262 for (i
= 0; i
< nargs
; i
++)
263 expr
->ops
.call
.args
[i
] = gimple_call_arg (stmt
, i
);
265 else if (code
== GIMPLE_SWITCH
)
267 expr
->type
= TREE_TYPE (gimple_switch_index (stmt
));
268 expr
->kind
= EXPR_SINGLE
;
269 expr
->ops
.single
.rhs
= gimple_switch_index (stmt
);
271 else if (code
== GIMPLE_GOTO
)
273 expr
->type
= TREE_TYPE (gimple_goto_dest (stmt
));
274 expr
->kind
= EXPR_SINGLE
;
275 expr
->ops
.single
.rhs
= gimple_goto_dest (stmt
);
277 else if (code
== GIMPLE_PHI
)
279 size_t nargs
= gimple_phi_num_args (stmt
);
282 expr
->type
= TREE_TYPE (gimple_phi_result (stmt
));
283 expr
->kind
= EXPR_PHI
;
284 expr
->ops
.phi
.nargs
= nargs
;
285 expr
->ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
287 for (i
= 0; i
< nargs
; i
++)
288 expr
->ops
.phi
.args
[i
] = gimple_phi_arg_def (stmt
, i
);
294 element
->stmt
= stmt
;
295 element
->hash
= avail_expr_hash (element
);
296 element
->stamp
= element
;
299 /* Given a conditional expression COND as a tree, initialize
300 a hashable_expr expression EXPR. The conditional must be a
301 comparison or logical negation. A constant or a variable is
305 initialize_expr_from_cond (tree cond
, struct hashable_expr
*expr
)
307 expr
->type
= boolean_type_node
;
309 if (COMPARISON_CLASS_P (cond
))
311 expr
->kind
= EXPR_BINARY
;
312 expr
->ops
.binary
.op
= TREE_CODE (cond
);
313 expr
->ops
.binary
.opnd0
= TREE_OPERAND (cond
, 0);
314 expr
->ops
.binary
.opnd1
= TREE_OPERAND (cond
, 1);
316 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
318 expr
->kind
= EXPR_UNARY
;
319 expr
->ops
.unary
.op
= TRUTH_NOT_EXPR
;
320 expr
->ops
.unary
.opnd
= TREE_OPERAND (cond
, 0);
326 /* Given a hashable_expr expression EXPR and an LHS,
327 initialize the hash table element pointed to by ELEMENT. */
330 initialize_hash_element_from_expr (struct hashable_expr
*expr
,
332 struct expr_hash_elt
*element
)
334 element
->expr
= *expr
;
336 element
->stmt
= NULL
;
337 element
->hash
= avail_expr_hash (element
);
338 element
->stamp
= element
;
341 /* Compare two hashable_expr structures for equivalence.
342 They are considered equivalent when the the expressions
343 they denote must necessarily be equal. The logic is intended
344 to follow that of operand_equal_p in fold-const.c */
347 hashable_expr_equal_p (const struct hashable_expr
*expr0
,
348 const struct hashable_expr
*expr1
)
350 tree type0
= expr0
->type
;
351 tree type1
= expr1
->type
;
353 /* If either type is NULL, there is nothing to check. */
354 if ((type0
== NULL_TREE
) ^ (type1
== NULL_TREE
))
357 /* If both types don't have the same signedness, precision, and mode,
358 then we can't consider them equal. */
360 && (TREE_CODE (type0
) == ERROR_MARK
361 || TREE_CODE (type1
) == ERROR_MARK
362 || TYPE_UNSIGNED (type0
) != TYPE_UNSIGNED (type1
)
363 || TYPE_PRECISION (type0
) != TYPE_PRECISION (type1
)
364 || TYPE_MODE (type0
) != TYPE_MODE (type1
)))
367 if (expr0
->kind
!= expr1
->kind
)
373 return operand_equal_p (expr0
->ops
.single
.rhs
,
374 expr1
->ops
.single
.rhs
, 0);
377 if (expr0
->ops
.unary
.op
!= expr1
->ops
.unary
.op
)
380 if ((CONVERT_EXPR_CODE_P (expr0
->ops
.unary
.op
)
381 || expr0
->ops
.unary
.op
== NON_LVALUE_EXPR
)
382 && TYPE_UNSIGNED (expr0
->type
) != TYPE_UNSIGNED (expr1
->type
))
385 return operand_equal_p (expr0
->ops
.unary
.opnd
,
386 expr1
->ops
.unary
.opnd
, 0);
389 if (expr0
->ops
.binary
.op
!= expr1
->ops
.binary
.op
)
392 if (operand_equal_p (expr0
->ops
.binary
.opnd0
,
393 expr1
->ops
.binary
.opnd0
, 0)
394 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
395 expr1
->ops
.binary
.opnd1
, 0))
398 /* For commutative ops, allow the other order. */
399 return (commutative_tree_code (expr0
->ops
.binary
.op
)
400 && operand_equal_p (expr0
->ops
.binary
.opnd0
,
401 expr1
->ops
.binary
.opnd1
, 0)
402 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
403 expr1
->ops
.binary
.opnd0
, 0));
406 if (expr0
->ops
.ternary
.op
!= expr1
->ops
.ternary
.op
407 || !operand_equal_p (expr0
->ops
.ternary
.opnd2
,
408 expr1
->ops
.ternary
.opnd2
, 0))
411 if (operand_equal_p (expr0
->ops
.ternary
.opnd0
,
412 expr1
->ops
.ternary
.opnd0
, 0)
413 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
414 expr1
->ops
.ternary
.opnd1
, 0))
417 /* For commutative ops, allow the other order. */
418 return (commutative_ternary_tree_code (expr0
->ops
.ternary
.op
)
419 && operand_equal_p (expr0
->ops
.ternary
.opnd0
,
420 expr1
->ops
.ternary
.opnd1
, 0)
421 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
422 expr1
->ops
.ternary
.opnd0
, 0));
428 /* If the calls are to different functions, then they
429 clearly cannot be equal. */
430 if (!gimple_call_same_target_p (expr0
->ops
.call
.fn_from
,
431 expr1
->ops
.call
.fn_from
))
434 if (! expr0
->ops
.call
.pure
)
437 if (expr0
->ops
.call
.nargs
!= expr1
->ops
.call
.nargs
)
440 for (i
= 0; i
< expr0
->ops
.call
.nargs
; i
++)
441 if (! operand_equal_p (expr0
->ops
.call
.args
[i
],
442 expr1
->ops
.call
.args
[i
], 0))
452 if (expr0
->ops
.phi
.nargs
!= expr1
->ops
.phi
.nargs
)
455 for (i
= 0; i
< expr0
->ops
.phi
.nargs
; i
++)
456 if (! operand_equal_p (expr0
->ops
.phi
.args
[i
],
457 expr1
->ops
.phi
.args
[i
], 0))
468 /* Compute a hash value for a hashable_expr value EXPR and a
469 previously accumulated hash value VAL. If two hashable_expr
470 values compare equal with hashable_expr_equal_p, they must
471 hash to the same value, given an identical value of VAL.
472 The logic is intended to follow iterative_hash_expr in tree.c. */
475 iterative_hash_hashable_expr (const struct hashable_expr
*expr
, hashval_t val
)
480 val
= iterative_hash_expr (expr
->ops
.single
.rhs
, val
);
484 val
= iterative_hash_object (expr
->ops
.unary
.op
, val
);
486 /* Make sure to include signedness in the hash computation.
487 Don't hash the type, that can lead to having nodes which
488 compare equal according to operand_equal_p, but which
489 have different hash codes. */
490 if (CONVERT_EXPR_CODE_P (expr
->ops
.unary
.op
)
491 || expr
->ops
.unary
.op
== NON_LVALUE_EXPR
)
492 val
+= TYPE_UNSIGNED (expr
->type
);
494 val
= iterative_hash_expr (expr
->ops
.unary
.opnd
, val
);
498 val
= iterative_hash_object (expr
->ops
.binary
.op
, val
);
499 if (commutative_tree_code (expr
->ops
.binary
.op
))
500 val
= iterative_hash_exprs_commutative (expr
->ops
.binary
.opnd0
,
501 expr
->ops
.binary
.opnd1
, val
);
504 val
= iterative_hash_expr (expr
->ops
.binary
.opnd0
, val
);
505 val
= iterative_hash_expr (expr
->ops
.binary
.opnd1
, val
);
510 val
= iterative_hash_object (expr
->ops
.ternary
.op
, val
);
511 if (commutative_ternary_tree_code (expr
->ops
.ternary
.op
))
512 val
= iterative_hash_exprs_commutative (expr
->ops
.ternary
.opnd0
,
513 expr
->ops
.ternary
.opnd1
, val
);
516 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd0
, val
);
517 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd1
, val
);
519 val
= iterative_hash_expr (expr
->ops
.ternary
.opnd2
, val
);
525 enum tree_code code
= CALL_EXPR
;
528 val
= iterative_hash_object (code
, val
);
529 fn_from
= expr
->ops
.call
.fn_from
;
530 if (gimple_call_internal_p (fn_from
))
531 val
= iterative_hash_hashval_t
532 ((hashval_t
) gimple_call_internal_fn (fn_from
), val
);
534 val
= iterative_hash_expr (gimple_call_fn (fn_from
), val
);
535 for (i
= 0; i
< expr
->ops
.call
.nargs
; i
++)
536 val
= iterative_hash_expr (expr
->ops
.call
.args
[i
], val
);
544 for (i
= 0; i
< expr
->ops
.phi
.nargs
; i
++)
545 val
= iterative_hash_expr (expr
->ops
.phi
.args
[i
], val
);
556 /* Print a diagnostic dump of an expression hash table entry. */
559 print_expr_hash_elt (FILE * stream
, const struct expr_hash_elt
*element
)
562 fprintf (stream
, "STMT ");
564 fprintf (stream
, "COND ");
568 print_generic_expr (stream
, element
->lhs
, 0);
569 fprintf (stream
, " = ");
572 switch (element
->expr
.kind
)
575 print_generic_expr (stream
, element
->expr
.ops
.single
.rhs
, 0);
579 fprintf (stream
, "%s ", tree_code_name
[element
->expr
.ops
.unary
.op
]);
580 print_generic_expr (stream
, element
->expr
.ops
.unary
.opnd
, 0);
584 print_generic_expr (stream
, element
->expr
.ops
.binary
.opnd0
, 0);
585 fprintf (stream
, " %s ", tree_code_name
[element
->expr
.ops
.binary
.op
]);
586 print_generic_expr (stream
, element
->expr
.ops
.binary
.opnd1
, 0);
590 fprintf (stream
, " %s <", tree_code_name
[element
->expr
.ops
.ternary
.op
]);
591 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd0
, 0);
592 fputs (", ", stream
);
593 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd1
, 0);
594 fputs (", ", stream
);
595 print_generic_expr (stream
, element
->expr
.ops
.ternary
.opnd2
, 0);
602 size_t nargs
= element
->expr
.ops
.call
.nargs
;
605 fn_from
= element
->expr
.ops
.call
.fn_from
;
606 if (gimple_call_internal_p (fn_from
))
607 fputs (internal_fn_name (gimple_call_internal_fn (fn_from
)),
610 print_generic_expr (stream
, gimple_call_fn (fn_from
), 0);
611 fprintf (stream
, " (");
612 for (i
= 0; i
< nargs
; i
++)
614 print_generic_expr (stream
, element
->expr
.ops
.call
.args
[i
], 0);
616 fprintf (stream
, ", ");
618 fprintf (stream
, ")");
625 size_t nargs
= element
->expr
.ops
.phi
.nargs
;
627 fprintf (stream
, "PHI <");
628 for (i
= 0; i
< nargs
; i
++)
630 print_generic_expr (stream
, element
->expr
.ops
.phi
.args
[i
], 0);
632 fprintf (stream
, ", ");
634 fprintf (stream
, ">");
638 fprintf (stream
, "\n");
642 fprintf (stream
, " ");
643 print_gimple_stmt (stream
, element
->stmt
, 0, 0);
647 /* Delete variable sized pieces of the expr_hash_elt ELEMENT. */
650 free_expr_hash_elt_contents (struct expr_hash_elt
*element
)
652 if (element
->expr
.kind
== EXPR_CALL
)
653 free (element
->expr
.ops
.call
.args
);
654 else if (element
->expr
.kind
== EXPR_PHI
)
655 free (element
->expr
.ops
.phi
.args
);
658 /* Delete an expr_hash_elt and reclaim its storage. */
661 free_expr_hash_elt (void *elt
)
663 struct expr_hash_elt
*element
= ((struct expr_hash_elt
*)elt
);
664 free_expr_hash_elt_contents (element
);
668 /* Allocate an EDGE_INFO for edge E and attach it to E.
669 Return the new EDGE_INFO structure. */
671 static struct edge_info
*
672 allocate_edge_info (edge e
)
674 struct edge_info
*edge_info
;
676 edge_info
= XCNEW (struct edge_info
);
682 /* Free all EDGE_INFO structures associated with edges in the CFG.
683 If a particular edge can be threaded, copy the redirection
684 target from the EDGE_INFO structure into the edge's AUX field
685 as required by code to update the CFG and SSA graph for
689 free_all_edge_infos (void)
697 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
699 struct edge_info
*edge_info
= (struct edge_info
*) e
->aux
;
703 edge_info
->cond_equivalences
.release ();
711 /* Jump threading, redundancy elimination and const/copy propagation.
713 This pass may expose new symbols that need to be renamed into SSA. For
714 every new symbol exposed, its corresponding bit will be set in
718 tree_ssa_dominator_optimize (void)
720 struct dom_walk_data walk_data
;
722 memset (&opt_stats
, 0, sizeof (opt_stats
));
724 /* Create our hash tables. */
725 avail_exprs
= htab_create (1024, real_avail_expr_hash
, avail_expr_eq
, free_expr_hash_elt
);
726 avail_exprs_stack
.create (20);
727 const_and_copies_stack
.create (20);
728 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
730 /* Setup callbacks for the generic dominator tree walker. */
731 walk_data
.dom_direction
= CDI_DOMINATORS
;
732 walk_data
.initialize_block_local_data
= NULL
;
733 walk_data
.before_dom_children
= dom_opt_enter_block
;
734 walk_data
.after_dom_children
= dom_opt_leave_block
;
735 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
736 When we attach more stuff we'll need to fill this out with a real
738 walk_data
.global_data
= NULL
;
739 walk_data
.block_local_data_size
= 0;
741 /* Now initialize the dominator walker. */
742 init_walk_dominator_tree (&walk_data
);
744 calculate_dominance_info (CDI_DOMINATORS
);
747 /* We need to know loop structures in order to avoid destroying them
748 in jump threading. Note that we still can e.g. thread through loop
749 headers to an exit edge, or through loop header to the loop body, assuming
750 that we update the loop info. */
751 loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES
);
753 /* Initialize the value-handle array. */
754 threadedge_initialize_values ();
756 /* We need accurate information regarding back edges in the CFG
757 for jump threading; this may include back edges that are not part of
759 mark_dfs_back_edges ();
761 /* Recursively walk the dominator tree optimizing statements. */
762 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
765 gimple_stmt_iterator gsi
;
769 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
770 update_stmt_if_modified (gsi_stmt (gsi
));
774 /* If we exposed any new variables, go ahead and put them into
775 SSA form now, before we handle jump threading. This simplifies
776 interactions between rewriting of _DECL nodes into SSA form
777 and rewriting SSA_NAME nodes into SSA form after block
778 duplication and CFG manipulation. */
779 update_ssa (TODO_update_ssa
);
781 free_all_edge_infos ();
783 /* Thread jumps, creating duplicate blocks as needed. */
784 cfg_altered
|= thread_through_all_blocks (first_pass_instance
);
787 free_dominance_info (CDI_DOMINATORS
);
789 /* Removal of statements may make some EH edges dead. Purge
790 such edges from the CFG as needed. */
791 if (!bitmap_empty_p (need_eh_cleanup
))
796 /* Jump threading may have created forwarder blocks from blocks
797 needing EH cleanup; the new successor of these blocks, which
798 has inherited from the original block, needs the cleanup.
799 Don't clear bits in the bitmap, as that can break the bitmap
801 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup
, 0, i
, bi
)
803 basic_block bb
= BASIC_BLOCK (i
);
806 while (single_succ_p (bb
)
807 && (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
808 bb
= single_succ (bb
);
809 if (bb
== EXIT_BLOCK_PTR
)
811 if ((unsigned) bb
->index
!= i
)
812 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
815 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
816 bitmap_clear (need_eh_cleanup
);
819 statistics_counter_event (cfun
, "Redundant expressions eliminated",
821 statistics_counter_event (cfun
, "Constants propagated",
822 opt_stats
.num_const_prop
);
823 statistics_counter_event (cfun
, "Copies propagated",
824 opt_stats
.num_copy_prop
);
826 /* Debugging dumps. */
827 if (dump_file
&& (dump_flags
& TDF_STATS
))
828 dump_dominator_optimization_stats (dump_file
);
830 loop_optimizer_finalize ();
832 /* Delete our main hashtable. */
833 htab_delete (avail_exprs
);
835 /* And finalize the dominator walker. */
836 fini_walk_dominator_tree (&walk_data
);
838 /* Free asserted bitmaps and stacks. */
839 BITMAP_FREE (need_eh_cleanup
);
841 avail_exprs_stack
.release ();
842 const_and_copies_stack
.release ();
844 /* Free the value-handle array. */
845 threadedge_finalize_values ();
846 ssa_name_values
.release ();
852 gate_dominator (void)
854 return flag_tree_dom
!= 0;
857 struct gimple_opt_pass pass_dominator
=
862 OPTGROUP_NONE
, /* optinfo_flags */
863 gate_dominator
, /* gate */
864 tree_ssa_dominator_optimize
, /* execute */
867 0, /* static_pass_number */
868 TV_TREE_SSA_DOMINATOR_OPTS
, /* tv_id */
869 PROP_cfg
| PROP_ssa
, /* properties_required */
870 0, /* properties_provided */
871 0, /* properties_destroyed */
872 0, /* todo_flags_start */
876 | TODO_verify_flow
/* todo_flags_finish */
881 /* Given a conditional statement CONDSTMT, convert the
882 condition to a canonical form. */
885 canonicalize_comparison (gimple condstmt
)
891 gcc_assert (gimple_code (condstmt
) == GIMPLE_COND
);
893 op0
= gimple_cond_lhs (condstmt
);
894 op1
= gimple_cond_rhs (condstmt
);
896 code
= gimple_cond_code (condstmt
);
898 /* If it would be profitable to swap the operands, then do so to
899 canonicalize the statement, enabling better optimization.
901 By placing canonicalization of such expressions here we
902 transparently keep statements in canonical form, even
903 when the statement is modified. */
904 if (tree_swap_operands_p (op0
, op1
, false))
906 /* For relationals we need to swap the operands
907 and change the code. */
913 code
= swap_tree_comparison (code
);
915 gimple_cond_set_code (condstmt
, code
);
916 gimple_cond_set_lhs (condstmt
, op1
);
917 gimple_cond_set_rhs (condstmt
, op0
);
919 update_stmt (condstmt
);
924 /* Initialize local stacks for this optimizer and record equivalences
925 upon entry to BB. Equivalences can come from the edge traversed to
926 reach BB or they may come from PHI nodes at the start of BB. */
928 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
929 LIMIT entries left in LOCALs. */
932 remove_local_expressions_from_table (void)
934 /* Remove all the expressions made available in this block. */
935 while (avail_exprs_stack
.length () > 0)
937 expr_hash_elt_t victim
= avail_exprs_stack
.pop ();
943 /* This must precede the actual removal from the hash table,
944 as ELEMENT and the table entry may share a call argument
945 vector which will be freed during removal. */
946 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
948 fprintf (dump_file
, "<<<< ");
949 print_expr_hash_elt (dump_file
, victim
);
952 slot
= htab_find_slot_with_hash (avail_exprs
,
953 victim
, victim
->hash
, NO_INSERT
);
954 gcc_assert (slot
&& *slot
== (void *) victim
);
955 htab_clear_slot (avail_exprs
, slot
);
959 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
960 CONST_AND_COPIES to its original state, stopping when we hit a
964 restore_vars_to_original_value (void)
966 while (const_and_copies_stack
.length () > 0)
968 tree prev_value
, dest
;
970 dest
= const_and_copies_stack
.pop ();
975 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
977 fprintf (dump_file
, "<<<< COPY ");
978 print_generic_expr (dump_file
, dest
, 0);
979 fprintf (dump_file
, " = ");
980 print_generic_expr (dump_file
, SSA_NAME_VALUE (dest
), 0);
981 fprintf (dump_file
, "\n");
984 prev_value
= const_and_copies_stack
.pop ();
985 set_ssa_name_value (dest
, prev_value
);
989 /* A trivial wrapper so that we can present the generic jump
990 threading code with a simple API for simplifying statements. */
992 simplify_stmt_for_jump_threading (gimple stmt
,
993 gimple within_stmt ATTRIBUTE_UNUSED
)
995 return lookup_avail_expr (stmt
, false);
998 /* Wrapper for common code to attempt to thread an edge. For example,
999 it handles lazily building the dummy condition and the bookkeeping
1000 when jump threading is successful. */
1003 dom_thread_across_edge (struct dom_walk_data
*walk_data
, edge e
)
1005 if (! walk_data
->global_data
)
1008 gimple_build_cond (NE_EXPR
,
1009 integer_zero_node
, integer_zero_node
,
1011 walk_data
->global_data
= dummy_cond
;
1014 thread_across_edge ((gimple
) walk_data
->global_data
, e
, false,
1015 &const_and_copies_stack
,
1016 simplify_stmt_for_jump_threading
);
1019 /* PHI nodes can create equivalences too.
1021 Ignoring any alternatives which are the same as the result, if
1022 all the alternatives are equal, then the PHI node creates an
1026 record_equivalences_from_phis (basic_block bb
)
1028 gimple_stmt_iterator gsi
;
1030 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1032 gimple phi
= gsi_stmt (gsi
);
1034 tree lhs
= gimple_phi_result (phi
);
1038 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1040 tree t
= gimple_phi_arg_def (phi
, i
);
1042 /* Ignore alternatives which are the same as our LHS. Since
1043 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1044 can simply compare pointers. */
1048 /* If we have not processed an alternative yet, then set
1049 RHS to this alternative. */
1052 /* If we have processed an alternative (stored in RHS), then
1053 see if it is equal to this one. If it isn't, then stop
1055 else if (! operand_equal_for_phi_arg_p (rhs
, t
))
1059 /* If we had no interesting alternatives, then all the RHS alternatives
1060 must have been the same as LHS. */
1064 /* If we managed to iterate through each PHI alternative without
1065 breaking out of the loop, then we have a PHI which may create
1066 a useful equivalence. We do not need to record unwind data for
1067 this, since this is a true assignment and not an equivalence
1068 inferred from a comparison. All uses of this ssa name are dominated
1069 by this assignment, so unwinding just costs time and space. */
1070 if (i
== gimple_phi_num_args (phi
) && may_propagate_copy (lhs
, rhs
))
1071 set_ssa_name_value (lhs
, rhs
);
1075 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1076 return that edge. Otherwise return NULL. */
1078 single_incoming_edge_ignoring_loop_edges (basic_block bb
)
1084 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1086 /* A loop back edge can be identified by the destination of
1087 the edge dominating the source of the edge. */
1088 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, e
->dest
))
1091 /* If we have already seen a non-loop edge, then we must have
1092 multiple incoming non-loop edges and thus we return NULL. */
1096 /* This is the first non-loop incoming edge we have found. Record
1104 /* Record any equivalences created by the incoming edge to BB. If BB
1105 has more than one incoming edge, then no equivalence is created. */
1108 record_equivalences_from_incoming_edge (basic_block bb
)
1112 struct edge_info
*edge_info
;
1114 /* If our parent block ended with a control statement, then we may be
1115 able to record some equivalences based on which outgoing edge from
1116 the parent was followed. */
1117 parent
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1119 e
= single_incoming_edge_ignoring_loop_edges (bb
);
1121 /* If we had a single incoming edge from our parent block, then enter
1122 any data associated with the edge into our tables. */
1123 if (e
&& e
->src
== parent
)
1127 edge_info
= (struct edge_info
*) e
->aux
;
1131 tree lhs
= edge_info
->lhs
;
1132 tree rhs
= edge_info
->rhs
;
1133 cond_equivalence
*eq
;
1136 record_equality (lhs
, rhs
);
1138 for (i
= 0; edge_info
->cond_equivalences
.iterate (i
, &eq
); ++i
)
1144 /* Dump SSA statistics on FILE. */
1147 dump_dominator_optimization_stats (FILE *file
)
1149 fprintf (file
, "Total number of statements: %6ld\n\n",
1150 opt_stats
.num_stmts
);
1151 fprintf (file
, "Exprs considered for dominator optimizations: %6ld\n",
1152 opt_stats
.num_exprs_considered
);
1154 fprintf (file
, "\nHash table statistics:\n");
1156 fprintf (file
, " avail_exprs: ");
1157 htab_statistics (file
, avail_exprs
);
1161 /* Dump SSA statistics on stderr. */
1164 debug_dominator_optimization_stats (void)
1166 dump_dominator_optimization_stats (stderr
);
1170 /* Dump statistics for the hash table HTAB. */
1173 htab_statistics (FILE *file
, htab_t htab
)
1175 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
1176 (long) htab_size (htab
),
1177 (long) htab_elements (htab
),
1178 htab_collisions (htab
));
1182 /* Enter condition equivalence into the expression hash table.
1183 This indicates that a conditional expression has a known
1187 record_cond (cond_equivalence
*p
)
1189 struct expr_hash_elt
*element
= XCNEW (struct expr_hash_elt
);
1192 initialize_hash_element_from_expr (&p
->cond
, p
->value
, element
);
1194 slot
= htab_find_slot_with_hash (avail_exprs
, (void *)element
,
1195 element
->hash
, INSERT
);
1198 *slot
= (void *) element
;
1200 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1202 fprintf (dump_file
, "1>>> ");
1203 print_expr_hash_elt (dump_file
, element
);
1206 avail_exprs_stack
.safe_push (element
);
1209 free_expr_hash_elt (element
);
1212 /* Build a cond_equivalence record indicating that the comparison
1213 CODE holds between operands OP0 and OP1 and push it to **P. */
1216 build_and_record_new_cond (enum tree_code code
,
1218 vec
<cond_equivalence
> *p
)
1221 struct hashable_expr
*cond
= &c
.cond
;
1223 gcc_assert (TREE_CODE_CLASS (code
) == tcc_comparison
);
1225 cond
->type
= boolean_type_node
;
1226 cond
->kind
= EXPR_BINARY
;
1227 cond
->ops
.binary
.op
= code
;
1228 cond
->ops
.binary
.opnd0
= op0
;
1229 cond
->ops
.binary
.opnd1
= op1
;
1231 c
.value
= boolean_true_node
;
1235 /* Record that COND is true and INVERTED is false into the edge information
1236 structure. Also record that any conditions dominated by COND are true
1239 For example, if a < b is true, then a <= b must also be true. */
1242 record_conditions (struct edge_info
*edge_info
, tree cond
, tree inverted
)
1247 if (!COMPARISON_CLASS_P (cond
))
1250 op0
= TREE_OPERAND (cond
, 0);
1251 op1
= TREE_OPERAND (cond
, 1);
1253 switch (TREE_CODE (cond
))
1257 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1259 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1260 &edge_info
->cond_equivalences
);
1261 build_and_record_new_cond (LTGT_EXPR
, op0
, op1
,
1262 &edge_info
->cond_equivalences
);
1265 build_and_record_new_cond ((TREE_CODE (cond
) == LT_EXPR
1266 ? LE_EXPR
: GE_EXPR
),
1267 op0
, op1
, &edge_info
->cond_equivalences
);
1268 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1269 &edge_info
->cond_equivalences
);
1274 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1276 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1277 &edge_info
->cond_equivalences
);
1282 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1284 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1285 &edge_info
->cond_equivalences
);
1287 build_and_record_new_cond (LE_EXPR
, op0
, op1
,
1288 &edge_info
->cond_equivalences
);
1289 build_and_record_new_cond (GE_EXPR
, op0
, op1
,
1290 &edge_info
->cond_equivalences
);
1293 case UNORDERED_EXPR
:
1294 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1295 &edge_info
->cond_equivalences
);
1296 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
,
1297 &edge_info
->cond_equivalences
);
1298 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
,
1299 &edge_info
->cond_equivalences
);
1300 build_and_record_new_cond (UNEQ_EXPR
, op0
, op1
,
1301 &edge_info
->cond_equivalences
);
1302 build_and_record_new_cond (UNLT_EXPR
, op0
, op1
,
1303 &edge_info
->cond_equivalences
);
1304 build_and_record_new_cond (UNGT_EXPR
, op0
, op1
,
1305 &edge_info
->cond_equivalences
);
1310 build_and_record_new_cond ((TREE_CODE (cond
) == UNLT_EXPR
1311 ? UNLE_EXPR
: UNGE_EXPR
),
1312 op0
, op1
, &edge_info
->cond_equivalences
);
1313 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1314 &edge_info
->cond_equivalences
);
1318 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
,
1319 &edge_info
->cond_equivalences
);
1320 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
,
1321 &edge_info
->cond_equivalences
);
1325 build_and_record_new_cond (NE_EXPR
, op0
, op1
,
1326 &edge_info
->cond_equivalences
);
1327 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
,
1328 &edge_info
->cond_equivalences
);
1335 /* Now store the original true and false conditions into the first
1337 initialize_expr_from_cond (cond
, &c
.cond
);
1338 c
.value
= boolean_true_node
;
1339 edge_info
->cond_equivalences
.safe_push (c
);
1341 /* It is possible for INVERTED to be the negation of a comparison,
1342 and not a valid RHS or GIMPLE_COND condition. This happens because
1343 invert_truthvalue may return such an expression when asked to invert
1344 a floating-point comparison. These comparisons are not assumed to
1345 obey the trichotomy law. */
1346 initialize_expr_from_cond (inverted
, &c
.cond
);
1347 c
.value
= boolean_false_node
;
1348 edge_info
->cond_equivalences
.safe_push (c
);
1351 /* A helper function for record_const_or_copy and record_equality.
1352 Do the work of recording the value and undo info. */
1355 record_const_or_copy_1 (tree x
, tree y
, tree prev_x
)
1357 set_ssa_name_value (x
, y
);
1359 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1361 fprintf (dump_file
, "0>>> COPY ");
1362 print_generic_expr (dump_file
, x
, 0);
1363 fprintf (dump_file
, " = ");
1364 print_generic_expr (dump_file
, y
, 0);
1365 fprintf (dump_file
, "\n");
1368 const_and_copies_stack
.reserve (2);
1369 const_and_copies_stack
.quick_push (prev_x
);
1370 const_and_copies_stack
.quick_push (x
);
1373 /* Return the loop depth of the basic block of the defining statement of X.
1374 This number should not be treated as absolutely correct because the loop
1375 information may not be completely up-to-date when dom runs. However, it
1376 will be relatively correct, and as more passes are taught to keep loop info
1377 up to date, the result will become more and more accurate. */
1380 loop_depth_of_name (tree x
)
1385 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1386 if (TREE_CODE (x
) != SSA_NAME
)
1389 /* Otherwise return the loop depth of the defining statement's bb.
1390 Note that there may not actually be a bb for this statement, if the
1391 ssa_name is live on entry. */
1392 defstmt
= SSA_NAME_DEF_STMT (x
);
1393 defbb
= gimple_bb (defstmt
);
1397 return bb_loop_depth (defbb
);
1400 /* Record that X is equal to Y in const_and_copies. Record undo
1401 information in the block-local vector. */
1404 record_const_or_copy (tree x
, tree y
)
1406 tree prev_x
= SSA_NAME_VALUE (x
);
1408 gcc_assert (TREE_CODE (x
) == SSA_NAME
);
1410 if (TREE_CODE (y
) == SSA_NAME
)
1412 tree tmp
= SSA_NAME_VALUE (y
);
1417 record_const_or_copy_1 (x
, y
, prev_x
);
1420 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1421 This constrains the cases in which we may treat this as assignment. */
1424 record_equality (tree x
, tree y
)
1426 tree prev_x
= NULL
, prev_y
= NULL
;
1428 if (TREE_CODE (x
) == SSA_NAME
)
1429 prev_x
= SSA_NAME_VALUE (x
);
1430 if (TREE_CODE (y
) == SSA_NAME
)
1431 prev_y
= SSA_NAME_VALUE (y
);
1433 /* If one of the previous values is invariant, or invariant in more loops
1434 (by depth), then use that.
1435 Otherwise it doesn't matter which value we choose, just so
1436 long as we canonicalize on one value. */
1437 if (is_gimple_min_invariant (y
))
1439 else if (is_gimple_min_invariant (x
)
1440 || (loop_depth_of_name (x
) <= loop_depth_of_name (y
)))
1441 prev_x
= x
, x
= y
, y
= prev_x
, prev_x
= prev_y
;
1442 else if (prev_x
&& is_gimple_min_invariant (prev_x
))
1443 x
= y
, y
= prev_x
, prev_x
= prev_y
;
1447 /* After the swapping, we must have one SSA_NAME. */
1448 if (TREE_CODE (x
) != SSA_NAME
)
1451 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1452 variable compared against zero. If we're honoring signed zeros,
1453 then we cannot record this value unless we know that the value is
1455 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x
)))
1456 && (TREE_CODE (y
) != REAL_CST
1457 || REAL_VALUES_EQUAL (dconst0
, TREE_REAL_CST (y
))))
1460 record_const_or_copy_1 (x
, y
, prev_x
);
1463 /* Returns true when STMT is a simple iv increment. It detects the
1464 following situation:
1466 i_1 = phi (..., i_2)
1467 i_2 = i_1 +/- ... */
1470 simple_iv_increment_p (gimple stmt
)
1472 enum tree_code code
;
1477 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1480 lhs
= gimple_assign_lhs (stmt
);
1481 if (TREE_CODE (lhs
) != SSA_NAME
)
1484 code
= gimple_assign_rhs_code (stmt
);
1485 if (code
!= PLUS_EXPR
1486 && code
!= MINUS_EXPR
1487 && code
!= POINTER_PLUS_EXPR
)
1490 preinc
= gimple_assign_rhs1 (stmt
);
1491 if (TREE_CODE (preinc
) != SSA_NAME
)
1494 phi
= SSA_NAME_DEF_STMT (preinc
);
1495 if (gimple_code (phi
) != GIMPLE_PHI
)
1498 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1499 if (gimple_phi_arg_def (phi
, i
) == lhs
)
1505 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1506 known value for that SSA_NAME (or NULL if no value is known).
1508 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1509 successors of BB. */
1512 cprop_into_successor_phis (basic_block bb
)
1517 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1520 gimple_stmt_iterator gsi
;
1522 /* If this is an abnormal edge, then we do not want to copy propagate
1523 into the PHI alternative associated with this edge. */
1524 if (e
->flags
& EDGE_ABNORMAL
)
1527 gsi
= gsi_start_phis (e
->dest
);
1528 if (gsi_end_p (gsi
))
1532 for ( ; !gsi_end_p (gsi
); gsi_next (&gsi
))
1535 use_operand_p orig_p
;
1537 gimple phi
= gsi_stmt (gsi
);
1539 /* The alternative may be associated with a constant, so verify
1540 it is an SSA_NAME before doing anything with it. */
1541 orig_p
= gimple_phi_arg_imm_use_ptr (phi
, indx
);
1542 orig_val
= get_use_from_ptr (orig_p
);
1543 if (TREE_CODE (orig_val
) != SSA_NAME
)
1546 /* If we have *ORIG_P in our constant/copy table, then replace
1547 ORIG_P with its value in our constant/copy table. */
1548 new_val
= SSA_NAME_VALUE (orig_val
);
1550 && new_val
!= orig_val
1551 && (TREE_CODE (new_val
) == SSA_NAME
1552 || is_gimple_min_invariant (new_val
))
1553 && may_propagate_copy (orig_val
, new_val
))
1554 propagate_value (orig_p
, new_val
);
1559 /* We have finished optimizing BB, record any information implied by
1560 taking a specific outgoing edge from BB. */
1563 record_edge_info (basic_block bb
)
1565 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
1566 struct edge_info
*edge_info
;
1568 if (! gsi_end_p (gsi
))
1570 gimple stmt
= gsi_stmt (gsi
);
1571 location_t loc
= gimple_location (stmt
);
1573 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1575 tree index
= gimple_switch_index (stmt
);
1577 if (TREE_CODE (index
) == SSA_NAME
)
1580 int n_labels
= gimple_switch_num_labels (stmt
);
1581 tree
*info
= XCNEWVEC (tree
, last_basic_block
);
1585 for (i
= 0; i
< n_labels
; i
++)
1587 tree label
= gimple_switch_label (stmt
, i
);
1588 basic_block target_bb
= label_to_block (CASE_LABEL (label
));
1589 if (CASE_HIGH (label
)
1590 || !CASE_LOW (label
)
1591 || info
[target_bb
->index
])
1592 info
[target_bb
->index
] = error_mark_node
;
1594 info
[target_bb
->index
] = label
;
1597 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1599 basic_block target_bb
= e
->dest
;
1600 tree label
= info
[target_bb
->index
];
1602 if (label
!= NULL
&& label
!= error_mark_node
)
1604 tree x
= fold_convert_loc (loc
, TREE_TYPE (index
),
1606 edge_info
= allocate_edge_info (e
);
1607 edge_info
->lhs
= index
;
1615 /* A COND_EXPR may create equivalences too. */
1616 if (gimple_code (stmt
) == GIMPLE_COND
)
1621 tree op0
= gimple_cond_lhs (stmt
);
1622 tree op1
= gimple_cond_rhs (stmt
);
1623 enum tree_code code
= gimple_cond_code (stmt
);
1625 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1627 /* Special case comparing booleans against a constant as we
1628 know the value of OP0 on both arms of the branch. i.e., we
1629 can record an equivalence for OP0 rather than COND. */
1630 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
1631 && TREE_CODE (op0
) == SSA_NAME
1632 && TREE_CODE (TREE_TYPE (op0
)) == BOOLEAN_TYPE
1633 && is_gimple_min_invariant (op1
))
1635 if (code
== EQ_EXPR
)
1637 edge_info
= allocate_edge_info (true_edge
);
1638 edge_info
->lhs
= op0
;
1639 edge_info
->rhs
= (integer_zerop (op1
)
1640 ? boolean_false_node
1641 : boolean_true_node
);
1643 edge_info
= allocate_edge_info (false_edge
);
1644 edge_info
->lhs
= op0
;
1645 edge_info
->rhs
= (integer_zerop (op1
)
1647 : boolean_false_node
);
1651 edge_info
= allocate_edge_info (true_edge
);
1652 edge_info
->lhs
= op0
;
1653 edge_info
->rhs
= (integer_zerop (op1
)
1655 : boolean_false_node
);
1657 edge_info
= allocate_edge_info (false_edge
);
1658 edge_info
->lhs
= op0
;
1659 edge_info
->rhs
= (integer_zerop (op1
)
1660 ? boolean_false_node
1661 : boolean_true_node
);
1664 else if (is_gimple_min_invariant (op0
)
1665 && (TREE_CODE (op1
) == SSA_NAME
1666 || is_gimple_min_invariant (op1
)))
1668 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
1669 tree inverted
= invert_truthvalue_loc (loc
, cond
);
1670 bool can_infer_simple_equiv
1671 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0
)))
1672 && real_zerop (op0
));
1673 struct edge_info
*edge_info
;
1675 edge_info
= allocate_edge_info (true_edge
);
1676 record_conditions (edge_info
, cond
, inverted
);
1678 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
1680 edge_info
->lhs
= op1
;
1681 edge_info
->rhs
= op0
;
1684 edge_info
= allocate_edge_info (false_edge
);
1685 record_conditions (edge_info
, inverted
, cond
);
1687 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
1689 edge_info
->lhs
= op1
;
1690 edge_info
->rhs
= op0
;
1694 else if (TREE_CODE (op0
) == SSA_NAME
1695 && (TREE_CODE (op1
) == SSA_NAME
1696 || is_gimple_min_invariant (op1
)))
1698 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
1699 tree inverted
= invert_truthvalue_loc (loc
, cond
);
1700 bool can_infer_simple_equiv
1701 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1
)))
1702 && (TREE_CODE (op1
) == SSA_NAME
|| real_zerop (op1
)));
1703 struct edge_info
*edge_info
;
1705 edge_info
= allocate_edge_info (true_edge
);
1706 record_conditions (edge_info
, cond
, inverted
);
1708 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
1710 edge_info
->lhs
= op0
;
1711 edge_info
->rhs
= op1
;
1714 edge_info
= allocate_edge_info (false_edge
);
1715 record_conditions (edge_info
, inverted
, cond
);
1717 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
1719 edge_info
->lhs
= op0
;
1720 edge_info
->rhs
= op1
;
1725 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1730 dom_opt_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
1733 gimple_stmt_iterator gsi
;
1735 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1736 fprintf (dump_file
, "\n\nOptimizing block #%d\n\n", bb
->index
);
1738 /* Push a marker on the stacks of local information so that we know how
1739 far to unwind when we finalize this block. */
1740 avail_exprs_stack
.safe_push (NULL
);
1741 const_and_copies_stack
.safe_push (NULL_TREE
);
1743 record_equivalences_from_incoming_edge (bb
);
1745 /* PHI nodes can create equivalences too. */
1746 record_equivalences_from_phis (bb
);
1748 /* Create equivalences from redundant PHIs. PHIs are only truly
1749 redundant when they exist in the same block, so push another
1750 marker and unwind right afterwards. */
1751 avail_exprs_stack
.safe_push (NULL
);
1752 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1753 eliminate_redundant_computations (&gsi
);
1754 remove_local_expressions_from_table ();
1756 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1757 optimize_stmt (bb
, gsi
);
1759 /* Now prepare to process dominated blocks. */
1760 record_edge_info (bb
);
1761 cprop_into_successor_phis (bb
);
1764 /* We have finished processing the dominator children of BB, perform
1765 any finalization actions in preparation for leaving this node in
1766 the dominator tree. */
1769 dom_opt_leave_block (struct dom_walk_data
*walk_data
, basic_block bb
)
1773 /* If we have an outgoing edge to a block with multiple incoming and
1774 outgoing edges, then we may be able to thread the edge, i.e., we
1775 may be able to statically determine which of the outgoing edges
1776 will be traversed when the incoming edge from BB is traversed. */
1777 if (single_succ_p (bb
)
1778 && (single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
) == 0
1779 && potentially_threadable_block (single_succ (bb
)))
1781 /* Push a marker on the stack, which thread_across_edge expects
1783 const_and_copies_stack
.safe_push (NULL_TREE
);
1784 dom_thread_across_edge (walk_data
, single_succ_edge (bb
));
1786 else if ((last
= last_stmt (bb
))
1787 && gimple_code (last
) == GIMPLE_COND
1788 && EDGE_COUNT (bb
->succs
) == 2
1789 && (EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
) == 0
1790 && (EDGE_SUCC (bb
, 1)->flags
& EDGE_ABNORMAL
) == 0)
1792 edge true_edge
, false_edge
;
1794 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1796 /* Only try to thread the edge if it reaches a target block with
1797 more than one predecessor and more than one successor. */
1798 if (potentially_threadable_block (true_edge
->dest
))
1800 struct edge_info
*edge_info
;
1803 /* Push a marker onto the available expression stack so that we
1804 unwind any expressions related to the TRUE arm before processing
1805 the false arm below. */
1806 avail_exprs_stack
.safe_push (NULL
);
1807 const_and_copies_stack
.safe_push (NULL_TREE
);
1809 edge_info
= (struct edge_info
*) true_edge
->aux
;
1811 /* If we have info associated with this edge, record it into
1812 our equivalence tables. */
1815 cond_equivalence
*eq
;
1816 tree lhs
= edge_info
->lhs
;
1817 tree rhs
= edge_info
->rhs
;
1819 /* If we have a simple NAME = VALUE equivalence, record it. */
1820 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1821 record_const_or_copy (lhs
, rhs
);
1823 /* If we have 0 = COND or 1 = COND equivalences, record them
1824 into our expression hash tables. */
1825 for (i
= 0; edge_info
->cond_equivalences
.iterate (i
, &eq
); ++i
)
1829 dom_thread_across_edge (walk_data
, true_edge
);
1831 /* And restore the various tables to their state before
1832 we threaded this edge. */
1833 remove_local_expressions_from_table ();
1836 /* Similarly for the ELSE arm. */
1837 if (potentially_threadable_block (false_edge
->dest
))
1839 struct edge_info
*edge_info
;
1842 const_and_copies_stack
.safe_push (NULL_TREE
);
1843 edge_info
= (struct edge_info
*) false_edge
->aux
;
1845 /* If we have info associated with this edge, record it into
1846 our equivalence tables. */
1849 cond_equivalence
*eq
;
1850 tree lhs
= edge_info
->lhs
;
1851 tree rhs
= edge_info
->rhs
;
1853 /* If we have a simple NAME = VALUE equivalence, record it. */
1854 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1855 record_const_or_copy (lhs
, rhs
);
1857 /* If we have 0 = COND or 1 = COND equivalences, record them
1858 into our expression hash tables. */
1859 for (i
= 0; edge_info
->cond_equivalences
.iterate (i
, &eq
); ++i
)
1863 /* Now thread the edge. */
1864 dom_thread_across_edge (walk_data
, false_edge
);
1866 /* No need to remove local expressions from our tables
1867 or restore vars to their original value as that will
1868 be done immediately below. */
1872 remove_local_expressions_from_table ();
1873 restore_vars_to_original_value ();
1876 /* Search for redundant computations in STMT. If any are found, then
1877 replace them with the variable holding the result of the computation.
1879 If safe, record this expression into the available expression hash
1883 eliminate_redundant_computations (gimple_stmt_iterator
* gsi
)
1889 bool assigns_var_p
= false;
1891 gimple stmt
= gsi_stmt (*gsi
);
1893 if (gimple_code (stmt
) == GIMPLE_PHI
)
1894 def
= gimple_phi_result (stmt
);
1896 def
= gimple_get_lhs (stmt
);
1898 /* Certain expressions on the RHS can be optimized away, but can not
1899 themselves be entered into the hash tables. */
1901 || TREE_CODE (def
) != SSA_NAME
1902 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
)
1903 || gimple_vdef (stmt
)
1904 /* Do not record equivalences for increments of ivs. This would create
1905 overlapping live ranges for a very questionable gain. */
1906 || simple_iv_increment_p (stmt
))
1909 /* Check if the expression has been computed before. */
1910 cached_lhs
= lookup_avail_expr (stmt
, insert
);
1912 opt_stats
.num_exprs_considered
++;
1914 /* Get the type of the expression we are trying to optimize. */
1915 if (is_gimple_assign (stmt
))
1917 expr_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1918 assigns_var_p
= true;
1920 else if (gimple_code (stmt
) == GIMPLE_COND
)
1921 expr_type
= boolean_type_node
;
1922 else if (is_gimple_call (stmt
))
1924 gcc_assert (gimple_call_lhs (stmt
));
1925 expr_type
= TREE_TYPE (gimple_call_lhs (stmt
));
1926 assigns_var_p
= true;
1928 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1929 expr_type
= TREE_TYPE (gimple_switch_index (stmt
));
1930 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1931 /* We can't propagate into a phi, so the logic below doesn't apply.
1932 Instead record an equivalence between the cached LHS and the
1933 PHI result of this statement, provided they are in the same block.
1934 This should be sufficient to kill the redundant phi. */
1936 if (def
&& cached_lhs
)
1937 record_const_or_copy (def
, cached_lhs
);
1946 /* It is safe to ignore types here since we have already done
1947 type checking in the hashing and equality routines. In fact
1948 type checking here merely gets in the way of constant
1949 propagation. Also, make sure that it is safe to propagate
1950 CACHED_LHS into the expression in STMT. */
1951 if ((TREE_CODE (cached_lhs
) != SSA_NAME
1953 || useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
))))
1954 || may_propagate_copy_into_stmt (stmt
, cached_lhs
))
1956 gcc_checking_assert (TREE_CODE (cached_lhs
) == SSA_NAME
1957 || is_gimple_min_invariant (cached_lhs
));
1959 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1961 fprintf (dump_file
, " Replaced redundant expr '");
1962 print_gimple_expr (dump_file
, stmt
, 0, dump_flags
);
1963 fprintf (dump_file
, "' with '");
1964 print_generic_expr (dump_file
, cached_lhs
, dump_flags
);
1965 fprintf (dump_file
, "'\n");
1971 && !useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
)))
1972 cached_lhs
= fold_convert (expr_type
, cached_lhs
);
1974 propagate_tree_value_into_stmt (gsi
, cached_lhs
);
1976 /* Since it is always necessary to mark the result as modified,
1977 perhaps we should move this into propagate_tree_value_into_stmt
1979 gimple_set_modified (gsi_stmt (*gsi
), true);
1983 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1984 the available expressions table or the const_and_copies table.
1985 Detect and record those equivalences. */
1986 /* We handle only very simple copy equivalences here. The heavy
1987 lifing is done by eliminate_redundant_computations. */
1990 record_equivalences_from_stmt (gimple stmt
, int may_optimize_p
)
1993 enum tree_code lhs_code
;
1995 gcc_assert (is_gimple_assign (stmt
));
1997 lhs
= gimple_assign_lhs (stmt
);
1998 lhs_code
= TREE_CODE (lhs
);
2000 if (lhs_code
== SSA_NAME
2001 && gimple_assign_single_p (stmt
))
2003 tree rhs
= gimple_assign_rhs1 (stmt
);
2005 /* If the RHS of the assignment is a constant or another variable that
2006 may be propagated, register it in the CONST_AND_COPIES table. We
2007 do not need to record unwind data for this, since this is a true
2008 assignment and not an equivalence inferred from a comparison. All
2009 uses of this ssa name are dominated by this assignment, so unwinding
2010 just costs time and space. */
2012 && (TREE_CODE (rhs
) == SSA_NAME
2013 || is_gimple_min_invariant (rhs
)))
2015 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2017 fprintf (dump_file
, "==== ASGN ");
2018 print_generic_expr (dump_file
, lhs
, 0);
2019 fprintf (dump_file
, " = ");
2020 print_generic_expr (dump_file
, rhs
, 0);
2021 fprintf (dump_file
, "\n");
2024 set_ssa_name_value (lhs
, rhs
);
2028 /* A memory store, even an aliased store, creates a useful
2029 equivalence. By exchanging the LHS and RHS, creating suitable
2030 vops and recording the result in the available expression table,
2031 we may be able to expose more redundant loads. */
2032 if (!gimple_has_volatile_ops (stmt
)
2033 && gimple_references_memory_p (stmt
)
2034 && gimple_assign_single_p (stmt
)
2035 && (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2036 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2037 && !is_gimple_reg (lhs
))
2039 tree rhs
= gimple_assign_rhs1 (stmt
);
2042 /* Build a new statement with the RHS and LHS exchanged. */
2043 if (TREE_CODE (rhs
) == SSA_NAME
)
2045 /* NOTE tuples. The call to gimple_build_assign below replaced
2046 a call to build_gimple_modify_stmt, which did not set the
2047 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2048 may cause an SSA validation failure, as the LHS may be a
2049 default-initialized name and should have no definition. I'm
2050 a bit dubious of this, as the artificial statement that we
2051 generate here may in fact be ill-formed, but it is simply
2052 used as an internal device in this pass, and never becomes
2054 gimple defstmt
= SSA_NAME_DEF_STMT (rhs
);
2055 new_stmt
= gimple_build_assign (rhs
, lhs
);
2056 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
2059 new_stmt
= gimple_build_assign (rhs
, lhs
);
2061 gimple_set_vuse (new_stmt
, gimple_vdef (stmt
));
2063 /* Finally enter the statement into the available expression
2065 lookup_avail_expr (new_stmt
, true);
2069 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2070 CONST_AND_COPIES. */
2073 cprop_operand (gimple stmt
, use_operand_p op_p
)
2076 tree op
= USE_FROM_PTR (op_p
);
2078 /* If the operand has a known constant value or it is known to be a
2079 copy of some other variable, use the value or copy stored in
2080 CONST_AND_COPIES. */
2081 val
= SSA_NAME_VALUE (op
);
2082 if (val
&& val
!= op
)
2084 /* Do not replace hard register operands in asm statements. */
2085 if (gimple_code (stmt
) == GIMPLE_ASM
2086 && !may_propagate_copy_into_asm (op
))
2089 /* Certain operands are not allowed to be copy propagated due
2090 to their interaction with exception handling and some GCC
2092 if (!may_propagate_copy (op
, val
))
2095 /* Do not propagate addresses that point to volatiles into memory
2096 stmts without volatile operands. */
2097 if (POINTER_TYPE_P (TREE_TYPE (val
))
2098 && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val
)))
2099 && gimple_has_mem_ops (stmt
)
2100 && !gimple_has_volatile_ops (stmt
))
2103 /* Do not propagate copies if the propagated value is at a deeper loop
2104 depth than the propagatee. Otherwise, this may move loop variant
2105 variables outside of their loops and prevent coalescing
2106 opportunities. If the value was loop invariant, it will be hoisted
2107 by LICM and exposed for copy propagation. */
2108 if (loop_depth_of_name (val
) > loop_depth_of_name (op
))
2111 /* Do not propagate copies into simple IV increment statements.
2112 See PR23821 for how this can disturb IV analysis. */
2113 if (TREE_CODE (val
) != INTEGER_CST
2114 && simple_iv_increment_p (stmt
))
2118 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2120 fprintf (dump_file
, " Replaced '");
2121 print_generic_expr (dump_file
, op
, dump_flags
);
2122 fprintf (dump_file
, "' with %s '",
2123 (TREE_CODE (val
) != SSA_NAME
? "constant" : "variable"));
2124 print_generic_expr (dump_file
, val
, dump_flags
);
2125 fprintf (dump_file
, "'\n");
2128 if (TREE_CODE (val
) != SSA_NAME
)
2129 opt_stats
.num_const_prop
++;
2131 opt_stats
.num_copy_prop
++;
2133 propagate_value (op_p
, val
);
2135 /* And note that we modified this statement. This is now
2136 safe, even if we changed virtual operands since we will
2137 rescan the statement and rewrite its operands again. */
2138 gimple_set_modified (stmt
, true);
2142 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2143 known value for that SSA_NAME (or NULL if no value is known).
2145 Propagate values from CONST_AND_COPIES into the uses, vuses and
2146 vdef_ops of STMT. */
2149 cprop_into_stmt (gimple stmt
)
2154 FOR_EACH_SSA_USE_OPERAND (op_p
, stmt
, iter
, SSA_OP_USE
)
2155 cprop_operand (stmt
, op_p
);
2158 /* Optimize the statement pointed to by iterator SI.
2160 We try to perform some simplistic global redundancy elimination and
2161 constant propagation:
2163 1- To detect global redundancy, we keep track of expressions that have
2164 been computed in this block and its dominators. If we find that the
2165 same expression is computed more than once, we eliminate repeated
2166 computations by using the target of the first one.
2168 2- Constant values and copy assignments. This is used to do very
2169 simplistic constant and copy propagation. When a constant or copy
2170 assignment is found, we map the value on the RHS of the assignment to
2171 the variable in the LHS in the CONST_AND_COPIES table. */
2174 optimize_stmt (basic_block bb
, gimple_stmt_iterator si
)
2176 gimple stmt
, old_stmt
;
2177 bool may_optimize_p
;
2178 bool modified_p
= false;
2180 old_stmt
= stmt
= gsi_stmt (si
);
2182 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2184 fprintf (dump_file
, "Optimizing statement ");
2185 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2188 if (gimple_code (stmt
) == GIMPLE_COND
)
2189 canonicalize_comparison (stmt
);
2191 update_stmt_if_modified (stmt
);
2192 opt_stats
.num_stmts
++;
2194 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2195 cprop_into_stmt (stmt
);
2197 /* If the statement has been modified with constant replacements,
2198 fold its RHS before checking for redundant computations. */
2199 if (gimple_modified_p (stmt
))
2203 /* Try to fold the statement making sure that STMT is kept
2205 if (fold_stmt (&si
))
2207 stmt
= gsi_stmt (si
);
2208 gimple_set_modified (stmt
, true);
2210 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2212 fprintf (dump_file
, " Folded to: ");
2213 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2217 /* We only need to consider cases that can yield a gimple operand. */
2218 if (gimple_assign_single_p (stmt
))
2219 rhs
= gimple_assign_rhs1 (stmt
);
2220 else if (gimple_code (stmt
) == GIMPLE_GOTO
)
2221 rhs
= gimple_goto_dest (stmt
);
2222 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2223 /* This should never be an ADDR_EXPR. */
2224 rhs
= gimple_switch_index (stmt
);
2226 if (rhs
&& TREE_CODE (rhs
) == ADDR_EXPR
)
2227 recompute_tree_invariant_for_addr_expr (rhs
);
2229 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2230 even if fold_stmt updated the stmt already and thus cleared
2231 gimple_modified_p flag on it. */
2235 /* Check for redundant computations. Do this optimization only
2236 for assignments that have no volatile ops and conditionals. */
2237 may_optimize_p
= (!gimple_has_side_effects (stmt
)
2238 && (is_gimple_assign (stmt
)
2239 || (is_gimple_call (stmt
)
2240 && gimple_call_lhs (stmt
) != NULL_TREE
)
2241 || gimple_code (stmt
) == GIMPLE_COND
2242 || gimple_code (stmt
) == GIMPLE_SWITCH
));
2246 if (gimple_code (stmt
) == GIMPLE_CALL
)
2248 /* Resolve __builtin_constant_p. If it hasn't been
2249 folded to integer_one_node by now, it's fairly
2250 certain that the value simply isn't constant. */
2251 tree callee
= gimple_call_fndecl (stmt
);
2253 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2254 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_CONSTANT_P
)
2256 propagate_tree_value_into_stmt (&si
, integer_zero_node
);
2257 stmt
= gsi_stmt (si
);
2261 update_stmt_if_modified (stmt
);
2262 eliminate_redundant_computations (&si
);
2263 stmt
= gsi_stmt (si
);
2265 /* Perform simple redundant store elimination. */
2266 if (gimple_assign_single_p (stmt
)
2267 && TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
2269 tree lhs
= gimple_assign_lhs (stmt
);
2270 tree rhs
= gimple_assign_rhs1 (stmt
);
2273 if (TREE_CODE (rhs
) == SSA_NAME
)
2275 tree tem
= SSA_NAME_VALUE (rhs
);
2279 /* Build a new statement with the RHS and LHS exchanged. */
2280 if (TREE_CODE (rhs
) == SSA_NAME
)
2282 gimple defstmt
= SSA_NAME_DEF_STMT (rhs
);
2283 new_stmt
= gimple_build_assign (rhs
, lhs
);
2284 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
2287 new_stmt
= gimple_build_assign (rhs
, lhs
);
2288 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
2289 cached_lhs
= lookup_avail_expr (new_stmt
, false);
2291 && rhs
== cached_lhs
)
2293 basic_block bb
= gimple_bb (stmt
);
2294 unlink_stmt_vdef (stmt
);
2295 if (gsi_remove (&si
, true))
2297 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2298 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2299 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2301 release_defs (stmt
);
2307 /* Record any additional equivalences created by this statement. */
2308 if (is_gimple_assign (stmt
))
2309 record_equivalences_from_stmt (stmt
, may_optimize_p
);
2311 /* If STMT is a COND_EXPR and it was modified, then we may know
2312 where it goes. If that is the case, then mark the CFG as altered.
2314 This will cause us to later call remove_unreachable_blocks and
2315 cleanup_tree_cfg when it is safe to do so. It is not safe to
2316 clean things up here since removal of edges and such can trigger
2317 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2320 That's all fine and good, except that once SSA_NAMEs are released
2321 to the manager, we must not call create_ssa_name until all references
2322 to released SSA_NAMEs have been eliminated.
2324 All references to the deleted SSA_NAMEs can not be eliminated until
2325 we remove unreachable blocks.
2327 We can not remove unreachable blocks until after we have completed
2328 any queued jump threading.
2330 We can not complete any queued jump threads until we have taken
2331 appropriate variables out of SSA form. Taking variables out of
2332 SSA form can call create_ssa_name and thus we lose.
2334 Ultimately I suspect we're going to need to change the interface
2335 into the SSA_NAME manager. */
2336 if (gimple_modified_p (stmt
) || modified_p
)
2340 update_stmt_if_modified (stmt
);
2342 if (gimple_code (stmt
) == GIMPLE_COND
)
2343 val
= fold_binary_loc (gimple_location (stmt
),
2344 gimple_cond_code (stmt
), boolean_type_node
,
2345 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
2346 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2347 val
= gimple_switch_index (stmt
);
2349 if (val
&& TREE_CODE (val
) == INTEGER_CST
&& find_taken_edge (bb
, val
))
2352 /* If we simplified a statement in such a way as to be shown that it
2353 cannot trap, update the eh information and the cfg to match. */
2354 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
2356 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2358 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2363 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2364 If found, return its LHS. Otherwise insert STMT in the table and
2367 Also, when an expression is first inserted in the table, it is also
2368 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2369 we finish processing this block and its children. */
2372 lookup_avail_expr (gimple stmt
, bool insert
)
2377 struct expr_hash_elt element
;
2379 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2380 if (gimple_code (stmt
) == GIMPLE_PHI
)
2381 lhs
= gimple_phi_result (stmt
);
2383 lhs
= gimple_get_lhs (stmt
);
2385 initialize_hash_element (stmt
, lhs
, &element
);
2387 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2389 fprintf (dump_file
, "LKUP ");
2390 print_expr_hash_elt (dump_file
, &element
);
2393 /* Don't bother remembering constant assignments and copy operations.
2394 Constants and copy operations are handled by the constant/copy propagator
2395 in optimize_stmt. */
2396 if (element
.expr
.kind
== EXPR_SINGLE
2397 && (TREE_CODE (element
.expr
.ops
.single
.rhs
) == SSA_NAME
2398 || is_gimple_min_invariant (element
.expr
.ops
.single
.rhs
)))
2401 /* Finally try to find the expression in the main expression hash table. */
2402 slot
= htab_find_slot_with_hash (avail_exprs
, &element
, element
.hash
,
2403 (insert
? INSERT
: NO_INSERT
));
2406 free_expr_hash_elt_contents (&element
);
2409 else if (*slot
== NULL
)
2411 struct expr_hash_elt
*element2
= XNEW (struct expr_hash_elt
);
2412 *element2
= element
;
2413 element2
->stamp
= element2
;
2414 *slot
= (void *) element2
;
2416 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2418 fprintf (dump_file
, "2>>> ");
2419 print_expr_hash_elt (dump_file
, element2
);
2422 avail_exprs_stack
.safe_push (element2
);
2426 free_expr_hash_elt_contents (&element
);
2428 /* Extract the LHS of the assignment so that it can be used as the current
2429 definition of another variable. */
2430 lhs
= ((struct expr_hash_elt
*)*slot
)->lhs
;
2432 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2433 use the value from the const_and_copies table. */
2434 if (TREE_CODE (lhs
) == SSA_NAME
)
2436 temp
= SSA_NAME_VALUE (lhs
);
2441 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2443 fprintf (dump_file
, "FIND: ");
2444 print_generic_expr (dump_file
, lhs
, 0);
2445 fprintf (dump_file
, "\n");
2451 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2452 for expressions using the code of the expression and the SSA numbers of
2456 avail_expr_hash (const void *p
)
2458 gimple stmt
= ((const struct expr_hash_elt
*)p
)->stmt
;
2459 const struct hashable_expr
*expr
= &((const struct expr_hash_elt
*)p
)->expr
;
2463 val
= iterative_hash_hashable_expr (expr
, val
);
2465 /* If the hash table entry is not associated with a statement, then we
2466 can just hash the expression and not worry about virtual operands
2471 /* Add the SSA version numbers of the vuse operand. This is important
2472 because compound variables like arrays are not renamed in the
2473 operands. Rather, the rename is done on the virtual variable
2474 representing all the elements of the array. */
2475 if ((vuse
= gimple_vuse (stmt
)))
2476 val
= iterative_hash_expr (vuse
, val
);
2482 real_avail_expr_hash (const void *p
)
2484 return ((const struct expr_hash_elt
*)p
)->hash
;
2488 avail_expr_eq (const void *p1
, const void *p2
)
2490 gimple stmt1
= ((const struct expr_hash_elt
*)p1
)->stmt
;
2491 const struct hashable_expr
*expr1
= &((const struct expr_hash_elt
*)p1
)->expr
;
2492 const struct expr_hash_elt
*stamp1
= ((const struct expr_hash_elt
*)p1
)->stamp
;
2493 gimple stmt2
= ((const struct expr_hash_elt
*)p2
)->stmt
;
2494 const struct hashable_expr
*expr2
= &((const struct expr_hash_elt
*)p2
)->expr
;
2495 const struct expr_hash_elt
*stamp2
= ((const struct expr_hash_elt
*)p2
)->stamp
;
2497 /* This case should apply only when removing entries from the table. */
2498 if (stamp1
== stamp2
)
2502 We add stmts to a hash table and them modify them. To detect the case
2503 that we modify a stmt and then search for it, we assume that the hash
2504 is always modified by that change.
2505 We have to fully check why this doesn't happen on trunk or rewrite
2506 this in a more reliable (and easier to understand) way. */
2507 if (((const struct expr_hash_elt
*)p1
)->hash
2508 != ((const struct expr_hash_elt
*)p2
)->hash
)
2511 /* In case of a collision, both RHS have to be identical and have the
2512 same VUSE operands. */
2513 if (hashable_expr_equal_p (expr1
, expr2
)
2514 && types_compatible_p (expr1
->type
, expr2
->type
))
2516 /* Note that STMT1 and/or STMT2 may be NULL. */
2517 return ((stmt1
? gimple_vuse (stmt1
) : NULL_TREE
)
2518 == (stmt2
? gimple_vuse (stmt2
) : NULL_TREE
));
2524 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2525 up degenerate PHIs created by or exposed by jump threading. */
2527 /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
2531 degenerate_phi_result (gimple phi
)
2533 tree lhs
= gimple_phi_result (phi
);
2537 /* Ignoring arguments which are the same as LHS, if all the remaining
2538 arguments are the same, then the PHI is a degenerate and has the
2539 value of that common argument. */
2540 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2542 tree arg
= gimple_phi_arg_def (phi
, i
);
2550 else if (arg
== val
)
2552 /* We bring in some of operand_equal_p not only to speed things
2553 up, but also to avoid crashing when dereferencing the type of
2554 a released SSA name. */
2555 else if (TREE_CODE (val
) != TREE_CODE (arg
)
2556 || TREE_CODE (val
) == SSA_NAME
2557 || !operand_equal_p (arg
, val
, 0))
2560 return (i
== gimple_phi_num_args (phi
) ? val
: NULL
);
2563 /* Given a statement STMT, which is either a PHI node or an assignment,
2564 remove it from the IL. */
2567 remove_stmt_or_phi (gimple stmt
)
2569 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2571 if (gimple_code (stmt
) == GIMPLE_PHI
)
2572 remove_phi_node (&gsi
, true);
2575 gsi_remove (&gsi
, true);
2576 release_defs (stmt
);
2580 /* Given a statement STMT, which is either a PHI node or an assignment,
2581 return the "rhs" of the node, in the case of a non-degenerate
2582 phi, NULL is returned. */
2585 get_rhs_or_phi_arg (gimple stmt
)
2587 if (gimple_code (stmt
) == GIMPLE_PHI
)
2588 return degenerate_phi_result (stmt
);
2589 else if (gimple_assign_single_p (stmt
))
2590 return gimple_assign_rhs1 (stmt
);
2596 /* Given a statement STMT, which is either a PHI node or an assignment,
2597 return the "lhs" of the node. */
2600 get_lhs_or_phi_result (gimple stmt
)
2602 if (gimple_code (stmt
) == GIMPLE_PHI
)
2603 return gimple_phi_result (stmt
);
2604 else if (is_gimple_assign (stmt
))
2605 return gimple_assign_lhs (stmt
);
2610 /* Propagate RHS into all uses of LHS (when possible).
2612 RHS and LHS are derived from STMT, which is passed in solely so
2613 that we can remove it if propagation is successful.
2615 When propagating into a PHI node or into a statement which turns
2616 into a trivial copy or constant initialization, set the
2617 appropriate bit in INTERESTING_NAMEs so that we will visit those
2618 nodes as well in an effort to pick up secondary optimization
2622 propagate_rhs_into_lhs (gimple stmt
, tree lhs
, tree rhs
, bitmap interesting_names
)
2624 /* First verify that propagation is valid and isn't going to move a
2625 loop variant variable outside its loop. */
2626 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
)
2627 && (TREE_CODE (rhs
) != SSA_NAME
2628 || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
))
2629 && may_propagate_copy (lhs
, rhs
)
2630 && loop_depth_of_name (lhs
) >= loop_depth_of_name (rhs
))
2632 use_operand_p use_p
;
2633 imm_use_iterator iter
;
2638 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2640 fprintf (dump_file
, " Replacing '");
2641 print_generic_expr (dump_file
, lhs
, dump_flags
);
2642 fprintf (dump_file
, "' with %s '",
2643 (TREE_CODE (rhs
) != SSA_NAME
? "constant" : "variable"));
2644 print_generic_expr (dump_file
, rhs
, dump_flags
);
2645 fprintf (dump_file
, "'\n");
2648 /* Walk over every use of LHS and try to replace the use with RHS.
2649 At this point the only reason why such a propagation would not
2650 be successful would be if the use occurs in an ASM_EXPR. */
2651 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
2653 /* Leave debug stmts alone. If we succeed in propagating
2654 all non-debug uses, we'll drop the DEF, and propagation
2655 into debug stmts will occur then. */
2656 if (gimple_debug_bind_p (use_stmt
))
2659 /* It's not always safe to propagate into an ASM_EXPR. */
2660 if (gimple_code (use_stmt
) == GIMPLE_ASM
2661 && ! may_propagate_copy_into_asm (lhs
))
2667 /* It's not ok to propagate into the definition stmt of RHS.
2669 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2670 g_67.1_6 = prephitmp.12_36;
2672 While this is strictly all dead code we do not want to
2673 deal with this here. */
2674 if (TREE_CODE (rhs
) == SSA_NAME
2675 && SSA_NAME_DEF_STMT (rhs
) == use_stmt
)
2682 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2684 fprintf (dump_file
, " Original statement:");
2685 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2688 /* Propagate the RHS into this use of the LHS. */
2689 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2690 propagate_value (use_p
, rhs
);
2692 /* Special cases to avoid useless calls into the folding
2693 routines, operand scanning, etc.
2695 Propagation into a PHI may cause the PHI to become
2696 a degenerate, so mark the PHI as interesting. No other
2697 actions are necessary. */
2698 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
2703 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2705 fprintf (dump_file
, " Updated statement:");
2706 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2709 result
= get_lhs_or_phi_result (use_stmt
);
2710 bitmap_set_bit (interesting_names
, SSA_NAME_VERSION (result
));
2714 /* From this point onward we are propagating into a
2715 real statement. Folding may (or may not) be possible,
2716 we may expose new operands, expose dead EH edges,
2718 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2719 cannot fold a call that simplifies to a constant,
2720 because the GIMPLE_CALL must be replaced by a
2721 GIMPLE_ASSIGN, and there is no way to effect such a
2722 transformation in-place. We might want to consider
2723 using the more general fold_stmt here. */
2725 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
2726 fold_stmt_inplace (&gsi
);
2729 /* Sometimes propagation can expose new operands to the
2731 update_stmt (use_stmt
);
2734 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2736 fprintf (dump_file
, " Updated statement:");
2737 print_gimple_stmt (dump_file
, use_stmt
, 0, dump_flags
);
2740 /* If we replaced a variable index with a constant, then
2741 we would need to update the invariant flag for ADDR_EXPRs. */
2742 if (gimple_assign_single_p (use_stmt
)
2743 && TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == ADDR_EXPR
)
2744 recompute_tree_invariant_for_addr_expr
2745 (gimple_assign_rhs1 (use_stmt
));
2747 /* If we cleaned up EH information from the statement,
2748 mark its containing block as needing EH cleanups. */
2749 if (maybe_clean_or_replace_eh_stmt (use_stmt
, use_stmt
))
2751 bitmap_set_bit (need_eh_cleanup
, gimple_bb (use_stmt
)->index
);
2752 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2753 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2756 /* Propagation may expose new trivial copy/constant propagation
2758 if (gimple_assign_single_p (use_stmt
)
2759 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
2760 && (TREE_CODE (gimple_assign_rhs1 (use_stmt
)) == SSA_NAME
2761 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt
))))
2763 tree result
= get_lhs_or_phi_result (use_stmt
);
2764 bitmap_set_bit (interesting_names
, SSA_NAME_VERSION (result
));
2767 /* Propagation into these nodes may make certain edges in
2768 the CFG unexecutable. We want to identify them as PHI nodes
2769 at the destination of those unexecutable edges may become
2771 else if (gimple_code (use_stmt
) == GIMPLE_COND
2772 || gimple_code (use_stmt
) == GIMPLE_SWITCH
2773 || gimple_code (use_stmt
) == GIMPLE_GOTO
)
2777 if (gimple_code (use_stmt
) == GIMPLE_COND
)
2778 val
= fold_binary_loc (gimple_location (use_stmt
),
2779 gimple_cond_code (use_stmt
),
2781 gimple_cond_lhs (use_stmt
),
2782 gimple_cond_rhs (use_stmt
));
2783 else if (gimple_code (use_stmt
) == GIMPLE_SWITCH
)
2784 val
= gimple_switch_index (use_stmt
);
2786 val
= gimple_goto_dest (use_stmt
);
2788 if (val
&& is_gimple_min_invariant (val
))
2790 basic_block bb
= gimple_bb (use_stmt
);
2791 edge te
= find_taken_edge (bb
, val
);
2794 gimple_stmt_iterator gsi
, psi
;
2796 /* Remove all outgoing edges except TE. */
2797 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
));)
2801 /* Mark all the PHI nodes at the destination of
2802 the unexecutable edge as interesting. */
2803 for (psi
= gsi_start_phis (e
->dest
);
2807 gimple phi
= gsi_stmt (psi
);
2809 tree result
= gimple_phi_result (phi
);
2810 int version
= SSA_NAME_VERSION (result
);
2812 bitmap_set_bit (interesting_names
, version
);
2815 te
->probability
+= e
->probability
;
2817 te
->count
+= e
->count
;
2825 gsi
= gsi_last_bb (gimple_bb (use_stmt
));
2826 gsi_remove (&gsi
, true);
2828 /* And fixup the flags on the single remaining edge. */
2829 te
->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
2830 te
->flags
&= ~EDGE_ABNORMAL
;
2831 te
->flags
|= EDGE_FALLTHRU
;
2832 if (te
->probability
> REG_BR_PROB_BASE
)
2833 te
->probability
= REG_BR_PROB_BASE
;
2838 /* Ensure there is nothing else to do. */
2839 gcc_assert (!all
|| has_zero_uses (lhs
));
2841 /* If we were able to propagate away all uses of LHS, then
2842 we can remove STMT. */
2844 remove_stmt_or_phi (stmt
);
2848 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2849 a statement that is a trivial copy or constant initialization.
2851 Attempt to eliminate T by propagating its RHS into all uses of
2852 its LHS. This may in turn set new bits in INTERESTING_NAMES
2853 for nodes we want to revisit later.
2855 All exit paths should clear INTERESTING_NAMES for the result
2859 eliminate_const_or_copy (gimple stmt
, bitmap interesting_names
)
2861 tree lhs
= get_lhs_or_phi_result (stmt
);
2863 int version
= SSA_NAME_VERSION (lhs
);
2865 /* If the LHS of this statement or PHI has no uses, then we can
2866 just eliminate it. This can occur if, for example, the PHI
2867 was created by block duplication due to threading and its only
2868 use was in the conditional at the end of the block which was
2870 if (has_zero_uses (lhs
))
2872 bitmap_clear_bit (interesting_names
, version
);
2873 remove_stmt_or_phi (stmt
);
2877 /* Get the RHS of the assignment or PHI node if the PHI is a
2879 rhs
= get_rhs_or_phi_arg (stmt
);
2882 bitmap_clear_bit (interesting_names
, version
);
2886 propagate_rhs_into_lhs (stmt
, lhs
, rhs
, interesting_names
);
2888 /* Note that STMT may well have been deleted by now, so do
2889 not access it, instead use the saved version # to clear
2890 T's entry in the worklist. */
2891 bitmap_clear_bit (interesting_names
, version
);
2894 /* The first phase in degenerate PHI elimination.
2896 Eliminate the degenerate PHIs in BB, then recurse on the
2897 dominator children of BB. */
2900 eliminate_degenerate_phis_1 (basic_block bb
, bitmap interesting_names
)
2902 gimple_stmt_iterator gsi
;
2905 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2907 gimple phi
= gsi_stmt (gsi
);
2909 eliminate_const_or_copy (phi
, interesting_names
);
2912 /* Recurse into the dominator children of BB. */
2913 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
2915 son
= next_dom_son (CDI_DOMINATORS
, son
))
2916 eliminate_degenerate_phis_1 (son
, interesting_names
);
2920 /* A very simple pass to eliminate degenerate PHI nodes from the
2921 IL. This is meant to be fast enough to be able to be run several
2922 times in the optimization pipeline.
2924 Certain optimizations, particularly those which duplicate blocks
2925 or remove edges from the CFG can create or expose PHIs which are
2926 trivial copies or constant initializations.
2928 While we could pick up these optimizations in DOM or with the
2929 combination of copy-prop and CCP, those solutions are far too
2930 heavy-weight for our needs.
2932 This implementation has two phases so that we can efficiently
2933 eliminate the first order degenerate PHIs and second order
2936 The first phase performs a dominator walk to identify and eliminate
2937 the vast majority of the degenerate PHIs. When a degenerate PHI
2938 is identified and eliminated any affected statements or PHIs
2939 are put on a worklist.
2941 The second phase eliminates degenerate PHIs and trivial copies
2942 or constant initializations using the worklist. This is how we
2943 pick up the secondary optimization opportunities with minimal
2947 eliminate_degenerate_phis (void)
2949 bitmap interesting_names
;
2950 bitmap interesting_names1
;
2952 /* Bitmap of blocks which need EH information updated. We can not
2953 update it on-the-fly as doing so invalidates the dominator tree. */
2954 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
2956 /* INTERESTING_NAMES is effectively our worklist, indexed by
2959 A set bit indicates that the statement or PHI node which
2960 defines the SSA_NAME should be (re)examined to determine if
2961 it has become a degenerate PHI or trivial const/copy propagation
2964 Experiments have show we generally get better compilation
2965 time behavior with bitmaps rather than sbitmaps. */
2966 interesting_names
= BITMAP_ALLOC (NULL
);
2967 interesting_names1
= BITMAP_ALLOC (NULL
);
2969 calculate_dominance_info (CDI_DOMINATORS
);
2970 cfg_altered
= false;
2972 /* First phase. Eliminate degenerate PHIs via a dominator
2975 Experiments have indicated that we generally get better
2976 compile-time behavior by visiting blocks in the first
2977 phase in dominator order. Presumably this is because walking
2978 in dominator order leaves fewer PHIs for later examination
2979 by the worklist phase. */
2980 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR
, interesting_names
);
2982 /* Second phase. Eliminate second order degenerate PHIs as well
2983 as trivial copies or constant initializations identified by
2984 the first phase or this phase. Basically we keep iterating
2985 until our set of INTERESTING_NAMEs is empty. */
2986 while (!bitmap_empty_p (interesting_names
))
2991 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
2992 changed during the loop. Copy it to another bitmap and
2994 bitmap_copy (interesting_names1
, interesting_names
);
2996 EXECUTE_IF_SET_IN_BITMAP (interesting_names1
, 0, i
, bi
)
2998 tree name
= ssa_name (i
);
3000 /* Ignore SSA_NAMEs that have been released because
3001 their defining statement was deleted (unreachable). */
3003 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i
)),
3010 free_dominance_info (CDI_DOMINATORS
);
3011 /* If we changed the CFG schedule loops for fixup by cfgcleanup. */
3013 loops_state_set (LOOPS_NEED_FIXUP
);
3016 /* Propagation of const and copies may make some EH edges dead. Purge
3017 such edges from the CFG as needed. */
3018 if (!bitmap_empty_p (need_eh_cleanup
))
3020 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
3021 BITMAP_FREE (need_eh_cleanup
);
3024 BITMAP_FREE (interesting_names
);
3025 BITMAP_FREE (interesting_names1
);
3029 struct gimple_opt_pass pass_phi_only_cprop
=
3033 "phicprop", /* name */
3034 OPTGROUP_NONE
, /* optinfo_flags */
3035 gate_dominator
, /* gate */
3036 eliminate_degenerate_phis
, /* execute */
3039 0, /* static_pass_number */
3040 TV_TREE_PHI_CPROP
, /* tv_id */
3041 PROP_cfg
| PROP_ssa
, /* properties_required */
3042 0, /* properties_provided */
3043 0, /* properties_destroyed */
3044 0, /* todo_flags_start */
3049 | TODO_update_ssa
/* todo_flags_finish */